Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction
Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evoluti...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 1029 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.02.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5
d
density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H
2
SO
4
and 46 mV in 1.0 M NaOH at 10 mA cm
−2
, and long-term durability in wide-pH electrolytes.
Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy. |
---|---|
AbstractList | Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5
d
density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H
2
SO
4
and 46 mV in 1.0 M NaOH at 10 mA cm
−2
, and long-term durability in wide-pH electrolytes.
Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy. Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy. Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H SO and 46 mV in 1.0 M NaOH at 10 mA cm , and long-term durability in wide-pH electrolytes. Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5 d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H 2 SO 4 and 46 mV in 1.0 M NaOH at 10 mA cm −2 , and long-term durability in wide-pH electrolytes. Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt–support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm−2, and long-term durability in wide-pH electrolytes.Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors develop highly active Pt single-atom electrocatalyst, and reveal the dynamic evolution of active sites by using operando synchrotron spectroscopy. Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm-2, and long-term durability in wide-pH electrolytes.Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site and its dynamics under working state are crucial to improving their catalytic performances. Here, we identify at atomic level a general evolution of single atom into a near-free state under electrocatalytic hydrogen evolution condition, via operando synchrotron X-ray absorption spectroscopy. We uncover that the single Pt atom tends to dynamically release from the nitrogen-carbon substrate, with the geometric structure less coordinated to support and electronic property closer to zero valence, during the reaction. Theoretical simulations support that the Pt sites with weakened Pt-support interaction and more 5d density are the real active centers. The single-atom Pt catalyst exhibits very high hydrogen evolution activity with only 19 mV overpotential in 0.5 M H2SO4 and 46 mV in 1.0 M NaOH at 10 mA cm-2, and long-term durability in wide-pH electrolytes. |
ArticleNumber | 1029 |
Author | Wang, Danhao Liu, Xiaokang Liu, Wei Wei, Shiqiang Zhang, Wei Fang, Shi Gu, Jian Zhu, Xiaorong Lin, Yue Li, Yafei Yao, Tao Lu, Junling |
Author_xml | – sequence: 1 givenname: Shi orcidid: 0000-0001-9255-1579 surname: Fang fullname: Fang, Shi organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 2 givenname: Xiaorong surname: Zhu fullname: Zhu, Xiaorong organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 3 givenname: Xiaokang surname: Liu fullname: Liu, Xiaokang organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 4 givenname: Jian surname: Gu fullname: Gu, Jian organization: Department of Chemical Physics, University of Science and Technology of China – sequence: 5 givenname: Wei orcidid: 0000-0002-6665-220X surname: Liu fullname: Liu, Wei organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 6 givenname: Danhao surname: Wang fullname: Wang, Danhao organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 7 givenname: Wei surname: Zhang fullname: Zhang, Wei organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 8 givenname: Yue orcidid: 0000-0001-5333-511X surname: Lin fullname: Lin, Yue organization: Department of Chemical Physics, University of Science and Technology of China – sequence: 9 givenname: Junling orcidid: 0000-0002-2607-6869 surname: Lu fullname: Lu, Junling organization: Department of Chemical Physics, University of Science and Technology of China – sequence: 10 givenname: Shiqiang orcidid: 0000-0002-2052-1132 surname: Wei fullname: Wei, Shiqiang organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China – sequence: 11 givenname: Yafei surname: Li fullname: Li, Yafei organization: Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University – sequence: 12 givenname: Tao orcidid: 0000-0001-8699-8294 surname: Yao fullname: Yao, Tao email: yaot@ustc.edu.cn organization: National Synchrotron Radiation Laboratory, University of Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32098951$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv3CAUhVGVqkmn-QNdVJa66cYtF_BrU6mK-ogUqZtmjTBczzDCMAV7pPn3YcZpmmQRNqDLd44u3POWnPngkZD3QD8D5e2XJEDUTUkZLUG0oi3ZK3LBqIASGsbPHp3PyWVKW5oX76AV4g0554x2bVfBBcFbr8Meo_XrwqOK5RARi51Tk_XzWKRcd1iqKYyFOXg1Wp0KM59wdKinGPQGc1W5YnMwMazRF7gPbp5s8EVEpY-Hd-T1oFzCy_t9RW5_fP9z9au8-f3z-urbTalrWk_lQKmCoeuxNn1leoDB6Ap6IXrTmAE7UxnGoRF9a_RAteaCiR6BDbRWRhnNV-R68TVBbeUu2lHFgwzKylMhxLVUcbLaodSNoQANB9oIobBqoa8BKgTVN53BOnt9Xbx2cz-i0einqNwT06c33m7kOuxlQwVj0GWDT_cGMfydMU1ytEmjc8pjmJNkvK4Yq1rBM_rxGboNc_T5q44U7zLI20x9eNzRQyv_ppkBtgA6hpQiDg8IUHlMjVxSI3Nq5Ck12X5F2mcibSd1nFp-lXUvS_kiTbtjIjD-b_sF1R1hndkf |
CitedBy_id | crossref_primary_10_1038_s41467_024_55743_4 crossref_primary_10_1002_smll_202307135 crossref_primary_10_1021_acscatal_2c04238 crossref_primary_10_1002_smll_202309791 crossref_primary_10_1021_acscatal_4c05507 crossref_primary_10_1021_acssuschemeng_0c02498 crossref_primary_10_3390_en16062664 crossref_primary_10_1039_D3EE01929B crossref_primary_10_1002_cnma_202200165 crossref_primary_10_1016_j_jechem_2023_08_017 crossref_primary_10_1016_j_apcatb_2024_124608 crossref_primary_10_1038_s41557_022_00965_6 crossref_primary_10_1016_j_fuel_2025_134704 crossref_primary_10_1016_j_coelec_2021_100788 crossref_primary_10_1039_D2CE01246D crossref_primary_10_1039_D2TA02742A crossref_primary_10_1016_j_fuel_2023_128828 crossref_primary_10_1039_D1CP01861B crossref_primary_10_1016_j_apcatb_2023_123362 crossref_primary_10_1021_acs_nanolett_4c03182 crossref_primary_10_1021_acs_jpcc_0c08811 crossref_primary_10_1002_adfm_202404707 crossref_primary_10_1021_acscatal_2c05540 crossref_primary_10_1021_jacs_3c01319 crossref_primary_10_1016_j_mtnano_2022_100281 crossref_primary_10_1002_adma_202419644 crossref_primary_10_1002_admi_202202050 crossref_primary_10_1016_j_apmate_2024_100214 crossref_primary_10_1016_j_nanoen_2021_106870 crossref_primary_10_1021_acsnano_4c18642 crossref_primary_10_1016_j_apcatb_2024_123890 crossref_primary_10_1016_j_seppur_2022_122988 crossref_primary_10_1039_D0TA06656G crossref_primary_10_1073_pnas_2319136121 crossref_primary_10_1007_s10311_020_01023_8 crossref_primary_10_3390_nano12152557 crossref_primary_10_1039_D1EE00248A crossref_primary_10_1021_acs_chemrev_9b00818 crossref_primary_10_1002_ange_202208667 crossref_primary_10_1007_s12274_024_6726_y crossref_primary_10_1016_j_electacta_2022_139966 crossref_primary_10_3390_ma16083280 crossref_primary_10_1016_j_jechem_2024_10_020 crossref_primary_10_1002_aenm_202200110 crossref_primary_10_1002_smll_202104205 crossref_primary_10_1016_j_jechem_2024_02_037 crossref_primary_10_1016_j_ijhydene_2023_01_213 crossref_primary_10_1088_2053_1583_ac805a crossref_primary_10_1016_j_jcis_2024_07_243 crossref_primary_10_1021_jacs_0c12740 crossref_primary_10_1016_j_gee_2021_07_002 crossref_primary_10_1016_j_nanoen_2020_105375 crossref_primary_10_1021_acs_jpcc_2c06519 crossref_primary_10_1039_D4NJ01121J crossref_primary_10_1002_ange_202011495 crossref_primary_10_1016_j_apcatb_2024_124801 crossref_primary_10_1002_advs_202308923 crossref_primary_10_1021_acsami_4c13898 crossref_primary_10_1016_j_cclet_2025_110998 crossref_primary_10_1016_j_cej_2022_136878 crossref_primary_10_1016_j_nanoen_2025_110708 crossref_primary_10_1016_j_mcat_2023_113795 crossref_primary_10_1021_acsnano_1c05834 crossref_primary_10_1016_j_xcrp_2023_101377 crossref_primary_10_1002_advs_202206166 crossref_primary_10_1002_ange_202013206 crossref_primary_10_1038_s41524_021_00684_5 crossref_primary_10_1002_asia_202200319 crossref_primary_10_3390_molecules27051528 crossref_primary_10_1002_celc_202100052 crossref_primary_10_1016_j_cej_2022_137611 crossref_primary_10_1002_ange_202111920 crossref_primary_10_1016_j_apcatb_2024_123703 crossref_primary_10_1007_s40820_021_00651_1 crossref_primary_10_1016_j_apt_2025_104839 crossref_primary_10_1007_s12274_022_4091_2 crossref_primary_10_1002_anie_202203836 crossref_primary_10_1016_j_matre_2022_100145 crossref_primary_10_1021_acs_est_1c00264 crossref_primary_10_1016_j_matre_2022_100144 crossref_primary_10_1039_D2CC05253A crossref_primary_10_1002_adfm_202009770 crossref_primary_10_1016_j_jcis_2024_08_198 crossref_primary_10_1002_ange_202311570 crossref_primary_10_1038_s41467_022_33512_5 crossref_primary_10_1002_smll_202105680 crossref_primary_10_1021_acs_chemmater_2c02667 crossref_primary_10_1002_smsc_202400370 crossref_primary_10_1007_s11244_025_02064_5 crossref_primary_10_1016_j_nanoen_2020_105467 crossref_primary_10_1021_jacs_1c05856 crossref_primary_10_1002_adfm_202307643 crossref_primary_10_1021_acssuschemeng_4c09228 crossref_primary_10_1002_adfm_202207438 crossref_primary_10_1002_adma_202211398 crossref_primary_10_1002_advs_202206063 crossref_primary_10_1016_j_jcat_2023_02_003 crossref_primary_10_1002_anie_202111920 crossref_primary_10_1002_smll_202405624 crossref_primary_10_1039_D2TA08454F crossref_primary_10_1002_adma_202300911 crossref_primary_10_1016_j_ccr_2021_214289 crossref_primary_10_1039_D2NR00294A crossref_primary_10_1039_D2SE00803C crossref_primary_10_1002_adfm_202307510 crossref_primary_10_1039_D1TA08254J crossref_primary_10_1002_smll_202105335 crossref_primary_10_1007_s10854_021_05581_7 crossref_primary_10_1038_s41467_022_28995_1 crossref_primary_10_1016_j_micromeso_2022_112169 crossref_primary_10_1002_adfm_202203067 crossref_primary_10_1126_sciadv_add6421 crossref_primary_10_1002_adfm_202209967 crossref_primary_10_1016_j_jclepro_2023_138921 crossref_primary_10_1007_s12274_023_5681_3 crossref_primary_10_1021_acscatal_3c01513 crossref_primary_10_1002_sstr_202300537 crossref_primary_10_1016_j_ijhydene_2022_03_023 crossref_primary_10_1002_aenm_202200875 crossref_primary_10_1016_j_gee_2022_12_006 crossref_primary_10_1002_cey2_194 crossref_primary_10_1002_cssc_202301963 crossref_primary_10_1016_j_chempr_2023_08_014 crossref_primary_10_1016_j_jmr_2023_107457 crossref_primary_10_1038_s41467_023_38964_x crossref_primary_10_1021_jacsau_1c00355 crossref_primary_10_1021_acscatal_2c00944 crossref_primary_10_1039_D4CS00333K crossref_primary_10_1039_D0TA06942F crossref_primary_10_1360_SSC_2023_0153 crossref_primary_10_1038_s41467_024_54959_8 crossref_primary_10_1021_acs_est_3c03346 crossref_primary_10_1002_ange_202203836 crossref_primary_10_1002_adfm_202414554 crossref_primary_10_1002_smll_202007245 crossref_primary_10_1021_acs_iecr_4c00816 crossref_primary_10_1021_acs_chemrev_1c00505 crossref_primary_10_1021_acs_inorgchem_2c02192 crossref_primary_10_3390_nano13142122 crossref_primary_10_1002_ange_202011358 crossref_primary_10_1002_adfm_202309474 crossref_primary_10_1038_s44160_025_00774_y crossref_primary_10_1021_jacs_4c08677 crossref_primary_10_1007_s40820_023_01223_1 crossref_primary_10_1002_adma_202206960 crossref_primary_10_1021_acsapm_4c01965 crossref_primary_10_1016_j_checat_2023_100621 crossref_primary_10_1016_j_ijhydene_2024_08_192 crossref_primary_10_1002_anie_202300406 crossref_primary_10_1016_j_jallcom_2023_169071 crossref_primary_10_1038_s41467_021_26130_0 crossref_primary_10_1016_j_jenvman_2023_118773 crossref_primary_10_1007_s12274_023_5449_9 crossref_primary_10_1039_D0EE01706J crossref_primary_10_1021_acscatal_1c00413 crossref_primary_10_1016_j_carbon_2021_09_030 crossref_primary_10_1016_j_apcatb_2022_122354 crossref_primary_10_1016_j_apcatb_2023_122898 crossref_primary_10_1021_jacsau_1c00384 crossref_primary_10_1002_adfm_202312987 crossref_primary_10_1016_j_cej_2022_140289 crossref_primary_10_1016_j_coche_2023_100921 crossref_primary_10_1002_smll_202006255 crossref_primary_10_1002_sus2_266 crossref_primary_10_1002_adfm_202300636 crossref_primary_10_1002_smll_202205266 crossref_primary_10_1002_sstr_202100047 crossref_primary_10_1016_j_matt_2023_12_001 crossref_primary_10_1021_acs_nanolett_4c03361 crossref_primary_10_1007_s12274_021_3331_1 crossref_primary_10_1016_j_jcis_2021_09_020 crossref_primary_10_1002_anie_202200190 crossref_primary_10_1002_slct_202200306 crossref_primary_10_1126_sciadv_abd6647 crossref_primary_10_1002_ange_202418347 crossref_primary_10_1002_anie_202311937 crossref_primary_10_1016_j_apcatb_2024_124074 crossref_primary_10_1002_nano_202100079 crossref_primary_10_1002_smll_202309067 crossref_primary_10_1016_j_jechem_2022_12_032 crossref_primary_10_1021_acs_jpclett_0c01943 crossref_primary_10_1016_j_catcom_2024_106911 crossref_primary_10_1039_D0CY01408G crossref_primary_10_1021_acsnano_4c13603 crossref_primary_10_1002_smll_202300373 crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_1021_acs_chemmater_2c03476 crossref_primary_10_1088_1361_648X_abe9da crossref_primary_10_1007_s10934_024_01672_y crossref_primary_10_1039_D4TA04567J crossref_primary_10_1007_s11426_022_1499_0 crossref_primary_10_1021_acssuschemeng_1c01364 crossref_primary_10_1038_s41467_024_46872_x crossref_primary_10_3390_catal13010022 crossref_primary_10_1016_j_ccr_2025_216462 crossref_primary_10_1016_j_jechem_2022_12_018 crossref_primary_10_1016_j_ijhydene_2022_06_096 crossref_primary_10_1021_acs_chemrev_0c00576 crossref_primary_10_1093_nsr_nwae056 crossref_primary_10_1002_sus2_15 crossref_primary_10_1002_anie_202308670 crossref_primary_10_1002_sstr_202100007 crossref_primary_10_1016_j_carbon_2022_09_018 crossref_primary_10_1016_j_jhazmat_2022_129772 crossref_primary_10_1007_s40843_020_1656_0 crossref_primary_10_1021_jacs_1c10470 crossref_primary_10_1021_acs_accounts_2c00212 crossref_primary_10_1016_j_nanoen_2024_110079 crossref_primary_10_1002_anie_202218630 crossref_primary_10_1039_D2TA09033C crossref_primary_10_1002_smll_202107481 crossref_primary_10_1016_j_fuel_2021_122048 crossref_primary_10_1016_j_seppur_2024_127063 crossref_primary_10_1038_s41467_021_26256_1 crossref_primary_10_1002_idm2_12011 crossref_primary_10_1021_acs_nanolett_0c03357 crossref_primary_10_1016_j_nanoen_2022_107587 crossref_primary_10_54227_elab_20220005 crossref_primary_10_1002_adfm_202406670 crossref_primary_10_1021_acs_jpcc_2c05198 crossref_primary_10_1002_anie_202308686 crossref_primary_10_1016_j_apcatb_2022_121575 crossref_primary_10_1016_j_apcatb_2022_121332 crossref_primary_10_1016_j_cej_2021_131309 crossref_primary_10_1016_j_pecs_2023_101074 crossref_primary_10_1063_5_0048186 crossref_primary_10_1016_j_apcatb_2024_124393 crossref_primary_10_1021_acssensors_4c01592 crossref_primary_10_1002_advs_202409023 crossref_primary_10_1002_smtd_202101324 crossref_primary_10_1039_D3TA06815C crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1021_acs_nanolett_3c04049 crossref_primary_10_1021_acscentsci_3c01439 crossref_primary_10_1016_j_apcatb_2022_121684 crossref_primary_10_1039_D4CC05023A crossref_primary_10_1021_acscatal_2c00891 crossref_primary_10_1002_sus2_246 crossref_primary_10_1021_acssuschemeng_1c00063 crossref_primary_10_1039_D2TA00747A crossref_primary_10_1016_j_vacuum_2022_110888 crossref_primary_10_1021_acs_accounts_2c00239 crossref_primary_10_1002_adma_202303818 crossref_primary_10_1039_D1QI01419F crossref_primary_10_3390_molecules28165947 crossref_primary_10_1021_acs_nanolett_4c00111 crossref_primary_10_1038_s41467_022_34169_w crossref_primary_10_1002_adfm_202212752 crossref_primary_10_1021_acs_nanolett_3c00810 crossref_primary_10_1002_ange_202311937 crossref_primary_10_1016_j_apcatb_2024_124188 crossref_primary_10_1039_D4RA09113B crossref_primary_10_1002_ange_202401819 crossref_primary_10_1002_smtd_202201078 crossref_primary_10_1016_j_ccr_2024_215952 crossref_primary_10_1002_cssc_202101337 crossref_primary_10_1039_D3QM00074E crossref_primary_10_1016_j_ijhydene_2022_07_096 crossref_primary_10_1021_acs_nanolett_4c02428 crossref_primary_10_1038_s41929_023_01083_3 crossref_primary_10_1016_j_electacta_2024_144389 crossref_primary_10_1016_j_mtener_2024_101695 crossref_primary_10_1016_j_apcatb_2023_122814 crossref_primary_10_1016_j_cej_2021_131795 crossref_primary_10_1002_sus2_229 crossref_primary_10_1002_advs_202100347 crossref_primary_10_1021_jacs_4c11445 crossref_primary_10_1016_j_snb_2024_135852 crossref_primary_10_1002_advs_202300639 crossref_primary_10_1002_adfm_202107651 crossref_primary_10_1016_j_cej_2021_130240 crossref_primary_10_1021_acsmaterialsau_1c00041 crossref_primary_10_1002_inf2_12257 crossref_primary_10_1002_adfm_202202524 crossref_primary_10_1002_smll_202404064 crossref_primary_10_1021_acsmaterialslett_4c00550 crossref_primary_10_1038_s41467_022_30155_4 crossref_primary_10_1021_acsnano_3c09656 crossref_primary_10_1021_acs_chemrev_1c00158 crossref_primary_10_1021_acsmaterialslett_1c00559 crossref_primary_10_1016_j_cej_2023_144372 crossref_primary_10_1002_er_7950 crossref_primary_10_1021_acs_nanolett_1c01519 crossref_primary_10_1016_j_jpowsour_2020_228446 crossref_primary_10_1039_D1SE00100K crossref_primary_10_1016_j_ijhydene_2023_06_207 crossref_primary_10_1039_D3CS00756A crossref_primary_10_1002_adma_202208799 crossref_primary_10_1038_s41467_021_24079_8 crossref_primary_10_1002_aenm_202403945 crossref_primary_10_1039_D0TA06485H crossref_primary_10_1016_j_cej_2024_158819 crossref_primary_10_1002_smll_202006473 crossref_primary_10_1002_EXP_20220024 crossref_primary_10_1007_s12598_021_01735_y crossref_primary_10_1002_smll_202304560 crossref_primary_10_1002_smtd_202101470 crossref_primary_10_1021_acsami_2c09507 crossref_primary_10_1002_adma_202206368 crossref_primary_10_1021_acsami_2c20863 crossref_primary_10_1021_acsanm_1c01676 crossref_primary_10_1039_D3QM00723E crossref_primary_10_1016_j_ijhydene_2022_09_308 crossref_primary_10_1007_s12274_023_5510_8 crossref_primary_10_1038_s41467_021_21925_7 crossref_primary_10_1007_s40843_022_2258_3 crossref_primary_10_1016_j_mtcata_2024_100068 crossref_primary_10_3390_ma16103760 crossref_primary_10_1016_j_jechem_2020_06_069 crossref_primary_10_1039_D3TA06724F crossref_primary_10_3389_fchem_2021_737495 crossref_primary_10_1039_D3CS00669G crossref_primary_10_1002_adfm_202312425 crossref_primary_10_1149_1945_7111_abc593 crossref_primary_10_1002_anie_202217323 crossref_primary_10_1016_j_ijhydene_2024_07_407 crossref_primary_10_1039_C9EE04040D crossref_primary_10_3390_inorganics11010016 crossref_primary_10_1039_D2NR00994C crossref_primary_10_1002_anie_202013206 crossref_primary_10_1002_anie_202208667 crossref_primary_10_1016_j_gee_2024_12_001 crossref_primary_10_1016_j_jallcom_2023_168883 crossref_primary_10_1002_ange_202217323 crossref_primary_10_1016_j_apsusc_2024_160384 crossref_primary_10_1021_acsnano_3c08921 crossref_primary_10_1039_D2TA09599H crossref_primary_10_1039_D3QI01656K crossref_primary_10_1016_S1872_2067_22_64153_6 crossref_primary_10_1016_j_ijhydene_2023_08_250 crossref_primary_10_2139_ssrn_4110405 crossref_primary_10_1021_acs_jpclett_2c03433 crossref_primary_10_1038_s41467_022_34619_5 crossref_primary_10_1002_smll_202204524 crossref_primary_10_1021_jacs_2c02262 crossref_primary_10_1002_slct_202303637 crossref_primary_10_1002_anie_202011495 crossref_primary_10_1016_j_ccr_2023_215272 crossref_primary_10_1002_anie_202311570 crossref_primary_10_1021_acs_inorgchem_3c00680 crossref_primary_10_1038_s41467_021_23306_6 crossref_primary_10_1016_j_enchem_2021_100066 crossref_primary_10_1021_acs_jpcc_3c00899 crossref_primary_10_1021_acsanm_3c02112 crossref_primary_10_1002_smll_202105231 crossref_primary_10_1039_D2DT02645G crossref_primary_10_1021_acsenergylett_0c00957 crossref_primary_10_1016_j_apmt_2021_101029 crossref_primary_10_1021_acsnano_4c02240 crossref_primary_10_1007_s12598_021_01791_4 crossref_primary_10_1016_j_nanoen_2021_105850 crossref_primary_10_1021_jacsau_2c00314 crossref_primary_10_1039_D0TA04773B crossref_primary_10_1038_s41467_022_29710_w crossref_primary_10_1002_smll_202307405 crossref_primary_10_1021_acsnano_0c09517 crossref_primary_10_1002_anie_202418347 crossref_primary_10_1016_j_apcatb_2022_121706 crossref_primary_10_1021_jacs_3c06726 crossref_primary_10_1002_adma_202208224 crossref_primary_10_1016_j_cclet_2022_01_066 crossref_primary_10_1038_s41578_023_00633_2 crossref_primary_10_1016_j_enchem_2021_100054 crossref_primary_10_1021_acs_nanolett_4c00512 crossref_primary_10_1002_smll_202005713 crossref_primary_10_1002_smll_202107541 crossref_primary_10_1002_smm2_1095 crossref_primary_10_1039_D0CY01241F crossref_primary_10_1002_ange_202218630 crossref_primary_10_1021_acsami_1c14615 crossref_primary_10_1002_anie_202401819 crossref_primary_10_1002_cssc_202200114 crossref_primary_10_1002_anie_202011358 crossref_primary_10_1038_s41467_023_38126_z crossref_primary_10_1039_D0EE03635H crossref_primary_10_1016_j_aca_2024_342351 crossref_primary_10_1038_s41467_021_26139_5 crossref_primary_10_1039_D3TA04199A crossref_primary_10_1039_D1SE01331A crossref_primary_10_1016_j_ensm_2023_01_024 crossref_primary_10_1016_j_ijhydene_2022_09_118 crossref_primary_10_1016_j_jallcom_2023_170964 crossref_primary_10_1002_ange_202300406 crossref_primary_10_1002_cey2_422 crossref_primary_10_1016_j_apcatb_2021_120830 crossref_primary_10_1016_j_nanoen_2023_108228 crossref_primary_10_1021_acs_iecr_1c04431 crossref_primary_10_1038_s41467_021_22681_4 crossref_primary_10_1007_s12274_022_4448_6 crossref_primary_10_1038_s41467_022_30766_x crossref_primary_10_1021_acsanm_3c01470 crossref_primary_10_1039_D3EE04457B crossref_primary_10_1021_acsami_3c11303 crossref_primary_10_1016_j_cej_2021_129652 crossref_primary_10_1002_adfm_202315326 crossref_primary_10_1039_D1SC01018B crossref_primary_10_1016_j_apcatb_2024_123791 crossref_primary_10_1007_s41918_023_00180_y crossref_primary_10_1016_j_mtener_2021_100653 crossref_primary_10_1039_D0GC03994B crossref_primary_10_1039_D1EE02518J crossref_primary_10_1016_j_talanta_2023_125349 crossref_primary_10_1039_D1NR00795E crossref_primary_10_1002_ange_202308670 crossref_primary_10_3390_hydrogen3020014 crossref_primary_10_1021_jacs_1c07643 crossref_primary_10_1021_acscatal_2c05992 crossref_primary_10_1016_j_seppur_2024_130259 crossref_primary_10_1016_j_jechem_2023_10_027 crossref_primary_10_1002_smtd_202001194 crossref_primary_10_1016_j_cej_2025_159926 crossref_primary_10_1021_acscatal_1c05958 crossref_primary_10_1021_acs_jpclett_1c00049 crossref_primary_10_1002_sstr_202200201 crossref_primary_10_1002_cey2_720 crossref_primary_10_1016_j_mtchem_2022_100994 crossref_primary_10_1007_s12274_023_5949_7 crossref_primary_10_1016_j_carbon_2024_119061 crossref_primary_10_1016_j_cej_2023_146387 crossref_primary_10_1002_smtd_202401333 crossref_primary_10_1002_smll_202203422 crossref_primary_10_1016_j_fmre_2022_06_012 crossref_primary_10_1021_acsami_2c02713 crossref_primary_10_1002_marc_202100915 crossref_primary_10_1016_j_ijhydene_2022_01_080 crossref_primary_10_1002_advs_202002341 crossref_primary_10_1039_D4CP01235F crossref_primary_10_1007_s12274_024_6660_z crossref_primary_10_1038_s41467_022_28805_8 crossref_primary_10_1021_acssuschemeng_1c00705 crossref_primary_10_1021_acscatal_4c00365 crossref_primary_10_1039_D2EE03351H crossref_primary_10_1007_s40820_021_00668_6 crossref_primary_10_1002_adma_202412942 crossref_primary_10_1016_j_cej_2021_131526 crossref_primary_10_1002_eem2_12552 crossref_primary_10_1039_D3NR02263C crossref_primary_10_1002_aenm_202101670 crossref_primary_10_1021_jacs_4c04322 crossref_primary_10_1002_adfm_202103007 crossref_primary_10_1016_j_apsusc_2020_148742 crossref_primary_10_1002_ange_202200190 crossref_primary_10_1016_j_apcatb_2021_120873 crossref_primary_10_1016_j_ijhydene_2021_12_101 crossref_primary_10_1016_j_apcatb_2024_124655 crossref_primary_10_1002_ange_202308686 crossref_primary_10_1016_j_apcatb_2023_123386 |
Cites_doi | 10.1038/s41560-017-0078-8 10.1038/nchem.1095 10.1021/jp0108014 10.1038/ncomms6848 10.1021/ja110073u 10.1149/1.1856988 10.1002/anie.201704358 10.1002/adma.201803498 10.1103/PhysRevLett.77.3865 10.1038/s41929-018-0094-5 10.1038/nnano.2016.304 10.1126/science.aaf1525 10.1126/sciadv.1501122 10.1038/nchem.2886 10.1107/S0909049500016964 10.1021/jacs.7b01686 10.1063/1.4865107 10.1126/science.aal3439 10.1038/nenergy.2016.184 10.1126/science.aan2255 10.1126/science.aac6368 10.1038/s41467-019-09290-y 10.1007/s12274-018-2149-y 10.1038/s41467-019-08323-w 10.1038/nenergy.2017.31 10.1038/s41565-018-0089-z 10.1038/s41929-018-0195-1 10.1038/s41929-018-0203-5 10.1021/jacs.8b00814 10.1038/nature24640 10.1038/s41929-018-0146-x 10.1103/PhysRevB.54.11169 10.1038/ncomms13638 10.1038/s41929-017-0008-y 10.1038/s41570-018-0010-1 10.1038/ncomms16100 10.1016/j.chempr.2018.10.007 10.1002/anie.201610119 10.1038/nenergy.2016.130 10.1038/s41557-018-0125-5 10.1021/jacs.7b10385 10.1002/anie.200604460 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-14848-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_c7d0117310744ae581b6115e1ab79de6 PMC7042219 32098951 10_1038_s41467_020_14848_2 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-f00a1f9be6db5db11fdc51b44bd7dfe9d5d23174b8dcf0cc3424be12f06adadc3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:22:11 EDT 2025 Thu Aug 21 18:08:36 EDT 2025 Thu Jul 10 23:10:11 EDT 2025 Wed Aug 13 04:20:44 EDT 2025 Thu Apr 03 07:00:39 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 04:08:51 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-f00a1f9be6db5db11fdc51b44bd7dfe9d5d23174b8dcf0cc3424be12f06adadc3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2607-6869 0000-0001-5333-511X 0000-0002-6665-220X 0000-0001-9255-1579 0000-0002-2052-1132 0000-0001-8699-8294 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-14848-2 |
PMID | 32098951 |
PQID | 2363965238 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c7d0117310744ae581b6115e1ab79de6 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7042219 proquest_miscellaneous_2365225843 proquest_journals_2363965238 pubmed_primary_32098951 crossref_primary_10_1038_s41467_020_14848_2 crossref_citationtrail_10_1038_s41467_020_14848_2 springer_journals_10_1038_s41467_020_14848_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-02-25 |
PublicationDateYYYYMMDD | 2020-02-25 |
PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Mathew, Sundararaman, Letchworth-Weaver, Arias, Hennig (CR43) 2014; 140 Mahmood (CR39) 2017; 12 Zhang (CR10) 2018; 1 Tao (CR27) 2019; 5 Wang, Li, Zhang (CR8) 2018; 2 Zhang (CR19) 2016; 352 Borchert (CR24) 2007; 46 Malta (CR1) 2017; 355 Perdew, Burke, Ernzerhof (CR42) 1996; 77 Yang (CR28) 2016; 2 Pan (CR5) 2018; 140 Zhang (CR25) 2017; 8 Yang (CR11) 2018; 3 Qiao (CR6) 2011; 3 Geng (CR13) 2018; 30 Liu (CR15) 2017; 56 Shan, Li, Allard, Lee, Flytzani-Stephanopoulos (CR9) 2017; 551 Zhao (CR18) 2016; 1 Ledezma-Yanez (CR35) 2017; 2 Cao (CR21) 2018; 2 Chen (CR7) 2018; 2 Wang (CR26) 2017; 139 Qu (CR14) 2018; 1 Nørskov (CR38) 2005; 152 Oudenhuijzen, Bitter, Koningsberger (CR37) 2001; 105 Wang (CR29) 2017; 139 Jiao, Zheng, Davey, Qiao (CR30) 2016; 1 O’Connor, Jonayat, Janik, Senftle (CR16) 2018; 1 Ding (CR23) 2015; 350 Chen (CR31) 2017; 56 Wu (CR32) 2018; 11 Dai (CR33) 2019; 10 Zhao (CR3) 2019; 10 Fei (CR2) 2018; 1 Cheng (CR34) 2016; 7 Kresse, Furthmuller (CR41) 1996; 54 Chung (CR12) 2017; 357 Sheng (CR36) 2015; 6 Greiner (CR20) 2018; 10 Zheng (CR4) 2018; 10 Newville (CR40) 2001; 8 Li (CR17) 2018; 13 Allian (CR22) 2011; 133 Y Pan (14848_CR5) 2018; 140 JK Nørskov (14848_CR38) 2005; 152 S Zhao (14848_CR18) 2016; 1 Y Jiao (14848_CR30) 2016; 1 Z Zhang (14848_CR25) 2017; 8 K Wu (14848_CR32) 2018; 11 J Shan (14848_CR9) 2017; 551 P Chen (14848_CR31) 2017; 56 HB Yang (14848_CR28) 2016; 2 B Qiao (14848_CR6) 2011; 3 X Zheng (14848_CR4) 2018; 10 HB Yang (14848_CR11) 2018; 3 N Cheng (14848_CR34) 2016; 7 Y Qu (14848_CR14) 2018; 1 J Wang (14848_CR29) 2017; 139 W Liu (14848_CR15) 2017; 56 WC Sheng (14848_CR36) 2015; 6 J Mahmood (14848_CR39) 2017; 12 L Zhao (14848_CR3) 2019; 10 JP Perdew (14848_CR42) 1996; 77 Y Chen (14848_CR7) 2018; 2 H Tao (14848_CR27) 2019; 5 X Wang (14848_CR26) 2017; 139 K Mathew (14848_CR43) 2014; 140 HT Chung (14848_CR12) 2017; 357 I Ledezma-Yanez (14848_CR35) 2017; 2 B Zhang (14848_CR19) 2016; 352 Z Geng (14848_CR13) 2018; 30 NJ O’Connor (14848_CR16) 2018; 1 H Li (14848_CR17) 2018; 13 AD Allian (14848_CR22) 2011; 133 S Dai (14848_CR33) 2019; 10 G Malta (14848_CR1) 2017; 355 A Wang (14848_CR8) 2018; 2 K Ding (14848_CR23) 2015; 350 H Borchert (14848_CR24) 2007; 46 MT Greiner (14848_CR20) 2018; 10 M Newville (14848_CR40) 2001; 8 H Fei (14848_CR2) 2018; 1 L Cao (14848_CR21) 2018; 2 MK Oudenhuijzen (14848_CR37) 2001; 105 JQ Zhang (14848_CR10) 2018; 1 G Kresse (14848_CR41) 1996; 54 |
References_xml | – volume: 3 start-page: 140 year: 2018 end-page: 147 ident: CR11 article-title: Atomically dispersed Ni(I) as the active site for electrochemical CO reduction publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 3 start-page: 634 year: 2011 end-page: 641 ident: CR6 article-title: Single-atom catalysis of CO oxidation using Pt /FeO publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 105 start-page: 4616 year: 2001 end-page: 4622 ident: CR37 article-title: The nature of the Pt-H bonding for strongly and weakly bonded hydrogen on platinum. A XAFS spectroscopy study of the Pt-H antibonding shaperesonance and Pt-H EXAFS publication-title: J. Phys. Chem. B doi: 10.1021/jp0108014 – volume: 6 year: 2015 ident: CR36 article-title: Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 133 start-page: 4498 year: 2011 end-page: 4517 ident: CR22 article-title: Chemisorption of CO and mechanism of CO oxidation on supported platinum nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110073u – volume: 152 start-page: J23 year: 2005 end-page: J26 ident: CR38 article-title: Trends in the exchange current for hydrogen evolution publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 56 start-page: 9312 year: 2017 end-page: 9317 ident: CR15 article-title: Single-site active cobalt-based photocatalyst with a long carrier lifetime for spontaneous overall water splitting publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201704358 – volume: 30 start-page: 1803498 year: 2018 ident: CR13 article-title: Achieving a record-high yield rate of 120.9 μg mg h for N electrochemical reduction over Ru single-atom catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR42 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 1 start-page: 531 year: 2018 end-page: 539 ident: CR16 article-title: Interaction trends between single metal atoms and oxide supports identified with density functional theory and statistical learning publication-title: Nat. Catal. doi: 10.1038/s41929-018-0094-5 – volume: 12 start-page: 441 year: 2017 end-page: 446 ident: CR39 article-title: An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 352 start-page: 333 year: 2016 end-page: 337 ident: CR19 article-title: Homogeneously dispersed multimetal oxygen-evolving catalysts publication-title: Science doi: 10.1126/science.aaf1525 – volume: 2 start-page: e1501122 year: 2016 ident: CR28 article-title: Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: development of highly efficient metal-free bifunctional electrocatalyst publication-title: Sci. Adv. doi: 10.1126/sciadv.1501122 – volume: 10 start-page: 149 year: 2018 end-page: 154 ident: CR4 article-title: Theory-driven design of high-valence metal sites for water oxidation confirmed using in situ soft X-ray absorption publication-title: Nat. Chem. doi: 10.1038/nchem.2886 – volume: 8 start-page: 322 year: 2001 end-page: 324 ident: CR40 article-title: IFEFFIT: interactive XAFS analysis and FEFF fitting publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049500016964 – volume: 139 start-page: 9419 year: 2017 end-page: 9422 ident: CR26 article-title: Uncoordinated amine groups of metal-organic frameworks to anchor single Ru sites as chemoselective catalysts toward the hydrogenation of quinoline publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 140 start-page: 084106 year: 2014 ident: CR43 article-title: Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 355 start-page: 1399 year: 2017 end-page: 1403 ident: CR1 article-title: Identification of single-site gold catalysis in acetylene hydrochlorination publication-title: Science doi: 10.1126/science.aal3439 – volume: 1 start-page: 16184 year: 2016 ident: CR18 article-title: Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 357 start-page: 479 year: 2017 end-page: 484 ident: CR12 article-title: Direct atomic-level insight into the active sites of a high-performance PGM-free ORR catalyst publication-title: Science doi: 10.1126/science.aan2255 – volume: 350 start-page: 189 year: 2015 end-page: 192 ident: CR23 article-title: Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts publication-title: Science doi: 10.1126/science.aac6368 – volume: 10 year: 2019 ident: CR3 article-title: Cascade anchoring strategy for general mass production of high-loading single-atomic metal-nitrogen catalysts publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 11 start-page: 6260 year: 2018 end-page: 6269 ident: CR32 article-title: Porphyrin-like Fe-N sites with sulfur adjustment on hierarchical porous carbon for different rate-determining steps in oxygen reduction reaction publication-title: Nano Res. doi: 10.1007/s12274-018-2149-y – volume: 10 year: 2019 ident: CR33 article-title: Platinum-trimer decorated cobalt-palladium core-shell nanocatalyst with promising performance for oxygen reduction reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-08323-w – volume: 2 start-page: 17031 year: 2017 ident: CR35 article-title: Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 13 start-page: 411 year: 2018 end-page: 417 ident: CR17 article-title: Synergetic interaction between neighbouring platinum monomers in CO hydrogenation publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 1 start-page: 985 year: 2018 end-page: 992 ident: CR10 article-title: Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 2 start-page: 134 year: 2018 end-page: 141 ident: CR21 article-title: Identification of single-atom active sites in carbon-based cobalt catalysts during electrocatalytic hydrogen evolution publication-title: Nat. Catal. doi: 10.1038/s41929-018-0203-5 – volume: 140 start-page: 4218 year: 2018 end-page: 4221 ident: CR5 article-title: Design of single-atom Co-N catalytic site: a robust electrocatalyst for CO reduction with nearly 100% CO selectivity and remarkable stability publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 551 start-page: 605 year: 2017 end-page: 608 ident: CR9 article-title: Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts publication-title: Nature doi: 10.1038/nature24640 – volume: 1 start-page: 781 year: 2018 end-page: 786 ident: CR14 article-title: Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms publication-title: Nat. Catal. doi: 10.1038/s41929-018-0146-x – volume: 2 start-page: 1242 year: 2018 end-page: 1264 ident: CR7 article-title: Single-atom publication-title: Catalysts: Synth. Strateg. Electrochem. Appl. Joule – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR41 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 7 year: 2016 ident: CR34 article-title: Platinum single-atom and cluster catalysis of the hydrogen evolution reaction publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 1 start-page: 63 year: 2018 end-page: 72 ident: CR2 article-title: General synthesis and definitive structural identification of MN C single-atom catalysts with tunable electrocatalytic activities publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: CR8 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 8 year: 2017 ident: CR25 article-title: Thermally stable single atom Pt/m-Al O for selective hydrogenation and CO oxidation publication-title: Nat. Commun. doi: 10.1038/ncomms16100 – volume: 5 start-page: 204 year: 2019 end-page: 214 ident: CR27 article-title: Nitrogen fixation by Ru single-atom electrocatalytic reduction publication-title: Chem doi: 10.1016/j.chempr.2018.10.007 – volume: 56 start-page: 610 year: 2017 end-page: 614 ident: CR31 article-title: Atomically dispersed iron-nitrogen species as electrocatalysts for bifunctional oxygen evolution and reduction reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610119 – volume: 1 start-page: 16130 year: 2016 ident: CR30 article-title: Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene publication-title: Nat. Energy doi: 10.1038/nenergy.2016.130 – volume: 10 start-page: 1008 year: 2018 end-page: 1015 ident: CR20 article-title: Free-atom-like d states in single-atom alloy catalysts publication-title: Nat. Chem. doi: 10.1038/s41557-018-0125-5 – volume: 139 start-page: 17281 year: 2017 end-page: 17284 ident: CR29 article-title: Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 46 start-page: 2923 year: 2007 end-page: 2926 ident: CR24 article-title: Ligand-capped Pt nanocrystals as oxide-supported catalysts: FTIR spectroscopic investigations of the absorption and oxidation of CO publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604460 – volume: 3 start-page: 634 year: 2011 ident: 14848_CR6 publication-title: Nat. Chem. doi: 10.1038/nchem.1095 – volume: 140 start-page: 4218 year: 2018 ident: 14848_CR5 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b00814 – volume: 10 start-page: 1008 year: 2018 ident: 14848_CR20 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0125-5 – volume: 551 start-page: 605 year: 2017 ident: 14848_CR9 publication-title: Nature doi: 10.1038/nature24640 – volume: 2 start-page: 134 year: 2018 ident: 14848_CR21 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0203-5 – volume: 77 start-page: 3865 year: 1996 ident: 14848_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 10 year: 2019 ident: 14848_CR3 publication-title: Nat. Commun. doi: 10.1038/s41467-019-09290-y – volume: 2 start-page: 1242 year: 2018 ident: 14848_CR7 publication-title: Catalysts: Synth. Strateg. Electrochem. Appl. Joule – volume: 30 start-page: 1803498 year: 2018 ident: 14848_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 139 start-page: 17281 year: 2017 ident: 14848_CR29 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b10385 – volume: 3 start-page: 140 year: 2018 ident: 14848_CR11 publication-title: Nat. Energy doi: 10.1038/s41560-017-0078-8 – volume: 357 start-page: 479 year: 2017 ident: 14848_CR12 publication-title: Science doi: 10.1126/science.aan2255 – volume: 7 year: 2016 ident: 14848_CR34 publication-title: Nat. Commun. doi: 10.1038/ncomms13638 – volume: 139 start-page: 9419 year: 2017 ident: 14848_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01686 – volume: 56 start-page: 9312 year: 2017 ident: 14848_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201704358 – volume: 10 start-page: 149 year: 2018 ident: 14848_CR4 publication-title: Nat. Chem. doi: 10.1038/nchem.2886 – volume: 56 start-page: 610 year: 2017 ident: 14848_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610119 – volume: 5 start-page: 204 year: 2019 ident: 14848_CR27 publication-title: Chem doi: 10.1016/j.chempr.2018.10.007 – volume: 2 start-page: 17031 year: 2017 ident: 14848_CR35 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.31 – volume: 352 start-page: 333 year: 2016 ident: 14848_CR19 publication-title: Science doi: 10.1126/science.aaf1525 – volume: 1 start-page: 16130 year: 2016 ident: 14848_CR30 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.130 – volume: 1 start-page: 63 year: 2018 ident: 14848_CR2 publication-title: Nat. Catal. doi: 10.1038/s41929-017-0008-y – volume: 152 start-page: J23 year: 2005 ident: 14848_CR38 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1856988 – volume: 2 start-page: 65 year: 2018 ident: 14848_CR8 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 13 start-page: 411 year: 2018 ident: 14848_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0089-z – volume: 1 start-page: 781 year: 2018 ident: 14848_CR14 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0146-x – volume: 46 start-page: 2923 year: 2007 ident: 14848_CR24 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200604460 – volume: 105 start-page: 4616 year: 2001 ident: 14848_CR37 publication-title: J. Phys. Chem. B doi: 10.1021/jp0108014 – volume: 12 start-page: 441 year: 2017 ident: 14848_CR39 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.304 – volume: 6 year: 2015 ident: 14848_CR36 publication-title: Nat. Commun. doi: 10.1038/ncomms6848 – volume: 133 start-page: 4498 year: 2011 ident: 14848_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110073u – volume: 1 start-page: 985 year: 2018 ident: 14848_CR10 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0195-1 – volume: 8 year: 2017 ident: 14848_CR25 publication-title: Nat. Commun. doi: 10.1038/ncomms16100 – volume: 355 start-page: 1399 year: 2017 ident: 14848_CR1 publication-title: Science doi: 10.1126/science.aal3439 – volume: 140 start-page: 084106 year: 2014 ident: 14848_CR43 publication-title: J. Chem. Phys. doi: 10.1063/1.4865107 – volume: 11 start-page: 6260 year: 2018 ident: 14848_CR32 publication-title: Nano Res. doi: 10.1007/s12274-018-2149-y – volume: 1 start-page: 531 year: 2018 ident: 14848_CR16 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0094-5 – volume: 2 start-page: e1501122 year: 2016 ident: 14848_CR28 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501122 – volume: 350 start-page: 189 year: 2015 ident: 14848_CR23 publication-title: Science doi: 10.1126/science.aac6368 – volume: 8 start-page: 322 year: 2001 ident: 14848_CR40 publication-title: J. Synchrotron Radiat. doi: 10.1107/S0909049500016964 – volume: 1 start-page: 16184 year: 2016 ident: 14848_CR18 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 54 start-page: 11169 year: 1996 ident: 14848_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 10 year: 2019 ident: 14848_CR33 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08323-w |
SSID | ssj0000391844 |
Score | 2.6968198 |
Snippet | Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site... Single-atom catalysts offering intriguing activity and selectivity are subject of intense investigation. Understanding the nature of single-atom active site... Understanding the structural dynamics of single-atom site in electrochemical reactions is crucial for design of an efficient catalyst. Here, the authors... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1029 |
SubjectTerms | 639/301/299/886 639/4077 639/638/77 Absorption spectroscopy Carbon sources Catalysts Dynamic structural analysis Electrochemistry Electrolytes Evolution Humanities and Social Sciences Hydrogen Hydrogen evolution reactions multidisciplinary Platinum Science Science (multidisciplinary) Selectivity Single atom catalysts Sodium hydroxide Spectrum analysis Substrates Sulfuric acid Synchrotron radiation X ray absorption X-ray absorption spectroscopy |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEB5KoNBLafp0kgYVemtNLEuy7GNbEkKhPXUhN6HHiBQSb9hHIf--I8m7zfZ56dWSQGg-ab6xRt8AvOZ2CK0bHIUl6GpJPql2vfO19ih0cCHynDz-6XN3PpMfL9TFnVJfKSesyAOXhTvxOiTZMpESB6VFRTSrIxaD3Do9BMxi2-Tz7gRT-QwWA4Uucnol04j-ZCnzmZCiJYoAJMFjxxNlwf7fscxfkyV_ujHNjujsETycGCR7V2a-D_dwfAz3S03J2yeAs9GntEway0aCcR0XiOwmpbyN62uWfg1cYU2h9jULpRr9kpW3imwqieMnDQF2eRsWcwIYw28TQBlRzPwQ4inMzk6_fDivp1oKtacQZVXHprE8Dg674FRwnMfgFXdSuqBDxCGoQExPS9cHHxvvhWylQ97GprPBBi-ewd44H_EFsDggUpTSKvRK2qD69CfENtHq5PtFrIBv1tX4SWg81bu4MvnCW_Sm2MKQLUy2hWkreLMdc1NkNv7a-30y17ZnksjOHwg4ZgKO-RdwKjjaGNtM-3ZpWkGMraPgvK_g1baZdly6RrEjzte5D5FWIm6igucFG9uZCMJiT6S1Ar2Dmp2p7raMXy-zqrdOamx8qODtBl8_pvXnpTj4H0txCA_atDHSS311BHurxRpfEtdaueO8rb4D0QEmmQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLorwaaJGRuEHUOHZeJwRVlwoJTqzUm-XHmCK1ybIPpP57ZhxvquXR68aRvJnPnm_G428YeyNM50vbWQxLwOYKfVJuW-vyxoFsvPVBxOLxL1_rs7n6fF6dp4TbKpVVbvfEuFH7wVGO_LiU6EtrDJva94ufOXWNotPV1ELjLrsn0NNQSVc7-zTlWEj9vFUq3ZUpZHu8UnFnoJgJ4wCFINnxR1G2_19c8--SyT_OTaM7mj1iDxOP5B9Gw--zO9A_ZvfHzpLXTxjMe0fFmfgu7xHMeVgC8AUVvvWbK04JgkvIMeC-4n7sSb_i441FnhrjuKQkwC-u_XJAmHH4lWDKkWjG6xBP2Xx2-u3kLE8dFXKHgco6D0VhROgs1N5W3goRvKuEVcr6xgfofOWR7zXKtt6FwjmpSmVBlKGojTfeyWdsrx96OGA8dAAYq5QVuEoZX7WUDzFFMA0xABkyJrbfVbskN05dLy51PPaWrR5todEWOtpClxl7O72zGMU2bh39kcw1jSSh7PjDsPyu07rTrvGkeiep7lQZqJCl10iCQRjbdB7qjB1uja3T6l3pG6xl7PX0GNcdHaaYHoZNHIPUFembzNjzERvTTGRZdC1S14w1O6jZmeruk_7HRdT2bkiTTXQZe7fF1820_v8pXtz-L16yByVBnm7iV4dsb73cwBFyqbV9FRfMb0iLHuU priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qi-CLeHe1SgTfdHGzyd4eT4ulHNAXPdC3kMvECu2eci6F_vtOstmVo1XwdZPAkJnZfJPMfAPwnuvOlaYzFJagySWdSblpjc0bi6Jxxnkek8e_fK1PF3J-Vp3tQTnWwsSk_UhpGX_TY3bYp7WMLh2CHQLwkrR7Dw4CVTvZ9sFsNv82n25WAud5K2WqkClEe8finVMokvXfhTD_TJT87bU0HkInj-BhQo9sNsj7GPawfwL3h36SN08BF70NKZm0lvVkwrlfIbKrkO7Wby9ZuBa4wJzC7Evmhk70azbUKbLUDscm_gB2fuNWSzIuhtfJOBnBy1gE8QwWJ5-_H5_mqY9Cbik82eS-KDT3ncHamcoZzr2zFTdSGtc4j52rHKG8RprWWV9YK2QpDfLSF7V22lnxHPb7ZY8vgfkOkSKUskJbSe2qNtyC6MLrJpz7wmfAx31VNpGMh14XFyo-dotWDbpQpAsVdaHKDD5Ma64Gio1_zj4K6ppmBnrs-GG5-qGSuSjbuMB1J0K2qdRYETavCfoi16bpHNYZHI7KVsln16oUhNZqCszbDN5Nw-Rt4QlF97jcxjkEWAm0iQxeDLYxSSLKomsJsGbQ7FjNjqi7I_3P88jo3QQmNt5l8HG0r19i_X0rXv3f9NfwoAwuEOrxq0PY36y2-IYQ1ca8TS50C05KHgA priority: 102 providerName: Springer Nature |
Title | Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction |
URI | https://link.springer.com/article/10.1038/s41467-020-14848-2 https://www.ncbi.nlm.nih.gov/pubmed/32098951 https://www.proquest.com/docview/2363965238 https://www.proquest.com/docview/2365225843 https://pubmed.ncbi.nlm.nih.gov/PMC7042219 https://doaj.org/article/c7d0117310744ae581b6115e1ab79de6 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bb9MwFD7aRUi8IO5kjMpIvEEgjp04eUCoq1amSpsQUKlvUXzbkLp0pO1E_z3HjltUKIiXRIqdyPL5Tvwd-1wAXtG61KksJZolRsYc16RYFlLFQhkmtNSWeufx84v8bMxHk2yyB-tyR2EC5ztNO1dPatxO3_74vvqACv--Cxkv3s25V3dnCCG55yj5fTjElUm4igbnge77PzMr0aBxB81pwmmMHViIo9n9ma21yqf038VD_3Sn_O1M1S9Vw_twL3BM0u9A8QD2TPMQ7nRVJ1ePwIwb5Rw38V3SINBj2xpDbpxTXLO8Jm7zYGpiNMavie7q1c9JF81IQtEcFbIMkKuVbmcIQWJuA4QJklAfKvEYxsPTr4OzOFRbiBUaMYvYJklNbSlNrmWmJaVWq4xKzqUW2ppSZxq5oOCy0MomSjGecmloapO81rVW7AkcNLPGPANiS2PQjkkzozJe66xweyV1Ymvh2AGzEdD1vFYqpCJ3FTGmlT8SZ0XVyaJCWVReFlUawevNOzddIo5_9j5x4tr0dEm0_YNZe1kFnayU0C4jHnM-qbw2GTL4HAmyobUUpTZ5BMdrYVdrYFYpQ06Xo_leRPBy04w66Q5a6sbMlr4P0lqkdiyCpx02NiNhaVIWSGsjEFuo2Rrqdkvz7crn_RYuXxstI3izxtevYf19Ko7-Y5jP4W7qcO9C9bNjOFi0S_MCydZC9mBfTARei-HHHhz2-6MvI7yfnF58-oxPB_mg57cxel7TfgJQQiym |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAASPBE0RNYud6QIhr2dLjqZX6ZnzSSt3ssgdo_xS_kRkn2Wo5-tbXjRN5Pd94vrHnAHiRqtpmutboljgdC7RJsa60iUvjeGm19WkIHt8_KIZH4stxfrwBv_pcGAqr7PfEsFHbsaEz8u2Moy0t0G2q3k6-x9Q1im5X-xYaLSx23fInumyzNzsfUb4vs2zw6fDDMO66CsQGyfo89kmiUl9rV1idW52m3po81UJoW1rvaptb5Dyl0JU1PjGGi0xol2Y-KZRV1nD87hW4KjhacspMH3xenelQtfVKiC43J-HV9kyEnYh8NPQ7BIJyzf6FNgH_4rZ_h2j-cU8bzN_gFtzseCt71wLtNmy45g5caztZLu-CO2oMBYPiu6zBVYr91Dk2oUC7ZjFidCBx5mJ08EfMLhs1OjUz1mZIsq4Rj-kqF7CTpZ2OEdbM_ejUgiGxDekX9-DoUtb6Pmw248Y9BOZr59A3ynJncqFsXtH5i0q8KolxcB9B2q-rNF15c-qycSbDNTuvZCsLibKQQRYyi-DV6p1JW9zjwtHvSVyrkVSYO_wwnn6TnZ5LU1qqsscpzlUol6NXUCDpdqnSZW1dEcFWL2zZ7RYzeY7tCJ6vHqOe0-WNatx4EcYgVUa6yCN40GJjNROeJXWFVDmCcg01a1Ndf9KcnoRa4iXVgEvrCF73-Dqf1v-X4tHF_-IZXB8e7u_JvZ2D3cdwIyP4UxWAfAs259OFe4I8bq6fBuVh8PWytfU3hJtfDw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrUC8IG4CBYwETxA1h3M9IERpVy2FVYVYqW-uT1qpmyx7gPav8esYO06q5ehbXzdO5PXM2N9nj78BeBnzSiWiEkhLtAgprkmhKIUMC6nTQgllYpc8_nmU74_px-PseAN-dXdhbFplNye6iVo10u6RbycprqU50qZy2_i0iKPd4bvp99BWkLInrV05jdZFDvXqJ9K3-duDXbT1qyQZ7n39sB_6CgOhROC-CE0U8dhUQudKZErEsVEyiwWlQhXK6EplCvFPQUWppImkTGlChY4TE-VccSVT_O412CwsKxrA5s7e6OhLv8NjtddLSv1NnQg7PqduXrKMDVkIRRddWw1d0YB_Id2_Ezb_OLV1i-HwNtzyKJa8b93uDmzo-i5cb-taru6BHtfSpobiu6TGcQrNTGsytWl39XJC7PbEuQ6R7k-IWtV8cibnpL0vSXxZHul1DMjpSs0adHKif_ggIQhz3WWM-zC-ktF-AIO6qfUjIKbSGplSkmmZUa6y0u7G8MjwwuKP1AQQd-PKpBc7tzU3zpk7dE9L1tqCoS2YswVLAnjdvzNtpT4ubb1jzdW3tDLd7odm9o35qGeyUFZzL7VZr5TrDDlCjhBcx1wUldJ5AFudsZmfO-bswtMDeNE_xqi3Rzm81s3StUHgjOAxDeBh6xt9T9IkqkoEzgEUa16z1tX1J_XZqVMWL6wiXFwF8Kbzr4tu_X8oHl_-L57DDYxU9ulgdPgEbibW-60kQLYFg8VsqZ8iqFuIZz56CJxcdcD-Bn6wZKE |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+near-free+platinum+single-atom+dynamics+during+electrochemical+hydrogen+evolution+reaction&rft.jtitle=Nature+communications&rft.au=Fang%2C+Shi&rft.au=Zhu%2C+Xiaorong&rft.au=Liu%2C+Xiaokang&rft.au=Gu%2C+Jian&rft.date=2020-02-25&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=1029&rft_id=info:doi/10.1038%2Fs41467-020-14848-2&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |