The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA
Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here w...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 2181 - 15 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.04.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-22455-y |
Cover
Loading…
Abstract | Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in
Arabidopsis
and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in
mrel57
mutants, and these phenotypes can be restored when
WDL7
expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA.
During stomatal opening and closing, the guard cell microtubule cytoskeleton is reorganised. Here the authors show that the E3 ubiquitin ligase MREL57 targets the microtubule stabilizing protein WDL7 to promote microtubule disassembly during ABA-induced stomatal closure. |
---|---|
AbstractList | During stomatal opening and closing, the guard cell microtubule cytoskeleton is reorganised. Here the authors show that the E3 ubiquitin ligase MREL57 targets the microtubule stabilizing protein WDL7 to promote microtubule disassembly during ABA-induced stomatal closure. Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA. During stomatal opening and closing, the guard cell microtubule cytoskeleton is reorganised. Here the authors show that the E3 ubiquitin ligase MREL57 targets the microtubule stabilizing protein WDL7 to promote microtubule disassembly during ABA-induced stomatal closure. Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA. Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA.Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA. Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA. Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is critical for stomatal closure in response to abscisic acid (ABA). However, the mechanism underlying this regulation largely remains unclear. Here we show that a ubiquitin-26S proteasome (UPS)-dependent pathway mediates microtubule disassembly and is required for ABA-induced stomatal closure. Moreover, we identify and characterize the ubiquitin E3 ligase MREL57 (MICROTUBULE-RELATED E3 LIGASE57) and the microtubule-stabilizing protein WDL7 (WAVE-DAMPENED2-LIKE7) in Arabidopsis and show that the MREL57-WDL7 module regulates microtubule disassembly to mediate stomatal closure in response to drought stress and ABA treatment. MREL57 interacts with, ubiquitinates and degrades WDL7, and this effect is clearly enhanced by ABA. ABA-induced stomatal closure and microtubule disassembly are significantly suppressed in mrel57 mutants, and these phenotypes can be restored when WDL7 expression is decreased. Our results unravel UPS-dependent mechanisms and the role of an MREL57-WDL7 module in microtubule disassembly and stomatal closure in response to drought stress and ABA.During stomatal opening and closing, the guard cell microtubule cytoskeleton is reorganised. Here the authors show that the E3 ubiquitin ligase MREL57 targets the microtubule stabilizing protein WDL7 to promote microtubule disassembly during ABA-induced stomatal closure. |
ArticleNumber | 2181 |
Author | Dou, Liru Mao, Tonglin Peng, Jialin Wang, Xiangfeng He, Kaikai |
Author_xml | – sequence: 1 givenname: Liru orcidid: 0000-0003-2210-7354 surname: Dou fullname: Dou, Liru organization: State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University – sequence: 2 givenname: Kaikai orcidid: 0000-0002-0500-7151 surname: He fullname: He, Kaikai organization: State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University – sequence: 3 givenname: Jialin surname: Peng fullname: Peng, Jialin organization: State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University – sequence: 4 givenname: Xiangfeng surname: Wang fullname: Wang, Xiangfeng organization: State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University – sequence: 5 givenname: Tonglin orcidid: 0000-0003-3014-5350 surname: Mao fullname: Mao, Tonglin email: maotl2005@cau.edu.cn organization: State Key Laboratory of Plant Physiology and Biochemistry; Department of Plant Sciences, College of Biological Sciences, China Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33846350$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks1rFDEYxgep2Fr7D3iQAS9eRvM9mYuwlrUtrAhSb0JIMu9ss2Qma5IR9r8322217aG55Ot5fnl4876ujqYwQVW9xegjRlR-Sgwz0TaI4IYQxnmze1GdEMRwg1tCjx6sj6uzlDaoDNphydir6phSyQTl6KT6dX0D9ZLW3q11gvrbj-WKt_UY-tnrDKkenY0hz2b2UKesjfMu72o99WUXRp21r60PaY5Qu6mOkLZhKpwc6sWXxZvq5aB9grO7-bT6-XV5fX7ZrL5fXJ0vVo0VSOQG-EC55N1ge2GM1dCJDusO95i3SLMBc2tYS1rccSSRlD0igAYMjMiBAVh6Wl0duH3QG7WNbtRxp4J26vYgxLXSMTvrQSFNqeGiA2Z6hoXRlIHRTAKAYEaIwvp8YG1nM0JvYcpR-0fQxzeTu1Hr8EfJUm_JeAF8uAPE8HuGlNXokgXv9QRhTopwTChjCO_fev9EuglznEqp9irMBUNor3r3MNG_KPefWATyIChflVKEQVmXdXZhH9B5hZHat4w6tIwqLaNuW0btipU8sd7TnzXRgykV8bSG-D_2M66_hnTTBw |
CitedBy_id | crossref_primary_10_3389_fpls_2023_1159181 crossref_primary_10_3390_biom13040627 crossref_primary_10_1093_plphys_kiae580 crossref_primary_10_1093_plphys_kiae563 crossref_primary_10_1093_plcell_koac358 crossref_primary_10_3390_plants12193380 crossref_primary_10_1515_med_2023_0634 crossref_primary_10_3389_fpls_2022_849729 crossref_primary_10_1111_pce_14953 crossref_primary_10_1093_plphys_kiac508 crossref_primary_10_1111_mpp_70074 crossref_primary_10_1111_pce_15147 crossref_primary_10_1111_jipb_13414 crossref_primary_10_1111_pce_14450 crossref_primary_10_1002_cm_21773 crossref_primary_10_1016_j_xplc_2024_101003 crossref_primary_10_1111_nph_18635 crossref_primary_10_3390_cells12010127 crossref_primary_10_1093_hr_uhae016 crossref_primary_10_1093_plcell_koac307 crossref_primary_10_1016_j_plaphy_2024_108359 crossref_primary_10_1038_s41467_024_52338_x crossref_primary_10_1007_s00299_023_02999_7 crossref_primary_10_1016_j_crfs_2022_10_011 crossref_primary_10_7717_peerj_13008 crossref_primary_10_1016_j_tplants_2021_07_005 crossref_primary_10_3389_fpls_2021_783881 crossref_primary_10_1038_s41586_024_07885_0 crossref_primary_10_3390_ijms24044143 crossref_primary_10_1080_15592324_2023_2281159 crossref_primary_10_1111_pbi_14407 crossref_primary_10_1016_j_stress_2024_100724 crossref_primary_10_1007_s40626_022_00250_4 crossref_primary_10_1016_j_ncrops_2024_100021 crossref_primary_10_1111_pce_15112 crossref_primary_10_3390_plants13040532 crossref_primary_10_3390_plants13172532 crossref_primary_10_1111_jipb_13264 |
Cites_doi | 10.1016/j.pbi.2019.08.002 10.1104/pp.15.01066 10.1126/science.1245533 10.1038/nature01843 10.3389/fpls.2016.01332 10.1105/tpc.111.089920 10.1016/j.devcel.2019.08.008 10.1038/nrm2688 10.1073/pnas.1708087114 10.1016/j.cub.2006.03.028 10.1111/j.1469-8137.2012.04266.x 10.1104/pp.18.00499 10.1093/jxb/erz284 10.1038/s41467-019-08780-3 10.1104/pp.15.00609 10.1105/tpc.17.00875 10.1105/tpc.112.103838 10.1104/pp.107.111740 10.1093/aob/mcu040 10.1093/jxb/49.319.163 10.1007/s00425-013-1999-5 10.1016/j.devcel.2014.12.023 10.1186/s13059-015-0715-0 10.1111/tpj.12102 10.1104/pp.104.052456 10.1038/ncb1886 10.1146/annurev.biochem.67.1.425 10.1093/pcp/pch067 10.1093/pcp/pcm123 10.1186/gb-2002-3-4-research0016 10.1111/pce.13064 10.1002/j.1460-2075.1987.tb02730.x 10.1104/pp.18.01334 10.1093/mp/sss002 10.1104/pp.17.01829 10.1038/ncomms9630 10.1104/pp.17.01124 10.1105/tpc.20.00195 10.1111/j.1365-313X.2009.04032.x 10.1105/tpc.113.112789 10.1105/tpc.15.00321 10.1105/tpc.111.094367 10.1111/jipb.12330 10.1111/nph.12832 10.1104/pp.125.1.387 10.1093/mp/ssu065 10.1146/annurev-arplant-042809-112226 10.1111/jipb.13005 10.1002/pld3.21 10.1111/j.1365-313X.2006.03015.x 10.1242/jcs.184408 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-22455-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_0a33b569e4bd416ba34eba48eee64b66 PMC8041845 33846350 10_1038_s41467_021_22455_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-e5f35859fcd6bbcae9691a91d1570a4f15cb472719508088d02e0f1e428f4eec3 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:22:26 EDT 2025 Thu Aug 21 18:03:46 EDT 2025 Thu Jul 10 20:20:43 EDT 2025 Wed Aug 13 06:43:44 EDT 2025 Mon Jul 21 06:05:45 EDT 2025 Tue Jul 01 04:17:22 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Fri Feb 21 02:39:16 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-e5f35859fcd6bbcae9691a91d1570a4f15cb472719508088d02e0f1e428f4eec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0500-7151 0000-0003-2210-7354 0000-0003-3014-5350 |
OpenAccessLink | https://www.nature.com/articles/s41467-021-22455-y |
PMID | 33846350 |
PQID | 2511564006 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0a33b569e4bd416ba34eba48eee64b66 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8041845 proquest_miscellaneous_2512344016 proquest_journals_2511564006 pubmed_primary_33846350 crossref_citationtrail_10_1038_s41467_021_22455_y crossref_primary_10_1038_s41467_021_22455_y springer_journals_10_1038_s41467_021_22455_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-04-12 |
PublicationDateYYYYMMDD | 2021-04-12 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-12 day: 12 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Li (CR36) 2020; 32 Shi, Ye, Yang, Chan (CR44) 2015; 57 Dou, He, Higaki, Wang, Mao (CR8) 2018; 176 Hershko, Ciechanover (CR18) 1998; 67 Perrin, Wang, Yuen, Will, Masson (CR29) 2007; 49 Agurla, Raghavendra (CR4) 2016; 7 Higaki, Kutsuna, Sano, Kondo, Hasezawa (CR23) 2010; 61 Xiao (CR50) 2020; 62 Kim, Böhmer, Hu, Nishimura, Schroeder (CR2) 2010; 61 Mao, Jin, Li, Liu, Yuan (CR30) 2005; 138 Sun, Ma, Mao (CR27) 2015; 169 Chen (CR46) 2017; 29 Negin, Yaaran, Kelly, Zait, Moshelion (CR37) 2019; 180 Kirik, Ehrhardt, Kirik (CR39) 2012; 24 Ding, Zhang, Qin (CR5) 2015; 27 Chen (CR32) 2008; 146 Wang (CR51) 2019; 51 Hetherington, Woodward (CR1) 2003; 424 Marcus, Moore, Cyr (CR14) 2001; 125 Gutierrez, Lindeboom, Paredez, Emons, Ehrhardt (CR33) 2009; 11 Jefferson, Kavanagh, Bevan (CR49) 1987; 6 Ma, Sun, Mao (CR52) 2016; 129 Nick (CR10) 2013; 75 Lahav, Abu-Abied, Belausov, Schwartz, Sadot (CR16) 2004; 45 Ding (CR42) 2015; 32 Vierstra (CR19) 2009; 10 Kesten (CR12) 2019; 10 Eisinger, Ehrhardt, Briggs (CR15) 2012; 5 Wang, Kurepa, Hashimoto, Smalle (CR21) 2011; 23 Xue, Yang, Yang, Wang, Guo (CR47) 2018; 3 Rui, Anderson (CR35) 2016; 170 Lian (CR7) 2017; 46 Wang, Mao (CR9) 2019; 52 Assmann, Baskin (CR13) 1998; 49 Bashline, Li, Gu (CR34) 2014; 114 Kollist, Nuhkat, Roelfsema (CR3) 2014; 203 Wang (CR6) 2012; 24 Kuki (CR25) 2017; 1 Khanna (CR22) 2014; 7 Jiang (CR17) 2014; 239 Yang (CR41) 2019; 70 Kong (CR40) 2015; 6 Wang (CR45) 2018; 30 Wang, Li, Yuan (CR24) 2007; 48 Sadanandom, Bailey, Ewan, Lee, Nelis (CR20) 2012; 196 McAdam, Brodribb (CR38) 2018; 177 Kosarev, Mayer, Hardtke (CR31) 2002; 3 Xie (CR48) 2006; 16 Liu (CR26) 2013; 25 Wang (CR28) 2015; 16 Lindeboom (CR11) 2013; 342 Zhang (CR43) 2017; 40 R Khanna (22455_CR22) 2014; 7 SAM McAdam (22455_CR38) 2018; 177 H Kuki (22455_CR25) 2017; 1 QQ Ma (22455_CR52) 2016; 129 AM Hetherington (22455_CR1) 2003; 424 P Kosarev (22455_CR31) 2002; 3 M Zhang (22455_CR43) 2017; 40 R Gutierrez (22455_CR33) 2009; 11 Y Jiang (22455_CR17) 2014; 239 C Wang (22455_CR24) 2007; 48 K Wang (22455_CR45) 2018; 30 LR Dou (22455_CR8) 2018; 176 W Eisinger (22455_CR15) 2012; 5 RM Perrin (22455_CR29) 2007; 49 XF Wang (22455_CR9) 2019; 52 TL Mao (22455_CR30) 2005; 138 RD Vierstra (22455_CR19) 2009; 10 H Kollist (22455_CR3) 2014; 203 C Kesten (22455_CR12) 2019; 10 S Ding (22455_CR5) 2015; 27 A Kirik (22455_CR39) 2012; 24 YL Ding (22455_CR42) 2015; 32 JN Chen (22455_CR46) 2017; 29 Y Xue (22455_CR47) 2018; 3 TH Kim (22455_CR2) 2010; 61 JJ Lindeboom (22455_CR11) 2013; 342 L Bashline (22455_CR34) 2014; 114 N Lian (22455_CR7) 2017; 46 ZD Xiao (22455_CR50) 2020; 62 Y Rui (22455_CR35) 2016; 170 A Hershko (22455_CR18) 1998; 67 YQ Yang (22455_CR41) 2019; 70 X Li (22455_CR36) 2020; 32 B Negin (22455_CR37) 2019; 180 HT Shi (22455_CR44) 2015; 57 S Agurla (22455_CR4) 2016; 7 RA Jefferson (22455_CR49) 1987; 6 T Higaki (22455_CR23) 2010; 61 LY Kong (22455_CR40) 2015; 6 P Nick (22455_CR10) 2013; 75 ZP Wang (22455_CR28) 2015; 16 X Xie (22455_CR48) 2006; 16 M Lahav (22455_CR16) 2004; 45 X Wang (22455_CR51) 2019; 51 XL Wang (22455_CR6) 2012; 24 AI Marcus (22455_CR14) 2001; 125 SM Assmann (22455_CR13) 1998; 49 S Wang (22455_CR21) 2011; 23 XM Liu (22455_CR26) 2013; 25 A Sadanandom (22455_CR20) 2012; 196 JB Sun (22455_CR27) 2015; 169 H Chen (22455_CR32) 2008; 146 34303605 - Trends Plant Sci. 2021 Nov;26(11):1093-1095 |
References_xml | – volume: 52 start-page: 86 year: 2019 end-page: 96 ident: CR9 article-title: Understanding the functions and mechanisms of plant cytoskeleton in response to environmental signals publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2019.08.002 – volume: 170 start-page: 1398 year: 2016 end-page: 1419 ident: CR35 article-title: Functional analysis of cellulose and xyloglucan in the walls of stomatal guard Cells of Arabidopsis publication-title: Plant Physiol. doi: 10.1104/pp.15.01066 – volume: 342 start-page: 1245533 year: 2013 ident: CR11 article-title: A mechanism for reorientation of cortical microtubule arrays driven by microtubule severing publication-title: Science doi: 10.1126/science.1245533 – volume: 424 start-page: 901 year: 2003 end-page: 908 ident: CR1 article-title: The role of stomata in sensing and driving environmental change publication-title: Nature doi: 10.1038/nature01843 – volume: 7 start-page: 1332 year: 2016 ident: CR4 article-title: Convergence and divergence of signaling events in guard cells during stomatal closure by plant hormones or microbial elicitors publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01332 – volume: 23 start-page: 3412 year: 2011 end-page: 3427 ident: CR21 article-title: Salt stress-induced disassembly of Arabidopsis cortical microtubule arrays involves 26S proteasome-dependent degradation of SPIRAL1 publication-title: Plant Cell doi: 10.1105/tpc.111.089920 – volume: 51 start-page: 1 year: 2019 end-page: 14 ident: CR51 article-title: PUB25 and PUB26 promote plant freezing tolerance by degrading the cold signaling negative regulator MYB15 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.08.008 – volume: 10 start-page: 385 year: 2009 end-page: 397 ident: CR19 article-title: The ubiquitin-26s proteasome system at the nexus of plant biology publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2688 – volume: 46 start-page: 12321 year: 2017 end-page: 12326 ident: CR7 article-title: COP1 mediates dark-specific degradation of microtubule-associated protein WDL3 in regulating hypocotyl elongation publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708087114 – volume: 16 start-page: 882 year: 2006 end-page: 887 ident: CR48 article-title: The identification of genes involved in the stomatal response to reduced atmospheric relative humidity publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.03.028 – volume: 196 start-page: 13 year: 2012 end-page: 28 ident: CR20 article-title: The ubiquitin-proteasome system: central modifier of plant signalling publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2012.04266.x – volume: 3 start-page: 1332 year: 2018 end-page: 1343 ident: CR47 article-title: VAMP711 is required for abscisic acid-mediated inhibition of plasma membrane H -ATPase activity publication-title: Plant Physiol. doi: 10.1104/pp.18.00499 – volume: 70 start-page: 5231 year: 2019 end-page: 5243 ident: CR41 article-title: Arabidopsis IPGA1 is a microtubule-associated protein essential for cell expansion during petal morphogenesis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz284 – volume: 10 year: 2019 ident: CR12 article-title: The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants publication-title: Nat. Commun. doi: 10.1038/s41467-019-08780-3 – volume: 169 start-page: 325 year: 2015 end-page: 337 ident: CR27 article-title: Ethylene regulates the Arabidopsis microtubule-associated protein WAVE-DAMPENED2-LIKE 5 in etiolated hypocotyl elongation publication-title: Plant Physiol. doi: 10.1104/pp.15.00609 – volume: 30 start-page: 815 year: 2018 end-page: 834 ident: CR45 article-title: EAR1 negatively regulates ABA signaling by enhancing 2C protein phosphatase activity publication-title: Plant Cell doi: 10.1105/tpc.17.00875 – volume: 24 start-page: 4012 year: 2012 end-page: 4025 ident: CR6 article-title: MICROTUBULE DESTABILIZING PROTEIN40 is involved in brassinosteroid regulation of hypocotyl elongation publication-title: Plant Cell doi: 10.1105/tpc.112.103838 – volume: 146 start-page: 368 year: 2008 end-page: 376 ident: CR32 article-title: Firefly luciferase complementation imaging assay for protein-protein interactions in plants publication-title: Plant Physiol. doi: 10.1104/pp.107.111740 – volume: 114 start-page: 1059 year: 2014 end-page: 1067 ident: CR34 article-title: The trafficking of the cellulose synthase complex in higher plants publication-title: Ann. Bot. doi: 10.1093/aob/mcu040 – volume: 49 start-page: 163 year: 1998 end-page: 170 ident: CR13 article-title: The function of guard cells does not require an intact array of cortical microtubules publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.319.163 – volume: 239 start-page: 565 year: 2014 end-page: 575 ident: CR17 article-title: Phosphatidic acid integrates calcium signaling and microtubule dynamics into regulating ABA-induced stomatal closure in Arabidopsis publication-title: Planta doi: 10.1007/s00425-013-1999-5 – volume: 32 start-page: 278 year: 2015 end-page: 289 ident: CR42 article-title: OST1 kinase modulates freezing tolerance by enhancing ICE1 stability in publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.12.023 – volume: 16 year: 2015 ident: CR28 article-title: Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation publication-title: Genome Biol. doi: 10.1186/s13059-015-0715-0 – volume: 75 start-page: 309 year: 2013 end-page: 323 ident: CR10 article-title: Microtubules, signalling and abiotic stress publication-title: Plant J. doi: 10.1111/tpj.12102 – volume: 138 start-page: 654 year: 2005 end-page: 662 ident: CR30 article-title: Two microtubule-associated proteins of the Arabidopsis MAP65 family function differently on microtubules publication-title: Plant Physiol. doi: 10.1104/pp.104.052456 – volume: 11 start-page: 797 year: 2009 end-page: 806 ident: CR33 article-title: Arabidopsis cortical microtubules position cellulose synthase delivery to the plasma membrane and interact with cellulose synthase trafficking compartments publication-title: Nat. Cell Biol. doi: 10.1038/ncb1886 – volume: 67 start-page: 425 year: 1998 end-page: 479 ident: CR18 article-title: The ubiquitin system publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.425 – volume: 45 start-page: 573 year: 2004 end-page: 582 ident: CR16 article-title: Microtubules of guard cells are light sensitive publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch067 – volume: 48 start-page: 1534 year: 2007 end-page: 1547 ident: CR24 article-title: Salt tolerance requires cortical microtubule reorganization in Arabidopsis publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm123 – volume: 3 start-page: 1 year: 2002 end-page: 12 ident: CR31 article-title: Evaluation and classification of RING-finger domains encoded by the Arabidopsis genome publication-title: Genome Biol. doi: 10.1186/gb-2002-3-4-research0016 – volume: 40 start-page: 2831 year: 2017 end-page: 2843 ident: CR43 article-title: The Arabidopsis U-box E3 ubiquitin ligase PUB30 negatively regulates salt tolerance by facilitating BRI1 kinase inhibitor 1 (BKI1) degradation publication-title: Plant Cell Environ. doi: 10.1111/pce.13064 – volume: 6 start-page: 3901 year: 1987 end-page: 3907 ident: CR49 article-title: GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants publication-title: EMBO J. doi: 10.1002/j.1460-2075.1987.tb02730.x – volume: 180 start-page: 910 year: 2019 end-page: 925 ident: CR37 article-title: Mesophyll abscisic acid restrains early growth and flowering but does not directly suppress photosynthesis publication-title: Plant Physiol. doi: 10.1104/pp.18.01334 – volume: 5 start-page: 601 year: 2012 end-page: 610 ident: CR15 article-title: Microtubules are essential for guard-cell function in Vicia and Arabidopsis publication-title: Mol. Plant doi: 10.1093/mp/sss002 – volume: 177 start-page: 911 year: 2018 end-page: 917 ident: CR38 article-title: Mesophyll cells are the main site of abscisic acid biosynthesis in water-stressed leaves publication-title: Plant Physiol. doi: 10.1104/pp.17.01829 – volume: 6 year: 2015 ident: CR40 article-title: Degradation of the ABA co-receptor ABI1 by PUB12/13 U-box E3 ligases publication-title: Nat. Commun. doi: 10.1038/ncomms9630 – volume: 176 start-page: 2071 year: 2018 end-page: 2081 ident: CR8 article-title: Ethylene signaling modulates cortical microtubule reassembly in response to salt stress publication-title: Plant Physiol. doi: 10.1104/pp.17.01124 – volume: 32 start-page: 3139 year: 2020 end-page: 3154 ident: CR36 article-title: COR27 and COR28 are novel regulators of the COP1-HY5 regulatory hub and photomorphogenesis in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.20.00195 – volume: 61 start-page: 156 year: 2010 end-page: 165 ident: CR23 article-title: Quantification and cluster analysis of actin cytoskeletal structures in plant cells: role of actin bundling in stomatal movement during diurnal cycles in Arabidopsis guard cells publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04032.x – volume: 25 start-page: 1740 year: 2013 end-page: 1755 ident: CR26 article-title: Light-regulated hypocotyl elongation involves proteasome-dependent degradation of the microtubule regulatory protein WDL3 in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.112789 – volume: 27 start-page: 3228 year: 2015 end-page: 3244 ident: CR5 article-title: RZFP34/CHYR1, a ubiquitin E3 ligase, regulates stomatal movement and drought tolerance via SnRK2.6-mediated phosphorylation publication-title: Plant Cell doi: 10.1105/tpc.15.00321 – volume: 29 start-page: 1425 year: 2017 end-page: 1439 ident: CR46 article-title: Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses publication-title: Plant Cell – volume: 24 start-page: 1158 year: 2012 end-page: 1170 ident: CR39 article-title: TONNEAU2/FASS regulates the geometry of microtubule nucleation and cortical array organization in interphase Arabidopsis cells publication-title: Plant Cell doi: 10.1105/tpc.111.094367 – volume: 129 start-page: 2043 year: 2016 end-page: 2051 ident: CR52 article-title: Microtubule bundling plays a role in ethylene-mediated cortical microtubule reorientation in etiolated Arabidopsis hypocotyls publication-title: J. Cell Sci. – volume: 57 start-page: 796 year: 2015 end-page: 806 ident: CR44 article-title: positively modulates plant drought stress resistance publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12330 – volume: 203 start-page: 44 year: 2014 end-page: 62 ident: CR3 article-title: Closing gaps: linking elements that control stomatal movement publication-title: N. Phytol. doi: 10.1111/nph.12832 – volume: 125 start-page: 387 year: 2001 end-page: 395 ident: CR14 article-title: The role of microtubules in guard cell function publication-title: Plant Physiol. doi: 10.1104/pp.125.1.387 – volume: 7 start-page: 1441 year: 2014 end-page: 1454 ident: CR22 article-title: COP1 jointly modulates cytoskeletal processes and electrophysiological responses required for stomatal closure publication-title: Mol. Plant doi: 10.1093/mp/ssu065 – volume: 61 start-page: 561 year: 2010 end-page: 591 ident: CR2 article-title: Guard cell signal transduction network: advances in understanding abscisic acid, CO , and Ca signaling publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112226 – volume: 62 start-page: 1399 year: 2020 end-page: 1417 ident: CR50 article-title: SINAT E3 ligases regulate the stability of the ESCRT component FREE1 in response to iron deficiency in plants publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13005 – volume: 1 start-page: e00021 year: 2017 ident: CR25 article-title: Quantitative confocal imaging method for analyzing cellulose dynamics during cell wall regeneration in Arabidopsis mesophyll protoplasts publication-title: Plant Direct doi: 10.1002/pld3.21 – volume: 49 start-page: 961 year: 2007 end-page: 971 ident: CR29 article-title: WVD2 is a novel microtubule-associated protein in Arabidopsis thaliana publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.03015.x – volume: 49 start-page: 163 year: 1998 ident: 22455_CR13 publication-title: J. Exp. Bot. doi: 10.1093/jxb/49.319.163 – volume: 170 start-page: 1398 year: 2016 ident: 22455_CR35 publication-title: Plant Physiol. doi: 10.1104/pp.15.01066 – volume: 61 start-page: 561 year: 2010 ident: 22455_CR2 publication-title: Annu. Rev. Plant Biol. doi: 10.1146/annurev-arplant-042809-112226 – volume: 51 start-page: 1 year: 2019 ident: 22455_CR51 publication-title: Dev. Cell doi: 10.1016/j.devcel.2019.08.008 – volume: 11 start-page: 797 year: 2009 ident: 22455_CR33 publication-title: Nat. Cell Biol. doi: 10.1038/ncb1886 – volume: 62 start-page: 1399 year: 2020 ident: 22455_CR50 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.13005 – volume: 70 start-page: 5231 year: 2019 ident: 22455_CR41 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erz284 – volume: 203 start-page: 44 year: 2014 ident: 22455_CR3 publication-title: N. Phytol. doi: 10.1111/nph.12832 – volume: 3 start-page: 1332 year: 2018 ident: 22455_CR47 publication-title: Plant Physiol. doi: 10.1104/pp.18.00499 – volume: 239 start-page: 565 year: 2014 ident: 22455_CR17 publication-title: Planta doi: 10.1007/s00425-013-1999-5 – volume: 16 year: 2015 ident: 22455_CR28 publication-title: Genome Biol. doi: 10.1186/s13059-015-0715-0 – volume: 52 start-page: 86 year: 2019 ident: 22455_CR9 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2019.08.002 – volume: 6 year: 2015 ident: 22455_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms9630 – volume: 61 start-page: 156 year: 2010 ident: 22455_CR23 publication-title: Plant J. doi: 10.1111/j.1365-313X.2009.04032.x – volume: 10 start-page: 385 year: 2009 ident: 22455_CR19 publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm2688 – volume: 48 start-page: 1534 year: 2007 ident: 22455_CR24 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcm123 – volume: 30 start-page: 815 year: 2018 ident: 22455_CR45 publication-title: Plant Cell doi: 10.1105/tpc.17.00875 – volume: 16 start-page: 882 year: 2006 ident: 22455_CR48 publication-title: Curr. Biol. doi: 10.1016/j.cub.2006.03.028 – volume: 342 start-page: 1245533 year: 2013 ident: 22455_CR11 publication-title: Science doi: 10.1126/science.1245533 – volume: 46 start-page: 12321 year: 2017 ident: 22455_CR7 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1708087114 – volume: 67 start-page: 425 year: 1998 ident: 22455_CR18 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.67.1.425 – volume: 24 start-page: 1158 year: 2012 ident: 22455_CR39 publication-title: Plant Cell doi: 10.1105/tpc.111.094367 – volume: 10 year: 2019 ident: 22455_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08780-3 – volume: 138 start-page: 654 year: 2005 ident: 22455_CR30 publication-title: Plant Physiol. doi: 10.1104/pp.104.052456 – volume: 176 start-page: 2071 year: 2018 ident: 22455_CR8 publication-title: Plant Physiol. doi: 10.1104/pp.17.01124 – volume: 196 start-page: 13 year: 2012 ident: 22455_CR20 publication-title: N. Phytol. doi: 10.1111/j.1469-8137.2012.04266.x – volume: 25 start-page: 1740 year: 2013 ident: 22455_CR26 publication-title: Plant Cell doi: 10.1105/tpc.113.112789 – volume: 3 start-page: 1 year: 2002 ident: 22455_CR31 publication-title: Genome Biol. doi: 10.1186/gb-2002-3-4-research0016 – volume: 177 start-page: 911 year: 2018 ident: 22455_CR38 publication-title: Plant Physiol. doi: 10.1104/pp.17.01829 – volume: 7 start-page: 1441 year: 2014 ident: 22455_CR22 publication-title: Mol. Plant doi: 10.1093/mp/ssu065 – volume: 57 start-page: 796 year: 2015 ident: 22455_CR44 publication-title: J. Integr. Plant Biol. doi: 10.1111/jipb.12330 – volume: 45 start-page: 573 year: 2004 ident: 22455_CR16 publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pch067 – volume: 114 start-page: 1059 year: 2014 ident: 22455_CR34 publication-title: Ann. Bot. doi: 10.1093/aob/mcu040 – volume: 23 start-page: 3412 year: 2011 ident: 22455_CR21 publication-title: Plant Cell doi: 10.1105/tpc.111.089920 – volume: 169 start-page: 325 year: 2015 ident: 22455_CR27 publication-title: Plant Physiol. doi: 10.1104/pp.15.00609 – volume: 424 start-page: 901 year: 2003 ident: 22455_CR1 publication-title: Nature doi: 10.1038/nature01843 – volume: 75 start-page: 309 year: 2013 ident: 22455_CR10 publication-title: Plant J. doi: 10.1111/tpj.12102 – volume: 1 start-page: e00021 year: 2017 ident: 22455_CR25 publication-title: Plant Direct doi: 10.1002/pld3.21 – volume: 6 start-page: 3901 year: 1987 ident: 22455_CR49 publication-title: EMBO J. doi: 10.1002/j.1460-2075.1987.tb02730.x – volume: 125 start-page: 387 year: 2001 ident: 22455_CR14 publication-title: Plant Physiol. doi: 10.1104/pp.125.1.387 – volume: 40 start-page: 2831 year: 2017 ident: 22455_CR43 publication-title: Plant Cell Environ. doi: 10.1111/pce.13064 – volume: 5 start-page: 601 year: 2012 ident: 22455_CR15 publication-title: Mol. Plant doi: 10.1093/mp/sss002 – volume: 29 start-page: 1425 year: 2017 ident: 22455_CR46 publication-title: Plant Cell – volume: 49 start-page: 961 year: 2007 ident: 22455_CR29 publication-title: Plant J. doi: 10.1111/j.1365-313X.2006.03015.x – volume: 180 start-page: 910 year: 2019 ident: 22455_CR37 publication-title: Plant Physiol. doi: 10.1104/pp.18.01334 – volume: 32 start-page: 278 year: 2015 ident: 22455_CR42 publication-title: Dev. Cell doi: 10.1016/j.devcel.2014.12.023 – volume: 129 start-page: 2043 year: 2016 ident: 22455_CR52 publication-title: J. Cell Sci. doi: 10.1242/jcs.184408 – volume: 32 start-page: 3139 year: 2020 ident: 22455_CR36 publication-title: Plant Cell doi: 10.1105/tpc.20.00195 – volume: 27 start-page: 3228 year: 2015 ident: 22455_CR5 publication-title: Plant Cell doi: 10.1105/tpc.15.00321 – volume: 146 start-page: 368 year: 2008 ident: 22455_CR32 publication-title: Plant Physiol. doi: 10.1104/pp.107.111740 – volume: 24 start-page: 4012 year: 2012 ident: 22455_CR6 publication-title: Plant Cell doi: 10.1105/tpc.112.103838 – volume: 7 start-page: 1332 year: 2016 ident: 22455_CR4 publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01332 – reference: 34303605 - Trends Plant Sci. 2021 Nov;26(11):1093-1095 |
SSID | ssj0000391844 |
Score | 2.5253706 |
Snippet | Regulation of stomatal movement is critical for plant adaptation to environmental stresses. The microtubule cytoskeleton undergoes disassembly, which is... During stomatal opening and closing, the guard cell microtubule cytoskeleton is reorganised. Here the authors show that the E3 ubiquitin ligase MREL57 targets... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2181 |
SubjectTerms | 14 14/35 14/63 631/449 631/449/2661/2146 631/449/448/1408 631/449/448/2189 82/1 82/80 82/83 Abscisic acid Abscisic Acid - pharmacology Arabidopsis - drug effects Arabidopsis - metabolism Arabidopsis Proteins - metabolism Closures Cytoskeleton Dismantling Drought Environmental stress Green Fluorescent Proteins - metabolism Humanities and Social Sciences Microtubules - drug effects Microtubules - metabolism Models, Biological Modules multidisciplinary Mutation - genetics Phenotypes Plant Stomata - cytology Plant Stomata - drug effects Plant Stomata - metabolism Plants, Genetically Modified Proteasome 26S Protein Binding - drug effects Proteins Proteolysis - drug effects Science Science (multidisciplinary) Seedlings - drug effects Seedlings - metabolism Stomata Ubiquitin Ubiquitin - metabolism Ubiquitin-protein ligase Ubiquitin-Protein Ligases - metabolism Ubiquitination - drug effects |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqJKReEIUCaaFyJW4QkcQfSY4LWoRQ4VAViQOSZTtjWGk3QWz2sP--Yye7ZWkLF46JncSaGXve2JM3hBy6TDsmnY21h2_cShNrnUFcudz_5okA2vgT3atreXHDL2_F7bNSXz4nrKMH7gR3kmjGjJAlcFMheDCacTCaFwAguZGBbBt93rNgKqzB-KGC8_4vmYQVJ1Me1gSfkYBeS4h4vuKJAmH_v1Dm38mSL05MgyM63yQbPYKkg27kn8gHqLfIeldTcr5N7lDxdMjoeHSPDope_Rz-EDmdNJWv0wVTOvEZeO3MzMZAERmG3Ng51XWFV83Eb-ZQO278viEd1fSpS6EF2jZ0cDr4TG7Oh7_OLuK-hEJsMTJpYxCOYUBQOltJY6yGUpapLtMqFXmiuUuFNRwhTCgGiwtOlWSQuBQwKHEcwLIdslY3NewRalL0dYkDpvOMa4RmFWI9aQS-HiwKOyLpQpzK9vzivszFWIVzblaoTgUKVaCCCtQ8IkfLZx47do1Xe596LS17embscAPtRfX2ot6yl4jsL3Ss-uk6VT7OEhKXM2z-vmzGieZPT3QNzSz0yRjHcBT77HYmsRwJxvkckVsSkXzFWFaGutpSjx4Cmbfnfyq4iMjxwqz-DOv_ovjyHqL4Sj5mfj4E5sp9stY-zeAAIVZrvoXZ9BuqhiFu priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEF5BERIXxBvTghaJG1i1vQ_bJ5SiVBWiHBCVckCydtezbaTELolzyL_vzNpxFR49Ot5Y653ZnW8e_oaxDz4zXmjvYkPwTTptY2MyiGuf02eeCKAtZXTPv-uzC_l1pmZDwG09lFXuzsRwUNetoxj5MUFhpVHj9Ofr3zF1jaLs6tBC4z57QNRlVNKVz_IxxkLs54WUw7cyiSiO1zKcDFSXgLZLqXi7Z48Cbf-_sObfJZN_5E2DOTp9wh4POJJPesE_ZfegecYe9p0lt8_ZLxQ_nwq-mF-imeLnP6bfVM6XbU3dumDNl1SH123sZgEc8WGokN1y09R41S4ppMPdoqXoIZ83fNUX0gLvWj45mbxgF6fTn1_O4qGRQuzQP-liUF6gW1B6V2trnYFSl6kp0zpVeWKkT5WzEoFMaAmLx06dZJD4FNA18RLAiZfsoGkbeM24TdHiJR6EyTNpEKDViPi0Vfh4cLjYEUt3y1m5gWWcml0sqpDtFkXVi6BCEVRBBNU2Yh_H_1z3HBt3jj4hKY0jiR87_NCuLqthu1WJEcIqXYK0NUJOa4QEa2QBAFparSN2tJNxNWzadXWrYhF7P97G7UY5FNNAuwljMiHRKcUxr3qVGGeC3r5E_JZELN9Tlr2p7t9p5leB0ptYoAqpIvZpp1a30_r_Ury5-y0O2aOMND0wUx6xg261gbcIoTr7LuyTG-yZGA0 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEA_nieCL-G31lAi-abVtPto-iOzJHoe4PogL9yCEJJ3cLey2utsF-987SduV1VXwsc2kDZmZzG-SyQwhL1ymHZPOxtrDN26libXOIK5c7q95IoA2_kR39kmez_mHC3FxRMZyR8MEbg66dr6e1Hy9fP3je_cOFf5tf2W8eLPhQd19sAEaJCHi7hq5jpYp94o6G-B-WJnx9wXnw92Zw1337FNI438Ie_4ZQvnbOWowT2e3ya0BV9JJLwh3yBHUd8mNvtJkd498RXGgU0aXi0s0W3T2efpR5HTVVL56F2zoysfltVuzXQJFvBgiZjuq6wqfmpXf4qF22fjdRLqo6boPrAXaNnRyOrlP5mfTL-_P46GwQmzRX2ljEI6hm1A6W0ljrIZSlqku0yoVeaK5S4U1HIFNKBGLy1CVZJC4FNBVcRzAsgfkuG5qeESoSdECJg6YzjOuEbBViAClEfh5sDjZEUnH6VR2yDrui18sVTj9ZoXqWaCQBSqwQHURebnr863PufFP6lPPpR2lz5cdXjTrSzWon0o0Y0bIEripEIIazTgYzQsAkNxIGZGTkcdqlEHlvS8hcZHD5ue7ZlQ_f6aia2i2gSZjHJ1UpHnYi8RuJOj9c8RzSUTyPWHZG-p-S724Cim-fVaogouIvBrF6tew_j4Vj_-P_Am5mXnJD5krT8hxu97CU4RYrXkW9OYnxo8gCw priority: 102 providerName: Scholars Portal |
Title | The E3 ligase MREL57 modulates microtubule stability and stomatal closure in response to ABA |
URI | https://link.springer.com/article/10.1038/s41467-021-22455-y https://www.ncbi.nlm.nih.gov/pubmed/33846350 https://www.proquest.com/docview/2511564006 https://www.proquest.com/docview/2512344016 https://pubmed.ncbi.nlm.nih.gov/PMC8041845 https://doaj.org/article/0a33b569e4bd416ba34eba48eee64b66 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lj9MwELb2ISQuiDeBpTISN4hI4keSY1q1rCq6Qgsr9YAU2cl4qdQmqE0P_feMnQcqLEhcUrWeVJZn7PnGHn9DyFsTKcOkKXxl4RsvpPaVisAvTWyveSKA1vZEd3ElL2_4fCmWJyTq78K4pH1HaemW6T477MOOuyltEwrQ6QjhH07JuaVut1Y9kZNhX8Uyniecd_djApbc8eqRD3JU_Xfhyz_TJH87K3UuaPaQPOiwI83a3j4iJ1A9JvfaapKHJ-QbqpxOGV2vbtE10cX19JOI6aYubYUu2NGNzb1r9nq_BoqY0GXFHqiqSvxWb-w2Di3Wtd0xpKuKbtvkWaBNTbNx9pTczKZfJ5d-VzzBLzAmaXwQhmEokJqilFoXClKZhioNy1DEgeImFIXmCF5cGVhcasoggsCEgOGI4QAFe0bOqrqCF4TqEL1cYICpOOIKQVmJKE9qgX8PBQ62R8J-OPOiYxa3BS7WuTvhZkneqiBHFeROBfnBI--Gd360vBr_lB5bLQ2SlhPb_VBvb_PORvJAMaaFTIHrEmGmVoyDVjwBAMm1lB656HWcdxN1l9sIS0hcyLD5zdCMU8yem6gK6r2TiRjHQBRlnrcmMfQEI3yOmC3wSHxkLEddPW6pVt8djbdlfkq48Mj73qx-devvQ_Hy_8RfkfuRtXzHTnlBzprtHl4jjGr0iJzGyxifyezjiJxn2fzLHD_H06vP1yM3p0ZugwKfC578BDBBHS8 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k1KASPBCaIm8SObA0Jb2GpLd3tArbQHJNd2JmWl3aTdh9D-KX4jYyfZann01mMSJ3I833g-e8YzhLwtEl0wWdhQO_rGrTSh1gmEeZG6Y55IoI3z6A6PZf-Ufx2J0Rb51Z6FcWGV7ZzoJ-q8sm6PfM9RYSERcfLTxWXoqkY572pbQqOGxRGsfuKSbf7x8AvK912SHPROPvfDpqpAaJGsL0IQBUOOnBU2l8ZYDZnMYp3FeSzSSPMiFtZwtOq-PirqYB4lEBUxIE8vOIBl-N1b5DYa3shpVDpK13s6Ltt6h_PmbE7EOntz7mciFweBtlKIcLVh_3yZgH9x279DNP_w03rzd_CA3G94K-3WQHtItqB8RO7UlSxXj8l3hBvtMToZn6NZpMNvvYFI6bTKXXUwmNOpi_tbLM1yAhT5qI_IXVFd5nhVTd0WErWTyu1W0nFJZ3XgLtBFRbv73Sfk9EaG-CnZLqsSnhNqYrSwUQFMpwnXSAhzZJjSCPw8WBzsgMTtcCrbZDV3xTUmynvXWUfVIlAoAuVFoFYBeb9-56LO6XFt630npXVLl4_b36hm56pRbxVpxoyQGXCTI8U1mnEwmncAQHIjZUB2WxmrZpKYqytIB-TN-jGqt_PZ6BKqpW-TMI6LYGzzrIbEuieMIXlkIgpIugGWja5uPinHP3wKcZd1qsNFQD60sLrq1v-HYuf6v3hN7vZPhgM1ODw-ekHuJQ71PivmLtlezJbwEunbwrzyOkPJ2U0r6W8ZMFTC |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaWRSAuiDeBBYwEJ4iaxI-0B4S6bKtd9iGEWKkHJGM746VSmyx9CPWv8esYO0lX5bG3PSZxIsfzjeezZzxDyCuXaceks7H29I1baWKtM4gLl_tjnkigjffoHp_I_VP-cSRGW-RXexbGh1W2c2KYqIvK-j3yjqfCQiLiZMc1YRGf9obvz3_EvoKU97S25TRqiBzC6icu3-bvDvZQ1q-zbDj48mE_bioMxBaJ-yIG4Rjy5Z6zhTTGaujJXqp7aZGKPNHcpcIajhY-1EpFfSySDBKXAnJ2xwEsw-9eI9dzJlKvY_koX-_v-MzrXc6bczoJ63bmPMxKPiYC7aYQ8WrDFoaSAf_iuX-Ha_7hsw2mcHiH3G44LO3XoLtLtqC8R27UVS1X98lXhB4dMDoZn6GJpMefB0cip9Oq8JXCYE6nPgZwsTTLCVDkpiE6d0V1WeBVNfXbSdROKr9zScclndVBvEAXFe3v9h-Q0ysZ4odku6xKeEyoSdHaJg6YzjOukRwWyDalEfh5sDjYEUnb4VS2yXDuC21MVPC0s66qRaBQBCqIQK0i8mb9znmd3-PS1rteSuuWPjd3uFHNzlSj6irRjBkhe8BNgXTXaMbBaN4FAMmNlBHZaWWsmgljri7gHZGX68eo6t5_o0uolqFNxjguiLHNoxoS654whkSSiSQi-QZYNrq6-aQcfw_pxH0Gqi4XEXnbwuqiW_8fiieX_8ULchPVUx0dnBw-JbcyD_qQIHOHbC9mS3iGTG5hngeVoeTbVevobyAMWPg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+E3+ligase+MREL57+modulates+microtubule+stability+and+stomatal+closure+in+response+to+ABA&rft.jtitle=Nature+communications&rft.au=Dou%2C+Liru&rft.au=He%2C+Kaikai&rft.au=Peng%2C+Jialin&rft.au=Wang%2C+Xiangfeng&rft.date=2021-04-12&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-22455-y&rft.externalDocID=10_1038_s41467_021_22455_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |