A silicon-on-insulator slab for topological valley transport

Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectiona...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 872 - 9
Main Authors He, Xin-Tao, Liang, En-Tao, Yuan, Jia-Jun, Qiu, Hao-Yang, Chen, Xiao-Dong, Zhao, Fu-Li, Dong, Jian-Wen
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.02.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems. Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom.
AbstractList Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom.
Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems. Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom.
Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.
Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom.
Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.
ArticleNumber 872
Author Liang, En-Tao
Zhao, Fu-Li
He, Xin-Tao
Yuan, Jia-Jun
Dong, Jian-Wen
Qiu, Hao-Yang
Chen, Xiao-Dong
Author_xml – sequence: 1
  givenname: Xin-Tao
  surname: He
  fullname: He, Xin-Tao
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
– sequence: 2
  givenname: En-Tao
  surname: Liang
  fullname: Liang, En-Tao
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
– sequence: 3
  givenname: Jia-Jun
  surname: Yuan
  fullname: Yuan, Jia-Jun
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
– sequence: 4
  givenname: Hao-Yang
  surname: Qiu
  fullname: Qiu, Hao-Yang
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
– sequence: 5
  givenname: Xiao-Dong
  surname: Chen
  fullname: Chen, Xiao-Dong
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
– sequence: 6
  givenname: Fu-Li
  surname: Zhao
  fullname: Zhao, Fu-Li
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
– sequence: 7
  givenname: Jian-Wen
  orcidid: 0000-0003-2379-554X
  surname: Dong
  fullname: Dong, Jian-Wen
  email: dongjwen@mail.sysu.edu.cn
  organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30787288$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1rHSEUlZLSpGn-QBdloJtupvXrqQOlEEI_AoFu2rVcHefVh09f1Qkkvz7mTdImWUSEe9FzDsfreY0OYooOobcEfySYqU-FEy5kj8nQY6UU6a9foCOKOemJpOzgQX-ITkrZ4LbYQBTnr9Ahw1JJqtQR-nzaFR-8TbFv28cyB6gpdyWA6abW1LRLIa29hdBdQgjuqqsZYtmlXN-glxOE4k7u6jH6_e3rr7Mf_cXP7-dnpxe9FVjUfhSKj4QYvrLYEGYYYZObYBpbVZwoCQNnQq6cWpFJDgBmsg4rqaywEzaKHaPzRXdMsNG77LeQr3QCr_cHKa815OptcFpiCczIwdJx4HQ0yihwnIEQjozUmqb1ZdHazWbrRutie054JPr4Jvo_ep0utWCKNk9N4MOdQE5_Z1eq3vpiXQgQXZqLpm3GKyq4xA36_gl0k-Yc26j2KDIwMtCGevfQ0T8r95_UAGoB2JxKyW7S1leoPt0a9EETrG8joZdI6BYJvY-Evm5U-oR6r_4siS2k0sBx7fJ_28-wbgBTmsmp
CitedBy_id crossref_primary_10_1016_j_optlastec_2022_108422
crossref_primary_10_1088_1361_648X_ab0fcc
crossref_primary_10_1088_1367_2630_ac1c84
crossref_primary_10_1364_OE_440121
crossref_primary_10_1002_andp_201900090
crossref_primary_10_1063_5_0149671
crossref_primary_10_1007_s11433_024_2421_3
crossref_primary_10_1007_s11467_020_0983_3
crossref_primary_10_3390_photonics10090961
crossref_primary_10_1016_j_chaos_2024_115239
crossref_primary_10_1103_PhysRevApplied_21_014046
crossref_primary_10_1109_JLT_2024_3423659
crossref_primary_10_1016_j_rinp_2024_108104
crossref_primary_10_1016_j_physleta_2020_127035
crossref_primary_10_3788_gzxb20245306_0626001
crossref_primary_10_1364_OL_474097
crossref_primary_10_1364_OPTICA_393035
crossref_primary_10_1364_PRJ_470354
crossref_primary_10_1038_s42005_024_01712_8
crossref_primary_10_1103_PhysRevA_110_013503
crossref_primary_10_1002_adom_201900036
crossref_primary_10_1021_acsphotonics_2c01529
crossref_primary_10_35848_1882_0786_ad157f
crossref_primary_10_1364_OE_510304
crossref_primary_10_1364_PRJ_538355
crossref_primary_10_1364_OE_454750
crossref_primary_10_1109_LPT_2024_3424292
crossref_primary_10_2184_lsj_47_7_351
crossref_primary_10_1016_j_rinp_2023_107066
crossref_primary_10_1103_PhysRevB_102_180102
crossref_primary_10_1103_PhysRevResearch_2_043148
crossref_primary_10_1109_LPT_2023_3278703
crossref_primary_10_1016_j_ijmecsci_2022_107989
crossref_primary_10_3390_mi15121492
crossref_primary_10_1016_j_ymssp_2025_112405
crossref_primary_10_1103_PhysRevLett_128_203903
crossref_primary_10_3390_mi12121506
crossref_primary_10_3788_LOP232334
crossref_primary_10_1002_adfm_202204122
crossref_primary_10_1364_OL_492427
crossref_primary_10_1088_1361_6463_acf22a
crossref_primary_10_1103_PhysRevLett_132_143801
crossref_primary_10_1109_JLT_2022_3150173
crossref_primary_10_1364_OE_422962
crossref_primary_10_1364_JOSAB_454949
crossref_primary_10_3367_UFNe_2024_08_039740
crossref_primary_10_1002_advs_202004216
crossref_primary_10_1103_PhysRevResearch_3_L022025
crossref_primary_10_1103_PhysRevLett_123_103901
crossref_primary_10_1364_OME_525349
crossref_primary_10_1002_lpor_202200362
crossref_primary_10_1364_OL_549425
crossref_primary_10_1515_nanoph_2024_0192
crossref_primary_10_1515_nanoph_2023_0744
crossref_primary_10_1016_j_rinp_2023_107165
crossref_primary_10_1103_PhysRevB_101_205303
crossref_primary_10_1364_OE_445851
crossref_primary_10_1002_advs_202404163
crossref_primary_10_1103_PhysRevLett_126_230503
crossref_primary_10_1103_PhysRevA_109_043511
crossref_primary_10_1088_1674_1056_ad1e6a
crossref_primary_10_1364_PRJ_453803
crossref_primary_10_1103_PhysRevLett_132_016601
crossref_primary_10_1021_acsphotonics_2c01695
crossref_primary_10_1016_j_optlastec_2022_108476
crossref_primary_10_1109_JLT_2021_3082558
crossref_primary_10_1007_s12633_023_02596_z
crossref_primary_10_1002_adpr_202300089
crossref_primary_10_1016_j_ijmecsci_2024_109329
crossref_primary_10_1063_5_0137591
crossref_primary_10_3788_COL202321_081901
crossref_primary_10_1002_smll_202402575
crossref_primary_10_1364_OL_401650
crossref_primary_10_1038_s41467_021_23718_4
crossref_primary_10_1126_sciadv_adn5028
crossref_primary_10_1364_OE_545620
crossref_primary_10_1002_pssb_202200169
crossref_primary_10_1016_j_physe_2025_116225
crossref_primary_10_7498_aps_72_20221814
crossref_primary_10_1016_j_optcom_2024_131333
crossref_primary_10_1002_adfm_202302197
crossref_primary_10_1103_PhysRevResearch_2_043109
crossref_primary_10_1103_PhysRevB_105_035136
crossref_primary_10_3389_fphy_2022_866552
crossref_primary_10_1103_PhysRevResearch_6_013321
crossref_primary_10_1364_OE_529005
crossref_primary_10_1364_OE_500720
crossref_primary_10_1364_OE_489523
crossref_primary_10_1016_j_optmat_2022_112152
crossref_primary_10_1103_PhysRevB_110_155415
crossref_primary_10_3390_nano14221790
crossref_primary_10_1002_lpor_202200329
crossref_primary_10_1103_PhysRevA_103_L041502
crossref_primary_10_1103_PhysRevA_103_023512
crossref_primary_10_1364_OE_465461
crossref_primary_10_1002_adfm_202411667
crossref_primary_10_1103_PhysRevResearch_4_013078
crossref_primary_10_1016_j_device_2023_100184
crossref_primary_10_1038_s41467_021_25835_6
crossref_primary_10_1080_15376494_2023_2250368
crossref_primary_10_1063_5_0248226
crossref_primary_10_1364_OL_433957
crossref_primary_10_1088_1367_2630_abe335
crossref_primary_10_3389_fphy_2023_1141997
crossref_primary_10_1088_1361_6463_acc46f
crossref_primary_10_1002_apxr_202300125
crossref_primary_10_1021_acsphotonics_2c01367
crossref_primary_10_3788_LOP241585
crossref_primary_10_1002_lpor_202301315
crossref_primary_10_1364_PRJ_485676
crossref_primary_10_1515_nanoph_2020_0086
crossref_primary_10_1103_PhysRevB_101_214102
crossref_primary_10_1364_OPTICA_453483
crossref_primary_10_3390_photonics10030263
crossref_primary_10_1016_j_optcom_2024_131142
crossref_primary_10_1088_1361_6633_aceeee
crossref_primary_10_1002_adom_202001865
crossref_primary_10_1038_s41467_023_37670_y
crossref_primary_10_1038_s41467_023_40341_7
crossref_primary_10_1002_lpor_202200626
crossref_primary_10_1103_PhysRevApplied_19_024053
crossref_primary_10_1364_OE_542313
crossref_primary_10_1088_1367_2630_abc8ae
crossref_primary_10_1103_PhysRevLett_127_013901
crossref_primary_10_3788_PI_2023_R09
crossref_primary_10_1007_s11801_024_3092_7
crossref_primary_10_1364_PRJ_441644
crossref_primary_10_1038_s41377_022_00821_9
crossref_primary_10_1002_andp_202100191
crossref_primary_10_1016_j_commatsci_2023_112498
crossref_primary_10_1088_1361_6463_ad3839
crossref_primary_10_1063_5_0003888
crossref_primary_10_1515_nanoph_2023_0727
crossref_primary_10_1063_1_5142397
crossref_primary_10_1103_PhysRevB_103_L201406
crossref_primary_10_1002_lpor_202300686
crossref_primary_10_1002_lpor_202300204
crossref_primary_10_1364_OL_453556
crossref_primary_10_1364_OE_466106
crossref_primary_10_63174_xdi_TPLP3530
crossref_primary_10_1103_PhysRevApplied_16_064036
crossref_primary_10_1038_s41598_023_27868_x
crossref_primary_10_7498_aps_71_20221938
crossref_primary_10_1063_5_0174435
crossref_primary_10_1364_OL_463458
crossref_primary_10_1103_PhysRevApplied_22_044029
crossref_primary_10_1063_5_0037592
crossref_primary_10_7566_JPSJ_92_114402
crossref_primary_10_1103_PhysRevApplied_21_034048
crossref_primary_10_1364_OE_542654
crossref_primary_10_1016_j_chip_2024_100109
crossref_primary_10_1364_OME_525268
crossref_primary_10_3367_UFNr_2024_08_039740
crossref_primary_10_1515_nanoph_2023_0900
crossref_primary_10_1103_PhysRevApplied_17_054003
crossref_primary_10_1515_nanoph_2023_0902
crossref_primary_10_1002_lpor_202200818
crossref_primary_10_1016_j_optlastec_2023_109790
crossref_primary_10_1063_5_0071548
crossref_primary_10_1063_5_0150179
crossref_primary_10_1103_PhysRevB_109_075132
crossref_primary_10_1038_s44310_025_00057_6
crossref_primary_10_1103_PhysRevB_102_174202
crossref_primary_10_1117_1_APN_3_1_016009
crossref_primary_10_1364_PRJ_486329
crossref_primary_10_1103_PhysRevB_108_104106
crossref_primary_10_1063_5_0165548
crossref_primary_10_1364_PRJ_419569
crossref_primary_10_3389_fphy_2022_845579
crossref_primary_10_1007_s11433_023_2093_9
crossref_primary_10_1515_nanoph_2022_0169
crossref_primary_10_1016_j_ijmecsci_2023_108903
crossref_primary_10_1109_TAP_2019_2934816
crossref_primary_10_1002_adma_202311611
crossref_primary_10_7567_1882_0786_ab3004
crossref_primary_10_1002_adma_202312825
crossref_primary_10_1021_acs_nanolett_3c04363
crossref_primary_10_1088_1674_1056_acddd3
crossref_primary_10_1103_PhysRevB_110_075407
crossref_primary_10_1103_PhysRevLett_134_033803
crossref_primary_10_1103_PhysRevApplied_15_024002
crossref_primary_10_1063_5_0105397
crossref_primary_10_1103_PhysRevApplied_15_034015
crossref_primary_10_1063_5_0107211
crossref_primary_10_1117_1_OE_64_1_017101
crossref_primary_10_1364_OL_453234
crossref_primary_10_1016_j_euromechsol_2024_105294
crossref_primary_10_1016_j_rinp_2024_107399
crossref_primary_10_1364_OE_412460
crossref_primary_10_1103_PhysRevA_104_013504
crossref_primary_10_1364_OL_474271
crossref_primary_10_1515_nanoph_2024_0200
crossref_primary_10_3788_AOS240853
crossref_primary_10_3788_AOS240854
crossref_primary_10_1007_s11082_023_05179_9
crossref_primary_10_1038_s41566_020_0618_9
crossref_primary_10_1002_adom_202301051
crossref_primary_10_1364_OE_398421
crossref_primary_10_1109_JLT_2022_3171289
crossref_primary_10_1007_s11801_025_4037_5
crossref_primary_10_1002_qute_202300354
crossref_primary_10_1364_OPTICA_481684
crossref_primary_10_1103_PhysRevLett_126_027403
crossref_primary_10_1364_PRJ_418689
crossref_primary_10_1021_acsphotonics_1c00344
crossref_primary_10_1002_adpr_202100013
crossref_primary_10_1109_JLT_2022_3203563
crossref_primary_10_7498_aps_68_20191007
crossref_primary_10_1103_PhysRevB_107_035431
crossref_primary_10_3788_gzxb20215004_0423003
crossref_primary_10_1016_j_ijmecsci_2023_108412
crossref_primary_10_1016_j_optlastec_2021_107616
crossref_primary_10_1364_OE_457593
crossref_primary_10_1103_PhysRevApplied_16_014036
crossref_primary_10_1121_10_0034636
crossref_primary_10_35848_1347_4065_ad0b2e
crossref_primary_10_1364_JOSAB_514565
crossref_primary_10_1364_OME_415128
crossref_primary_10_1126_science_adi7196
crossref_primary_10_1103_PhysRevA_106_033514
crossref_primary_10_1360_TB_2022_0492
crossref_primary_10_1088_1367_2630_acf519
crossref_primary_10_1002_adpr_202100010
crossref_primary_10_1002_lpor_202300515
crossref_primary_10_1364_OE_409265
crossref_primary_10_1021_acsami_1c11292
crossref_primary_10_1364_OL_539008
crossref_primary_10_1364_OE_27_013858
crossref_primary_10_1088_1367_2630_ad6fc5
crossref_primary_10_23919_emsci_2022_0005
crossref_primary_10_1103_PhysRevB_101_155422
crossref_primary_10_3389_fphy_2021_697719
crossref_primary_10_1186_s40580_023_00404_3
crossref_primary_10_1364_OE_494644
crossref_primary_10_1109_JPHOT_2022_3179730
crossref_primary_10_1364_OL_530541
crossref_primary_10_1109_JLT_2020_3024696
crossref_primary_10_1002_qute_202400073
crossref_primary_10_1103_PhysRevB_108_205421
crossref_primary_10_1002_lpor_202100269
crossref_primary_10_1063_5_0134980
crossref_primary_10_3788_AOS240938
crossref_primary_10_3389_fmats_2022_845344
crossref_primary_10_1364_OE_27_025841
crossref_primary_10_1515_nanoph_2021_0762
crossref_primary_10_1002_adfm_201902286
crossref_primary_10_1080_23746149_2021_1905546
crossref_primary_10_1364_OME_529108
crossref_primary_10_1103_PhysRevA_110_043521
crossref_primary_10_7567_1882_0786_ab1cc5
crossref_primary_10_1063_5_0004390
crossref_primary_10_1007_s11082_023_05098_9
crossref_primary_10_1364_OE_518922
crossref_primary_10_1016_j_rinp_2024_108092
crossref_primary_10_1021_acsphotonics_1c00029
crossref_primary_10_1088_1361_6463_ad4159
crossref_primary_10_1364_OL_462005
crossref_primary_10_1002_lpor_202000001
crossref_primary_10_1016_j_optlaseng_2024_108243
crossref_primary_10_1021_acs_chemrev_2c00800
crossref_primary_10_1088_2040_8986_ac8940
crossref_primary_10_1016_j_optcom_2023_129542
crossref_primary_10_1002_adma_202309497
crossref_primary_10_1364_OL_454865
crossref_primary_10_1126_sciadv_abe1398
crossref_primary_10_1364_OE_525228
crossref_primary_10_1038_s41377_020_00350_3
crossref_primary_10_1103_PhysRevLett_132_116901
crossref_primary_10_1002_lpor_202400045
crossref_primary_10_1103_PhysRevLett_132_086302
crossref_primary_10_3390_s25051455
crossref_primary_10_7498_aps_73_20240040
crossref_primary_10_1007_s11082_024_07273_y
crossref_primary_10_1007_s12200_019_0963_9
crossref_primary_10_1063_5_0060007
crossref_primary_10_1126_sciadv_adg4322
crossref_primary_10_1364_PRJ_481849
crossref_primary_10_1364_AO_504776
crossref_primary_10_1021_acsanm_1c03986
crossref_primary_10_1109_JPHOT_2022_3220331
crossref_primary_10_1063_5_0097422
crossref_primary_10_1016_j_optlastec_2021_107403
crossref_primary_10_1038_s41467_025_56020_8
crossref_primary_10_1364_PRJ_396872
crossref_primary_10_1103_PhysRevApplied_15_064032
crossref_primary_10_1088_2515_7647_ad68de
crossref_primary_10_1103_PhysRevB_107_094107
crossref_primary_10_1364_OE_480044
crossref_primary_10_1088_2058_6272_ac9347
crossref_primary_10_1364_OL_539442
crossref_primary_10_1002_lpor_202300764
crossref_primary_10_1109_MAP_2021_3069276
crossref_primary_10_1515_nanoph_2024_0612
crossref_primary_10_1063_1_5086433
crossref_primary_10_1021_acs_nanolett_1c01841
crossref_primary_10_1016_j_physleta_2023_128851
crossref_primary_10_1103_PhysRevApplied_18_064025
crossref_primary_10_1016_j_optcom_2024_130807
crossref_primary_10_1103_PhysRevLett_124_253601
crossref_primary_10_1021_acsnano_4c09295
crossref_primary_10_1364_PRJ_471905
crossref_primary_10_1038_s41467_022_30276_w
crossref_primary_10_1109_JLT_2021_3107682
crossref_primary_10_1002_admi_202200998
crossref_primary_10_21468_SciPostPhys_18_3_098
crossref_primary_10_1063_1_5131846
crossref_primary_10_1103_PhysRevB_110_L020101
crossref_primary_10_1515_nanoph_2022_0309
crossref_primary_10_1515_nanoph_2022_0547
crossref_primary_10_1364_PRJ_530245
crossref_primary_10_1016_j_optlastec_2024_111667
crossref_primary_10_1109_JSTQE_2020_2982991
crossref_primary_10_1038_s41377_020_00458_6
crossref_primary_10_1103_PhysRevB_108_134119
crossref_primary_10_1364_OL_535079
crossref_primary_10_1103_PhysRevResearch_4_033222
crossref_primary_10_1016_j_revip_2022_100076
crossref_primary_10_29026_oea_2022_210015
crossref_primary_10_1038_s41467_025_56021_7
crossref_primary_10_1088_1367_2630_ac20eb
crossref_primary_10_1002_lpor_202401284
crossref_primary_10_1109_JLT_2023_3288342
crossref_primary_10_1038_s41467_023_40172_6
crossref_primary_10_3389_fmats_2021_728991
crossref_primary_10_1088_1361_648X_acc228
crossref_primary_10_1515_nanoph_2020_0524
crossref_primary_10_1515_nanoph_2021_0371
crossref_primary_10_1364_OL_420080
crossref_primary_10_1021_acsphotonics_1c00860
crossref_primary_10_1364_JOSAB_453115
crossref_primary_10_1088_1402_4896_ad2bc6
crossref_primary_10_1063_5_0191369
crossref_primary_10_1103_PhysRevLett_123_043201
crossref_primary_10_1063_5_0233892
crossref_primary_10_1103_PhysRevResearch_2_012011
crossref_primary_10_34133_research_0597
crossref_primary_10_1038_s41467_022_32909_6
crossref_primary_10_1088_2040_8986_ac1832
crossref_primary_10_1364_OE_439769
crossref_primary_10_1002_lpor_202200194
crossref_primary_10_1364_OE_443907
crossref_primary_10_1364_OE_484575
crossref_primary_10_1515_nanoph_2021_0385
crossref_primary_10_1364_JOSAB_457969
crossref_primary_10_1364_OME_529092
crossref_primary_10_1038_s42005_024_01853_w
crossref_primary_10_1038_s42005_024_01899_w
crossref_primary_10_1103_PhysRevA_108_043706
crossref_primary_10_35848_1347_4065_ace74e
crossref_primary_10_1364_OE_450558
crossref_primary_10_7498_aps_69_20200198
crossref_primary_10_1021_acsphotonics_3c00463
crossref_primary_10_1103_PhysRevB_103_235142
crossref_primary_10_1140_epjb_s10051_023_00503_4
crossref_primary_10_1103_PhysRevLett_124_243602
crossref_primary_10_1103_PhysRevResearch_3_043027
crossref_primary_10_1016_j_optcom_2023_130004
crossref_primary_10_1002_lpor_202401627
crossref_primary_10_1364_OE_557589
crossref_primary_10_1002_lpor_201900087
crossref_primary_10_1002_pssb_202100202
crossref_primary_10_1002_pssb_202100568
crossref_primary_10_1002_lpor_202200077
crossref_primary_10_1103_PhysRevA_109_063504
crossref_primary_10_1007_s11433_022_1916_7
crossref_primary_10_1364_OE_438474
crossref_primary_10_1364_OL_391764
crossref_primary_10_1364_OE_513685
crossref_primary_10_1002_lpor_202100300
crossref_primary_10_1016_j_scib_2024_04_007
crossref_primary_10_1117_1_AP_4_4_046004
crossref_primary_10_1126_sciadv_adn6095
crossref_primary_10_1038_s42005_022_01058_z
crossref_primary_10_1021_acsphotonics_0c00521
crossref_primary_10_1063_5_0041055
crossref_primary_10_2184_lsj_48_8_404
crossref_primary_10_1103_PhysRevApplied_18_044080
crossref_primary_10_1364_PRJ_443025
crossref_primary_10_1002_lpor_201900193
crossref_primary_10_1103_PhysRevB_107_075406
crossref_primary_10_1038_s41467_023_40238_5
crossref_primary_10_3390_molecules27092807
crossref_primary_10_1103_PhysRevB_110_035408
crossref_primary_10_1088_1361_6463_ad71da
crossref_primary_10_1016_j_optlastec_2022_108865
crossref_primary_10_1103_PhysRevResearch_6_L022065
crossref_primary_10_7498_aps_68_20191452
crossref_primary_10_1002_adom_202300986
crossref_primary_10_1364_OME_487619
crossref_primary_10_1021_acsnano_3c07993
crossref_primary_10_1038_s41598_024_79219_z
crossref_primary_10_1088_1402_4896_acd0dd
crossref_primary_10_1088_1361_6463_ab9047
crossref_primary_10_1002_lpor_202400567
crossref_primary_10_1038_s41598_020_79915_6
crossref_primary_10_1126_sciadv_aaw4137
crossref_primary_10_1021_acsphotonics_1c01741
crossref_primary_10_1364_OL_44_003342
crossref_primary_10_3390_nano11071808
crossref_primary_10_1088_1361_6463_ac485d
crossref_primary_10_1103_PhysRevLett_133_133802
crossref_primary_10_3788_COL202422_053602
crossref_primary_10_1103_PhysRevA_108_043505
crossref_primary_10_1126_sciadv_abl3903
crossref_primary_10_1364_OL_493788
crossref_primary_10_7498_aps_73_20231850
crossref_primary_10_1021_acsphotonics_4c01502
crossref_primary_10_1364_OE_475559
crossref_primary_10_1016_j_rinp_2023_106589
crossref_primary_10_1364_OE_440108
crossref_primary_10_1515_nanoph_2021_0395
crossref_primary_10_1063_5_0099423
crossref_primary_10_1038_s41467_024_54658_4
crossref_primary_10_1088_2040_8986_ac45d2
crossref_primary_10_1364_OPTICA_6_000786
crossref_primary_10_1002_lpor_202100631
crossref_primary_10_1002_lpor_202400218
crossref_primary_10_1093_nsr_nwaa262
crossref_primary_10_1016_j_eml_2021_101568
crossref_primary_10_3389_fphy_2022_902533
crossref_primary_10_1038_s41377_024_01512_3
crossref_primary_10_1103_PhysRevApplied_16_014058
crossref_primary_10_1016_j_optcom_2021_126847
crossref_primary_10_1364_OME_522200
crossref_primary_10_1002_admt_202100252
crossref_primary_10_1364_OL_468157
crossref_primary_10_1364_PRJ_518426
crossref_primary_10_1103_PhysRevA_109_053504
crossref_primary_10_1038_s41377_023_01251_x
crossref_primary_10_1103_PhysRevApplied_18_054073
crossref_primary_10_1002_adom_202300764
crossref_primary_10_1063_5_0042583
crossref_primary_10_1063_5_0097129
crossref_primary_10_1002_lpor_201900159
crossref_primary_10_1038_s41377_022_00993_4
crossref_primary_10_1021_acsphotonics_0c01771
crossref_primary_10_1364_OE_432964
Cites_doi 10.1038/s41467-018-03330-9
10.1103/PhysRevB.96.020202
10.1126/science.aaa9273
10.1103/PhysRevLett.120.217401
10.1126/science.aaq0327
10.1038/s41565-018-0297-6
10.1038/nnano.2015.159
10.1038/nature12066
10.1038/nphys4304
10.1021/ph500084b
10.1038/nphys3891
10.1103/PhysRevLett.100.013904
10.1038/nphoton.2010.94
10.1038/nphoton.2015.282
10.1088/1367-2630/aa56a2
10.1038/s41566-017-0048-5
10.1103/PhysRevB.81.155115
10.1038/nature08293
10.1103/PhysRevLett.120.063902
10.1038/nphoton.2012.236
10.1103/PhysRevLett.99.236809
10.1038/s41467-017-01515-2
10.1038/nmat3520
10.1038/ncomms6782
10.1364/OE.8.000173
10.1103/PhysRevA.94.063827
10.1038/nphys3999
10.1038/nmat4807
10.1126/sciadv.aap8802
10.1126/science.aar4005
10.1038/nphys2942
10.1038/nature21037
10.1103/PhysRevLett.116.093901
10.1038/nphoton.2013.274
10.1126/science.aar4003
10.1103/PhysRevLett.114.223901
10.1103/PhysRevLett.108.196802
10.1126/science.aao4551
10.1103/RevModPhys.82.1959
10.1038/nphoton.2014.248
10.1038/nmat4573
10.1016/j.cpc.2009.11.008
10.1038/nnano.2013.151
10.1103/PhysRevLett.106.093903
10.1143/JPSJ.74.1674
10.1088/1367-2630/18/2/025012
10.1103/PhysRevLett.100.013905
10.1103/PhysRevB.96.134307
10.1038/nphys3867
10.1038/s41467-018-05408-w
10.1103/PhysRevLett.107.023901
10.1017/CBO9781139644181
ContentType Journal Article
Copyright The Author(s) 2019
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-08881-z
DatabaseName SpringerOpen Free (Free internet resource, activated by CARLI)
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database

MEDLINE - Academic

PubMed
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Physics
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_707a3b79c2d942db8b8ae43a66e1d2cb
PMC6382878
30787288
10_1038_s41467_019_08881_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-d684d11b45c0b13b313fefafd13f84187a943675e851f79aabfce0878c6cf0b83
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:30:45 EDT 2025
Thu Aug 21 17:57:59 EDT 2025
Fri Jul 11 10:53:44 EDT 2025
Wed Aug 13 03:26:38 EDT 2025
Wed Feb 19 02:30:58 EST 2025
Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 02:21:24 EDT 2025
Fri Feb 21 02:40:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-d684d11b45c0b13b313fefafd13f84187a943675e851f79aabfce0878c6cf0b83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2379-554X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-08881-z
PMID 30787288
PQID 2184193192
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_707a3b79c2d942db8b8ae43a66e1d2cb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6382878
proquest_miscellaneous_2184526470
proquest_journals_2184193192
pubmed_primary_30787288
crossref_citationtrail_10_1038_s41467_019_08881_z
crossref_primary_10_1038_s41467_019_08881_z
springer_journals_10_1038_s41467_019_08881_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-02-20
PublicationDateYYYYMMDD 2019-02-20
PublicationDate_xml – month: 02
  year: 2019
  text: 2019-02-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wu, Hu (CR21) 2015; 114
Rodríguez-Fortuño, Barber-Sanz, Puerto, Griol, Martínez (CR51) 2014; 1
Haldane, Raghu (CR2) 2008; 100
Wu (CR34) 2017; 8
Sollner (CR49) 2015; 10
Wang, Chong, Joannopoulos, Soljačić (CR3) 2008; 100
Ma, Shvets (CR30) 2016; 18
Xiao, Liu, Feng, Xu, Yao (CR27) 2012; 108
Johnson, Joannopoulos (CR53) 2001; 8
Xiao, Yao, Niu (CR26) 2007; 99
Yang (CR23) 2018; 120
Noh, Huang, Chen, Rechtsman (CR35) 2018; 120
Bandres (CR20) 2018; 359
Fukui, Hatsugai, Suzuki (CR47) 2005; 74
CR6
Ni (CR17) 2018; 4
Rechtsman (CR12) 2013; 496
Xiao, Chang, Niu (CR46) 2010; 82
Harari (CR19) 2018; 359
CR45
Wang, Chong, Joannopoulos, Soljacic (CR7) 2009; 461
Bahari (CR10) 2017; 358
Khanikaev, Shvets (CR5) 2017; 11
Barik (CR24) 2018; 359
Poo, Wu, Lin, Yang, Chan (CR8) 2011; 106
Chen, Zhao, Chen, Dong (CR32) 2017; 96
Lu, Qiu, Ke, Liu (CR38) 2016; 116
Pal, Ruzzene (CR40) 2017; 19
Jones (CR43) 2013; 8
Dong, Chen, Zhu, Wang, Zhang (CR31) 2017; 16
Cheng (CR16) 2016; 15
CR11
Mock, Lu, O’Brien (CR48) 2010; 81
CR52
Lu (CR13) 2015; 349
Hafezi, Mittal, Fan, Migdall, Taylor (CR18) 2013; 7
Lu (CR39) 2016; 13
Kang, Ni, Cheng, Khanikaev, Genack (CR36) 2018; 9
Gorlach (CR25) 2018; 9
Mak, Shan (CR29) 2016; 10
Gao (CR33) 2018; 14
Xu, Yao, Xiao, Heinz (CR28) 2014; 10
Fang, Yu, Fan (CR9) 2012; 6
Oskooi (CR54) 2010; 181
Lodahl (CR50) 2017; 541
He (CR22) 2016; 12
Lu, Joannopoulos, Soljacic (CR4) 2014; 8
Vila, Pal, Ruzzene (CR41) 2017; 96
Shalaev, Walasik, Tsukernik, Xu, Litchinitser (CR37) 2019; 14
Chen (CR15) 2014; 5
Ye, Sun, Heinz (CR44) 2016; 13
Collins, Zhang, Bojko, Chrostowski, Rechtsman (CR42) 2016; 94
Khanikaev (CR14) 2012; 12
Caulfield, Dolev (CR1) 2010; 4
WJ Chen (8881_CR15) 2014; 5
LH Wu (8881_CR21) 2015; 114
J Lu (8881_CR39) 2016; 13
JW Dong (8881_CR31) 2017; 16
F Gao (8881_CR33) 2018; 14
J Lu (8881_CR38) 2016; 116
AM Jones (8881_CR43) 2013; 8
L Lu (8881_CR4) 2014; 8
Z Wang (8881_CR7) 2009; 461
Y Yang (8881_CR23) 2018; 120
Z Wang (8881_CR3) 2008; 100
T Ma (8881_CR30) 2016; 18
P Lodahl (8881_CR50) 2017; 541
X Wu (8881_CR34) 2017; 8
D Xiao (8881_CR46) 2010; 82
X Cheng (8881_CR16) 2016; 15
Y Kang (8881_CR36) 2018; 9
KF Mak (8881_CR29) 2016; 10
AB Khanikaev (8881_CR5) 2017; 11
X Ni (8881_CR17) 2018; 4
MI Shalaev (8881_CR37) 2019; 14
D Xiao (8881_CR27) 2012; 108
FJ Rodríguez-Fortuño (8881_CR51) 2014; 1
I Sollner (8881_CR49) 2015; 10
HJ Caulfield (8881_CR1) 2010; 4
8881_CR45
A Oskooi (8881_CR54) 2010; 181
G Harari (8881_CR19) 2018; 359
AB Khanikaev (8881_CR14) 2012; 12
Y Poo (8881_CR8) 2011; 106
MC Rechtsman (8881_CR12) 2013; 496
K Fang (8881_CR9) 2012; 6
A Mock (8881_CR48) 2010; 81
X Xu (8881_CR28) 2014; 10
T Fukui (8881_CR47) 2005; 74
J Vila (8881_CR41) 2017; 96
S Barik (8881_CR24) 2018; 359
J Noh (8881_CR35) 2018; 120
MJ Collins (8881_CR42) 2016; 94
RK Pal (8881_CR40) 2017; 19
8881_CR11
8881_CR52
C He (8881_CR22) 2016; 12
MA Bandres (8881_CR20) 2018; 359
L Lu (8881_CR13) 2015; 349
M Hafezi (8881_CR18) 2013; 7
Z Ye (8881_CR44) 2016; 13
8881_CR6
D Xiao (8881_CR26) 2007; 99
SG Johnson (8881_CR53) 2001; 8
B Bahari (8881_CR10) 2017; 358
F Haldane (8881_CR2) 2008; 100
MA Gorlach (8881_CR25) 2018; 9
XD Chen (8881_CR32) 2017; 96
References_xml – volume: 9
  year: 2018
  ident: CR25
  article-title: Far-field probing of leaky topological states in all-dielectric metasurfaces
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03330-9
– ident: CR45
– volume: 96
  start-page: 020202
  year: 2017
  ident: CR32
  article-title: Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.020202
– volume: 349
  start-page: 622
  year: 2015
  end-page: 624
  ident: CR13
  article-title: Experimental observation of Weyl points
  publication-title: Science
  doi: 10.1126/science.aaa9273
– volume: 120
  start-page: 217401
  year: 2018
  ident: CR23
  article-title: Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.217401
– volume: 359
  start-page: 666
  year: 2018
  end-page: 668
  ident: CR24
  article-title: A topological quantum optics interface
  publication-title: Science
  doi: 10.1126/science.aaq0327
– volume: 14
  start-page: 31
  year: 2019
  end-page: 34
  ident: CR37
  article-title: Robust topologically protected transport in photonic crystals at telecommunication wavelengths
  publication-title: Nat. Nanotech
  doi: 10.1038/s41565-018-0297-6
– volume: 10
  start-page: 775
  year: 2015
  end-page: 778
  ident: CR49
  article-title: Deterministic photon-emitter coupling in chiral photonic circuits
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.159
– volume: 496
  start-page: 196
  year: 2013
  end-page: 200
  ident: CR12
  article-title: Photonic Floquet topological insulators
  publication-title: Nature
  doi: 10.1038/nature12066
– volume: 14
  start-page: 140
  year: 2018
  end-page: 144
  ident: CR33
  article-title: Topologically protected refraction of robust kink states in valley photonic crystals
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4304
– volume: 1
  start-page: 762
  year: 2014
  end-page: 767
  ident: CR51
  article-title: Resolving light handedness with an on-chip silicon microdisk
  publication-title: ACS Photon
  doi: 10.1021/ph500084b
– volume: 13
  start-page: 26
  year: 2016
  end-page: 29
  ident: CR44
  article-title: Optical manipulation of valley pseudospin
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3891
– volume: 100
  start-page: 013904
  year: 2008
  ident: CR2
  article-title: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 4
  start-page: 261
  year: 2010
  end-page: 263
  ident: CR1
  article-title: Why future supercomputing requires optics
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2010.94
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR29
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2015.282
– volume: 19
  start-page: 025001
  year: 2017
  ident: CR40
  article-title: Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa56a2
– volume: 11
  start-page: 763
  year: 2017
  end-page: 773
  ident: CR5
  article-title: Two-dimensional topological photonics
  publication-title: Nat. Photon
  doi: 10.1038/s41566-017-0048-5
– volume: 81
  start-page: 155115
  year: 2010
  ident: CR48
  article-title: Space group theory and Fourier space analysis of two-dimensional photonic crystal waveguides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.155115
– volume: 461
  start-page: 772
  year: 2009
  end-page: 775
  ident: CR7
  article-title: Observation of unidirectional backscattering-immune topological electromagnetic states
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 120
  start-page: 063902
  year: 2018
  ident: CR35
  article-title: Observation of photonic topological valley hall edge states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.063902
– ident: CR11
– volume: 6
  start-page: 782
  year: 2012
  end-page: 787
  ident: CR9
  article-title: Realizing effective magnetic field for photons by controlling the phase of dynamic modulation
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2012.236
– volume: 99
  start-page: 236809
  year: 2007
  ident: CR26
  article-title: Valley-contrasting physics in graphene: magnetic moment and topological transport
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.236809
– volume: 8
  year: 2017
  ident: CR34
  article-title: Direct observation of valley-polarized topological edge states in designer surface plasmon crystals
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01515-2
– volume: 12
  start-page: 233
  year: 2012
  end-page: 239
  ident: CR14
  article-title: Photonic topological insulators
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3520
– volume: 5
  year: 2014
  ident: CR15
  article-title: Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6782
– volume: 8
  start-page: 173
  year: 2001
  end-page: 190
  ident: CR53
  article-title: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis
  publication-title: Opt. Express
  doi: 10.1364/OE.8.000173
– volume: 94
  start-page: 063827
  year: 2016
  ident: CR42
  article-title: Integrated optical Dirac physics via inversion symmetry breaking
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.94.063827
– volume: 13
  start-page: 369
  year: 2016
  end-page: 374
  ident: CR39
  article-title: Observation of topological valley transport of sound in sonic crystals
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3999
– volume: 16
  start-page: 298
  year: 2017
  end-page: 302
  ident: CR31
  article-title: Valley photonic crystals for control of spin and topology
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4807
– volume: 4
  start-page: eaap8802
  year: 2018
  ident: CR17
  article-title: Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap8802
– volume: 359
  start-page: eaar4005
  year: 2018
  ident: CR20
  article-title: Topological insulator laser: experiments
  publication-title: Science
  doi: 10.1126/science.aar4005
– volume: 10
  start-page: 343
  year: 2014
  end-page: 350
  ident: CR28
  article-title: Spin and pseudospins in layered transition metal dichalcogenides
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 541
  start-page: 473
  year: 2017
  end-page: 480
  ident: CR50
  article-title: Chiral quantum optics
  publication-title: Nature
  doi: 10.1038/nature21037
– volume: 116
  start-page: 093901
  year: 2016
  ident: CR38
  article-title: Valley vortex states in sonic crystals
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.093901
– volume: 7
  start-page: 1001
  year: 2013
  end-page: 1005
  ident: CR18
  article-title: Imaging topological edge states in silicon photonics
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.274
– volume: 359
  start-page: eaar4003
  year: 2018
  ident: CR19
  article-title: Topological insulator laser: theory
  publication-title: Science
  doi: 10.1126/science.aar4003
– volume: 114
  start-page: 223901
  year: 2015
  ident: CR21
  article-title: Scheme for achieving a topological photonic crystal by using dielectric material
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.223901
– volume: 108
  start-page: 196802
  year: 2012
  ident: CR27
  article-title: Coupled spin and valley physics in monolayers of MoS and other group-VI dichalcogenides
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.196802
– volume: 358
  start-page: 636
  year: 2017
  end-page: 640
  ident: CR10
  article-title: Nonreciprocal lasing in topological cavities of arbitrary geometries
  publication-title: Science
  doi: 10.1126/science.aao4551
– ident: CR6
– volume: 82
  start-page: 1959
  year: 2010
  end-page: 2007
  ident: CR46
  article-title: Berry phase effects on electronic properties
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1959
– volume: 8
  start-page: 821
  year: 2014
  end-page: 829
  ident: CR4
  article-title: Topological photonics
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.248
– volume: 15
  start-page: 542
  year: 2016
  end-page: 548
  ident: CR16
  article-title: Robust reconfigurable electromagnetic pathways within a photonic topological insulator
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4573
– volume: 181
  start-page: 687
  year: 2010
  end-page: 702
  ident: CR54
  article-title: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.11.008
– volume: 8
  start-page: 634
  year: 2013
  end-page: 638
  ident: CR43
  article-title: Optical generation of excitonic valley coherence in monolayer WSe2
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2013.151
– volume: 106
  start-page: 093903
  year: 2011
  ident: CR8
  article-title: Experimental realization of self-guiding unidirectional electromagnetic edge states
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.093903
– ident: CR52
– volume: 74
  start-page: 1674
  year: 2005
  end-page: 1677
  ident: CR47
  article-title: Chern numbers in discretized brillouin zone: efficient method of computing (Spin) Hall conductances
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.1674
– volume: 18
  start-page: 025012
  year: 2016
  ident: CR30
  article-title: All-Si valley-Hall photonic topological insulator
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/025012
– volume: 100
  start-page: 013905
  year: 2008
  ident: CR3
  article-title: Reflection-free one-way edge modes in a gyromagnetic photonic crystal
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013905
– volume: 96
  start-page: 134307
  year: 2017
  ident: CR41
  article-title: Observation of topological valley modes in an elastic hexagonal lattice
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.134307
– volume: 12
  start-page: 1124
  year: 2016
  end-page: 1129
  ident: CR22
  article-title: Acoustic topological insulator and robust one-way sound transport
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3867
– volume: 9
  year: 2018
  ident: CR36
  article-title: Pseudo-spin–valley coupled edge states in a photonic topological insulator
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05408-w
– volume: 4
  start-page: 261
  year: 2010
  ident: 8881_CR1
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2010.94
– volume: 106
  start-page: 093903
  year: 2011
  ident: 8881_CR8
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.106.093903
– volume: 11
  start-page: 763
  year: 2017
  ident: 8881_CR5
  publication-title: Nat. Photon
  doi: 10.1038/s41566-017-0048-5
– ident: 8881_CR11
  doi: 10.1103/PhysRevLett.107.023901
– volume: 96
  start-page: 020202
  year: 2017
  ident: 8881_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.020202
– volume: 496
  start-page: 196
  year: 2013
  ident: 8881_CR12
  publication-title: Nature
  doi: 10.1038/nature12066
– volume: 8
  start-page: 821
  year: 2014
  ident: 8881_CR4
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2014.248
– volume: 100
  start-page: 013904
  year: 2008
  ident: 8881_CR2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013904
– volume: 10
  start-page: 343
  year: 2014
  ident: 8881_CR28
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 10
  start-page: 216
  year: 2016
  ident: 8881_CR29
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2015.282
– ident: 8881_CR45
  doi: 10.1017/CBO9781139644181
– volume: 7
  start-page: 1001
  year: 2013
  ident: 8881_CR18
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2013.274
– volume: 8
  start-page: 173
  year: 2001
  ident: 8881_CR53
  publication-title: Opt. Express
  doi: 10.1364/OE.8.000173
– volume: 16
  start-page: 298
  year: 2017
  ident: 8881_CR31
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4807
– volume: 19
  start-page: 025001
  year: 2017
  ident: 8881_CR40
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/aa56a2
– volume: 8
  start-page: 634
  year: 2013
  ident: 8881_CR43
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2013.151
– volume: 120
  start-page: 063902
  year: 2018
  ident: 8881_CR35
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.063902
– volume: 116
  start-page: 093901
  year: 2016
  ident: 8881_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.093901
– volume: 181
  start-page: 687
  year: 2010
  ident: 8881_CR54
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2009.11.008
– volume: 359
  start-page: eaar4003
  year: 2018
  ident: 8881_CR19
  publication-title: Science
  doi: 10.1126/science.aar4003
– volume: 9
  year: 2018
  ident: 8881_CR36
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-05408-w
– ident: 8881_CR52
– volume: 14
  start-page: 140
  year: 2018
  ident: 8881_CR33
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4304
– volume: 99
  start-page: 236809
  year: 2007
  ident: 8881_CR26
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.99.236809
– volume: 108
  start-page: 196802
  year: 2012
  ident: 8881_CR27
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.196802
– volume: 13
  start-page: 369
  year: 2016
  ident: 8881_CR39
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3999
– volume: 94
  start-page: 063827
  year: 2016
  ident: 8881_CR42
  publication-title: Phys. Rev. A.
  doi: 10.1103/PhysRevA.94.063827
– volume: 461
  start-page: 772
  year: 2009
  ident: 8881_CR7
  publication-title: Nature
  doi: 10.1038/nature08293
– volume: 81
  start-page: 155115
  year: 2010
  ident: 8881_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.155115
– volume: 10
  start-page: 775
  year: 2015
  ident: 8881_CR49
  publication-title: Nat. Nanotech
  doi: 10.1038/nnano.2015.159
– volume: 6
  start-page: 782
  year: 2012
  ident: 8881_CR9
  publication-title: Nat. Photon
  doi: 10.1038/nphoton.2012.236
– volume: 120
  start-page: 217401
  year: 2018
  ident: 8881_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.120.217401
– volume: 114
  start-page: 223901
  year: 2015
  ident: 8881_CR21
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.114.223901
– volume: 14
  start-page: 31
  year: 2019
  ident: 8881_CR37
  publication-title: Nat. Nanotech
  doi: 10.1038/s41565-018-0297-6
– volume: 5
  year: 2014
  ident: 8881_CR15
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6782
– volume: 12
  start-page: 1124
  year: 2016
  ident: 8881_CR22
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3867
– volume: 96
  start-page: 134307
  year: 2017
  ident: 8881_CR41
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.134307
– volume: 359
  start-page: 666
  year: 2018
  ident: 8881_CR24
  publication-title: Science
  doi: 10.1126/science.aaq0327
– volume: 8
  year: 2017
  ident: 8881_CR34
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01515-2
– volume: 82
  start-page: 1959
  year: 2010
  ident: 8881_CR46
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.82.1959
– volume: 1
  start-page: 762
  year: 2014
  ident: 8881_CR51
  publication-title: ACS Photon
  doi: 10.1021/ph500084b
– volume: 541
  start-page: 473
  year: 2017
  ident: 8881_CR50
  publication-title: Nature
  doi: 10.1038/nature21037
– volume: 18
  start-page: 025012
  year: 2016
  ident: 8881_CR30
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/18/2/025012
– volume: 12
  start-page: 233
  year: 2012
  ident: 8881_CR14
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3520
– volume: 359
  start-page: eaar4005
  year: 2018
  ident: 8881_CR20
  publication-title: Science
  doi: 10.1126/science.aar4005
– volume: 100
  start-page: 013905
  year: 2008
  ident: 8881_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.013905
– volume: 15
  start-page: 542
  year: 2016
  ident: 8881_CR16
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4573
– volume: 349
  start-page: 622
  year: 2015
  ident: 8881_CR13
  publication-title: Science
  doi: 10.1126/science.aaa9273
– volume: 74
  start-page: 1674
  year: 2005
  ident: 8881_CR47
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.74.1674
– ident: 8881_CR6
– volume: 358
  start-page: 636
  year: 2017
  ident: 8881_CR10
  publication-title: Science
  doi: 10.1126/science.aao4551
– volume: 4
  start-page: eaap8802
  year: 2018
  ident: 8881_CR17
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aap8802
– volume: 9
  year: 2018
  ident: 8881_CR25
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03330-9
– volume: 13
  start-page: 26
  year: 2016
  ident: 8881_CR44
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3891
SSID ssj0000391844
Score 2.696399
Snippet Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability...
Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 872
SubjectTerms 142/126
147/135
639/624/399/1015
639/624/399/1022
639/624/399/1099
639/766/119/2792
Backscattering
Bandwidths
Chirality
Curvature
Data processing
Electromagnetism
Energy dissipation
Energy loss
Humanities and Social Sciences
Information processing
Information systems
Information transfer
Interfaces
Light
multidisciplinary
Photonic crystals
Photonics
Physics
Radiation
Science
Science (multidisciplinary)
Signal distortion
Signal processing
Silicon
Symmetry
Transport
Vortices
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KUOil2Krttipb8KbBZJO3yUIvtihS0JOCt5BPKsgqvrWgf30nyb6nz4_2IiwsbJJlmJlMfj-SzABs2Y62gVtKlOEtES5a0sUYyIS6TnrKjM9nc46O28NT8etscvag1Fc6E1bSAxfF7UoqDbeyc43vROOtssoEwU3bBuYbZ1P0xTXvAZnKMZh3SF3EeEuGcrU7FTkm0HRnB1kfI3cLK1FO2P8cynx6WPLRjmleiA6W4f2IIOu9IvkHeBP6j_C21JS8XYHve_X0_ALt2xN88lHzxKtrNL2tEaHWQymLkIxT_0mVVG7rYZbhfBVOD_ZPfh6SsUQCccg8BuJbJTxjVkwctYxbzngM0USPbyWYkqYTHDlBQGAVZWeMjS5QJZVrXaRW8TVY6i_78BlqjutZCK1hhgpEVciamyAMEhj8n7HCV8Bm6tJuzB-eylhc6LyPzZUuKtaoYp1VrO8q2J6PuSrZM_7Z-0eywrxnynydP6A_6NEf9P_8oYL1mQ31OB2nOvFYRKqIZiv4Nm_GiZR2R0wfLm9KnwnCQ0kr-FRMPpcEA6GSjVIVyAVnWBB1saU__52TdWN8Q1KKI3dmbnMv1suq-PIaqvgK75rs7w3GwnVYGq5vwgZCqMFu5tnyF7wTGJo
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ta9YwED90IvhFfF_nlAp-07CkydOkIIxt7HEI-snBvoW8VQejz1y7wfbXe0nTjseXQaGlSUp6d7n8LrncAby3Da0Dt5Qow2siXGtJ07aBLKhrpKfM-OSb8_VbfXQsvpwsTvKCW5_dKiedmBS1X7m4Rr4TTREEGwhIds9_kZg1Ku6u5hQa9-EBw5kmunSp5ed5jSVGP1dC5LMylKudXiTNQOPJHbT9GLlZm49S2P5_Yc2_XSb_2DdN09HyCTzOOLLcGxn_FO6F7hk8HDNLXuNT8ux0_XP4tFf2p2fI747glVzPo51doijYEhFrOYxpEiKzyquYWeW6HKaI5y_geHn4_eCI5JQJxKElMhBfK-EZs2LhqGXccsbb0JrW4x3pp6RpBEcbISDQamVjjG1doEoqV7uWWsVfwka36sImlBzntxBqwwwViLLQiq6CMGjQ4PeMFb4ANhFOuxxPPKa1ONNpX5srPRJbI7F1Ira-KeDD3OZ8jKZxZ-39yI-5ZoyEnV6sLn7oPLC0pNJwKxtX-UZU3iqrTBDc1HVgvnK2gO2JmzoPz17fClMB7-ZiHFhxt8R0YXU51lkgXJS0gFcj8-eeoGJUslKqALkmFmtdXS_pTn-m4N2o79BIxZYfJwG67db_SbF191-8hkdVkukKtd42bAwXl-ENgqXBvk0j4jcwuhJB
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLaFt1a5UV-qbBZJPbZMGXa7GUg_qihb6FfGqh7ElvK7R_fSfZD7laBWFhYTdZhplJ8pvN5DcAB7ahdeCWEmV4TYSLljQxBjKjrpGeMuNzbs7pl_rkTCzOZ-cbUI1nYXLSfqa0zNP0mB32cSXykKbpyA0GbYzcPoKtRNWOvr01ny--LqY_K4nzXAkxnJChXD3QeW0VymT9DyHMPxMl7-2W5kXo-Bk8HdBjOe_lfQ4bod2Gx309yZsd-DQvVxeXaNuW4JXTzFNMXaLZbYnotOz6kgjJMOWvVEXlpuxGdvNdODv-_O3ohAzlEYjDqKMjvlbCM2bFzFHLuOWMxxBN9HhXgilpGsExHggIqqJsjLHRBaqkcrWL1Cr-AjbbZRteQclxLQuhNsxQgYgKI-YqCIPBC37PWOELYKO6tBu4w1MJi0ud97C50r2KNapYZxXr2wLeT31-9swZ_2x9mKwwtUys1_nB8uq7HrxASyoNt7JxlW9E5a2yygTBTV0H5itnC9gfbaiHobjSKYZFlIpItoB302scRGlnxLRhed23mSE0lLSAl73JJ0lwElSyUqoAueYMa6Kuv2kvfmSibpzbMCDFnh9Gt_kt1t9Vsfd_zV_Dkyp7doUz3j5sdlfX4Q0Cpc6-HUbGHduRDw0
  priority: 102
  providerName: Springer Nature
Title A silicon-on-insulator slab for topological valley transport
URI https://link.springer.com/article/10.1038/s41467-019-08881-z
https://www.ncbi.nlm.nih.gov/pubmed/30787288
https://www.proquest.com/docview/2184193192
https://www.proquest.com/docview/2184526470
https://pubmed.ncbi.nlm.nih.gov/PMC6382878
https://doaj.org/article/707a3b79c2d942db8b8ae43a66e1d2cb
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ti9MwGH-4FwS_iOdrvbtRwW9aTZqsSUGR3bh5DO4QdbBvIUnT82B0uvUOd3-9T9J2Mp2CUFpIkxKel-T3a5LnAXhhcpI5ZkgiNcsSbkuT5GXpkj6xuSgI1UXYm3N-kZ1N-Hjan-5Al-6oFeByK7Xz-aQmi9nrH99X79Hh3zVHxuWbJQ_uTvxxHCR0NLndhX2cmYTPaHDewv0wMrMcCQ1vz85sb7oxP4Uw_tuw559bKH9bRw3T0-g-3GtxZTxoDOEAdlz1AO40mSZXD-HtIF5ezVDrVYJX2IDu2XaMBmFixK1x3SRL8CqLb3x-lVVcd3HPH8FkdPpleJa0iRMSi3ykTopM8oJSw_uWGMoMo6x0pS4LfEpOpdA5Z8gUHMKtUuRam9I6IoW0mS2Jkewx7FXzyj2FmOEs51ymqSYcsRZy6dRxjbQGv6cNLyKgnbiUbaOK--QWMxVWt5lUjYgVilgFEavbCF6u23xrYmr8s_aJ18K6po-HHQrmi0vVupcSRGhmRG7TIudpYaSR2nGms8zRIrUmgqNOh6qzMeXZLeJXxLgRPF-_Rvfyaya6cvPrpk4fQaMgETxpVL7uCQ6PUqRSRiA2jGGjq5tvqquvIYQ3jnpIVbHlq85sfnXr76J49n_VD-FuGiw7xbHwCPbqxbU7RghVmx7siqnAuxx96MH-YDD-PMbnyenFx09YOsyGvfBzohf85ycE2h4V
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAgSDBE1h1Ym_sSCBUjmVLj6dW6pvrK7RSlW27KWj7o_iNjJ2jWo6-VYqUKHESZ_x5_E08ngF4ZUpaeGYokZoVhNvKkLKqPBlRWwpHM-2ib87WdjHZ5d_2RntL8KtfCxPcKnudGBW1m9rwj3w1mCJINpCQfDg-ISFrVJhd7VNotLDY8POfaLLN3q9_xvZ9nefjLzufJqTLKkAskvWGuEJyl2WGjyw1GTMsY5WvdOVwj6-QQpecIY32yEUqUWptKuupFNIWtqJGMnzuNbjOGY7kYWX6-OvwTydEW5ecd2tzKJOrMx41EQ0rhdDWzMj5wvgX0wT8i9v-7aL5xzxtHP7Gd-B2x1vTtRZod2HJ1_fgRpvJco5H0ZPUzu7Du7V0dniE-KoJbtHVPdj1KULPpMiQ06ZNyxDAkf4ImVzmadNHWH8Au1cizIewXE9r_xhShuOp94XONOXI6tBqzz3XaEDh87ThLoGsF5yyXfzykEbjSMV5dCZVK2yFwlZR2Oo8gTfDPcdt9I5LS38M7TGUDJG344np6XfVdWQlqNDMiNLmruS5M9JI7TnTReEzl1uTwErfmqpTBzN1Ad4EXg6XsSOH2Rld--lZW2aE9FTQBB61jT_UBBWxFLmUCYgFWCxUdfFKfXgQg4WjfkWjGO982wPoolr_F8WTy7_iBdyc7Gxtqs317Y2ncCuP-M5R467AcnN65p8hUWvM89g7Uti_6u74G4-HT7s
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NTiC-IN4JDAgSfAKrTuzGjgRCG1u1MagmxKR9M7bjwKQpHUsG6n4av46z8zKVl32bVClV46TO-bnzc_H5DuC5yWnmmKFEapYRbktD8rJ0ZEJtLgqa6CLE5nycZdv7_P3B5GAFfvV7YXxYZW8Tg6Eu5ta_Ix97VwTJBhKScdmFRextTt8efye-gpRfae3LabQQ2XWLn-i-1W92NnGsX6TpdOvzu23SVRggFol7Q4pM8iJJDJ9YahJmWMJKV-qywCP-nRQ65wwptUNeUopca1NaR6WQNrMlNZLhfa_AqvBe0QhWN7Zme5-GNzw-97rkvNupQ5kc1zzYJer3DaHnmZCzpdkwFA34F9P9O2Dzj1XbMBlOb8KNjsXG6y3sbsGKq27D1bau5QK_hbhSW9-B1-txfXiEaKsIfkLgu_fyYwSiiZEvx01bpMFDJf7h67os4qbPt34X9i9FnPdgVM0r9wBihrOrc5lONOXI8dCHTx3X6E7h_bThRQRJLzhlu2zmvqjGkQqr6kyqVtgKha2CsNVZBC-Ha47bXB4Xtt7w4zG09Hm4ww_zk6-qU2slqNDMiNymRc7TwkgjteNMZ5lLitSaCNb60VSdcajVOZQjeDacRrX2azW6cvPTts0EyaqgEdxvB3_oCZplKVIpIxBLsFjq6vKZ6vBbSB2O1hZdZLzyVQ-g8279XxQPL36Kp3ANVVF92JntPoLraYB3iuZ3DUbNyal7jKytMU869Yjhy2Vr5G_UoFVN
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+silicon-on-insulator+slab+for+topological+valley+transport&rft.jtitle=Nature+communications&rft.au=He%2C+Xin-Tao&rft.au=Liang%2C+En-Tao&rft.au=Yuan%2C+Jia-Jun&rft.au=Qiu%2C+Hao-Yang&rft.date=2019-02-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-08881-z&rft.externalDocID=10_1038_s41467_019_08881_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon