A silicon-on-insulator slab for topological valley transport
Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectiona...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 872 - 9 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.02.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.
Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom. |
---|---|
AbstractList | Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom. Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems. Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom. Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems.Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems. Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and unidirectional coupling as well as optical transport on a silicon-on-insulator platform by exploiting the valley degree of freedom. Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability improvement of modern information processing systems. Valley physics provides an intriguing way for robust information transfer and unidirectional coupling in topological nanophotonics. Here we realize topological transport in a SOI valley photonic crystal slab. Localized Berry curvature near zone corners guarantees the existence of valley-dependent edge states below light cone, maintaining in-plane robustness and light confinement simultaneously. Topologically robust transport at telecommunication is observed along two sharp-bend interfaces in subwavelength scale, showing flat-top high transmission of ~10% bandwidth. Topological photonic routing is achieved in a bearded-stack interface, due to unidirectional excitation of valley-chirality-locked edge state from the phase vortex of a nanoscale microdisk. These findings show the prototype of robustly integrated devices, and open a new door towards the observation of non-trivial states even in non-Hermitian systems. |
ArticleNumber | 872 |
Author | Liang, En-Tao Zhao, Fu-Li He, Xin-Tao Yuan, Jia-Jun Dong, Jian-Wen Qiu, Hao-Yang Chen, Xiao-Dong |
Author_xml | – sequence: 1 givenname: Xin-Tao surname: He fullname: He, Xin-Tao organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University – sequence: 2 givenname: En-Tao surname: Liang fullname: Liang, En-Tao organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University – sequence: 3 givenname: Jia-Jun surname: Yuan fullname: Yuan, Jia-Jun organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University – sequence: 4 givenname: Hao-Yang surname: Qiu fullname: Qiu, Hao-Yang organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University – sequence: 5 givenname: Xiao-Dong surname: Chen fullname: Chen, Xiao-Dong organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University – sequence: 6 givenname: Fu-Li surname: Zhao fullname: Zhao, Fu-Li organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University – sequence: 7 givenname: Jian-Wen orcidid: 0000-0003-2379-554X surname: Dong fullname: Dong, Jian-Wen email: dongjwen@mail.sysu.edu.cn organization: State Key Laboratory of Optoelectronic Materials and Technologies & School of Physics, Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30787288$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1rHSEUlZLSpGn-QBdloJtupvXrqQOlEEI_AoFu2rVcHefVh09f1Qkkvz7mTdImWUSEe9FzDsfreY0OYooOobcEfySYqU-FEy5kj8nQY6UU6a9foCOKOemJpOzgQX-ITkrZ4LbYQBTnr9Ahw1JJqtQR-nzaFR-8TbFv28cyB6gpdyWA6abW1LRLIa29hdBdQgjuqqsZYtmlXN-glxOE4k7u6jH6_e3rr7Mf_cXP7-dnpxe9FVjUfhSKj4QYvrLYEGYYYZObYBpbVZwoCQNnQq6cWpFJDgBmsg4rqaywEzaKHaPzRXdMsNG77LeQr3QCr_cHKa815OptcFpiCczIwdJx4HQ0yihwnIEQjozUmqb1ZdHazWbrRutie054JPr4Jvo_ep0utWCKNk9N4MOdQE5_Z1eq3vpiXQgQXZqLpm3GKyq4xA36_gl0k-Yc26j2KDIwMtCGevfQ0T8r95_UAGoB2JxKyW7S1leoPt0a9EETrG8joZdI6BYJvY-Evm5U-oR6r_4siS2k0sBx7fJ_28-wbgBTmsmp |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2022_108422 crossref_primary_10_1088_1361_648X_ab0fcc crossref_primary_10_1088_1367_2630_ac1c84 crossref_primary_10_1364_OE_440121 crossref_primary_10_1002_andp_201900090 crossref_primary_10_1063_5_0149671 crossref_primary_10_1007_s11433_024_2421_3 crossref_primary_10_1007_s11467_020_0983_3 crossref_primary_10_3390_photonics10090961 crossref_primary_10_1016_j_chaos_2024_115239 crossref_primary_10_1103_PhysRevApplied_21_014046 crossref_primary_10_1109_JLT_2024_3423659 crossref_primary_10_1016_j_rinp_2024_108104 crossref_primary_10_1016_j_physleta_2020_127035 crossref_primary_10_3788_gzxb20245306_0626001 crossref_primary_10_1364_OL_474097 crossref_primary_10_1364_OPTICA_393035 crossref_primary_10_1364_PRJ_470354 crossref_primary_10_1038_s42005_024_01712_8 crossref_primary_10_1103_PhysRevA_110_013503 crossref_primary_10_1002_adom_201900036 crossref_primary_10_1021_acsphotonics_2c01529 crossref_primary_10_35848_1882_0786_ad157f crossref_primary_10_1364_OE_510304 crossref_primary_10_1364_PRJ_538355 crossref_primary_10_1364_OE_454750 crossref_primary_10_1109_LPT_2024_3424292 crossref_primary_10_2184_lsj_47_7_351 crossref_primary_10_1016_j_rinp_2023_107066 crossref_primary_10_1103_PhysRevB_102_180102 crossref_primary_10_1103_PhysRevResearch_2_043148 crossref_primary_10_1109_LPT_2023_3278703 crossref_primary_10_1016_j_ijmecsci_2022_107989 crossref_primary_10_3390_mi15121492 crossref_primary_10_1016_j_ymssp_2025_112405 crossref_primary_10_1103_PhysRevLett_128_203903 crossref_primary_10_3390_mi12121506 crossref_primary_10_3788_LOP232334 crossref_primary_10_1002_adfm_202204122 crossref_primary_10_1364_OL_492427 crossref_primary_10_1088_1361_6463_acf22a crossref_primary_10_1103_PhysRevLett_132_143801 crossref_primary_10_1109_JLT_2022_3150173 crossref_primary_10_1364_OE_422962 crossref_primary_10_1364_JOSAB_454949 crossref_primary_10_3367_UFNe_2024_08_039740 crossref_primary_10_1002_advs_202004216 crossref_primary_10_1103_PhysRevResearch_3_L022025 crossref_primary_10_1103_PhysRevLett_123_103901 crossref_primary_10_1364_OME_525349 crossref_primary_10_1002_lpor_202200362 crossref_primary_10_1364_OL_549425 crossref_primary_10_1515_nanoph_2024_0192 crossref_primary_10_1515_nanoph_2023_0744 crossref_primary_10_1016_j_rinp_2023_107165 crossref_primary_10_1103_PhysRevB_101_205303 crossref_primary_10_1364_OE_445851 crossref_primary_10_1002_advs_202404163 crossref_primary_10_1103_PhysRevLett_126_230503 crossref_primary_10_1103_PhysRevA_109_043511 crossref_primary_10_1088_1674_1056_ad1e6a crossref_primary_10_1364_PRJ_453803 crossref_primary_10_1103_PhysRevLett_132_016601 crossref_primary_10_1021_acsphotonics_2c01695 crossref_primary_10_1016_j_optlastec_2022_108476 crossref_primary_10_1109_JLT_2021_3082558 crossref_primary_10_1007_s12633_023_02596_z crossref_primary_10_1002_adpr_202300089 crossref_primary_10_1016_j_ijmecsci_2024_109329 crossref_primary_10_1063_5_0137591 crossref_primary_10_3788_COL202321_081901 crossref_primary_10_1002_smll_202402575 crossref_primary_10_1364_OL_401650 crossref_primary_10_1038_s41467_021_23718_4 crossref_primary_10_1126_sciadv_adn5028 crossref_primary_10_1364_OE_545620 crossref_primary_10_1002_pssb_202200169 crossref_primary_10_1016_j_physe_2025_116225 crossref_primary_10_7498_aps_72_20221814 crossref_primary_10_1016_j_optcom_2024_131333 crossref_primary_10_1002_adfm_202302197 crossref_primary_10_1103_PhysRevResearch_2_043109 crossref_primary_10_1103_PhysRevB_105_035136 crossref_primary_10_3389_fphy_2022_866552 crossref_primary_10_1103_PhysRevResearch_6_013321 crossref_primary_10_1364_OE_529005 crossref_primary_10_1364_OE_500720 crossref_primary_10_1364_OE_489523 crossref_primary_10_1016_j_optmat_2022_112152 crossref_primary_10_1103_PhysRevB_110_155415 crossref_primary_10_3390_nano14221790 crossref_primary_10_1002_lpor_202200329 crossref_primary_10_1103_PhysRevA_103_L041502 crossref_primary_10_1103_PhysRevA_103_023512 crossref_primary_10_1364_OE_465461 crossref_primary_10_1002_adfm_202411667 crossref_primary_10_1103_PhysRevResearch_4_013078 crossref_primary_10_1016_j_device_2023_100184 crossref_primary_10_1038_s41467_021_25835_6 crossref_primary_10_1080_15376494_2023_2250368 crossref_primary_10_1063_5_0248226 crossref_primary_10_1364_OL_433957 crossref_primary_10_1088_1367_2630_abe335 crossref_primary_10_3389_fphy_2023_1141997 crossref_primary_10_1088_1361_6463_acc46f crossref_primary_10_1002_apxr_202300125 crossref_primary_10_1021_acsphotonics_2c01367 crossref_primary_10_3788_LOP241585 crossref_primary_10_1002_lpor_202301315 crossref_primary_10_1364_PRJ_485676 crossref_primary_10_1515_nanoph_2020_0086 crossref_primary_10_1103_PhysRevB_101_214102 crossref_primary_10_1364_OPTICA_453483 crossref_primary_10_3390_photonics10030263 crossref_primary_10_1016_j_optcom_2024_131142 crossref_primary_10_1088_1361_6633_aceeee crossref_primary_10_1002_adom_202001865 crossref_primary_10_1038_s41467_023_37670_y crossref_primary_10_1038_s41467_023_40341_7 crossref_primary_10_1002_lpor_202200626 crossref_primary_10_1103_PhysRevApplied_19_024053 crossref_primary_10_1364_OE_542313 crossref_primary_10_1088_1367_2630_abc8ae crossref_primary_10_1103_PhysRevLett_127_013901 crossref_primary_10_3788_PI_2023_R09 crossref_primary_10_1007_s11801_024_3092_7 crossref_primary_10_1364_PRJ_441644 crossref_primary_10_1038_s41377_022_00821_9 crossref_primary_10_1002_andp_202100191 crossref_primary_10_1016_j_commatsci_2023_112498 crossref_primary_10_1088_1361_6463_ad3839 crossref_primary_10_1063_5_0003888 crossref_primary_10_1515_nanoph_2023_0727 crossref_primary_10_1063_1_5142397 crossref_primary_10_1103_PhysRevB_103_L201406 crossref_primary_10_1002_lpor_202300686 crossref_primary_10_1002_lpor_202300204 crossref_primary_10_1364_OL_453556 crossref_primary_10_1364_OE_466106 crossref_primary_10_63174_xdi_TPLP3530 crossref_primary_10_1103_PhysRevApplied_16_064036 crossref_primary_10_1038_s41598_023_27868_x crossref_primary_10_7498_aps_71_20221938 crossref_primary_10_1063_5_0174435 crossref_primary_10_1364_OL_463458 crossref_primary_10_1103_PhysRevApplied_22_044029 crossref_primary_10_1063_5_0037592 crossref_primary_10_7566_JPSJ_92_114402 crossref_primary_10_1103_PhysRevApplied_21_034048 crossref_primary_10_1364_OE_542654 crossref_primary_10_1016_j_chip_2024_100109 crossref_primary_10_1364_OME_525268 crossref_primary_10_3367_UFNr_2024_08_039740 crossref_primary_10_1515_nanoph_2023_0900 crossref_primary_10_1103_PhysRevApplied_17_054003 crossref_primary_10_1515_nanoph_2023_0902 crossref_primary_10_1002_lpor_202200818 crossref_primary_10_1016_j_optlastec_2023_109790 crossref_primary_10_1063_5_0071548 crossref_primary_10_1063_5_0150179 crossref_primary_10_1103_PhysRevB_109_075132 crossref_primary_10_1038_s44310_025_00057_6 crossref_primary_10_1103_PhysRevB_102_174202 crossref_primary_10_1117_1_APN_3_1_016009 crossref_primary_10_1364_PRJ_486329 crossref_primary_10_1103_PhysRevB_108_104106 crossref_primary_10_1063_5_0165548 crossref_primary_10_1364_PRJ_419569 crossref_primary_10_3389_fphy_2022_845579 crossref_primary_10_1007_s11433_023_2093_9 crossref_primary_10_1515_nanoph_2022_0169 crossref_primary_10_1016_j_ijmecsci_2023_108903 crossref_primary_10_1109_TAP_2019_2934816 crossref_primary_10_1002_adma_202311611 crossref_primary_10_7567_1882_0786_ab3004 crossref_primary_10_1002_adma_202312825 crossref_primary_10_1021_acs_nanolett_3c04363 crossref_primary_10_1088_1674_1056_acddd3 crossref_primary_10_1103_PhysRevB_110_075407 crossref_primary_10_1103_PhysRevLett_134_033803 crossref_primary_10_1103_PhysRevApplied_15_024002 crossref_primary_10_1063_5_0105397 crossref_primary_10_1103_PhysRevApplied_15_034015 crossref_primary_10_1063_5_0107211 crossref_primary_10_1117_1_OE_64_1_017101 crossref_primary_10_1364_OL_453234 crossref_primary_10_1016_j_euromechsol_2024_105294 crossref_primary_10_1016_j_rinp_2024_107399 crossref_primary_10_1364_OE_412460 crossref_primary_10_1103_PhysRevA_104_013504 crossref_primary_10_1364_OL_474271 crossref_primary_10_1515_nanoph_2024_0200 crossref_primary_10_3788_AOS240853 crossref_primary_10_3788_AOS240854 crossref_primary_10_1007_s11082_023_05179_9 crossref_primary_10_1038_s41566_020_0618_9 crossref_primary_10_1002_adom_202301051 crossref_primary_10_1364_OE_398421 crossref_primary_10_1109_JLT_2022_3171289 crossref_primary_10_1007_s11801_025_4037_5 crossref_primary_10_1002_qute_202300354 crossref_primary_10_1364_OPTICA_481684 crossref_primary_10_1103_PhysRevLett_126_027403 crossref_primary_10_1364_PRJ_418689 crossref_primary_10_1021_acsphotonics_1c00344 crossref_primary_10_1002_adpr_202100013 crossref_primary_10_1109_JLT_2022_3203563 crossref_primary_10_7498_aps_68_20191007 crossref_primary_10_1103_PhysRevB_107_035431 crossref_primary_10_3788_gzxb20215004_0423003 crossref_primary_10_1016_j_ijmecsci_2023_108412 crossref_primary_10_1016_j_optlastec_2021_107616 crossref_primary_10_1364_OE_457593 crossref_primary_10_1103_PhysRevApplied_16_014036 crossref_primary_10_1121_10_0034636 crossref_primary_10_35848_1347_4065_ad0b2e crossref_primary_10_1364_JOSAB_514565 crossref_primary_10_1364_OME_415128 crossref_primary_10_1126_science_adi7196 crossref_primary_10_1103_PhysRevA_106_033514 crossref_primary_10_1360_TB_2022_0492 crossref_primary_10_1088_1367_2630_acf519 crossref_primary_10_1002_adpr_202100010 crossref_primary_10_1002_lpor_202300515 crossref_primary_10_1364_OE_409265 crossref_primary_10_1021_acsami_1c11292 crossref_primary_10_1364_OL_539008 crossref_primary_10_1364_OE_27_013858 crossref_primary_10_1088_1367_2630_ad6fc5 crossref_primary_10_23919_emsci_2022_0005 crossref_primary_10_1103_PhysRevB_101_155422 crossref_primary_10_3389_fphy_2021_697719 crossref_primary_10_1186_s40580_023_00404_3 crossref_primary_10_1364_OE_494644 crossref_primary_10_1109_JPHOT_2022_3179730 crossref_primary_10_1364_OL_530541 crossref_primary_10_1109_JLT_2020_3024696 crossref_primary_10_1002_qute_202400073 crossref_primary_10_1103_PhysRevB_108_205421 crossref_primary_10_1002_lpor_202100269 crossref_primary_10_1063_5_0134980 crossref_primary_10_3788_AOS240938 crossref_primary_10_3389_fmats_2022_845344 crossref_primary_10_1364_OE_27_025841 crossref_primary_10_1515_nanoph_2021_0762 crossref_primary_10_1002_adfm_201902286 crossref_primary_10_1080_23746149_2021_1905546 crossref_primary_10_1364_OME_529108 crossref_primary_10_1103_PhysRevA_110_043521 crossref_primary_10_7567_1882_0786_ab1cc5 crossref_primary_10_1063_5_0004390 crossref_primary_10_1007_s11082_023_05098_9 crossref_primary_10_1364_OE_518922 crossref_primary_10_1016_j_rinp_2024_108092 crossref_primary_10_1021_acsphotonics_1c00029 crossref_primary_10_1088_1361_6463_ad4159 crossref_primary_10_1364_OL_462005 crossref_primary_10_1002_lpor_202000001 crossref_primary_10_1016_j_optlaseng_2024_108243 crossref_primary_10_1021_acs_chemrev_2c00800 crossref_primary_10_1088_2040_8986_ac8940 crossref_primary_10_1016_j_optcom_2023_129542 crossref_primary_10_1002_adma_202309497 crossref_primary_10_1364_OL_454865 crossref_primary_10_1126_sciadv_abe1398 crossref_primary_10_1364_OE_525228 crossref_primary_10_1038_s41377_020_00350_3 crossref_primary_10_1103_PhysRevLett_132_116901 crossref_primary_10_1002_lpor_202400045 crossref_primary_10_1103_PhysRevLett_132_086302 crossref_primary_10_3390_s25051455 crossref_primary_10_7498_aps_73_20240040 crossref_primary_10_1007_s11082_024_07273_y crossref_primary_10_1007_s12200_019_0963_9 crossref_primary_10_1063_5_0060007 crossref_primary_10_1126_sciadv_adg4322 crossref_primary_10_1364_PRJ_481849 crossref_primary_10_1364_AO_504776 crossref_primary_10_1021_acsanm_1c03986 crossref_primary_10_1109_JPHOT_2022_3220331 crossref_primary_10_1063_5_0097422 crossref_primary_10_1016_j_optlastec_2021_107403 crossref_primary_10_1038_s41467_025_56020_8 crossref_primary_10_1364_PRJ_396872 crossref_primary_10_1103_PhysRevApplied_15_064032 crossref_primary_10_1088_2515_7647_ad68de crossref_primary_10_1103_PhysRevB_107_094107 crossref_primary_10_1364_OE_480044 crossref_primary_10_1088_2058_6272_ac9347 crossref_primary_10_1364_OL_539442 crossref_primary_10_1002_lpor_202300764 crossref_primary_10_1109_MAP_2021_3069276 crossref_primary_10_1515_nanoph_2024_0612 crossref_primary_10_1063_1_5086433 crossref_primary_10_1021_acs_nanolett_1c01841 crossref_primary_10_1016_j_physleta_2023_128851 crossref_primary_10_1103_PhysRevApplied_18_064025 crossref_primary_10_1016_j_optcom_2024_130807 crossref_primary_10_1103_PhysRevLett_124_253601 crossref_primary_10_1021_acsnano_4c09295 crossref_primary_10_1364_PRJ_471905 crossref_primary_10_1038_s41467_022_30276_w crossref_primary_10_1109_JLT_2021_3107682 crossref_primary_10_1002_admi_202200998 crossref_primary_10_21468_SciPostPhys_18_3_098 crossref_primary_10_1063_1_5131846 crossref_primary_10_1103_PhysRevB_110_L020101 crossref_primary_10_1515_nanoph_2022_0309 crossref_primary_10_1515_nanoph_2022_0547 crossref_primary_10_1364_PRJ_530245 crossref_primary_10_1016_j_optlastec_2024_111667 crossref_primary_10_1109_JSTQE_2020_2982991 crossref_primary_10_1038_s41377_020_00458_6 crossref_primary_10_1103_PhysRevB_108_134119 crossref_primary_10_1364_OL_535079 crossref_primary_10_1103_PhysRevResearch_4_033222 crossref_primary_10_1016_j_revip_2022_100076 crossref_primary_10_29026_oea_2022_210015 crossref_primary_10_1038_s41467_025_56021_7 crossref_primary_10_1088_1367_2630_ac20eb crossref_primary_10_1002_lpor_202401284 crossref_primary_10_1109_JLT_2023_3288342 crossref_primary_10_1038_s41467_023_40172_6 crossref_primary_10_3389_fmats_2021_728991 crossref_primary_10_1088_1361_648X_acc228 crossref_primary_10_1515_nanoph_2020_0524 crossref_primary_10_1515_nanoph_2021_0371 crossref_primary_10_1364_OL_420080 crossref_primary_10_1021_acsphotonics_1c00860 crossref_primary_10_1364_JOSAB_453115 crossref_primary_10_1088_1402_4896_ad2bc6 crossref_primary_10_1063_5_0191369 crossref_primary_10_1103_PhysRevLett_123_043201 crossref_primary_10_1063_5_0233892 crossref_primary_10_1103_PhysRevResearch_2_012011 crossref_primary_10_34133_research_0597 crossref_primary_10_1038_s41467_022_32909_6 crossref_primary_10_1088_2040_8986_ac1832 crossref_primary_10_1364_OE_439769 crossref_primary_10_1002_lpor_202200194 crossref_primary_10_1364_OE_443907 crossref_primary_10_1364_OE_484575 crossref_primary_10_1515_nanoph_2021_0385 crossref_primary_10_1364_JOSAB_457969 crossref_primary_10_1364_OME_529092 crossref_primary_10_1038_s42005_024_01853_w crossref_primary_10_1038_s42005_024_01899_w crossref_primary_10_1103_PhysRevA_108_043706 crossref_primary_10_35848_1347_4065_ace74e crossref_primary_10_1364_OE_450558 crossref_primary_10_7498_aps_69_20200198 crossref_primary_10_1021_acsphotonics_3c00463 crossref_primary_10_1103_PhysRevB_103_235142 crossref_primary_10_1140_epjb_s10051_023_00503_4 crossref_primary_10_1103_PhysRevLett_124_243602 crossref_primary_10_1103_PhysRevResearch_3_043027 crossref_primary_10_1016_j_optcom_2023_130004 crossref_primary_10_1002_lpor_202401627 crossref_primary_10_1364_OE_557589 crossref_primary_10_1002_lpor_201900087 crossref_primary_10_1002_pssb_202100202 crossref_primary_10_1002_pssb_202100568 crossref_primary_10_1002_lpor_202200077 crossref_primary_10_1103_PhysRevA_109_063504 crossref_primary_10_1007_s11433_022_1916_7 crossref_primary_10_1364_OE_438474 crossref_primary_10_1364_OL_391764 crossref_primary_10_1364_OE_513685 crossref_primary_10_1002_lpor_202100300 crossref_primary_10_1016_j_scib_2024_04_007 crossref_primary_10_1117_1_AP_4_4_046004 crossref_primary_10_1126_sciadv_adn6095 crossref_primary_10_1038_s42005_022_01058_z crossref_primary_10_1021_acsphotonics_0c00521 crossref_primary_10_1063_5_0041055 crossref_primary_10_2184_lsj_48_8_404 crossref_primary_10_1103_PhysRevApplied_18_044080 crossref_primary_10_1364_PRJ_443025 crossref_primary_10_1002_lpor_201900193 crossref_primary_10_1103_PhysRevB_107_075406 crossref_primary_10_1038_s41467_023_40238_5 crossref_primary_10_3390_molecules27092807 crossref_primary_10_1103_PhysRevB_110_035408 crossref_primary_10_1088_1361_6463_ad71da crossref_primary_10_1016_j_optlastec_2022_108865 crossref_primary_10_1103_PhysRevResearch_6_L022065 crossref_primary_10_7498_aps_68_20191452 crossref_primary_10_1002_adom_202300986 crossref_primary_10_1364_OME_487619 crossref_primary_10_1021_acsnano_3c07993 crossref_primary_10_1038_s41598_024_79219_z crossref_primary_10_1088_1402_4896_acd0dd crossref_primary_10_1088_1361_6463_ab9047 crossref_primary_10_1002_lpor_202400567 crossref_primary_10_1038_s41598_020_79915_6 crossref_primary_10_1126_sciadv_aaw4137 crossref_primary_10_1021_acsphotonics_1c01741 crossref_primary_10_1364_OL_44_003342 crossref_primary_10_3390_nano11071808 crossref_primary_10_1088_1361_6463_ac485d crossref_primary_10_1103_PhysRevLett_133_133802 crossref_primary_10_3788_COL202422_053602 crossref_primary_10_1103_PhysRevA_108_043505 crossref_primary_10_1126_sciadv_abl3903 crossref_primary_10_1364_OL_493788 crossref_primary_10_7498_aps_73_20231850 crossref_primary_10_1021_acsphotonics_4c01502 crossref_primary_10_1364_OE_475559 crossref_primary_10_1016_j_rinp_2023_106589 crossref_primary_10_1364_OE_440108 crossref_primary_10_1515_nanoph_2021_0395 crossref_primary_10_1063_5_0099423 crossref_primary_10_1038_s41467_024_54658_4 crossref_primary_10_1088_2040_8986_ac45d2 crossref_primary_10_1364_OPTICA_6_000786 crossref_primary_10_1002_lpor_202100631 crossref_primary_10_1002_lpor_202400218 crossref_primary_10_1093_nsr_nwaa262 crossref_primary_10_1016_j_eml_2021_101568 crossref_primary_10_3389_fphy_2022_902533 crossref_primary_10_1038_s41377_024_01512_3 crossref_primary_10_1103_PhysRevApplied_16_014058 crossref_primary_10_1016_j_optcom_2021_126847 crossref_primary_10_1364_OME_522200 crossref_primary_10_1002_admt_202100252 crossref_primary_10_1364_OL_468157 crossref_primary_10_1364_PRJ_518426 crossref_primary_10_1103_PhysRevA_109_053504 crossref_primary_10_1038_s41377_023_01251_x crossref_primary_10_1103_PhysRevApplied_18_054073 crossref_primary_10_1002_adom_202300764 crossref_primary_10_1063_5_0042583 crossref_primary_10_1063_5_0097129 crossref_primary_10_1002_lpor_201900159 crossref_primary_10_1038_s41377_022_00993_4 crossref_primary_10_1021_acsphotonics_0c01771 crossref_primary_10_1364_OE_432964 |
Cites_doi | 10.1038/s41467-018-03330-9 10.1103/PhysRevB.96.020202 10.1126/science.aaa9273 10.1103/PhysRevLett.120.217401 10.1126/science.aaq0327 10.1038/s41565-018-0297-6 10.1038/nnano.2015.159 10.1038/nature12066 10.1038/nphys4304 10.1021/ph500084b 10.1038/nphys3891 10.1103/PhysRevLett.100.013904 10.1038/nphoton.2010.94 10.1038/nphoton.2015.282 10.1088/1367-2630/aa56a2 10.1038/s41566-017-0048-5 10.1103/PhysRevB.81.155115 10.1038/nature08293 10.1103/PhysRevLett.120.063902 10.1038/nphoton.2012.236 10.1103/PhysRevLett.99.236809 10.1038/s41467-017-01515-2 10.1038/nmat3520 10.1038/ncomms6782 10.1364/OE.8.000173 10.1103/PhysRevA.94.063827 10.1038/nphys3999 10.1038/nmat4807 10.1126/sciadv.aap8802 10.1126/science.aar4005 10.1038/nphys2942 10.1038/nature21037 10.1103/PhysRevLett.116.093901 10.1038/nphoton.2013.274 10.1126/science.aar4003 10.1103/PhysRevLett.114.223901 10.1103/PhysRevLett.108.196802 10.1126/science.aao4551 10.1103/RevModPhys.82.1959 10.1038/nphoton.2014.248 10.1038/nmat4573 10.1016/j.cpc.2009.11.008 10.1038/nnano.2013.151 10.1103/PhysRevLett.106.093903 10.1143/JPSJ.74.1674 10.1088/1367-2630/18/2/025012 10.1103/PhysRevLett.100.013905 10.1103/PhysRevB.96.134307 10.1038/nphys3867 10.1038/s41467-018-05408-w 10.1103/PhysRevLett.107.023901 10.1017/CBO9781139644181 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-08881-z |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Physics |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_707a3b79c2d942db8b8ae43a66e1d2cb PMC6382878 30787288 10_1038_s41467_019_08881_z |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-d684d11b45c0b13b313fefafd13f84187a943675e851f79aabfce0878c6cf0b83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:30:45 EDT 2025 Thu Aug 21 17:57:59 EDT 2025 Fri Jul 11 10:53:44 EDT 2025 Wed Aug 13 03:26:38 EDT 2025 Wed Feb 19 02:30:58 EST 2025 Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 02:21:24 EDT 2025 Fri Feb 21 02:40:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-d684d11b45c0b13b313fefafd13f84187a943675e851f79aabfce0878c6cf0b83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-2379-554X |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-08881-z |
PMID | 30787288 |
PQID | 2184193192 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_707a3b79c2d942db8b8ae43a66e1d2cb pubmedcentral_primary_oai_pubmedcentral_nih_gov_6382878 proquest_miscellaneous_2184526470 proquest_journals_2184193192 pubmed_primary_30787288 crossref_citationtrail_10_1038_s41467_019_08881_z crossref_primary_10_1038_s41467_019_08881_z springer_journals_10_1038_s41467_019_08881_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-20 |
PublicationDateYYYYMMDD | 2019-02-20 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wu, Hu (CR21) 2015; 114 Rodríguez-Fortuño, Barber-Sanz, Puerto, Griol, Martínez (CR51) 2014; 1 Haldane, Raghu (CR2) 2008; 100 Wu (CR34) 2017; 8 Sollner (CR49) 2015; 10 Wang, Chong, Joannopoulos, Soljačić (CR3) 2008; 100 Ma, Shvets (CR30) 2016; 18 Xiao, Liu, Feng, Xu, Yao (CR27) 2012; 108 Johnson, Joannopoulos (CR53) 2001; 8 Xiao, Yao, Niu (CR26) 2007; 99 Yang (CR23) 2018; 120 Noh, Huang, Chen, Rechtsman (CR35) 2018; 120 Bandres (CR20) 2018; 359 Fukui, Hatsugai, Suzuki (CR47) 2005; 74 CR6 Ni (CR17) 2018; 4 Rechtsman (CR12) 2013; 496 Xiao, Chang, Niu (CR46) 2010; 82 Harari (CR19) 2018; 359 CR45 Wang, Chong, Joannopoulos, Soljacic (CR7) 2009; 461 Bahari (CR10) 2017; 358 Khanikaev, Shvets (CR5) 2017; 11 Barik (CR24) 2018; 359 Poo, Wu, Lin, Yang, Chan (CR8) 2011; 106 Chen, Zhao, Chen, Dong (CR32) 2017; 96 Lu, Qiu, Ke, Liu (CR38) 2016; 116 Pal, Ruzzene (CR40) 2017; 19 Jones (CR43) 2013; 8 Dong, Chen, Zhu, Wang, Zhang (CR31) 2017; 16 Cheng (CR16) 2016; 15 CR11 Mock, Lu, O’Brien (CR48) 2010; 81 CR52 Lu (CR13) 2015; 349 Hafezi, Mittal, Fan, Migdall, Taylor (CR18) 2013; 7 Lu (CR39) 2016; 13 Kang, Ni, Cheng, Khanikaev, Genack (CR36) 2018; 9 Gorlach (CR25) 2018; 9 Mak, Shan (CR29) 2016; 10 Gao (CR33) 2018; 14 Xu, Yao, Xiao, Heinz (CR28) 2014; 10 Fang, Yu, Fan (CR9) 2012; 6 Oskooi (CR54) 2010; 181 Lodahl (CR50) 2017; 541 He (CR22) 2016; 12 Lu, Joannopoulos, Soljacic (CR4) 2014; 8 Vila, Pal, Ruzzene (CR41) 2017; 96 Shalaev, Walasik, Tsukernik, Xu, Litchinitser (CR37) 2019; 14 Chen (CR15) 2014; 5 Ye, Sun, Heinz (CR44) 2016; 13 Collins, Zhang, Bojko, Chrostowski, Rechtsman (CR42) 2016; 94 Khanikaev (CR14) 2012; 12 Caulfield, Dolev (CR1) 2010; 4 WJ Chen (8881_CR15) 2014; 5 LH Wu (8881_CR21) 2015; 114 J Lu (8881_CR39) 2016; 13 JW Dong (8881_CR31) 2017; 16 F Gao (8881_CR33) 2018; 14 J Lu (8881_CR38) 2016; 116 AM Jones (8881_CR43) 2013; 8 L Lu (8881_CR4) 2014; 8 Z Wang (8881_CR7) 2009; 461 Y Yang (8881_CR23) 2018; 120 Z Wang (8881_CR3) 2008; 100 T Ma (8881_CR30) 2016; 18 P Lodahl (8881_CR50) 2017; 541 X Wu (8881_CR34) 2017; 8 D Xiao (8881_CR46) 2010; 82 X Cheng (8881_CR16) 2016; 15 Y Kang (8881_CR36) 2018; 9 KF Mak (8881_CR29) 2016; 10 AB Khanikaev (8881_CR5) 2017; 11 X Ni (8881_CR17) 2018; 4 MI Shalaev (8881_CR37) 2019; 14 D Xiao (8881_CR27) 2012; 108 FJ Rodríguez-Fortuño (8881_CR51) 2014; 1 I Sollner (8881_CR49) 2015; 10 HJ Caulfield (8881_CR1) 2010; 4 8881_CR45 A Oskooi (8881_CR54) 2010; 181 G Harari (8881_CR19) 2018; 359 AB Khanikaev (8881_CR14) 2012; 12 Y Poo (8881_CR8) 2011; 106 MC Rechtsman (8881_CR12) 2013; 496 K Fang (8881_CR9) 2012; 6 A Mock (8881_CR48) 2010; 81 X Xu (8881_CR28) 2014; 10 T Fukui (8881_CR47) 2005; 74 J Vila (8881_CR41) 2017; 96 S Barik (8881_CR24) 2018; 359 J Noh (8881_CR35) 2018; 120 MJ Collins (8881_CR42) 2016; 94 RK Pal (8881_CR40) 2017; 19 8881_CR11 8881_CR52 C He (8881_CR22) 2016; 12 MA Bandres (8881_CR20) 2018; 359 L Lu (8881_CR13) 2015; 349 M Hafezi (8881_CR18) 2013; 7 Z Ye (8881_CR44) 2016; 13 8881_CR6 D Xiao (8881_CR26) 2007; 99 SG Johnson (8881_CR53) 2001; 8 B Bahari (8881_CR10) 2017; 358 F Haldane (8881_CR2) 2008; 100 MA Gorlach (8881_CR25) 2018; 9 XD Chen (8881_CR32) 2017; 96 |
References_xml | – volume: 9 year: 2018 ident: CR25 article-title: Far-field probing of leaky topological states in all-dielectric metasurfaces publication-title: Nat. Commun. doi: 10.1038/s41467-018-03330-9 – ident: CR45 – volume: 96 start-page: 020202 year: 2017 ident: CR32 article-title: Valley-contrasting physics in all-dielectric photonic crystals: Orbital angular momentum and topological propagation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.020202 – volume: 349 start-page: 622 year: 2015 end-page: 624 ident: CR13 article-title: Experimental observation of Weyl points publication-title: Science doi: 10.1126/science.aaa9273 – volume: 120 start-page: 217401 year: 2018 ident: CR23 article-title: Visualization of a unidirectional electromagnetic waveguide using topological photonic crystals made of dielectric materials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.217401 – volume: 359 start-page: 666 year: 2018 end-page: 668 ident: CR24 article-title: A topological quantum optics interface publication-title: Science doi: 10.1126/science.aaq0327 – volume: 14 start-page: 31 year: 2019 end-page: 34 ident: CR37 article-title: Robust topologically protected transport in photonic crystals at telecommunication wavelengths publication-title: Nat. Nanotech doi: 10.1038/s41565-018-0297-6 – volume: 10 start-page: 775 year: 2015 end-page: 778 ident: CR49 article-title: Deterministic photon-emitter coupling in chiral photonic circuits publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.159 – volume: 496 start-page: 196 year: 2013 end-page: 200 ident: CR12 article-title: Photonic Floquet topological insulators publication-title: Nature doi: 10.1038/nature12066 – volume: 14 start-page: 140 year: 2018 end-page: 144 ident: CR33 article-title: Topologically protected refraction of robust kink states in valley photonic crystals publication-title: Nat. Phys. doi: 10.1038/nphys4304 – volume: 1 start-page: 762 year: 2014 end-page: 767 ident: CR51 article-title: Resolving light handedness with an on-chip silicon microdisk publication-title: ACS Photon doi: 10.1021/ph500084b – volume: 13 start-page: 26 year: 2016 end-page: 29 ident: CR44 article-title: Optical manipulation of valley pseudospin publication-title: Nat. Phys. doi: 10.1038/nphys3891 – volume: 100 start-page: 013904 year: 2008 ident: CR2 article-title: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 4 start-page: 261 year: 2010 end-page: 263 ident: CR1 article-title: Why future supercomputing requires optics publication-title: Nat. Photon doi: 10.1038/nphoton.2010.94 – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR29 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photon doi: 10.1038/nphoton.2015.282 – volume: 19 start-page: 025001 year: 2017 ident: CR40 article-title: Edge waves in plates with resonators: an elastic analogue of the quantum valley Hall effect publication-title: New J. Phys. doi: 10.1088/1367-2630/aa56a2 – volume: 11 start-page: 763 year: 2017 end-page: 773 ident: CR5 article-title: Two-dimensional topological photonics publication-title: Nat. Photon doi: 10.1038/s41566-017-0048-5 – volume: 81 start-page: 155115 year: 2010 ident: CR48 article-title: Space group theory and Fourier space analysis of two-dimensional photonic crystal waveguides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.155115 – volume: 461 start-page: 772 year: 2009 end-page: 775 ident: CR7 article-title: Observation of unidirectional backscattering-immune topological electromagnetic states publication-title: Nature doi: 10.1038/nature08293 – volume: 120 start-page: 063902 year: 2018 ident: CR35 article-title: Observation of photonic topological valley hall edge states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.063902 – ident: CR11 – volume: 6 start-page: 782 year: 2012 end-page: 787 ident: CR9 article-title: Realizing effective magnetic field for photons by controlling the phase of dynamic modulation publication-title: Nat. Photon doi: 10.1038/nphoton.2012.236 – volume: 99 start-page: 236809 year: 2007 ident: CR26 article-title: Valley-contrasting physics in graphene: magnetic moment and topological transport publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.236809 – volume: 8 year: 2017 ident: CR34 article-title: Direct observation of valley-polarized topological edge states in designer surface plasmon crystals publication-title: Nat. Commun. doi: 10.1038/s41467-017-01515-2 – volume: 12 start-page: 233 year: 2012 end-page: 239 ident: CR14 article-title: Photonic topological insulators publication-title: Nat. Mater. doi: 10.1038/nmat3520 – volume: 5 year: 2014 ident: CR15 article-title: Experimental realization of photonic topological insulator in a uniaxial metacrystal waveguide publication-title: Nat. Commun. doi: 10.1038/ncomms6782 – volume: 8 start-page: 173 year: 2001 end-page: 190 ident: CR53 article-title: Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis publication-title: Opt. Express doi: 10.1364/OE.8.000173 – volume: 94 start-page: 063827 year: 2016 ident: CR42 article-title: Integrated optical Dirac physics via inversion symmetry breaking publication-title: Phys. Rev. A. doi: 10.1103/PhysRevA.94.063827 – volume: 13 start-page: 369 year: 2016 end-page: 374 ident: CR39 article-title: Observation of topological valley transport of sound in sonic crystals publication-title: Nat. Phys. doi: 10.1038/nphys3999 – volume: 16 start-page: 298 year: 2017 end-page: 302 ident: CR31 article-title: Valley photonic crystals for control of spin and topology publication-title: Nat. Mater. doi: 10.1038/nmat4807 – volume: 4 start-page: eaap8802 year: 2018 ident: CR17 article-title: Spin- and valley-polarized one-way Klein tunneling in photonic topological insulators publication-title: Sci. Adv. doi: 10.1126/sciadv.aap8802 – volume: 359 start-page: eaar4005 year: 2018 ident: CR20 article-title: Topological insulator laser: experiments publication-title: Science doi: 10.1126/science.aar4005 – volume: 10 start-page: 343 year: 2014 end-page: 350 ident: CR28 article-title: Spin and pseudospins in layered transition metal dichalcogenides publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 541 start-page: 473 year: 2017 end-page: 480 ident: CR50 article-title: Chiral quantum optics publication-title: Nature doi: 10.1038/nature21037 – volume: 116 start-page: 093901 year: 2016 ident: CR38 article-title: Valley vortex states in sonic crystals publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.093901 – volume: 7 start-page: 1001 year: 2013 end-page: 1005 ident: CR18 article-title: Imaging topological edge states in silicon photonics publication-title: Nat. Photon doi: 10.1038/nphoton.2013.274 – volume: 359 start-page: eaar4003 year: 2018 ident: CR19 article-title: Topological insulator laser: theory publication-title: Science doi: 10.1126/science.aar4003 – volume: 114 start-page: 223901 year: 2015 ident: CR21 article-title: Scheme for achieving a topological photonic crystal by using dielectric material publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.223901 – volume: 108 start-page: 196802 year: 2012 ident: CR27 article-title: Coupled spin and valley physics in monolayers of MoS and other group-VI dichalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.196802 – volume: 358 start-page: 636 year: 2017 end-page: 640 ident: CR10 article-title: Nonreciprocal lasing in topological cavities of arbitrary geometries publication-title: Science doi: 10.1126/science.aao4551 – ident: CR6 – volume: 82 start-page: 1959 year: 2010 end-page: 2007 ident: CR46 article-title: Berry phase effects on electronic properties publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1959 – volume: 8 start-page: 821 year: 2014 end-page: 829 ident: CR4 article-title: Topological photonics publication-title: Nat. Photon doi: 10.1038/nphoton.2014.248 – volume: 15 start-page: 542 year: 2016 end-page: 548 ident: CR16 article-title: Robust reconfigurable electromagnetic pathways within a photonic topological insulator publication-title: Nat. Mater. doi: 10.1038/nmat4573 – volume: 181 start-page: 687 year: 2010 end-page: 702 ident: CR54 article-title: Meep: A flexible free-software package for electromagnetic simulations by the FDTD method publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.11.008 – volume: 8 start-page: 634 year: 2013 end-page: 638 ident: CR43 article-title: Optical generation of excitonic valley coherence in monolayer WSe2 publication-title: Nat. Nanotech doi: 10.1038/nnano.2013.151 – volume: 106 start-page: 093903 year: 2011 ident: CR8 article-title: Experimental realization of self-guiding unidirectional electromagnetic edge states publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.093903 – ident: CR52 – volume: 74 start-page: 1674 year: 2005 end-page: 1677 ident: CR47 article-title: Chern numbers in discretized brillouin zone: efficient method of computing (Spin) Hall conductances publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.1674 – volume: 18 start-page: 025012 year: 2016 ident: CR30 article-title: All-Si valley-Hall photonic topological insulator publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/025012 – volume: 100 start-page: 013905 year: 2008 ident: CR3 article-title: Reflection-free one-way edge modes in a gyromagnetic photonic crystal publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013905 – volume: 96 start-page: 134307 year: 2017 ident: CR41 article-title: Observation of topological valley modes in an elastic hexagonal lattice publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.134307 – volume: 12 start-page: 1124 year: 2016 end-page: 1129 ident: CR22 article-title: Acoustic topological insulator and robust one-way sound transport publication-title: Nat. Phys. doi: 10.1038/nphys3867 – volume: 9 year: 2018 ident: CR36 article-title: Pseudo-spin–valley coupled edge states in a photonic topological insulator publication-title: Nat. Commun. doi: 10.1038/s41467-018-05408-w – volume: 4 start-page: 261 year: 2010 ident: 8881_CR1 publication-title: Nat. Photon doi: 10.1038/nphoton.2010.94 – volume: 106 start-page: 093903 year: 2011 ident: 8881_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.106.093903 – volume: 11 start-page: 763 year: 2017 ident: 8881_CR5 publication-title: Nat. Photon doi: 10.1038/s41566-017-0048-5 – ident: 8881_CR11 doi: 10.1103/PhysRevLett.107.023901 – volume: 96 start-page: 020202 year: 2017 ident: 8881_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.020202 – volume: 496 start-page: 196 year: 2013 ident: 8881_CR12 publication-title: Nature doi: 10.1038/nature12066 – volume: 8 start-page: 821 year: 2014 ident: 8881_CR4 publication-title: Nat. Photon doi: 10.1038/nphoton.2014.248 – volume: 100 start-page: 013904 year: 2008 ident: 8881_CR2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013904 – volume: 10 start-page: 343 year: 2014 ident: 8881_CR28 publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 10 start-page: 216 year: 2016 ident: 8881_CR29 publication-title: Nat. Photon doi: 10.1038/nphoton.2015.282 – ident: 8881_CR45 doi: 10.1017/CBO9781139644181 – volume: 7 start-page: 1001 year: 2013 ident: 8881_CR18 publication-title: Nat. Photon doi: 10.1038/nphoton.2013.274 – volume: 8 start-page: 173 year: 2001 ident: 8881_CR53 publication-title: Opt. Express doi: 10.1364/OE.8.000173 – volume: 16 start-page: 298 year: 2017 ident: 8881_CR31 publication-title: Nat. Mater. doi: 10.1038/nmat4807 – volume: 19 start-page: 025001 year: 2017 ident: 8881_CR40 publication-title: New J. Phys. doi: 10.1088/1367-2630/aa56a2 – volume: 8 start-page: 634 year: 2013 ident: 8881_CR43 publication-title: Nat. Nanotech doi: 10.1038/nnano.2013.151 – volume: 120 start-page: 063902 year: 2018 ident: 8881_CR35 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.063902 – volume: 116 start-page: 093901 year: 2016 ident: 8881_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.093901 – volume: 181 start-page: 687 year: 2010 ident: 8881_CR54 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2009.11.008 – volume: 359 start-page: eaar4003 year: 2018 ident: 8881_CR19 publication-title: Science doi: 10.1126/science.aar4003 – volume: 9 year: 2018 ident: 8881_CR36 publication-title: Nat. Commun. doi: 10.1038/s41467-018-05408-w – ident: 8881_CR52 – volume: 14 start-page: 140 year: 2018 ident: 8881_CR33 publication-title: Nat. Phys. doi: 10.1038/nphys4304 – volume: 99 start-page: 236809 year: 2007 ident: 8881_CR26 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.99.236809 – volume: 108 start-page: 196802 year: 2012 ident: 8881_CR27 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.196802 – volume: 13 start-page: 369 year: 2016 ident: 8881_CR39 publication-title: Nat. Phys. doi: 10.1038/nphys3999 – volume: 94 start-page: 063827 year: 2016 ident: 8881_CR42 publication-title: Phys. Rev. A. doi: 10.1103/PhysRevA.94.063827 – volume: 461 start-page: 772 year: 2009 ident: 8881_CR7 publication-title: Nature doi: 10.1038/nature08293 – volume: 81 start-page: 155115 year: 2010 ident: 8881_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.155115 – volume: 10 start-page: 775 year: 2015 ident: 8881_CR49 publication-title: Nat. Nanotech doi: 10.1038/nnano.2015.159 – volume: 6 start-page: 782 year: 2012 ident: 8881_CR9 publication-title: Nat. Photon doi: 10.1038/nphoton.2012.236 – volume: 120 start-page: 217401 year: 2018 ident: 8881_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.217401 – volume: 114 start-page: 223901 year: 2015 ident: 8881_CR21 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.223901 – volume: 14 start-page: 31 year: 2019 ident: 8881_CR37 publication-title: Nat. Nanotech doi: 10.1038/s41565-018-0297-6 – volume: 5 year: 2014 ident: 8881_CR15 publication-title: Nat. Commun. doi: 10.1038/ncomms6782 – volume: 12 start-page: 1124 year: 2016 ident: 8881_CR22 publication-title: Nat. Phys. doi: 10.1038/nphys3867 – volume: 96 start-page: 134307 year: 2017 ident: 8881_CR41 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.134307 – volume: 359 start-page: 666 year: 2018 ident: 8881_CR24 publication-title: Science doi: 10.1126/science.aaq0327 – volume: 8 year: 2017 ident: 8881_CR34 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01515-2 – volume: 82 start-page: 1959 year: 2010 ident: 8881_CR46 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.82.1959 – volume: 1 start-page: 762 year: 2014 ident: 8881_CR51 publication-title: ACS Photon doi: 10.1021/ph500084b – volume: 541 start-page: 473 year: 2017 ident: 8881_CR50 publication-title: Nature doi: 10.1038/nature21037 – volume: 18 start-page: 025012 year: 2016 ident: 8881_CR30 publication-title: New J. Phys. doi: 10.1088/1367-2630/18/2/025012 – volume: 12 start-page: 233 year: 2012 ident: 8881_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat3520 – volume: 359 start-page: eaar4005 year: 2018 ident: 8881_CR20 publication-title: Science doi: 10.1126/science.aar4005 – volume: 100 start-page: 013905 year: 2008 ident: 8881_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.013905 – volume: 15 start-page: 542 year: 2016 ident: 8881_CR16 publication-title: Nat. Mater. doi: 10.1038/nmat4573 – volume: 349 start-page: 622 year: 2015 ident: 8881_CR13 publication-title: Science doi: 10.1126/science.aaa9273 – volume: 74 start-page: 1674 year: 2005 ident: 8881_CR47 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.74.1674 – ident: 8881_CR6 – volume: 358 start-page: 636 year: 2017 ident: 8881_CR10 publication-title: Science doi: 10.1126/science.aao4551 – volume: 4 start-page: eaap8802 year: 2018 ident: 8881_CR17 publication-title: Sci. Adv. doi: 10.1126/sciadv.aap8802 – volume: 9 year: 2018 ident: 8881_CR25 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03330-9 – volume: 13 start-page: 26 year: 2016 ident: 8881_CR44 publication-title: Nat. Phys. doi: 10.1038/nphys3891 |
SSID | ssj0000391844 |
Score | 2.696399 |
Snippet | Backscattering suppression in silicon-on-insulator (SOI) is one of the central issues to reduce energy loss and signal distortion, enabling for capability... Backscattering is one of the major factors that limit the performance of integrated nanophotonics. Here, He et al. realize topologically protected, robust and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 872 |
SubjectTerms | 142/126 147/135 639/624/399/1015 639/624/399/1022 639/624/399/1099 639/766/119/2792 Backscattering Bandwidths Chirality Curvature Data processing Electromagnetism Energy dissipation Energy loss Humanities and Social Sciences Information processing Information systems Information transfer Interfaces Light multidisciplinary Photonic crystals Photonics Physics Radiation Science Science (multidisciplinary) Signal distortion Signal processing Silicon Symmetry Transport Vortices |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KUOil2Krttipb8KbBZJO3yUIvtihS0JOCt5BPKsgqvrWgf30nyb6nz4_2IiwsbJJlmJlMfj-SzABs2Y62gVtKlOEtES5a0sUYyIS6TnrKjM9nc46O28NT8etscvag1Fc6E1bSAxfF7UoqDbeyc43vROOtssoEwU3bBuYbZ1P0xTXvAZnKMZh3SF3EeEuGcrU7FTkm0HRnB1kfI3cLK1FO2P8cynx6WPLRjmleiA6W4f2IIOu9IvkHeBP6j_C21JS8XYHve_X0_ALt2xN88lHzxKtrNL2tEaHWQymLkIxT_0mVVG7rYZbhfBVOD_ZPfh6SsUQCccg8BuJbJTxjVkwctYxbzngM0USPbyWYkqYTHDlBQGAVZWeMjS5QJZVrXaRW8TVY6i_78BlqjutZCK1hhgpEVciamyAMEhj8n7HCV8Bm6tJuzB-eylhc6LyPzZUuKtaoYp1VrO8q2J6PuSrZM_7Z-0eywrxnynydP6A_6NEf9P_8oYL1mQ31OB2nOvFYRKqIZiv4Nm_GiZR2R0wfLm9KnwnCQ0kr-FRMPpcEA6GSjVIVyAVnWBB1saU__52TdWN8Q1KKI3dmbnMv1suq-PIaqvgK75rs7w3GwnVYGq5vwgZCqMFu5tnyF7wTGJo priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3ta9YwED90IvhFfF_nlAp-07CkydOkIIxt7HEI-snBvoW8VQejz1y7wfbXe0nTjseXQaGlSUp6d7n8LrncAby3Da0Dt5Qow2siXGtJ07aBLKhrpKfM-OSb8_VbfXQsvpwsTvKCW5_dKiedmBS1X7m4Rr4TTREEGwhIds9_kZg1Ku6u5hQa9-EBw5kmunSp5ed5jSVGP1dC5LMylKudXiTNQOPJHbT9GLlZm49S2P5_Yc2_XSb_2DdN09HyCTzOOLLcGxn_FO6F7hk8HDNLXuNT8ux0_XP4tFf2p2fI747glVzPo51doijYEhFrOYxpEiKzyquYWeW6HKaI5y_geHn4_eCI5JQJxKElMhBfK-EZs2LhqGXccsbb0JrW4x3pp6RpBEcbISDQamVjjG1doEoqV7uWWsVfwka36sImlBzntxBqwwwViLLQiq6CMGjQ4PeMFb4ANhFOuxxPPKa1ONNpX5srPRJbI7F1Ira-KeDD3OZ8jKZxZ-39yI-5ZoyEnV6sLn7oPLC0pNJwKxtX-UZU3iqrTBDc1HVgvnK2gO2JmzoPz17fClMB7-ZiHFhxt8R0YXU51lkgXJS0gFcj8-eeoGJUslKqALkmFmtdXS_pTn-m4N2o79BIxZYfJwG67db_SbF191-8hkdVkukKtd42bAwXl-ENgqXBvk0j4jcwuhJB priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLaFt1a5UV-qbBZJPbZMGXa7GUg_qihb6FfGqh7ElvK7R_fSfZD7laBWFhYTdZhplJ8pvN5DcAB7ahdeCWEmV4TYSLljQxBjKjrpGeMuNzbs7pl_rkTCzOZ-cbUI1nYXLSfqa0zNP0mB32cSXykKbpyA0GbYzcPoKtRNWOvr01ny--LqY_K4nzXAkxnJChXD3QeW0VymT9DyHMPxMl7-2W5kXo-Bk8HdBjOe_lfQ4bod2Gx309yZsd-DQvVxeXaNuW4JXTzFNMXaLZbYnotOz6kgjJMOWvVEXlpuxGdvNdODv-_O3ohAzlEYjDqKMjvlbCM2bFzFHLuOWMxxBN9HhXgilpGsExHggIqqJsjLHRBaqkcrWL1Cr-AjbbZRteQclxLQuhNsxQgYgKI-YqCIPBC37PWOELYKO6tBu4w1MJi0ud97C50r2KNapYZxXr2wLeT31-9swZ_2x9mKwwtUys1_nB8uq7HrxASyoNt7JxlW9E5a2yygTBTV0H5itnC9gfbaiHobjSKYZFlIpItoB302scRGlnxLRhed23mSE0lLSAl73JJ0lwElSyUqoAueYMa6Kuv2kvfmSibpzbMCDFnh9Gt_kt1t9Vsfd_zV_Dkyp7doUz3j5sdlfX4Q0Cpc6-HUbGHduRDw0 priority: 102 providerName: Springer Nature |
Title | A silicon-on-insulator slab for topological valley transport |
URI | https://link.springer.com/article/10.1038/s41467-019-08881-z https://www.ncbi.nlm.nih.gov/pubmed/30787288 https://www.proquest.com/docview/2184193192 https://www.proquest.com/docview/2184526470 https://pubmed.ncbi.nlm.nih.gov/PMC6382878 https://doaj.org/article/707a3b79c2d942db8b8ae43a66e1d2cb |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3ti9MwGH-4FwS_iOdrvbtRwW9aTZqsSUGR3bh5DO4QdbBvIUnT82B0uvUOd3-9T9J2Mp2CUFpIkxKel-T3a5LnAXhhcpI5ZkgiNcsSbkuT5GXpkj6xuSgI1UXYm3N-kZ1N-Hjan-5Al-6oFeByK7Xz-aQmi9nrH99X79Hh3zVHxuWbJQ_uTvxxHCR0NLndhX2cmYTPaHDewv0wMrMcCQ1vz85sb7oxP4Uw_tuw559bKH9bRw3T0-g-3GtxZTxoDOEAdlz1AO40mSZXD-HtIF5ezVDrVYJX2IDu2XaMBmFixK1x3SRL8CqLb3x-lVVcd3HPH8FkdPpleJa0iRMSi3ykTopM8oJSw_uWGMoMo6x0pS4LfEpOpdA5Z8gUHMKtUuRam9I6IoW0mS2Jkewx7FXzyj2FmOEs51ymqSYcsRZy6dRxjbQGv6cNLyKgnbiUbaOK--QWMxVWt5lUjYgVilgFEavbCF6u23xrYmr8s_aJ18K6po-HHQrmi0vVupcSRGhmRG7TIudpYaSR2nGms8zRIrUmgqNOh6qzMeXZLeJXxLgRPF-_Rvfyaya6cvPrpk4fQaMgETxpVL7uCQ6PUqRSRiA2jGGjq5tvqquvIYQ3jnpIVbHlq85sfnXr76J49n_VD-FuGiw7xbHwCPbqxbU7RghVmx7siqnAuxx96MH-YDD-PMbnyenFx09YOsyGvfBzohf85ycE2h4V |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAgSDBE1h1Ym_sSCBUjmVLj6dW6pvrK7RSlW27KWj7o_iNjJ2jWo6-VYqUKHESZ_x5_E08ngF4ZUpaeGYokZoVhNvKkLKqPBlRWwpHM-2ib87WdjHZ5d_2RntL8KtfCxPcKnudGBW1m9rwj3w1mCJINpCQfDg-ISFrVJhd7VNotLDY8POfaLLN3q9_xvZ9nefjLzufJqTLKkAskvWGuEJyl2WGjyw1GTMsY5WvdOVwj6-QQpecIY32yEUqUWptKuupFNIWtqJGMnzuNbjOGY7kYWX6-OvwTydEW5ecd2tzKJOrMx41EQ0rhdDWzMj5wvgX0wT8i9v-7aL5xzxtHP7Gd-B2x1vTtRZod2HJ1_fgRpvJco5H0ZPUzu7Du7V0dniE-KoJbtHVPdj1KULPpMiQ06ZNyxDAkf4ImVzmadNHWH8Au1cizIewXE9r_xhShuOp94XONOXI6tBqzz3XaEDh87ThLoGsF5yyXfzykEbjSMV5dCZVK2yFwlZR2Oo8gTfDPcdt9I5LS38M7TGUDJG344np6XfVdWQlqNDMiNLmruS5M9JI7TnTReEzl1uTwErfmqpTBzN1Ad4EXg6XsSOH2Rld--lZW2aE9FTQBB61jT_UBBWxFLmUCYgFWCxUdfFKfXgQg4WjfkWjGO982wPoolr_F8WTy7_iBdyc7Gxtqs317Y2ncCuP-M5R467AcnN65p8hUWvM89g7Uti_6u74G4-HT7s |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwED6NTiC-IN4JDAgSfAKrTuzGjgRCG1u1MagmxKR9M7bjwKQpHUsG6n4av46z8zKVl32bVClV46TO-bnzc_H5DuC5yWnmmKFEapYRbktD8rJ0ZEJtLgqa6CLE5nycZdv7_P3B5GAFfvV7YXxYZW8Tg6Eu5ta_Ix97VwTJBhKScdmFRextTt8efye-gpRfae3LabQQ2XWLn-i-1W92NnGsX6TpdOvzu23SVRggFol7Q4pM8iJJDJ9YahJmWMJKV-qywCP-nRQ65wwptUNeUopca1NaR6WQNrMlNZLhfa_AqvBe0QhWN7Zme5-GNzw-97rkvNupQ5kc1zzYJer3DaHnmZCzpdkwFA34F9P9O2Dzj1XbMBlOb8KNjsXG6y3sbsGKq27D1bau5QK_hbhSW9-B1-txfXiEaKsIfkLgu_fyYwSiiZEvx01bpMFDJf7h67os4qbPt34X9i9FnPdgVM0r9wBihrOrc5lONOXI8dCHTx3X6E7h_bThRQRJLzhlu2zmvqjGkQqr6kyqVtgKha2CsNVZBC-Ha47bXB4Xtt7w4zG09Hm4ww_zk6-qU2slqNDMiNymRc7TwkgjteNMZ5lLitSaCNb60VSdcajVOZQjeDacRrX2azW6cvPTts0EyaqgEdxvB3_oCZplKVIpIxBLsFjq6vKZ6vBbSB2O1hZdZLzyVQ-g8279XxQPL36Kp3ANVVF92JntPoLraYB3iuZ3DUbNyal7jKytMU869Yjhy2Vr5G_UoFVN |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+silicon-on-insulator+slab+for+topological+valley+transport&rft.jtitle=Nature+communications&rft.au=He%2C+Xin-Tao&rft.au=Liang%2C+En-Tao&rft.au=Yuan%2C+Jia-Jun&rft.au=Qiu%2C+Hao-Yang&rft.date=2019-02-20&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-08881-z&rft.externalDocID=10_1038_s41467_019_08881_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |