Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction

Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evoluti...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 1029 - 8
Main Authors Fang, Shi, Zhu, Xiaorong, Liu, Xiaokang, Gu, Jian, Liu, Wei, Wang, Danhao, Zhang, Wei, Lin, Yue, Lu, Junling, Wei, Shiqiang, Li, Yafei, Yao, Tao
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.02.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5 d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H 2 SO 4 and 46 mV in 1.0 M NaOH at 10 mA cm −2 , and long-term durability in wide-pH electrolytes. Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy.
AbstractList Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5 d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H 2 SO 4 and 46 mV in 1.0 M NaOH at 10 mA cm −2 , and long-term durability in wide-pH electrolytes. Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy.
Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy.
Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H SO and 46 mV in 1.0 M NaOH at 10 mA cm , and long-term durability in wide-pH electrolytes.
Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5 d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H 2 SO 4 and 46 mV in 1.0 M NaOH at 10 mA cm −2 , and long-term durability in wide-pH electrolytes.
Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm−2, and long-term durability in wide-pH electrolytes.Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy.
Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm-2, and long-term durability in wide-pH electrolytes.Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm-2, and long-term durability in wide-pH electrolytes.
ArticleNumber 1029
Author Wang, Danhao
Liu, Xiaokang
Liu, Wei
Wei, Shiqiang
Zhang, Wei
Fang, Shi
Gu, Jian
Zhu, Xiaorong
Lin, Yue
Li, Yafei
Yao, Tao
Lu, Junling
Author_xml – sequence: 1
  givenname: Shi
  orcidid: 0000-0001-9255-1579
  surname: Fang
  fullname: Fang, Shi
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 2
  givenname: Xiaorong
  surname: Zhu
  fullname: Zhu, Xiaorong
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 3
  givenname: Xiaokang
  surname: Liu
  fullname: Liu, Xiaokang
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 4
  givenname: Jian
  surname: Gu
  fullname: Gu, Jian
  organization: Department of Chemical Physics, University of Science and Technology of China
– sequence: 5
  givenname: Wei
  orcidid: 0000-0002-6665-220X
  surname: Liu
  fullname: Liu, Wei
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 6
  givenname: Danhao
  surname: Wang
  fullname: Wang, Danhao
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 7
  givenname: Wei
  surname: Zhang
  fullname: Zhang, Wei
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 8
  givenname: Yue
  orcidid: 0000-0001-5333-511X
  surname: Lin
  fullname: Lin, Yue
  organization: Department of Chemical Physics, University of Science and Technology of China
– sequence: 9
  givenname: Junling
  orcidid: 0000-0002-2607-6869
  surname: Lu
  fullname: Lu, Junling
  organization: Department of Chemical Physics, University of Science and Technology of China
– sequence: 10
  givenname: Shiqiang
  orcidid: 0000-0002-2052-1132
  surname: Wei
  fullname: Wei, Shiqiang
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
– sequence: 11
  givenname: Yafei
  surname: Li
  fullname: Li, Yafei
  organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University
– sequence: 12
  givenname: Tao
  orcidid: 0000-0001-8699-8294
  surname: Yao
  fullname: Yao, Tao
  email: yaot@ustc.edu.cn
  organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32098951$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv3CAUhVGVqkmn-QNdVJa66cYtF_BrU6mK-ogUqZtmjTBczzDCMAV7pPn3YcZpmmQRNqDLd44u3POWnPngkZD3QD8D5e2XJEDUTUkZLUG0oi3ZK3LBqIASGsbPHp3PyWVKW5oX76AV4g0554x2bVfBBcFbr8Meo_XrwqOK5RARi51Tk_XzWKRcd1iqKYyFOXg1Wp0KM59wdKinGPQGc1W5YnMwMazRF7gPbp5s8EVEpY-Hd-T1oFzCy_t9RW5_fP9z9au8-f3z-urbTalrWk_lQKmCoeuxNn1leoDB6Ap6IXrTmAE7UxnGoRF9a_RAteaCiR6BDbRWRhnNV-R68TVBbeUu2lHFgwzKylMhxLVUcbLaodSNoQANB9oIobBqoa8BKgTVN53BOnt9Xbx2cz-i0einqNwT06c33m7kOuxlQwVj0GWDT_cGMfydMU1ytEmjc8pjmJNkvK4Yq1rBM_rxGboNc_T5q44U7zLI20x9eNzRQyv_ppkBtgA6hpQiDg8IUHlMjVxSI3Nq5Ck12X5F2mcibSd1nFp-lXUvS_kiTbtjIjD-b_sF1R1hndkf
CitedBy_id crossref_primary_10_1038_s41467_024_55743_4
crossref_primary_10_1002_smll_202307135
crossref_primary_10_1021_acscatal_2c04238
crossref_primary_10_1002_smll_202309791
crossref_primary_10_1021_acscatal_4c05507
crossref_primary_10_1021_acssuschemeng_0c02498
crossref_primary_10_3390_en16062664
crossref_primary_10_1039_D3EE01929B
crossref_primary_10_1002_cnma_202200165
crossref_primary_10_1016_j_jechem_2023_08_017
crossref_primary_10_1016_j_apcatb_2024_124608
crossref_primary_10_1038_s41557_022_00965_6
crossref_primary_10_1016_j_fuel_2025_134704
crossref_primary_10_1016_j_coelec_2021_100788
crossref_primary_10_1039_D2CE01246D
crossref_primary_10_1039_D2TA02742A
crossref_primary_10_1016_j_fuel_2023_128828
crossref_primary_10_1039_D1CP01861B
crossref_primary_10_1016_j_apcatb_2023_123362
crossref_primary_10_1021_acs_nanolett_4c03182
crossref_primary_10_1021_acs_jpcc_0c08811
crossref_primary_10_1002_adfm_202404707
crossref_primary_10_1021_acscatal_2c05540
crossref_primary_10_1021_jacs_3c01319
crossref_primary_10_1016_j_mtnano_2022_100281
crossref_primary_10_1002_adma_202419644
crossref_primary_10_1002_admi_202202050
crossref_primary_10_1016_j_apmate_2024_100214
crossref_primary_10_1016_j_nanoen_2021_106870
crossref_primary_10_1021_acsnano_4c18642
crossref_primary_10_1016_j_apcatb_2024_123890
crossref_primary_10_1016_j_seppur_2022_122988
crossref_primary_10_1039_D0TA06656G
crossref_primary_10_1073_pnas_2319136121
crossref_primary_10_1007_s10311_020_01023_8
crossref_primary_10_3390_nano12152557
crossref_primary_10_1039_D1EE00248A
crossref_primary_10_1021_acs_chemrev_9b00818
crossref_primary_10_1002_ange_202208667
crossref_primary_10_1007_s12274_024_6726_y
crossref_primary_10_1016_j_electacta_2022_139966
crossref_primary_10_3390_ma16083280
crossref_primary_10_1016_j_jechem_2024_10_020
crossref_primary_10_1002_aenm_202200110
crossref_primary_10_1002_smll_202104205
crossref_primary_10_1016_j_jechem_2024_02_037
crossref_primary_10_1016_j_ijhydene_2023_01_213
crossref_primary_10_1088_2053_1583_ac805a
crossref_primary_10_1016_j_jcis_2024_07_243
crossref_primary_10_1021_jacs_0c12740
crossref_primary_10_1016_j_gee_2021_07_002
crossref_primary_10_1016_j_nanoen_2020_105375
crossref_primary_10_1021_acs_jpcc_2c06519
crossref_primary_10_1039_D4NJ01121J
crossref_primary_10_1002_ange_202011495
crossref_primary_10_1016_j_apcatb_2024_124801
crossref_primary_10_1002_advs_202308923
crossref_primary_10_1021_acsami_4c13898
crossref_primary_10_1016_j_cclet_2025_110998
crossref_primary_10_1016_j_cej_2022_136878
crossref_primary_10_1016_j_nanoen_2025_110708
crossref_primary_10_1016_j_mcat_2023_113795
crossref_primary_10_1021_acsnano_1c05834
crossref_primary_10_1016_j_xcrp_2023_101377
crossref_primary_10_1002_advs_202206166
crossref_primary_10_1002_ange_202013206
crossref_primary_10_1038_s41524_021_00684_5
crossref_primary_10_1002_asia_202200319
crossref_primary_10_3390_molecules27051528
crossref_primary_10_1002_celc_202100052
crossref_primary_10_1016_j_cej_2022_137611
crossref_primary_10_1002_ange_202111920
crossref_primary_10_1016_j_apcatb_2024_123703
crossref_primary_10_1007_s40820_021_00651_1
crossref_primary_10_1016_j_apt_2025_104839
crossref_primary_10_1007_s12274_022_4091_2
crossref_primary_10_1002_anie_202203836
crossref_primary_10_1016_j_matre_2022_100145
crossref_primary_10_1021_acs_est_1c00264
crossref_primary_10_1016_j_matre_2022_100144
crossref_primary_10_1039_D2CC05253A
crossref_primary_10_1002_adfm_202009770
crossref_primary_10_1016_j_jcis_2024_08_198
crossref_primary_10_1002_ange_202311570
crossref_primary_10_1038_s41467_022_33512_5
crossref_primary_10_1002_smll_202105680
crossref_primary_10_1021_acs_chemmater_2c02667
crossref_primary_10_1002_smsc_202400370
crossref_primary_10_1007_s11244_025_02064_5
crossref_primary_10_1016_j_nanoen_2020_105467
crossref_primary_10_1021_jacs_1c05856
crossref_primary_10_1002_adfm_202307643
crossref_primary_10_1021_acssuschemeng_4c09228
crossref_primary_10_1002_adfm_202207438
crossref_primary_10_1002_adma_202211398
crossref_primary_10_1002_advs_202206063
crossref_primary_10_1016_j_jcat_2023_02_003
crossref_primary_10_1002_anie_202111920
crossref_primary_10_1002_smll_202405624
crossref_primary_10_1039_D2TA08454F
crossref_primary_10_1002_adma_202300911
crossref_primary_10_1016_j_ccr_2021_214289
crossref_primary_10_1039_D2NR00294A
crossref_primary_10_1039_D2SE00803C
crossref_primary_10_1002_adfm_202307510
crossref_primary_10_1039_D1TA08254J
crossref_primary_10_1002_smll_202105335
crossref_primary_10_1007_s10854_021_05581_7
crossref_primary_10_1038_s41467_022_28995_1
crossref_primary_10_1016_j_micromeso_2022_112169
crossref_primary_10_1002_adfm_202203067
crossref_primary_10_1126_sciadv_add6421
crossref_primary_10_1002_adfm_202209967
crossref_primary_10_1016_j_jclepro_2023_138921
crossref_primary_10_1007_s12274_023_5681_3
crossref_primary_10_1021_acscatal_3c01513
crossref_primary_10_1002_sstr_202300537
crossref_primary_10_1016_j_ijhydene_2022_03_023
crossref_primary_10_1002_aenm_202200875
crossref_primary_10_1016_j_gee_2022_12_006
crossref_primary_10_1002_cey2_194
crossref_primary_10_1002_cssc_202301963
crossref_primary_10_1016_j_chempr_2023_08_014
crossref_primary_10_1016_j_jmr_2023_107457
crossref_primary_10_1038_s41467_023_38964_x
crossref_primary_10_1021_jacsau_1c00355
crossref_primary_10_1021_acscatal_2c00944
crossref_primary_10_1039_D4CS00333K
crossref_primary_10_1039_D0TA06942F
crossref_primary_10_1360_SSC_2023_0153
crossref_primary_10_1038_s41467_024_54959_8
crossref_primary_10_1021_acs_est_3c03346
crossref_primary_10_1002_ange_202203836
crossref_primary_10_1002_adfm_202414554
crossref_primary_10_1002_smll_202007245
crossref_primary_10_1021_acs_iecr_4c00816
crossref_primary_10_1021_acs_chemrev_1c00505
crossref_primary_10_1021_acs_inorgchem_2c02192
crossref_primary_10_3390_nano13142122
crossref_primary_10_1002_ange_202011358
crossref_primary_10_1002_adfm_202309474
crossref_primary_10_1038_s44160_025_00774_y
crossref_primary_10_1021_jacs_4c08677
crossref_primary_10_1007_s40820_023_01223_1
crossref_primary_10_1002_adma_202206960
crossref_primary_10_1021_acsapm_4c01965
crossref_primary_10_1016_j_checat_2023_100621
crossref_primary_10_1016_j_ijhydene_2024_08_192
crossref_primary_10_1002_anie_202300406
crossref_primary_10_1016_j_jallcom_2023_169071
crossref_primary_10_1038_s41467_021_26130_0
crossref_primary_10_1016_j_jenvman_2023_118773
crossref_primary_10_1007_s12274_023_5449_9
crossref_primary_10_1039_D0EE01706J
crossref_primary_10_1021_acscatal_1c00413
crossref_primary_10_1016_j_carbon_2021_09_030
crossref_primary_10_1016_j_apcatb_2022_122354
crossref_primary_10_1016_j_apcatb_2023_122898
crossref_primary_10_1021_jacsau_1c00384
crossref_primary_10_1002_adfm_202312987
crossref_primary_10_1016_j_cej_2022_140289
crossref_primary_10_1016_j_coche_2023_100921
crossref_primary_10_1002_smll_202006255
crossref_primary_10_1002_sus2_266
crossref_primary_10_1002_adfm_202300636
crossref_primary_10_1002_smll_202205266
crossref_primary_10_1002_sstr_202100047
crossref_primary_10_1016_j_matt_2023_12_001
crossref_primary_10_1021_acs_nanolett_4c03361
crossref_primary_10_1007_s12274_021_3331_1
crossref_primary_10_1016_j_jcis_2021_09_020
crossref_primary_10_1002_anie_202200190
crossref_primary_10_1002_slct_202200306
crossref_primary_10_1126_sciadv_abd6647
crossref_primary_10_1002_ange_202418347
crossref_primary_10_1002_anie_202311937
crossref_primary_10_1016_j_apcatb_2024_124074
crossref_primary_10_1002_nano_202100079
crossref_primary_10_1002_smll_202309067
crossref_primary_10_1016_j_jechem_2022_12_032
crossref_primary_10_1021_acs_jpclett_0c01943
crossref_primary_10_1016_j_catcom_2024_106911
crossref_primary_10_1039_D0CY01408G
crossref_primary_10_1021_acsnano_4c13603
crossref_primary_10_1002_smll_202300373
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_1021_acs_chemmater_2c03476
crossref_primary_10_1088_1361_648X_abe9da
crossref_primary_10_1007_s10934_024_01672_y
crossref_primary_10_1039_D4TA04567J
crossref_primary_10_1007_s11426_022_1499_0
crossref_primary_10_1021_acssuschemeng_1c01364
crossref_primary_10_1038_s41467_024_46872_x
crossref_primary_10_3390_catal13010022
crossref_primary_10_1016_j_ccr_2025_216462
crossref_primary_10_1016_j_jechem_2022_12_018
crossref_primary_10_1016_j_ijhydene_2022_06_096
crossref_primary_10_1021_acs_chemrev_0c00576
crossref_primary_10_1093_nsr_nwae056
crossref_primary_10_1002_sus2_15
crossref_primary_10_1002_anie_202308670
crossref_primary_10_1002_sstr_202100007
crossref_primary_10_1016_j_carbon_2022_09_018
crossref_primary_10_1016_j_jhazmat_2022_129772
crossref_primary_10_1007_s40843_020_1656_0
crossref_primary_10_1021_jacs_1c10470
crossref_primary_10_1021_acs_accounts_2c00212
crossref_primary_10_1016_j_nanoen_2024_110079
crossref_primary_10_1002_anie_202218630
crossref_primary_10_1039_D2TA09033C
crossref_primary_10_1002_smll_202107481
crossref_primary_10_1016_j_fuel_2021_122048
crossref_primary_10_1016_j_seppur_2024_127063
crossref_primary_10_1038_s41467_021_26256_1
crossref_primary_10_1002_idm2_12011
crossref_primary_10_1021_acs_nanolett_0c03357
crossref_primary_10_1016_j_nanoen_2022_107587
crossref_primary_10_54227_elab_20220005
crossref_primary_10_1002_adfm_202406670
crossref_primary_10_1021_acs_jpcc_2c05198
crossref_primary_10_1002_anie_202308686
crossref_primary_10_1016_j_apcatb_2022_121575
crossref_primary_10_1016_j_apcatb_2022_121332
crossref_primary_10_1016_j_cej_2021_131309
crossref_primary_10_1016_j_pecs_2023_101074
crossref_primary_10_1063_5_0048186
crossref_primary_10_1016_j_apcatb_2024_124393
crossref_primary_10_1021_acssensors_4c01592
crossref_primary_10_1002_advs_202409023
crossref_primary_10_1002_smtd_202101324
crossref_primary_10_1039_D3TA06815C
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1021_acs_nanolett_3c04049
crossref_primary_10_1021_acscentsci_3c01439
crossref_primary_10_1016_j_apcatb_2022_121684
crossref_primary_10_1039_D4CC05023A
crossref_primary_10_1021_acscatal_2c00891
crossref_primary_10_1002_sus2_246
crossref_primary_10_1021_acssuschemeng_1c00063
crossref_primary_10_1039_D2TA00747A
crossref_primary_10_1016_j_vacuum_2022_110888
crossref_primary_10_1021_acs_accounts_2c00239
crossref_primary_10_1002_adma_202303818
crossref_primary_10_1039_D1QI01419F
crossref_primary_10_3390_molecules28165947
crossref_primary_10_1021_acs_nanolett_4c00111
crossref_primary_10_1038_s41467_022_34169_w
crossref_primary_10_1002_adfm_202212752
crossref_primary_10_1021_acs_nanolett_3c00810
crossref_primary_10_1002_ange_202311937
crossref_primary_10_1016_j_apcatb_2024_124188
crossref_primary_10_1039_D4RA09113B
crossref_primary_10_1002_ange_202401819
crossref_primary_10_1002_smtd_202201078
crossref_primary_10_1016_j_ccr_2024_215952
crossref_primary_10_1002_cssc_202101337
crossref_primary_10_1039_D3QM00074E
crossref_primary_10_1016_j_ijhydene_2022_07_096
crossref_primary_10_1021_acs_nanolett_4c02428
crossref_primary_10_1038_s41929_023_01083_3
crossref_primary_10_1016_j_electacta_2024_144389
crossref_primary_10_1016_j_mtener_2024_101695
crossref_primary_10_1016_j_apcatb_2023_122814
crossref_primary_10_1016_j_cej_2021_131795
crossref_primary_10_1002_sus2_229
crossref_primary_10_1002_advs_202100347
crossref_primary_10_1021_jacs_4c11445
crossref_primary_10_1016_j_snb_2024_135852
crossref_primary_10_1002_advs_202300639
crossref_primary_10_1002_adfm_202107651
crossref_primary_10_1016_j_cej_2021_130240
crossref_primary_10_1021_acsmaterialsau_1c00041
crossref_primary_10_1002_inf2_12257
crossref_primary_10_1002_adfm_202202524
crossref_primary_10_1002_smll_202404064
crossref_primary_10_1021_acsmaterialslett_4c00550
crossref_primary_10_1038_s41467_022_30155_4
crossref_primary_10_1021_acsnano_3c09656
crossref_primary_10_1021_acs_chemrev_1c00158
crossref_primary_10_1021_acsmaterialslett_1c00559
crossref_primary_10_1016_j_cej_2023_144372
crossref_primary_10_1002_er_7950
crossref_primary_10_1021_acs_nanolett_1c01519
crossref_primary_10_1016_j_jpowsour_2020_228446
crossref_primary_10_1039_D1SE00100K
crossref_primary_10_1016_j_ijhydene_2023_06_207
crossref_primary_10_1039_D3CS00756A
crossref_primary_10_1002_adma_202208799
crossref_primary_10_1038_s41467_021_24079_8
crossref_primary_10_1002_aenm_202403945
crossref_primary_10_1039_D0TA06485H
crossref_primary_10_1016_j_cej_2024_158819
crossref_primary_10_1002_smll_202006473
crossref_primary_10_1002_EXP_20220024
crossref_primary_10_1007_s12598_021_01735_y
crossref_primary_10_1002_smll_202304560
crossref_primary_10_1002_smtd_202101470
crossref_primary_10_1021_acsami_2c09507
crossref_primary_10_1002_adma_202206368
crossref_primary_10_1021_acsami_2c20863
crossref_primary_10_1021_acsanm_1c01676
crossref_primary_10_1039_D3QM00723E
crossref_primary_10_1016_j_ijhydene_2022_09_308
crossref_primary_10_1007_s12274_023_5510_8
crossref_primary_10_1038_s41467_021_21925_7
crossref_primary_10_1007_s40843_022_2258_3
crossref_primary_10_1016_j_mtcata_2024_100068
crossref_primary_10_3390_ma16103760
crossref_primary_10_1016_j_jechem_2020_06_069
crossref_primary_10_1039_D3TA06724F
crossref_primary_10_3389_fchem_2021_737495
crossref_primary_10_1039_D3CS00669G
crossref_primary_10_1002_adfm_202312425
crossref_primary_10_1149_1945_7111_abc593
crossref_primary_10_1002_anie_202217323
crossref_primary_10_1016_j_ijhydene_2024_07_407
crossref_primary_10_1039_C9EE04040D
crossref_primary_10_3390_inorganics11010016
crossref_primary_10_1039_D2NR00994C
crossref_primary_10_1002_anie_202013206
crossref_primary_10_1002_anie_202208667
crossref_primary_10_1016_j_gee_2024_12_001
crossref_primary_10_1016_j_jallcom_2023_168883
crossref_primary_10_1002_ange_202217323
crossref_primary_10_1016_j_apsusc_2024_160384
crossref_primary_10_1021_acsnano_3c08921
crossref_primary_10_1039_D2TA09599H
crossref_primary_10_1039_D3QI01656K
crossref_primary_10_1016_S1872_2067_22_64153_6
crossref_primary_10_1016_j_ijhydene_2023_08_250
crossref_primary_10_2139_ssrn_4110405
crossref_primary_10_1021_acs_jpclett_2c03433
crossref_primary_10_1038_s41467_022_34619_5
crossref_primary_10_1002_smll_202204524
crossref_primary_10_1021_jacs_2c02262
crossref_primary_10_1002_slct_202303637
crossref_primary_10_1002_anie_202011495
crossref_primary_10_1016_j_ccr_2023_215272
crossref_primary_10_1002_anie_202311570
crossref_primary_10_1021_acs_inorgchem_3c00680
crossref_primary_10_1038_s41467_021_23306_6
crossref_primary_10_1016_j_enchem_2021_100066
crossref_primary_10_1021_acs_jpcc_3c00899
crossref_primary_10_1021_acsanm_3c02112
crossref_primary_10_1002_smll_202105231
crossref_primary_10_1039_D2DT02645G
crossref_primary_10_1021_acsenergylett_0c00957
crossref_primary_10_1016_j_apmt_2021_101029
crossref_primary_10_1021_acsnano_4c02240
crossref_primary_10_1007_s12598_021_01791_4
crossref_primary_10_1016_j_nanoen_2021_105850
crossref_primary_10_1021_jacsau_2c00314
crossref_primary_10_1039_D0TA04773B
crossref_primary_10_1038_s41467_022_29710_w
crossref_primary_10_1002_smll_202307405
crossref_primary_10_1021_acsnano_0c09517
crossref_primary_10_1002_anie_202418347
crossref_primary_10_1016_j_apcatb_2022_121706
crossref_primary_10_1021_jacs_3c06726
crossref_primary_10_1002_adma_202208224
crossref_primary_10_1016_j_cclet_2022_01_066
crossref_primary_10_1038_s41578_023_00633_2
crossref_primary_10_1016_j_enchem_2021_100054
crossref_primary_10_1021_acs_nanolett_4c00512
crossref_primary_10_1002_smll_202005713
crossref_primary_10_1002_smll_202107541
crossref_primary_10_1002_smm2_1095
crossref_primary_10_1039_D0CY01241F
crossref_primary_10_1002_ange_202218630
crossref_primary_10_1021_acsami_1c14615
crossref_primary_10_1002_anie_202401819
crossref_primary_10_1002_cssc_202200114
crossref_primary_10_1002_anie_202011358
crossref_primary_10_1038_s41467_023_38126_z
crossref_primary_10_1039_D0EE03635H
crossref_primary_10_1016_j_aca_2024_342351
crossref_primary_10_1038_s41467_021_26139_5
crossref_primary_10_1039_D3TA04199A
crossref_primary_10_1039_D1SE01331A
crossref_primary_10_1016_j_ensm_2023_01_024
crossref_primary_10_1016_j_ijhydene_2022_09_118
crossref_primary_10_1016_j_jallcom_2023_170964
crossref_primary_10_1002_ange_202300406
crossref_primary_10_1002_cey2_422
crossref_primary_10_1016_j_apcatb_2021_120830
crossref_primary_10_1016_j_nanoen_2023_108228
crossref_primary_10_1021_acs_iecr_1c04431
crossref_primary_10_1038_s41467_021_22681_4
crossref_primary_10_1007_s12274_022_4448_6
crossref_primary_10_1038_s41467_022_30766_x
crossref_primary_10_1021_acsanm_3c01470
crossref_primary_10_1039_D3EE04457B
crossref_primary_10_1021_acsami_3c11303
crossref_primary_10_1016_j_cej_2021_129652
crossref_primary_10_1002_adfm_202315326
crossref_primary_10_1039_D1SC01018B
crossref_primary_10_1016_j_apcatb_2024_123791
crossref_primary_10_1007_s41918_023_00180_y
crossref_primary_10_1016_j_mtener_2021_100653
crossref_primary_10_1039_D0GC03994B
crossref_primary_10_1039_D1EE02518J
crossref_primary_10_1016_j_talanta_2023_125349
crossref_primary_10_1039_D1NR00795E
crossref_primary_10_1002_ange_202308670
crossref_primary_10_3390_hydrogen3020014
crossref_primary_10_1021_jacs_1c07643
crossref_primary_10_1021_acscatal_2c05992
crossref_primary_10_1016_j_seppur_2024_130259
crossref_primary_10_1016_j_jechem_2023_10_027
crossref_primary_10_1002_smtd_202001194
crossref_primary_10_1016_j_cej_2025_159926
crossref_primary_10_1021_acscatal_1c05958
crossref_primary_10_1021_acs_jpclett_1c00049
crossref_primary_10_1002_sstr_202200201
crossref_primary_10_1002_cey2_720
crossref_primary_10_1016_j_mtchem_2022_100994
crossref_primary_10_1007_s12274_023_5949_7
crossref_primary_10_1016_j_carbon_2024_119061
crossref_primary_10_1016_j_cej_2023_146387
crossref_primary_10_1002_smtd_202401333
crossref_primary_10_1002_smll_202203422
crossref_primary_10_1016_j_fmre_2022_06_012
crossref_primary_10_1021_acsami_2c02713
crossref_primary_10_1002_marc_202100915
crossref_primary_10_1016_j_ijhydene_2022_01_080
crossref_primary_10_1002_advs_202002341
crossref_primary_10_1039_D4CP01235F
crossref_primary_10_1007_s12274_024_6660_z
crossref_primary_10_1038_s41467_022_28805_8
crossref_primary_10_1021_acssuschemeng_1c00705
crossref_primary_10_1021_acscatal_4c00365
crossref_primary_10_1039_D2EE03351H
crossref_primary_10_1007_s40820_021_00668_6
crossref_primary_10_1002_adma_202412942
crossref_primary_10_1016_j_cej_2021_131526
crossref_primary_10_1002_eem2_12552
crossref_primary_10_1039_D3NR02263C
crossref_primary_10_1002_aenm_202101670
crossref_primary_10_1021_jacs_4c04322
crossref_primary_10_1002_adfm_202103007
crossref_primary_10_1016_j_apsusc_2020_148742
crossref_primary_10_1002_ange_202200190
crossref_primary_10_1016_j_apcatb_2021_120873
crossref_primary_10_1016_j_ijhydene_2021_12_101
crossref_primary_10_1016_j_apcatb_2024_124655
crossref_primary_10_1002_ange_202308686
crossref_primary_10_1016_j_apcatb_2023_123386
Cites_doi 10.1038/s41560-017-0078-8
10.1038/nchem.1095
10.1021/jp0108014
10.1038/ncomms6848
10.1021/ja110073u
10.1149/1.1856988
10.1002/anie.201704358
10.1002/adma.201803498
10.1103/PhysRevLett.77.3865
10.1038/s41929-018-0094-5
10.1038/nnano.2016.304
10.1126/science.aaf1525
10.1126/sciadv.1501122
10.1038/nchem.2886
10.1107/S0909049500016964
10.1021/jacs.7b01686
10.1063/1.4865107
10.1126/science.aal3439
10.1038/nenergy.2016.184
10.1126/science.aan2255
10.1126/science.aac6368
10.1038/s41467-019-09290-y
10.1007/s12274-018-2149-y
10.1038/s41467-019-08323-w
10.1038/nenergy.2017.31
10.1038/s41565-018-0089-z
10.1038/s41929-018-0195-1
10.1038/s41929-018-0203-5
10.1021/jacs.8b00814
10.1038/nature24640
10.1038/s41929-018-0146-x
10.1103/PhysRevB.54.11169
10.1038/ncomms13638
10.1038/s41929-017-0008-y
10.1038/s41570-018-0010-1
10.1038/ncomms16100
10.1016/j.chempr.2018.10.007
10.1002/anie.201610119
10.1038/nenergy.2016.130
10.1038/s41557-018-0125-5
10.1021/jacs.7b10385
10.1002/anie.200604460
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-14848-2
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

PubMed

CrossRef
Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_c7d0117310744ae581b6115e1ab79de6
PMC7042219
32098951
10_1038_s41467_020_14848_2
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-f00a1f9be6db5db11fdc51b44bd7dfe9d5d23174b8dcf0cc3424be12f06adadc3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:22:11 EDT 2025
Thu Aug 21 18:08:36 EDT 2025
Thu Jul 10 23:10:11 EDT 2025
Wed Aug 13 04:20:44 EDT 2025
Thu Apr 03 07:00:39 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 04:08:51 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-f00a1f9be6db5db11fdc51b44bd7dfe9d5d23174b8dcf0cc3424be12f06adadc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2607-6869
0000-0001-5333-511X
0000-0002-6665-220X
0000-0001-9255-1579
0000-0002-2052-1132
0000-0001-8699-8294
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-14848-2
PMID 32098951
PQID 2363965238
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c7d0117310744ae581b6115e1ab79de6
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7042219
proquest_miscellaneous_2365225843
proquest_journals_2363965238
pubmed_primary_32098951
crossref_primary_10_1038_s41467_020_14848_2
crossref_citationtrail_10_1038_s41467_020_14848_2
springer_journals_10_1038_s41467_020_14848_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-25
PublicationDateYYYYMMDD 2020-02-25
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR43) 2014; 140
Mahmood (CR39) 2017; 12
Zhang (CR10) 2018; 1
Tao (CR27) 2019; 5
Wang, Li, Zhang (CR8) 2018; 2
Zhang (CR19) 2016; 352
Borchert (CR24) 2007; 46
Malta (CR1) 2017; 355
Perdew, Burke, Ernzerhof (CR42) 1996; 77
Yang (CR28) 2016; 2
Pan (CR5) 2018; 140
Zhang (CR25) 2017; 8
Yang (CR11) 2018; 3
Qiao (CR6) 2011; 3
Geng (CR13) 2018; 30
Liu (CR15) 2017; 56
Shan, Li, Allard, Lee, Flytzani-Stephanopoulos (CR9) 2017; 551
Zhao (CR18) 2016; 1
Ledezma-Yanez (CR35) 2017; 2
Cao (CR21) 2018; 2
Chen (CR7) 2018; 2
Wang (CR26) 2017; 139
Qu (CR14) 2018; 1
Nørskov (CR38) 2005; 152
Oudenhuijzen, Bitter, Koningsberger (CR37) 2001; 105
Wang (CR29) 2017; 139
Jiao, Zheng, Davey, Qiao (CR30) 2016; 1
O’Connor, Jonayat, Janik, Senftle (CR16) 2018; 1
Ding (CR23) 2015; 350
Chen (CR31) 2017; 56
Wu (CR32) 2018; 11
Dai (CR33) 2019; 10
Zhao (CR3) 2019; 10
Fei (CR2) 2018; 1
Cheng (CR34) 2016; 7
Kresse, Furthmuller (CR41) 1996; 54
Chung (CR12) 2017; 357
Sheng (CR36) 2015; 6
Greiner (CR20) 2018; 10
Zheng (CR4) 2018; 10
Newville (CR40) 2001; 8
Li (CR17) 2018; 13
Allian (CR22) 2011; 133
Y Pan (14848_CR5) 2018; 140
JK Nørskov (14848_CR38) 2005; 152
S Zhao (14848_CR18) 2016; 1
Y Jiao (14848_CR30) 2016; 1
Z Zhang (14848_CR25) 2017; 8
K Wu (14848_CR32) 2018; 11
J Shan (14848_CR9) 2017; 551
P Chen (14848_CR31) 2017; 56
HB Yang (14848_CR28) 2016; 2
B Qiao (14848_CR6) 2011; 3
X Zheng (14848_CR4) 2018; 10
HB Yang (14848_CR11) 2018; 3
N Cheng (14848_CR34) 2016; 7
Y Qu (14848_CR14) 2018; 1
J Wang (14848_CR29) 2017; 139
W Liu (14848_CR15) 2017; 56
WC Sheng (14848_CR36) 2015; 6
J Mahmood (14848_CR39) 2017; 12
L Zhao (14848_CR3) 2019; 10
JP Perdew (14848_CR42) 1996; 77
Y Chen (14848_CR7) 2018; 2
H Tao (14848_CR27) 2019; 5
X Wang (14848_CR26) 2017; 139
K Mathew (14848_CR43) 2014; 140
HT Chung (14848_CR12) 2017; 357
I Ledezma-Yanez (14848_CR35) 2017; 2
B Zhang (14848_CR19) 2016; 352
Z Geng (14848_CR13) 2018; 30
NJ O’Connor (14848_CR16) 2018; 1
H Li (14848_CR17) 2018; 13
AD Allian (14848_CR22) 2011; 133
S Dai (14848_CR33) 2019; 10
G Malta (14848_CR1) 2017; 355
A Wang (14848_CR8) 2018; 2
K Ding (14848_CR23) 2015; 350
H Borchert (14848_CR24) 2007; 46
MT Greiner (14848_CR20) 2018; 10
M Newville (14848_CR40) 2001; 8
H Fei (14848_CR2) 2018; 1
L Cao (14848_CR21) 2018; 2
MK Oudenhuijzen (14848_CR37) 2001; 105
JQ Zhang (14848_CR10) 2018; 1
G Kresse (14848_CR41) 1996; 54
References_xml – volume: 3
  start-page: 140
  year: 2018
  end-page: 147
  ident: CR11
  article-title: Atomically dispersed Ni(I) as the active site for electrochemical CO reduction
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 3
  start-page: 634
  year: 2011
  end-page: 641
  ident: CR6
  article-title: Single-atom catalysis of CO oxidation using Pt /FeO
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 105
  start-page: 4616
  year: 2001
  end-page: 4622
  ident: CR37
  article-title: The nature of the Pt-H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt-H antibonding shaperesonance and Pt-H EXAFS
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0108014
– volume: 6
  year: 2015
  ident: CR36
  article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 133
  start-page: 4498
  year: 2011
  end-page: 4517
  ident: CR22
  article-title: Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110073u
– volume: 152
  start-page: J23
  year: 2005
  end-page: J26
  ident: CR38
  article-title: Trends in the exchange current for hydrogen evolution
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 56
  start-page: 9312
  year: 2017
  end-page: 9317
  ident: CR15
  article-title: Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704358
– volume: 30
  start-page: 1803498
  year: 2018
  ident: CR13
  article-title: Achieving a record-high yield rate of 120.9 μg mg h for N electrochemical reduction over Ru single-atom catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR42
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 1
  start-page: 531
  year: 2018
  end-page: 539
  ident: CR16
  article-title: Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0094-5
– volume: 12
  start-page: 441
  year: 2017
  end-page: 446
  ident: CR39
  article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 352
  start-page: 333
  year: 2016
  end-page: 337
  ident: CR19
  article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 2
  start-page: e1501122
  year: 2016
  ident: CR28
  article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501122
– volume: 10
  start-page: 149
  year: 2018
  end-page: 154
  ident: CR4
  article-title: Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2886
– volume: 8
  start-page: 322
  year: 2001
  end-page: 324
  ident: CR40
  article-title: IFEFFIT: interactive XAFS analysis and FEFF fitting
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049500016964
– volume: 139
  start-page: 9419
  year: 2017
  end-page: 9422
  ident: CR26
  article-title: Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 140
  start-page: 084106
  year: 2014
  ident: CR43
  article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 355
  start-page: 1399
  year: 2017
  end-page: 1403
  ident: CR1
  article-title: Identification of single-site gold catalysis in acetylene hydrochlorination
  publication-title: Science
  doi: 10.1126/science.aal3439
– volume: 1
  start-page: 16184
  year: 2016
  ident: CR18
  article-title: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 357
  start-page: 479
  year: 2017
  end-page: 484
  ident: CR12
  article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 350
  start-page: 189
  year: 2015
  end-page: 192
  ident: CR23
  article-title: Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts
  publication-title: Science
  doi: 10.1126/science.aac6368
– volume: 10
  year: 2019
  ident: CR3
  article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 11
  start-page: 6260
  year: 2018
  end-page: 6269
  ident: CR32
  article-title: Porphyrin-like Fe-N sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2149-y
– volume: 10
  year: 2019
  ident: CR33
  article-title: Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08323-w
– volume: 2
  start-page: 17031
  year: 2017
  ident: CR35
  article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 13
  start-page: 411
  year: 2018
  end-page: 417
  ident: CR17
  article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 1
  start-page: 985
  year: 2018
  end-page: 992
  ident: CR10
  article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 2
  start-page: 134
  year: 2018
  end-page: 141
  ident: CR21
  article-title: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0203-5
– volume: 140
  start-page: 4218
  year: 2018
  end-page: 4221
  ident: CR5
  article-title: Design of single-atom Co-N catalytic site: a robust electrocatalyst for CO reduction with nearly 100% CO selectivity and remarkable stability
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00814
– volume: 551
  start-page: 605
  year: 2017
  end-page: 608
  ident: CR9
  article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts
  publication-title: Nature
  doi: 10.1038/nature24640
– volume: 1
  start-page: 781
  year: 2018
  end-page: 786
  ident: CR14
  article-title: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0146-x
– volume: 2
  start-page: 1242
  year: 2018
  end-page: 1264
  ident: CR7
  article-title: Single-atom
  publication-title: Catalysts: Synth. Strateg. Electrochem. Appl. Joule
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR41
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 7
  year: 2016
  ident: CR34
  article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 1
  start-page: 63
  year: 2018
  end-page: 72
  ident: CR2
  article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electrocatalytic activities
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: CR8
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 8
  year: 2017
  ident: CR25
  article-title: Thermally stable single atom Pt/m-Al O for selective hydrogenation and CO oxidation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16100
– volume: 5
  start-page: 204
  year: 2019
  end-page: 214
  ident: CR27
  article-title: Nitrogen fixation by Ru single-atom electrocatalytic reduction
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.007
– volume: 56
  start-page: 610
  year: 2017
  end-page: 614
  ident: CR31
  article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610119
– volume: 1
  start-page: 16130
  year: 2016
  ident: CR30
  article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.130
– volume: 10
  start-page: 1008
  year: 2018
  end-page: 1015
  ident: CR20
  article-title: Free-atom-like d states in single-atom alloy catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0125-5
– volume: 139
  start-page: 17281
  year: 2017
  end-page: 17284
  ident: CR29
  article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 46
  start-page: 2923
  year: 2007
  end-page: 2926
  ident: CR24
  article-title: Ligand-capped Pt nanocrystals as oxide-supported catalysts: FTIR spectroscopic investigations of the absorption and oxidation of CO
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604460
– volume: 3
  start-page: 634
  year: 2011
  ident: 14848_CR6
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1095
– volume: 140
  start-page: 4218
  year: 2018
  ident: 14848_CR5
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b00814
– volume: 10
  start-page: 1008
  year: 2018
  ident: 14848_CR20
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0125-5
– volume: 551
  start-page: 605
  year: 2017
  ident: 14848_CR9
  publication-title: Nature
  doi: 10.1038/nature24640
– volume: 2
  start-page: 134
  year: 2018
  ident: 14848_CR21
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0203-5
– volume: 77
  start-page: 3865
  year: 1996
  ident: 14848_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 10
  year: 2019
  ident: 14848_CR3
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-09290-y
– volume: 2
  start-page: 1242
  year: 2018
  ident: 14848_CR7
  publication-title: Catalysts: Synth. Strateg. Electrochem. Appl. Joule
– volume: 30
  start-page: 1803498
  year: 2018
  ident: 14848_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 139
  start-page: 17281
  year: 2017
  ident: 14848_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b10385
– volume: 3
  start-page: 140
  year: 2018
  ident: 14848_CR11
  publication-title: Nat. Energy
  doi: 10.1038/s41560-017-0078-8
– volume: 357
  start-page: 479
  year: 2017
  ident: 14848_CR12
  publication-title: Science
  doi: 10.1126/science.aan2255
– volume: 7
  year: 2016
  ident: 14848_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13638
– volume: 139
  start-page: 9419
  year: 2017
  ident: 14848_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01686
– volume: 56
  start-page: 9312
  year: 2017
  ident: 14848_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201704358
– volume: 10
  start-page: 149
  year: 2018
  ident: 14848_CR4
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2886
– volume: 56
  start-page: 610
  year: 2017
  ident: 14848_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610119
– volume: 5
  start-page: 204
  year: 2019
  ident: 14848_CR27
  publication-title: Chem
  doi: 10.1016/j.chempr.2018.10.007
– volume: 2
  start-page: 17031
  year: 2017
  ident: 14848_CR35
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.31
– volume: 352
  start-page: 333
  year: 2016
  ident: 14848_CR19
  publication-title: Science
  doi: 10.1126/science.aaf1525
– volume: 1
  start-page: 16130
  year: 2016
  ident: 14848_CR30
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.130
– volume: 1
  start-page: 63
  year: 2018
  ident: 14848_CR2
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-017-0008-y
– volume: 152
  start-page: J23
  year: 2005
  ident: 14848_CR38
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.1856988
– volume: 2
  start-page: 65
  year: 2018
  ident: 14848_CR8
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 13
  start-page: 411
  year: 2018
  ident: 14848_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0089-z
– volume: 1
  start-page: 781
  year: 2018
  ident: 14848_CR14
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0146-x
– volume: 46
  start-page: 2923
  year: 2007
  ident: 14848_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200604460
– volume: 105
  start-page: 4616
  year: 2001
  ident: 14848_CR37
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0108014
– volume: 12
  start-page: 441
  year: 2017
  ident: 14848_CR39
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.304
– volume: 6
  year: 2015
  ident: 14848_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6848
– volume: 133
  start-page: 4498
  year: 2011
  ident: 14848_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja110073u
– volume: 1
  start-page: 985
  year: 2018
  ident: 14848_CR10
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0195-1
– volume: 8
  year: 2017
  ident: 14848_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms16100
– volume: 355
  start-page: 1399
  year: 2017
  ident: 14848_CR1
  publication-title: Science
  doi: 10.1126/science.aal3439
– volume: 140
  start-page: 084106
  year: 2014
  ident: 14848_CR43
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4865107
– volume: 11
  start-page: 6260
  year: 2018
  ident: 14848_CR32
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2149-y
– volume: 1
  start-page: 531
  year: 2018
  ident: 14848_CR16
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0094-5
– volume: 2
  start-page: e1501122
  year: 2016
  ident: 14848_CR28
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501122
– volume: 350
  start-page: 189
  year: 2015
  ident: 14848_CR23
  publication-title: Science
  doi: 10.1126/science.aac6368
– volume: 8
  start-page: 322
  year: 2001
  ident: 14848_CR40
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049500016964
– volume: 1
  start-page: 16184
  year: 2016
  ident: 14848_CR18
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 54
  start-page: 11169
  year: 1996
  ident: 14848_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 10
  year: 2019
  ident: 14848_CR33
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08323-w
SSID ssj0000391844
Score 2.6968198
Snippet Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site...
Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site...
Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1029
SubjectTerms 639/301/299/886
639/4077
639/638/77
Absorption spectroscopy
Carbon sources
Catalysts
Dynamic structural analysis
Electrochemistry
Electrolytes
Evolution
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
multidisciplinary
Platinum
Science
Science (multidisciplinary)
Selectivity
Single atom catalysts
Sodium hydroxide
Spectrum analysis
Substrates
Sulfuric acid
Synchrotron radiation
X ray absorption
X-ray absorption spectroscopy
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLafp0kgYVemtNLEuy7GNbEkKhPXUhN6HHiBQSb9hHIf--I8m7zfZ56dWSQGg-ab6xRt8AvOZ2CK0bHIUl6GpJPql2vfO19ih0cCHynDz-6XN3PpMfL9TFnVJfKSesyAOXhTvxOiTZMpESB6VFRTSrIxaD3Do9BMxi2-Tz7gRT-QwWA4Uucnol04j-ZCnzmZCiJYoAJMFjxxNlwf7fscxfkyV_ujHNjujsETycGCR7V2a-D_dwfAz3S03J2yeAs9GntEway0aCcR0XiOwmpbyN62uWfg1cYU2h9jULpRr9kpW3imwqieMnDQF2eRsWcwIYw28TQBlRzPwQ4inMzk6_fDivp1oKtacQZVXHprE8Dg674FRwnMfgFXdSuqBDxCGoQExPS9cHHxvvhWylQ97GprPBBi-ewd44H_EFsDggUpTSKvRK2qD69CfENtHq5PtFrIBv1tX4SWg81bu4MvnCW_Sm2MKQLUy2hWkreLMdc1NkNv7a-30y17ZnksjOHwg4ZgKO-RdwKjjaGNtM-3ZpWkGMraPgvK_g1baZdly6RrEjzte5D5FWIm6igucFG9uZCMJiT6S1Ar2Dmp2p7raMXy-zqrdOamx8qODtBl8_pvXnpTj4H0txCA_atDHSS311BHurxRpfEtdaueO8rb4D0QEmmQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLorwaaJGRuEHUOHZeJwRVlwoJTqzUm-XHmCK1ybIPpP57ZhxvquXR68aRvJnPnm_G428YeyNM50vbWQxLwOYKfVJuW-vyxoFsvPVBxOLxL1_rs7n6fF6dp4TbKpVVbvfEuFH7wVGO_LiU6EtrDJva94ufOXWNotPV1ELjLrsn0NNQSVc7-zTlWEj9vFUq3ZUpZHu8UnFnoJgJ4wCFINnxR1G2_19c8--SyT_OTaM7mj1iDxOP5B9Gw--zO9A_ZvfHzpLXTxjMe0fFmfgu7xHMeVgC8AUVvvWbK04JgkvIMeC-4n7sSb_i441FnhrjuKQkwC-u_XJAmHH4lWDKkWjG6xBP2Xx2-u3kLE8dFXKHgco6D0VhROgs1N5W3goRvKuEVcr6xgfofOWR7zXKtt6FwjmpSmVBlKGojTfeyWdsrx96OGA8dAAYq5QVuEoZX7WUDzFFMA0xABkyJrbfVbskN05dLy51PPaWrR5todEWOtpClxl7O72zGMU2bh39kcw1jSSh7PjDsPyu07rTrvGkeiep7lQZqJCl10iCQRjbdB7qjB1uja3T6l3pG6xl7PX0GNcdHaaYHoZNHIPUFembzNjzERvTTGRZdC1S14w1O6jZmeruk_7HRdT2bkiTTXQZe7fF1820_v8pXtz-L16yByVBnm7iV4dsb73cwBFyqbV9FRfMb0iLHuU
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qi-CLeHe1SgTfdHGzyd4eT4ulHNAXPdC3kMvECu2eci6F_vtOstmVo1XwdZPAkJnZfJPMfAPwnuvOlaYzFJagySWdSblpjc0bi6Jxxnkek8e_fK1PF3J-Vp3tQTnWwsSk_UhpGX_TY3bYp7WMLh2CHQLwkrR7Dw4CVTvZ9sFsNv82n25WAud5K2WqkClEe8finVMokvXfhTD_TJT87bU0HkInj-BhQo9sNsj7GPawfwL3h36SN08BF70NKZm0lvVkwrlfIbKrkO7Wby9ZuBa4wJzC7Evmhk70azbUKbLUDscm_gB2fuNWSzIuhtfJOBnBy1gE8QwWJ5-_H5_mqY9Cbik82eS-KDT3ncHamcoZzr2zFTdSGtc4j52rHKG8RprWWV9YK2QpDfLSF7V22lnxHPb7ZY8vgfkOkSKUskJbSe2qNtyC6MLrJpz7wmfAx31VNpGMh14XFyo-dotWDbpQpAsVdaHKDD5Ma64Gio1_zj4K6ppmBnrs-GG5-qGSuSjbuMB1J0K2qdRYETavCfoi16bpHNYZHI7KVsln16oUhNZqCszbDN5Nw-Rt4QlF97jcxjkEWAm0iQxeDLYxSSLKomsJsGbQ7FjNjqi7I_3P88jo3QQmNt5l8HG0r19i_X0rXv3f9NfwoAwuEOrxq0PY36y2-IYQ1ca8TS50C05KHgA
  priority: 102
  providerName: Springer Nature
Title Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction
URI https://link.springer.com/article/10.1038/s41467-020-14848-2
https://www.ncbi.nlm.nih.gov/pubmed/32098951
https://www.proquest.com/docview/2363965238
https://www.proquest.com/docview/2365225843
https://pubmed.ncbi.nlm.nih.gov/PMC7042219
https://doaj.org/article/c7d0117310744ae581b6115e1ab79de6
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRUi8IO5kjMpIvEEgjp04eUCoq1amSpsQUKlvUXzbkLp0pO1E_z3HjltUKIiXRIqdyPL5Tvwd-1wAXtG61KksJZolRsYc16RYFlLFQhkmtNSWeufx84v8bMxHk2yyB-tyR2EC5ztNO1dPatxO3_74vvqACv--Cxkv3s25V3dnCCG55yj5fTjElUm4igbnge77PzMr0aBxB81pwmmMHViIo9n9ma21yqf038VD_3Sn_O1M1S9Vw_twL3BM0u9A8QD2TPMQ7nRVJ1ePwIwb5Rw38V3SINBj2xpDbpxTXLO8Jm7zYGpiNMavie7q1c9JF81IQtEcFbIMkKuVbmcIQWJuA4QJklAfKvEYxsPTr4OzOFRbiBUaMYvYJklNbSlNrmWmJaVWq4xKzqUW2ppSZxq5oOCy0MomSjGecmloapO81rVW7AkcNLPGPANiS2PQjkkzozJe66xweyV1Ymvh2AGzEdD1vFYqpCJ3FTGmlT8SZ0XVyaJCWVReFlUawevNOzddIo5_9j5x4tr0dEm0_YNZe1kFnayU0C4jHnM-qbw2GTL4HAmyobUUpTZ5BMdrYVdrYFYpQ06Xo_leRPBy04w66Q5a6sbMlr4P0lqkdiyCpx02NiNhaVIWSGsjEFuo2Rrqdkvz7crn_RYuXxstI3izxtevYf19Ko7-Y5jP4W7qcO9C9bNjOFi0S_MCydZC9mBfTARei-HHHhz2-6MvI7yfnF58-oxPB_mg57cxel7TfgJQQiym
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAASPBE0RNYud6QIhr2dLjqZX6ZnzSSt3ssgdo_xS_kRkn2Wo5-tbXjRN5Pd94vrHnAHiRqtpmutboljgdC7RJsa60iUvjeGm19WkIHt8_KIZH4stxfrwBv_pcGAqr7PfEsFHbsaEz8u2Moy0t0G2q3k6-x9Q1im5X-xYaLSx23fInumyzNzsfUb4vs2zw6fDDMO66CsQGyfo89kmiUl9rV1idW52m3po81UJoW1rvaptb5Dyl0JU1PjGGi0xol2Y-KZRV1nD87hW4KjhacspMH3xenelQtfVKiC43J-HV9kyEnYh8NPQ7BIJyzf6FNgH_4rZ_h2j-cU8bzN_gFtzseCt71wLtNmy45g5caztZLu-CO2oMBYPiu6zBVYr91Dk2oUC7ZjFidCBx5mJ08EfMLhs1OjUz1mZIsq4Rj-kqF7CTpZ2OEdbM_ejUgiGxDekX9-DoUtb6Pmw248Y9BOZr59A3ynJncqFsXtH5i0q8KolxcB9B2q-rNF15c-qycSbDNTuvZCsLibKQQRYyi-DV6p1JW9zjwtHvSVyrkVSYO_wwnn6TnZ5LU1qqsscpzlUol6NXUCDpdqnSZW1dEcFWL2zZ7RYzeY7tCJ6vHqOe0-WNatx4EcYgVUa6yCN40GJjNROeJXWFVDmCcg01a1Ndf9KcnoRa4iXVgEvrCF73-Dqf1v-X4tHF_-IZXB8e7u_JvZ2D3cdwIyP4UxWAfAs259OFe4I8bq6fBuVh8PWytfU3hJtfDw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYwETxA1h3M9IERpVy2FVYVYqW-uT1qpmyx7gPav8esYO06q5ehbXzdO5PXM2N9nj78BeBnzSiWiEkhLtAgprkmhKIUMC6nTQgllYpc8_nmU74_px-PseAN-dXdhbFplNye6iVo10u6RbycprqU50qZy2_i0iKPd4bvp99BWkLInrV05jdZFDvXqJ9K3-duDXbT1qyQZ7n39sB_6CgOhROC-CE0U8dhUQudKZErEsVEyiwWlQhXK6EplCvFPQUWppImkTGlChY4TE-VccSVT_O412CwsKxrA5s7e6OhLv8NjtddLSv1NnQg7PqduXrKMDVkIRRddWw1d0YB_Id2_Ezb_OLV1i-HwNtzyKJa8b93uDmzo-i5cb-taru6BHtfSpobiu6TGcQrNTGsytWl39XJC7PbEuQ6R7k-IWtV8cibnpL0vSXxZHul1DMjpSs0adHKif_ggIQhz3WWM-zC-ktF-AIO6qfUjIKbSGplSkmmZUa6y0u7G8MjwwuKP1AQQd-PKpBc7tzU3zpk7dE9L1tqCoS2YswVLAnjdvzNtpT4ubb1jzdW3tDLd7odm9o35qGeyUFZzL7VZr5TrDDlCjhBcx1wUldJ5AFudsZmfO-bswtMDeNE_xqi3Rzm81s3StUHgjOAxDeBh6xt9T9IkqkoEzgEUa16z1tX1J_XZqVMWL6wiXFwF8Kbzr4tu_X8oHl_-L57DDYxU9ulgdPgEbibW-60kQLYFg8VsqZ8iqFuIZz56CJxcdcD-Bn6wZKE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+near-free+platinum+single-atom+dynamics+during+electrochemical+hydrogen+evolution+reaction&rft.jtitle=Nature+communications&rft.au=Fang%2C+Shi&rft.au=Zhu%2C+Xiaorong&rft.au=Liu%2C+Xiaokang&rft.au=Gu%2C+Jian&rft.date=2020-02-25&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=1029&rft_id=info:doi/10.1038%2Fs41467-020-14848-2&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon