Chronic vitamin D deficiency induces lung fibrosis through activation of the renin-angiotensin system

Pulmonary fibrosis, which influences lung function and exacerbates a patient’s condition, is the ultimate stage of many lung diseases. Vitamin D deficiency is associated with pulmonary fibrosis and impaired lung function, but the underlying mechanism has not yet been fully elucidated. Moreover, vita...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 7; no. 1; pp. 3312 - 10
Main Authors Shi, Yongyan, Liu, Tianjing, Yao, Li, Xing, Yujiao, Zhao, Xinyi, Fu, Jianhua, Xue, Xindong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 12.06.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pulmonary fibrosis, which influences lung function and exacerbates a patient’s condition, is the ultimate stage of many lung diseases. Vitamin D deficiency is associated with pulmonary fibrosis and impaired lung function, but the underlying mechanism has not yet been fully elucidated. Moreover, vitamin D deficiency may cause over-activation of the renin-angiotensin system (RAS), which aggravates extracellular matrix (ECM) deposition and lung fibrosis. This study aims to investigate the effect of chronic vitamin D deficiency on lung fibrosis in otherwise healthy mice and to explore the role of RAS in this process. Mice were depleted of vitamin D through diet control and were compared with healthy subjects. Chronic vitamin D deficiency destructs lung structures, impairs lung development and stimulates ECM deposition. RAS components are also found to increase. These effects seem to worsen with prolonged vitamin D deficiency. By giving RAS blockers, these changes can be largely rescued. However, a smooth muscle relaxant whose regulatory effect on blood pressure is independent of RAS does not show similar effects. This study demonstrated that chronic vitamin D deficiency may induce RAS activation, which subsequently stimulates the expression of profibrotic factors and activates the fibrotic cascade. This profibrotic effect of RAS is independent of elevated blood pressure.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-017-03474-6