Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 1369 - 8 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.03.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-21595-5 |
Cover
Loading…
Abstract | Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu
0.13
-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu
0.13
-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm
−2
in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H
2
O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Developing high-performance, neutral-media H
2
-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts. |
---|---|
AbstractList | Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm-2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm-2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design. Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.Developing high-performance, neutral-media H2-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts. Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design. Developing high-performance, neutral-media H2-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts. Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu 0.13 -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu 0.13 -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm −2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H 2 O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design. Developing high-performance, neutral-media H 2 -evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts. Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu 0.13 -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu 0.13 -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm −2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H 2 O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design. |
ArticleNumber | 1369 |
Author | Lin, Yiyang Sun, Yamei Liu, Qinglin Li, Guangqin Su, Cheng-Yong Li, Yinle Xue, Ziqian Jia, Yaling Liu, Kang Liu, Min |
Author_xml | – sequence: 1 givenname: Yamei surname: Sun fullname: Sun, Yamei organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University – sequence: 2 givenname: Ziqian surname: Xue fullname: Xue, Ziqian organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University – sequence: 3 givenname: Qinglin surname: Liu fullname: Liu, Qinglin organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University – sequence: 4 givenname: Yaling surname: Jia fullname: Jia, Yaling organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University – sequence: 5 givenname: Yinle surname: Li fullname: Li, Yinle organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University – sequence: 6 givenname: Kang surname: Liu fullname: Liu, Kang organization: School of Physics and Electronics, Central South University – sequence: 7 givenname: Yiyang surname: Lin fullname: Lin, Yiyang organization: School of Physics and Electronics, Central South University – sequence: 8 givenname: Min orcidid: 0000-0002-9007-4817 surname: Liu fullname: Liu, Min organization: School of Physics and Electronics, Central South University – sequence: 9 givenname: Guangqin surname: Li fullname: Li, Guangqin email: liguangqin@mail.sysu.edu.cn organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University – sequence: 10 givenname: Cheng-Yong orcidid: 0000-0003-3604-7858 surname: Su fullname: Su, Cheng-Yong organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33649349$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uslu1TAUjVARLaU_wAJZYsMm4DHDBglVDJWKkBCsLce-efXDsR-20-qt-XGcppS2i3rh8ZzjO5zn1YEPHqrqJcFvCWbdu8QJb9oaU1JTInpRiyfVEcWc1KSl7ODO_rA6SWmLy2A96Th_Vh0y1vCe8f6o-vM1mNmpbP0GgQOdY_BWo5TjrPMcAYURTZCVq0PcqOVpjGqCqxB_JTTskfWFYWa98FUOk9XKuT0yNu0gJjDo-4zGEBGMo9UWfEYXexPDBjyCy-DmbIN_UT0dlUtwcrMeVz8_ffxx-qU-__b57PTDea0b3OQaGJBRwaDLkQ4YlBacdm07DJh3AkbeMtZpg1Wjh470A8MDqKbMiqrGCMKOq7NV1wS1lbtoJxX3Migrry9KglLFbLUDSVVLeijFY4ZyI7hqegpq0AKE6aEzRev9qrWbhwmMLplF5e6J3n_x9kJuwqVse0oaIYrAmxuBGH7PkLKcbNLgnPIQ5iQp7wXHbdu0Bfr6AXQb5uhLqRYUb7EgtCmoV3cjug3lX68LgK4AHUNKEcZbCMFy8ZRcPSWLp-S1p-QSZveApG1WS9dKVtY9TmUrNZV__Abi_7AfYf0F2I_kgg |
CitedBy_id | crossref_primary_10_3390_ma14226796 crossref_primary_10_1002_anie_202115198 crossref_primary_10_1021_acs_inorgchem_3c00952 crossref_primary_10_1002_smll_202204495 crossref_primary_10_1002_smll_202309791 crossref_primary_10_1016_j_cej_2024_150457 crossref_primary_10_1021_acssuschemeng_2c03887 crossref_primary_10_1021_acs_inorgchem_4c00124 crossref_primary_10_1016_j_ccr_2022_214855 crossref_primary_10_1039_D4NJ04418E crossref_primary_10_1016_j_jcis_2023_05_205 crossref_primary_10_1021_acscatal_3c06070 crossref_primary_10_1002_adfm_202304079 crossref_primary_10_1002_anie_202209486 crossref_primary_10_1016_j_checat_2024_101132 crossref_primary_10_1016_j_inoche_2022_110038 crossref_primary_10_1002_advs_202200307 crossref_primary_10_1016_j_ccr_2022_214969 crossref_primary_10_1007_s40820_023_01192_5 crossref_primary_10_1021_acs_inorgchem_4c03525 crossref_primary_10_1039_D1TA04981J crossref_primary_10_1016_j_cej_2023_143993 crossref_primary_10_1039_D1DT03906G crossref_primary_10_1016_j_apsusc_2022_156266 crossref_primary_10_1002_anie_202406650 crossref_primary_10_1039_D3MH01007D crossref_primary_10_1016_j_cej_2023_148087 crossref_primary_10_1002_smtd_202200773 crossref_primary_10_1039_D3NJ05436E crossref_primary_10_1016_j_jechem_2023_01_054 crossref_primary_10_1021_acsanm_4c01664 crossref_primary_10_1002_anie_202316755 crossref_primary_10_1038_s41467_023_42935_7 crossref_primary_10_1016_j_ccr_2022_214952 crossref_primary_10_1016_j_ijhydene_2022_09_077 crossref_primary_10_3390_cryst13020257 crossref_primary_10_1002_aenm_202201548 crossref_primary_10_1002_smll_202403991 crossref_primary_10_1021_acsami_3c04342 crossref_primary_10_1016_j_jpowsour_2024_234758 crossref_primary_10_1021_acs_analchem_3c04878 crossref_primary_10_1016_j_nantod_2023_101883 crossref_primary_10_1016_j_apcatb_2023_123572 crossref_primary_10_1002_adma_202310912 crossref_primary_10_3390_molecules29184304 crossref_primary_10_1002_aenm_202300174 crossref_primary_10_1039_D2QI01688E crossref_primary_10_1002_adma_202203615 crossref_primary_10_1038_s41467_024_52520_1 crossref_primary_10_1002_ange_202208667 crossref_primary_10_1039_D2TA06560F crossref_primary_10_1007_s12274_024_6726_y crossref_primary_10_1021_acsnano_3c02749 crossref_primary_10_1039_D2SE01664H crossref_primary_10_1016_j_mtcata_2023_100009 crossref_primary_10_1016_j_mtnano_2022_100176 crossref_primary_10_1002_smll_202207651 crossref_primary_10_1021_acs_nanolett_2c00711 crossref_primary_10_1021_acscatal_4c04772 crossref_primary_10_1002_smll_202306085 crossref_primary_10_1002_ange_202116396 crossref_primary_10_1002_ange_202312644 crossref_primary_10_1038_s41467_022_31561_4 crossref_primary_10_1039_D3DT03636G crossref_primary_10_1021_acsomega_3c07911 crossref_primary_10_1002_advs_202403197 crossref_primary_10_1016_j_jcis_2023_05_006 crossref_primary_10_1039_D1NR05441D crossref_primary_10_1002_adfm_202400767 crossref_primary_10_1002_ange_202406650 crossref_primary_10_1007_s12598_022_02168_x crossref_primary_10_1002_aenm_202203797 crossref_primary_10_1002_adfm_202210837 crossref_primary_10_1039_D2CE01570F crossref_primary_10_1039_D3DT00477E crossref_primary_10_1039_D3EE03896C crossref_primary_10_1149_1945_7111_ad3a1c crossref_primary_10_1002_aelm_202200733 crossref_primary_10_1002_ange_202115198 crossref_primary_10_1016_j_ccr_2021_214261 crossref_primary_10_1016_j_cej_2023_144922 crossref_primary_10_1002_asia_202200319 crossref_primary_10_1016_j_ijhydene_2024_04_318 crossref_primary_10_1007_s11426_022_1545_0 crossref_primary_10_1002_anie_202316550 crossref_primary_10_1016_j_apcatb_2022_121088 crossref_primary_10_1016_j_cej_2022_137611 crossref_primary_10_1007_s11581_021_04338_w crossref_primary_10_1016_j_cclet_2025_110988 crossref_primary_10_1016_j_esci_2023_100133 crossref_primary_10_1016_j_jallcom_2024_175895 crossref_primary_10_1016_j_nanoen_2024_109559 crossref_primary_10_1016_j_jallcom_2024_175650 crossref_primary_10_1002_adma_202107488 crossref_primary_10_1007_s12274_021_3629_z crossref_primary_10_1002_celc_202101018 crossref_primary_10_1039_D1TA09441F crossref_primary_10_1002_adfm_202304380 crossref_primary_10_1016_j_jece_2024_113522 crossref_primary_10_1002_asia_202401387 crossref_primary_10_1039_D2TA06240B crossref_primary_10_1016_j_cclet_2022_01_021 crossref_primary_10_1016_j_cej_2023_143707 crossref_primary_10_1039_D2DT00037G crossref_primary_10_1002_advs_202301395 crossref_primary_10_1021_acssuschemeng_3c06742 crossref_primary_10_1021_acs_inorgchem_4c03664 crossref_primary_10_1002_anie_202302986 crossref_primary_10_1016_j_apcatb_2023_122681 crossref_primary_10_1002_anie_202116396 crossref_primary_10_1021_acscatal_4c01173 crossref_primary_10_1002_smll_202301850 crossref_primary_10_1016_j_ijhydene_2024_06_063 crossref_primary_10_1021_acscatal_4c04561 crossref_primary_10_3390_en16124707 crossref_primary_10_1002_smll_202201076 crossref_primary_10_1007_s12274_024_6954_1 crossref_primary_10_1039_D2NR05410H crossref_primary_10_1016_j_ijhydene_2022_02_152 crossref_primary_10_1021_acscatal_1c03960 crossref_primary_10_1039_D3EY00165B crossref_primary_10_1002_ange_202302986 crossref_primary_10_1039_D2CE00924B crossref_primary_10_1039_D4LP00257A crossref_primary_10_1016_j_nanoen_2024_109897 crossref_primary_10_1002_ece2_4 crossref_primary_10_1016_j_electacta_2022_141184 crossref_primary_10_1016_j_cej_2022_137080 crossref_primary_10_1016_j_jallcom_2024_174809 crossref_primary_10_1016_j_inoche_2025_114073 crossref_primary_10_1039_D2DT01394K crossref_primary_10_1016_j_jechem_2024_08_022 crossref_primary_10_1002_adfm_202412142 crossref_primary_10_1002_aenm_202301580 crossref_primary_10_1016_j_jcis_2024_03_153 crossref_primary_10_1002_cctc_202300765 crossref_primary_10_1002_batt_202200494 crossref_primary_10_1039_D3NR02548A crossref_primary_10_1002_smll_202207235 crossref_primary_10_1021_acsenergylett_1c02769 crossref_primary_10_1002_adma_202300935 crossref_primary_10_1016_j_est_2025_115288 crossref_primary_10_1002_ange_202316755 crossref_primary_10_1007_s12274_021_3597_3 crossref_primary_10_1016_j_jece_2025_115613 crossref_primary_10_1002_cnma_202200309 crossref_primary_10_1002_anie_202214794 crossref_primary_10_3390_nano14151270 crossref_primary_10_1002_anie_202414786 crossref_primary_10_3390_catal15010058 crossref_primary_10_1002_smll_202207146 crossref_primary_10_1016_j_jcis_2022_01_088 crossref_primary_10_1039_D3QM00483J crossref_primary_10_1002_adma_202300945 crossref_primary_10_1016_j_cej_2024_151003 crossref_primary_10_1039_D2TA07427C crossref_primary_10_1016_j_electacta_2023_143300 crossref_primary_10_1021_acscatal_2c05144 crossref_primary_10_1002_anie_202200123 crossref_primary_10_1039_D3CY01485A crossref_primary_10_1016_j_apcatb_2023_122645 crossref_primary_10_1039_D3TA01903A crossref_primary_10_1002_ange_202316550 crossref_primary_10_1002_adfm_202405881 crossref_primary_10_1039_D2DT01837C crossref_primary_10_1007_s12274_022_4902_5 crossref_primary_10_1016_j_ijhydene_2022_03_038 crossref_primary_10_1039_D1TA01108A crossref_primary_10_1016_j_apsusc_2022_152957 crossref_primary_10_1016_j_ijhydene_2023_04_241 crossref_primary_10_1002_ange_202209486 crossref_primary_10_1021_acssuschemeng_3c05621 crossref_primary_10_1007_s12274_021_3849_2 crossref_primary_10_1016_j_cej_2023_146710 crossref_primary_10_1016_j_jssc_2022_123610 crossref_primary_10_1360_TB_2022_0061 crossref_primary_10_1002_advs_202407834 crossref_primary_10_1002_chem_202500149 crossref_primary_10_1016_j_apsusc_2025_162361 crossref_primary_10_1016_j_ijhydene_2024_08_171 crossref_primary_10_3390_ma16072709 crossref_primary_10_1016_j_jallcom_2023_172279 crossref_primary_10_1039_D2RA08021D crossref_primary_10_1021_acs_inorgchem_2c01908 crossref_primary_10_1002_adma_202412031 crossref_primary_10_1002_eom2_12186 crossref_primary_10_1002_anie_202110653 crossref_primary_10_1016_j_jechem_2022_12_036 crossref_primary_10_1002_aenm_202203955 crossref_primary_10_1021_acs_chemrev_4c00664 crossref_primary_10_1038_s41467_024_50691_5 crossref_primary_10_1021_acsnano_2c08245 crossref_primary_10_1016_j_colsurfa_2024_135245 crossref_primary_10_1021_acsaem_1c03950 crossref_primary_10_1002_adfm_202205985 crossref_primary_10_1002_sstr_202300576 crossref_primary_10_1021_acsenergylett_3c02100 crossref_primary_10_1016_j_ijhydene_2023_06_291 crossref_primary_10_1016_j_apcatb_2023_122630 crossref_primary_10_1039_D2TA02294J crossref_primary_10_1016_j_jechem_2021_10_011 crossref_primary_10_3390_catal12070765 crossref_primary_10_1039_D2CE00528J crossref_primary_10_1016_j_ijhydene_2024_08_026 crossref_primary_10_1021_acsami_1c24170 crossref_primary_10_3390_nano12071227 crossref_primary_10_1016_j_ijhydene_2024_09_194 crossref_primary_10_1016_j_jpcs_2022_110634 crossref_primary_10_1016_j_jcis_2024_04_144 crossref_primary_10_1021_acs_analchem_2c02334 crossref_primary_10_1002_smll_202207342 crossref_primary_10_1007_s12598_023_02427_5 crossref_primary_10_12677_japc_2024_133045 crossref_primary_10_1002_ente_202200655 crossref_primary_10_3390_ijms23105290 crossref_primary_10_1002_ange_202115331 crossref_primary_10_1002_smtd_202101188 crossref_primary_10_1039_D2NR03411E crossref_primary_10_1002_adma_202107072 crossref_primary_10_1007_s11581_022_04875_y crossref_primary_10_1016_j_cej_2021_131085 crossref_primary_10_1016_j_ijhydene_2022_04_024 crossref_primary_10_1002_inf2_12326 crossref_primary_10_1002_smll_202408602 crossref_primary_10_1002_cey2_188 crossref_primary_10_1002_smtd_202200637 crossref_primary_10_1016_j_jechem_2021_11_035 crossref_primary_10_1021_acsmaterialsau_2c00073 crossref_primary_10_1039_D3CC04990F crossref_primary_10_1039_D3TA05421G crossref_primary_10_1002_adma_202313931 crossref_primary_10_1002_smll_202410922 crossref_primary_10_1021_acsnano_3c01862 crossref_primary_10_1039_D1NR02232F crossref_primary_10_1002_ange_202302220 crossref_primary_10_1021_acs_inorgchem_2c03060 crossref_primary_10_1016_j_apcatb_2022_122316 crossref_primary_10_1016_j_polymdegradstab_2024_110982 crossref_primary_10_1039_D1TA08226D crossref_primary_10_1016_j_scenem_2025_100003 crossref_primary_10_1002_cssc_202202128 crossref_primary_10_1016_j_synthmet_2023_117422 crossref_primary_10_1021_jacs_4c03806 crossref_primary_10_1038_s41467_022_29737_z crossref_primary_10_1016_j_checat_2021_09_007 crossref_primary_10_1002_smll_202405358 crossref_primary_10_1007_s12678_024_00871_0 crossref_primary_10_1038_s41467_021_26256_1 crossref_primary_10_1002_adfm_202211440 crossref_primary_10_3390_polym14235279 crossref_primary_10_1039_D1TA04142H crossref_primary_10_1039_D3QM00507K crossref_primary_10_1021_acsami_4c04342 crossref_primary_10_1021_jacs_1c06006 crossref_primary_10_1016_j_jallcom_2023_171667 crossref_primary_10_1002_asia_202201161 crossref_primary_10_1039_D2QI00859A crossref_primary_10_1016_j_ijhydene_2024_01_026 crossref_primary_10_1021_acs_cgd_1c00499 crossref_primary_10_1016_j_ensm_2022_10_045 crossref_primary_10_1021_acs_est_4c09264 crossref_primary_10_1016_j_cej_2021_131300 crossref_primary_10_1016_j_trechm_2023_02_001 crossref_primary_10_1016_j_apcatb_2023_122829 crossref_primary_10_1002_adfm_202415375 crossref_primary_10_1002_advs_202401780 crossref_primary_10_1002_eem2_12290 crossref_primary_10_1039_D4TA04817B crossref_primary_10_1002_ange_202409449 crossref_primary_10_1039_D3NR01723K crossref_primary_10_1002_aenm_202204177 crossref_primary_10_1021_acsmaterialslett_4c00587 crossref_primary_10_1002_aenm_202404714 crossref_primary_10_1002_smll_202208045 crossref_primary_10_1016_j_apcatb_2022_121686 crossref_primary_10_1016_j_seppur_2023_124527 crossref_primary_10_1016_j_ccr_2024_215726 crossref_primary_10_1007_s11581_023_04928_w crossref_primary_10_1002_sus2_127 crossref_primary_10_1021_acs_inorgchem_3c03769 crossref_primary_10_1021_acs_langmuir_4c04932 crossref_primary_10_1002_adma_202208860 crossref_primary_10_1002_ange_202214794 crossref_primary_10_1002_inf2_12357 crossref_primary_10_1002_smll_202305978 crossref_primary_10_1021_jacs_1c06349 crossref_primary_10_1007_s42114_024_01136_6 crossref_primary_10_1039_D3QI01468A crossref_primary_10_1039_D4TA03518F crossref_primary_10_1002_aenm_202300978 crossref_primary_10_1016_j_jallcom_2021_162113 crossref_primary_10_1016_j_apsusc_2022_153893 crossref_primary_10_1016_j_cej_2023_143059 crossref_primary_10_1016_j_jmst_2021_09_006 crossref_primary_10_1016_j_chemosphere_2023_140101 crossref_primary_10_1039_D2CE00886F crossref_primary_10_1016_j_jallcom_2023_169465 crossref_primary_10_1016_j_nxnano_2024_100073 crossref_primary_10_1016_j_cej_2024_154475 crossref_primary_10_1002_anie_202400323 crossref_primary_10_1002_cey2_265 crossref_primary_10_1016_j_ijhydene_2025_03_120 crossref_primary_10_1007_s40820_023_01022_8 crossref_primary_10_1016_j_ccr_2021_213946 crossref_primary_10_1002_adfm_202108464 crossref_primary_10_1021_acsami_1c24363 crossref_primary_10_1002_ange_202110374 crossref_primary_10_1021_acsmaterialslett_2c01046 crossref_primary_10_1007_s12274_023_6003_5 crossref_primary_10_1021_acsnano_3c05583 crossref_primary_10_1016_j_nanoso_2024_101108 crossref_primary_10_1002_tcr_202200244 crossref_primary_10_1002_adfm_202414493 crossref_primary_10_1021_acsanm_2c05104 crossref_primary_10_1021_acs_inorgchem_2c00546 crossref_primary_10_1002_advs_202205889 crossref_primary_10_1016_j_cej_2024_153251 crossref_primary_10_1016_j_jechem_2021_08_067 crossref_primary_10_1016_j_cej_2024_154222 crossref_primary_10_1002_adfm_202303986 crossref_primary_10_1002_anie_202409449 crossref_primary_10_1016_j_mtchem_2023_101857 crossref_primary_10_1039_D1NR02019F crossref_primary_10_1002_ange_202200123 crossref_primary_10_1002_anie_202110374 crossref_primary_10_1021_acsabm_1c00749 crossref_primary_10_34133_2022_9837109 crossref_primary_10_1002_tcr_202200237 crossref_primary_10_1016_j_cej_2022_139475 crossref_primary_10_1002_anie_202423765 crossref_primary_10_1039_D2DT03253H crossref_primary_10_1016_j_esci_2025_100378 crossref_primary_10_1002_aenm_202301673 crossref_primary_10_1002_smll_202307725 crossref_primary_10_1016_j_cej_2023_147990 crossref_primary_10_1016_j_jechem_2023_06_031 crossref_primary_10_1002_smsc_202200035 crossref_primary_10_1039_D4TA02679A crossref_primary_10_1002_ange_202423765 crossref_primary_10_1088_2399_1984_ac1db9 crossref_primary_10_1016_j_apsusc_2023_158474 crossref_primary_10_1007_s12274_023_5391_x crossref_primary_10_1002_anie_202207512 crossref_primary_10_1002_adfm_202408823 crossref_primary_10_1039_D2NR04294K crossref_primary_10_1002_smll_202410778 crossref_primary_10_1002_cey2_459 crossref_primary_10_1002_cctc_202301753 crossref_primary_10_1002_tcr_202200212 crossref_primary_10_1002_aenm_202303623 crossref_primary_10_1002_tcr_202200213 crossref_primary_10_1021_acs_inorgchem_2c01840 crossref_primary_10_1002_adma_202411211 crossref_primary_10_1002_anie_202312644 crossref_primary_10_1016_j_ensm_2022_09_014 crossref_primary_10_1016_j_scib_2024_01_014 crossref_primary_10_1002_smll_202306616 crossref_primary_10_1039_D4GC02727B crossref_primary_10_1007_s00214_023_02983_0 crossref_primary_10_1002_adfm_202415585 crossref_primary_10_1021_acsami_2c07792 crossref_primary_10_1039_D3EE01541F crossref_primary_10_1039_D3CC00451A crossref_primary_10_1016_j_surfin_2023_103368 crossref_primary_10_3390_nano12152618 crossref_primary_10_1016_j_talanta_2023_124442 crossref_primary_10_1021_acscatal_4c03722 crossref_primary_10_1016_j_jmst_2024_11_074 crossref_primary_10_1039_D1TA06438J crossref_primary_10_1002_anie_202208667 crossref_primary_10_1016_j_cclet_2021_09_034 crossref_primary_10_3390_bios14040172 crossref_primary_10_1016_j_apcatb_2024_124203 crossref_primary_10_1021_acscatal_3c03884 crossref_primary_10_1039_D3QI01642K crossref_primary_10_1002_ange_202207512 crossref_primary_10_1039_D2CC03994J crossref_primary_10_1021_acs_iecr_3c02447 crossref_primary_10_1002_smll_202105231 crossref_primary_10_1016_j_ijhydene_2024_03_283 crossref_primary_10_1021_acssuschemeng_2c06191 crossref_primary_10_1016_j_jcis_2023_07_204 crossref_primary_10_1039_D3TA02610H crossref_primary_10_1016_j_jcis_2022_11_149 crossref_primary_10_1002_cey2_526 crossref_primary_10_1002_cjoc_202100425 crossref_primary_10_1002_smll_202307405 crossref_primary_10_1016_j_cej_2023_148365 crossref_primary_10_1016_j_cclet_2021_06_047 crossref_primary_10_1021_acs_inorgchem_4c02804 crossref_primary_10_1016_j_jpowsour_2025_236385 crossref_primary_10_1016_j_nanoen_2023_108694 crossref_primary_10_1039_D3DT00649B crossref_primary_10_1021_jacs_3c06726 crossref_primary_10_1002_adfm_202102066 crossref_primary_10_1002_smll_202202496 crossref_primary_10_1002_ange_202400323 crossref_primary_10_1016_j_jiec_2024_11_050 crossref_primary_10_1039_D3GC01828H crossref_primary_10_1039_D4QM00822G crossref_primary_10_1016_j_ijhydene_2022_06_217 crossref_primary_10_1016_j_jmst_2021_08_079 crossref_primary_10_1002_aenm_202202119 crossref_primary_10_1016_j_jiec_2022_10_047 crossref_primary_10_1039_D4DT02220C crossref_primary_10_1002_adfm_202308813 crossref_primary_10_1021_acssuschemeng_4c06394 crossref_primary_10_1039_D1TA09391F crossref_primary_10_1016_j_apcatb_2024_124465 crossref_primary_10_1016_j_jcis_2023_11_100 crossref_primary_10_1073_pnas_2320777121 crossref_primary_10_1021_acsanm_4c06960 crossref_primary_10_1002_cjoc_202200385 crossref_primary_10_1039_D4QI00515E crossref_primary_10_1039_D3TA07016F crossref_primary_10_1016_j_jcis_2023_07_109 crossref_primary_10_1002_advs_202205605 crossref_primary_10_1002_ange_202110653 crossref_primary_10_1039_D3CC03838F crossref_primary_10_1016_j_jallcom_2023_170721 crossref_primary_10_1002_smll_202305201 crossref_primary_10_1007_s11581_023_05248_9 crossref_primary_10_1002_ifm2_19 crossref_primary_10_1002_adfm_202421740 crossref_primary_10_1002_idm2_12172 crossref_primary_10_1002_aenm_202400059 crossref_primary_10_1016_j_cej_2024_154062 crossref_primary_10_1007_s40820_021_00679_3 crossref_primary_10_1002_tcr_202300013 crossref_primary_10_1002_ange_202414786 crossref_primary_10_1021_acscatal_4c00267 crossref_primary_10_1002_adfm_202210322 crossref_primary_10_1007_s40820_024_01382_9 crossref_primary_10_1021_jacs_2c10801 crossref_primary_10_1016_j_apcatb_2023_123161 crossref_primary_10_1039_D2TA09024D crossref_primary_10_1007_s12274_022_4128_6 crossref_primary_10_1021_acscatal_2c02361 crossref_primary_10_1039_D2NR07019G crossref_primary_10_1016_j_mtener_2024_101595 crossref_primary_10_1039_D2IM00063F crossref_primary_10_1039_D3DT02712K crossref_primary_10_1002_adfm_202418439 crossref_primary_10_1021_acssuschemeng_4c09957 crossref_primary_10_1016_j_jtice_2021_10_018 crossref_primary_10_1021_acs_nanolett_2c02755 crossref_primary_10_1002_anie_202115331 crossref_primary_10_1021_acsami_2c09107 crossref_primary_10_1016_j_fmre_2022_06_012 crossref_primary_10_1002_advs_202200010 crossref_primary_10_1016_j_apsusc_2024_160310 crossref_primary_10_1039_D2QI01655A crossref_primary_10_1021_acs_inorgchem_2c02666 crossref_primary_10_1002_sstr_202200109 crossref_primary_10_1002_adfm_202300294 crossref_primary_10_1039_D4SC06574C crossref_primary_10_1021_acsenergylett_1c01827 crossref_primary_10_1016_j_cej_2022_139524 crossref_primary_10_1039_D3NH00159H crossref_primary_10_1016_j_cej_2021_133944 crossref_primary_10_1002_anie_202302220 crossref_primary_10_1016_j_apcatb_2023_123015 crossref_primary_10_1021_acs_inorgchem_1c03982 crossref_primary_10_1021_acs_inorgchem_4c00217 crossref_primary_10_1002_smll_202309841 crossref_primary_10_1039_D4CP00352G crossref_primary_10_1007_s41061_021_00363_5 crossref_primary_10_1016_j_apsusc_2022_155870 crossref_primary_10_1021_acsanm_3c00398 crossref_primary_10_1021_acs_energyfuels_3c04609 crossref_primary_10_1002_celc_202400156 crossref_primary_10_3390_catal14100671 crossref_primary_10_1039_D3NR04101H crossref_primary_10_1039_D2TA06050G crossref_primary_10_1016_j_electacta_2022_141715 crossref_primary_10_1016_j_apcatb_2021_120753 crossref_primary_10_1039_D2QI01764D crossref_primary_10_1016_j_bios_2024_116463 crossref_primary_10_1039_D2TA03860A crossref_primary_10_1021_acsami_3c19236 |
Cites_doi | 10.1038/s41929-019-0325-4 10.1021/jacs.8b11527 10.1002/aenm.201901533 10.1039/C7TA03826G 10.1002/anie.201901409 10.1039/D0CS00070A 10.1002/anie.201913910 10.1016/j.ijhydene.2010.04.137 10.1002/anie.201914245 10.1002/anie.201710556 10.1002/anie.201911359 10.1002/anie.201703864 10.1002/anie.201407031 10.1002/adma.201900430 10.1002/anie.201906683 10.1002/anie.201914977 10.1021/jacs.8b11042 10.1038/s41560-018-0308-8 10.1021/jacs.8b04513 10.1002/adma.201702327 10.1021/acs.chemrev.5b00073 10.1038/s41570-016-0003 10.1002/anie.201711376 10.1039/C9EE01647C 10.1002/anie.202003484 10.1002/anie.201811126 10.1038/s41929-018-0090-9 10.1021/jacs.6b02692 10.1038/nature19763 10.1038/nenergy.2016.184 10.1002/adma.201801741 10.1021/jacs.9b08259 10.1021/acscatal.6b01211 10.1002/anie.201712765 10.1038/nchem.141 10.1038/nmat2978 10.1002/adma.201901439 10.1021/ic402106v 10.1002/adma.201706279 10.1002/aenm.201801956 10.1002/adma.201803498 10.1002/anie.201801467 10.1002/adma.201606521 10.1038/s41467-019-08419-3 10.1002/adma.201900699 10.1021/jacs.9b02417 10.1021/ja5082553 10.1103/PhysRevLett.77.3865 10.1002/anie.201904174 10.1038/s41467-019-13051-2 10.1039/C7CS00033B 10.1021/jacs.6b12353 10.1038/s41467-018-03429-z 10.1038/35104599 10.1039/C9CC06164A 10.1002/adma.201908126 10.1016/j.scib.2019.09.013 10.1103/PhysRevB.59.1758 10.1038/ncomms15437 10.1038/s41570-018-0010-1 10.1021/jacs.7b06808 10.1002/aenm.201800584 10.1002/adma.201502696 10.1021/acscatal.9b02609 10.1002/aenm.201602782 10.1002/adfm.201803330 10.1021/acs.chemrev.9b00818 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-21595-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_2a719e7233d24d54a692eabc5e5d9e8d PMC7921655 33649349 10_1038_s41467_021_21595_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Overseas High-level Talents Plan of China and Guangdong Province, International S&T Cooperation Program of China (2017YFE0127800), the Fundamental Research Funds for the Central Universities, the Hunan Provincial Science and Technology Program (No. 2017XK2026), The 100 Talents Plan Foundation of Sun Yat-Sen University, the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), the NSFC Projects (21872174, 21821003, 21890380, 22075321and U1932148) – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-e3e1faebcc602b0eac542877bb0485ef47338cd0a6cb819b30bea630ba2a6d513 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 00:47:45 EDT 2025 Thu Aug 21 14:13:05 EDT 2025 Thu Jul 10 19:13:43 EDT 2025 Wed Aug 13 02:51:42 EDT 2025 Mon Jul 21 06:01:51 EDT 2025 Tue Jul 01 04:17:18 EDT 2025 Thu Apr 24 22:58:47 EDT 2025 Fri Feb 21 02:39:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-e3e1faebcc602b0eac542877bb0485ef47338cd0a6cb819b30bea630ba2a6d513 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9007-4817 0000-0003-3604-7858 |
OpenAccessLink | https://www.nature.com/articles/s41467-021-21595-5 |
PMID | 33649349 |
PQID | 2494705126 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2a719e7233d24d54a692eabc5e5d9e8d pubmedcentral_primary_oai_pubmedcentral_nih_gov_7921655 proquest_miscellaneous_2495407767 proquest_journals_2494705126 pubmed_primary_33649349 crossref_primary_10_1038_s41467_021_21595_5 crossref_citationtrail_10_1038_s41467_021_21595_5 springer_journals_10_1038_s41467_021_21595_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-01 |
PublicationDateYYYYMMDD | 2021-03-01 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang, Tang, Wang, Li, Zhang (CR33) 2017; 29 Cheng (CR41) 2019; 4 Gong (CR22) 2020; 59 Wang (CR7) 2016; 28 Zhang (CR55) 2019; 12 Rogge (CR43) 2017; 46 Mesbah (CR49) 2014; 53 Liu (CR8) 2017; 29 Li (CR21) 2018; 28 Han (CR30) 2018; 9 Wang, Wang, Zhang, Zang, Lou (CR14) 2019; 31 Ghalei (CR25) 2019; 58 Wei (CR12) 2019; 141 Kresse, Joubert (CR68) 1999; 59 Cai, Li, Wang, Wen (CR3) 2018; 57 Zheng, Jiao, Vasileff, Qiao (CR67) 2018; 57 Lal (CR24) 2019; 141 Chen (CR51) 2018; 30 Lu (CR54) 2019; 10 Peng (CR52) 2017; 5 Tang, Jiang (CR70) 2016; 6 Dresselhaus, Thomas (CR1) 2001; 414 Chao, Fan (CR37) 2019; 5 Zhang (CR42) 2019; 141 Roger, Shipman, Symes (CR17) 2017; 1 Shen (CR26) 2017; 139 Zhao (CR50) 2016; 1 Jeon (CR6) 2011; 10 Wang, Li, Zhang (CR44) 2018; 2 Zhang (CR13) 2018; 30 Zhao (CR27) 2016; 539 Zhao (CR16) 2019; 64 Liu (CR10) 2019; 59 You, Zhang, Jiao, Davey, Qiao (CR65) 2019; 58 Chen (CR20) 2017; 7 Zhao (CR28) 2019; 58 Su (CR36) 2017; 7 Balat, Kirtay (CR63) 2010; 35 Perdew, Burke, Ernzerhof (CR69) 1999; 77 Xue (CR58) 2019; 31 Liu (CR66) 2019; 58 Huang (CR15) 2019; 31 Zheng, Jiao, Jaroniec, Qiao (CR61) 2015; 54 Gao, Jiao, Waclawik, Du (CR45) 2016; 138 Lu, Yu, Zhang, Lou (CR4) 2019; 31 Liu (CR19) 2020; 59 Zhang (CR64) 2017; 8 Chao (CR31) 2019; 58 Fang, Dhakshinamoorthy, Li, Garcia (CR32) 2020; 49 Xue (CR40) 2019; 10 Ma, Dai, Jaroniec, Qiao (CR60) 2014; 136 Zhu (CR18) 2018; 8 Meng (CR5) 2020; 59 Zhu, Fu, Shi, Du, Lin (CR48) 2017; 56 Geng (CR53) 2018; 30 Gray (CR2) 2009; 1 Ji (CR47) 2020; 120 Wu (CR11) 2019; 2 Lai (CR34) 2018; 140 Xie (CR62) 2019; 9 Hu (CR35) 2019; 9 Qin (CR23) 2019; 141 Wang (CR56) 2018; 57 Sun (CR57) 2018; 8 Kim (CR59) 2017; 139 Chen, Chen, Baiyee, Shao, Ciucci (CR38) 2015; 115 Li, Shao, Huang, Lang (CR39) 2018; 57 Cui (CR9) 2020; 32 Cui, Li, Ryabchuk, Junge, Beller (CR46) 2018; 1 Liao (CR29) 2019; 55 S Wang (21595_CR14) 2019; 31 Y-S Wei (21595_CR12) 2019; 141 X Hu (21595_CR35) 2019; 9 R Fang (21595_CR32) 2020; 49 T Liu (21595_CR66) 2019; 58 N Han (21595_CR30) 2018; 9 J Wang (21595_CR7) 2016; 28 F Sun (21595_CR57) 2018; 8 JP Perdew (21595_CR69) 1999; 77 XF Lu (21595_CR4) 2019; 31 J-S Qin (21595_CR23) 2019; 141 R Zhao (21595_CR28) 2019; 58 YN Gong (21595_CR22) 2020; 59 KJ Jeon (21595_CR6) 2011; 10 MS Dresselhaus (21595_CR1) 2001; 414 Z Liu (21595_CR10) 2019; 59 G Chen (21595_CR51) 2018; 30 C-Y Su (21595_CR36) 2017; 7 ZL Wang (21595_CR56) 2018; 57 C Zhu (21595_CR18) 2018; 8 A Mesbah (21595_CR49) 2014; 53 Z Zhang (21595_CR13) 2018; 30 B Liu (21595_CR8) 2017; 29 I Roger (21595_CR17) 2017; 1 G Lal (21595_CR24) 2019; 141 B Lu (21595_CR54) 2019; 10 Y Peng (21595_CR52) 2017; 5 T Wu (21595_CR11) 2019; 2 J Kim (21595_CR59) 2017; 139 Y Zheng (21595_CR67) 2018; 57 D Chao (21595_CR37) 2019; 5 G Kresse (21595_CR68) 1999; 59 M Zhao (21595_CR27) 2016; 539 P Cai (21595_CR3) 2018; 57 Z Lai (21595_CR34) 2018; 140 J-Q Zhao (21595_CR16) 2019; 64 L Chen (21595_CR20) 2017; 7 Y Zheng (21595_CR61) 2015; 54 B You (21595_CR65) 2019; 58 S Zhao (21595_CR50) 2016; 1 E Zhang (21595_CR42) 2019; 141 X Xie (21595_CR62) 2019; 9 J Zhang (21595_CR64) 2017; 8 Y Liu (21595_CR19) 2020; 59 D Chao (21595_CR31) 2019; 58 Y Li (21595_CR21) 2018; 28 B Ghalei (21595_CR25) 2019; 58 X Cui (21595_CR9) 2020; 32 S Ji (21595_CR47) 2020; 120 D Chen (21595_CR38) 2015; 115 Q Tang (21595_CR70) 2016; 6 W Cheng (21595_CR41) 2019; 4 H Balat (21595_CR63) 2010; 35 HF Wang (21595_CR33) 2017; 29 Z Xue (21595_CR58) 2019; 31 X Cui (21595_CR46) 2018; 1 HB Gray (21595_CR2) 2009; 1 X Meng (21595_CR5) 2020; 59 SMJ Rogge (21595_CR43) 2017; 46 C Zhu (21595_CR48) 2017; 56 L Huang (21595_CR15) 2019; 31 TY Ma (21595_CR60) 2014; 136 Z Geng (21595_CR53) 2018; 30 G Gao (21595_CR45) 2016; 138 Z Xue (21595_CR40) 2019; 10 L-N Zhang (21595_CR55) 2019; 12 A Wang (21595_CR44) 2018; 2 JQ Shen (21595_CR26) 2017; 139 C-H Liao (21595_CR29) 2019; 55 FL Li (21595_CR39) 2018; 57 |
References_xml | – volume: 2 start-page: 763 year: 2019 end-page: 772 ident: CR11 article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 31 start-page: 11903404 year: 2019 ident: CR14 article-title: Supporting ultrathin ZnIn S nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H-2 generation publication-title: Adv. Mater. – volume: 141 start-page: 1045 year: 2019 end-page: 1053 ident: CR24 article-title: Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedra publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11527 – volume: 9 start-page: 1901533 year: 2019 ident: CR35 article-title: Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901533 – volume: 5 start-page: 18261 year: 2017 end-page: 18269 ident: CR52 article-title: Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA03826G – volume: 58 start-page: 4679 year: 2019 end-page: 4684 ident: CR66 article-title: CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901409 – volume: 49 start-page: 3638 year: 2020 end-page: 3687 ident: CR32 article-title: Metal organic frameworks for biomass conversion publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00070A – volume: 59 start-page: 1718 year: 2020 end-page: 1726 ident: CR19 article-title: A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913910 – volume: 35 start-page: 7416 year: 2010 end-page: 7426 ident: CR63 article-title: Hydrogen from biomass-present scenario and future prospects publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.04.137 – volume: 59 start-page: 4736 year: 2019 end-page: 4742 ident: CR10 article-title: Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914245 – volume: 57 start-page: 7568 year: 2018 end-page: 7579 ident: CR67 article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710556 – volume: 58 start-page: 19034 year: 2019 end-page: 19040 ident: CR25 article-title: Rational tuning of zirconium metal-organic framework membranes for hydrogen purification publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911359 – volume: 56 start-page: 13944 year: 2017 end-page: 13960 ident: CR48 article-title: Single-atom electrocatalysts publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703864 – volume: 54 start-page: 52 year: 2015 end-page: 65 ident: CR61 article-title: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407031 – volume: 31 start-page: 1900430 year: 2019 ident: CR58 article-title: Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201900430 – volume: 58 start-page: 11796 year: 2019 end-page: 11800 ident: CR65 article-title: Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906683 – volume: 59 start-page: 2705 year: 2020 end-page: 2709 ident: CR22 article-title: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914977 – volume: 141 start-page: 2054 year: 2019 end-page: 2060 ident: CR23 article-title: Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11042 – volume: 7 start-page: 1602460 year: 2017 ident: CR36 article-title: Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery publication-title: Adv. Energy Mater. – volume: 4 start-page: 115 year: 2019 end-page: 122 ident: CR41 article-title: Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis publication-title: Nat. Energy doi: 10.1038/s41560-018-0308-8 – volume: 140 start-page: 8563 year: 2018 end-page: 8568 ident: CR34 article-title: Preparation of 1T’-Phase ReS Se (x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04513 – volume: 29 start-page: 1702327 year: 2017 ident: CR33 article-title: Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn-Air batteries publication-title: Adv. Mater. doi: 10.1002/adma.201702327 – volume: 115 start-page: 9869 year: 2015 end-page: 9921 ident: CR38 article-title: Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00073 – volume: 1 start-page: 0003 year: 2017 ident: CR17 article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 57 start-page: 1888 year: 2018 end-page: 1892 ident: CR39 article-title: Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711376 – volume: 12 start-page: 2569 year: 2019 end-page: 2580 ident: CR55 article-title: Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01647C – volume: 59 start-page: 10502 year: 2020 end-page: 10507 ident: CR5 article-title: Distance synergy of MoS -confined rhodium atoms for highly efficient hydrogen publication-title: Evol. Angew. Chem. Int. Ed. doi: 10.1002/anie.202003484 – volume: 58 start-page: 1975 year: 2019 end-page: 1979 ident: CR28 article-title: Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811126 – volume: 1 start-page: 385 year: 2018 end-page: 397 ident: CR46 article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts publication-title: Nat. Catal. doi: 10.1038/s41929-018-0090-9 – volume: 138 start-page: 6292 year: 2016 end-page: 6297 ident: CR45 article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 539 start-page: 76 year: 2016 end-page: 80 ident: CR27 article-title: Metal-organic frameworks as selectivity regulators for hydrogenation reactions publication-title: Nature doi: 10.1038/nature19763 – volume: 1 start-page: 16184 year: 2016 ident: CR50 article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 30 start-page: 1801741 year: 2018 ident: CR13 article-title: Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201801741 – volume: 141 start-page: 16569 year: 2019 end-page: 16573 ident: CR42 article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO reduction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 6 start-page: 4953 year: 2016 end-page: 4961 ident: CR70 article-title: Mechanism of hydrogen evolution reaction on 1T-MoS from first principles publication-title: Acs Catal. doi: 10.1021/acscatal.6b01211 – volume: 57 start-page: 3910 year: 2018 end-page: 3915 ident: CR3 article-title: Alkaline-acid Zn-H O fuel cell for the simultaneous generation of hydrogen and electricity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712765 – volume: 1 start-page: 7 year: 2009 end-page: 8 ident: CR2 article-title: Powering the planet with solar fuel publication-title: Nat. Chem. doi: 10.1038/nchem.141 – volume: 10 start-page: 286 year: 2011 end-page: 290 ident: CR6 article-title: Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts publication-title: Nat. Mater. doi: 10.1038/nmat2978 – volume: 31 start-page: 1901439 year: 2019 ident: CR15 article-title: Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201901439 – volume: 53 start-page: 872 year: 2014 end-page: 881 ident: CR49 article-title: From hydrated Ni (OH) (C H O ) (H O) to anhydrous Ni-2(OH)(2)(C8H4O4): impact of structural transformations on magnetic properties publication-title: Inorg. Chem. doi: 10.1021/ic402106v – volume: 30 start-page: 1706279 year: 2018 ident: CR51 article-title: Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites publication-title: Adv. Mater. doi: 10.1002/adma.201706279 – volume: 8 start-page: 1801956 year: 2018 ident: CR18 article-title: Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801956 – volume: 30 start-page: 1803498 year: 2018 ident: CR53 article-title: Achieving a record-high yield rate of 120.9 ug mg . h for N electrochemical reduction over Ru single-atom catalysts publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 57 start-page: 5848 year: 2018 end-page: 5852 ident: CR56 article-title: Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen publication-title: Evol. Angew. Chem. Int. Ed. doi: 10.1002/anie.201801467 – volume: 29 start-page: 1606521 year: 2017 ident: CR8 article-title: Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201606521 – volume: 10 year: 2019 ident: CR54 article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 31 start-page: 1900699 year: 2019 ident: CR4 article-title: Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction publication-title: Adv. Mater. doi: 10.1002/adma.201900699 – volume: 141 start-page: 7906 year: 2019 end-page: 7916 ident: CR12 article-title: A single-crystal open-capsule metal-organic framework publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02417 – volume: 136 start-page: 13925 year: 2014 end-page: 13931 ident: CR60 article-title: Metal-organic framework derived hybrid Co O -carbon porous nanowire arrays as reversible oxygen evolution electrodes publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5082553 – volume: 77 start-page: 3865 year: 1999 end-page: 3868 ident: CR69 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 58 start-page: 7823 year: 2019 end-page: 7828 ident: CR31 article-title: An electrolytic Zn-MnO battery for high-voltage and scalable energy storage publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904174 – volume: 10 year: 2019 ident: CR40 article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction publication-title: Nat. Commun. doi: 10.1038/s41467-019-13051-2 – volume: 46 start-page: 3134 year: 2017 end-page: 3184 ident: CR43 article-title: Metal-organic and covalent organic frameworks as single-site catalysts publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00033B – volume: 139 start-page: 1778 year: 2017 end-page: 1781 ident: CR26 article-title: Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12353 – volume: 9 year: 2018 ident: CR30 article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid publication-title: Nat. Commun. doi: 10.1038/s41467-018-03429-z – volume: 414 start-page: 332 year: 2001 end-page: 337 ident: CR1 article-title: Alternative energy technologies publication-title: Nature doi: 10.1038/35104599 – volume: 55 start-page: 13920 year: 2019 end-page: 13923 ident: CR29 article-title: From a layered iridium(III)-cobalt(II) organophosphonate to an efficient oxygen-evolution-reaction electrocatalyst publication-title: Chem. Commun. doi: 10.1039/C9CC06164A – volume: 32 start-page: 1908126 year: 2020 ident: CR9 article-title: Robust interface Ru centers for high-performance acidic oxygen evolution publication-title: Adv. Mater. doi: 10.1002/adma.201908126 – volume: 64 start-page: 1667 year: 2019 end-page: 1674 ident: CR16 article-title: Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.09.013 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR68 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 8 year: 2017 ident: CR64 article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics publication-title: Nat. Commun. doi: 10.1038/ncomms15437 – volume: 5 start-page: 1357 year: 2019 end-page: 1370 ident: CR37 article-title: Intercalation pseudocapacitive behavior powers aqueous publication-title: Batteries. Chem. – volume: 2 start-page: 65 year: 2018 end-page: 81 ident: CR44 article-title: Heterogeneous single-atom catalysis publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 139 start-page: 12076 year: 2017 end-page: 12083 ident: CR59 article-title: High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06808 – volume: 8 start-page: 1800584 year: 2018 ident: CR57 article-title: NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800584 – volume: 28 start-page: 215 year: 2016 end-page: 230 ident: CR7 article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 9 start-page: 8712 year: 2019 end-page: 8718 ident: CR62 article-title: Electrocatalytic hydrogen evolution in neutral pH solutions: dual-phase synergy publication-title: Acs. Catal. doi: 10.1021/acscatal.9b02609 – volume: 7 start-page: 1602782 year: 2017 ident: CR20 article-title: Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602782 – volume: 28 start-page: 1803330 year: 2018 ident: CR21 article-title: Fe vacancies induced surface FeO in nanoarchitectures of N-doped graphene protected beta-FeOOH: effective active sites for pH-universal electrocatalytic oxygen reduction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803330 – volume: 120 start-page: 11900 year: 2020 end-page: 11955 ident: CR47 article-title: Chemical synthesis of single atomic site catalysts publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00818 – volume: 6 start-page: 4953 year: 2016 ident: 21595_CR70 publication-title: Acs Catal. doi: 10.1021/acscatal.6b01211 – volume: 29 start-page: 1606521 year: 2017 ident: 21595_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201606521 – volume: 29 start-page: 1702327 year: 2017 ident: 21595_CR33 publication-title: Adv. Mater. doi: 10.1002/adma.201702327 – volume: 35 start-page: 7416 year: 2010 ident: 21595_CR63 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2010.04.137 – volume: 7 start-page: 1602782 year: 2017 ident: 21595_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602782 – volume: 59 start-page: 1758 year: 1999 ident: 21595_CR68 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 55 start-page: 13920 year: 2019 ident: 21595_CR29 publication-title: Chem. Commun. doi: 10.1039/C9CC06164A – volume: 10 year: 2019 ident: 21595_CR40 publication-title: Nat. Commun. doi: 10.1038/s41467-019-13051-2 – volume: 59 start-page: 1718 year: 2020 ident: 21595_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201913910 – volume: 64 start-page: 1667 year: 2019 ident: 21595_CR16 publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.09.013 – volume: 9 start-page: 8712 year: 2019 ident: 21595_CR62 publication-title: Acs. Catal. doi: 10.1021/acscatal.9b02609 – volume: 9 start-page: 1901533 year: 2019 ident: 21595_CR35 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201901533 – volume: 77 start-page: 3865 year: 1999 ident: 21595_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 28 start-page: 1803330 year: 2018 ident: 21595_CR21 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803330 – volume: 58 start-page: 7823 year: 2019 ident: 21595_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201904174 – volume: 139 start-page: 1778 year: 2017 ident: 21595_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12353 – volume: 120 start-page: 11900 year: 2020 ident: 21595_CR47 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00818 – volume: 57 start-page: 3910 year: 2018 ident: 21595_CR3 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712765 – volume: 141 start-page: 2054 year: 2019 ident: 21595_CR23 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11042 – volume: 136 start-page: 13925 year: 2014 ident: 21595_CR60 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5082553 – volume: 30 start-page: 1801741 year: 2018 ident: 21595_CR13 publication-title: Adv. Mater. doi: 10.1002/adma.201801741 – volume: 9 year: 2018 ident: 21595_CR30 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03429-z – volume: 8 year: 2017 ident: 21595_CR64 publication-title: Nat. Commun. doi: 10.1038/ncomms15437 – volume: 10 start-page: 286 year: 2011 ident: 21595_CR6 publication-title: Nat. Mater. doi: 10.1038/nmat2978 – volume: 7 start-page: 1602460 year: 2017 ident: 21595_CR36 publication-title: Adv. Energy Mater. – volume: 10 year: 2019 ident: 21595_CR54 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08419-3 – volume: 57 start-page: 5848 year: 2018 ident: 21595_CR56 publication-title: Evol. Angew. Chem. Int. Ed. doi: 10.1002/anie.201801467 – volume: 2 start-page: 763 year: 2019 ident: 21595_CR11 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0325-4 – volume: 28 start-page: 215 year: 2016 ident: 21595_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201502696 – volume: 59 start-page: 4736 year: 2019 ident: 21595_CR10 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914245 – volume: 49 start-page: 3638 year: 2020 ident: 21595_CR32 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00070A – volume: 414 start-page: 332 year: 2001 ident: 21595_CR1 publication-title: Nature doi: 10.1038/35104599 – volume: 46 start-page: 3134 year: 2017 ident: 21595_CR43 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00033B – volume: 30 start-page: 1706279 year: 2018 ident: 21595_CR51 publication-title: Adv. Mater. doi: 10.1002/adma.201706279 – volume: 141 start-page: 16569 year: 2019 ident: 21595_CR42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b08259 – volume: 54 start-page: 52 year: 2015 ident: 21595_CR61 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201407031 – volume: 141 start-page: 7906 year: 2019 ident: 21595_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02417 – volume: 31 start-page: 1900430 year: 2019 ident: 21595_CR58 publication-title: Adv. Mater. doi: 10.1002/adma.201900430 – volume: 8 start-page: 1801956 year: 2018 ident: 21595_CR18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201801956 – volume: 57 start-page: 7568 year: 2018 ident: 21595_CR67 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201710556 – volume: 8 start-page: 1800584 year: 2018 ident: 21595_CR57 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800584 – volume: 31 start-page: 1901439 year: 2019 ident: 21595_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201901439 – volume: 30 start-page: 1803498 year: 2018 ident: 21595_CR53 publication-title: Adv. Mater. doi: 10.1002/adma.201803498 – volume: 2 start-page: 65 year: 2018 ident: 21595_CR44 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-018-0010-1 – volume: 53 start-page: 872 year: 2014 ident: 21595_CR49 publication-title: Inorg. Chem. doi: 10.1021/ic402106v – volume: 12 start-page: 2569 year: 2019 ident: 21595_CR55 publication-title: Energy Environ. Sci. doi: 10.1039/C9EE01647C – volume: 32 start-page: 1908126 year: 2020 ident: 21595_CR9 publication-title: Adv. Mater. doi: 10.1002/adma.201908126 – volume: 1 start-page: 385 year: 2018 ident: 21595_CR46 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0090-9 – volume: 57 start-page: 1888 year: 2018 ident: 21595_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201711376 – volume: 58 start-page: 1975 year: 2019 ident: 21595_CR28 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201811126 – volume: 31 start-page: 1900699 year: 2019 ident: 21595_CR4 publication-title: Adv. Mater. doi: 10.1002/adma.201900699 – volume: 5 start-page: 1357 year: 2019 ident: 21595_CR37 publication-title: Batteries. Chem. – volume: 4 start-page: 115 year: 2019 ident: 21595_CR41 publication-title: Nat. Energy doi: 10.1038/s41560-018-0308-8 – volume: 1 start-page: 7 year: 2009 ident: 21595_CR2 publication-title: Nat. Chem. doi: 10.1038/nchem.141 – volume: 141 start-page: 1045 year: 2019 ident: 21595_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b11527 – volume: 58 start-page: 11796 year: 2019 ident: 21595_CR65 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201906683 – volume: 139 start-page: 12076 year: 2017 ident: 21595_CR59 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b06808 – volume: 58 start-page: 19034 year: 2019 ident: 21595_CR25 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911359 – volume: 59 start-page: 2705 year: 2020 ident: 21595_CR22 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914977 – volume: 140 start-page: 8563 year: 2018 ident: 21595_CR34 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b04513 – volume: 138 start-page: 6292 year: 2016 ident: 21595_CR45 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b02692 – volume: 5 start-page: 18261 year: 2017 ident: 21595_CR52 publication-title: J. Mater. Chem. A. doi: 10.1039/C7TA03826G – volume: 1 start-page: 0003 year: 2017 ident: 21595_CR17 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-016-0003 – volume: 56 start-page: 13944 year: 2017 ident: 21595_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703864 – volume: 1 start-page: 16184 year: 2016 ident: 21595_CR50 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.184 – volume: 115 start-page: 9869 year: 2015 ident: 21595_CR38 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00073 – volume: 59 start-page: 10502 year: 2020 ident: 21595_CR5 publication-title: Evol. Angew. Chem. Int. Ed. doi: 10.1002/anie.202003484 – volume: 539 start-page: 76 year: 2016 ident: 21595_CR27 publication-title: Nature doi: 10.1038/nature19763 – volume: 58 start-page: 4679 year: 2019 ident: 21595_CR66 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201901409 – volume: 31 start-page: 11903404 year: 2019 ident: 21595_CR14 publication-title: Adv. Mater. |
SSID | ssj0000391844 |
Score | 2.7174258 |
Snippet | Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging.... Developing high-performance, neutral-media H2-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1369 |
SubjectTerms | 147/135 147/143 639/301/299/886 639/638/298/921 639/925/357 Catalysts Clean energy Density functional theory Dispersion Electrocatalysts Electronic structure Evolution Humanities and Social Sciences Hydrogen Hydrogen evolution reactions Hydrogen-based energy Metal-organic frameworks Metals multidisciplinary Optimization Renewable energy Ruthenium Saline solutions Science Science (multidisciplinary) X ray absorption |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv62uEsGblm3z2RxVXBZBD-LC3kImmboP1lb27RPe2X_cSdr3dp-fFy-FNilMJ7-ZzJDpbxh77mKnNYCtm66HWkEX685BTxbfJsJTAyKWKt8P5uhYvTvRJ1dafeWasIkeeFLcgQi2dWiFlEmopFUwTmCAqFEnh13K3pf2vCvJVPHB0lHqoua_ZBrZHSxV8Qm5IoF2OadrvbMTFcL-30WZvxZL_nRiWjaiw1vs5hxB8leT5LfZNRzusOtTT8n1Xfb9_ZhKS67hM7_sccMnntjVOfKx51-QQu56augUeb-pz1pyWPNFLl1Pq5jfp4S8sAmcrXlaZErxJSb-ccUp0OVYuCdIWn66Tucj4ZDjtxnH99jx4dtPb47qudNCHSmBuahRYtsHhEi3AhpyxjqnUhaADFxjryxlsjE1wUSgEAJkAxgMXYMIJulW3md7wzjgQ8ZNh6a3vWhV_ktXJjDkUzQIMCIpB23F2o3WfZxpyHM3jDNfjsNl56eV8rRSvqyU1xV7sX3n60TC8dfZr_NibmdmAu3ygNTqZ1j5f8GqYvsbKPjZqpeeUlVlyYsJU7Fn22Gyx3zIEgYcV2VO5jS0xlbswYScrSRSGuWkchWzO5jaEXV3ZFicFs5v60RrNH3byw36LsX6syoe_Q9VPGY3RDabUni3z_YIr_iEIrELeFqM7gfizjIx priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv-26SgRvWrbNZ3MSFZdF0IO48G6hk6Tug7Vdt_sW3tl_3Ema18fzYy-Ftikkmd9MZpLpbwh5ZVwjJYAuq6aDUkDjysZAhxpfe8RTBcylLN8v6vhEfFrIRd5wG3Na5cYmJkPtBxf3yA8xTBAaEcTU2_OfZawaFU9XcwmNm-RWpC6LKV16oec9lsh-3giR_5WpeHM4imQZYl4CrnVGlnJnPUq0_f_yNf9Omfzj3DQtR0f3yN3sR9J3k-Dvkxuhf0BuT5Ul1w_Jr8-DT4W5-u90W-mGTmyxq4tAh47-COh4l1NZJ0e7TZbWSGFNlzGB3a9c_B7D8sQpcLamfhmJxcfg6dcVRXeXhsRAgb2lp2t_MSAaabjKaH5ETo4-fvtwXOZ6C6XDMOayDDzUXRvA4S2DCk2yjAGVBkA1l6ETGuNZ56tWOUBHAngFoVV4bVmrvKz5Y7LXD314Sqhqgup0x2oR_9XlHhRaFgkMFPPCQF2QejPr1mUy8lgT48ymQ3He2ElSFiVlk6SsLMjr-ZvziYrj2tbvozDnlpFGOz3AabVZKy1rdW2CZpx7JrwUrTIstOBkkN6ExhfkYAMFm3V7tFskFuTl_Bq1Mh61tH0YVqlNZDbUShfkyYScuSecK2G4MAXRO5ja6erum355mpi_tWG1kji2Nxv0bbv1_6nYv34Uz8gdFhUiJdYdkD1EYniOntYlvEjq9BvuLykq priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAifrtaJYI3XdzN5-aoD0sR9CAWegs7SdY-qPvE1ye8c__xTrIf5WkVvCzsJoFJ8ptkZjP5DcAr6xulEE1ZNR2WEhtfNhY70vg6EJ4q5D5H-X7WR8fy44k62QM-3YXJQfuZ0jIv01N02Nu1zCqdAgpok7KqVDfgZqJuT6he6MX8XyUxnjdSjvdjKtFc03RnD8pU_dfZl3-GSf52Vpq3oMO7cGe0Hdm7Qdp7sBf7-3BryCa5fQAXn1YhJ-Pqv7Gr7DZsYIilrrJVx75HMrbLIZWTZ90UmbVmuGXLFLQeNj61J1c88wicbVlYJjLxdQzsy4aRictiZp0gadnpNvxcEQJZ_DUi-CEcH374ujgqxxwLpSfX5byMItZdG9HTK8eKlmGVnCiDSKqtYicN-bA-VK32SMYDigpjq-nZ8lYHVYtHsN-v-vgEmG6i7kzHa5nu54qAmlYThRw1D9JiXUA9jbrzIwF5yoNx5vJBuGjcMFOOZsrlmXKqgNdzmx8D_cY_a79PkznXTNTZ-QMNqxuh5HhrahsNFyJwGZRsteWxRa-iCjY2oYCDCQpu1Oe1IydVGlq_uC7g5VxMmpiOV9o-rja5TmIzNNoU8HhAziyJEFpaIW0BZgdTO6LulvTL08z2bSyvtaK-vZnQdyXW34fi6f9Vfwa3eVKQHFx3APuEzPicrK1zfJHV6xJHBib2 priority: 102 providerName: Springer Nature |
Title | Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution |
URI | https://link.springer.com/article/10.1038/s41467-021-21595-5 https://www.ncbi.nlm.nih.gov/pubmed/33649349 https://www.proquest.com/docview/2494705126 https://www.proquest.com/docview/2495407767 https://pubmed.ncbi.nlm.nih.gov/PMC7921655 https://doaj.org/article/2a719e7233d24d54a692eabc5e5d9e8d |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_uA8EX8dvoWVbwTaPJfmYfRHrl6lG4Q04LfQvZj9wVaqLtVcyz_7izm6RHtQq-JCTZhO3sb3ZmurO_QeilMhnnWss4yUodM52ZOFO6BI1PLeAp0cSELN9zcTplkxmf7aG-3FEnwNXO0M7Xk5ouF29-fGveg8K_a7eMZ29XLKi7TzYAA6Z4zPfRIVgm6RX1rHP3w8xMFQQ0fqGZJCyNwXbTbh_N7s9s2apA6b_LD_0znfK3NdVgqsZ30Z3Ox8TDFhT30J6r7qNbbdXJ5gH6eVbbULSrusQ3VXBwyyS7Xjpcl_iLA3nEbckng8s-g2uFdYPnPrndro1_H0L2wDewaLCde9LxlbP4Yo3BFcYusFNAb_FVY5c1IBW77x3SH6Lp-OTz6DTuajHEBkKc69hRl5aF0wYuiU5guuY-2JJawxTAXckkxLrGJoUwGpwMTRPtCgHHghTC8pQ-QgdVXbknCIvMiVKWJGV-Hy-1WsCswzXRglimdBqhtJd6bjqicl8vY5GHBXOa5e1I5TBSeRipnEfo1eadry1Nxz9bH_vB3LT0FNvhBog17zQ2J4VMlQOIUEuY5awQirhCG-64VS6zETrqoZD3sM0hmGUS5jkiIvRi8xg01i_DFJWr16GNZz2UQkbocYucTU8oFUxRpiIktzC11dXtJ9X8KrCCS0VSweG3ve7Rd9Otv4vi6X8J7hm6Tbx-hBy8I3QAwHTPwSm71gO0L2cSjtn4wwAdDoeTTxM4H5-cf7yAuyMxGoS_OwZBI38BfWA4uw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ1AASPBCaImXpMDQmzVlC4H1Eq9mXgJHakkpTMDmjP_h9_Is5PMaFh66yVSEidy_L63OH7-HsCz0hZCGKPSrKhNyk1h06I0NWp87hBPmaE2Zvnuy9Eh_3gkjtbg17AXJqRVDjYxGmrX2vCPfBOnCVwhgqh8ffotDVWjwurqUEKjg8WOn__AKdvk1fZ7lO9zSrc-HLwbpX1VgdRisD5NPfN5XXlj8ZSaDA2PCNMGZQyCWfiaK5y1WZdV0hp0l4ZlxlcSjxWtpBM5w_degsvoeLOgUepILf7pBLb1gvN-b07Gis0Jj5Yo5EGgby1FKlb8XywT8K_Y9u8UzT_WaaP727oB1_u4lbzpgHYT1nxzC650lSznt-HnXutiIbDmC1lW1iEdO-3szJO2Jl89BvppV0bKknrICpsQMyfjkDDvZjY8X03byGFwMiduHIjMJ96RTzOC4TXxkfECe0uO5-6sRfQT_73XnjtweCGSuAvrTdv4-0Bk4WWtaprzsDeYOSPRkglDjaSOlyZPIB9GXdue_DzU4DjRcRGeFbqTlEZJ6SgpLRJ4sXjmtKP-OLf12yDMRctA2x0v4LDq3gpoWqm89Ioy5ih3gleypL4yVnjhSl-4BDYGKOjelkz0EvkJPF3cRisQlnaqxrez2CYwKSqpErjXIWfRE8YkLxkvE1ArmFrp6uqdZnwcmcZVSXMp8NteDuhbduv_Q_Hg_K94AldHB3u7end7f-chXKNBOWJS3wasIyr9I4zypuZxVC0Cny9al38DVwFnXw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNEmfiYHhICyailUCFFpb278CF2pJKXZBeXMv-LXMXYeq-XRWy9RHk7keL4Zj-3xNwg9yU3GudYyTrJSx0xnJs5yXYLGpxbwlGhiQpTvvtg5YO9mfLaBfg17YXxY5WATg6G2tfFz5BMYJjAJCCJiUvZhER-3py9PvsU-g5RfaR3SaXQQ2XPtDxi-NS92t0HWTwmZvv38ZifuMwzEBhz3ReyoS8vCaQOXRCdghLgfQkitAdjclUzCCM7YpBBGQ9epaaJdIeBYkEJYnlL47gV0UVI4BV2SMznO73jm9Yyxfp9OQrNJw4JV8jER0M_mPOZrfWFIGfAvP_fvcM0_1mxDVzi9hq72Pix-1YHuOtpw1Q10qctq2d5EPz_UNiQFq77gVZYd3DHVLk8drkv81YHTH3cppQwuhwixBusWz33wvF0a_36xqAOfwXGL7dyTmjfO4k9LDK42doH9AmqLj1p7WoMmYPe916Rb6OBcJHEbbVZ15e4iLDInSlmSlPl9wtRqAVaNa6IFsSzXaYTSodWV6YnQfT6OYxUW5GmmOkkpkJQKklI8Qs_Gd046GpAzS7_2whxLegrvcAOaVfUWQZFCprmThFJLmOWsEDlxhTbccZu7zEZoa4CC6u1Ko1ZaEKHH42OwCH6Zp6hcvQxlPKuiFDJCdzrkjDWhVLCcsjxCcg1Ta1Vdf1LNjwLruMxJKjj82_MBfatq_b8p7p39F4_QZdBi9X53f-8-ukK8boT4vi20CaB0D8DhW-iHQbMwOjxvVf4N-aNrlQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+electronic+structure+of+metal-organic+frameworks+by+introducing+atomically+dispersed+Ru+for+efficient+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Sun%2C+Yamei&rft.au=Xue%2C+Ziqian&rft.au=Liu%2C+Qinglin&rft.au=Jia%2C+Yaling&rft.date=2021-03-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-21595-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_21595_5 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |