An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning

Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviat...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 1193 - 13
Main Authors Chen, Chi-Long, Chen, Chi-Chung, Yu, Wei-Hsiang, Chen, Szu-Hua, Chang, Yu-Chan, Hsu, Tai-I, Hsiao, Michael, Yeh, Chao-Yuan, Chen, Cheng-Yu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 19.02.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning.
AbstractList Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning.
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning.
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning.
ArticleNumber 1193
Author Chen, Szu-Hua
Chang, Yu-Chan
Yeh, Chao-Yuan
Hsu, Tai-I
Hsiao, Michael
Chen, Chi-Long
Chen, Chi-Chung
Yu, Wei-Hsiang
Chen, Cheng-Yu
Author_xml – sequence: 1
  givenname: Chi-Long
  orcidid: 0000-0003-2875-1669
  surname: Chen
  fullname: Chen, Chi-Long
  organization: Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Department of Pathology, Taipei Medical University Hospital, Research Center for Artificial Intelligence in Medicine, Taipei Medical University
– sequence: 2
  givenname: Chi-Chung
  orcidid: 0000-0003-0267-7704
  surname: Chen
  fullname: Chen, Chi-Chung
  organization: aetherAI Co., Ltd
– sequence: 3
  givenname: Wei-Hsiang
  orcidid: 0000-0003-2907-8031
  surname: Yu
  fullname: Yu, Wei-Hsiang
  organization: aetherAI Co., Ltd
– sequence: 4
  givenname: Szu-Hua
  orcidid: 0000-0003-0756-6317
  surname: Chen
  fullname: Chen, Szu-Hua
  organization: aetherAI Co., Ltd
– sequence: 5
  givenname: Yu-Chan
  orcidid: 0000-0003-0474-9935
  surname: Chang
  fullname: Chang, Yu-Chan
  organization: Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University
– sequence: 6
  givenname: Tai-I
  surname: Hsu
  fullname: Hsu, Tai-I
  organization: Genomics Research Center, Academia Sinica
– sequence: 7
  givenname: Michael
  orcidid: 0000-0001-8529-9213
  surname: Hsiao
  fullname: Hsiao, Michael
  organization: Genomics Research Center, Academia Sinica
– sequence: 8
  givenname: Chao-Yuan
  orcidid: 0000-0002-1947-1596
  surname: Yeh
  fullname: Yeh, Chao-Yuan
  email: joeyeh@aetherai.com
  organization: aetherAI Co., Ltd
– sequence: 9
  givenname: Cheng-Yu
  surname: Chen
  fullname: Chen, Cheng-Yu
  email: sandychen@tmu.edu.tw
  organization: Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Department of Radiology, Taipei Medical University Hospital
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33608558$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9v3CAQxa0qVZOm-QI9VEi99OIWDAZ8qRRF_RMpUi_tGc3i8S4rFlzwtt1vX7xO0ySHcGEE7_0YDe9ldRJiwKp6zeh7Rrn-kAUTUtW0YXVzrA7PqrOGClYz1fCTe_VpdZHzlpbFO6aFeFGdci6pblt9Vv25DARCiBNMLoZ6SIjk9yZ6rLN3PZIpgQsurAmMY4pgN2SKZISpSOLaWfDEesjZDaWeCSQOxO-L3kKwmMh0GDGTfZ4RPeJIPEKaga-q5wP4jBe3-3n14_On71df65tvX66vLm9qK6mc6p5y0IopqTveUKYRQPStbFeaA6dDi20DvRpQdbJtOBNMD9ZKJWWx6VWj-Xl1vXD7CFszJreDdDARnDkexLQ2kCZnPRqhhoHJHlrVrIRApnsrtGwpyBWlvVCF9XFhjfvVDnuLoYzHP4A-vAluY9bxl1G6k1S0BfDuFpDizz3myexctug9BIz7bBrRsU5wzua-3z6SbuM-hTKqo0pwpVpRVG_ud3TXyr8PLoJmEdgUc0443EkYNXOQzBIkU4JkjkEyh2LSj0zWLQGZ4-CftvLFmss7YY3pf9tPuP4CUXHeNA
CitedBy_id crossref_primary_10_1109_TMI_2023_3241204
crossref_primary_10_3389_fonc_2024_1365364
crossref_primary_10_1016_j_compmedimag_2023_102233
crossref_primary_10_1002_jemt_24682
crossref_primary_10_1038_s44222_023_00096_8
crossref_primary_10_1016_j_cmpb_2024_108164
crossref_primary_10_1016_j_jpi_2023_100347
crossref_primary_10_1002_slct_202402903
crossref_primary_10_1177_22799036241284898
crossref_primary_10_1186_s12967_024_05394_2
crossref_primary_10_1002_2056_4538_70004
crossref_primary_10_1016_j_media_2025_103542
crossref_primary_10_1038_s41467_024_48171_x
crossref_primary_10_1038_s41467_024_48666_7
crossref_primary_10_1038_s42256_023_00670_0
crossref_primary_10_1016_j_patter_2023_100686
crossref_primary_10_3390_cancers15153981
crossref_primary_10_3390_diagnostics12061489
crossref_primary_10_1038_s41598_022_17606_0
crossref_primary_10_1109_ACCESS_2023_3336590
crossref_primary_10_3389_fmed_2024_1303982
crossref_primary_10_1016_j_modpat_2023_100350
crossref_primary_10_1016_j_xcrm_2024_101697
crossref_primary_10_1002_aisy_202100136
crossref_primary_10_1016_j_compbiomed_2023_107083
crossref_primary_10_1016_j_bspc_2025_107497
crossref_primary_10_3389_fmed_2024_1501875
crossref_primary_10_1200_CCI_22_00070
crossref_primary_10_1038_s41746_024_01106_8
crossref_primary_10_3390_diagnostics13193115
crossref_primary_10_1016_j_modpat_2023_100118
crossref_primary_10_1109_JBHI_2023_3237137
crossref_primary_10_1038_s41597_024_03851_7
crossref_primary_10_1007_s10278_024_01128_4
crossref_primary_10_1002_alr_23083
crossref_primary_10_1016_j_compbiomed_2024_108519
crossref_primary_10_1007_s10586_022_03805_x
crossref_primary_10_1016_j_ajpath_2022_08_006
crossref_primary_10_1016_j_bspc_2025_107608
crossref_primary_10_1016_j_imed_2022_03_004
crossref_primary_10_1016_j_pccm_2023_05_001
crossref_primary_10_3892_ijo_2023_5555
crossref_primary_10_3390_bioengineering9090423
crossref_primary_10_1016_j_isci_2023_108073
crossref_primary_10_1016_j_media_2024_103372
crossref_primary_10_1016_j_nanoen_2021_106783
crossref_primary_10_1007_s00428_025_04064_y
crossref_primary_10_1371_journal_pone_0303644
crossref_primary_10_1016_j_isci_2024_110511
crossref_primary_10_3390_app13116571
crossref_primary_10_1002_jbio_202300174
crossref_primary_10_4108_eetpht_10_5551
crossref_primary_10_1093_bib_bbac367
crossref_primary_10_1186_s12931_024_03021_8
crossref_primary_10_1080_10255842_2024_2374949
crossref_primary_10_1016_j_bspc_2023_104577
crossref_primary_10_1016_j_saa_2024_124030
crossref_primary_10_1002_aisy_202300885
crossref_primary_10_1038_s41746_024_01131_7
crossref_primary_10_3389_fonc_2023_1193746
crossref_primary_10_1007_s12072_022_10321_y
crossref_primary_10_3390_mi14040826
crossref_primary_10_47992_IJMTS_2581_6012_0206
crossref_primary_10_3390_electronics12020403
crossref_primary_10_1016_j_media_2022_102474
crossref_primary_10_3390_bioengineering10020138
crossref_primary_10_3389_fonc_2022_879308
crossref_primary_10_3390_diagnostics14222497
crossref_primary_10_1186_s12575_024_00234_5
crossref_primary_10_1007_s11548_022_02781_2
crossref_primary_10_1155_2024_3790617
crossref_primary_10_1038_s41746_023_00866_z
crossref_primary_10_1038_s41598_025_86615_6
crossref_primary_10_1021_acs_jproteome_2c00316
crossref_primary_10_3390_vetsci11060278
crossref_primary_10_3389_fmed_2024_1345611
crossref_primary_10_1007_s10278_024_01166_y
crossref_primary_10_1002_path_6163
crossref_primary_10_1016_j_bspc_2023_105327
crossref_primary_10_1016_j_engappai_2024_109972
crossref_primary_10_48084_etasr_8181
crossref_primary_10_3389_fonc_2021_735739
crossref_primary_10_1016_j_csbj_2023_11_011
crossref_primary_10_1016_j_media_2022_102464
crossref_primary_10_1016_j_modpat_2023_100302
crossref_primary_10_1088_1361_6560_ad4a02
crossref_primary_10_32604_cmc_2022_027896
crossref_primary_10_3389_fonc_2022_1022967
crossref_primary_10_1016_j_modpat_2022_100086
crossref_primary_10_3390_diagnostics14151605
crossref_primary_10_4108_eetpht_10_5549
Cites_doi 10.3390/cancers12020507
10.1073/pnas.1717139115
10.1038/s41591-019-0508-1
10.3322/caac.21262
10.1016/j.lungcan.2013.02.015
10.1109/TCYB.2019.2935141
10.1038/s41551-018-0195-0
10.1109/ACCESS.2020.2966647
10.1016/j.zemedi.2018.11.002
10.4103/jpi.jpi_73_17
10.1038/s41591-018-0177-5
10.5858/arpa.2018-0147-OA
10.1364/BOE.8.000679
10.1001/jama.2017.14585
10.2307/2531595
10.1109/TMI.2016.2529665
10.23915/distill.00021
10.1109/CVPR.2016.266
10.1038/s41598-018-37186-2
10.5281/zenodo.4434365
10.1038/s41598-017-17765-5
10.1109/CVPR.2016.319
10.1109/TPAMI.2020.3019563
10.1109/CVPR.2018.00960
10.1109/CVPR42600.2020.00431
10.1109/CVPR.2017.243
10.1109/ISBI.2009.5193250
10.1109/CVPR42600.2020.01061
10.5281/zenodo.4434361
10.1109/CVPR.2016.90
10.1109/ISBI.2019.8759152
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-21467-y
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection (ProQuest)
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

Publicly Available Content Database

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ) (Open Access)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_47ff16da572b44e18dc48650a6b00d47
PMC7896045
33608558
10_1038_s41467_021_21467_y
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Ministry of Sciences and Technology (grant number MOST108-3011-F-038-001), Taiwan
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-d03a871768932018eaa4d565b83a30f5e52ad7fe7965231418fcc67663a88b283
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:03 EDT 2025
Thu Aug 21 18:45:23 EDT 2025
Thu Jul 10 23:48:22 EDT 2025
Wed Aug 13 04:04:21 EDT 2025
Mon Jul 21 06:07:01 EDT 2025
Tue Jul 01 04:17:17 EDT 2025
Thu Apr 24 22:56:16 EDT 2025
Fri Feb 21 02:39:23 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-d03a871768932018eaa4d565b83a30f5e52ad7fe7965231418fcc67663a88b283
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0756-6317
0000-0003-0267-7704
0000-0003-2875-1669
0000-0003-2907-8031
0000-0002-1947-1596
0000-0001-8529-9213
0000-0003-0474-9935
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-21467-y
PMID 33608558
PQID 2491437754
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_47ff16da572b44e18dc48650a6b00d47
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7896045
proquest_miscellaneous_2491943318
proquest_journals_2491437754
pubmed_primary_33608558
crossref_primary_10_1038_s41467_021_21467_y
crossref_citationtrail_10_1038_s41467_021_21467_y
springer_journals_10_1038_s41467_021_21467_y
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-19
PublicationDateYYYYMMDD 2021-02-19
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-19
  day: 19
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References DeLong, DeLong, Clarke-Pearson (CR41) 1988; 44
Wang (CR24) 2020; 50
Yao, Gong (CR26) 2020; 8
Hoffer, Hubara, Soudry (CR37) 2017; 30
Gheisari, Catchpoole, Charlton, Kennedy (CR15) 2018; 9
Chen (CR7) 2017; 8
Coudray (CR14) 2018; 24
CR19
CR17
CR39
Ehteshami Bejnordi (CR16) 2017; 318
CR36
CR35
CR12
CR34
CR33
CR10
CR31
Chuang (CR11) 2020; 12
CR30
Campanella (CR23) 2019; 25
Krizhevsky, Sutskever, Hinton (CR5) 2012; 25
Araujo, Norris, Sim (CR38) 2019; 4
Torre (CR1) 2015; 65
CR4
Liu (CR13) 2019; 143
CR3
CR6
CR29
Ehteshami Bejnordi (CR18) 2017; 318
CR28
CR27
Wei (CR20) 2019; 9
CR25
Kim, Mitsudomi, Soo, Cho (CR2) 2013; 80
Poplin (CR9) 2018; 2
CR43
Lundervold, Lundervold (CR8) 2019; 29
CR42
CR40
Mobadersany (CR22) 2018; 115
Vahadane (CR32) 2016; 35
Wang (CR21) 2018; 8
E Hoffer (21467_CR37) 2017; 30
21467_CR43
21467_CR42
21467_CR40
21467_CR25
R Poplin (21467_CR9) 2018; 2
A Vahadane (21467_CR32) 2016; 35
B Ehteshami Bejnordi (21467_CR16) 2017; 318
21467_CR29
21467_CR28
21467_CR27
LA Torre (21467_CR1) 2015; 65
21467_CR19
N Coudray (21467_CR14) 2018; 24
JW Wei (21467_CR20) 2019; 9
W-Y Chuang (21467_CR11) 2020; 12
A Krizhevsky (21467_CR5) 2012; 25
21467_CR10
21467_CR31
21467_CR30
21467_CR4
X Wang (21467_CR24) 2020; 50
21467_CR36
B Ehteshami Bejnordi (21467_CR18) 2017; 318
21467_CR35
21467_CR6
H Chen (21467_CR7) 2017; 8
21467_CR12
21467_CR34
21467_CR33
21467_CR17
21467_CR39
P Mobadersany (21467_CR22) 2018; 115
21467_CR3
ER DeLong (21467_CR41) 1988; 44
S Wang (21467_CR21) 2018; 8
AS Lundervold (21467_CR8) 2019; 29
A Araujo (21467_CR38) 2019; 4
Q Yao (21467_CR26) 2020; 8
HS Kim (21467_CR2) 2013; 80
S Gheisari (21467_CR15) 2018; 9
G Campanella (21467_CR23) 2019; 25
Y Liu (21467_CR13) 2019; 143
References_xml – volume: 12
  start-page: 507
  year: 2020
  ident: CR11
  article-title: Successful identification of nasopharyngeal carcinoma in nasopharyngeal biopsies using deep learning
  publication-title: Cancers
  doi: 10.3390/cancers12020507
– volume: 30
  start-page: 1731
  year: 2017
  end-page: 1741
  ident: CR37
  article-title: Train longer, generalize better: closing the generalization gap in large batch training of neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: CR43
– volume: 8
  start-page: 1
  year: 2018
  end-page: 9
  ident: CR21
  article-title: Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome
  publication-title: Sci. Rep.
– ident: CR4
– volume: 9
  start-page: 1
  year: 2019
  end-page: 8
  ident: CR20
  article-title: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks
  publication-title: Sci. Rep.
– ident: CR39
– volume: 115
  start-page: E2970
  year: 2018
  end-page: E2979
  ident: CR22
  article-title: Predicting cancer outcomes from histology and genomics using convolutional networks
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717139115
– volume: 25
  start-page: 1301
  year: 2019
  end-page: 1309
  ident: CR23
  article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0508-1
– ident: CR12
– ident: CR30
– ident: CR10
– volume: 65
  start-page: 87
  year: 2015
  end-page: 108
  ident: CR1
  article-title: Global cancer statistics, 2012
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21262
– ident: CR33
– ident: CR35
– ident: CR6
– ident: CR29
– volume: 80
  start-page: 249
  year: 2013
  end-page: 255
  ident: CR2
  article-title: Personalized therapy on the horizon for squamous cell carcinoma of the lung
  publication-title: Lung Cancer Amst. Neth.
  doi: 10.1016/j.lungcan.2013.02.015
– volume: 50
  start-page: 3950
  year: 2020
  end-page: 3962
  ident: CR24
  article-title: Weakly supervised deep learning for whole slide lung cancer image analysis
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2935141
– ident: CR40
– ident: CR25
– ident: CR27
– ident: CR42
– volume: 2
  start-page: 158
  year: 2018
  end-page: 164
  ident: CR9
  article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– volume: 8
  start-page: 14413
  year: 2020
  end-page: 14423
  ident: CR26
  article-title: Saliency guided self-attention network for weakly and semi-supervised semantic segmentation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966647
– volume: 29
  start-page: 102
  year: 2019
  end-page: 127
  ident: CR8
  article-title: An overview of deep learning in medical imaging focusing on MRI
  publication-title: Z. Für. Med. Phys.
  doi: 10.1016/j.zemedi.2018.11.002
– ident: CR19
– volume: 9
  start-page: 17
  year: 2018
  ident: CR15
  article-title: Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_73_17
– volume: 24
  start-page: 1559
  year: 2018
  end-page: 1567
  ident: CR14
  article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– volume: 143
  start-page: 859
  year: 2019
  end-page: 868
  ident: CR13
  article-title: Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2018-0147-OA
– ident: CR3
– volume: 8
  start-page: 679
  year: 2017
  end-page: 694
  ident: CR7
  article-title: Low-dose CT via convolutional neural network
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000679
– ident: CR17
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: CR16
  article-title: Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer.
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– ident: CR31
– volume: 44
  start-page: 837
  year: 1988
  end-page: 845
  ident: CR41
  article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 35
  start-page: 1962
  year: 2016
  end-page: 1971
  ident: CR32
  article-title: Structure-preserving color normalization and sparse stain separation for histological images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2529665
– volume: 4
  start-page: e21
  year: 2019
  ident: CR38
  article-title: Computing receptive fields of convolutional neural networks
  publication-title: Distill
  doi: 10.23915/distill.00021
– ident: CR34
– volume: 318
  start-page: 2199
  year: 2017
  end-page: 2210
  ident: CR18
  article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– ident: CR36
– ident: CR28
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: CR5
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 65
  start-page: 87
  year: 2015
  ident: 21467_CR1
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21262
– ident: 21467_CR19
  doi: 10.1109/CVPR.2016.266
– volume: 9
  start-page: 1
  year: 2019
  ident: 21467_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-37186-2
– ident: 21467_CR39
– ident: 21467_CR43
  doi: 10.5281/zenodo.4434365
– ident: 21467_CR12
– ident: 21467_CR35
– ident: 21467_CR10
– volume: 8
  start-page: 1
  year: 2018
  ident: 21467_CR21
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-17765-5
– volume: 115
  start-page: E2970
  year: 2018
  ident: 21467_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1717139115
– volume: 9
  start-page: 17
  year: 2018
  ident: 21467_CR15
  publication-title: J. Pathol. Inform.
  doi: 10.4103/jpi.jpi_73_17
– volume: 8
  start-page: 679
  year: 2017
  ident: 21467_CR7
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.8.000679
– ident: 21467_CR30
  doi: 10.1109/CVPR.2016.319
– volume: 24
  start-page: 1559
  year: 2018
  ident: 21467_CR14
  publication-title: Nat. Med.
  doi: 10.1038/s41591-018-0177-5
– ident: 21467_CR29
  doi: 10.1109/TPAMI.2020.3019563
– ident: 21467_CR28
– volume: 25
  start-page: 1097
  year: 2012
  ident: 21467_CR5
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 143
  start-page: 859
  year: 2019
  ident: 21467_CR13
  publication-title: Arch. Pathol. Lab. Med.
  doi: 10.5858/arpa.2018-0147-OA
– ident: 21467_CR36
  doi: 10.1109/CVPR.2018.00960
– volume: 8
  start-page: 14413
  year: 2020
  ident: 21467_CR26
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2966647
– volume: 50
  start-page: 3950
  year: 2020
  ident: 21467_CR24
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2935141
– ident: 21467_CR27
  doi: 10.1109/CVPR42600.2020.00431
– volume: 29
  start-page: 102
  year: 2019
  ident: 21467_CR8
  publication-title: Z. Für. Med. Phys.
  doi: 10.1016/j.zemedi.2018.11.002
– ident: 21467_CR4
  doi: 10.1109/CVPR.2017.243
– ident: 21467_CR33
  doi: 10.1109/ISBI.2009.5193250
– ident: 21467_CR31
– ident: 21467_CR17
– volume: 80
  start-page: 249
  year: 2013
  ident: 21467_CR2
  publication-title: Lung Cancer Amst. Neth.
  doi: 10.1016/j.lungcan.2013.02.015
– volume: 318
  start-page: 2199
  year: 2017
  ident: 21467_CR16
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 4
  start-page: e21
  year: 2019
  ident: 21467_CR38
  publication-title: Distill
  doi: 10.23915/distill.00021
– ident: 21467_CR6
– volume: 30
  start-page: 1731
  year: 2017
  ident: 21467_CR37
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 21467_CR25
  doi: 10.1109/CVPR42600.2020.01061
– volume: 25
  start-page: 1301
  year: 2019
  ident: 21467_CR23
  publication-title: Nat. Med.
  doi: 10.1038/s41591-019-0508-1
– ident: 21467_CR40
– volume: 2
  start-page: 158
  year: 2018
  ident: 21467_CR9
  publication-title: Nat. Biomed. Eng.
  doi: 10.1038/s41551-018-0195-0
– ident: 21467_CR42
  doi: 10.5281/zenodo.4434361
– ident: 21467_CR3
  doi: 10.1109/CVPR.2016.90
– volume: 35
  start-page: 1962
  year: 2016
  ident: 21467_CR32
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2529665
– ident: 21467_CR34
  doi: 10.1109/ISBI.2019.8759152
– volume: 318
  start-page: 2199
  year: 2017
  ident: 21467_CR18
  publication-title: JAMA
  doi: 10.1001/jama.2017.14585
– volume: 44
  start-page: 837
  year: 1988
  ident: 21467_CR41
  publication-title: Biometrics
  doi: 10.2307/2531595
– volume: 12
  start-page: 507
  year: 2020
  ident: 21467_CR11
  publication-title: Cancers
  doi: 10.3390/cancers12020507
SSID ssj0000391844
Score 2.647371
Snippet Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based...
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1193
SubjectTerms 631/114/1305
631/114/1564
692/699/67/2321
Accelerators
Adenocarcinoma
Adenocarcinoma - pathology
Algorithms
Annotations
Carcinoma, Squamous Cell
Classification
Contouring
Deep Learning
Digital mapping
Humanities and Social Sciences
Humans
Image Processing, Computer-Assisted - methods
Localization
Lung cancer
Lung Neoplasms - classification
Lung Neoplasms - pathology
Machine learning
multidisciplinary
Neural networks
Neural Networks, Computer
Pathology
ROC Curve
Science
Science (multidisciplinary)
Spatial discrimination
Spatial resolution
Squamous cell carcinoma
Training
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSEi9VAX6SIHKlXprI5LYiZ0jIBBCak9F4mY5ftBKKEG7i8r-e2bsZMv2AZfeonhsOZ6x_U08_gbgI5fcVS0FhQUTciGEz0kyL6uGu1oVxsaQ_y9fm7MLcX5ZXz5I9UUxYYkeOA3cgZAhlI0ztaw6bKlUzgqFsMI0aDBOxHvkuOc9cKbiGsxbdF3EeEum4OpgLuKaQBEJVXxaru1EkbD_byjzz2DJ305M40Z0-hJejAiSHaaeb8Ez32_DZsopudyBu8Oemb4f0hF7Hmbes5-UBDdHROk8m3JCsIlNnC0GRnmJp1WQWQLUFEEUW2BDYNe4IjBL9jFj9M92zihc_oo572_YmHfi6hVcnJ58Oz7Lx_QKuUWvZZG7ght0l9DfQAxXlMobIxziu05xw4tQ-7oyTgYv2wa91VKUKljbSIQoRqkOYclr2OiH3r8Fhlthg2qqpLJSCOtVQM9GGawiOoUIKYNyGmptR-5x-txrHc_AudJJPRrVo6N69DKDT6s6N4l541HpI9LgSpJYs-MLtCU92pJ-ypYy2Jv0r8epPNfonyKmJKLADD6sinES0smK6f1wm2RaunumMniTzGXVE84bigXEErlmSGtdXS_pf3yPRN9SEXVOncHnyeR-devfQ_HufwzFLjyvaK5Q6pt2DzYWs1u_j_Br0b2PM-0eN0kq_g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLorwaKJWRuIHVJHZs7wkV1G2FBCcq9WY5fixIVbLsbgX775lxnFTLo7codqJx5uFvPJMZQt5wxX09w6SwaCMTQgSGM1lVS-4bXVqXUv4_f5HnF-LTZXOZD9zWOa1ytInJUPve4Rn5MbgJsLVjvbb3yx8Mu0ZhdDW30LhL7sHLJaZ06fnZdMaC1c-1EPlfmZLr47VIlgHzEup0td3Zj1LZ_n9hzb9TJv-Im6btaP6IPMw4kp4MjN8nd0L3mNwfOktun5BfJx21XdcPgXYWVyHQn9gKlwGu9IGOnSHoWFOcbnqK3YlHW0gdwmrMI0pvoH2kV2AXqEMpWVE8uV1TTJpfUB_CkubuE4un5GJ--vXjOctNFpgD32XDfMktOE3gdQCSKysdrBUeUF6rueVlbEJTW69iUDMJPmslKh2dkwqAitW6BXDyjOx1fRcOCIUNUcZY1Uo7JYQLOoJ_oy08IloNOKkg1fipjcsVyHG5VyZFwrk2A3sMsMck9phtQd5OzyyH-hu3zv6AHJxmYu3sdKNfLUxWRSMUECm9bVTdgmxW2juhAahaCSbICyDzcOS_yQq9NjfiV5DX0zCoIsZXbBf662HODP9A0wV5PojLRAnnEjMCYUTtCNIOqbsj3fdvqdy30lhApynIu1Hkbsj6_6d4cfsqXpIHNWoBtraZHZK9zeo6vAJ4tWmPkg79BoiPItQ
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lsFexrpuq7e2aNC31sy2ZEt5zEZLCawvXaFvQtZHNih2SVK2_Pe7kz9Gtq7QtxCdwsV3J_3OOv0O4JhL7ooJFYUFE1IhhE9JMs2LirtSZcbGkv-vl9XFtZjdlDdbUAx3YWLRfqS0jMv0UB32aSliSFNBQRE_rZ_BDlG1o2_vTKezq9n4ZoU4z5UQ_Q2ZjKsHJm_sQpGs_yGE-W-h5F-npXETOn8FL3v0yKadvruw5ZvX8LzrJ7neg1_Thpmmabvj9TQsvGc_qQFuimjSeTb0g2ADkzhbtYx6Eg8rILMEpql6KP4CawO7xdWAWfKNBaP3tUtGpfJz5ry_Y33PifkbuD4_-_blIu1bK6QWM5ZV6jJuMFXCXAPxW5Yrb4xwiO1qxQ3PQunLwjgZvJxUmKnmIlfB2koiPDFK1QhJ3sJ20zZ-Hxhug1UIeSGVlUJYrwJmNcrgFFErREcJ5MOj1rbnHae_e6vj-TdXujOPRvPoaB69TuBknHPXsW48Kv2ZLDhKEmN2_KJdzHXvQVpIVLJyppRFjR6ZK2eFQnhqKlx4nEA1Dwb76z6MlxpzU8STRBKYwMdxGAOQTlVM49v7TmZC985UAu86dxk14byiOkAckRuOtKHq5kjz43sk-ZaKaHPKBE4Hl_uj1v8fxfuniX-AFwVFBTW4mRzA9mpx7w8RZK3qoz6qfgNd4SJ3
  priority: 102
  providerName: Springer Nature
Title An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
URI https://link.springer.com/article/10.1038/s41467-021-21467-y
https://www.ncbi.nlm.nih.gov/pubmed/33608558
https://www.proquest.com/docview/2491437754
https://www.proquest.com/docview/2491943318
https://pubmed.ncbi.nlm.nih.gov/PMC7896045
https://doaj.org/article/47ff16da572b44e18dc48650a6b00d47
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiDeBpTISNwg0sRM7B4S61ZZVpV0hoFJvluNHQaqSJe2K7b9nxkmKCoUTl6aK7Whiz9jfxOP5CHnJBLNpgUFhXvuYc-5irBknac5sJofahJD_i8v8fMan82x-QHq6o64DV3tdO-STmjXLNzffN-_B4N-1R8bl2xUP5o7BBmn4tzkkx7AyCWQ0uOjgfpiZWQEODe_OzuxvurM-hTT--7DnnyGUv-2jhuVpcpfc6XAlHbWKcI8cuOo-udUyTW4ekJtRRXVV1e3Ge-wb5-gPpMaNAWdaR3umCNrnGKfrmiJbcT83UoMwG-OKwhNo7ekS5glqUGsail9yVxSD6BfUOndFOzaKxUMym5x9GZ_HHelCbMCXWcd2yDQ4UeCFALIbJtJpzS2gvlIyzYY-c1mqrfBOFDn4sAlPpDcmFwBctJQlgJVH5KiqK_eEUFggc--TVEgjODdOevB3pIYmvJSAmyKS9F2tTJeRHF93qcLOOJOqHR4Fw6PC8KhNRF5t21y1-Tj-WfsUR3BbE3Nphxt1s1CdaSouQMjc6kykJehqIq3hEoCrzmFKshzEPOnHX_X6qcBrBaSJ6QMj8mJbDKaJ-y26cvV1W6fAE2kyIo9bddlKwliOEYJQInYUaUfU3ZLq29eQ_ltITKiTReR1r3K_xPp7Vzz9H13xjNxO0VaQEKc4IUfr5to9B1C2LgfkUMwF_MrJhwE5Ho2mn6dwPT27_PgJ7o7z8SB87hgEi_wJoEU53A
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcJFDASnCBqEjux94BQeSxb-ji1Um_GsZ2lUpUsu1uV_VP8RmacZKvl0Vtvq7UTOZ7XN57xDMArLrnLBpQUVpkqFkL4mGbGaVZwl6vE2JDyf3BYjI7F15P8ZA1-9XdhKK2y14lBUbvG0hn5NroJaNqpXtv7yY-YukZRdLVvodGyxZ5fXKDLNnu3-wnp-zrLhp-PPo7irqtAbBGsz2OXcINeAsJshC5JqrwxwiGsKRU3PKlyn2fGycrLQYFOWipSVVlbSLTMRqkSrTG-9wbcFBwtOd1MH35ZnulQtXUlRHc3J-FqeyaCJqI8iCz8WqzYv9Am4F_Y9u8UzT_itMH8De_CnQ63sp2W0e7Bmq_vw622k-XiAfzcqZmp66YN7MfV1Ht2Qa13Y8SxzrO-EwXra5izecOoG3Kve5klGE95S-ENrKnYGeohZokrp4xOimeMkvTHzHk_YV23i_FDOL6W7X8E63VT-8fA0AAXVZVmUlkphPWqQn9KGXxElApxWQRpv9XadhXP6XPPdIi8c6Vb8mgkjw7k0YsI3iyfmbT1Pq6c_YEouJxJtbrDH810rDvR10LiIgtncpmVKAupclYoBMamQJXnBC5zq6e_7hTITF-yewQvl8Mo-hTPMbVvzts5A7rxpiLYbNlluRLOC8pAxBG5wkgrS10dqU-_h_LiUlHBnjyCtz3LXS7r_1vx5OqveAG3R0cH-3p_93DvKWxkJBHUVmewBevz6bl_htBuXj4P8sTg23UL8G8fkV3A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAosEJ7AS22vv5oBQSxu1FKIKUam3Zb2PgFTZIUlV8tf4dcysH1V49Nab5V1ba8_rm53ZGYCXqUhtMqKkMK99xDl3Ec2M4iRPbSaH2oSU_0-TfP-YfzjJTjbgV3sWhtIqW50YFLWtDO2RD9BNQNNO9doGvkmLONodv5v9iKiDFEVa23YaNYscutU5um-Ltwe7SOtXSTLe-_J-P2o6DEQGgfsyssNUo8eAkBthzDCWTmtuEeIUMtXp0GcuS7QV3olRjg5bzGPpjckFWmktZYGWGd97DTYFeUU92NzZmxx97nZ4qPa65Lw5qTNM5WDBg16irIgkXK3WrGFoGvAvpPt3wuYfUdtgDMe34VaDYtl2zXZ3YMOVd-F63ddydQ9-bpdMl2VVh_kjP3eOnVMj3ghRrXWs7UvB2ormbFkx6o3camJmCNRTFlN4A6s8O0WtxAzx6JzRvvGCUcr-lFnnZqzpfTG9D8dXQoAH0Cur0j0ChuY49z5OhDSCc-OkR-9KanyEFxJRWh_i9lcr09Q_p889VSEOn0pVk0cheVQgj1r14XX3zKyu_nHp7B2iYDeTKneHG9V8qhpFoLjAReZWZyIpUDJiaQ2XCJN1jgrQclzmVkt_1aiThbpg_j686IZREVB0R5euOqvnjOj8m-zDw5pdupWkaU75iDgi1hhpbanrI-X3b6HYuJBUvifrw5uW5S6W9f9f8fjyr3gON1B41ceDyeETuJmQQFCPndEW9JbzM_cUcd6yeNYIFIOvVy3DvwFxKmNS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+annotation-free+whole-slide+training+approach+to+pathological+classification+of+lung+cancer+types+using+deep+learning&rft.jtitle=Nature+communications&rft.au=Chi-Long+Chen&rft.au=Chi-Chung+Chen&rft.au=Wei-Hsiang+Yu&rft.au=Szu-Hua+Chen&rft.date=2021-02-19&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-021-21467-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47ff16da572b44e18dc48650a6b00d47
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon