Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism
The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 3781 - 10 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.02.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-83445-0 |
Cover
Loading…
Abstract | The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to
Pinus
spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN)
Bursaphelenchus xylophilus
, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in
Pinus pinaster
tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1,
TRX
) and plant defence (defensin,
DEF
, and a-farnesene synthase,
AFS
), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of
DEF
gene were higher in elicited plants, while
TRX
and
AFS
expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system. |
---|---|
AbstractList | The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to
Pinus
spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN)
Bursaphelenchus xylophilus
, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in
Pinus pinaster
tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1,
TRX
) and plant defence (defensin,
DEF
, and a-farnesene synthase,
AFS
), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of
DEF
gene were higher in elicited plants, while
TRX
and
AFS
expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system. The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system. The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system. The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system.The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system. Abstract The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being responsible for significant economic and environmental losses every year. It has been demonstrated that elicitation with chitosan increases plant tolerance to the pinewood nematode (PWN) Bursaphelenchus xylophilus, the causal agent of the PWD, but the biochemical and genetic aspects underlying this response have not been explored. To understand the influence of chitosan in Pinus pinaster tolerance against PWN, a low-molecular-weight (327 kDa) chitosan was applied to mock- and PWN-inoculated plants. Nematode population, malondialdehyde (MDA), catalase, carotenoids, anthocyanins, phenolic compounds, lignin and gene expression related to oxidative stress (thioredoxin 1, TRX) and plant defence (defensin, DEF, and a-farnesene synthase, AFS), were analysed at 1, 7, 14, 21 and 28 days post-inoculation (dpi). At 28 dpi, PWN-infected plants elicited with chitosan showed a sixfold lower nematode population when compared to non-elicited plants. Higher levels of MDA, catalase, carotenoids, anthocyanins, phenolic compounds, and lignin were detected in chitosan-elicited plants following infection. The expression levels of DEF gene were higher in elicited plants, while TRX and AFS expression was lower, possibly due to the disease containment-effect of chitosan. Combined, we conclude that chitosan induces pine defences against PWD via modulation of metabolic and transcriptomic mechanisms related with plant antioxidant system. |
ArticleNumber | 3781 |
Author | Nunes da Silva, Marta Santos, Carla S. Vasconcelos, Marta W. López-Villamor, Adrián Cruz, Ana |
Author_xml | – sequence: 1 givenname: Marta surname: Nunes da Silva fullname: Nunes da Silva, Marta email: masilva@porto.ucp.pt organization: Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia – sequence: 2 givenname: Carla S. surname: Santos fullname: Santos, Carla S. organization: Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia – sequence: 3 givenname: Ana surname: Cruz fullname: Cruz, Ana organization: Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia – sequence: 4 givenname: Adrián surname: López-Villamor fullname: López-Villamor, Adrián organization: Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Misión Biológica de Galicia (MBG-CSIC) – sequence: 5 givenname: Marta W. surname: Vasconcelos fullname: Vasconcelos, Marta W. organization: Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33580134$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLUN_gAWyxKYsAn4ldjZIMOJRqRIsYG3Zzp0ZjxI72E7pfAT_jKdTSttFLVm-ss85PvfxvDrywUNVvST4LcFMvkucNJ2sMSW1ZJw3NX5SnVBcAsooPboTH1enKW1xWQ3tOOmeVceMNRITxk-qP8uNyyFpj5y3EXSChL47Pyc0Oa9ThohyGCBqb6FEKG9g_wK_Q-iRh1Hn0AM6-zjHpKcNDODtppCvdkOYNm6Y0xtkdmiKYQzZ-TWaBu0zKtuFK9fr7C4BjZC1CYNL44vq6UoPCU5vzkX18_OnH8uv9cW3L-fLDxe1bXGbaxCUMKZN02PLKWuwFlZS3hJjSCuNaVkvutZiKnUrMPBGNivOOCZE9EwQyRbV-UG3D3qrpuhGHXcqaKeuL0JcKx2zswMobVoNxDQStOErQbrGgG46YkRf5JgpWu8PWtNsRugt-Bz1cE_0_ot3G7UOl0pIWTqJi8DZjUAMv2ZIWY0uWRhKpSDMSVEuO9pyWnJeVK8fQLdhjr6Uao-SQjDZioJ6ddfRrZV_XS8AegDYGFKKsLqFEKz206UO06XKdKnr6VJ7m_IBybpcGhj2WbnhcSo7UFP5x68h_rf9COsvaF_mPw |
CitedBy_id | crossref_primary_10_1007_s41748_023_00349_x crossref_primary_10_1016_j_carbpol_2023_120592 crossref_primary_10_1186_s13595_024_01234_x crossref_primary_10_3832_ifor4404_017 crossref_primary_10_1134_S1062359022060061 crossref_primary_10_1007_s42729_024_01934_3 crossref_primary_10_3389_fmicb_2021_687304 crossref_primary_10_3390_cells11203208 crossref_primary_10_1093_treephys_tpae003 crossref_primary_10_3389_fpls_2022_1015970 crossref_primary_10_1093_treephys_tpac088 crossref_primary_10_1007_s00468_024_02594_7 crossref_primary_10_2478_jofnem_2024_0027 crossref_primary_10_3389_fpls_2022_1072394 crossref_primary_10_1016_j_plaphy_2022_01_020 crossref_primary_10_1016_j_scitotenv_2025_179157 crossref_primary_10_3389_fenvs_2022_891195 crossref_primary_10_1038_s41598_025_92798_9 crossref_primary_10_1002_fsn3_4204 crossref_primary_10_3390_f15111973 crossref_primary_10_1134_S1021443723600988 crossref_primary_10_1002_ps_7013 crossref_primary_10_3389_fpls_2023_1217822 |
Cites_doi | 10.1007/s10265-010-0399-1 10.3390/ijms19020335 10.1094/MPMI.1997.10.7.830 10.1016/j.carbpol.2019.115331 10.1002/pmic.200800386 10.1021/acs.jafc.6b01706 10.1146/annurev.arplant.55.031903.141701 10.1007/978-4-431-75655-2_32 10.4005/jjfs.88.240 10.1111/plb.12684 10.1016/S0981-9428(02)01471-7 10.1016/j.jplph.2019.01.003 10.1186/1753-6561-5-S7-P92 10.1186/1471-2164-13-599 10.1007/s11240-011-0051-3 10.1104/pp.103.035782 10.3390/ijms20174151 10.3390/ijms21010306 10.1590/S0100-40422006000100021 10.3725/jjn1993.33.2_45 10.1016/j.phytochem.2018.08.011 10.17221/9/2009-PPS 10.1093/treephys/tpv046 10.1007/s10658-006-0005-5 10.1007/s00128-010-0039-4 10.1007/s10725-013-9789-4 10.1139/w11-046 10.1371/journal.pone.0203769 10.3390/plants8090348 10.1038/s41598-019-48660-w 10.1007/978-4-431-75655-2_22 10.1155/S1110724304404045 10.1111/efp.12136 10.1007/s10311-006-0068-8 10.1007/s10310-009-0171-3 10.1104/pp.103.026484 10.1016/j.scienta.2017.01.031 10.1006/meth.2001.1262 10.1155/2011/460381 10.1046/j.1469-8137.1997.00784.x 10.1007/s00253-010-2935-2 10.1016/j.foodchem.2020.128358 10.1016/j.scienta.2015.09.031 10.4236/ajps.2014.520322 10.1098/rstb.2018.0323 10.1016/S0034-4257(02)00010-X 10.1007/s00468-014-1143-6 10.17221/46/2011-PPS 10.1016/0003-9861(68)90654-1 10.1016/j.carbpol.2005.10.021 10.1016/j.biocontrol.2019.01.013 10.1021/jf0480804 10.1016/j.ecoenv.2017.01.009 10.1021/jf010449r 10.1371/journal.pone.0182837 10.3390/f8080279 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-83445-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_ab6ae1b58eab4f7195bea591b7d1173b PMC7881030 33580134 10_1038_s41598_021_83445_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Fundação para a Ciência e a Tecnologia grantid: UID/Multi/50016/2019 funderid: http://dx.doi.org/10.13039/501100001871 – fundername: Xunta de Galicia grantid: 530 IN606B funderid: http://dx.doi.org/10.13039/501100010801 – fundername: ; grantid: 530 IN606B – fundername: ; grantid: UID/Multi/50016/2019 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-e72133ab5d0c42350a7c82461bb168bb63d796c028a670e4585f4340117d37183 |
IEDL.DBID | AAJSJ |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:26:29 EDT 2025 Thu Aug 21 18:08:39 EDT 2025 Fri Sep 05 08:49:16 EDT 2025 Wed Aug 13 02:51:33 EDT 2025 Mon Jul 21 06:07:00 EDT 2025 Thu Apr 24 23:07:24 EDT 2025 Tue Jul 01 01:07:29 EDT 2025 Fri Feb 21 02:39:03 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-e72133ab5d0c42350a7c82461bb168bb63d796c028a670e4585f4340117d37183 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41598-021-83445-0 |
PMID | 33580134 |
PQID | 2488773867 |
PQPubID | 2041939 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ab6ae1b58eab4f7195bea591b7d1173b pubmedcentral_primary_oai_pubmedcentral_nih_gov_7881030 proquest_miscellaneous_2489264221 proquest_journals_2488773867 pubmed_primary_33580134 crossref_primary_10_1038_s41598_021_83445_0 crossref_citationtrail_10_1038_s41598_021_83445_0 springer_journals_10_1038_s41598_021_83445_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-12 |
PublicationDateYYYYMMDD | 2021-02-12 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Ruley, Sharma, Sahi (CR67) 2004; 42 Khalil, Badawy (CR23) 2012; 48 Kovaleva, Krynytskyy, Gout, Gout (CR62) 2011; 89 Zamany, Liu, Ekramoddoullah, Sniezko (CR63) 2011; 57 Hawrylak-Nowak, Dresler, Rubinowska, Matraszek-Gawron (CR30) 2020; 342 CR38 Lee, Han, Koh, Kim, Lee, Shim (CR16) 2019; 9 Zas, Moreira, Ramos, Lima, Silva, Solla, Vasconcelos, Sampedro (CR57) 2014; 29 Kawaguchi (CR15) 2006; 88 Kamata, Zhao, Futai, Sutherland, Takeuchi (CR19) 2008 Treutter (CR10) 2006; 4 Rabea, Steurbaut (CR21) 2010; 4 Hirata, Nakamura, Nakao, Kominami, Tanaka, Ohashi, Takano, Takeuchi, Matsui (CR5) 2017; 12 Ferri, Tassoni, Franceschetti, Righetti, Naldrett, Bagni (CR46) 2009; 9 Raes, Rohde, Christensen, Van de Peer, Boerjan (CR58) 2003; 133 Elkhouni, Rabhi, Ivanov, Krol, Zorrig, Smaoui, Abdelly, Huner (CR51) 2018; 20 Apel, Hirt (CR40) 2004; 55 Mamiya, Mota, Vieira (CR2) 2004 Nunes da Silva, Cardoso, Ferreira, Brito, Pintado, Vasconcelos (CR24) 2014; 44 Myers (CR36) 1988; 20 CR4 Livak, Schmittgen (CR71) 2001; 25 Gaspar, Trindade, Usié, Meireles, Barbosa, Fortes, Pesquita, Costa (CR56) 2017; 8 Rahman, Mukta, Sabir, Gupta, Mohi-Ud-Din, Hasanuzzaman, Islam (CR27) 2018; 13 Nakajima, Tanaka, Seo, Yamazaki, Saito (CR54) 2004; 2004 Pichyangkura, Chadchawan (CR53) 2015; 196 Nunes da Silva, Pintado, Sarmento, Stamford, Vasconcelos (CR35) 2019; 132 Pongprayoon, Roytrakul, Pichayangkura, Chadchawan (CR48) 2013; 70 Pirbalouti, Malekpoor, Salimi, Golparvar (CR26) 2017; 217 Rendina, Nuzzaci, Scopa, Cuypers, Sofo (CR34) 2019; 234–235 Zong, Liu, Xing, Chen, Li (CR32) 2017; 138 Son, Komatsu, Matsushita, Hogetsu (CR37) 2009; 15 Yang, Mota, Vieira (CR66) 2004 Santos, Pinheiro, Silva, Egas, Vasconcelos (CR18) 2012; 13 Kim, Chen, Wang, Rajapakse (CR52) 2005; 53 Tikhonov, Stepnova, Babak, Yamskov, Palma-Guerrero, Jansson (CR20) 2006; 64 Kuroda, Zhao, Futai, Sutherland, Takeuchi (CR6) 2008 Liu, Luo, Zheng (CR11) 2018; 19 Wang, Zeng, Liao, Li, Tang, Yang (CR64) 2019; 20 Nunes da Silva, Solla, Sampedro, Zas, Vasconcelos (CR1) 2015; 35 Cai, Kastell, Mewis, Knorr, Smetanska (CR29) 2011; 108 Zhang, Zhao, Zhou, Yu, Zhang, Lv, Lin, Hu, Zou, Sun (CR8) 2019; 374 Schaefer, Rentzsch, Breuer (CR49) 2008; 3 Mamiya (CR12) 1980; 62 Futai (CR14) 2003; 33 Zhao, Wang, Wang, Sun, Cao (CR45) 2010; 85 Tavares, Silva, Carvalho, Silva, Santos (CR43) 2000; 12 Nishino, Yasui, Maoka (CR50) 2016; 64 Trotel-Aziz, Couderchet, Vernet, Aziz (CR22) 2006; 114 Schiffer, Gorg, Jarosch, Beckhove, Bahrenberg, Kogel, Schulze-Lefert (CR17) 1997; 10 Singh, Martins, Soares, Castro, Falco (CR31) 2020; 21 Baermann (CR65) 1917; 57 Lucini, Baccolo, Rouphael, Colla, Bavaresco, Trevisan (CR59) 2018; 156 Povero, Loreti, Pucciariello, Santaniello, Tommaso, Tommaso, Kapetis, Zolezzi, Piaggesi, Perata (CR47) 2010; 124 Kuroda, Goto, Kazumi, Kuroda (CR55) 2011; 5 Mukhtar Ahmed, Khan, Siddiqui, Jahan (CR25) 2020; 227 Mehregan, Mehrafarin, Labbafi, Naghdi Badi (CR28) 2017; 2 El-Sayed, Mahdy (CR39) 2015; 7 Santos, Ozgur, Uzilday, Turkan, Roriz, Rangel, Carvalho, Vasconcelos (CR41) 2019; 8 Sims, Gamon (CR68) 2002; 81 Barreiros, David, David (CR44) 2006; 29 CR69 Jacquot, Lancelin, Meyer (CR60) 1997; 136 Laloi, Mestres-Ortega, Marco, Meyer, Reichheld (CR61) 2004; 134 Fukushima, Hatfield (CR70) 2001; 49 Myers (CR13) 1986; 18 Heath, Packer (CR9) 1968; 125 Badawy, Rabea (CR33) 2011; 2011 Yang, Wang, Hou, Han, Sun (CR3) 2014; 5 Yamada, Zhao, Futai, Sutherland, Takeuchi (CR7) 2008 Agrawal, Rakwal, Tamogami, Yonekurad, Kubo, Saji (CR42) 2002; 40 IH Lee (83445_CR16) 2019; 9 G Baermann (83445_CR65) 1917; 57 H Kuroda (83445_CR55) 2011; 5 K Futai (83445_CR14) 2003; 33 CS Santos (83445_CR18) 2012; 13 B Yang (83445_CR66) 2004 V Kovaleva (83445_CR62) 2011; 89 GK Agrawal (83445_CR42) 2002; 40 R Zas (83445_CR57) 2014; 29 Q Liu (83445_CR11) 2018; 19 M Nunes da Silva (83445_CR24) 2014; 44 L Lucini (83445_CR59) 2018; 156 AT Ruley (83445_CR67) 2004; 42 L Yang (83445_CR3) 2014; 5 N Rendina (83445_CR34) 2019; 234–235 KB Mukhtar Ahmed (83445_CR25) 2020; 227 N Kamata (83445_CR19) 2008 R Schiffer (83445_CR17) 1997; 10 RK Singh (83445_CR31) 2020; 21 J Raes (83445_CR58) 2003; 133 A Zamany (83445_CR63) 2011; 57 MEI Badawy (83445_CR33) 2011; 2011 J Son (83445_CR37) 2009; 15 RL Heath (83445_CR9) 1968; 125 E Kawaguchi (83445_CR15) 2006; 88 EI Rabea (83445_CR21) 2010; 4 A Elkhouni (83445_CR51) 2018; 20 M Mehregan (83445_CR28) 2017; 2 KJ Livak (83445_CR71) 2001; 25 83445_CR38 CS Santos (83445_CR41) 2019; 8 A Hirata (83445_CR5) 2017; 12 83445_CR4 T Zhao (83445_CR45) 2010; 85 DA Sims (83445_CR68) 2002; 81 JTQ Tavares (83445_CR43) 2000; 12 M Nunes da Silva (83445_CR35) 2019; 132 RS Fukushima (83445_CR70) 2001; 49 K Kuroda (83445_CR6) 2008 VE Tikhonov (83445_CR20) 2006; 64 M Rahman (83445_CR27) 2018; 13 M Nunes da Silva (83445_CR1) 2015; 35 R Pichyangkura (83445_CR53) 2015; 196 RF Myers (83445_CR13) 1986; 18 D Gaspar (83445_CR56) 2017; 8 Y Mamiya (83445_CR2) 2004 B Hawrylak-Nowak (83445_CR30) 2020; 342 JP Jacquot (83445_CR60) 1997; 136 83445_CR69 Y Mamiya (83445_CR12) 1980; 62 Z Cai (83445_CR29) 2011; 108 M Ferri (83445_CR46) 2009; 9 H Zong (83445_CR32) 2017; 138 MS Khalil (83445_CR23) 2012; 48 AG Pirbalouti (83445_CR26) 2017; 217 X Wang (83445_CR64) 2019; 20 K Apel (83445_CR40) 2004; 55 C Laloi (83445_CR61) 2004; 134 SM El-Sayed (83445_CR39) 2015; 7 A Nishino (83445_CR50) 2016; 64 D Treutter (83445_CR10) 2006; 4 HM Schaefer (83445_CR49) 2008; 3 J Nakajima (83445_CR54) 2004; 2004 W Zhang (83445_CR8) 2019; 374 HJ Kim (83445_CR52) 2005; 53 RF Myers (83445_CR36) 1988; 20 P Trotel-Aziz (83445_CR22) 2006; 114 T Yamada (83445_CR7) 2008 G Povero (83445_CR47) 2010; 124 W Pongprayoon (83445_CR48) 2013; 70 LBS Barreiros (83445_CR44) 2006; 29 |
References_xml | – volume: 124 start-page: 619 year: 2010 end-page: 629 ident: CR47 article-title: Transcript profiling of chitosan-treated seedlings publication-title: J. Plant Res. doi: 10.1007/s10265-010-0399-1 – volume: 57 start-page: 131 year: 1917 end-page: 133 ident: CR65 article-title: Eine einfache methode zur auffindung von Anchylostomum-(Nematoden)-larven in erdproben publication-title: Geneeskundig Tijdschrift Nederlands Indië – ident: CR4 – volume: 19 start-page: 335 issue: 2 year: 2018 ident: CR11 article-title: Lignins: Biosynthesis and biological functions in plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19020335 – volume: 10 start-page: 830 year: 1997 end-page: 839 ident: CR17 article-title: Tissue dependence and differential cordycepin sensitivity of race-specific resistance responses in the barley-powdery mildew interaction publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.1997.10.7.830 – volume: 227 start-page: 115331 year: 2020 ident: CR25 article-title: Chitosan and its oligosaccharides, a promising option for sustainable crop production: A review publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115331 – volume: 7 start-page: 1985 issue: 4 year: 2015 end-page: 1992 ident: CR39 article-title: Effect of chitosan on root-knot nematode, on tomato plants publication-title: Int. J. Chem. Tech. Res. – volume: 9 start-page: 610 year: 2009 end-page: 624 ident: CR46 article-title: Chitosan treatment induces changes of protein expression profile and stilbene distribution in cell suspensions publication-title: Proteomics doi: 10.1002/pmic.200800386 – volume: 64 start-page: 4786 year: 2016 end-page: 4792 ident: CR50 article-title: Reaction of paprika carotenoids, capsanthin and capsrubin, with reactive oxygen species publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b01706 – volume: 18 start-page: 398 year: 1986 end-page: 402 ident: CR13 article-title: Cambium destruction in conifers caused by pinewood nematodes publication-title: J. Nematol. – volume: 55 start-page: 373 year: 2004 end-page: 399 ident: CR40 article-title: Reactive oxygen species: Metabolism, oxidative stress, and signal transduction publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – start-page: 304 year: 2008 end-page: 322 ident: CR19 article-title: Pine wilt disease publication-title: Integrated Pest Management of Pine Wilt Disease in Japan: Tactics and Strategies doi: 10.1007/978-4-431-75655-2_32 – volume: 12 start-page: 1 year: 2000 end-page: 2 ident: CR43 article-title: Estabilidade do ácido ascórbico em suco de laranja submetido a diferentes tratamentos publication-title: Magistra – volume: 88 start-page: 240 year: 2006 end-page: 244 ident: CR15 article-title: Relationship between the anatomical characteristics of cortical resin canals and migration of in stem cuttings of seedlings publication-title: J. Jap. Soc. Hort. Sci. doi: 10.4005/jjfs.88.240 – volume: 42 start-page: 899 year: 2004 end-page: 906 ident: CR67 article-title: Antioxidant defence in a lead accumulating plant, publication-title: Plant Physiol. – volume: 20 start-page: 415 year: 2018 end-page: 425 ident: CR51 article-title: Structural and functional integrity of photosynthetic apparatus under iron deficiency conditions publication-title: Plant Biol. doi: 10.1111/plb.12684 – start-page: 21 year: 2004 end-page: 24 ident: CR66 article-title: Pine wilt disease publication-title: The history, dispersal and potential threat of pine wood nematode in China – volume: 40 start-page: 1061 year: 2002 end-page: 1069 ident: CR42 article-title: Chitosan activates defense/stress response(s) in the leaves of seedlings publication-title: Plant Physiol. Biochem. doi: 10.1016/S0981-9428(02)01471-7 – volume: 234–235 start-page: 9 year: 2019 end-page: 17 ident: CR34 article-title: Chitosan-elicited defense responses in Cucumber mosaic virus (CMV)-infected tomato plants publication-title: J. Plant Pysiol. doi: 10.1016/j.jplph.2019.01.003 – start-page: 204 year: 2008 end-page: 222 ident: CR6 article-title: Pine wilt disease publication-title: Physiological Incidences Related to Symptom Development and Wilting Mechanism – volume: 5 start-page: 92 issue: 7 year: 2011 ident: CR55 article-title: The expressed genes of Japanese red pine ( ) involved in the pine wilt disease severity publication-title: BMC Proc. doi: 10.1186/1753-6561-5-S7-P92 – volume: 13 start-page: 599 year: 2012 ident: CR18 article-title: Searching for resistance genes to using high throughput screening publication-title: BMC Genom. doi: 10.1186/1471-2164-13-599 – volume: 108 start-page: 401 year: 2011 end-page: 409 ident: CR29 article-title: Polysaccharide elicitors enhance anthocyanin and phenolic acid accumulation in cell suspension cultures of publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-0051-3 – volume: 134 start-page: 1006 year: 2004 end-page: 1016 ident: CR61 article-title: The arabidopsis cytosolic thioredoxin h5 gene induction by oxidative stress and its W-box-mediated response to pathogen elicitor publication-title: Plant Physiol. doi: 10.1104/pp.103.035782 – volume: 62 start-page: 176 year: 1980 end-page: 183 ident: CR12 article-title: Inoculation of the first year pine ( ) seedlings with and the histopathology of diseased seedlings publication-title: J. Jap. For. Soc. – volume: 20 start-page: 4151 year: 2019 ident: CR64 article-title: Formation of α-farnesene in tea ( ) leaves induced by herbivore-derived wounding and its effect on neighbouring tea plants publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20174151 – volume: 21 start-page: 306 issue: 1 year: 2020 ident: CR31 article-title: Chitosan application in vineyards ( L. cv. Tinto Cão) induces accumulation of anthocyanins and other phenolics in berries, mediated by modifications in the transcription of secondary metabolism genes publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21010306 – volume: 3 start-page: 1267 issue: 8 year: 2008 end-page: 1272 ident: CR49 article-title: Anthocyanins reduce fungal growth in fruits publication-title: Nat. Prod. Commun. – volume: 2 start-page: 169 issue: 62 year: 2017 end-page: 181 ident: CR28 article-title: Effect of different concentrations of chitosan biostimulant on biochemical and morphophysiological traits of stevia plant ( Bertoni) publication-title: J. Med. Plants Res. – volume: 29 start-page: 113 year: 2006 end-page: 123 ident: CR44 article-title: Estresse oxidativo: relação entre geração de espécies reativas e defesas do organismo publication-title: Quím. Nova doi: 10.1590/S0100-40422006000100021 – volume: 33 start-page: 45 year: 2003 end-page: 56 ident: CR14 article-title: Abnormal metabolites in pine wood nematode-inoculated Japanese black pine publication-title: Jap. J. Nematol. doi: 10.3725/jjn1993.33.2_45 – volume: 156 start-page: 1 year: 2018 end-page: 8 ident: CR59 article-title: Chitosan treatment elicited defence mechanisms, pentacyclic triterpenoids and stilbene accumulation in grape ( L.) bunches publication-title: Phytochem. doi: 10.1016/j.phytochem.2018.08.011 – volume: 4 start-page: 149 year: 2010 end-page: 158 ident: CR21 article-title: Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and fungi publication-title: Plant Protect. Sci. doi: 10.17221/9/2009-PPS – volume: 35 start-page: 987 issue: 9 year: 2015 end-page: 999 ident: CR1 article-title: Susceptibility to the pinewood nematode (PWN) of four pine species involved in potential range expansion across Europe publication-title: Tree Physiol. doi: 10.1093/treephys/tpv046 – volume: 114 start-page: 405 year: 2006 end-page: 413 ident: CR22 article-title: Chitosan stimulates defense reactions in grape vine leaves and inhibits development of publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-006-0005-5 – volume: 85 start-page: 59 year: 2010 end-page: 63 ident: CR45 article-title: Effects of reactive oxygen species metabolic system on soybean ( ) under exogenous chitosan to ozone stress publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-010-0039-4 – volume: 70 start-page: 159 year: 2013 end-page: 173 ident: CR48 article-title: The role of hydrogen peroxide in chitosan-induced resistance to osmotic stress in rice ( L) publication-title: Plant Growth Regul. doi: 10.1007/s10725-013-9789-4 – volume: 57 start-page: 667 year: 2011 end-page: 679 ident: CR63 article-title: Antifungal activity of a antimicrobial peptide 1 (Pm-AMP1) and its accumulation in western white pine infected with Crona publication-title: Can. J. Microbiol. doi: 10.1139/w11-046 – volume: 13 start-page: e0203769 issue: 9 year: 2018 ident: CR27 article-title: Chitosan biopolymer promotes yield and stimulates accumulation of antioxidants in strawberry fruit publication-title: PLoS ONE doi: 10.1371/journal.pone.0203769 – volume: 8 start-page: 348 issue: 9 year: 2019 ident: CR41 article-title: Understanding the role of the antioxidant system and the tetrapyrrole cycle in iron deficiency chlorosis publication-title: Plants doi: 10.3390/plants8090348 – volume: 9 start-page: 12180 year: 2019 ident: CR16 article-title: Comparative transcriptome analysis of Pinus densiflora following inoculation with pathogenic ( ) or non-pathogenic nematodes ( ) publication-title: Sci. Rep. doi: 10.1038/s41598-019-48660-w – start-page: 223 year: 2008 end-page: 234 ident: CR7 article-title: Pine wilt disease publication-title: Biochemical Responses in Pine Trees Affected by Pine Wilt Disease doi: 10.1007/978-4-431-75655-2_22 – volume: 2004 start-page: 241 issue: 5 year: 2004 end-page: 247 ident: CR54 article-title: LC/PDA/ESI-MS profiling and radical scavenging activity of anthocyanins in various berries publication-title: J. Biomed. Biotechnol. doi: 10.1155/S1110724304404045 – volume: 44 start-page: 420 issue: 5 year: 2014 end-page: 423 ident: CR24 article-title: Chitosan as a biocontrol agent against the pinewood nematode ( ) publication-title: For. Pathol. doi: 10.1111/efp.12136 – volume: 4 start-page: 147 year: 2006 end-page: 157 ident: CR10 article-title: Significance of flavonoids in plant resistance: A review publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-006-0068-8 – volume: 15 start-page: 186 issue: 3 year: 2009 end-page: 193 ident: CR37 article-title: Migration of pine wood nematodes in the tissues of publication-title: J. For. Res. doi: 10.1007/s10310-009-0171-3 – ident: CR69 – volume: 133 start-page: 1051 issue: 3 year: 2003 end-page: 1071 ident: CR58 article-title: Genome-wide characterization of the lignification toolbox in arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.103.026484 – volume: 217 start-page: 114 year: 2017 end-page: 122 ident: CR26 article-title: Exogenous application of chitosan on biochemical and physiological characteristics, phenolic content and antioxidant activity of two species of basil ( and ) under reduced irrigation publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.01.031 – volume: 25 start-page: 402 year: 2001 end-page: 408 ident: CR71 article-title: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta delta C(T)) method publication-title: Methods doi: 10.1006/meth.2001.1262 – volume: 2011 start-page: 460381 year: 2011 ident: CR33 article-title: A biopolymer chitosan and its derivatives as promising antimicrobial agents against plant pathogens and their applications in crop protection publication-title: Int. J. Carbohydr. Chem. doi: 10.1155/2011/460381 – volume: 136 start-page: 543 year: 1997 end-page: 570 ident: CR60 article-title: Thioredoxins: Structure and function in plant cells publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00784.x – ident: CR38 – volume: 89 start-page: 1093 year: 2011 end-page: 1101 ident: CR62 article-title: Recombinant expression, affinity purification and functional characterization of Scots pine defensin 1 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2935-2 – volume: 342 start-page: 128358 year: 2020 ident: CR30 article-title: Eliciting effect of foliar application of chitosan lactate on the phytochemical properties of . L and L publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128358 – volume: 196 start-page: 49 year: 2015 end-page: 65 ident: CR53 article-title: Biostimulant activity of chitosan in horticulture publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.09.031 – volume: 5 start-page: 3060 year: 2014 end-page: 3065 ident: CR3 article-title: Effects of Cu on wheat seedlings exposed to enhanced ultraviolet-b radiation publication-title: Am. J. Plant Sci. doi: 10.4236/ajps.2014.520322 – volume: 374 start-page: 20180323 year: 2019 ident: CR8 article-title: Enhancement of oxidative stress contributes to increased pathogenicity of the invasive pine wood nematode publication-title: Philos. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2018.0323 – volume: 81 start-page: 337 year: 2002 end-page: 354 ident: CR68 article-title: Relationships between leaf pigment content and sprectral reflectance across a wide range of species, lead structures and development stages publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – start-page: 9 year: 2004 end-page: 20 ident: CR2 article-title: Pine wilt disease publication-title: Pine Wilt Disease in Japan – volume: 29 start-page: 663 year: 2014 end-page: 673 ident: CR57 article-title: Intraspecific variation of anatomical and chemical defensive traits in Maritime pine ( ) as factors in susceptibility to the pinewood nematode ( ) publication-title: Trees doi: 10.1007/s00468-014-1143-6 – volume: 48 start-page: 170 issue: 4 year: 2012 end-page: 178 ident: CR23 article-title: Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode publication-title: Plant Protect. Sci. doi: 10.17221/46/2011-PPS – volume: 20 start-page: 236 year: 1988 end-page: 244 ident: CR36 article-title: Pathogenesis in pine wilt caused by pinewood nematode, publication-title: J. Nematol. – volume: 125 start-page: 189 year: 1968 end-page: 198 ident: CR9 article-title: Photoperoxidation in isolated chloroplasts. I. Kinetics and toichiometry of fatty acid peroxidation publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 64 start-page: 66 year: 2006 end-page: 72 ident: CR20 article-title: Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/- derivatives publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2005.10.021 – volume: 132 start-page: 72 year: 2019 end-page: 80 ident: CR35 article-title: A biofertilizer with diazotrophic bacteria and a filamentous fungus increases tolerance to the pinewood nematode ( ) publication-title: Biol. Control doi: 10.1016/j.biocontrol.2019.01.013 – volume: 53 start-page: 3696 issue: 9 year: 2005 end-page: 3701 ident: CR52 article-title: Effect of chitosan on the biological properties of sweet basil ( L.) publication-title: J. Agric. Food Chem. doi: 10.1021/jf0480804 – volume: 138 start-page: 271 year: 2017 end-page: 278 ident: CR32 article-title: Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape ( L.) in the presence of cadmium publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.01.009 – volume: 49 start-page: 3133 issue: 7 year: 2001 end-page: 3139 ident: CR70 article-title: Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method publication-title: J. Agric. Food Chem. doi: 10.1021/jf010449r – volume: 12 start-page: e0182837 year: 2017 ident: CR5 article-title: Potential distribution of pine wilt disease under future climate change scenarios publication-title: PLoS ONE doi: 10.1371/journal.pone.0182837 – volume: 8 start-page: 279 issue: 8 year: 2017 ident: CR56 article-title: Expression profiling in in response to infection with the pine wood nematode publication-title: Forest doi: 10.3390/f8080279 – volume: 19 start-page: 335 issue: 2 year: 2018 ident: 83445_CR11 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19020335 – volume: 132 start-page: 72 year: 2019 ident: 83445_CR35 publication-title: Biol. Control doi: 10.1016/j.biocontrol.2019.01.013 – volume: 114 start-page: 405 year: 2006 ident: 83445_CR22 publication-title: Eur. J. Plant Pathol. doi: 10.1007/s10658-006-0005-5 – volume: 12 start-page: 1 year: 2000 ident: 83445_CR43 publication-title: Magistra – volume: 85 start-page: 59 year: 2010 ident: 83445_CR45 publication-title: Bull. Environ. Contam. Toxicol. doi: 10.1007/s00128-010-0039-4 – volume: 89 start-page: 1093 year: 2011 ident: 83445_CR62 publication-title: Appl. Microbiol. Biotechnol. doi: 10.1007/s00253-010-2935-2 – volume: 29 start-page: 663 year: 2014 ident: 83445_CR57 publication-title: Trees doi: 10.1007/s00468-014-1143-6 – volume: 9 start-page: 12180 year: 2019 ident: 83445_CR16 publication-title: Sci. Rep. doi: 10.1038/s41598-019-48660-w – volume: 57 start-page: 667 year: 2011 ident: 83445_CR63 publication-title: Can. J. Microbiol. doi: 10.1139/w11-046 – volume: 2011 start-page: 460381 year: 2011 ident: 83445_CR33 publication-title: Int. J. Carbohydr. Chem. doi: 10.1155/2011/460381 – volume: 70 start-page: 159 year: 2013 ident: 83445_CR48 publication-title: Plant Growth Regul. doi: 10.1007/s10725-013-9789-4 – volume: 20 start-page: 236 year: 1988 ident: 83445_CR36 publication-title: J. Nematol. – ident: 83445_CR69 – volume: 49 start-page: 3133 issue: 7 year: 2001 ident: 83445_CR70 publication-title: J. Agric. Food Chem. doi: 10.1021/jf010449r – volume: 13 start-page: e0203769 issue: 9 year: 2018 ident: 83445_CR27 publication-title: PLoS ONE doi: 10.1371/journal.pone.0203769 – volume: 134 start-page: 1006 year: 2004 ident: 83445_CR61 publication-title: Plant Physiol. doi: 10.1104/pp.103.035782 – volume: 138 start-page: 271 year: 2017 ident: 83445_CR32 publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2017.01.009 – volume: 44 start-page: 420 issue: 5 year: 2014 ident: 83445_CR24 publication-title: For. Pathol. doi: 10.1111/efp.12136 – volume: 64 start-page: 4786 year: 2016 ident: 83445_CR50 publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.6b01706 – volume: 35 start-page: 987 issue: 9 year: 2015 ident: 83445_CR1 publication-title: Tree Physiol. doi: 10.1093/treephys/tpv046 – volume: 64 start-page: 66 year: 2006 ident: 83445_CR20 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2005.10.021 – volume: 55 start-page: 373 year: 2004 ident: 83445_CR40 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev.arplant.55.031903.141701 – volume: 3 start-page: 1267 issue: 8 year: 2008 ident: 83445_CR49 publication-title: Nat. Prod. Commun. – start-page: 223 volume-title: Biochemical Responses in Pine Trees Affected by Pine Wilt Disease year: 2008 ident: 83445_CR7 doi: 10.1007/978-4-431-75655-2_22 – volume: 40 start-page: 1061 year: 2002 ident: 83445_CR42 publication-title: Plant Physiol. Biochem. doi: 10.1016/S0981-9428(02)01471-7 – start-page: 304 volume-title: Integrated Pest Management of Pine Wilt Disease in Japan: Tactics and Strategies year: 2008 ident: 83445_CR19 doi: 10.1007/978-4-431-75655-2_32 – volume: 33 start-page: 45 year: 2003 ident: 83445_CR14 publication-title: Jap. J. Nematol. doi: 10.3725/jjn1993.33.2_45 – volume: 20 start-page: 415 year: 2018 ident: 83445_CR51 publication-title: Plant Biol. doi: 10.1111/plb.12684 – volume: 136 start-page: 543 year: 1997 ident: 83445_CR60 publication-title: New Phytol. doi: 10.1046/j.1469-8137.1997.00784.x – volume: 9 start-page: 610 year: 2009 ident: 83445_CR46 publication-title: Proteomics doi: 10.1002/pmic.200800386 – volume: 29 start-page: 113 year: 2006 ident: 83445_CR44 publication-title: Quím. Nova doi: 10.1590/S0100-40422006000100021 – volume: 125 start-page: 189 year: 1968 ident: 83445_CR9 publication-title: Arch. Biochem. Biophys. doi: 10.1016/0003-9861(68)90654-1 – volume: 374 start-page: 20180323 year: 2019 ident: 83445_CR8 publication-title: Philos. Trans. R. Soc. Lond. B doi: 10.1098/rstb.2018.0323 – volume: 7 start-page: 1985 issue: 4 year: 2015 ident: 83445_CR39 publication-title: Int. J. Chem. Tech. Res. – volume: 217 start-page: 114 year: 2017 ident: 83445_CR26 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2017.01.031 – volume: 48 start-page: 170 issue: 4 year: 2012 ident: 83445_CR23 publication-title: Plant Protect. Sci. doi: 10.17221/46/2011-PPS – volume: 156 start-page: 1 year: 2018 ident: 83445_CR59 publication-title: Phytochem. doi: 10.1016/j.phytochem.2018.08.011 – volume: 234–235 start-page: 9 year: 2019 ident: 83445_CR34 publication-title: J. Plant Pysiol. doi: 10.1016/j.jplph.2019.01.003 – volume: 2004 start-page: 241 issue: 5 year: 2004 ident: 83445_CR54 publication-title: J. Biomed. Biotechnol. doi: 10.1155/S1110724304404045 – volume: 133 start-page: 1051 issue: 3 year: 2003 ident: 83445_CR58 publication-title: Plant Physiol. doi: 10.1104/pp.103.026484 – start-page: 9 volume-title: Pine Wilt Disease in Japan year: 2004 ident: 83445_CR2 – volume: 2 start-page: 169 issue: 62 year: 2017 ident: 83445_CR28 publication-title: J. Med. Plants Res. – volume: 81 start-page: 337 year: 2002 ident: 83445_CR68 publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00010-X – volume: 342 start-page: 128358 year: 2020 ident: 83445_CR30 publication-title: Food Chem. doi: 10.1016/j.foodchem.2020.128358 – volume: 57 start-page: 131 year: 1917 ident: 83445_CR65 publication-title: Geneeskundig Tijdschrift Nederlands Indië – start-page: 21 volume-title: The history, dispersal and potential threat of pine wood nematode in China year: 2004 ident: 83445_CR66 – volume: 108 start-page: 401 year: 2011 ident: 83445_CR29 publication-title: Plant Cell Tissue Organ Cult. doi: 10.1007/s11240-011-0051-3 – volume: 5 start-page: 92 issue: 7 year: 2011 ident: 83445_CR55 publication-title: BMC Proc. doi: 10.1186/1753-6561-5-S7-P92 – volume: 5 start-page: 3060 year: 2014 ident: 83445_CR3 publication-title: Am. J. Plant Sci. doi: 10.4236/ajps.2014.520322 – volume: 53 start-page: 3696 issue: 9 year: 2005 ident: 83445_CR52 publication-title: J. Agric. Food Chem. doi: 10.1021/jf0480804 – volume: 8 start-page: 279 issue: 8 year: 2017 ident: 83445_CR56 publication-title: Forest doi: 10.3390/f8080279 – volume: 13 start-page: 599 year: 2012 ident: 83445_CR18 publication-title: BMC Genom. doi: 10.1186/1471-2164-13-599 – volume: 10 start-page: 830 year: 1997 ident: 83445_CR17 publication-title: Mol. Plant-Microbe Interact. doi: 10.1094/MPMI.1997.10.7.830 – volume: 15 start-page: 186 issue: 3 year: 2009 ident: 83445_CR37 publication-title: J. For. Res. doi: 10.1007/s10310-009-0171-3 – volume: 25 start-page: 402 year: 2001 ident: 83445_CR71 publication-title: Methods doi: 10.1006/meth.2001.1262 – start-page: 204 volume-title: Physiological Incidences Related to Symptom Development and Wilting Mechanism year: 2008 ident: 83445_CR6 – volume: 20 start-page: 4151 year: 2019 ident: 83445_CR64 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20174151 – volume: 42 start-page: 899 year: 2004 ident: 83445_CR67 publication-title: Plant Physiol. – volume: 4 start-page: 147 year: 2006 ident: 83445_CR10 publication-title: Environ. Chem. Lett. doi: 10.1007/s10311-006-0068-8 – volume: 12 start-page: e0182837 year: 2017 ident: 83445_CR5 publication-title: PLoS ONE doi: 10.1371/journal.pone.0182837 – volume: 18 start-page: 398 year: 1986 ident: 83445_CR13 publication-title: J. Nematol. – volume: 88 start-page: 240 year: 2006 ident: 83445_CR15 publication-title: J. Jap. Soc. Hort. Sci. doi: 10.4005/jjfs.88.240 – volume: 62 start-page: 176 year: 1980 ident: 83445_CR12 publication-title: J. Jap. For. Soc. – volume: 227 start-page: 115331 year: 2020 ident: 83445_CR25 publication-title: Carbohydr. Polym. doi: 10.1016/j.carbpol.2019.115331 – ident: 83445_CR38 – volume: 8 start-page: 348 issue: 9 year: 2019 ident: 83445_CR41 publication-title: Plants doi: 10.3390/plants8090348 – volume: 4 start-page: 149 year: 2010 ident: 83445_CR21 publication-title: Plant Protect. Sci. doi: 10.17221/9/2009-PPS – ident: 83445_CR4 – volume: 124 start-page: 619 year: 2010 ident: 83445_CR47 publication-title: J. Plant Res. doi: 10.1007/s10265-010-0399-1 – volume: 21 start-page: 306 issue: 1 year: 2020 ident: 83445_CR31 publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms21010306 – volume: 196 start-page: 49 year: 2015 ident: 83445_CR53 publication-title: Sci. Hortic. doi: 10.1016/j.scienta.2015.09.031 |
SSID | ssj0000529419 |
Score | 2.4404378 |
Snippet | The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to
Pinus
spp. plantations worldwide, being... The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide, being... Abstract The pine wilt disease (PWD), for which no effective treatment is available at the moment, is a constant threat to Pinus spp. plantations worldwide,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3781 |
SubjectTerms | 631/326 631/449 631/61 704/172 Animals Anthocyanins Antioxidants Bursaphelenchus xylophilus Carotenoids Catalase Chitosan Chitosan - metabolism Chitosan - pharmacology DEF gene Farnesene Flowers & plants Gene expression Humanities and Social Sciences Inoculation Lignin Malondialdehyde multidisciplinary Nematoda - drug effects Nematoda - physiology Nematode Infections - metabolism Nematode Infections - prevention & control Nematodes Oxidative Stress Phenolic compounds Phenols Pine trees Pinus - genetics Pinus - metabolism Pinus - parasitology Pinus pinaster Plant Diseases Science Science (multidisciplinary) Thioredoxin Tylenchida - drug effects Tylenchida - physiology Wilt Xylophilus |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9UwEA6yIPgi3q2uEsEHRcs2zaXto7u4LILigwv7FpImtYWzOWXbwu6P8D87k_Yc93h98a00CQxzycwwk28IeVlI6RiXNrVK2VTkjUotNyqVvHaNEXUtYlflx0_q5FR8OJNn10Z9YU_YDA88M-7AWGU8s7L0xoqmYJW03siK2cIxVnCLty_4vGvJ1IzqnVeCVcsrmYyXBwN4KnxNlrMUR0vINNvxRBGw_3dR5q_Nkj9VTKMjOr5Dbi8RJH03U36X3PDhHrk5z5S8uk--HbVgpIMJtAsYEQ5-oJ-7MA2074JBWAQ6rlce52l4-KIQAOKKx94bGhDBde08fXU4XQymb9Ep1S0cvoTEvm-71TS8pvaK9nMXX_hK-xXIhhpsmrzsXIQRp-d-BN1adcP5A3J6_P7L0Um6zFxIa0hlxtRDRsi5sdJlNURaMjNFXSLmnLVMldYq7opK1RCVGFVkXkC20QguEFnOcfBz_CHZC-vgHxOacWEbX0LGJp2wuTGQuuROZKVHFHjfJIRt-K_rBZAc52KsdCyM81LPMtMgMx1lprOEvNme6Wc4jr_uPkSxbncilHb8AQqmFwXT_1KwhOxvlEIv9j3oHO69AuelFgl5sV0Gy8Ryiwl-PcU9FYSbec4S8mjWoS0lHKvPjIuEFDvatUPq7kro2oj-jfj_cDMn5O1GD3-Q9WdWPPkfrHhKbuVoQHEezj7ZGy8m_wxistE-j-b3HeuyNTg priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpe-6SYsKPbS0JrYl-XEq3ZAQCg2hNJCbkSw5Njiyu7Yh-RH5z52RvRu2j9yMJYPsmdHMaMbfR8j7RAgdMqF8FcfK51EZ-4rJ2Bes0KXkRcFdV-X3k_j4jH87F-fzgVs_t1Wu90S3Ueu2wDPy_Qg0LUGGyuRL98tH1iisrs4UGvfJDmzBqViQneXhyemPzSkL1rF4mM1_ywQs3e_BY-FfZVHoI8WE8IMtj-SA-_8Vbf7dNPlH5dQ5pKPH5NEcSdKvk-ifkHvGPiUPJm7J62fk5qACY-2lpbXFyLA3PT2t7djTrrYS4RHo0DYGeTUMXFEIBHHEYA8OtYjk2mpDPyzHVS-7Cp1TUcHDV5Dgd1XdjP1Hqq5pN3Xz2QvaNSAjKrF58qrWDk6cXpoBdKyp-8vn5Ozo8OfBsT9zL_gFpDSDbyAzZEwqoYMCIi4RyKRIEXtOqTBOlYqZTrK4gOhExklgOGQdJWccEeY0A3_HXpCFba15RWjAuCpNCpmb0FxFUkIKE2kepAbR4E3pkXD9_fNiBiZHfowmdwVyluaTzHKQWe5klgce-bR5pptgOe6cvUSxbmYipLa70a4u8tlCc6liaUIlUiMVL5MwE8pIkYUq0fBSTHlkb60U-WznfX6rlR55txkGC8Wyi7SmHd2cDMLOKAo98nLSoc1KGFahQ8Y9kmxp19ZSt0dsXTkUcOQBgB3aI5_Xeni7rP9_itd3v8UueRihaTjGmz2yGFajeQNR16Dezqb1G6qdLRk priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_HieCL-G3PUyL4oGi1bT7aPoh4h8chnPjgwr2VpE2vhV5aty3s_hH-z86k3ZXVVfCtNAmkmZnODDP5_Qh5EQtRhExoX0upfR6V0tdMSV-wvCgVz3PuuiovvsjzBf98KS4PyIbuaD7Afm9qh3xSi2XzdvV9_QEM_v10ZTx514MTwotiUegja4TwIYW_AZ5JopZfzOH-hPUdpTxM57sz-5fu-CcH478v9vyzhfK3OqpzT2d3yO05rqQfJ0W4Sw6MvUduTkyT6_vkx2kFptsrS2uLcWJvevq1tmNPu9oqBEugQ9sYZNkw8EQhLMQRgx051CKua1sY-vJkXPaqq9BV5RUsXkG631V1M_avqF7Tburts1e0a0BiVGEr5aouHLg4vTYDaFxT99cPyOLs07fTc39mYvBzSHAG30CeyJjSoghyiL9EoOI8QSQ6rUOZaC1ZEacyh1hFyTgwHHKQkjOOeHMFA-_HHpJD21rzmNCAcV2aBPI4UXAdKQUJTVTwIDGIDW9Kj4Sb88_yGaYc2TKazJXLWZJNMstAZpmTWRZ45PV2TTeBdPxz9gmKdTsTAbbdi3Z5lc32miktlQm1SIzSvIzDVGijRBrquICPYtojxxulyDZKm0XwN4yRRTX2yPPtMNgrFmGUNe3o5qQQhEZR6JFHkw5td8KwJh0y7pF4R7t2tro7YuvKYYIjKwD8rz3yZqOHv7b196M4-r_pT8itCE3F8eEck8NhOZqnEJMN-pkztJ9I4TMG priority: 102 providerName: Scholars Portal |
Title | Chitosan increases Pinus pinaster tolerance to the pinewood nematode (Bursaphelenchus xylophilus) by promoting plant antioxidative metabolism |
URI | https://link.springer.com/article/10.1038/s41598-021-83445-0 https://www.ncbi.nlm.nih.gov/pubmed/33580134 https://www.proquest.com/docview/2488773867 https://www.proquest.com/docview/2489264221 https://pubmed.ncbi.nlm.nih.gov/PMC7881030 https://doaj.org/article/ab6ae1b58eab4f7195bea591b7d1173b |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swEBddymAvY9_11gUN9rCxmdnWl_OYhJYSaCnbCnkzki3XhlQxcQLtH7H_eXeyk5GtG-zFNpYEsu9Od6c7_Y6Q90qIImbChEZKE_KklKFhWoaC5UWpeZ5zn1V5fiHPrvhsLuYHJNmehfFJ-x7S0i_T2-ywLy0oGjwMlsQhVoYQIbjphwjVHg3I4Xg8-zbb7axg7IrHo_6ETMTSewbvaSEP1n-fhflnouRv0VKvhE6fkMe99UjH3XyfkgPrnpGHXT3Ju-fkx7QCAW21o7VDa7C1Lb2s3aalTe00QiLQ9XJhsZaGhScKxh-2WMy7oQ7RW5eFpR8mm1WrmwoVUl7B4Ftw6puqXmzaj9Tc0abL4HPXtFkAXajGhMnbuvAQ4vTGroGvFnV784JcnZ58n56Ffb2FMAc3Zh1a8AYZ00YUUQ5Wloi0ylPEmzMmlqkxkhVqJHOwSLRUkeXgaZSccUSVKxjoOPaSDNzS2SNCI8ZNaVPw1kTBTaI1uC1JwaPUIgK8LQMSb_9_lvdg5FgTY5H5oDhLs45mGdAs8zTLooB82o1pOiiOf_aeIFl3PRFG279Yrq6znq0ybaS2sRGp1YaXKh4JY7UYxUYV8FHMBOR4yxRZL9ttlsCap7BWqgrIu10zSCWGWrSzy43vMwJTM0nigLzqeGg3E4aR55jxgKg97tqb6n6LqyuP_I3Y_7AqB-Tzlg9_Tevvv-L1_3V_Qx4lKCq-6s0xGaxXG_sWLK-1GZIHaq6GvcDBfXJycfkV3k7ldOh3M-B6ztOfPc8v5w |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGJgQvE3cyBhgJJBCLlsR2Lg8I0bGpY1s1oU3am7ETZ42UJaFpxfoj-Cv8Rs7JpVO57G1vVexUTs7VOcffR8jrQIjEZULb2ve1zb3UtzVTvi1YnKSKxzFvuiqPRv7wlH85E2cr5Fd_FgbbKnuf2DjqpIzxG_m2B5oWIENl8LH6biNrFFZXewqNVi0OzPwHbNnqD_ufQb5vPG9v92RnaHesAnYMyfrUNrDnYUxpkTgx5BLCUUEcIqqa1q4fau2zJIj8GOKu8gPHcMinU844YqclDDw5g_-9RdYgzYjAitYGu6Pjr4uvOlg3427Unc5xWLhdQ4TEU2yeayOlhbCdpQjYEAX8K7v9u0nzj0ptEwD37pH1LnOln1pVu09WTPGA3G65LOcPyc-dMTiHWhU0KzATrU1Nj7NiVtMqKxTCMdBpmRvk8TDwi0LiiSMGe35ogcixZWLo28FsUqtqjMEwHsPNl_O8rMZZPqvfUT2nVds9WJzTKgedoAqbNS-zpIEvpxdmCjqdZ_XFI3J6I1J5TFaLsjBPCXUY16kJYacoEq49pWDL5CXcCQ2iz5vUIm7__mXcAaEjH0cum4I8C2UrMwkyk43MpGOR94t7qhYG5NrZAxTrYiZCeDcXysm57DyCVNpXxtUiNErzNHAjoY0SkauDBB6KaYts9kohO79SyysrsMirxTB4BCzzqMKUs2ZOBGmu57kWedLq0GIlDKveLuMWCZa0a2mpyyNFNm5Qx5F3ACKCRbZ6Pbxa1v9fxcb1T_GS3BmeHB3Kw_3RwTNy10Mzadh2NsnqdDIzzyHjm-oXnZlR8u2mLfs3BPVnCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anUC8IO4EBhgJJBCLmsR2kj4gRLdVG4NqQkzaW7ATZ43UJaFpxfoj-EP8Os7JpVO57G1vVexUTs7VOcffB_AykDJxudS29n1tCy_1bc2Vb0seJ6kScSzqrsrPY3__WHw8kScb8Ks7C0NtlZ1PrB11UsT0jbzvoaYFxFAZ9NO2LeJod_S-_G4TgxRVWjs6jUZFDs3yB27fqncHuyjrV5432vu6s2-3DAN2jIn73Da4_-FcaZk4MeYV0lFBHBLCmtauH2rt8yQY-DHGYOUHjhGYW6eCC8JRSzh6dY7_ew02A4yKYQ82h3vjoy-rLzxUQxPuoD2p4_CwX2G0pBNtnmsTvYW0nbVoWJMG_CvT_bth84-qbR0MR7fhVpvFsg-N2t2BDZPfhesNr-XyHvzcmaCjqFTOspyy0spU7CjLFxUrs1wRNAObF1NDnB4GfzFMQmnEUP8PywlFtkgMez1czCpVTigwxhO8-Xw5LcpJNl1Ub5hesrLpJMxPWTlF_WCKGjfPs6SGMmdnZo76Pc2qs_twfCVSeQC9vMjNI2AOFzo1Ie4aZSK0pxRun7xEOKEhJHqTWuB27z-KW1B04uaYRnVxnodRI7MIZRbVMoscC96u7ikbSJBLZw9JrKuZBOddXyhmp1HrHSKlfWVcLUOjtEgDdyC1UXLg6iDBh-Lagq1OKaLWx1TRhUVY8GI1jN6BSj4qN8WinjPAlNfzXAseNjq0WgmnCrjLhQXBmnatLXV9JM8mNQI5cRBgdLBgu9PDi2X9_1U8vvwpnsMNtOjo08H48Anc9MhKauKdLejNZwvzFJO_uX7WWhmDb1dt2L8BwwBrNg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chitosan+increases+Pinus+pinaster+tolerance+to+the+pinewood+nematode+%28Bursaphelenchus+xylophilus%29+by+promoting+plant+antioxidative+metabolism&rft.jtitle=Scientific+reports&rft.au=Nunes+da+Silva%2C+Marta&rft.au=Santos%2C+Carla+S.&rft.au=Cruz%2C+Ana&rft.au=L%C3%B3pez-Villamor%2C+Adri%C3%A1n&rft.date=2021-02-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-83445-0&rft.externalDocID=10_1038_s41598_021_83445_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |