Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution

Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 1369 - 8
Main Authors Sun, Yamei, Xue, Ziqian, Liu, Qinglin, Jia, Yaling, Li, Yinle, Liu, Kang, Lin, Yiyang, Liu, Min, Li, Guangqin, Su, Cheng-Yong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.03.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-21595-5

Cover

Loading…
Abstract Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu 0.13 -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu 0.13 -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm −2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H 2 O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design. Developing high-performance, neutral-media H 2 -evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts.
AbstractList Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm-2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm-2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu0.13-BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu0.13-BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm−2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H2O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.Developing high-performance, neutral-media H2-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts.
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
Developing high-performance, neutral-media H2-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts.
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu 0.13 -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu 0.13 -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm −2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H 2 O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design. Developing high-performance, neutral-media H 2 -evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements are most active. Here, authors show that metal-organic frameworks modified with single ruthenium atoms as high-performances catalysts.
Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging. Herein, we report a single-atom strategy to construct excellent metal-organic frameworks (MOFs) hydrogen evolution reaction electrocatalyst (NiRu 0.13 -BDC) by introducing atomically dispersed Ru. Significantly, the obtained NiRu 0.13 -BDC exhibits outstanding hydrogen evolution activity in all pH, especially with a low overpotential of 36 mV at a current density of 10 mA cm −2 in 1 M phosphate buffered saline solution, which is comparable to commercial Pt/C. X-ray absorption fine structures and the density functional theory calculations reveal that introducing Ru single-atom can modulate electronic structure of metal center in the MOF, leading to the optimization of binding strength for H 2 O and H*, and the enhancement of HER performance. This work establishes single-atom strategy as an efficient approach to modulate electronic structure of MOFs for catalyst design.
ArticleNumber 1369
Author Lin, Yiyang
Sun, Yamei
Liu, Qinglin
Li, Guangqin
Su, Cheng-Yong
Li, Yinle
Xue, Ziqian
Jia, Yaling
Liu, Kang
Liu, Min
Author_xml – sequence: 1
  givenname: Yamei
  surname: Sun
  fullname: Sun, Yamei
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
– sequence: 2
  givenname: Ziqian
  surname: Xue
  fullname: Xue, Ziqian
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
– sequence: 3
  givenname: Qinglin
  surname: Liu
  fullname: Liu, Qinglin
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
– sequence: 4
  givenname: Yaling
  surname: Jia
  fullname: Jia, Yaling
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
– sequence: 5
  givenname: Yinle
  surname: Li
  fullname: Li, Yinle
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
– sequence: 6
  givenname: Kang
  surname: Liu
  fullname: Liu, Kang
  organization: School of Physics and Electronics, Central South University
– sequence: 7
  givenname: Yiyang
  surname: Lin
  fullname: Lin, Yiyang
  organization: School of Physics and Electronics, Central South University
– sequence: 8
  givenname: Min
  orcidid: 0000-0002-9007-4817
  surname: Liu
  fullname: Liu, Min
  organization: School of Physics and Electronics, Central South University
– sequence: 9
  givenname: Guangqin
  surname: Li
  fullname: Li, Guangqin
  email: liguangqin@mail.sysu.edu.cn
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
– sequence: 10
  givenname: Cheng-Yong
  orcidid: 0000-0003-3604-7858
  surname: Su
  fullname: Su, Cheng-Yong
  organization: MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33649349$$D View this record in MEDLINE/PubMed
BookMark eNp9Uslu1TAUjVARLaU_wAJZYsMm4DHDBglVDJWKkBCsLce-efXDsR-20-qt-XGcppS2i3rh8ZzjO5zn1YEPHqrqJcFvCWbdu8QJb9oaU1JTInpRiyfVEcWc1KSl7ODO_rA6SWmLy2A96Th_Vh0y1vCe8f6o-vM1mNmpbP0GgQOdY_BWo5TjrPMcAYURTZCVq0PcqOVpjGqCqxB_JTTskfWFYWa98FUOk9XKuT0yNu0gJjDo-4zGEBGMo9UWfEYXexPDBjyCy-DmbIN_UT0dlUtwcrMeVz8_ffxx-qU-__b57PTDea0b3OQaGJBRwaDLkQ4YlBacdm07DJh3AkbeMtZpg1Wjh470A8MDqKbMiqrGCMKOq7NV1wS1lbtoJxX3Migrry9KglLFbLUDSVVLeijFY4ZyI7hqegpq0AKE6aEzRev9qrWbhwmMLplF5e6J3n_x9kJuwqVse0oaIYrAmxuBGH7PkLKcbNLgnPIQ5iQp7wXHbdu0Bfr6AXQb5uhLqRYUb7EgtCmoV3cjug3lX68LgK4AHUNKEcZbCMFy8ZRcPSWLp-S1p-QSZveApG1WS9dKVtY9TmUrNZV__Abi_7AfYf0F2I_kgg
CitedBy_id crossref_primary_10_3390_ma14226796
crossref_primary_10_1002_anie_202115198
crossref_primary_10_1021_acs_inorgchem_3c00952
crossref_primary_10_1002_smll_202204495
crossref_primary_10_1002_smll_202309791
crossref_primary_10_1016_j_cej_2024_150457
crossref_primary_10_1021_acssuschemeng_2c03887
crossref_primary_10_1021_acs_inorgchem_4c00124
crossref_primary_10_1016_j_ccr_2022_214855
crossref_primary_10_1039_D4NJ04418E
crossref_primary_10_1016_j_jcis_2023_05_205
crossref_primary_10_1021_acscatal_3c06070
crossref_primary_10_1002_adfm_202304079
crossref_primary_10_1002_anie_202209486
crossref_primary_10_1016_j_checat_2024_101132
crossref_primary_10_1016_j_inoche_2022_110038
crossref_primary_10_1002_advs_202200307
crossref_primary_10_1016_j_ccr_2022_214969
crossref_primary_10_1007_s40820_023_01192_5
crossref_primary_10_1021_acs_inorgchem_4c03525
crossref_primary_10_1039_D1TA04981J
crossref_primary_10_1016_j_cej_2023_143993
crossref_primary_10_1039_D1DT03906G
crossref_primary_10_1016_j_apsusc_2022_156266
crossref_primary_10_1002_anie_202406650
crossref_primary_10_1039_D3MH01007D
crossref_primary_10_1016_j_cej_2023_148087
crossref_primary_10_1002_smtd_202200773
crossref_primary_10_1039_D3NJ05436E
crossref_primary_10_1016_j_jechem_2023_01_054
crossref_primary_10_1021_acsanm_4c01664
crossref_primary_10_1002_anie_202316755
crossref_primary_10_1038_s41467_023_42935_7
crossref_primary_10_1016_j_ccr_2022_214952
crossref_primary_10_1016_j_ijhydene_2022_09_077
crossref_primary_10_3390_cryst13020257
crossref_primary_10_1002_aenm_202201548
crossref_primary_10_1002_smll_202403991
crossref_primary_10_1021_acsami_3c04342
crossref_primary_10_1016_j_jpowsour_2024_234758
crossref_primary_10_1021_acs_analchem_3c04878
crossref_primary_10_1016_j_nantod_2023_101883
crossref_primary_10_1016_j_apcatb_2023_123572
crossref_primary_10_1002_adma_202310912
crossref_primary_10_3390_molecules29184304
crossref_primary_10_1002_aenm_202300174
crossref_primary_10_1039_D2QI01688E
crossref_primary_10_1002_adma_202203615
crossref_primary_10_1038_s41467_024_52520_1
crossref_primary_10_1002_ange_202208667
crossref_primary_10_1039_D2TA06560F
crossref_primary_10_1007_s12274_024_6726_y
crossref_primary_10_1021_acsnano_3c02749
crossref_primary_10_1039_D2SE01664H
crossref_primary_10_1016_j_mtcata_2023_100009
crossref_primary_10_1016_j_mtnano_2022_100176
crossref_primary_10_1002_smll_202207651
crossref_primary_10_1021_acs_nanolett_2c00711
crossref_primary_10_1021_acscatal_4c04772
crossref_primary_10_1002_smll_202306085
crossref_primary_10_1002_ange_202116396
crossref_primary_10_1002_ange_202312644
crossref_primary_10_1038_s41467_022_31561_4
crossref_primary_10_1039_D3DT03636G
crossref_primary_10_1021_acsomega_3c07911
crossref_primary_10_1002_advs_202403197
crossref_primary_10_1016_j_jcis_2023_05_006
crossref_primary_10_1039_D1NR05441D
crossref_primary_10_1002_adfm_202400767
crossref_primary_10_1002_ange_202406650
crossref_primary_10_1007_s12598_022_02168_x
crossref_primary_10_1002_aenm_202203797
crossref_primary_10_1002_adfm_202210837
crossref_primary_10_1039_D2CE01570F
crossref_primary_10_1039_D3DT00477E
crossref_primary_10_1039_D3EE03896C
crossref_primary_10_1149_1945_7111_ad3a1c
crossref_primary_10_1002_aelm_202200733
crossref_primary_10_1002_ange_202115198
crossref_primary_10_1016_j_ccr_2021_214261
crossref_primary_10_1016_j_cej_2023_144922
crossref_primary_10_1002_asia_202200319
crossref_primary_10_1016_j_ijhydene_2024_04_318
crossref_primary_10_1007_s11426_022_1545_0
crossref_primary_10_1002_anie_202316550
crossref_primary_10_1016_j_apcatb_2022_121088
crossref_primary_10_1016_j_cej_2022_137611
crossref_primary_10_1007_s11581_021_04338_w
crossref_primary_10_1016_j_cclet_2025_110988
crossref_primary_10_1016_j_esci_2023_100133
crossref_primary_10_1016_j_jallcom_2024_175895
crossref_primary_10_1016_j_nanoen_2024_109559
crossref_primary_10_1016_j_jallcom_2024_175650
crossref_primary_10_1002_adma_202107488
crossref_primary_10_1007_s12274_021_3629_z
crossref_primary_10_1002_celc_202101018
crossref_primary_10_1039_D1TA09441F
crossref_primary_10_1002_adfm_202304380
crossref_primary_10_1016_j_jece_2024_113522
crossref_primary_10_1002_asia_202401387
crossref_primary_10_1039_D2TA06240B
crossref_primary_10_1016_j_cclet_2022_01_021
crossref_primary_10_1016_j_cej_2023_143707
crossref_primary_10_1039_D2DT00037G
crossref_primary_10_1002_advs_202301395
crossref_primary_10_1021_acssuschemeng_3c06742
crossref_primary_10_1021_acs_inorgchem_4c03664
crossref_primary_10_1002_anie_202302986
crossref_primary_10_1016_j_apcatb_2023_122681
crossref_primary_10_1002_anie_202116396
crossref_primary_10_1021_acscatal_4c01173
crossref_primary_10_1002_smll_202301850
crossref_primary_10_1016_j_ijhydene_2024_06_063
crossref_primary_10_1021_acscatal_4c04561
crossref_primary_10_3390_en16124707
crossref_primary_10_1002_smll_202201076
crossref_primary_10_1007_s12274_024_6954_1
crossref_primary_10_1039_D2NR05410H
crossref_primary_10_1016_j_ijhydene_2022_02_152
crossref_primary_10_1021_acscatal_1c03960
crossref_primary_10_1039_D3EY00165B
crossref_primary_10_1002_ange_202302986
crossref_primary_10_1039_D2CE00924B
crossref_primary_10_1039_D4LP00257A
crossref_primary_10_1016_j_nanoen_2024_109897
crossref_primary_10_1002_ece2_4
crossref_primary_10_1016_j_electacta_2022_141184
crossref_primary_10_1016_j_cej_2022_137080
crossref_primary_10_1016_j_jallcom_2024_174809
crossref_primary_10_1016_j_inoche_2025_114073
crossref_primary_10_1039_D2DT01394K
crossref_primary_10_1016_j_jechem_2024_08_022
crossref_primary_10_1002_adfm_202412142
crossref_primary_10_1002_aenm_202301580
crossref_primary_10_1016_j_jcis_2024_03_153
crossref_primary_10_1002_cctc_202300765
crossref_primary_10_1002_batt_202200494
crossref_primary_10_1039_D3NR02548A
crossref_primary_10_1002_smll_202207235
crossref_primary_10_1021_acsenergylett_1c02769
crossref_primary_10_1002_adma_202300935
crossref_primary_10_1016_j_est_2025_115288
crossref_primary_10_1002_ange_202316755
crossref_primary_10_1007_s12274_021_3597_3
crossref_primary_10_1016_j_jece_2025_115613
crossref_primary_10_1002_cnma_202200309
crossref_primary_10_1002_anie_202214794
crossref_primary_10_3390_nano14151270
crossref_primary_10_1002_anie_202414786
crossref_primary_10_3390_catal15010058
crossref_primary_10_1002_smll_202207146
crossref_primary_10_1016_j_jcis_2022_01_088
crossref_primary_10_1039_D3QM00483J
crossref_primary_10_1002_adma_202300945
crossref_primary_10_1016_j_cej_2024_151003
crossref_primary_10_1039_D2TA07427C
crossref_primary_10_1016_j_electacta_2023_143300
crossref_primary_10_1021_acscatal_2c05144
crossref_primary_10_1002_anie_202200123
crossref_primary_10_1039_D3CY01485A
crossref_primary_10_1016_j_apcatb_2023_122645
crossref_primary_10_1039_D3TA01903A
crossref_primary_10_1002_ange_202316550
crossref_primary_10_1002_adfm_202405881
crossref_primary_10_1039_D2DT01837C
crossref_primary_10_1007_s12274_022_4902_5
crossref_primary_10_1016_j_ijhydene_2022_03_038
crossref_primary_10_1039_D1TA01108A
crossref_primary_10_1016_j_apsusc_2022_152957
crossref_primary_10_1016_j_ijhydene_2023_04_241
crossref_primary_10_1002_ange_202209486
crossref_primary_10_1021_acssuschemeng_3c05621
crossref_primary_10_1007_s12274_021_3849_2
crossref_primary_10_1016_j_cej_2023_146710
crossref_primary_10_1016_j_jssc_2022_123610
crossref_primary_10_1360_TB_2022_0061
crossref_primary_10_1002_advs_202407834
crossref_primary_10_1002_chem_202500149
crossref_primary_10_1016_j_apsusc_2025_162361
crossref_primary_10_1016_j_ijhydene_2024_08_171
crossref_primary_10_3390_ma16072709
crossref_primary_10_1016_j_jallcom_2023_172279
crossref_primary_10_1039_D2RA08021D
crossref_primary_10_1021_acs_inorgchem_2c01908
crossref_primary_10_1002_adma_202412031
crossref_primary_10_1002_eom2_12186
crossref_primary_10_1002_anie_202110653
crossref_primary_10_1016_j_jechem_2022_12_036
crossref_primary_10_1002_aenm_202203955
crossref_primary_10_1021_acs_chemrev_4c00664
crossref_primary_10_1038_s41467_024_50691_5
crossref_primary_10_1021_acsnano_2c08245
crossref_primary_10_1016_j_colsurfa_2024_135245
crossref_primary_10_1021_acsaem_1c03950
crossref_primary_10_1002_adfm_202205985
crossref_primary_10_1002_sstr_202300576
crossref_primary_10_1021_acsenergylett_3c02100
crossref_primary_10_1016_j_ijhydene_2023_06_291
crossref_primary_10_1016_j_apcatb_2023_122630
crossref_primary_10_1039_D2TA02294J
crossref_primary_10_1016_j_jechem_2021_10_011
crossref_primary_10_3390_catal12070765
crossref_primary_10_1039_D2CE00528J
crossref_primary_10_1016_j_ijhydene_2024_08_026
crossref_primary_10_1021_acsami_1c24170
crossref_primary_10_3390_nano12071227
crossref_primary_10_1016_j_ijhydene_2024_09_194
crossref_primary_10_1016_j_jpcs_2022_110634
crossref_primary_10_1016_j_jcis_2024_04_144
crossref_primary_10_1021_acs_analchem_2c02334
crossref_primary_10_1002_smll_202207342
crossref_primary_10_1007_s12598_023_02427_5
crossref_primary_10_12677_japc_2024_133045
crossref_primary_10_1002_ente_202200655
crossref_primary_10_3390_ijms23105290
crossref_primary_10_1002_ange_202115331
crossref_primary_10_1002_smtd_202101188
crossref_primary_10_1039_D2NR03411E
crossref_primary_10_1002_adma_202107072
crossref_primary_10_1007_s11581_022_04875_y
crossref_primary_10_1016_j_cej_2021_131085
crossref_primary_10_1016_j_ijhydene_2022_04_024
crossref_primary_10_1002_inf2_12326
crossref_primary_10_1002_smll_202408602
crossref_primary_10_1002_cey2_188
crossref_primary_10_1002_smtd_202200637
crossref_primary_10_1016_j_jechem_2021_11_035
crossref_primary_10_1021_acsmaterialsau_2c00073
crossref_primary_10_1039_D3CC04990F
crossref_primary_10_1039_D3TA05421G
crossref_primary_10_1002_adma_202313931
crossref_primary_10_1002_smll_202410922
crossref_primary_10_1021_acsnano_3c01862
crossref_primary_10_1039_D1NR02232F
crossref_primary_10_1002_ange_202302220
crossref_primary_10_1021_acs_inorgchem_2c03060
crossref_primary_10_1016_j_apcatb_2022_122316
crossref_primary_10_1016_j_polymdegradstab_2024_110982
crossref_primary_10_1039_D1TA08226D
crossref_primary_10_1016_j_scenem_2025_100003
crossref_primary_10_1002_cssc_202202128
crossref_primary_10_1016_j_synthmet_2023_117422
crossref_primary_10_1021_jacs_4c03806
crossref_primary_10_1038_s41467_022_29737_z
crossref_primary_10_1016_j_checat_2021_09_007
crossref_primary_10_1002_smll_202405358
crossref_primary_10_1007_s12678_024_00871_0
crossref_primary_10_1038_s41467_021_26256_1
crossref_primary_10_1002_adfm_202211440
crossref_primary_10_3390_polym14235279
crossref_primary_10_1039_D1TA04142H
crossref_primary_10_1039_D3QM00507K
crossref_primary_10_1021_acsami_4c04342
crossref_primary_10_1021_jacs_1c06006
crossref_primary_10_1016_j_jallcom_2023_171667
crossref_primary_10_1002_asia_202201161
crossref_primary_10_1039_D2QI00859A
crossref_primary_10_1016_j_ijhydene_2024_01_026
crossref_primary_10_1021_acs_cgd_1c00499
crossref_primary_10_1016_j_ensm_2022_10_045
crossref_primary_10_1021_acs_est_4c09264
crossref_primary_10_1016_j_cej_2021_131300
crossref_primary_10_1016_j_trechm_2023_02_001
crossref_primary_10_1016_j_apcatb_2023_122829
crossref_primary_10_1002_adfm_202415375
crossref_primary_10_1002_advs_202401780
crossref_primary_10_1002_eem2_12290
crossref_primary_10_1039_D4TA04817B
crossref_primary_10_1002_ange_202409449
crossref_primary_10_1039_D3NR01723K
crossref_primary_10_1002_aenm_202204177
crossref_primary_10_1021_acsmaterialslett_4c00587
crossref_primary_10_1002_aenm_202404714
crossref_primary_10_1002_smll_202208045
crossref_primary_10_1016_j_apcatb_2022_121686
crossref_primary_10_1016_j_seppur_2023_124527
crossref_primary_10_1016_j_ccr_2024_215726
crossref_primary_10_1007_s11581_023_04928_w
crossref_primary_10_1002_sus2_127
crossref_primary_10_1021_acs_inorgchem_3c03769
crossref_primary_10_1021_acs_langmuir_4c04932
crossref_primary_10_1002_adma_202208860
crossref_primary_10_1002_ange_202214794
crossref_primary_10_1002_inf2_12357
crossref_primary_10_1002_smll_202305978
crossref_primary_10_1021_jacs_1c06349
crossref_primary_10_1007_s42114_024_01136_6
crossref_primary_10_1039_D3QI01468A
crossref_primary_10_1039_D4TA03518F
crossref_primary_10_1002_aenm_202300978
crossref_primary_10_1016_j_jallcom_2021_162113
crossref_primary_10_1016_j_apsusc_2022_153893
crossref_primary_10_1016_j_cej_2023_143059
crossref_primary_10_1016_j_jmst_2021_09_006
crossref_primary_10_1016_j_chemosphere_2023_140101
crossref_primary_10_1039_D2CE00886F
crossref_primary_10_1016_j_jallcom_2023_169465
crossref_primary_10_1016_j_nxnano_2024_100073
crossref_primary_10_1016_j_cej_2024_154475
crossref_primary_10_1002_anie_202400323
crossref_primary_10_1002_cey2_265
crossref_primary_10_1016_j_ijhydene_2025_03_120
crossref_primary_10_1007_s40820_023_01022_8
crossref_primary_10_1016_j_ccr_2021_213946
crossref_primary_10_1002_adfm_202108464
crossref_primary_10_1021_acsami_1c24363
crossref_primary_10_1002_ange_202110374
crossref_primary_10_1021_acsmaterialslett_2c01046
crossref_primary_10_1007_s12274_023_6003_5
crossref_primary_10_1021_acsnano_3c05583
crossref_primary_10_1016_j_nanoso_2024_101108
crossref_primary_10_1002_tcr_202200244
crossref_primary_10_1002_adfm_202414493
crossref_primary_10_1021_acsanm_2c05104
crossref_primary_10_1021_acs_inorgchem_2c00546
crossref_primary_10_1002_advs_202205889
crossref_primary_10_1016_j_cej_2024_153251
crossref_primary_10_1016_j_jechem_2021_08_067
crossref_primary_10_1016_j_cej_2024_154222
crossref_primary_10_1002_adfm_202303986
crossref_primary_10_1002_anie_202409449
crossref_primary_10_1016_j_mtchem_2023_101857
crossref_primary_10_1039_D1NR02019F
crossref_primary_10_1002_ange_202200123
crossref_primary_10_1002_anie_202110374
crossref_primary_10_1021_acsabm_1c00749
crossref_primary_10_34133_2022_9837109
crossref_primary_10_1002_tcr_202200237
crossref_primary_10_1016_j_cej_2022_139475
crossref_primary_10_1002_anie_202423765
crossref_primary_10_1039_D2DT03253H
crossref_primary_10_1016_j_esci_2025_100378
crossref_primary_10_1002_aenm_202301673
crossref_primary_10_1002_smll_202307725
crossref_primary_10_1016_j_cej_2023_147990
crossref_primary_10_1016_j_jechem_2023_06_031
crossref_primary_10_1002_smsc_202200035
crossref_primary_10_1039_D4TA02679A
crossref_primary_10_1002_ange_202423765
crossref_primary_10_1088_2399_1984_ac1db9
crossref_primary_10_1016_j_apsusc_2023_158474
crossref_primary_10_1007_s12274_023_5391_x
crossref_primary_10_1002_anie_202207512
crossref_primary_10_1002_adfm_202408823
crossref_primary_10_1039_D2NR04294K
crossref_primary_10_1002_smll_202410778
crossref_primary_10_1002_cey2_459
crossref_primary_10_1002_cctc_202301753
crossref_primary_10_1002_tcr_202200212
crossref_primary_10_1002_aenm_202303623
crossref_primary_10_1002_tcr_202200213
crossref_primary_10_1021_acs_inorgchem_2c01840
crossref_primary_10_1002_adma_202411211
crossref_primary_10_1002_anie_202312644
crossref_primary_10_1016_j_ensm_2022_09_014
crossref_primary_10_1016_j_scib_2024_01_014
crossref_primary_10_1002_smll_202306616
crossref_primary_10_1039_D4GC02727B
crossref_primary_10_1007_s00214_023_02983_0
crossref_primary_10_1002_adfm_202415585
crossref_primary_10_1021_acsami_2c07792
crossref_primary_10_1039_D3EE01541F
crossref_primary_10_1039_D3CC00451A
crossref_primary_10_1016_j_surfin_2023_103368
crossref_primary_10_3390_nano12152618
crossref_primary_10_1016_j_talanta_2023_124442
crossref_primary_10_1021_acscatal_4c03722
crossref_primary_10_1016_j_jmst_2024_11_074
crossref_primary_10_1039_D1TA06438J
crossref_primary_10_1002_anie_202208667
crossref_primary_10_1016_j_cclet_2021_09_034
crossref_primary_10_3390_bios14040172
crossref_primary_10_1016_j_apcatb_2024_124203
crossref_primary_10_1021_acscatal_3c03884
crossref_primary_10_1039_D3QI01642K
crossref_primary_10_1002_ange_202207512
crossref_primary_10_1039_D2CC03994J
crossref_primary_10_1021_acs_iecr_3c02447
crossref_primary_10_1002_smll_202105231
crossref_primary_10_1016_j_ijhydene_2024_03_283
crossref_primary_10_1021_acssuschemeng_2c06191
crossref_primary_10_1016_j_jcis_2023_07_204
crossref_primary_10_1039_D3TA02610H
crossref_primary_10_1016_j_jcis_2022_11_149
crossref_primary_10_1002_cey2_526
crossref_primary_10_1002_cjoc_202100425
crossref_primary_10_1002_smll_202307405
crossref_primary_10_1016_j_cej_2023_148365
crossref_primary_10_1016_j_cclet_2021_06_047
crossref_primary_10_1021_acs_inorgchem_4c02804
crossref_primary_10_1016_j_jpowsour_2025_236385
crossref_primary_10_1016_j_nanoen_2023_108694
crossref_primary_10_1039_D3DT00649B
crossref_primary_10_1021_jacs_3c06726
crossref_primary_10_1002_adfm_202102066
crossref_primary_10_1002_smll_202202496
crossref_primary_10_1002_ange_202400323
crossref_primary_10_1016_j_jiec_2024_11_050
crossref_primary_10_1039_D3GC01828H
crossref_primary_10_1039_D4QM00822G
crossref_primary_10_1016_j_ijhydene_2022_06_217
crossref_primary_10_1016_j_jmst_2021_08_079
crossref_primary_10_1002_aenm_202202119
crossref_primary_10_1016_j_jiec_2022_10_047
crossref_primary_10_1039_D4DT02220C
crossref_primary_10_1002_adfm_202308813
crossref_primary_10_1021_acssuschemeng_4c06394
crossref_primary_10_1039_D1TA09391F
crossref_primary_10_1016_j_apcatb_2024_124465
crossref_primary_10_1016_j_jcis_2023_11_100
crossref_primary_10_1073_pnas_2320777121
crossref_primary_10_1021_acsanm_4c06960
crossref_primary_10_1002_cjoc_202200385
crossref_primary_10_1039_D4QI00515E
crossref_primary_10_1039_D3TA07016F
crossref_primary_10_1016_j_jcis_2023_07_109
crossref_primary_10_1002_advs_202205605
crossref_primary_10_1002_ange_202110653
crossref_primary_10_1039_D3CC03838F
crossref_primary_10_1016_j_jallcom_2023_170721
crossref_primary_10_1002_smll_202305201
crossref_primary_10_1007_s11581_023_05248_9
crossref_primary_10_1002_ifm2_19
crossref_primary_10_1002_adfm_202421740
crossref_primary_10_1002_idm2_12172
crossref_primary_10_1002_aenm_202400059
crossref_primary_10_1016_j_cej_2024_154062
crossref_primary_10_1007_s40820_021_00679_3
crossref_primary_10_1002_tcr_202300013
crossref_primary_10_1002_ange_202414786
crossref_primary_10_1021_acscatal_4c00267
crossref_primary_10_1002_adfm_202210322
crossref_primary_10_1007_s40820_024_01382_9
crossref_primary_10_1021_jacs_2c10801
crossref_primary_10_1016_j_apcatb_2023_123161
crossref_primary_10_1039_D2TA09024D
crossref_primary_10_1007_s12274_022_4128_6
crossref_primary_10_1021_acscatal_2c02361
crossref_primary_10_1039_D2NR07019G
crossref_primary_10_1016_j_mtener_2024_101595
crossref_primary_10_1039_D2IM00063F
crossref_primary_10_1039_D3DT02712K
crossref_primary_10_1002_adfm_202418439
crossref_primary_10_1021_acssuschemeng_4c09957
crossref_primary_10_1016_j_jtice_2021_10_018
crossref_primary_10_1021_acs_nanolett_2c02755
crossref_primary_10_1002_anie_202115331
crossref_primary_10_1021_acsami_2c09107
crossref_primary_10_1016_j_fmre_2022_06_012
crossref_primary_10_1002_advs_202200010
crossref_primary_10_1016_j_apsusc_2024_160310
crossref_primary_10_1039_D2QI01655A
crossref_primary_10_1021_acs_inorgchem_2c02666
crossref_primary_10_1002_sstr_202200109
crossref_primary_10_1002_adfm_202300294
crossref_primary_10_1039_D4SC06574C
crossref_primary_10_1021_acsenergylett_1c01827
crossref_primary_10_1016_j_cej_2022_139524
crossref_primary_10_1039_D3NH00159H
crossref_primary_10_1016_j_cej_2021_133944
crossref_primary_10_1002_anie_202302220
crossref_primary_10_1016_j_apcatb_2023_123015
crossref_primary_10_1021_acs_inorgchem_1c03982
crossref_primary_10_1021_acs_inorgchem_4c00217
crossref_primary_10_1002_smll_202309841
crossref_primary_10_1039_D4CP00352G
crossref_primary_10_1007_s41061_021_00363_5
crossref_primary_10_1016_j_apsusc_2022_155870
crossref_primary_10_1021_acsanm_3c00398
crossref_primary_10_1021_acs_energyfuels_3c04609
crossref_primary_10_1002_celc_202400156
crossref_primary_10_3390_catal14100671
crossref_primary_10_1039_D3NR04101H
crossref_primary_10_1039_D2TA06050G
crossref_primary_10_1016_j_electacta_2022_141715
crossref_primary_10_1016_j_apcatb_2021_120753
crossref_primary_10_1039_D2QI01764D
crossref_primary_10_1016_j_bios_2024_116463
crossref_primary_10_1039_D2TA03860A
crossref_primary_10_1021_acsami_3c19236
Cites_doi 10.1038/s41929-019-0325-4
10.1021/jacs.8b11527
10.1002/aenm.201901533
10.1039/C7TA03826G
10.1002/anie.201901409
10.1039/D0CS00070A
10.1002/anie.201913910
10.1016/j.ijhydene.2010.04.137
10.1002/anie.201914245
10.1002/anie.201710556
10.1002/anie.201911359
10.1002/anie.201703864
10.1002/anie.201407031
10.1002/adma.201900430
10.1002/anie.201906683
10.1002/anie.201914977
10.1021/jacs.8b11042
10.1038/s41560-018-0308-8
10.1021/jacs.8b04513
10.1002/adma.201702327
10.1021/acs.chemrev.5b00073
10.1038/s41570-016-0003
10.1002/anie.201711376
10.1039/C9EE01647C
10.1002/anie.202003484
10.1002/anie.201811126
10.1038/s41929-018-0090-9
10.1021/jacs.6b02692
10.1038/nature19763
10.1038/nenergy.2016.184
10.1002/adma.201801741
10.1021/jacs.9b08259
10.1021/acscatal.6b01211
10.1002/anie.201712765
10.1038/nchem.141
10.1038/nmat2978
10.1002/adma.201901439
10.1021/ic402106v
10.1002/adma.201706279
10.1002/aenm.201801956
10.1002/adma.201803498
10.1002/anie.201801467
10.1002/adma.201606521
10.1038/s41467-019-08419-3
10.1002/adma.201900699
10.1021/jacs.9b02417
10.1021/ja5082553
10.1103/PhysRevLett.77.3865
10.1002/anie.201904174
10.1038/s41467-019-13051-2
10.1039/C7CS00033B
10.1021/jacs.6b12353
10.1038/s41467-018-03429-z
10.1038/35104599
10.1039/C9CC06164A
10.1002/adma.201908126
10.1016/j.scib.2019.09.013
10.1103/PhysRevB.59.1758
10.1038/ncomms15437
10.1038/s41570-018-0010-1
10.1021/jacs.7b06808
10.1002/aenm.201800584
10.1002/adma.201502696
10.1021/acscatal.9b02609
10.1002/aenm.201602782
10.1002/adfm.201803330
10.1021/acs.chemrev.9b00818
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-21595-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_2a719e7233d24d54a692eabc5e5d9e8d
PMC7921655
33649349
10_1038_s41467_021_21595_5
Genre Journal Article
GrantInformation_xml – fundername: Overseas High-level Talents Plan of China and Guangdong Province, International S&T Cooperation Program of China (2017YFE0127800), the Fundamental Research Funds for the Central Universities, the Hunan Provincial Science and Technology Program (No. 2017XK2026), The 100 Talents Plan Foundation of Sun Yat-Sen University, the Program for Guangdong Introducing Innovative and Entrepreneurial Teams (2017ZT07C069), the NSFC Projects (21872174, 21821003, 21890380, 22075321and U1932148)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-e3e1faebcc602b0eac542877bb0485ef47338cd0a6cb819b30bea630ba2a6d513
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:47:45 EDT 2025
Thu Aug 21 14:13:05 EDT 2025
Thu Jul 10 19:13:43 EDT 2025
Wed Aug 13 02:51:42 EDT 2025
Mon Jul 21 06:01:51 EDT 2025
Tue Jul 01 04:17:18 EDT 2025
Thu Apr 24 22:58:47 EDT 2025
Fri Feb 21 02:39:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-e3e1faebcc602b0eac542877bb0485ef47338cd0a6cb819b30bea630ba2a6d513
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9007-4817
0000-0003-3604-7858
OpenAccessLink https://www.nature.com/articles/s41467-021-21595-5
PMID 33649349
PQID 2494705126
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_2a719e7233d24d54a692eabc5e5d9e8d
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7921655
proquest_miscellaneous_2495407767
proquest_journals_2494705126
pubmed_primary_33649349
crossref_primary_10_1038_s41467_021_21595_5
crossref_citationtrail_10_1038_s41467_021_21595_5
springer_journals_10_1038_s41467_021_21595_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang, Tang, Wang, Li, Zhang (CR33) 2017; 29
Cheng (CR41) 2019; 4
Gong (CR22) 2020; 59
Wang (CR7) 2016; 28
Zhang (CR55) 2019; 12
Rogge (CR43) 2017; 46
Mesbah (CR49) 2014; 53
Liu (CR8) 2017; 29
Li (CR21) 2018; 28
Han (CR30) 2018; 9
Wang, Wang, Zhang, Zang, Lou (CR14) 2019; 31
Ghalei (CR25) 2019; 58
Wei (CR12) 2019; 141
Kresse, Joubert (CR68) 1999; 59
Cai, Li, Wang, Wen (CR3) 2018; 57
Zheng, Jiao, Vasileff, Qiao (CR67) 2018; 57
Lal (CR24) 2019; 141
Chen (CR51) 2018; 30
Lu (CR54) 2019; 10
Peng (CR52) 2017; 5
Tang, Jiang (CR70) 2016; 6
Dresselhaus, Thomas (CR1) 2001; 414
Chao, Fan (CR37) 2019; 5
Zhang (CR42) 2019; 141
Roger, Shipman, Symes (CR17) 2017; 1
Shen (CR26) 2017; 139
Zhao (CR50) 2016; 1
Jeon (CR6) 2011; 10
Wang, Li, Zhang (CR44) 2018; 2
Zhang (CR13) 2018; 30
Zhao (CR27) 2016; 539
Zhao (CR16) 2019; 64
Liu (CR10) 2019; 59
You, Zhang, Jiao, Davey, Qiao (CR65) 2019; 58
Chen (CR20) 2017; 7
Zhao (CR28) 2019; 58
Su (CR36) 2017; 7
Balat, Kirtay (CR63) 2010; 35
Perdew, Burke, Ernzerhof (CR69) 1999; 77
Xue (CR58) 2019; 31
Liu (CR66) 2019; 58
Huang (CR15) 2019; 31
Zheng, Jiao, Jaroniec, Qiao (CR61) 2015; 54
Gao, Jiao, Waclawik, Du (CR45) 2016; 138
Lu, Yu, Zhang, Lou (CR4) 2019; 31
Liu (CR19) 2020; 59
Zhang (CR64) 2017; 8
Chao (CR31) 2019; 58
Fang, Dhakshinamoorthy, Li, Garcia (CR32) 2020; 49
Xue (CR40) 2019; 10
Ma, Dai, Jaroniec, Qiao (CR60) 2014; 136
Zhu (CR18) 2018; 8
Meng (CR5) 2020; 59
Zhu, Fu, Shi, Du, Lin (CR48) 2017; 56
Geng (CR53) 2018; 30
Gray (CR2) 2009; 1
Ji (CR47) 2020; 120
Wu (CR11) 2019; 2
Lai (CR34) 2018; 140
Xie (CR62) 2019; 9
Hu (CR35) 2019; 9
Qin (CR23) 2019; 141
Wang (CR56) 2018; 57
Sun (CR57) 2018; 8
Kim (CR59) 2017; 139
Chen, Chen, Baiyee, Shao, Ciucci (CR38) 2015; 115
Li, Shao, Huang, Lang (CR39) 2018; 57
Cui (CR9) 2020; 32
Cui, Li, Ryabchuk, Junge, Beller (CR46) 2018; 1
Liao (CR29) 2019; 55
S Wang (21595_CR14) 2019; 31
Y-S Wei (21595_CR12) 2019; 141
X Hu (21595_CR35) 2019; 9
R Fang (21595_CR32) 2020; 49
T Liu (21595_CR66) 2019; 58
N Han (21595_CR30) 2018; 9
J Wang (21595_CR7) 2016; 28
F Sun (21595_CR57) 2018; 8
JP Perdew (21595_CR69) 1999; 77
XF Lu (21595_CR4) 2019; 31
J-S Qin (21595_CR23) 2019; 141
R Zhao (21595_CR28) 2019; 58
YN Gong (21595_CR22) 2020; 59
KJ Jeon (21595_CR6) 2011; 10
MS Dresselhaus (21595_CR1) 2001; 414
Z Liu (21595_CR10) 2019; 59
G Chen (21595_CR51) 2018; 30
C-Y Su (21595_CR36) 2017; 7
ZL Wang (21595_CR56) 2018; 57
C Zhu (21595_CR18) 2018; 8
A Mesbah (21595_CR49) 2014; 53
Z Zhang (21595_CR13) 2018; 30
B Liu (21595_CR8) 2017; 29
I Roger (21595_CR17) 2017; 1
G Lal (21595_CR24) 2019; 141
B Lu (21595_CR54) 2019; 10
Y Peng (21595_CR52) 2017; 5
T Wu (21595_CR11) 2019; 2
J Kim (21595_CR59) 2017; 139
Y Zheng (21595_CR67) 2018; 57
D Chao (21595_CR37) 2019; 5
G Kresse (21595_CR68) 1999; 59
M Zhao (21595_CR27) 2016; 539
P Cai (21595_CR3) 2018; 57
Z Lai (21595_CR34) 2018; 140
J-Q Zhao (21595_CR16) 2019; 64
L Chen (21595_CR20) 2017; 7
Y Zheng (21595_CR61) 2015; 54
B You (21595_CR65) 2019; 58
S Zhao (21595_CR50) 2016; 1
E Zhang (21595_CR42) 2019; 141
X Xie (21595_CR62) 2019; 9
J Zhang (21595_CR64) 2017; 8
Y Liu (21595_CR19) 2020; 59
D Chao (21595_CR31) 2019; 58
Y Li (21595_CR21) 2018; 28
B Ghalei (21595_CR25) 2019; 58
X Cui (21595_CR9) 2020; 32
S Ji (21595_CR47) 2020; 120
D Chen (21595_CR38) 2015; 115
Q Tang (21595_CR70) 2016; 6
W Cheng (21595_CR41) 2019; 4
H Balat (21595_CR63) 2010; 35
HF Wang (21595_CR33) 2017; 29
Z Xue (21595_CR58) 2019; 31
X Cui (21595_CR46) 2018; 1
HB Gray (21595_CR2) 2009; 1
X Meng (21595_CR5) 2020; 59
SMJ Rogge (21595_CR43) 2017; 46
C Zhu (21595_CR48) 2017; 56
L Huang (21595_CR15) 2019; 31
TY Ma (21595_CR60) 2014; 136
Z Geng (21595_CR53) 2018; 30
G Gao (21595_CR45) 2016; 138
Z Xue (21595_CR40) 2019; 10
L-N Zhang (21595_CR55) 2019; 12
A Wang (21595_CR44) 2018; 2
JQ Shen (21595_CR26) 2017; 139
C-H Liao (21595_CR29) 2019; 55
FL Li (21595_CR39) 2018; 57
References_xml – volume: 2
  start-page: 763
  year: 2019
  end-page: 772
  ident: CR11
  article-title: Iron-facilitated dynamic active-site generation on spinel CoAl O with self-termination of surface reconstruction for water oxidation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 31
  start-page: 11903404
  year: 2019
  ident: CR14
  article-title: Supporting ultrathin ZnIn S nanosheets on Co/N-doped graphitic carbon nanocages for efficient photocatalytic H-2 generation
  publication-title: Adv. Mater.
– volume: 141
  start-page: 1045
  year: 2019
  end-page: 1053
  ident: CR24
  article-title: Mechanical properties of a metal-organic framework formed by covalent cross-linking of metal-organic polyhedra
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11527
– volume: 9
  start-page: 1901533
  year: 2019
  ident: CR35
  article-title: Fast redox kinetics in Bi-heteroatom doped 3D porous carbon nanosheets for high-performance hybrid potassium-ion battery capacitors
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901533
– volume: 5
  start-page: 18261
  year: 2017
  end-page: 18269
  ident: CR52
  article-title: Hydrogen evolution reaction catalyzed by ruthenium ion-complexed graphitic carbon nitride nanosheets
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA03826G
– volume: 58
  start-page: 4679
  year: 2019
  end-page: 4684
  ident: CR66
  article-title: CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901409
– volume: 49
  start-page: 3638
  year: 2020
  end-page: 3687
  ident: CR32
  article-title: Metal organic frameworks for biomass conversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00070A
– volume: 59
  start-page: 1718
  year: 2020
  end-page: 1726
  ident: CR19
  article-title: A general route to prepare low-ruthenium-content bimetallic electrocatalysts for pH-universal hydrogen evolution reaction by using carbon quantum dots
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913910
– volume: 35
  start-page: 7416
  year: 2010
  end-page: 7426
  ident: CR63
  article-title: Hydrogen from biomass-present scenario and future prospects
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.04.137
– volume: 59
  start-page: 4736
  year: 2019
  end-page: 4742
  ident: CR10
  article-title: Optimal geometrical configuration of cobalt cations in spinel oxides to promote oxygen evolution reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914245
– volume: 57
  start-page: 7568
  year: 2018
  end-page: 7579
  ident: CR67
  article-title: The hydrogen evolution reaction in alkaline solution: from theory, single crystal models, to practical electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 58
  start-page: 19034
  year: 2019
  end-page: 19040
  ident: CR25
  article-title: Rational tuning of zirconium metal-organic framework membranes for hydrogen purification
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911359
– volume: 56
  start-page: 13944
  year: 2017
  end-page: 13960
  ident: CR48
  article-title: Single-atom electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 54
  start-page: 52
  year: 2015
  end-page: 65
  ident: CR61
  article-title: Advancing the electrochemistry of the hydrogen-evolution reaction through combining experiment and theory
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407031
– volume: 31
  start-page: 1900430
  year: 2019
  ident: CR58
  article-title: Interfacial electronic structure modulation of NiTe nanoarrays with NiS nanodots facilitates electrocatalytic oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900430
– volume: 58
  start-page: 11796
  year: 2019
  end-page: 11800
  ident: CR65
  article-title: Negative charging of transition-metal phosphides via strong electronic coupling for destabilization of alkaline water
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906683
– volume: 59
  start-page: 2705
  year: 2020
  end-page: 2709
  ident: CR22
  article-title: Regulating the coordination environment of MOF-templated single-atom nickel electrocatalysts for boosting CO reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914977
– volume: 141
  start-page: 2054
  year: 2019
  end-page: 2060
  ident: CR23
  article-title: Creating well-defined hexabenzocoronene in zirconium metal-organic framework by postsynthetic annulation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11042
– volume: 7
  start-page: 1602460
  year: 2017
  ident: CR36
  article-title: Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery
  publication-title: Adv. Energy Mater.
– volume: 4
  start-page: 115
  year: 2019
  end-page: 122
  ident: CR41
  article-title: Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 140
  start-page: 8563
  year: 2018
  end-page: 8568
  ident: CR34
  article-title: Preparation of 1T’-Phase ReS Se (x = 0-1) nanodots for highly efficient electrocatalytic hydrogen evolution reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04513
– volume: 29
  start-page: 1702327
  year: 2017
  ident: CR33
  article-title: Bifunctional transition metal hydroxysulfides: room-temperature sulfurization and their applications in Zn-Air batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702327
– volume: 115
  start-page: 9869
  year: 2015
  end-page: 9921
  ident: CR38
  article-title: Nonstoichiometric oxides as low-cost and highly-efficient oxygen reduction/evolution catalysts for low-temperature electrochemical devices
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00073
– volume: 1
  start-page: 0003
  year: 2017
  ident: CR17
  article-title: Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 57
  start-page: 1888
  year: 2018
  end-page: 1892
  ident: CR39
  article-title: Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711376
– volume: 12
  start-page: 2569
  year: 2019
  end-page: 2580
  ident: CR55
  article-title: Cable-like Ru/WNO@C nanowires for simultaneous high-efficiency hydrogen evolution and low-energy consumption chlor-alkali electrolysis
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01647C
– volume: 59
  start-page: 10502
  year: 2020
  end-page: 10507
  ident: CR5
  article-title: Distance synergy of MoS -confined rhodium atoms for highly efficient hydrogen
  publication-title: Evol. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003484
– volume: 58
  start-page: 1975
  year: 2019
  end-page: 1979
  ident: CR28
  article-title: Puffing up energetic metal-organic frameworks to large carbon networks with hierarchical porosity and atomically dispersed metal sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811126
– volume: 1
  start-page: 385
  year: 2018
  end-page: 397
  ident: CR46
  article-title: Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0090-9
– volume: 138
  start-page: 6292
  year: 2016
  end-page: 6297
  ident: CR45
  article-title: Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 539
  start-page: 76
  year: 2016
  end-page: 80
  ident: CR27
  article-title: Metal-organic frameworks as selectivity regulators for hydrogenation reactions
  publication-title: Nature
  doi: 10.1038/nature19763
– volume: 1
  start-page: 16184
  year: 2016
  ident: CR50
  article-title: Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 30
  start-page: 1801741
  year: 2018
  ident: CR13
  article-title: Crystal phase and architecture engineering of lotus-thalamus-shaped Pt-Ni anisotropic superstructures for highly efficient electrochemical hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801741
– volume: 141
  start-page: 16569
  year: 2019
  end-page: 16573
  ident: CR42
  article-title: Bismuth single atoms resulting from transformation of metal-organic frameworks and their use as electrocatalysts for CO reduction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 6
  start-page: 4953
  year: 2016
  end-page: 4961
  ident: CR70
  article-title: Mechanism of hydrogen evolution reaction on 1T-MoS from first principles
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.6b01211
– volume: 57
  start-page: 3910
  year: 2018
  end-page: 3915
  ident: CR3
  article-title: Alkaline-acid Zn-H O fuel cell for the simultaneous generation of hydrogen and electricity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712765
– volume: 1
  start-page: 7
  year: 2009
  end-page: 8
  ident: CR2
  article-title: Powering the planet with solar fuel
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.141
– volume: 10
  start-page: 286
  year: 2011
  end-page: 290
  ident: CR6
  article-title: Air-stable magnesium nanocomposites provide rapid and high-capacity hydrogen storage without using heavy-metal catalysts
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2978
– volume: 31
  start-page: 1901439
  year: 2019
  ident: CR15
  article-title: Zirconium-regulation-induced bifunctionality in 3D cobalt-iron oxide nanosheets for overall water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901439
– volume: 53
  start-page: 872
  year: 2014
  end-page: 881
  ident: CR49
  article-title: From hydrated Ni (OH) (C H O ) (H O) to anhydrous Ni-2(OH)(2)(C8H4O4): impact of structural transformations on magnetic properties
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402106v
– volume: 30
  start-page: 1706279
  year: 2018
  ident: CR51
  article-title: Accelerated hydrogen evolution kinetics on NiFe-layered double hydroxide electrocatalysts by tailoring water dissociation active sites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706279
– volume: 8
  start-page: 1801956
  year: 2018
  ident: CR18
  article-title: Hierarchically porous M-N-C (M = Co and Fe) single-atom electrocatalysts with robust MNx active moieties enable enhanced ORR performance
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801956
– volume: 30
  start-page: 1803498
  year: 2018
  ident: CR53
  article-title: Achieving a record-high yield rate of 120.9 ug mg . h for N electrochemical reduction over Ru single-atom catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 57
  start-page: 5848
  year: 2018
  end-page: 5852
  ident: CR56
  article-title: Spatially confined assembly of monodisperse ruthenium nanoclusters in a hierarchically ordered carbon electrode for efficient hydrogen
  publication-title: Evol. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801467
– volume: 29
  start-page: 1606521
  year: 2017
  ident: CR8
  article-title: Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606521
– volume: 10
  year: 2019
  ident: CR54
  article-title: Ruthenium atomically dispersed in carbon outperforms platinum toward hydrogen evolution in alkaline media
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08419-3
– volume: 31
  start-page: 1900699
  year: 2019
  ident: CR4
  article-title: Ultrafine dual-phased carbide nanocrystals confined in porous nitrogen-doped carbon dodecahedrons for efficient hydrogen evolution reaction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900699
– volume: 141
  start-page: 7906
  year: 2019
  end-page: 7916
  ident: CR12
  article-title: A single-crystal open-capsule metal-organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02417
– volume: 136
  start-page: 13925
  year: 2014
  end-page: 13931
  ident: CR60
  article-title: Metal-organic framework derived hybrid Co O -carbon porous nanowire arrays as reversible oxygen evolution electrodes
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5082553
– volume: 77
  start-page: 3865
  year: 1999
  end-page: 3868
  ident: CR69
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 58
  start-page: 7823
  year: 2019
  end-page: 7828
  ident: CR31
  article-title: An electrolytic Zn-MnO battery for high-voltage and scalable energy storage
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904174
– volume: 10
  year: 2019
  ident: CR40
  article-title: Missing-linker metal-organic frameworks for oxygen evolution reaction
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13051-2
– volume: 46
  start-page: 3134
  year: 2017
  end-page: 3184
  ident: CR43
  article-title: Metal-organic and covalent organic frameworks as single-site catalysts
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00033B
– volume: 139
  start-page: 1778
  year: 2017
  end-page: 1781
  ident: CR26
  article-title: Modular and stepwise synthesis of a hybrid metal-organic framework for efficient electrocatalytic oxygen evolution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12353
– volume: 9
  year: 2018
  ident: CR30
  article-title: Nitrogen-doped tungsten carbide nanoarray as an efficient bifunctional electrocatalyst for water splitting in acid
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03429-z
– volume: 414
  start-page: 332
  year: 2001
  end-page: 337
  ident: CR1
  article-title: Alternative energy technologies
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 55
  start-page: 13920
  year: 2019
  end-page: 13923
  ident: CR29
  article-title: From a layered iridium(III)-cobalt(II) organophosphonate to an efficient oxygen-evolution-reaction electrocatalyst
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06164A
– volume: 32
  start-page: 1908126
  year: 2020
  ident: CR9
  article-title: Robust interface Ru centers for high-performance acidic oxygen evolution
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908126
– volume: 64
  start-page: 1667
  year: 2019
  end-page: 1674
  ident: CR16
  article-title: Heptanuclear brucite disk with cyanide bridges in a cocrystal and tracking its pyrolysis to an efficient oxygen evolution electrode
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.09.013
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR68
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 8
  year: 2017
  ident: CR64
  article-title: Efficient hydrogen production on MoNi electrocatalysts with fast water dissociation kinetics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15437
– volume: 5
  start-page: 1357
  year: 2019
  end-page: 1370
  ident: CR37
  article-title: Intercalation pseudocapacitive behavior powers aqueous
  publication-title: Batteries. Chem.
– volume: 2
  start-page: 65
  year: 2018
  end-page: 81
  ident: CR44
  article-title: Heterogeneous single-atom catalysis
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 139
  start-page: 12076
  year: 2017
  end-page: 12083
  ident: CR59
  article-title: High-performance pyrochlore-type yttrium ruthenate electrocatalyst for oxygen evolution reaction in acidic media
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06808
– volume: 8
  start-page: 1800584
  year: 2018
  ident: CR57
  article-title: NiFe-based metal-organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800584
– volume: 28
  start-page: 215
  year: 2016
  end-page: 230
  ident: CR7
  article-title: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 9
  start-page: 8712
  year: 2019
  end-page: 8718
  ident: CR62
  article-title: Electrocatalytic hydrogen evolution in neutral pH solutions: dual-phase synergy
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.9b02609
– volume: 7
  start-page: 1602782
  year: 2017
  ident: CR20
  article-title: Mo-based ultrasmall nanoparticles on hierarchical carbon nanosheets for superior lithium ion storage and hydrogen generation catalysis
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602782
– volume: 28
  start-page: 1803330
  year: 2018
  ident: CR21
  article-title: Fe vacancies induced surface FeO in nanoarchitectures of N-doped graphene protected beta-FeOOH: effective active sites for pH-universal electrocatalytic oxygen reduction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803330
– volume: 120
  start-page: 11900
  year: 2020
  end-page: 11955
  ident: CR47
  article-title: Chemical synthesis of single atomic site catalysts
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00818
– volume: 6
  start-page: 4953
  year: 2016
  ident: 21595_CR70
  publication-title: Acs Catal.
  doi: 10.1021/acscatal.6b01211
– volume: 29
  start-page: 1606521
  year: 2017
  ident: 21595_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606521
– volume: 29
  start-page: 1702327
  year: 2017
  ident: 21595_CR33
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201702327
– volume: 35
  start-page: 7416
  year: 2010
  ident: 21595_CR63
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2010.04.137
– volume: 7
  start-page: 1602782
  year: 2017
  ident: 21595_CR20
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602782
– volume: 59
  start-page: 1758
  year: 1999
  ident: 21595_CR68
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 55
  start-page: 13920
  year: 2019
  ident: 21595_CR29
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC06164A
– volume: 10
  year: 2019
  ident: 21595_CR40
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13051-2
– volume: 59
  start-page: 1718
  year: 2020
  ident: 21595_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201913910
– volume: 64
  start-page: 1667
  year: 2019
  ident: 21595_CR16
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2019.09.013
– volume: 9
  start-page: 8712
  year: 2019
  ident: 21595_CR62
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.9b02609
– volume: 9
  start-page: 1901533
  year: 2019
  ident: 21595_CR35
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201901533
– volume: 77
  start-page: 3865
  year: 1999
  ident: 21595_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 28
  start-page: 1803330
  year: 2018
  ident: 21595_CR21
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803330
– volume: 58
  start-page: 7823
  year: 2019
  ident: 21595_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201904174
– volume: 139
  start-page: 1778
  year: 2017
  ident: 21595_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12353
– volume: 120
  start-page: 11900
  year: 2020
  ident: 21595_CR47
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00818
– volume: 57
  start-page: 3910
  year: 2018
  ident: 21595_CR3
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201712765
– volume: 141
  start-page: 2054
  year: 2019
  ident: 21595_CR23
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11042
– volume: 136
  start-page: 13925
  year: 2014
  ident: 21595_CR60
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5082553
– volume: 30
  start-page: 1801741
  year: 2018
  ident: 21595_CR13
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801741
– volume: 9
  year: 2018
  ident: 21595_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03429-z
– volume: 8
  year: 2017
  ident: 21595_CR64
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15437
– volume: 10
  start-page: 286
  year: 2011
  ident: 21595_CR6
  publication-title: Nat. Mater.
  doi: 10.1038/nmat2978
– volume: 7
  start-page: 1602460
  year: 2017
  ident: 21595_CR36
  publication-title: Adv. Energy Mater.
– volume: 10
  year: 2019
  ident: 21595_CR54
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08419-3
– volume: 57
  start-page: 5848
  year: 2018
  ident: 21595_CR56
  publication-title: Evol. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801467
– volume: 2
  start-page: 763
  year: 2019
  ident: 21595_CR11
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0325-4
– volume: 28
  start-page: 215
  year: 2016
  ident: 21595_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502696
– volume: 59
  start-page: 4736
  year: 2019
  ident: 21595_CR10
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914245
– volume: 49
  start-page: 3638
  year: 2020
  ident: 21595_CR32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00070A
– volume: 414
  start-page: 332
  year: 2001
  ident: 21595_CR1
  publication-title: Nature
  doi: 10.1038/35104599
– volume: 46
  start-page: 3134
  year: 2017
  ident: 21595_CR43
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C7CS00033B
– volume: 30
  start-page: 1706279
  year: 2018
  ident: 21595_CR51
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706279
– volume: 141
  start-page: 16569
  year: 2019
  ident: 21595_CR42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b08259
– volume: 54
  start-page: 52
  year: 2015
  ident: 21595_CR61
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201407031
– volume: 141
  start-page: 7906
  year: 2019
  ident: 21595_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02417
– volume: 31
  start-page: 1900430
  year: 2019
  ident: 21595_CR58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900430
– volume: 8
  start-page: 1801956
  year: 2018
  ident: 21595_CR18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201801956
– volume: 57
  start-page: 7568
  year: 2018
  ident: 21595_CR67
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201710556
– volume: 8
  start-page: 1800584
  year: 2018
  ident: 21595_CR57
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800584
– volume: 31
  start-page: 1901439
  year: 2019
  ident: 21595_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901439
– volume: 30
  start-page: 1803498
  year: 2018
  ident: 21595_CR53
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803498
– volume: 2
  start-page: 65
  year: 2018
  ident: 21595_CR44
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-018-0010-1
– volume: 53
  start-page: 872
  year: 2014
  ident: 21595_CR49
  publication-title: Inorg. Chem.
  doi: 10.1021/ic402106v
– volume: 12
  start-page: 2569
  year: 2019
  ident: 21595_CR55
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C9EE01647C
– volume: 32
  start-page: 1908126
  year: 2020
  ident: 21595_CR9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201908126
– volume: 1
  start-page: 385
  year: 2018
  ident: 21595_CR46
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0090-9
– volume: 57
  start-page: 1888
  year: 2018
  ident: 21595_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201711376
– volume: 58
  start-page: 1975
  year: 2019
  ident: 21595_CR28
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201811126
– volume: 31
  start-page: 1900699
  year: 2019
  ident: 21595_CR4
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900699
– volume: 5
  start-page: 1357
  year: 2019
  ident: 21595_CR37
  publication-title: Batteries. Chem.
– volume: 4
  start-page: 115
  year: 2019
  ident: 21595_CR41
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0308-8
– volume: 1
  start-page: 7
  year: 2009
  ident: 21595_CR2
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.141
– volume: 141
  start-page: 1045
  year: 2019
  ident: 21595_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b11527
– volume: 58
  start-page: 11796
  year: 2019
  ident: 21595_CR65
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201906683
– volume: 139
  start-page: 12076
  year: 2017
  ident: 21595_CR59
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06808
– volume: 58
  start-page: 19034
  year: 2019
  ident: 21595_CR25
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201911359
– volume: 59
  start-page: 2705
  year: 2020
  ident: 21595_CR22
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201914977
– volume: 140
  start-page: 8563
  year: 2018
  ident: 21595_CR34
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b04513
– volume: 138
  start-page: 6292
  year: 2016
  ident: 21595_CR45
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02692
– volume: 5
  start-page: 18261
  year: 2017
  ident: 21595_CR52
  publication-title: J. Mater. Chem. A.
  doi: 10.1039/C7TA03826G
– volume: 1
  start-page: 0003
  year: 2017
  ident: 21595_CR17
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-016-0003
– volume: 56
  start-page: 13944
  year: 2017
  ident: 21595_CR48
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201703864
– volume: 1
  start-page: 16184
  year: 2016
  ident: 21595_CR50
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.184
– volume: 115
  start-page: 9869
  year: 2015
  ident: 21595_CR38
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00073
– volume: 59
  start-page: 10502
  year: 2020
  ident: 21595_CR5
  publication-title: Evol. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202003484
– volume: 539
  start-page: 76
  year: 2016
  ident: 21595_CR27
  publication-title: Nature
  doi: 10.1038/nature19763
– volume: 58
  start-page: 4679
  year: 2019
  ident: 21595_CR66
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201901409
– volume: 31
  start-page: 11903404
  year: 2019
  ident: 21595_CR14
  publication-title: Adv. Mater.
SSID ssj0000391844
Score 2.7174258
Snippet Developing high-performance electrocatalysts toward hydrogen evolution reaction is important for clean and sustainable hydrogen energy, yet still challenging....
Developing high-performance, neutral-media H2-evolution electrocatalysts is important for clean and sustainable hydrogen energy, yet rare, expensive elements...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1369
SubjectTerms 147/135
147/143
639/301/299/886
639/638/298/921
639/925/357
Catalysts
Clean energy
Density functional theory
Dispersion
Electrocatalysts
Electronic structure
Evolution
Humanities and Social Sciences
Hydrogen
Hydrogen evolution reactions
Hydrogen-based energy
Metal-organic frameworks
Metals
multidisciplinary
Optimization
Renewable energy
Ruthenium
Saline solutions
Science
Science (multidisciplinary)
X ray absorption
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9UwEA-yIHgRv62uEsGblm3z2RxVXBZBD-LC3kImmboP1lb27RPe2X_cSdr3dp-fFy-FNilMJ7-ZzJDpbxh77mKnNYCtm66HWkEX685BTxbfJsJTAyKWKt8P5uhYvTvRJ1dafeWasIkeeFLcgQi2dWiFlEmopFUwTmCAqFEnh13K3pf2vCvJVPHB0lHqoua_ZBrZHSxV8Qm5IoF2OadrvbMTFcL-30WZvxZL_nRiWjaiw1vs5hxB8leT5LfZNRzusOtTT8n1Xfb9_ZhKS67hM7_sccMnntjVOfKx51-QQu56augUeb-pz1pyWPNFLl1Pq5jfp4S8sAmcrXlaZErxJSb-ccUp0OVYuCdIWn66Tucj4ZDjtxnH99jx4dtPb47qudNCHSmBuahRYtsHhEi3AhpyxjqnUhaADFxjryxlsjE1wUSgEAJkAxgMXYMIJulW3md7wzjgQ8ZNh6a3vWhV_ktXJjDkUzQIMCIpB23F2o3WfZxpyHM3jDNfjsNl56eV8rRSvqyU1xV7sX3n60TC8dfZr_NibmdmAu3ygNTqZ1j5f8GqYvsbKPjZqpeeUlVlyYsJU7Fn22Gyx3zIEgYcV2VO5jS0xlbswYScrSRSGuWkchWzO5jaEXV3ZFicFs5v60RrNH3byw36LsX6syoe_Q9VPGY3RDabUni3z_YIr_iEIrELeFqM7gfizjIx
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Ni9UwEA-6IngRv-26SgRvWrbNZ3MSFZdF0IO48G6hk6Tug7Vdt_sW3tl_3Ema18fzYy-Ftikkmd9MZpLpbwh5ZVwjJYAuq6aDUkDjysZAhxpfe8RTBcylLN8v6vhEfFrIRd5wG3Na5cYmJkPtBxf3yA8xTBAaEcTU2_OfZawaFU9XcwmNm-RWpC6LKV16oec9lsh-3giR_5WpeHM4imQZYl4CrnVGlnJnPUq0_f_yNf9Omfzj3DQtR0f3yN3sR9J3k-Dvkxuhf0BuT5Ul1w_Jr8-DT4W5-u90W-mGTmyxq4tAh47-COh4l1NZJ0e7TZbWSGFNlzGB3a9c_B7D8sQpcLamfhmJxcfg6dcVRXeXhsRAgb2lp2t_MSAaabjKaH5ETo4-fvtwXOZ6C6XDMOayDDzUXRvA4S2DCk2yjAGVBkA1l6ETGuNZ56tWOUBHAngFoVV4bVmrvKz5Y7LXD314Sqhqgup0x2oR_9XlHhRaFgkMFPPCQF2QejPr1mUy8lgT48ymQ3He2ElSFiVlk6SsLMjr-ZvziYrj2tbvozDnlpFGOz3AabVZKy1rdW2CZpx7JrwUrTIstOBkkN6ExhfkYAMFm3V7tFskFuTl_Bq1Mh61tH0YVqlNZDbUShfkyYScuSecK2G4MAXRO5ja6erum355mpi_tWG1kji2Nxv0bbv1_6nYv34Uz8gdFhUiJdYdkD1EYniOntYlvEjq9BvuLykq
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEB9qRfAifrtaJYI3XdzN5-aoD0sR9CAWegs7SdY-qPvE1ye8c__xTrIf5WkVvCzsJoFJ8ptkZjP5DcAr6xulEE1ZNR2WEhtfNhY70vg6EJ4q5D5H-X7WR8fy44k62QM-3YXJQfuZ0jIv01N02Nu1zCqdAgpok7KqVDfgZqJuT6he6MX8XyUxnjdSjvdjKtFc03RnD8pU_dfZl3-GSf52Vpq3oMO7cGe0Hdm7Qdp7sBf7-3BryCa5fQAXn1YhJ-Pqv7Gr7DZsYIilrrJVx75HMrbLIZWTZ90UmbVmuGXLFLQeNj61J1c88wicbVlYJjLxdQzsy4aRictiZp0gadnpNvxcEQJZ_DUi-CEcH374ujgqxxwLpSfX5byMItZdG9HTK8eKlmGVnCiDSKqtYicN-bA-VK32SMYDigpjq-nZ8lYHVYtHsN-v-vgEmG6i7kzHa5nu54qAmlYThRw1D9JiXUA9jbrzIwF5yoNx5vJBuGjcMFOOZsrlmXKqgNdzmx8D_cY_a79PkznXTNTZ-QMNqxuh5HhrahsNFyJwGZRsteWxRa-iCjY2oYCDCQpu1Oe1IydVGlq_uC7g5VxMmpiOV9o-rja5TmIzNNoU8HhAziyJEFpaIW0BZgdTO6LulvTL08z2bSyvtaK-vZnQdyXW34fi6f9Vfwa3eVKQHFx3APuEzPicrK1zfJHV6xJHBib2
  priority: 102
  providerName: Springer Nature
Title Modulating electronic structure of metal-organic frameworks by introducing atomically dispersed Ru for efficient hydrogen evolution
URI https://link.springer.com/article/10.1038/s41467-021-21595-5
https://www.ncbi.nlm.nih.gov/pubmed/33649349
https://www.proquest.com/docview/2494705126
https://www.proquest.com/docview/2495407767
https://pubmed.ncbi.nlm.nih.gov/PMC7921655
https://doaj.org/article/2a719e7233d24d54a692eabc5e5d9e8d
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEF_uA8EX8dvoWVbwTaPJfmYfRHrl6lG4Q04LfQvZj9wVaqLtVcyz_7izm6RHtQq-JCTZhO3sb3ZmurO_QeilMhnnWss4yUodM52ZOFO6BI1PLeAp0cSELN9zcTplkxmf7aG-3FEnwNXO0M7Xk5ouF29-fGveg8K_a7eMZ29XLKi7TzYAA6Z4zPfRIVgm6RX1rHP3w8xMFQQ0fqGZJCyNwXbTbh_N7s9s2apA6b_LD_0znfK3NdVgqsZ30Z3Ox8TDFhT30J6r7qNbbdXJ5gH6eVbbULSrusQ3VXBwyyS7Xjpcl_iLA3nEbckng8s-g2uFdYPnPrndro1_H0L2wDewaLCde9LxlbP4Yo3BFcYusFNAb_FVY5c1IBW77x3SH6Lp-OTz6DTuajHEBkKc69hRl5aF0wYuiU5guuY-2JJawxTAXckkxLrGJoUwGpwMTRPtCgHHghTC8pQ-QgdVXbknCIvMiVKWJGV-Hy-1WsCswzXRglimdBqhtJd6bjqicl8vY5GHBXOa5e1I5TBSeRipnEfo1eadry1Nxz9bH_vB3LT0FNvhBog17zQ2J4VMlQOIUEuY5awQirhCG-64VS6zETrqoZD3sM0hmGUS5jkiIvRi8xg01i_DFJWr16GNZz2UQkbocYucTU8oFUxRpiIktzC11dXtJ9X8KrCCS0VSweG3ve7Rd9Otv4vi6X8J7hm6Tbx-hBy8I3QAwHTPwSm71gO0L2cSjtn4wwAdDoeTTxM4H5-cf7yAuyMxGoS_OwZBI38BfWA4uw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRQguiJ1AASPBCaImXpMDQmzVlC4H1Eq9mXgJHakkpTMDmjP_h9_Is5PMaFh66yVSEidy_L63OH7-HsCz0hZCGKPSrKhNyk1h06I0NWp87hBPmaE2Zvnuy9Eh_3gkjtbg17AXJqRVDjYxGmrX2vCPfBOnCVwhgqh8ffotDVWjwurqUEKjg8WOn__AKdvk1fZ7lO9zSrc-HLwbpX1VgdRisD5NPfN5XXlj8ZSaDA2PCNMGZQyCWfiaK5y1WZdV0hp0l4ZlxlcSjxWtpBM5w_degsvoeLOgUepILf7pBLb1gvN-b07Gis0Jj5Yo5EGgby1FKlb8XywT8K_Y9u8UzT_WaaP727oB1_u4lbzpgHYT1nxzC650lSznt-HnXutiIbDmC1lW1iEdO-3szJO2Jl89BvppV0bKknrICpsQMyfjkDDvZjY8X03byGFwMiduHIjMJ96RTzOC4TXxkfECe0uO5-6sRfQT_73XnjtweCGSuAvrTdv4-0Bk4WWtaprzsDeYOSPRkglDjaSOlyZPIB9GXdue_DzU4DjRcRGeFbqTlEZJ6SgpLRJ4sXjmtKP-OLf12yDMRctA2x0v4LDq3gpoWqm89Ioy5ih3gleypL4yVnjhSl-4BDYGKOjelkz0EvkJPF3cRisQlnaqxrez2CYwKSqpErjXIWfRE8YkLxkvE1ArmFrp6uqdZnwcmcZVSXMp8NteDuhbduv_Q_Hg_K94AldHB3u7end7f-chXKNBOWJS3wasIyr9I4zypuZxVC0Cny9al38DVwFnXw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBNEmfiYHhICyailUCFFpb278CF2pJKXZBeXMv-LXMXYeq-XRWy9RHk7keL4Zj-3xNwg9yU3GudYyTrJSx0xnJs5yXYLGpxbwlGhiQpTvvtg5YO9mfLaBfg17YXxY5WATg6G2tfFz5BMYJjAJCCJiUvZhER-3py9PvsU-g5RfaR3SaXQQ2XPtDxi-NS92t0HWTwmZvv38ZifuMwzEBhz3ReyoS8vCaQOXRCdghLgfQkitAdjclUzCCM7YpBBGQ9epaaJdIeBYkEJYnlL47gV0UVI4BV2SMznO73jm9Yyxfp9OQrNJw4JV8jER0M_mPOZrfWFIGfAvP_fvcM0_1mxDVzi9hq72Pix-1YHuOtpw1Q10qctq2d5EPz_UNiQFq77gVZYd3DHVLk8drkv81YHTH3cppQwuhwixBusWz33wvF0a_36xqAOfwXGL7dyTmjfO4k9LDK42doH9AmqLj1p7WoMmYPe916Rb6OBcJHEbbVZ15e4iLDInSlmSlPl9wtRqAVaNa6IFsSzXaYTSodWV6YnQfT6OYxUW5GmmOkkpkJQKklI8Qs_Gd046GpAzS7_2whxLegrvcAOaVfUWQZFCprmThFJLmOWsEDlxhTbccZu7zEZoa4CC6u1Ko1ZaEKHH42OwCH6Zp6hcvQxlPKuiFDJCdzrkjDWhVLCcsjxCcg1Ta1Vdf1LNjwLruMxJKjj82_MBfatq_b8p7p39F4_QZdBi9X53f-8-ukK8boT4vi20CaB0D8DhW-iHQbMwOjxvVf4N-aNrlQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulating+electronic+structure+of+metal-organic+frameworks+by+introducing+atomically+dispersed+Ru+for+efficient+hydrogen+evolution&rft.jtitle=Nature+communications&rft.au=Sun%2C+Yamei&rft.au=Xue%2C+Ziqian&rft.au=Liu%2C+Qinglin&rft.au=Jia%2C+Yaling&rft.date=2021-03-01&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-021-21595-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_021_21595_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon