Mapping the NFT revolution: market trends, trade networks, and visual features
Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market ha...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 20902 - 11 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.10.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts. |
---|---|
AbstractList | Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts. Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts.Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts. Abstract Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts. |
ArticleNumber | 20902 |
Author | Di Giacinto, Flavio Nadini, Matthieu Alessandretti, Laura Aiello, Luca Maria Baronchelli, Andrea Martino, Mauro |
Author_xml | – sequence: 1 givenname: Matthieu surname: Nadini fullname: Nadini, Matthieu organization: Department of Mathematics, City University of London, The Alan Turing Institute, British Library – sequence: 2 givenname: Laura orcidid: 0000-0001-6003-1165 surname: Alessandretti fullname: Alessandretti, Laura organization: Technical University of Denmark – sequence: 3 givenname: Flavio surname: Di Giacinto fullname: Di Giacinto, Flavio organization: Department of Mathematics, City University of London, Department of Neuroscience, Catholic University of the Sacred Heart – sequence: 4 givenname: Mauro surname: Martino fullname: Martino, Mauro organization: IBM Research – sequence: 5 givenname: Luca Maria surname: Aiello fullname: Aiello, Luca Maria organization: IT University of Copenhagen – sequence: 6 givenname: Andrea surname: Baronchelli fullname: Baronchelli, Andrea email: abaronchelli@turing.ac.uk organization: Department of Mathematics, City University of London, The Alan Turing Institute, British Library, UCL Centre for Blockchain Technologies, University College London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34686678$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLUv_AAcUiQsHAv62w6ESqihUKuVSzpbjvGyzzdqL7Szi3-PdlNL20JO_ZubN85uX6MAHDwi9JvgDwUx_TJyIRteYkhpjLFitn6EjirmoKaP04N7-EB2ntMI7FG04aV6gQ8alllLpI3T53W42g19W-Rqqy7OrKsI2jFMegv9UrW28gVzlCL5L78tqO6g85N8h3pSz9V21HdJkx6oHm6cI6RV63tsxwfHtukA_z75cnX6rL358PT_9fFE7iWWuQVDmWuta6QijPXFOaJAcK8VVL3pCO0p6q6hyzFrRQUMaTYEQRqSkLSi2QOezbhfsymziUKz-McEOZn8R4tLYmAc3gukkpdSpXlniOEhhJaOWtaAl7rgsFRboZNbaTO0aOge-NDo-EH344odrswxbowWTivIi8O5WIIZfE6Rs1kNyMI7WQ5iSoUJz1WDMcYG-fQRdhSn68lV7lOSCNaKg3tx3dGfl39gKgM4AF0NKEfo7CMFmFw8zx8OUeJh9PMyOpB-R3JDtbtKlq2F8mspmaip1_BLif9tPsP4CADfNeg |
CitedBy_id | crossref_primary_10_1007_s11469_022_00894_y crossref_primary_10_1016_j_apmrv_2024_09_004 crossref_primary_10_21202_jdtl_2023_6 crossref_primary_10_1002_jvc2_95 crossref_primary_10_1016_j_irfa_2023_102916 crossref_primary_10_1080_1097198X_2023_2167561 crossref_primary_10_2478_tjcp_2024_0005 crossref_primary_10_2139_ssrn_4097185 crossref_primary_10_1109_ACCESS_2022_3202550 crossref_primary_10_1016_j_ijresmar_2022_07_004 crossref_primary_10_1016_j_ijresmar_2022_07_003 crossref_primary_10_24182_2073_9885_2023_16_2_86_102 crossref_primary_10_3917_jie_pr1_0162 crossref_primary_10_1111_joes_12597 crossref_primary_10_3390_fi15120382 crossref_primary_10_1108_EMJB_10_2023_0270 crossref_primary_10_1109_ACCESS_2023_3333897 crossref_primary_10_1177_03063127241286447 crossref_primary_10_1109_MMUL_2023_3246528 crossref_primary_10_1002_cb_2264 crossref_primary_10_1016_j_jbef_2023_100837 crossref_primary_10_1016_j_pacfin_2022_101876 crossref_primary_10_3390_su15043541 crossref_primary_10_1016_j_econmod_2024_106882 crossref_primary_10_1016_j_najef_2023_101995 crossref_primary_10_3390_arts12050211 crossref_primary_10_3390_fintech1010003 crossref_primary_10_1016_j_jbef_2022_100692 crossref_primary_10_1109_TCSS_2023_3319554 crossref_primary_10_17484_yedi_1039170 crossref_primary_10_1007_s10586_023_04188_3 crossref_primary_10_1520_SSMS20220013 crossref_primary_10_3390_su16156587 crossref_primary_10_2298_GEI2301099M crossref_primary_10_1016_j_tele_2022_101830 crossref_primary_10_3390_informatics9040094 crossref_primary_10_1108_JEBDE_11_2024_0043 crossref_primary_10_3390_jrfm16110465 crossref_primary_10_3389_fbloc_2023_1101939 crossref_primary_10_1007_s11135_024_01931_9 crossref_primary_10_1016_j_compbiomed_2023_106778 crossref_primary_10_1016_j_dib_2023_109749 crossref_primary_10_4236_adr_2023_112008 crossref_primary_10_1016_j_frl_2022_103489 crossref_primary_10_1007_s10479_023_05693_9 crossref_primary_10_1016_j_frl_2022_103007 crossref_primary_10_1080_17517575_2025_2462069 crossref_primary_10_2478_ttj_2024_0028 crossref_primary_10_1080_10293523_2022_2155354 crossref_primary_10_24040_aap_2025_22_1_1_12 crossref_primary_10_3390_info15070378 crossref_primary_10_1002_cb_2482 crossref_primary_10_1016_j_ijresmar_2024_12_002 crossref_primary_10_1177_20438869231219517 crossref_primary_10_1016_j_jbusres_2023_114056 crossref_primary_10_1016_j_osnem_2024_100292 crossref_primary_10_1016_j_frl_2023_103651 crossref_primary_10_1016_j_jretconser_2024_104094 crossref_primary_10_1109_TEM_2022_3215793 crossref_primary_10_1145_3703411 crossref_primary_10_32604_cmc_2023_037553 crossref_primary_10_18037_ausbd_1225897 crossref_primary_10_1080_23311975_2025_2469764 crossref_primary_10_18601_01236458_n57_06 crossref_primary_10_1016_j_digbus_2024_100074 crossref_primary_10_1016_j_irfa_2022_102313 crossref_primary_10_1016_j_ijresmar_2024_08_007 crossref_primary_10_1016_j_irfa_2023_102558 crossref_primary_10_31866_2410_1915_23_2022_260967 crossref_primary_10_1109_TEM_2024_3500359 crossref_primary_10_2139_ssrn_4585185 crossref_primary_10_1016_j_future_2023_02_008 crossref_primary_10_1016_j_iref_2022_11_014 crossref_primary_10_1515_opphil_2024_0027 crossref_primary_10_1038_s41433_022_02371_1 crossref_primary_10_1140_epjds_s13688_023_00397_3 crossref_primary_10_1186_s40854_022_00428_4 crossref_primary_10_1080_10864415_2023_2295070 crossref_primary_10_33793_acperpro_05_03_2162 crossref_primary_10_34104_bjah_02302770290 crossref_primary_10_57019_jmv_1053778 crossref_primary_10_37867_TE140228 crossref_primary_10_1016_j_dss_2024_114341 crossref_primary_10_1371_journal_pone_0287881 crossref_primary_10_3390_bdcc7010038 crossref_primary_10_1016_j_ijresmar_2025_01_005 crossref_primary_10_3390_s23177391 crossref_primary_10_2139_ssrn_4119406 crossref_primary_10_1080_23322039_2025_2468387 crossref_primary_10_2139_ssrn_4074154 crossref_primary_10_1016_j_najef_2024_102149 crossref_primary_10_55179_dusbed_1193852 crossref_primary_10_1063_5_0185306 crossref_primary_10_1080_00207543_2025_2449588 crossref_primary_10_3390_fi15060189 crossref_primary_10_1007_s41109_024_00682_8 crossref_primary_10_1109_ACCESS_2024_3370155 crossref_primary_10_18778_1733_8069_21_1_04 crossref_primary_10_1016_j_jbusres_2022_08_031 crossref_primary_10_1007_s42452_023_05487_5 crossref_primary_10_1016_j_jbusres_2022_113420 crossref_primary_10_1016_j_bcra_2024_100191 crossref_primary_10_3390_fi15050166 crossref_primary_10_1016_j_chb_2024_108307 crossref_primary_10_1109_TCSS_2024_3415631 crossref_primary_10_1016_j_dcan_2023_11_006 crossref_primary_10_1038_s41598_024_55011_x crossref_primary_10_7456_tojdac_1413518 crossref_primary_10_2478_ngoe_2023_0012 crossref_primary_10_1136_gpsych_2022_100825 crossref_primary_10_1007_s12525_024_00722_2 crossref_primary_10_1016_j_ribaf_2024_102429 crossref_primary_10_1108_JKM_12_2022_0937 crossref_primary_10_2139_ssrn_4279215 crossref_primary_10_1016_j_autcon_2023_104783 crossref_primary_10_3390_jrfm15050215 crossref_primary_10_1111_eufm_12506 crossref_primary_10_1007_s12599_021_00736_6 crossref_primary_10_7232_JKIIE_2023_49_4_309 crossref_primary_10_1016_j_socnet_2024_10_002 crossref_primary_10_1016_j_ribaf_2023_101945 crossref_primary_10_3390_su141912074 crossref_primary_10_1016_j_iref_2023_07_016 crossref_primary_10_1038_s41598_024_75348_7 crossref_primary_10_1016_j_stae_2025_100099 crossref_primary_10_1080_2157930X_2023_2180709 crossref_primary_10_1109_JSAC_2023_3345432 crossref_primary_10_1016_j_gfj_2024_100989 crossref_primary_10_1038_s41598_022_17922_5 crossref_primary_10_1057_s41599_024_02872_2 crossref_primary_10_1371_journal_pone_0300599 crossref_primary_10_3390_su15097573 crossref_primary_10_3390_info14010026 crossref_primary_10_1093_jcr_ucad082 crossref_primary_10_1109_ACCESS_2023_3346448 crossref_primary_10_1016_j_frl_2022_103188 crossref_primary_10_1038_s41598_024_78379_2 crossref_primary_10_1016_j_im_2023_103898 crossref_primary_10_1177_23197145241300899 crossref_primary_10_1016_j_osnem_2023_100266 crossref_primary_10_1016_j_ribaf_2023_101957 crossref_primary_10_23919_JSC_2024_0029 crossref_primary_10_1108_JMLC_01_2023_0005 crossref_primary_10_3390_math10030335 crossref_primary_10_54691_bcpbm_v28i_2216 crossref_primary_10_1109_ACCESS_2023_3261555 crossref_primary_10_1016_j_jjimei_2023_100176 crossref_primary_10_3390_arts12010025 crossref_primary_10_1080_0267257X_2024_2425691 crossref_primary_10_3389_fbloc_2022_1073499 crossref_primary_10_46604_peti_2024_13379 crossref_primary_10_1007_s41469_023_00154_w crossref_primary_10_1016_j_jretai_2023_02_002 crossref_primary_10_1016_j_najef_2024_102079 crossref_primary_10_1080_14702029_2024_2393554 crossref_primary_10_1016_j_dss_2025_114407 crossref_primary_10_1109_OJCOMS_2023_3343926 crossref_primary_10_18184_2079_4665_2023_14_3_416_433 crossref_primary_10_1016_j_frl_2023_104323 crossref_primary_10_1111_jocd_15406 crossref_primary_10_1016_j_frl_2022_103175 crossref_primary_10_24891_fc_28_3_699 crossref_primary_10_1038_s41598_022_05146_6 crossref_primary_10_1140_epjds_s13688_024_00472_3 crossref_primary_10_1016_j_technovation_2025_103183 crossref_primary_10_1108_INTR_08_2022_0666 crossref_primary_10_1109_MCE_2022_3196480 crossref_primary_10_1016_j_techfore_2024_123605 crossref_primary_10_1016_j_jeconc_2024_100118 crossref_primary_10_3390_math10173218 crossref_primary_10_1140_epjds_s13688_023_00418_1 crossref_primary_10_7232_JKIIE_2023_49_1_046 crossref_primary_10_1016_j_ijresmar_2024_10_008 crossref_primary_10_1016_j_newideapsych_2022_100982 crossref_primary_10_48175_IJARSCT_8545 crossref_primary_10_1016_j_ceh_2023_07_004 crossref_primary_10_1016_j_jretconser_2024_104121 crossref_primary_10_1080_20932685_2023_2249476 crossref_primary_10_2478_ijmbr_2023_0006 crossref_primary_10_1109_OJCS_2022_3188249 crossref_primary_10_1080_14626268_2023_2277234 crossref_primary_10_2196_46160 crossref_primary_10_22363_2313_2329_2022_30_2_192_203 crossref_primary_10_1016_j_dss_2024_114247 crossref_primary_10_16953_deusosbil_1106349 crossref_primary_10_53443_anadoluibfd_1238163 crossref_primary_10_2139_ssrn_4485278 crossref_primary_10_3390_fintech1030017 crossref_primary_10_1007_s42521_023_00088_8 crossref_primary_10_1016_j_future_2023_03_047 crossref_primary_10_1080_23311983_2024_2430897 crossref_primary_10_1108_JFMM_07_2024_0260 crossref_primary_10_4018_JGIM_317097 crossref_primary_10_4236_ojapps_2024_1411217 crossref_primary_10_1016_j_comcom_2024_107965 crossref_primary_10_1016_j_jbvi_2022_e00323 crossref_primary_10_2139_ssrn_4546638 crossref_primary_10_1086_734656 crossref_primary_10_1002_isaf_1544 crossref_primary_10_1007_s41109_023_00565_4 crossref_primary_10_1016_j_jfds_2024_100148 crossref_primary_10_18267_j_pep_861 crossref_primary_10_1155_2024_7488352 crossref_primary_10_3390_jcm13154337 crossref_primary_10_1186_s40854_024_00672_w crossref_primary_10_1016_j_ijresmar_2022_08_002 crossref_primary_10_1108_JOSM_03_2023_0113 crossref_primary_10_1051_shsconf_202315704019 crossref_primary_10_1177_21582440241311348 crossref_primary_10_1016_j_ijresmar_2024_06_003 crossref_primary_10_1007_s11002_022_09639_2 crossref_primary_10_33851_JMIS_2022_9_4_299 crossref_primary_10_26794_2587_5671_2024_28_6_122_133 crossref_primary_10_1038_s41598_023_30431_3 crossref_primary_10_1080_14765284_2022_2138161 crossref_primary_10_1109_ACCESS_2023_3241226 crossref_primary_10_3233_HSM_220196 crossref_primary_10_1016_j_actpsy_2024_104424 crossref_primary_10_1007_s10660_024_09881_y crossref_primary_10_1057_s41260_023_00316_1 crossref_primary_10_2478_csep_2021_0007 crossref_primary_10_20396_modos_v8i2_8675802 crossref_primary_10_3389_fpubh_2023_1266385 crossref_primary_10_1287_isre_2023_0035 crossref_primary_10_1556_2006_2022_00066 crossref_primary_10_1016_j_sipas_2022_100065 crossref_primary_10_1109_TCSS_2024_3430846 crossref_primary_10_1186_s40854_023_00570_7 crossref_primary_10_1038_s42256_022_00549_6 crossref_primary_10_1109_ACCESS_2022_3219495 crossref_primary_10_2139_ssrn_4284776 crossref_primary_10_53841_bpsadm_2023_15_2_43 crossref_primary_10_1051_shsconf_202316502009 crossref_primary_10_25038_am_v0i28_563 crossref_primary_10_1080_10438599_2022_2119564 crossref_primary_10_1109_TCSS_2022_3221669 crossref_primary_10_1016_j_procs_2023_01_329 crossref_primary_10_17572_mj2022_1_5272 crossref_primary_10_1016_j_pacfin_2025_102696 crossref_primary_10_1016_j_bcra_2021_100038 crossref_primary_10_1080_09502386_2024_2329873 crossref_primary_10_57019_jmv_1120470 crossref_primary_10_1109_ACCESS_2023_3236080 crossref_primary_10_2139_ssrn_4495156 crossref_primary_10_1186_s40854_024_00684_6 crossref_primary_10_1007_s00779_023_01708_1 crossref_primary_10_3389_fbloc_2023_1206330 crossref_primary_10_1371_journal_pone_0287262 crossref_primary_10_1016_j_frl_2023_103690 crossref_primary_10_1186_s40854_024_00623_5 crossref_primary_10_1016_j_engappai_2024_109179 crossref_primary_10_1016_j_frl_2023_104428 crossref_primary_10_1016_j_bcra_2024_100244 crossref_primary_10_57019_jmv_1223704 |
Cites_doi | 10.1098/rsos.170623 10.1145/3402443 10.1109/Cybermatics_2018.2018.00267 10.1155/2018/8983590 10.1016/j.neucom.2018.02.100 10.1007/978-3-662-63958-0_42 10.1016/j.frl.2021.102097 10.1038/srep01801 10.1109/CVPR.2009.5206848 10.1007/978-1-4757-1904-8_8 10.1007/s100510050067 10.1137/070710111 10.2139/ssrn.3842210 10.34053/artivate.8.2.2 10.21105/joss.01425 10.1177/1555412019898305 10.1016/0020-0190(94)90047-7 10.1103/PhysRevE.67.026126 10.1073/pnas.0400087101 10.1103/PhysRevE.70.066111 10.1016/j.frl.2021.102096 10.1007/s10462-020-09825-6 10.3389/fbloc.2019.00012 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X5 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BEZIV BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K6~ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-00053-8 |
DatabaseName | Springer Nature OA Free Journals (WRLC) CrossRef PubMed ProQuest Central (Corporate) Entrepreneurship Database Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Business Premium Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Business Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Entrepreneurship Business Premium Collection ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Business Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_d6222c7f7a1c4e65a632a3be860d467c PMC8536724 34686678 10_1038_s41598_021_00053_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: The research was partly supported by The Alan Turing Institute. – fundername: ; |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7X5 7XB 8FK AARCD BEZIV K6~ K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-e523cbacb6c132f1cc58e6407747f5f12d21fa727c3aa5de91982e1131662be73 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:27:02 EDT 2025 Thu Aug 21 14:10:45 EDT 2025 Thu Jul 10 16:59:04 EDT 2025 Wed Aug 13 09:16:45 EDT 2025 Thu Apr 03 06:53:37 EDT 2025 Tue Jul 01 01:33:35 EDT 2025 Thu Apr 24 23:02:31 EDT 2025 Fri Feb 21 02:38:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-e523cbacb6c132f1cc58e6407747f5f12d21fa727c3aa5de91982e1131662be73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6003-1165 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-00053-8 |
PMID | 34686678 |
PQID | 2584645395 |
PQPubID | 2041939 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d6222c7f7a1c4e65a632a3be860d467c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536724 proquest_miscellaneous_2584790040 proquest_journals_2584645395 pubmed_primary_34686678 crossref_primary_10_1038_s41598_021_00053_8 crossref_citationtrail_10_1038_s41598_021_00053_8 springer_journals_10_1038_s41598_021_00053_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-22 |
PublicationDateYYYYMMDD | 2021-10-22 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | FreundYSchapireRAbeNA short introduction to boostingJ.-Japan. Soc. Artif. Intell.1999141612 Rosenbaum, D. Gods-Unchained marketplace. (2021). https://github.com/djrosenbaum/unchained-transactions. (Accessed 4 May 2021). (The Graph). Team, N. Non-fungible tokens quarterly report Q1 2021. (2021). https://nonfungible.com/subscribe/nft-report-q1-2021. (Accessed 4 May 2021). (NonFungible Corporation). Team, N. The best place to analyze, track, and discover NFTs. (2021). https://nonfungible.com/. (Accessed 4 May 2021). (NonFungible Corporation). Wong, J. I. The Ethereum network is getting jammed up because people are rushing to buy cartoon cats on its blockchain. (2017). https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/. (Accessed 4 May 2021). (Quartz). ClausetANewmanMEMooreCFinding community structure in very large networksPhys. Rev. E2004700661112004PhRvE..70f6111C10.1103/PhysRevE.70.066111 Riegelhaupt, R. Results: Beeple’s purely digital NFT-based work of Art achieves \$69.3 million at Christie’s. (2021). https://www.christies.com/about-us/press-archive/details?PressReleaseID=9970&lid=1. (Accessed 4 May 2021). (Christie’s Press Release). Team, C. (2021). CryptoKitties: Collect and breed furrever friends. https://www.cryptokitties.co/. (Accessed 4 May 2021). (Cryptokitties). FranceschetMArt for spaceJ. Comput. Cultural Heritage (JOCCH)2020131910.1145/3402443 PreisTMoatHSStanleyHEQuantifying trading behavior in financial markets using google trendsSci. Rep.201331610.1038/srep01684 KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksAdv. Neural Inf. Process. Syst.20122510971105 Devlin, J. The “insane” money in trading collectible cards. (2021). https://www.bbc.co.uk/news/business-56413186. (Accessed 20 May 2021). (BBC). Dowling, M. Fertile land: Pricing non-fungible tokens. Finance Res. Lett. 102096, https://doi.org/10.1016/j.frl.2021.102096 (2021). NewmanMEMixing patterns in networksPhys. Rev. E2003670261262003PhRvE..67b6126N19751931:STN:280:DC%2BD3s7itlOrtA%3D%3D10.1103/PhysRevE.67.026126 Reyburn, S. JPG file sells for \$69 million, as “NFT mania” gathers pace. (2021). https://www.nytimes.com/2021/03/11/arts/design/nft-auction-christies-beeple.html. (Accessed 4 May 2021). (The New York Times). Howcroft, E. “Cryptopunk” NFT sells for \$11.8 million at Sotheby’s. (2021). https://www.reuters.com/technology/cryptopunk-nft-sells-118-million-sothebys-2021-06-10/. (Accessed 25 June 2021). (Reuters). van Haaften-Schick, L. & Whitaker, A. From the artist’s contract to the blockchain ledger: New forms of artists’ funding using NFTs, fractional equity, and resale royalties. Available at SSRN 3842210, https://doi.org/10.2139/ssrn.3842210 (2021). EvansTMCryptokitties, cryptography, and copyrightAIPLA QJ201947219247 Lounge, T. W. Choosing the right blockchain for your NFT. (2020). https://medium.com/phantasticphantasma/choosing-the-right-blockchain-for-your-nft-d1df2bebae91. (Accessed 4 May 2021). (Medium). Deng, J. et al. Imagenet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, 2009). SeradaASihvonenTHarviainenJTCryptoKitties and the new ludic economy: How blockchain introduces value, ownership, and scarcity in digital gamingGames Culture20211645748010.1177/1555412019898305 XuXLiangTZhuJZhengDSunTReview of classical dimensionality reduction and sample selection methods for large-scale data processingNeurocomputing201932851510.1016/j.neucom.2018.02.100 Barabási, A.-L. The Art market often works in secret. Here’s a look inside. (2021). https://www.nytimes.com/2021/05/07/opinion/nft-art-market.html. (Accessed 17 May 2021). (The New York Times). AslakUMaierBFNetwulf: Interactive visualization of networks in pythonJ. Open Source Softw.2019414252019JOSS....4.1425A10.21105/joss.01425 Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. arXiv preprintarXiv:1912.01703 (2019). ElBahrawyAAlessandrettiLBaronchelliAWikipedia and cryptocurrencies: Interplay between collective attention and market performanceFront. Blockchain201921210.3389/fbloc.2019.00012 MoatHSQuantifying wikipedia usage patterns before stock market movesSci. Rep.201331510.1038/srep01801 Tepper, F. People have spent over \$1m buying virtual cats on the Ethereum blockchain. (2017). https://techcrunch.com/2017/12/03/people-have-spent-over-1m-buying-virtual-cats-on-the-ethereum-blockchain/. (Accessed 4 May 2021). (TechCrunch). Dowling, M. Is non-fungible token pricing driven by cryptocurrencies? Finance Res. Lett. 102097, ISSN 1544-6123. https://doi.org/10.1016/j.frl.2021.102097 (2021). Phillips, D. The 10 most expensive NFTs ever sold. (2021). https://decrypt.co/62898/the-10-most-expensive-nfts-ever-sold. (Accessed 20 May 2021). (Decrypt). Ben Luke, A. S. & Stoilas, H. WTF are NFTs? Why crypto is dominating the Art market. (2021). https://www.theartnewspaper.com/podcast/wtf-nfts. (Accessed 4 May 2021). (The Art Newspaper). ElBahrawyAAlessandrettiLKandlerAPastor-SatorrasRBaronchelliAEvolutionary dynamics of the cryptocurrency marketR. Soc. Open Sci.20174170623374598610.1098/rsos.170623 Jolliffe, I. T. Principal components in regression analysis. in Principal Component Analysis, 129–155 (Springer, 1986). Sako, K., Matsuo, S. & Meier, S. Fairness in ERC token markets: A case study of CryptoKitties. arXiv preprintarXiv:2102.03721 (2021). Westerkamp, M., Victor, F. & Küpper, A. Blockchain-based supply chain traceability: Token recipes model manufacturing processes. in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 1595–1602 (IEEE, 2018). WhitakerAArt and blockchain: A primer, history, and taxonomy of blockchain use cases in the ArtsArtivate20198214610.1353/artv.2019.0008 BarratAWeigtMOn the properties of small-world network modelsEur. Phys. J. B-Condensed Matter Complex Syst.2000135475601:CAS:528:DC%2BD3cXhsVGrs7w%3D10.1007/s100510050067 Wang, Q., Li, R., Wang, Q. & Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv preprintarXiv:2105.07447 (2021). KhanASohailAZahooraUQureshiASA survey of the recent architectures of deep convolutional neural networksArtif. Intell. Rev.2020535455551610.1007/s10462-020-09825-6 Alessandretti, L., ElBahrawy, A., Aiello, L. M. & Baronchelli, A. Anticipating cryptocurrency prices using machine learning. Complexity. 8983590, https://doi.org/10.1155/2018/8983590 (2018). de la Rouviere, N. A subgraph to index & explore CryptoKitties auctions. (2021). https://thegraph.com/explorer/subgraph/nieldlr/cryptokitties-sales. (Accessed 4 May 2021). (The Graph). Team, A. M. Atomic market API. (2021). https://wax.api.atomicassets.io/atomicmarket/docs/swagger/. (Accessed 4 May 2021). OpenSea, T. Discover, collect, and sell extraordinary NFTs. (2021). https://opensea.io/. (Accessed 28 May 2021). (OpenSea). ClausetAShaliziCRNewmanMEPower-law distributions in empirical dataSIAM Rev.2009516617032009SIAMR..51..661C256382910.1137/070710111 Team, O. API overview. (2021). https://docs.opensea.io/reference. (Accessed 4 May 2021). (OpenSea). BarratABarthelemyMPastor-SatorrasRVespignaniAThe architecture of complex weighted networksProc. Natl. Acad. Sci.2004101374737522004PNAS..101.3747B1:CAS:528:DC%2BD2cXis1KgtLk%3D10.1073/pnas.0400087101 NuutilaESoisalon-SoininenEOn finding the strongly connected components in a directed graphInf. Process. Lett.199449914126491810.1016/0020-0190(94)90047-7 Team, D. Decentraland marketplace. (2021). https://thegraph.com/explorer/subgraph/decentraland/marketplace. (Accessed 4 May 2021). (The Graph). 53_CR10 HS Moat (53_CR38) 2013; 3 A Clauset (53_CR26) 2009; 51 A Whitaker (53_CR15) 2019; 8 ME Newman (53_CR28) 2003; 67 A ElBahrawy (53_CR36) 2017; 4 53_CR19 E Nuutila (53_CR30) 1994; 49 Y Freund (53_CR32) 1999; 14 53_CR14 M Franceschet (53_CR21) 2020; 13 53_CR13 A Serada (53_CR17) 2021; 16 53_CR35 53_CR12 53_CR11 53_CR18 A ElBahrawy (53_CR39) 2019; 2 53_CR16 X Xu (53_CR34) 2019; 328 53_CR9 53_CR8 T Preis (53_CR37) 2013; 3 53_CR43 53_CR20 53_CR42 53_CR41 53_CR40 U Aslak (53_CR31) 2019; 4 53_CR2 53_CR1 53_CR7 53_CR6 53_CR5 53_CR4 A Barrat (53_CR23) 2000; 13 A Clauset (53_CR29) 2004; 70 A Krizhevsky (53_CR46) 2012; 25 53_CR25 53_CR47 53_CR24 53_CR45 TM Evans (53_CR3) 2019; 47 53_CR22 A Khan (53_CR33) 2020; 53 53_CR44 A Barrat (53_CR27) 2004; 101 53_CR48 |
References_xml | – reference: Team, N. Non-fungible tokens quarterly report Q1 2021. (2021). https://nonfungible.com/subscribe/nft-report-q1-2021. (Accessed 4 May 2021). (NonFungible Corporation). – reference: Reyburn, S. JPG file sells for \$69 million, as “NFT mania” gathers pace. (2021). https://www.nytimes.com/2021/03/11/arts/design/nft-auction-christies-beeple.html. (Accessed 4 May 2021). (The New York Times). – reference: Dowling, M. Is non-fungible token pricing driven by cryptocurrencies? Finance Res. Lett. 102097, ISSN 1544-6123. https://doi.org/10.1016/j.frl.2021.102097 (2021). – reference: KhanASohailAZahooraUQureshiASA survey of the recent architectures of deep convolutional neural networksArtif. Intell. Rev.2020535455551610.1007/s10462-020-09825-6 – reference: NuutilaESoisalon-SoininenEOn finding the strongly connected components in a directed graphInf. Process. Lett.199449914126491810.1016/0020-0190(94)90047-7 – reference: Barabási, A.-L. The Art market often works in secret. Here’s a look inside. (2021). https://www.nytimes.com/2021/05/07/opinion/nft-art-market.html. (Accessed 17 May 2021). (The New York Times). – reference: AslakUMaierBFNetwulf: Interactive visualization of networks in pythonJ. Open Source Softw.2019414252019JOSS....4.1425A10.21105/joss.01425 – reference: Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. arXiv preprintarXiv:1912.01703 (2019). – reference: Dowling, M. Fertile land: Pricing non-fungible tokens. Finance Res. Lett. 102096, https://doi.org/10.1016/j.frl.2021.102096 (2021). – reference: MoatHSQuantifying wikipedia usage patterns before stock market movesSci. Rep.201331510.1038/srep01801 – reference: Team, A. M. Atomic market API. (2021). https://wax.api.atomicassets.io/atomicmarket/docs/swagger/. (Accessed 4 May 2021). – reference: FranceschetMArt for spaceJ. Comput. Cultural Heritage (JOCCH)2020131910.1145/3402443 – reference: Team, N. The best place to analyze, track, and discover NFTs. (2021). https://nonfungible.com/. (Accessed 4 May 2021). (NonFungible Corporation). – reference: NewmanMEMixing patterns in networksPhys. Rev. E2003670261262003PhRvE..67b6126N19751931:STN:280:DC%2BD3s7itlOrtA%3D%3D10.1103/PhysRevE.67.026126 – reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksAdv. Neural Inf. Process. Syst.20122510971105 – reference: Team, C. (2021). CryptoKitties: Collect and breed furrever friends. https://www.cryptokitties.co/. (Accessed 4 May 2021). (Cryptokitties). – reference: OpenSea, T. Discover, collect, and sell extraordinary NFTs. (2021). https://opensea.io/. (Accessed 28 May 2021). (OpenSea). – reference: Alessandretti, L., ElBahrawy, A., Aiello, L. M. & Baronchelli, A. Anticipating cryptocurrency prices using machine learning. Complexity. 8983590, https://doi.org/10.1155/2018/8983590 (2018). – reference: Sako, K., Matsuo, S. & Meier, S. Fairness in ERC token markets: A case study of CryptoKitties. arXiv preprintarXiv:2102.03721 (2021). – reference: van Haaften-Schick, L. & Whitaker, A. From the artist’s contract to the blockchain ledger: New forms of artists’ funding using NFTs, fractional equity, and resale royalties. Available at SSRN 3842210, https://doi.org/10.2139/ssrn.3842210 (2021). – reference: PreisTMoatHSStanleyHEQuantifying trading behavior in financial markets using google trendsSci. Rep.201331610.1038/srep01684 – reference: Team, D. Decentraland marketplace. (2021). https://thegraph.com/explorer/subgraph/decentraland/marketplace. (Accessed 4 May 2021). (The Graph). – reference: Jolliffe, I. T. Principal components in regression analysis. in Principal Component Analysis, 129–155 (Springer, 1986). – reference: XuXLiangTZhuJZhengDSunTReview of classical dimensionality reduction and sample selection methods for large-scale data processingNeurocomputing201932851510.1016/j.neucom.2018.02.100 – reference: Riegelhaupt, R. Results: Beeple’s purely digital NFT-based work of Art achieves \$69.3 million at Christie’s. (2021). https://www.christies.com/about-us/press-archive/details?PressReleaseID=9970&lid=1. (Accessed 4 May 2021). (Christie’s Press Release). – reference: ElBahrawyAAlessandrettiLBaronchelliAWikipedia and cryptocurrencies: Interplay between collective attention and market performanceFront. Blockchain201921210.3389/fbloc.2019.00012 – reference: Howcroft, E. “Cryptopunk” NFT sells for \$11.8 million at Sotheby’s. (2021). https://www.reuters.com/technology/cryptopunk-nft-sells-118-million-sothebys-2021-06-10/. (Accessed 25 June 2021). (Reuters). – reference: Devlin, J. The “insane” money in trading collectible cards. (2021). https://www.bbc.co.uk/news/business-56413186. (Accessed 20 May 2021). (BBC). – reference: de la Rouviere, N. A subgraph to index & explore CryptoKitties auctions. (2021). https://thegraph.com/explorer/subgraph/nieldlr/cryptokitties-sales. (Accessed 4 May 2021). (The Graph). – reference: Deng, J. et al. Imagenet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, 2009). – reference: Wang, Q., Li, R., Wang, Q. & Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv preprintarXiv:2105.07447 (2021). – reference: WhitakerAArt and blockchain: A primer, history, and taxonomy of blockchain use cases in the ArtsArtivate20198214610.1353/artv.2019.0008 – reference: FreundYSchapireRAbeNA short introduction to boostingJ.-Japan. Soc. Artif. Intell.1999141612 – reference: BarratABarthelemyMPastor-SatorrasRVespignaniAThe architecture of complex weighted networksProc. Natl. Acad. Sci.2004101374737522004PNAS..101.3747B1:CAS:528:DC%2BD2cXis1KgtLk%3D10.1073/pnas.0400087101 – reference: EvansTMCryptokitties, cryptography, and copyrightAIPLA QJ201947219247 – reference: Team, O. API overview. (2021). https://docs.opensea.io/reference. (Accessed 4 May 2021). (OpenSea). – reference: Tepper, F. People have spent over \$1m buying virtual cats on the Ethereum blockchain. (2017). https://techcrunch.com/2017/12/03/people-have-spent-over-1m-buying-virtual-cats-on-the-ethereum-blockchain/. (Accessed 4 May 2021). (TechCrunch). – reference: ClausetAShaliziCRNewmanMEPower-law distributions in empirical dataSIAM Rev.2009516617032009SIAMR..51..661C256382910.1137/070710111 – reference: Wong, J. I. The Ethereum network is getting jammed up because people are rushing to buy cartoon cats on its blockchain. (2017). https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/. (Accessed 4 May 2021). (Quartz). – reference: Ben Luke, A. S. & Stoilas, H. WTF are NFTs? Why crypto is dominating the Art market. (2021). https://www.theartnewspaper.com/podcast/wtf-nfts. (Accessed 4 May 2021). (The Art Newspaper). – reference: SeradaASihvonenTHarviainenJTCryptoKitties and the new ludic economy: How blockchain introduces value, ownership, and scarcity in digital gamingGames Culture20211645748010.1177/1555412019898305 – reference: Rosenbaum, D. Gods-Unchained marketplace. (2021). https://github.com/djrosenbaum/unchained-transactions. (Accessed 4 May 2021). (The Graph). – reference: Westerkamp, M., Victor, F. & Küpper, A. Blockchain-based supply chain traceability: Token recipes model manufacturing processes. in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 1595–1602 (IEEE, 2018). – reference: Lounge, T. W. Choosing the right blockchain for your NFT. (2020). https://medium.com/phantasticphantasma/choosing-the-right-blockchain-for-your-nft-d1df2bebae91. (Accessed 4 May 2021). (Medium). – reference: BarratAWeigtMOn the properties of small-world network modelsEur. Phys. J. B-Condensed Matter Complex Syst.2000135475601:CAS:528:DC%2BD3cXhsVGrs7w%3D10.1007/s100510050067 – reference: Phillips, D. The 10 most expensive NFTs ever sold. (2021). https://decrypt.co/62898/the-10-most-expensive-nfts-ever-sold. (Accessed 20 May 2021). (Decrypt). – reference: ElBahrawyAAlessandrettiLKandlerAPastor-SatorrasRBaronchelliAEvolutionary dynamics of the cryptocurrency marketR. Soc. Open Sci.20174170623374598610.1098/rsos.170623 – reference: ClausetANewmanMEMooreCFinding community structure in very large networksPhys. Rev. E2004700661112004PhRvE..70f6111C10.1103/PhysRevE.70.066111 – ident: 53_CR12 – volume: 4 start-page: 170623 year: 2017 ident: 53_CR36 publication-title: R. Soc. Open Sci. doi: 10.1098/rsos.170623 – volume: 13 start-page: 1 year: 2020 ident: 53_CR21 publication-title: J. Comput. Cultural Heritage (JOCCH) doi: 10.1145/3402443 – ident: 53_CR10 – ident: 53_CR6 – ident: 53_CR41 – ident: 53_CR8 – ident: 53_CR14 doi: 10.1109/Cybermatics_2018.2018.00267 – ident: 53_CR4 – ident: 53_CR43 – ident: 53_CR35 doi: 10.1155/2018/8983590 – ident: 53_CR45 – volume: 328 start-page: 5 year: 2019 ident: 53_CR34 publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.100 – ident: 53_CR18 doi: 10.1007/978-3-662-63958-0_42 – ident: 53_CR19 doi: 10.1016/j.frl.2021.102097 – ident: 53_CR24 – volume: 14 start-page: 1612 year: 1999 ident: 53_CR32 publication-title: J.-Japan. Soc. Artif. Intell. – volume: 3 start-page: 1 year: 2013 ident: 53_CR38 publication-title: Sci. Rep. doi: 10.1038/srep01801 – ident: 53_CR47 doi: 10.1109/CVPR.2009.5206848 – ident: 53_CR48 doi: 10.1007/978-1-4757-1904-8_8 – ident: 53_CR1 – ident: 53_CR22 – volume: 13 start-page: 547 year: 2000 ident: 53_CR23 publication-title: Eur. Phys. J. B-Condensed Matter Complex Syst. doi: 10.1007/s100510050067 – volume: 51 start-page: 661 year: 2009 ident: 53_CR26 publication-title: SIAM Rev. doi: 10.1137/070710111 – volume: 25 start-page: 1097 year: 2012 ident: 53_CR46 publication-title: Adv. Neural Inf. Process. Syst. – ident: 53_CR16 doi: 10.2139/ssrn.3842210 – volume: 3 start-page: 1 year: 2013 ident: 53_CR37 publication-title: Sci. Rep. – volume: 8 start-page: 21 year: 2019 ident: 53_CR15 publication-title: Artivate doi: 10.34053/artivate.8.2.2 – ident: 53_CR40 – ident: 53_CR9 – ident: 53_CR11 – volume: 4 start-page: 1425 year: 2019 ident: 53_CR31 publication-title: J. Open Source Softw. doi: 10.21105/joss.01425 – ident: 53_CR7 – ident: 53_CR13 – volume: 16 start-page: 457 year: 2021 ident: 53_CR17 publication-title: Games Culture doi: 10.1177/1555412019898305 – ident: 53_CR5 – volume: 49 start-page: 9 year: 1994 ident: 53_CR30 publication-title: Inf. Process. Lett. doi: 10.1016/0020-0190(94)90047-7 – ident: 53_CR42 – volume: 47 start-page: 219 year: 2019 ident: 53_CR3 publication-title: AIPLA QJ – ident: 53_CR44 – volume: 67 start-page: 026126 year: 2003 ident: 53_CR28 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.67.026126 – ident: 53_CR25 – volume: 101 start-page: 3747 year: 2004 ident: 53_CR27 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0400087101 – ident: 53_CR2 – volume: 70 start-page: 066111 year: 2004 ident: 53_CR29 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066111 – ident: 53_CR20 doi: 10.1016/j.frl.2021.102096 – volume: 53 start-page: 5455 year: 2020 ident: 53_CR33 publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – volume: 2 start-page: 12 year: 2019 ident: 53_CR39 publication-title: Front. Blockchain doi: 10.3389/fbloc.2019.00012 |
SSID | ssj0000529419 |
Score | 2.7086368 |
Snippet | Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with... Abstract Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 20902 |
SubjectTerms | 639/766/259 639/766/530 Artists Blockchain Collectibles Digital currencies Humanities and Social Sciences Learning algorithms Machine learning multidisciplinary Popularity Sales Science Science (multidisciplinary) Trends |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDDejUNjL2PeydiODva2h8be9t3XsKIPeUwt9M7Yjb4UtHb27Qv_7yXbu1tvny55CYicIWYokJP1EyGvOQAwh6E6kYDohwXbeKNulAYIMffIKcqB4MlfHZ-LjuTy_Neor14RVeODKuMNBoQWLOmlPowAlveLM8wBG9QMqecx_X7R5t4KpiurNrKB26pLpuTlcoKXK3WSMdqUBtTNblqgA9v_Oy_y1WPKnjGkxRLP75N7kQbbvKuUPyB0YH5LdOlPy5hGZn_gMufCpRc-unc9O2yu4nsTrbfu19Di3y1IIe4BXP0A71kpwvPfj0F5fLFb4-QQF8XPxmJzNPpy-P-6moQldxFhk2QFGljH4GFTEQDPRGKWBnK3DuCHJRNnAaPLotUTuvRzAUmsYUMqpUiyA5k_Izng5wjPShl5CDIZqD0kkSF5ayXUCnXpmlecNoWsGujghiufBFl9cyWxz4yrTHTLdFaY705A3m3e-VTyNv-4-yuey2ZmxsMsDlBA3SYj7l4Q0ZH99qm5S0IVj2fESklvZkFebZVStnC_xI1yu6h5t82-uIU-rEGwo4UIZhYa-IXpLPLZI3V4ZLz4X-G50kJRmoiEHa0H6QdafWfH8f7Bij9xlWQPQ9jK2T3aWVyt4gU7VMrws-vMdbyUcrw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUHiRq3Gb4cLAsSqQuqeWmlvlu2MSyXIls1uJf59bcebann0FCV2Imc89sx4Zr5B6B2jwDvnFObBacwFtNhq2eLQgROuCVZCMhRP5vL4jH9biEU5cBtKWOV2T8wbdbf06Yz8iCZJyQVrxcfLXzhVjUre1VJC4y66l6DLUkiXWqjpjCV5sThpS65Mw_TREOVVyimjBOc0VKx35FGG7f-Xrvl3yOQfftMsjmaP0MOiR9afxol_jO5A_wTdHytL_n6K5ic2AS-c11G_q-ez03oFV4XJPtQ_c6Zzvc7hsIfxajuo-zEePN7bvquvLoZN_HyAjPs5PENns6-nX45xKZ2AfbRI1hiifemd9U76aG4G4r3QkHx20XoIIhDaURJs1F08s1Z00JJWUyCEESmpA8Weo71-2cNLVLtGgHeaKAuBBwhWtIKpACo0tJWWVYhsCWh8wRVP5S1-mOzfZtqMRDeR6CYT3egKvZ_euRxRNW7t_TnNy9QzIWLnB8vVuSkLzHQyajpeBWWJ5yCFlYxa5kDLpovCwFfoYDurpizTwdwwVYXeTs1xgSWvie1huRn7qDZtdhV6MTLBNBLGpZZR3FdI7bDHzlB3W_qL7xnEO6pJUlFeocMtI90M6_-k2L_9L16hBzTxdpStlB6gvfVqA6-j0rR2b_LKuAakhBQ2 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals (WRLC) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfClWG9dbWUF3-zi5p71TQ8eitDz1ELfQpKd1ILukXMp-O9Nshc5WgWflt3MLsNkkvlm5xKAN4wib51TFQ9OV1xgU1ktmyq06ISrg5WYHMXzhTy75J-vxNUe0LEWJift55aWeZses8PeraOhScVglFS5frTS9-B-at2etHomZ9N_lRS54qQZ6mNqpu94dccG5Vb9d-HLP9Mkf4uVZhM0fwQHA3YsP_TcHsIedo_hQX-a5I8nsDi3qdnCdRkxXbmYX5QrvB0U6335LVc3l5ucAnsar7bFsutzwOO97dry9ma9jZ8PmAWzfgqX808Xs7NqOC6h8tEL2VQYfUrvrHfSRxczEO-FxhSnix5DEIHQlpJgI17xzFrRYkMaTZEQRqSkDhV7BvvdssMjKF0t0DtNlMXAAwYrGsFUQBVq2kjLCiCjAI0feomnIy2-mhzTZtr0QjdR6CYL3egC3k7vfO87afyT-mOal4kydcHOD5arazNohWllRDdeBWWJ5yiFlYxa5lDLuo0GwBdwPM6qGZbm2tAEubhgjSjg9TQcF1WKlNgOl9ueRjVpgyvgea8EEyeMSy2jiS9A7ajHDqu7I93Nl9y4O0IjqSgv4HRUpF9s_V0UL_6P_CU8pEnXo32l9Bj2N6stnkTgtHGv8kr5Cb0bEeA priority: 102 providerName: Springer Nature |
Title | Mapping the NFT revolution: market trends, trade networks, and visual features |
URI | https://link.springer.com/article/10.1038/s41598-021-00053-8 https://www.ncbi.nlm.nih.gov/pubmed/34686678 https://www.proquest.com/docview/2584645395 https://www.proquest.com/docview/2584790040 https://pubmed.ncbi.nlm.nih.gov/PMC8536724 https://doaj.org/article/d6222c7f7a1c4e65a632a3be860d467c |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB_ugeAX8W31XCr4zatukuZRQWRvueVY2EX0FvZbSdLk7uDs6j4O7793knZXVlfxU2iThjCd6fymyfwG4DWjLq-MkVnujcpy7opMK1FkvnKGm67XwoVAcTQWZ5N8OOXTPViXO2oFuNgZ2oV6UpP59dsf328_osF_aFLG1bsFOqGQKEZJFnNLM7UPh-iZZDDUUQv3G65vWuSx1kcgYc8QTNA2j2b3NFu-KlL678Khfx6n_G1PNbqqwX2412LMtNcoxQPYc_VDuNNUnbx9BOORDqQMFyliv3Q8OE_n7qZVwPfp15gFnS7jUdljbHXl0ro5K47Xuq7Sm6vFCqf3LnKCLh7DZHB63j_L2rIKmcVoZZk5jD2t0dYIi6GoJ9Zy5cJ-HkYWnntCK0q8Rlxjmda8cgUpFHWEMCIENU6yJ3BQz2r3DFLT5c4aRaR2PvfOa15wJr2TvksLoVkCZC3A0rac46H0xXUZ976ZKhuhlyj0Mgq9VAm82TzzrWHc-Ofok_BeNiMDW3a8MZtflK3xlZVAFGSll5rY3AmuBaOaGadEt0JHYRM4Wr_Vcq2BJQ3QLOes4Am82nSj8YUdFV272aoZI4vwIUzgaaMEm5WwXCiBUCABuaUeW0vd7qmvLiPBN0IoIWmewPFakX4t6--ieP4fy3wBd2lQcHS-lB7BwXK-ci8RVS1NB_blVHbgsNcbfhlie3I6_vQZ7_ZFvxP_VHSiMf0EcR0g_w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYIETzRqbMdOgoQQha62tLtCaCv1LbWdcakE2bJHUf8Uv5Fxjq2Wo299ihI7kTMee77xXAAvBcekNCaNEmeyKJGYRzpTeeRKNNLETiv0iuJwpAYHyadDebgGv7pYGO9W2e2J9UZdTqw_I9_iXlImUuTy3emPyFeN8tbVroRGwxZ7eP6TVLbZ292PNL-vOO_vjD8MoraqQGQJrM8jJNXLGm2NsqSJOWatzNCbswhYO-kYLzlzmsS6FVrLEnNSyzkyJphS3GAq6LvXYD0RpMr0YH17Z_T5y_JUx9vNEpa30TmxyLZmJCF9FBtnUR34GmUrErAuFPAvdPu3k-YfltpaAPZvw60WuYbvG1a7A2tY3YXrTS3L83swGmqf6uE4JEQZjvrjcIpnLVu_Cb_XsdXhvHbA3aSrLjGsGg90utdVGZ6dzBb0eYd1ptHZfTi4ErI-gF41qfARhCaWaE3GUo0ucei0zKVIHaYu5rnSIgDWEbCwbSZzX1DjW1Fb1EVWNEQviOhFTfQiC-D18p3TJo_Hpb23_bwse_oc3PWDyfS4aJd0USrCVjZ1qWY2QSW1ElwLg5mKSxI_NoCNblaLdmOYFRdsHMCLZTMtaW-n0RVOFk2fNPfbawAPGyZYjkQkKlMEMAJIV9hjZairLdXJ1zptOAEzlfIkgM2OkS6G9X9SPL78L57DjcF4uF_s7472nsBN7vmcJDvnG9CbTxf4lCDb3Dxr10kIR1e9NH8DCCtSHw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2gQJDgRKON7dhOkBACyqqldMWhlfbm2s64VIJs2UdR_xq_jrGTbLU8euspSuJEznjG803mRcgLzqCorVVZ4W2ZFQKqzJSyynwNVtjcGwnBUNwbye2D4tNYjNfIrz4XJoRV9nti3KjriQv_yAcsaMpC8EoMfBcW8WVr-PbkRxY6SAVPa99Oo2WRXTj7iebb7M3OFq71S8aGH_c_bGddh4HMIXCfZ4BmmLPGWenQKvPUOVFCcG0hyPbCU1Yz6g2qeMeNETVUaKIzoJRTKZkFxfG9V8hVxQUNMqbGavl_J3jQClp1eTo5Lwcz1JUhn43RLKbAZuWKLowtA_6Fc_8O1_zDZxtV4fAWudlh2PRdy3S3yRo0d8i1tqvl2V0y2jOh6MNRitgyHQ330ymcdgz-Ov0es6zTeQzF3cSjqSFt2lh0PDdNnZ4ezxb4eg-x5ujsHjm4FKLeJ-vNpIGHJLW5AGdLqgz4woM3ohJceVA-Z5U0PCG0J6B2XU3z0Frjm46-dV7qlugaia4j0XWZkFfLZ07aih4Xjn4f1mU5MlTjjhcm0yPdCbeuJaIsp7wy1BUghZGcGW6hlHmNisglZKNfVd1tETN9ztAJeb68jcIdPDamgcmiHaOqsNEm5EHLBMuZ8EKWEqFGQtQKe6xMdfVOc_w1FhBHiCYVKxKy2TPS-bT-T4pHF3_FM3IdBVJ_3hntPiY3WGBzVPGMbZD1-XQBTxC7ze3TKCQpObxsqfwNHdlU7w |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+NFT+revolution%3A+market+trends%2C+trade+networks%2C+and+visual+features&rft.jtitle=Scientific+reports&rft.au=Nadini%2C+Matthieu&rft.au=Alessandretti%2C+Laura&rft.au=Di+Giacinto%2C+Flavio&rft.au=Martino%2C+Mauro&rft.date=2021-10-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=20902&rft_id=info:doi/10.1038%2Fs41598-021-00053-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |