Mapping the NFT revolution: market trends, trade networks, and visual features

Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market ha...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 11; no. 1; pp. 20902 - 11
Main Authors Nadini, Matthieu, Alessandretti, Laura, Di Giacinto, Flavio, Martino, Mauro, Aiello, Luca Maria, Baronchelli, Andrea
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.10.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts.
AbstractList Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts.
Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts.Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts.
Abstract Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with cryptocurrency, and are generally encoded within smart contracts on a blockchain. Public attention towards NFTs has exploded in 2021, when their market has experienced record sales, but little is known about the overall structure and evolution of its market. Here, we analyse data concerning 6.1 million trades of 4.7 million NFTs between June 23, 2017 and April 27, 2021, obtained primarily from Ethereum and WAX blockchains. First, we characterize statistical properties of the market. Second, we build the network of interactions, show that traders typically specialize on NFTs associated with similar objects and form tight clusters with other traders that exchange the same kind of objects. Third, we cluster objects associated to NFTs according to their visual features and show that collections contain visually homogeneous objects. Finally, we investigate the predictability of NFT sales using simple machine learning algorithms and find that sale history and, secondarily, visual features are good predictors for price. We anticipate that these findings will stimulate further research on NFT production, adoption, and trading in different contexts.
ArticleNumber 20902
Author Di Giacinto, Flavio
Nadini, Matthieu
Alessandretti, Laura
Aiello, Luca Maria
Baronchelli, Andrea
Martino, Mauro
Author_xml – sequence: 1
  givenname: Matthieu
  surname: Nadini
  fullname: Nadini, Matthieu
  organization: Department of Mathematics, City University of London, The Alan Turing Institute, British Library
– sequence: 2
  givenname: Laura
  orcidid: 0000-0001-6003-1165
  surname: Alessandretti
  fullname: Alessandretti, Laura
  organization: Technical University of Denmark
– sequence: 3
  givenname: Flavio
  surname: Di Giacinto
  fullname: Di Giacinto, Flavio
  organization: Department of Mathematics, City University of London, Department of Neuroscience, Catholic University of the Sacred Heart
– sequence: 4
  givenname: Mauro
  surname: Martino
  fullname: Martino, Mauro
  organization: IBM Research
– sequence: 5
  givenname: Luca Maria
  surname: Aiello
  fullname: Aiello, Luca Maria
  organization: IT University of Copenhagen
– sequence: 6
  givenname: Andrea
  surname: Baronchelli
  fullname: Baronchelli, Andrea
  email: abaronchelli@turing.ac.uk
  organization: Department of Mathematics, City University of London, The Alan Turing Institute, British Library, UCL Centre for Blockchain Technologies, University College London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34686678$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLUv_AAcUiQsHAv62w6ESqihUKuVSzpbjvGyzzdqL7Szi3-PdlNL20JO_ZubN85uX6MAHDwi9JvgDwUx_TJyIRteYkhpjLFitn6EjirmoKaP04N7-EB2ntMI7FG04aV6gQ8alllLpI3T53W42g19W-Rqqy7OrKsI2jFMegv9UrW28gVzlCL5L78tqO6g85N8h3pSz9V21HdJkx6oHm6cI6RV63tsxwfHtukA_z75cnX6rL358PT_9fFE7iWWuQVDmWuta6QijPXFOaJAcK8VVL3pCO0p6q6hyzFrRQUMaTYEQRqSkLSi2QOezbhfsymziUKz-McEOZn8R4tLYmAc3gukkpdSpXlniOEhhJaOWtaAl7rgsFRboZNbaTO0aOge-NDo-EH344odrswxbowWTivIi8O5WIIZfE6Rs1kNyMI7WQ5iSoUJz1WDMcYG-fQRdhSn68lV7lOSCNaKg3tx3dGfl39gKgM4AF0NKEfo7CMFmFw8zx8OUeJh9PMyOpB-R3JDtbtKlq2F8mspmaip1_BLif9tPsP4CADfNeg
CitedBy_id crossref_primary_10_1007_s11469_022_00894_y
crossref_primary_10_1016_j_apmrv_2024_09_004
crossref_primary_10_21202_jdtl_2023_6
crossref_primary_10_1002_jvc2_95
crossref_primary_10_1016_j_irfa_2023_102916
crossref_primary_10_1080_1097198X_2023_2167561
crossref_primary_10_2478_tjcp_2024_0005
crossref_primary_10_2139_ssrn_4097185
crossref_primary_10_1109_ACCESS_2022_3202550
crossref_primary_10_1016_j_ijresmar_2022_07_004
crossref_primary_10_1016_j_ijresmar_2022_07_003
crossref_primary_10_24182_2073_9885_2023_16_2_86_102
crossref_primary_10_3917_jie_pr1_0162
crossref_primary_10_1111_joes_12597
crossref_primary_10_3390_fi15120382
crossref_primary_10_1108_EMJB_10_2023_0270
crossref_primary_10_1109_ACCESS_2023_3333897
crossref_primary_10_1177_03063127241286447
crossref_primary_10_1109_MMUL_2023_3246528
crossref_primary_10_1002_cb_2264
crossref_primary_10_1016_j_jbef_2023_100837
crossref_primary_10_1016_j_pacfin_2022_101876
crossref_primary_10_3390_su15043541
crossref_primary_10_1016_j_econmod_2024_106882
crossref_primary_10_1016_j_najef_2023_101995
crossref_primary_10_3390_arts12050211
crossref_primary_10_3390_fintech1010003
crossref_primary_10_1016_j_jbef_2022_100692
crossref_primary_10_1109_TCSS_2023_3319554
crossref_primary_10_17484_yedi_1039170
crossref_primary_10_1007_s10586_023_04188_3
crossref_primary_10_1520_SSMS20220013
crossref_primary_10_3390_su16156587
crossref_primary_10_2298_GEI2301099M
crossref_primary_10_1016_j_tele_2022_101830
crossref_primary_10_3390_informatics9040094
crossref_primary_10_1108_JEBDE_11_2024_0043
crossref_primary_10_3390_jrfm16110465
crossref_primary_10_3389_fbloc_2023_1101939
crossref_primary_10_1007_s11135_024_01931_9
crossref_primary_10_1016_j_compbiomed_2023_106778
crossref_primary_10_1016_j_dib_2023_109749
crossref_primary_10_4236_adr_2023_112008
crossref_primary_10_1016_j_frl_2022_103489
crossref_primary_10_1007_s10479_023_05693_9
crossref_primary_10_1016_j_frl_2022_103007
crossref_primary_10_1080_17517575_2025_2462069
crossref_primary_10_2478_ttj_2024_0028
crossref_primary_10_1080_10293523_2022_2155354
crossref_primary_10_24040_aap_2025_22_1_1_12
crossref_primary_10_3390_info15070378
crossref_primary_10_1002_cb_2482
crossref_primary_10_1016_j_ijresmar_2024_12_002
crossref_primary_10_1177_20438869231219517
crossref_primary_10_1016_j_jbusres_2023_114056
crossref_primary_10_1016_j_osnem_2024_100292
crossref_primary_10_1016_j_frl_2023_103651
crossref_primary_10_1016_j_jretconser_2024_104094
crossref_primary_10_1109_TEM_2022_3215793
crossref_primary_10_1145_3703411
crossref_primary_10_32604_cmc_2023_037553
crossref_primary_10_18037_ausbd_1225897
crossref_primary_10_1080_23311975_2025_2469764
crossref_primary_10_18601_01236458_n57_06
crossref_primary_10_1016_j_digbus_2024_100074
crossref_primary_10_1016_j_irfa_2022_102313
crossref_primary_10_1016_j_ijresmar_2024_08_007
crossref_primary_10_1016_j_irfa_2023_102558
crossref_primary_10_31866_2410_1915_23_2022_260967
crossref_primary_10_1109_TEM_2024_3500359
crossref_primary_10_2139_ssrn_4585185
crossref_primary_10_1016_j_future_2023_02_008
crossref_primary_10_1016_j_iref_2022_11_014
crossref_primary_10_1515_opphil_2024_0027
crossref_primary_10_1038_s41433_022_02371_1
crossref_primary_10_1140_epjds_s13688_023_00397_3
crossref_primary_10_1186_s40854_022_00428_4
crossref_primary_10_1080_10864415_2023_2295070
crossref_primary_10_33793_acperpro_05_03_2162
crossref_primary_10_34104_bjah_02302770290
crossref_primary_10_57019_jmv_1053778
crossref_primary_10_37867_TE140228
crossref_primary_10_1016_j_dss_2024_114341
crossref_primary_10_1371_journal_pone_0287881
crossref_primary_10_3390_bdcc7010038
crossref_primary_10_1016_j_ijresmar_2025_01_005
crossref_primary_10_3390_s23177391
crossref_primary_10_2139_ssrn_4119406
crossref_primary_10_1080_23322039_2025_2468387
crossref_primary_10_2139_ssrn_4074154
crossref_primary_10_1016_j_najef_2024_102149
crossref_primary_10_55179_dusbed_1193852
crossref_primary_10_1063_5_0185306
crossref_primary_10_1080_00207543_2025_2449588
crossref_primary_10_3390_fi15060189
crossref_primary_10_1007_s41109_024_00682_8
crossref_primary_10_1109_ACCESS_2024_3370155
crossref_primary_10_18778_1733_8069_21_1_04
crossref_primary_10_1016_j_jbusres_2022_08_031
crossref_primary_10_1007_s42452_023_05487_5
crossref_primary_10_1016_j_jbusres_2022_113420
crossref_primary_10_1016_j_bcra_2024_100191
crossref_primary_10_3390_fi15050166
crossref_primary_10_1016_j_chb_2024_108307
crossref_primary_10_1109_TCSS_2024_3415631
crossref_primary_10_1016_j_dcan_2023_11_006
crossref_primary_10_1038_s41598_024_55011_x
crossref_primary_10_7456_tojdac_1413518
crossref_primary_10_2478_ngoe_2023_0012
crossref_primary_10_1136_gpsych_2022_100825
crossref_primary_10_1007_s12525_024_00722_2
crossref_primary_10_1016_j_ribaf_2024_102429
crossref_primary_10_1108_JKM_12_2022_0937
crossref_primary_10_2139_ssrn_4279215
crossref_primary_10_1016_j_autcon_2023_104783
crossref_primary_10_3390_jrfm15050215
crossref_primary_10_1111_eufm_12506
crossref_primary_10_1007_s12599_021_00736_6
crossref_primary_10_7232_JKIIE_2023_49_4_309
crossref_primary_10_1016_j_socnet_2024_10_002
crossref_primary_10_1016_j_ribaf_2023_101945
crossref_primary_10_3390_su141912074
crossref_primary_10_1016_j_iref_2023_07_016
crossref_primary_10_1038_s41598_024_75348_7
crossref_primary_10_1016_j_stae_2025_100099
crossref_primary_10_1080_2157930X_2023_2180709
crossref_primary_10_1109_JSAC_2023_3345432
crossref_primary_10_1016_j_gfj_2024_100989
crossref_primary_10_1038_s41598_022_17922_5
crossref_primary_10_1057_s41599_024_02872_2
crossref_primary_10_1371_journal_pone_0300599
crossref_primary_10_3390_su15097573
crossref_primary_10_3390_info14010026
crossref_primary_10_1093_jcr_ucad082
crossref_primary_10_1109_ACCESS_2023_3346448
crossref_primary_10_1016_j_frl_2022_103188
crossref_primary_10_1038_s41598_024_78379_2
crossref_primary_10_1016_j_im_2023_103898
crossref_primary_10_1177_23197145241300899
crossref_primary_10_1016_j_osnem_2023_100266
crossref_primary_10_1016_j_ribaf_2023_101957
crossref_primary_10_23919_JSC_2024_0029
crossref_primary_10_1108_JMLC_01_2023_0005
crossref_primary_10_3390_math10030335
crossref_primary_10_54691_bcpbm_v28i_2216
crossref_primary_10_1109_ACCESS_2023_3261555
crossref_primary_10_1016_j_jjimei_2023_100176
crossref_primary_10_3390_arts12010025
crossref_primary_10_1080_0267257X_2024_2425691
crossref_primary_10_3389_fbloc_2022_1073499
crossref_primary_10_46604_peti_2024_13379
crossref_primary_10_1007_s41469_023_00154_w
crossref_primary_10_1016_j_jretai_2023_02_002
crossref_primary_10_1016_j_najef_2024_102079
crossref_primary_10_1080_14702029_2024_2393554
crossref_primary_10_1016_j_dss_2025_114407
crossref_primary_10_1109_OJCOMS_2023_3343926
crossref_primary_10_18184_2079_4665_2023_14_3_416_433
crossref_primary_10_1016_j_frl_2023_104323
crossref_primary_10_1111_jocd_15406
crossref_primary_10_1016_j_frl_2022_103175
crossref_primary_10_24891_fc_28_3_699
crossref_primary_10_1038_s41598_022_05146_6
crossref_primary_10_1140_epjds_s13688_024_00472_3
crossref_primary_10_1016_j_technovation_2025_103183
crossref_primary_10_1108_INTR_08_2022_0666
crossref_primary_10_1109_MCE_2022_3196480
crossref_primary_10_1016_j_techfore_2024_123605
crossref_primary_10_1016_j_jeconc_2024_100118
crossref_primary_10_3390_math10173218
crossref_primary_10_1140_epjds_s13688_023_00418_1
crossref_primary_10_7232_JKIIE_2023_49_1_046
crossref_primary_10_1016_j_ijresmar_2024_10_008
crossref_primary_10_1016_j_newideapsych_2022_100982
crossref_primary_10_48175_IJARSCT_8545
crossref_primary_10_1016_j_ceh_2023_07_004
crossref_primary_10_1016_j_jretconser_2024_104121
crossref_primary_10_1080_20932685_2023_2249476
crossref_primary_10_2478_ijmbr_2023_0006
crossref_primary_10_1109_OJCS_2022_3188249
crossref_primary_10_1080_14626268_2023_2277234
crossref_primary_10_2196_46160
crossref_primary_10_22363_2313_2329_2022_30_2_192_203
crossref_primary_10_1016_j_dss_2024_114247
crossref_primary_10_16953_deusosbil_1106349
crossref_primary_10_53443_anadoluibfd_1238163
crossref_primary_10_2139_ssrn_4485278
crossref_primary_10_3390_fintech1030017
crossref_primary_10_1007_s42521_023_00088_8
crossref_primary_10_1016_j_future_2023_03_047
crossref_primary_10_1080_23311983_2024_2430897
crossref_primary_10_1108_JFMM_07_2024_0260
crossref_primary_10_4018_JGIM_317097
crossref_primary_10_4236_ojapps_2024_1411217
crossref_primary_10_1016_j_comcom_2024_107965
crossref_primary_10_1016_j_jbvi_2022_e00323
crossref_primary_10_2139_ssrn_4546638
crossref_primary_10_1086_734656
crossref_primary_10_1002_isaf_1544
crossref_primary_10_1007_s41109_023_00565_4
crossref_primary_10_1016_j_jfds_2024_100148
crossref_primary_10_18267_j_pep_861
crossref_primary_10_1155_2024_7488352
crossref_primary_10_3390_jcm13154337
crossref_primary_10_1186_s40854_024_00672_w
crossref_primary_10_1016_j_ijresmar_2022_08_002
crossref_primary_10_1108_JOSM_03_2023_0113
crossref_primary_10_1051_shsconf_202315704019
crossref_primary_10_1177_21582440241311348
crossref_primary_10_1016_j_ijresmar_2024_06_003
crossref_primary_10_1007_s11002_022_09639_2
crossref_primary_10_33851_JMIS_2022_9_4_299
crossref_primary_10_26794_2587_5671_2024_28_6_122_133
crossref_primary_10_1038_s41598_023_30431_3
crossref_primary_10_1080_14765284_2022_2138161
crossref_primary_10_1109_ACCESS_2023_3241226
crossref_primary_10_3233_HSM_220196
crossref_primary_10_1016_j_actpsy_2024_104424
crossref_primary_10_1007_s10660_024_09881_y
crossref_primary_10_1057_s41260_023_00316_1
crossref_primary_10_2478_csep_2021_0007
crossref_primary_10_20396_modos_v8i2_8675802
crossref_primary_10_3389_fpubh_2023_1266385
crossref_primary_10_1287_isre_2023_0035
crossref_primary_10_1556_2006_2022_00066
crossref_primary_10_1016_j_sipas_2022_100065
crossref_primary_10_1109_TCSS_2024_3430846
crossref_primary_10_1186_s40854_023_00570_7
crossref_primary_10_1038_s42256_022_00549_6
crossref_primary_10_1109_ACCESS_2022_3219495
crossref_primary_10_2139_ssrn_4284776
crossref_primary_10_53841_bpsadm_2023_15_2_43
crossref_primary_10_1051_shsconf_202316502009
crossref_primary_10_25038_am_v0i28_563
crossref_primary_10_1080_10438599_2022_2119564
crossref_primary_10_1109_TCSS_2022_3221669
crossref_primary_10_1016_j_procs_2023_01_329
crossref_primary_10_17572_mj2022_1_5272
crossref_primary_10_1016_j_pacfin_2025_102696
crossref_primary_10_1016_j_bcra_2021_100038
crossref_primary_10_1080_09502386_2024_2329873
crossref_primary_10_57019_jmv_1120470
crossref_primary_10_1109_ACCESS_2023_3236080
crossref_primary_10_2139_ssrn_4495156
crossref_primary_10_1186_s40854_024_00684_6
crossref_primary_10_1007_s00779_023_01708_1
crossref_primary_10_3389_fbloc_2023_1206330
crossref_primary_10_1371_journal_pone_0287262
crossref_primary_10_1016_j_frl_2023_103690
crossref_primary_10_1186_s40854_024_00623_5
crossref_primary_10_1016_j_engappai_2024_109179
crossref_primary_10_1016_j_frl_2023_104428
crossref_primary_10_1016_j_bcra_2024_100244
crossref_primary_10_57019_jmv_1223704
Cites_doi 10.1098/rsos.170623
10.1145/3402443
10.1109/Cybermatics_2018.2018.00267
10.1155/2018/8983590
10.1016/j.neucom.2018.02.100
10.1007/978-3-662-63958-0_42
10.1016/j.frl.2021.102097
10.1038/srep01801
10.1109/CVPR.2009.5206848
10.1007/978-1-4757-1904-8_8
10.1007/s100510050067
10.1137/070710111
10.2139/ssrn.3842210
10.34053/artivate.8.2.2
10.21105/joss.01425
10.1177/1555412019898305
10.1016/0020-0190(94)90047-7
10.1103/PhysRevE.67.026126
10.1073/pnas.0400087101
10.1103/PhysRevE.70.066111
10.1016/j.frl.2021.102096
10.1007/s10462-020-09825-6
10.3389/fbloc.2019.00012
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X5
7X7
7XB
88A
88E
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BEZIV
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K6~
K9.
LK8
M0S
M1P
M2P
M7P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41598-021-00053-8
DatabaseName Springer Nature OA Free Journals (WRLC)
CrossRef
PubMed
ProQuest Central (Corporate)
Entrepreneurship Database
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Business Premium Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Business Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Entrepreneurship
Business Premium Collection
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Business Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef
Publicly Available Content Database
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2045-2322
EndPage 11
ExternalDocumentID oai_doaj_org_article_d6222c7f7a1c4e65a632a3be860d467c
PMC8536724
34686678
10_1038_s41598_021_00053_8
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: The research was partly supported by The Alan Turing Institute.
– fundername: ;
GroupedDBID 0R~
3V.
4.4
53G
5VS
7X7
88A
88E
88I
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
AAKDD
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
ADRAZ
AENEX
AEUYN
AFKRA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BAWUL
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
DWQXO
EBD
EBLON
EBS
ESX
FYUFA
GNUQQ
GROUPED_DOAJ
GX1
HCIFZ
HH5
HMCUK
HYE
KQ8
LK8
M0L
M1P
M2P
M48
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
AFPKN
CITATION
PHGZM
PHGZT
NPM
7X5
7XB
8FK
AARCD
BEZIV
K6~
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-e523cbacb6c132f1cc58e6407747f5f12d21fa727c3aa5de91982e1131662be73
IEDL.DBID M48
ISSN 2045-2322
IngestDate Wed Aug 27 01:27:02 EDT 2025
Thu Aug 21 14:10:45 EDT 2025
Thu Jul 10 16:59:04 EDT 2025
Wed Aug 13 09:16:45 EDT 2025
Thu Apr 03 06:53:37 EDT 2025
Tue Jul 01 01:33:35 EDT 2025
Thu Apr 24 23:02:31 EDT 2025
Fri Feb 21 02:38:57 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-e523cbacb6c132f1cc58e6407747f5f12d21fa727c3aa5de91982e1131662be73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6003-1165
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-00053-8
PMID 34686678
PQID 2584645395
PQPubID 2041939
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_d6222c7f7a1c4e65a632a3be860d467c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8536724
proquest_miscellaneous_2584790040
proquest_journals_2584645395
pubmed_primary_34686678
crossref_primary_10_1038_s41598_021_00053_8
crossref_citationtrail_10_1038_s41598_021_00053_8
springer_journals_10_1038_s41598_021_00053_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-22
PublicationDateYYYYMMDD 2021-10-22
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Scientific reports
PublicationTitleAbbrev Sci Rep
PublicationTitleAlternate Sci Rep
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References FreundYSchapireRAbeNA short introduction to boostingJ.-Japan. Soc. Artif. Intell.1999141612
Rosenbaum, D. Gods-Unchained marketplace. (2021). https://github.com/djrosenbaum/unchained-transactions. (Accessed 4 May 2021). (The Graph).
Team, N. Non-fungible tokens quarterly report Q1 2021. (2021). https://nonfungible.com/subscribe/nft-report-q1-2021. (Accessed 4 May 2021). (NonFungible Corporation).
Team, N. The best place to analyze, track, and discover NFTs. (2021). https://nonfungible.com/. (Accessed 4 May 2021). (NonFungible Corporation).
Wong, J. I. The Ethereum network is getting jammed up because people are rushing to buy cartoon cats on its blockchain. (2017). https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/. (Accessed 4 May 2021). (Quartz).
ClausetANewmanMEMooreCFinding community structure in very large networksPhys. Rev. E2004700661112004PhRvE..70f6111C10.1103/PhysRevE.70.066111
Riegelhaupt, R. Results: Beeple’s purely digital NFT-based work of Art achieves \$69.3 million at Christie’s. (2021). https://www.christies.com/about-us/press-archive/details?PressReleaseID=9970&lid=1. (Accessed 4 May 2021). (Christie’s Press Release).
Team, C. (2021). CryptoKitties: Collect and breed furrever friends. https://www.cryptokitties.co/. (Accessed 4 May 2021). (Cryptokitties).
FranceschetMArt for spaceJ. Comput. Cultural Heritage (JOCCH)2020131910.1145/3402443
PreisTMoatHSStanleyHEQuantifying trading behavior in financial markets using google trendsSci. Rep.201331610.1038/srep01684
KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksAdv. Neural Inf. Process. Syst.20122510971105
Devlin, J. The “insane” money in trading collectible cards. (2021). https://www.bbc.co.uk/news/business-56413186. (Accessed 20 May 2021). (BBC).
Dowling, M. Fertile land: Pricing non-fungible tokens. Finance Res. Lett. 102096, https://doi.org/10.1016/j.frl.2021.102096 (2021).
NewmanMEMixing patterns in networksPhys. Rev. E2003670261262003PhRvE..67b6126N19751931:STN:280:DC%2BD3s7itlOrtA%3D%3D10.1103/PhysRevE.67.026126
Reyburn, S. JPG file sells for \$69 million, as “NFT mania” gathers pace. (2021). https://www.nytimes.com/2021/03/11/arts/design/nft-auction-christies-beeple.html. (Accessed 4 May 2021). (The New York Times).
Howcroft, E. “Cryptopunk” NFT sells for \$11.8 million at Sotheby’s. (2021). https://www.reuters.com/technology/cryptopunk-nft-sells-118-million-sothebys-2021-06-10/. (Accessed 25 June 2021). (Reuters).
van Haaften-Schick, L. & Whitaker, A. From the artist’s contract to the blockchain ledger: New forms of artists’ funding using NFTs, fractional equity, and resale royalties. Available at SSRN 3842210, https://doi.org/10.2139/ssrn.3842210 (2021).
EvansTMCryptokitties, cryptography, and copyrightAIPLA QJ201947219247
Lounge, T. W. Choosing the right blockchain for your NFT. (2020). https://medium.com/phantasticphantasma/choosing-the-right-blockchain-for-your-nft-d1df2bebae91. (Accessed 4 May 2021). (Medium).
Deng, J. et al. Imagenet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, 2009).
SeradaASihvonenTHarviainenJTCryptoKitties and the new ludic economy: How blockchain introduces value, ownership, and scarcity in digital gamingGames Culture20211645748010.1177/1555412019898305
XuXLiangTZhuJZhengDSunTReview of classical dimensionality reduction and sample selection methods for large-scale data processingNeurocomputing201932851510.1016/j.neucom.2018.02.100
Barabási, A.-L. The Art market often works in secret. Here’s a look inside. (2021). https://www.nytimes.com/2021/05/07/opinion/nft-art-market.html. (Accessed 17 May 2021). (The New York Times).
AslakUMaierBFNetwulf: Interactive visualization of networks in pythonJ. Open Source Softw.2019414252019JOSS....4.1425A10.21105/joss.01425
Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. arXiv preprintarXiv:1912.01703 (2019).
ElBahrawyAAlessandrettiLBaronchelliAWikipedia and cryptocurrencies: Interplay between collective attention and market performanceFront. Blockchain201921210.3389/fbloc.2019.00012
MoatHSQuantifying wikipedia usage patterns before stock market movesSci. Rep.201331510.1038/srep01801
Tepper, F. People have spent over \$1m buying virtual cats on the Ethereum blockchain. (2017). https://techcrunch.com/2017/12/03/people-have-spent-over-1m-buying-virtual-cats-on-the-ethereum-blockchain/. (Accessed 4 May 2021). (TechCrunch).
Dowling, M. Is non-fungible token pricing driven by cryptocurrencies? Finance Res. Lett. 102097, ISSN 1544-6123. https://doi.org/10.1016/j.frl.2021.102097 (2021).
Phillips, D. The 10 most expensive NFTs ever sold. (2021). https://decrypt.co/62898/the-10-most-expensive-nfts-ever-sold. (Accessed 20 May 2021). (Decrypt).
Ben Luke, A. S. & Stoilas, H. WTF are NFTs? Why crypto is dominating the Art market. (2021). https://www.theartnewspaper.com/podcast/wtf-nfts. (Accessed 4 May 2021). (The Art Newspaper).
ElBahrawyAAlessandrettiLKandlerAPastor-SatorrasRBaronchelliAEvolutionary dynamics of the cryptocurrency marketR. Soc. Open Sci.20174170623374598610.1098/rsos.170623
Jolliffe, I. T. Principal components in regression analysis. in Principal Component Analysis, 129–155 (Springer, 1986).
Sako, K., Matsuo, S. & Meier, S. Fairness in ERC token markets: A case study of CryptoKitties. arXiv preprintarXiv:2102.03721 (2021).
Westerkamp, M., Victor, F. & Küpper, A. Blockchain-based supply chain traceability: Token recipes model manufacturing processes. in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 1595–1602 (IEEE, 2018).
WhitakerAArt and blockchain: A primer, history, and taxonomy of blockchain use cases in the ArtsArtivate20198214610.1353/artv.2019.0008
BarratAWeigtMOn the properties of small-world network modelsEur. Phys. J. B-Condensed Matter Complex Syst.2000135475601:CAS:528:DC%2BD3cXhsVGrs7w%3D10.1007/s100510050067
Wang, Q., Li, R., Wang, Q. & Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv preprintarXiv:2105.07447 (2021).
KhanASohailAZahooraUQureshiASA survey of the recent architectures of deep convolutional neural networksArtif. Intell. Rev.2020535455551610.1007/s10462-020-09825-6
Alessandretti, L., ElBahrawy, A., Aiello, L. M. & Baronchelli, A. Anticipating cryptocurrency prices using machine learning. Complexity. 8983590, https://doi.org/10.1155/2018/8983590 (2018).
de la Rouviere, N. A subgraph to index & explore CryptoKitties auctions. (2021). https://thegraph.com/explorer/subgraph/nieldlr/cryptokitties-sales. (Accessed 4 May 2021). (The Graph).
Team, A. M. Atomic market API. (2021). https://wax.api.atomicassets.io/atomicmarket/docs/swagger/. (Accessed 4 May 2021).
OpenSea, T. Discover, collect, and sell extraordinary NFTs. (2021). https://opensea.io/. (Accessed 28 May 2021). (OpenSea).
ClausetAShaliziCRNewmanMEPower-law distributions in empirical dataSIAM Rev.2009516617032009SIAMR..51..661C256382910.1137/070710111
Team, O. API overview. (2021). https://docs.opensea.io/reference. (Accessed 4 May 2021). (OpenSea).
BarratABarthelemyMPastor-SatorrasRVespignaniAThe architecture of complex weighted networksProc. Natl. Acad. Sci.2004101374737522004PNAS..101.3747B1:CAS:528:DC%2BD2cXis1KgtLk%3D10.1073/pnas.0400087101
NuutilaESoisalon-SoininenEOn finding the strongly connected components in a directed graphInf. Process. Lett.199449914126491810.1016/0020-0190(94)90047-7
Team, D. Decentraland marketplace. (2021). https://thegraph.com/explorer/subgraph/decentraland/marketplace. (Accessed 4 May 2021). (The Graph).
53_CR10
HS Moat (53_CR38) 2013; 3
A Clauset (53_CR26) 2009; 51
A Whitaker (53_CR15) 2019; 8
ME Newman (53_CR28) 2003; 67
A ElBahrawy (53_CR36) 2017; 4
53_CR19
E Nuutila (53_CR30) 1994; 49
Y Freund (53_CR32) 1999; 14
53_CR14
M Franceschet (53_CR21) 2020; 13
53_CR13
A Serada (53_CR17) 2021; 16
53_CR35
53_CR12
53_CR11
53_CR18
A ElBahrawy (53_CR39) 2019; 2
53_CR16
X Xu (53_CR34) 2019; 328
53_CR9
53_CR8
T Preis (53_CR37) 2013; 3
53_CR43
53_CR20
53_CR42
53_CR41
53_CR40
U Aslak (53_CR31) 2019; 4
53_CR2
53_CR1
53_CR7
53_CR6
53_CR5
53_CR4
A Barrat (53_CR23) 2000; 13
A Clauset (53_CR29) 2004; 70
A Krizhevsky (53_CR46) 2012; 25
53_CR25
53_CR47
53_CR24
53_CR45
TM Evans (53_CR3) 2019; 47
53_CR22
A Khan (53_CR33) 2020; 53
53_CR44
A Barrat (53_CR27) 2004; 101
53_CR48
References_xml – reference: Team, N. Non-fungible tokens quarterly report Q1 2021. (2021). https://nonfungible.com/subscribe/nft-report-q1-2021. (Accessed 4 May 2021). (NonFungible Corporation).
– reference: Reyburn, S. JPG file sells for \$69 million, as “NFT mania” gathers pace. (2021). https://www.nytimes.com/2021/03/11/arts/design/nft-auction-christies-beeple.html. (Accessed 4 May 2021). (The New York Times).
– reference: Dowling, M. Is non-fungible token pricing driven by cryptocurrencies? Finance Res. Lett. 102097, ISSN 1544-6123. https://doi.org/10.1016/j.frl.2021.102097 (2021).
– reference: KhanASohailAZahooraUQureshiASA survey of the recent architectures of deep convolutional neural networksArtif. Intell. Rev.2020535455551610.1007/s10462-020-09825-6
– reference: NuutilaESoisalon-SoininenEOn finding the strongly connected components in a directed graphInf. Process. Lett.199449914126491810.1016/0020-0190(94)90047-7
– reference: Barabási, A.-L. The Art market often works in secret. Here’s a look inside. (2021). https://www.nytimes.com/2021/05/07/opinion/nft-art-market.html. (Accessed 17 May 2021). (The New York Times).
– reference: AslakUMaierBFNetwulf: Interactive visualization of networks in pythonJ. Open Source Softw.2019414252019JOSS....4.1425A10.21105/joss.01425
– reference: Paszke, A. et al. Pytorch: An imperative style, high-performance deep learning library. arXiv preprintarXiv:1912.01703 (2019).
– reference: Dowling, M. Fertile land: Pricing non-fungible tokens. Finance Res. Lett. 102096, https://doi.org/10.1016/j.frl.2021.102096 (2021).
– reference: MoatHSQuantifying wikipedia usage patterns before stock market movesSci. Rep.201331510.1038/srep01801
– reference: Team, A. M. Atomic market API. (2021). https://wax.api.atomicassets.io/atomicmarket/docs/swagger/. (Accessed 4 May 2021).
– reference: FranceschetMArt for spaceJ. Comput. Cultural Heritage (JOCCH)2020131910.1145/3402443
– reference: Team, N. The best place to analyze, track, and discover NFTs. (2021). https://nonfungible.com/. (Accessed 4 May 2021). (NonFungible Corporation).
– reference: NewmanMEMixing patterns in networksPhys. Rev. E2003670261262003PhRvE..67b6126N19751931:STN:280:DC%2BD3s7itlOrtA%3D%3D10.1103/PhysRevE.67.026126
– reference: KrizhevskyASutskeverIHintonGEImagenet classification with deep convolutional neural networksAdv. Neural Inf. Process. Syst.20122510971105
– reference: Team, C. (2021). CryptoKitties: Collect and breed furrever friends. https://www.cryptokitties.co/. (Accessed 4 May 2021). (Cryptokitties).
– reference: OpenSea, T. Discover, collect, and sell extraordinary NFTs. (2021). https://opensea.io/. (Accessed 28 May 2021). (OpenSea).
– reference: Alessandretti, L., ElBahrawy, A., Aiello, L. M. & Baronchelli, A. Anticipating cryptocurrency prices using machine learning. Complexity. 8983590, https://doi.org/10.1155/2018/8983590 (2018).
– reference: Sako, K., Matsuo, S. & Meier, S. Fairness in ERC token markets: A case study of CryptoKitties. arXiv preprintarXiv:2102.03721 (2021).
– reference: van Haaften-Schick, L. & Whitaker, A. From the artist’s contract to the blockchain ledger: New forms of artists’ funding using NFTs, fractional equity, and resale royalties. Available at SSRN 3842210, https://doi.org/10.2139/ssrn.3842210 (2021).
– reference: PreisTMoatHSStanleyHEQuantifying trading behavior in financial markets using google trendsSci. Rep.201331610.1038/srep01684
– reference: Team, D. Decentraland marketplace. (2021). https://thegraph.com/explorer/subgraph/decentraland/marketplace. (Accessed 4 May 2021). (The Graph).
– reference: Jolliffe, I. T. Principal components in regression analysis. in Principal Component Analysis, 129–155 (Springer, 1986).
– reference: XuXLiangTZhuJZhengDSunTReview of classical dimensionality reduction and sample selection methods for large-scale data processingNeurocomputing201932851510.1016/j.neucom.2018.02.100
– reference: Riegelhaupt, R. Results: Beeple’s purely digital NFT-based work of Art achieves \$69.3 million at Christie’s. (2021). https://www.christies.com/about-us/press-archive/details?PressReleaseID=9970&lid=1. (Accessed 4 May 2021). (Christie’s Press Release).
– reference: ElBahrawyAAlessandrettiLBaronchelliAWikipedia and cryptocurrencies: Interplay between collective attention and market performanceFront. Blockchain201921210.3389/fbloc.2019.00012
– reference: Howcroft, E. “Cryptopunk” NFT sells for \$11.8 million at Sotheby’s. (2021). https://www.reuters.com/technology/cryptopunk-nft-sells-118-million-sothebys-2021-06-10/. (Accessed 25 June 2021). (Reuters).
– reference: Devlin, J. The “insane” money in trading collectible cards. (2021). https://www.bbc.co.uk/news/business-56413186. (Accessed 20 May 2021). (BBC).
– reference: de la Rouviere, N. A subgraph to index & explore CryptoKitties auctions. (2021). https://thegraph.com/explorer/subgraph/nieldlr/cryptokitties-sales. (Accessed 4 May 2021). (The Graph).
– reference: Deng, J. et al. Imagenet: A large-scale hierarchical image database. in 2009 IEEE Conference on Computer Vision and Pattern Recognition, 248–255 (IEEE, 2009).
– reference: Wang, Q., Li, R., Wang, Q. & Chen, S. Non-fungible token (NFT): Overview, evaluation, opportunities and challenges. arXiv preprintarXiv:2105.07447 (2021).
– reference: WhitakerAArt and blockchain: A primer, history, and taxonomy of blockchain use cases in the ArtsArtivate20198214610.1353/artv.2019.0008
– reference: FreundYSchapireRAbeNA short introduction to boostingJ.-Japan. Soc. Artif. Intell.1999141612
– reference: BarratABarthelemyMPastor-SatorrasRVespignaniAThe architecture of complex weighted networksProc. Natl. Acad. Sci.2004101374737522004PNAS..101.3747B1:CAS:528:DC%2BD2cXis1KgtLk%3D10.1073/pnas.0400087101
– reference: EvansTMCryptokitties, cryptography, and copyrightAIPLA QJ201947219247
– reference: Team, O. API overview. (2021). https://docs.opensea.io/reference. (Accessed 4 May 2021). (OpenSea).
– reference: Tepper, F. People have spent over \$1m buying virtual cats on the Ethereum blockchain. (2017). https://techcrunch.com/2017/12/03/people-have-spent-over-1m-buying-virtual-cats-on-the-ethereum-blockchain/. (Accessed 4 May 2021). (TechCrunch).
– reference: ClausetAShaliziCRNewmanMEPower-law distributions in empirical dataSIAM Rev.2009516617032009SIAMR..51..661C256382910.1137/070710111
– reference: Wong, J. I. The Ethereum network is getting jammed up because people are rushing to buy cartoon cats on its blockchain. (2017). https://qz.com/1145833/cryptokitties-is-causing-ethereum-network-congestion/. (Accessed 4 May 2021). (Quartz).
– reference: Ben Luke, A. S. & Stoilas, H. WTF are NFTs? Why crypto is dominating the Art market. (2021). https://www.theartnewspaper.com/podcast/wtf-nfts. (Accessed 4 May 2021). (The Art Newspaper).
– reference: SeradaASihvonenTHarviainenJTCryptoKitties and the new ludic economy: How blockchain introduces value, ownership, and scarcity in digital gamingGames Culture20211645748010.1177/1555412019898305
– reference: Rosenbaum, D. Gods-Unchained marketplace. (2021). https://github.com/djrosenbaum/unchained-transactions. (Accessed 4 May 2021). (The Graph).
– reference: Westerkamp, M., Victor, F. & Küpper, A. Blockchain-based supply chain traceability: Token recipes model manufacturing processes. in 2018 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), 1595–1602 (IEEE, 2018).
– reference: Lounge, T. W. Choosing the right blockchain for your NFT. (2020). https://medium.com/phantasticphantasma/choosing-the-right-blockchain-for-your-nft-d1df2bebae91. (Accessed 4 May 2021). (Medium).
– reference: BarratAWeigtMOn the properties of small-world network modelsEur. Phys. J. B-Condensed Matter Complex Syst.2000135475601:CAS:528:DC%2BD3cXhsVGrs7w%3D10.1007/s100510050067
– reference: Phillips, D. The 10 most expensive NFTs ever sold. (2021). https://decrypt.co/62898/the-10-most-expensive-nfts-ever-sold. (Accessed 20 May 2021). (Decrypt).
– reference: ElBahrawyAAlessandrettiLKandlerAPastor-SatorrasRBaronchelliAEvolutionary dynamics of the cryptocurrency marketR. Soc. Open Sci.20174170623374598610.1098/rsos.170623
– reference: ClausetANewmanMEMooreCFinding community structure in very large networksPhys. Rev. E2004700661112004PhRvE..70f6111C10.1103/PhysRevE.70.066111
– ident: 53_CR12
– volume: 4
  start-page: 170623
  year: 2017
  ident: 53_CR36
  publication-title: R. Soc. Open Sci.
  doi: 10.1098/rsos.170623
– volume: 13
  start-page: 1
  year: 2020
  ident: 53_CR21
  publication-title: J. Comput. Cultural Heritage (JOCCH)
  doi: 10.1145/3402443
– ident: 53_CR10
– ident: 53_CR6
– ident: 53_CR41
– ident: 53_CR8
– ident: 53_CR14
  doi: 10.1109/Cybermatics_2018.2018.00267
– ident: 53_CR4
– ident: 53_CR43
– ident: 53_CR35
  doi: 10.1155/2018/8983590
– ident: 53_CR45
– volume: 328
  start-page: 5
  year: 2019
  ident: 53_CR34
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.100
– ident: 53_CR18
  doi: 10.1007/978-3-662-63958-0_42
– ident: 53_CR19
  doi: 10.1016/j.frl.2021.102097
– ident: 53_CR24
– volume: 14
  start-page: 1612
  year: 1999
  ident: 53_CR32
  publication-title: J.-Japan. Soc. Artif. Intell.
– volume: 3
  start-page: 1
  year: 2013
  ident: 53_CR38
  publication-title: Sci. Rep.
  doi: 10.1038/srep01801
– ident: 53_CR47
  doi: 10.1109/CVPR.2009.5206848
– ident: 53_CR48
  doi: 10.1007/978-1-4757-1904-8_8
– ident: 53_CR1
– ident: 53_CR22
– volume: 13
  start-page: 547
  year: 2000
  ident: 53_CR23
  publication-title: Eur. Phys. J. B-Condensed Matter Complex Syst.
  doi: 10.1007/s100510050067
– volume: 51
  start-page: 661
  year: 2009
  ident: 53_CR26
  publication-title: SIAM Rev.
  doi: 10.1137/070710111
– volume: 25
  start-page: 1097
  year: 2012
  ident: 53_CR46
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 53_CR16
  doi: 10.2139/ssrn.3842210
– volume: 3
  start-page: 1
  year: 2013
  ident: 53_CR37
  publication-title: Sci. Rep.
– volume: 8
  start-page: 21
  year: 2019
  ident: 53_CR15
  publication-title: Artivate
  doi: 10.34053/artivate.8.2.2
– ident: 53_CR40
– ident: 53_CR9
– ident: 53_CR11
– volume: 4
  start-page: 1425
  year: 2019
  ident: 53_CR31
  publication-title: J. Open Source Softw.
  doi: 10.21105/joss.01425
– ident: 53_CR7
– ident: 53_CR13
– volume: 16
  start-page: 457
  year: 2021
  ident: 53_CR17
  publication-title: Games Culture
  doi: 10.1177/1555412019898305
– ident: 53_CR5
– volume: 49
  start-page: 9
  year: 1994
  ident: 53_CR30
  publication-title: Inf. Process. Lett.
  doi: 10.1016/0020-0190(94)90047-7
– ident: 53_CR42
– volume: 47
  start-page: 219
  year: 2019
  ident: 53_CR3
  publication-title: AIPLA QJ
– ident: 53_CR44
– volume: 67
  start-page: 026126
  year: 2003
  ident: 53_CR28
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.67.026126
– ident: 53_CR25
– volume: 101
  start-page: 3747
  year: 2004
  ident: 53_CR27
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0400087101
– ident: 53_CR2
– volume: 70
  start-page: 066111
  year: 2004
  ident: 53_CR29
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.70.066111
– ident: 53_CR20
  doi: 10.1016/j.frl.2021.102096
– volume: 53
  start-page: 5455
  year: 2020
  ident: 53_CR33
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– volume: 2
  start-page: 12
  year: 2019
  ident: 53_CR39
  publication-title: Front. Blockchain
  doi: 10.3389/fbloc.2019.00012
SSID ssj0000529419
Score 2.7086368
Snippet Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with...
Abstract Non Fungible Tokens (NFTs) are digital assets that represent objects like art, collectible, and in-game items. They are traded online, often with...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 20902
SubjectTerms 639/766/259
639/766/530
Artists
Blockchain
Collectibles
Digital currencies
Humanities and Social Sciences
Learning algorithms
Machine learning
multidisciplinary
Popularity
Sales
Science
Science (multidisciplinary)
Trends
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9wwDDejUNjL2PeydiODva2h8be9t3XsKIPeUwt9M7Yjb4UtHb27Qv_7yXbu1tvny55CYicIWYokJP1EyGvOQAwh6E6kYDohwXbeKNulAYIMffIKcqB4MlfHZ-LjuTy_Neor14RVeODKuMNBoQWLOmlPowAlveLM8wBG9QMqecx_X7R5t4KpiurNrKB26pLpuTlcoKXK3WSMdqUBtTNblqgA9v_Oy_y1WPKnjGkxRLP75N7kQbbvKuUPyB0YH5LdOlPy5hGZn_gMufCpRc-unc9O2yu4nsTrbfu19Di3y1IIe4BXP0A71kpwvPfj0F5fLFb4-QQF8XPxmJzNPpy-P-6moQldxFhk2QFGljH4GFTEQDPRGKWBnK3DuCHJRNnAaPLotUTuvRzAUmsYUMqpUiyA5k_Izng5wjPShl5CDIZqD0kkSF5ayXUCnXpmlecNoWsGujghiufBFl9cyWxz4yrTHTLdFaY705A3m3e-VTyNv-4-yuey2ZmxsMsDlBA3SYj7l4Q0ZH99qm5S0IVj2fESklvZkFebZVStnC_xI1yu6h5t82-uIU-rEGwo4UIZhYa-IXpLPLZI3V4ZLz4X-G50kJRmoiEHa0H6QdafWfH8f7Bij9xlWQPQ9jK2T3aWVyt4gU7VMrws-vMdbyUcrw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUHiRq3Gb4cLAsSqQuqeWmlvlu2MSyXIls1uJf59bcebann0FCV2Imc89sx4Zr5B6B2jwDvnFObBacwFtNhq2eLQgROuCVZCMhRP5vL4jH9biEU5cBtKWOV2T8wbdbf06Yz8iCZJyQVrxcfLXzhVjUre1VJC4y66l6DLUkiXWqjpjCV5sThpS65Mw_TREOVVyimjBOc0VKx35FGG7f-Xrvl3yOQfftMsjmaP0MOiR9afxol_jO5A_wTdHytL_n6K5ic2AS-c11G_q-ez03oFV4XJPtQ_c6Zzvc7hsIfxajuo-zEePN7bvquvLoZN_HyAjPs5PENns6-nX45xKZ2AfbRI1hiifemd9U76aG4G4r3QkHx20XoIIhDaURJs1F08s1Z00JJWUyCEESmpA8Weo71-2cNLVLtGgHeaKAuBBwhWtIKpACo0tJWWVYhsCWh8wRVP5S1-mOzfZtqMRDeR6CYT3egKvZ_euRxRNW7t_TnNy9QzIWLnB8vVuSkLzHQyajpeBWWJ5yCFlYxa5kDLpovCwFfoYDurpizTwdwwVYXeTs1xgSWvie1huRn7qDZtdhV6MTLBNBLGpZZR3FdI7bDHzlB3W_qL7xnEO6pJUlFeocMtI90M6_-k2L_9L16hBzTxdpStlB6gvfVqA6-j0rR2b_LKuAakhBQ2
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals (WRLC)
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfClWG9dbWUF3-zi5p71TQ8eitDz1ELfQpKd1ILukXMp-O9Nshc5WgWflt3MLsNkkvlm5xKAN4wib51TFQ9OV1xgU1ktmyq06ISrg5WYHMXzhTy75J-vxNUe0LEWJift55aWeZses8PeraOhScVglFS5frTS9-B-at2etHomZ9N_lRS54qQZ6mNqpu94dccG5Vb9d-HLP9Mkf4uVZhM0fwQHA3YsP_TcHsIedo_hQX-a5I8nsDi3qdnCdRkxXbmYX5QrvB0U6335LVc3l5ucAnsar7bFsutzwOO97dry9ma9jZ8PmAWzfgqX808Xs7NqOC6h8tEL2VQYfUrvrHfSRxczEO-FxhSnix5DEIHQlpJgI17xzFrRYkMaTZEQRqSkDhV7BvvdssMjKF0t0DtNlMXAAwYrGsFUQBVq2kjLCiCjAI0feomnIy2-mhzTZtr0QjdR6CYL3egC3k7vfO87afyT-mOal4kydcHOD5arazNohWllRDdeBWWJ5yiFlYxa5lDLuo0GwBdwPM6qGZbm2tAEubhgjSjg9TQcF1WKlNgOl9ueRjVpgyvgea8EEyeMSy2jiS9A7ajHDqu7I93Nl9y4O0IjqSgv4HRUpF9s_V0UL_6P_CU8pEnXo32l9Bj2N6stnkTgtHGv8kr5Cb0bEeA
  priority: 102
  providerName: Springer Nature
Title Mapping the NFT revolution: market trends, trade networks, and visual features
URI https://link.springer.com/article/10.1038/s41598-021-00053-8
https://www.ncbi.nlm.nih.gov/pubmed/34686678
https://www.proquest.com/docview/2584645395
https://www.proquest.com/docview/2584790040
https://pubmed.ncbi.nlm.nih.gov/PMC8536724
https://doaj.org/article/d6222c7f7a1c4e65a632a3be860d467c
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3ri9QwEB_ugeAX8W31XCr4zatukuZRQWRvueVY2EX0FvZbSdLk7uDs6j4O7793knZXVlfxU2iThjCd6fymyfwG4DWjLq-MkVnujcpy7opMK1FkvnKGm67XwoVAcTQWZ5N8OOXTPViXO2oFuNgZ2oV6UpP59dsf328_osF_aFLG1bsFOqGQKEZJFnNLM7UPh-iZZDDUUQv3G65vWuSx1kcgYc8QTNA2j2b3NFu-KlL678Khfx6n_G1PNbqqwX2412LMtNcoxQPYc_VDuNNUnbx9BOORDqQMFyliv3Q8OE_n7qZVwPfp15gFnS7jUdljbHXl0ro5K47Xuq7Sm6vFCqf3LnKCLh7DZHB63j_L2rIKmcVoZZk5jD2t0dYIi6GoJ9Zy5cJ-HkYWnntCK0q8Rlxjmda8cgUpFHWEMCIENU6yJ3BQz2r3DFLT5c4aRaR2PvfOa15wJr2TvksLoVkCZC3A0rac46H0xXUZ976ZKhuhlyj0Mgq9VAm82TzzrWHc-Ofok_BeNiMDW3a8MZtflK3xlZVAFGSll5rY3AmuBaOaGadEt0JHYRM4Wr_Vcq2BJQ3QLOes4Am82nSj8YUdFV272aoZI4vwIUzgaaMEm5WwXCiBUCABuaUeW0vd7qmvLiPBN0IoIWmewPFakX4t6--ieP4fy3wBd2lQcHS-lB7BwXK-ci8RVS1NB_blVHbgsNcbfhlie3I6_vQZ7_ZFvxP_VHSiMf0EcR0g_w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VrRC8IG4CBYIETzRqbMdOgoQQha62tLtCaCv1LbWdcakE2bJHUf8Uv5Fxjq2Wo299ihI7kTMee77xXAAvBcekNCaNEmeyKJGYRzpTeeRKNNLETiv0iuJwpAYHyadDebgGv7pYGO9W2e2J9UZdTqw_I9_iXlImUuTy3emPyFeN8tbVroRGwxZ7eP6TVLbZ292PNL-vOO_vjD8MoraqQGQJrM8jJNXLGm2NsqSJOWatzNCbswhYO-kYLzlzmsS6FVrLEnNSyzkyJphS3GAq6LvXYD0RpMr0YH17Z_T5y_JUx9vNEpa30TmxyLZmJCF9FBtnUR34GmUrErAuFPAvdPu3k-YfltpaAPZvw60WuYbvG1a7A2tY3YXrTS3L83swGmqf6uE4JEQZjvrjcIpnLVu_Cb_XsdXhvHbA3aSrLjGsGg90utdVGZ6dzBb0eYd1ptHZfTi4ErI-gF41qfARhCaWaE3GUo0ucei0zKVIHaYu5rnSIgDWEbCwbSZzX1DjW1Fb1EVWNEQviOhFTfQiC-D18p3TJo_Hpb23_bwse_oc3PWDyfS4aJd0USrCVjZ1qWY2QSW1ElwLg5mKSxI_NoCNblaLdmOYFRdsHMCLZTMtaW-n0RVOFk2fNPfbawAPGyZYjkQkKlMEMAJIV9hjZairLdXJ1zptOAEzlfIkgM2OkS6G9X9SPL78L57DjcF4uF_s7472nsBN7vmcJDvnG9CbTxf4lCDb3Dxr10kIR1e9NH8DCCtSHw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2gQJDgRKON7dhOkBACyqqldMWhlfbm2s64VIJs2UdR_xq_jrGTbLU8euspSuJEznjG803mRcgLzqCorVVZ4W2ZFQKqzJSyynwNVtjcGwnBUNwbye2D4tNYjNfIrz4XJoRV9nti3KjriQv_yAcsaMpC8EoMfBcW8WVr-PbkRxY6SAVPa99Oo2WRXTj7iebb7M3OFq71S8aGH_c_bGddh4HMIXCfZ4BmmLPGWenQKvPUOVFCcG0hyPbCU1Yz6g2qeMeNETVUaKIzoJRTKZkFxfG9V8hVxQUNMqbGavl_J3jQClp1eTo5Lwcz1JUhn43RLKbAZuWKLowtA_6Fc_8O1_zDZxtV4fAWudlh2PRdy3S3yRo0d8i1tqvl2V0y2jOh6MNRitgyHQ330ymcdgz-Ov0es6zTeQzF3cSjqSFt2lh0PDdNnZ4ezxb4eg-x5ujsHjm4FKLeJ-vNpIGHJLW5AGdLqgz4woM3ohJceVA-Z5U0PCG0J6B2XU3z0Frjm46-dV7qlugaia4j0XWZkFfLZ07aih4Xjn4f1mU5MlTjjhcm0yPdCbeuJaIsp7wy1BUghZGcGW6hlHmNisglZKNfVd1tETN9ztAJeb68jcIdPDamgcmiHaOqsNEm5EHLBMuZ8EKWEqFGQtQKe6xMdfVOc_w1FhBHiCYVKxKy2TPS-bT-T4pHF3_FM3IdBVJ_3hntPiY3WGBzVPGMbZD1-XQBTxC7ze3TKCQpObxsqfwNHdlU7w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mapping+the+NFT+revolution%3A+market+trends%2C+trade+networks%2C+and+visual+features&rft.jtitle=Scientific+reports&rft.au=Nadini%2C+Matthieu&rft.au=Alessandretti%2C+Laura&rft.au=Di+Giacinto%2C+Flavio&rft.au=Martino%2C+Mauro&rft.date=2021-10-22&rft.issn=2045-2322&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft.spage=20902&rft_id=info:doi/10.1038%2Fs41598-021-00053-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon