An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviat...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 1193 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
19.02.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.
Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning. |
---|---|
AbstractList | Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based methods, which often require detailed annotation of image patches. This typically involves laborious free-hand contouring on WSIs. To alleviate the burden of such contouring and obtain benefits from scaling up training with numerous WSIs, we develop a method for training neural networks on entire WSIs using only slide-level diagnoses. Our method leverages the unified memory mechanism to overcome the memory constraint of compute accelerators. Experiments conducted on a data set of 9662 lung cancer WSIs reveal that the proposed method achieves areas under the receiver operating characteristic curve of 0.9594 and 0.9414 for adenocarcinoma and squamous cell carcinoma classification on the testing set, respectively. Furthermore, the method demonstrates higher classification performance than multiple-instance learning as well as strong localization results for small lesions through class activation mapping.Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning. Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt patch-based methods and laborious free-hand contouring. Here, the authors develop a whole-slide training method to classify types of lung cancers using slide-level diagnoses with deep learning. |
ArticleNumber | 1193 |
Author | Chen, Szu-Hua Chang, Yu-Chan Yeh, Chao-Yuan Hsu, Tai-I Hsiao, Michael Chen, Chi-Long Chen, Chi-Chung Yu, Wei-Hsiang Chen, Cheng-Yu |
Author_xml | – sequence: 1 givenname: Chi-Long orcidid: 0000-0003-2875-1669 surname: Chen fullname: Chen, Chi-Long organization: Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Department of Pathology, Taipei Medical University Hospital, Research Center for Artificial Intelligence in Medicine, Taipei Medical University – sequence: 2 givenname: Chi-Chung orcidid: 0000-0003-0267-7704 surname: Chen fullname: Chen, Chi-Chung organization: aetherAI Co., Ltd – sequence: 3 givenname: Wei-Hsiang orcidid: 0000-0003-2907-8031 surname: Yu fullname: Yu, Wei-Hsiang organization: aetherAI Co., Ltd – sequence: 4 givenname: Szu-Hua orcidid: 0000-0003-0756-6317 surname: Chen fullname: Chen, Szu-Hua organization: aetherAI Co., Ltd – sequence: 5 givenname: Yu-Chan orcidid: 0000-0003-0474-9935 surname: Chang fullname: Chang, Yu-Chan organization: Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University – sequence: 6 givenname: Tai-I surname: Hsu fullname: Hsu, Tai-I organization: Genomics Research Center, Academia Sinica – sequence: 7 givenname: Michael orcidid: 0000-0001-8529-9213 surname: Hsiao fullname: Hsiao, Michael organization: Genomics Research Center, Academia Sinica – sequence: 8 givenname: Chao-Yuan orcidid: 0000-0002-1947-1596 surname: Yeh fullname: Yeh, Chao-Yuan email: joeyeh@aetherai.com organization: aetherAI Co., Ltd – sequence: 9 givenname: Cheng-Yu surname: Chen fullname: Chen, Cheng-Yu email: sandychen@tmu.edu.tw organization: Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Department of Radiology, Taipei Medical University Hospital |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33608558$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk9v3CAQxa0qVZOm-QI9VEi99OIWDAZ8qRRF_RMpUi_tGc3i8S4rFlzwtt1vX7xO0ySHcGEE7_0YDe9ldRJiwKp6zeh7Rrn-kAUTUtW0YXVzrA7PqrOGClYz1fCTe_VpdZHzlpbFO6aFeFGdci6pblt9Vv25DARCiBNMLoZ6SIjk9yZ6rLN3PZIpgQsurAmMY4pgN2SKZISpSOLaWfDEesjZDaWeCSQOxO-L3kKwmMh0GDGTfZ4RPeJIPEKaga-q5wP4jBe3-3n14_On71df65tvX66vLm9qK6mc6p5y0IopqTveUKYRQPStbFeaA6dDi20DvRpQdbJtOBNMD9ZKJWWx6VWj-Xl1vXD7CFszJreDdDARnDkexLQ2kCZnPRqhhoHJHlrVrIRApnsrtGwpyBWlvVCF9XFhjfvVDnuLoYzHP4A-vAluY9bxl1G6k1S0BfDuFpDizz3myexctug9BIz7bBrRsU5wzua-3z6SbuM-hTKqo0pwpVpRVG_ud3TXyr8PLoJmEdgUc0443EkYNXOQzBIkU4JkjkEyh2LSj0zWLQGZ4-CftvLFmss7YY3pf9tPuP4CUXHeNA |
CitedBy_id | crossref_primary_10_1109_TMI_2023_3241204 crossref_primary_10_3389_fonc_2024_1365364 crossref_primary_10_1016_j_compmedimag_2023_102233 crossref_primary_10_1002_jemt_24682 crossref_primary_10_1038_s44222_023_00096_8 crossref_primary_10_1016_j_cmpb_2024_108164 crossref_primary_10_1016_j_jpi_2023_100347 crossref_primary_10_1002_slct_202402903 crossref_primary_10_1177_22799036241284898 crossref_primary_10_1186_s12967_024_05394_2 crossref_primary_10_1002_2056_4538_70004 crossref_primary_10_1016_j_media_2025_103542 crossref_primary_10_1038_s41467_024_48171_x crossref_primary_10_1038_s41467_024_48666_7 crossref_primary_10_1038_s42256_023_00670_0 crossref_primary_10_1016_j_patter_2023_100686 crossref_primary_10_3390_cancers15153981 crossref_primary_10_3390_diagnostics12061489 crossref_primary_10_1038_s41598_022_17606_0 crossref_primary_10_1109_ACCESS_2023_3336590 crossref_primary_10_3389_fmed_2024_1303982 crossref_primary_10_1016_j_modpat_2023_100350 crossref_primary_10_1016_j_xcrm_2024_101697 crossref_primary_10_1002_aisy_202100136 crossref_primary_10_1016_j_compbiomed_2023_107083 crossref_primary_10_1016_j_bspc_2025_107497 crossref_primary_10_3389_fmed_2024_1501875 crossref_primary_10_1200_CCI_22_00070 crossref_primary_10_1038_s41746_024_01106_8 crossref_primary_10_3390_diagnostics13193115 crossref_primary_10_1016_j_modpat_2023_100118 crossref_primary_10_1109_JBHI_2023_3237137 crossref_primary_10_1038_s41597_024_03851_7 crossref_primary_10_1007_s10278_024_01128_4 crossref_primary_10_1002_alr_23083 crossref_primary_10_1016_j_compbiomed_2024_108519 crossref_primary_10_1007_s10586_022_03805_x crossref_primary_10_1016_j_ajpath_2022_08_006 crossref_primary_10_1016_j_bspc_2025_107608 crossref_primary_10_1016_j_imed_2022_03_004 crossref_primary_10_1016_j_pccm_2023_05_001 crossref_primary_10_3892_ijo_2023_5555 crossref_primary_10_3390_bioengineering9090423 crossref_primary_10_1016_j_isci_2023_108073 crossref_primary_10_1016_j_media_2024_103372 crossref_primary_10_1016_j_nanoen_2021_106783 crossref_primary_10_1007_s00428_025_04064_y crossref_primary_10_1371_journal_pone_0303644 crossref_primary_10_1016_j_isci_2024_110511 crossref_primary_10_3390_app13116571 crossref_primary_10_1002_jbio_202300174 crossref_primary_10_4108_eetpht_10_5551 crossref_primary_10_1093_bib_bbac367 crossref_primary_10_1186_s12931_024_03021_8 crossref_primary_10_1080_10255842_2024_2374949 crossref_primary_10_1016_j_bspc_2023_104577 crossref_primary_10_1016_j_saa_2024_124030 crossref_primary_10_1002_aisy_202300885 crossref_primary_10_1038_s41746_024_01131_7 crossref_primary_10_3389_fonc_2023_1193746 crossref_primary_10_1007_s12072_022_10321_y crossref_primary_10_3390_mi14040826 crossref_primary_10_47992_IJMTS_2581_6012_0206 crossref_primary_10_3390_electronics12020403 crossref_primary_10_1016_j_media_2022_102474 crossref_primary_10_3390_bioengineering10020138 crossref_primary_10_3389_fonc_2022_879308 crossref_primary_10_3390_diagnostics14222497 crossref_primary_10_1186_s12575_024_00234_5 crossref_primary_10_1007_s11548_022_02781_2 crossref_primary_10_1155_2024_3790617 crossref_primary_10_1038_s41746_023_00866_z crossref_primary_10_1038_s41598_025_86615_6 crossref_primary_10_1021_acs_jproteome_2c00316 crossref_primary_10_3390_vetsci11060278 crossref_primary_10_3389_fmed_2024_1345611 crossref_primary_10_1007_s10278_024_01166_y crossref_primary_10_1002_path_6163 crossref_primary_10_1016_j_bspc_2023_105327 crossref_primary_10_1016_j_engappai_2024_109972 crossref_primary_10_48084_etasr_8181 crossref_primary_10_3389_fonc_2021_735739 crossref_primary_10_1016_j_csbj_2023_11_011 crossref_primary_10_1016_j_media_2022_102464 crossref_primary_10_1016_j_modpat_2023_100302 crossref_primary_10_1088_1361_6560_ad4a02 crossref_primary_10_32604_cmc_2022_027896 crossref_primary_10_3389_fonc_2022_1022967 crossref_primary_10_1016_j_modpat_2022_100086 crossref_primary_10_3390_diagnostics14151605 crossref_primary_10_4108_eetpht_10_5549 |
Cites_doi | 10.3390/cancers12020507 10.1073/pnas.1717139115 10.1038/s41591-019-0508-1 10.3322/caac.21262 10.1016/j.lungcan.2013.02.015 10.1109/TCYB.2019.2935141 10.1038/s41551-018-0195-0 10.1109/ACCESS.2020.2966647 10.1016/j.zemedi.2018.11.002 10.4103/jpi.jpi_73_17 10.1038/s41591-018-0177-5 10.5858/arpa.2018-0147-OA 10.1364/BOE.8.000679 10.1001/jama.2017.14585 10.2307/2531595 10.1109/TMI.2016.2529665 10.23915/distill.00021 10.1109/CVPR.2016.266 10.1038/s41598-018-37186-2 10.5281/zenodo.4434365 10.1038/s41598-017-17765-5 10.1109/CVPR.2016.319 10.1109/TPAMI.2020.3019563 10.1109/CVPR.2018.00960 10.1109/CVPR42600.2020.00431 10.1109/CVPR.2017.243 10.1109/ISBI.2009.5193250 10.1109/CVPR42600.2020.01061 10.5281/zenodo.4434361 10.1109/CVPR.2016.90 10.1109/ISBI.2019.8759152 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-21467-y |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection (ProQuest) Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) (Open Access) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_47ff16da572b44e18dc48650a6b00d47 PMC7896045 33608558 10_1038_s41467_021_21467_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: Ministry of Sciences and Technology (grant number MOST108-3011-F-038-001), Taiwan – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-d03a871768932018eaa4d565b83a30f5e52ad7fe7965231418fcc67663a88b283 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:03 EDT 2025 Thu Aug 21 18:45:23 EDT 2025 Thu Jul 10 23:48:22 EDT 2025 Wed Aug 13 04:04:21 EDT 2025 Mon Jul 21 06:07:01 EDT 2025 Tue Jul 01 04:17:17 EDT 2025 Thu Apr 24 22:56:16 EDT 2025 Fri Feb 21 02:39:23 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-d03a871768932018eaa4d565b83a30f5e52ad7fe7965231418fcc67663a88b283 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0756-6317 0000-0003-0267-7704 0000-0003-2875-1669 0000-0003-2907-8031 0000-0002-1947-1596 0000-0001-8529-9213 0000-0003-0474-9935 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-21467-y |
PMID | 33608558 |
PQID | 2491437754 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47ff16da572b44e18dc48650a6b00d47 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7896045 proquest_miscellaneous_2491943318 proquest_journals_2491437754 pubmed_primary_33608558 crossref_primary_10_1038_s41467_021_21467_y crossref_citationtrail_10_1038_s41467_021_21467_y springer_journals_10_1038_s41467_021_21467_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-19 |
PublicationDateYYYYMMDD | 2021-02-19 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-19 day: 19 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | DeLong, DeLong, Clarke-Pearson (CR41) 1988; 44 Wang (CR24) 2020; 50 Yao, Gong (CR26) 2020; 8 Hoffer, Hubara, Soudry (CR37) 2017; 30 Gheisari, Catchpoole, Charlton, Kennedy (CR15) 2018; 9 Chen (CR7) 2017; 8 Coudray (CR14) 2018; 24 CR19 CR17 CR39 Ehteshami Bejnordi (CR16) 2017; 318 CR36 CR35 CR12 CR34 CR33 CR10 CR31 Chuang (CR11) 2020; 12 CR30 Campanella (CR23) 2019; 25 Krizhevsky, Sutskever, Hinton (CR5) 2012; 25 Araujo, Norris, Sim (CR38) 2019; 4 Torre (CR1) 2015; 65 CR4 Liu (CR13) 2019; 143 CR3 CR6 CR29 Ehteshami Bejnordi (CR18) 2017; 318 CR28 CR27 Wei (CR20) 2019; 9 CR25 Kim, Mitsudomi, Soo, Cho (CR2) 2013; 80 Poplin (CR9) 2018; 2 CR43 Lundervold, Lundervold (CR8) 2019; 29 CR42 CR40 Mobadersany (CR22) 2018; 115 Vahadane (CR32) 2016; 35 Wang (CR21) 2018; 8 E Hoffer (21467_CR37) 2017; 30 21467_CR43 21467_CR42 21467_CR40 21467_CR25 R Poplin (21467_CR9) 2018; 2 A Vahadane (21467_CR32) 2016; 35 B Ehteshami Bejnordi (21467_CR16) 2017; 318 21467_CR29 21467_CR28 21467_CR27 LA Torre (21467_CR1) 2015; 65 21467_CR19 N Coudray (21467_CR14) 2018; 24 JW Wei (21467_CR20) 2019; 9 W-Y Chuang (21467_CR11) 2020; 12 A Krizhevsky (21467_CR5) 2012; 25 21467_CR10 21467_CR31 21467_CR30 21467_CR4 X Wang (21467_CR24) 2020; 50 21467_CR36 B Ehteshami Bejnordi (21467_CR18) 2017; 318 21467_CR35 21467_CR6 H Chen (21467_CR7) 2017; 8 21467_CR12 21467_CR34 21467_CR33 21467_CR17 21467_CR39 P Mobadersany (21467_CR22) 2018; 115 21467_CR3 ER DeLong (21467_CR41) 1988; 44 S Wang (21467_CR21) 2018; 8 AS Lundervold (21467_CR8) 2019; 29 A Araujo (21467_CR38) 2019; 4 Q Yao (21467_CR26) 2020; 8 HS Kim (21467_CR2) 2013; 80 S Gheisari (21467_CR15) 2018; 9 G Campanella (21467_CR23) 2019; 25 Y Liu (21467_CR13) 2019; 143 |
References_xml | – volume: 12 start-page: 507 year: 2020 ident: CR11 article-title: Successful identification of nasopharyngeal carcinoma in nasopharyngeal biopsies using deep learning publication-title: Cancers doi: 10.3390/cancers12020507 – volume: 30 start-page: 1731 year: 2017 end-page: 1741 ident: CR37 article-title: Train longer, generalize better: closing the generalization gap in large batch training of neural networks publication-title: Adv. Neural Inf. Process. Syst. – ident: CR43 – volume: 8 start-page: 1 year: 2018 end-page: 9 ident: CR21 article-title: Comprehensive analysis of lung cancer pathology images to discover tumor shape and boundary features that predict survival outcome publication-title: Sci. Rep. – ident: CR4 – volume: 9 start-page: 1 year: 2019 end-page: 8 ident: CR20 article-title: Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks publication-title: Sci. Rep. – ident: CR39 – volume: 115 start-page: E2970 year: 2018 end-page: E2979 ident: CR22 article-title: Predicting cancer outcomes from histology and genomics using convolutional networks publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717139115 – volume: 25 start-page: 1301 year: 2019 end-page: 1309 ident: CR23 article-title: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images publication-title: Nat. Med. doi: 10.1038/s41591-019-0508-1 – ident: CR12 – ident: CR30 – ident: CR10 – volume: 65 start-page: 87 year: 2015 end-page: 108 ident: CR1 article-title: Global cancer statistics, 2012 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21262 – ident: CR33 – ident: CR35 – ident: CR6 – ident: CR29 – volume: 80 start-page: 249 year: 2013 end-page: 255 ident: CR2 article-title: Personalized therapy on the horizon for squamous cell carcinoma of the lung publication-title: Lung Cancer Amst. Neth. doi: 10.1016/j.lungcan.2013.02.015 – volume: 50 start-page: 3950 year: 2020 end-page: 3962 ident: CR24 article-title: Weakly supervised deep learning for whole slide lung cancer image analysis publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2935141 – ident: CR40 – ident: CR25 – ident: CR27 – ident: CR42 – volume: 2 start-page: 158 year: 2018 end-page: 164 ident: CR9 article-title: Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – volume: 8 start-page: 14413 year: 2020 end-page: 14423 ident: CR26 article-title: Saliency guided self-attention network for weakly and semi-supervised semantic segmentation publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966647 – volume: 29 start-page: 102 year: 2019 end-page: 127 ident: CR8 article-title: An overview of deep learning in medical imaging focusing on MRI publication-title: Z. Für. Med. Phys. doi: 10.1016/j.zemedi.2018.11.002 – ident: CR19 – volume: 9 start-page: 17 year: 2018 ident: CR15 article-title: Convolutional deep belief network with feature encoding for classification of neuroblastoma histological images publication-title: J. Pathol. Inform. doi: 10.4103/jpi.jpi_73_17 – volume: 24 start-page: 1559 year: 2018 end-page: 1567 ident: CR14 article-title: Classification and mutation prediction from non–small cell lung cancer histopathology images using deep learning publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – volume: 143 start-page: 859 year: 2019 end-page: 868 ident: CR13 article-title: Artificial intelligence–based breast cancer nodal metastasis detection: insights into the black box for pathologists publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2018-0147-OA – ident: CR3 – volume: 8 start-page: 679 year: 2017 end-page: 694 ident: CR7 article-title: Low-dose CT via convolutional neural network publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.000679 – ident: CR17 – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: CR16 article-title: Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer. publication-title: JAMA doi: 10.1001/jama.2017.14585 – ident: CR31 – volume: 44 start-page: 837 year: 1988 end-page: 845 ident: CR41 article-title: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach publication-title: Biometrics doi: 10.2307/2531595 – volume: 35 start-page: 1962 year: 2016 end-page: 1971 ident: CR32 article-title: Structure-preserving color normalization and sparse stain separation for histological images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2529665 – volume: 4 start-page: e21 year: 2019 ident: CR38 article-title: Computing receptive fields of convolutional neural networks publication-title: Distill doi: 10.23915/distill.00021 – ident: CR34 – volume: 318 start-page: 2199 year: 2017 end-page: 2210 ident: CR18 article-title: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer publication-title: JAMA doi: 10.1001/jama.2017.14585 – ident: CR36 – ident: CR28 – volume: 25 start-page: 1097 year: 2012 end-page: 1105 ident: CR5 article-title: ImageNet classification with deep convolutional neural networks publication-title: Adv. Neural Inf. Process. Syst. – volume: 65 start-page: 87 year: 2015 ident: 21467_CR1 publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21262 – ident: 21467_CR19 doi: 10.1109/CVPR.2016.266 – volume: 9 start-page: 1 year: 2019 ident: 21467_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-018-37186-2 – ident: 21467_CR39 – ident: 21467_CR43 doi: 10.5281/zenodo.4434365 – ident: 21467_CR12 – ident: 21467_CR35 – ident: 21467_CR10 – volume: 8 start-page: 1 year: 2018 ident: 21467_CR21 publication-title: Sci. Rep. doi: 10.1038/s41598-017-17765-5 – volume: 115 start-page: E2970 year: 2018 ident: 21467_CR22 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1717139115 – volume: 9 start-page: 17 year: 2018 ident: 21467_CR15 publication-title: J. Pathol. Inform. doi: 10.4103/jpi.jpi_73_17 – volume: 8 start-page: 679 year: 2017 ident: 21467_CR7 publication-title: Biomed. Opt. Express doi: 10.1364/BOE.8.000679 – ident: 21467_CR30 doi: 10.1109/CVPR.2016.319 – volume: 24 start-page: 1559 year: 2018 ident: 21467_CR14 publication-title: Nat. Med. doi: 10.1038/s41591-018-0177-5 – ident: 21467_CR29 doi: 10.1109/TPAMI.2020.3019563 – ident: 21467_CR28 – volume: 25 start-page: 1097 year: 2012 ident: 21467_CR5 publication-title: Adv. Neural Inf. Process. Syst. – volume: 143 start-page: 859 year: 2019 ident: 21467_CR13 publication-title: Arch. Pathol. Lab. Med. doi: 10.5858/arpa.2018-0147-OA – ident: 21467_CR36 doi: 10.1109/CVPR.2018.00960 – volume: 8 start-page: 14413 year: 2020 ident: 21467_CR26 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2966647 – volume: 50 start-page: 3950 year: 2020 ident: 21467_CR24 publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2935141 – ident: 21467_CR27 doi: 10.1109/CVPR42600.2020.00431 – volume: 29 start-page: 102 year: 2019 ident: 21467_CR8 publication-title: Z. Für. Med. Phys. doi: 10.1016/j.zemedi.2018.11.002 – ident: 21467_CR4 doi: 10.1109/CVPR.2017.243 – ident: 21467_CR33 doi: 10.1109/ISBI.2009.5193250 – ident: 21467_CR31 – ident: 21467_CR17 – volume: 80 start-page: 249 year: 2013 ident: 21467_CR2 publication-title: Lung Cancer Amst. Neth. doi: 10.1016/j.lungcan.2013.02.015 – volume: 318 start-page: 2199 year: 2017 ident: 21467_CR16 publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 4 start-page: e21 year: 2019 ident: 21467_CR38 publication-title: Distill doi: 10.23915/distill.00021 – ident: 21467_CR6 – volume: 30 start-page: 1731 year: 2017 ident: 21467_CR37 publication-title: Adv. Neural Inf. Process. Syst. – ident: 21467_CR25 doi: 10.1109/CVPR42600.2020.01061 – volume: 25 start-page: 1301 year: 2019 ident: 21467_CR23 publication-title: Nat. Med. doi: 10.1038/s41591-019-0508-1 – ident: 21467_CR40 – volume: 2 start-page: 158 year: 2018 ident: 21467_CR9 publication-title: Nat. Biomed. Eng. doi: 10.1038/s41551-018-0195-0 – ident: 21467_CR42 doi: 10.5281/zenodo.4434361 – ident: 21467_CR3 doi: 10.1109/CVPR.2016.90 – volume: 35 start-page: 1962 year: 2016 ident: 21467_CR32 publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2529665 – ident: 21467_CR34 doi: 10.1109/ISBI.2019.8759152 – volume: 318 start-page: 2199 year: 2017 ident: 21467_CR18 publication-title: JAMA doi: 10.1001/jama.2017.14585 – volume: 44 start-page: 837 year: 1988 ident: 21467_CR41 publication-title: Biometrics doi: 10.2307/2531595 – volume: 12 start-page: 507 year: 2020 ident: 21467_CR11 publication-title: Cancers doi: 10.3390/cancers12020507 |
SSID | ssj0000391844 |
Score | 2.647371 |
Snippet | Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole-slide images (WSIs). Most studies have employed patch-based... Deep learning for digital pathology is hindered by the extremely high spatial resolution of whole slide images (WSIs), which requires researchers to adopt... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1193 |
SubjectTerms | 631/114/1305 631/114/1564 692/699/67/2321 Accelerators Adenocarcinoma Adenocarcinoma - pathology Algorithms Annotations Carcinoma, Squamous Cell Classification Contouring Deep Learning Digital mapping Humanities and Social Sciences Humans Image Processing, Computer-Assisted - methods Localization Lung cancer Lung Neoplasms - classification Lung Neoplasms - pathology Machine learning multidisciplinary Neural networks Neural Networks, Computer Pathology ROC Curve Science Science (multidisciplinary) Spatial discrimination Spatial resolution Squamous cell carcinoma Training |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB5VSEi9VAX6SIHKlXprI5LYiZ0jIBBCak9F4mY5ftBKKEG7i8r-e2bsZMv2AZfeonhsOZ6x_U08_gbgI5fcVS0FhQUTciGEz0kyL6uGu1oVxsaQ_y9fm7MLcX5ZXz5I9UUxYYkeOA3cgZAhlI0ztaw6bKlUzgqFsMI0aDBOxHvkuOc9cKbiGsxbdF3EeEum4OpgLuKaQBEJVXxaru1EkbD_byjzz2DJ305M40Z0-hJejAiSHaaeb8Ez32_DZsopudyBu8Oemb4f0hF7Hmbes5-UBDdHROk8m3JCsIlNnC0GRnmJp1WQWQLUFEEUW2BDYNe4IjBL9jFj9M92zihc_oo572_YmHfi6hVcnJ58Oz7Lx_QKuUWvZZG7ght0l9DfQAxXlMobIxziu05xw4tQ-7oyTgYv2wa91VKUKljbSIQoRqkOYclr2OiH3r8Fhlthg2qqpLJSCOtVQM9GGawiOoUIKYNyGmptR-5x-txrHc_AudJJPRrVo6N69DKDT6s6N4l541HpI9LgSpJYs-MLtCU92pJ-ypYy2Jv0r8epPNfonyKmJKLADD6sinES0smK6f1wm2RaunumMniTzGXVE84bigXEErlmSGtdXS_pf3yPRN9SEXVOncHnyeR-devfQ_HufwzFLjyvaK5Q6pt2DzYWs1u_j_Br0b2PM-0eN0kq_g priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLorwaKJWRuIHVJHZs7wkV1G2FBCcq9WY5fixIVbLsbgX775lxnFTLo7codqJx5uFvPJMZQt5wxX09w6SwaCMTQgSGM1lVS-4bXVqXUv4_f5HnF-LTZXOZD9zWOa1ytInJUPve4Rn5MbgJsLVjvbb3yx8Mu0ZhdDW30LhL7sHLJaZ06fnZdMaC1c-1EPlfmZLr47VIlgHzEup0td3Zj1LZ_n9hzb9TJv-Im6btaP6IPMw4kp4MjN8nd0L3mNwfOktun5BfJx21XdcPgXYWVyHQn9gKlwGu9IGOnSHoWFOcbnqK3YlHW0gdwmrMI0pvoH2kV2AXqEMpWVE8uV1TTJpfUB_CkubuE4un5GJ--vXjOctNFpgD32XDfMktOE3gdQCSKysdrBUeUF6rueVlbEJTW69iUDMJPmslKh2dkwqAitW6BXDyjOx1fRcOCIUNUcZY1Uo7JYQLOoJ_oy08IloNOKkg1fipjcsVyHG5VyZFwrk2A3sMsMck9phtQd5OzyyH-hu3zv6AHJxmYu3sdKNfLUxWRSMUECm9bVTdgmxW2juhAahaCSbICyDzcOS_yQq9NjfiV5DX0zCoIsZXbBf662HODP9A0wV5PojLRAnnEjMCYUTtCNIOqbsj3fdvqdy30lhApynIu1Hkbsj6_6d4cfsqXpIHNWoBtraZHZK9zeo6vAJ4tWmPkg79BoiPItQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED-6lsFexrpuq7e2aNC31sy2ZEt5zEZLCawvXaFvQtZHNih2SVK2_Pe7kz9Gtq7QtxCdwsV3J_3OOv0O4JhL7ooJFYUFE1IhhE9JMs2LirtSZcbGkv-vl9XFtZjdlDdbUAx3YWLRfqS0jMv0UB32aSliSFNBQRE_rZ_BDlG1o2_vTKezq9n4ZoU4z5UQ_Q2ZjKsHJm_sQpGs_yGE-W-h5F-npXETOn8FL3v0yKadvruw5ZvX8LzrJ7neg1_Thpmmabvj9TQsvGc_qQFuimjSeTb0g2ADkzhbtYx6Eg8rILMEpql6KP4CawO7xdWAWfKNBaP3tUtGpfJz5ry_Y33PifkbuD4_-_blIu1bK6QWM5ZV6jJuMFXCXAPxW5Yrb4xwiO1qxQ3PQunLwjgZvJxUmKnmIlfB2koiPDFK1QhJ3sJ20zZ-Hxhug1UIeSGVlUJYrwJmNcrgFFErREcJ5MOj1rbnHae_e6vj-TdXujOPRvPoaB69TuBknHPXsW48Kv2ZLDhKEmN2_KJdzHXvQVpIVLJyppRFjR6ZK2eFQnhqKlx4nEA1Dwb76z6MlxpzU8STRBKYwMdxGAOQTlVM49v7TmZC985UAu86dxk14byiOkAckRuOtKHq5kjz43sk-ZaKaHPKBE4Hl_uj1v8fxfuniX-AFwVFBTW4mRzA9mpx7w8RZK3qoz6qfgNd4SJ3 priority: 102 providerName: Springer Nature |
Title | An annotation-free whole-slide training approach to pathological classification of lung cancer types using deep learning |
URI | https://link.springer.com/article/10.1038/s41467-021-21467-y https://www.ncbi.nlm.nih.gov/pubmed/33608558 https://www.proquest.com/docview/2491437754 https://www.proquest.com/docview/2491943318 https://pubmed.ncbi.nlm.nih.gov/PMC7896045 https://doaj.org/article/47ff16da572b44e18dc48650a6b00d47 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiDeBpTISNwg0sRM7B4S61ZZVpV0hoFJvluNHQaqSJe2K7b9nxkmKCoUTl6aK7Whiz9jfxOP5CHnJBLNpgUFhXvuYc-5irBknac5sJofahJD_i8v8fMan82x-QHq6o64DV3tdO-STmjXLNzffN-_B4N-1R8bl2xUP5o7BBmn4tzkkx7AyCWQ0uOjgfpiZWQEODe_OzuxvurM-hTT--7DnnyGUv-2jhuVpcpfc6XAlHbWKcI8cuOo-udUyTW4ekJtRRXVV1e3Ge-wb5-gPpMaNAWdaR3umCNrnGKfrmiJbcT83UoMwG-OKwhNo7ekS5glqUGsail9yVxSD6BfUOndFOzaKxUMym5x9GZ_HHelCbMCXWcd2yDQ4UeCFALIbJtJpzS2gvlIyzYY-c1mqrfBOFDn4sAlPpDcmFwBctJQlgJVH5KiqK_eEUFggc--TVEgjODdOevB3pIYmvJSAmyKS9F2tTJeRHF93qcLOOJOqHR4Fw6PC8KhNRF5t21y1-Tj-WfsUR3BbE3Nphxt1s1CdaSouQMjc6kykJehqIq3hEoCrzmFKshzEPOnHX_X6qcBrBaSJ6QMj8mJbDKaJ-y26cvV1W6fAE2kyIo9bddlKwliOEYJQInYUaUfU3ZLq29eQ_ltITKiTReR1r3K_xPp7Vzz9H13xjNxO0VaQEKc4IUfr5to9B1C2LgfkUMwF_MrJhwE5Ho2mn6dwPT27_PgJ7o7z8SB87hgEi_wJoEU53A |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIkQviGcJFDASnCBqEjux94BQeSxb-ji1Um_GsZ2lUpUsu1uV_VP8RmacZKvl0Vtvq7UTOZ7XN57xDMArLrnLBpQUVpkqFkL4mGbGaVZwl6vE2JDyf3BYjI7F15P8ZA1-9XdhKK2y14lBUbvG0hn5NroJaNqpXtv7yY-YukZRdLVvodGyxZ5fXKDLNnu3-wnp-zrLhp-PPo7irqtAbBGsz2OXcINeAsJshC5JqrwxwiGsKRU3PKlyn2fGycrLQYFOWipSVVlbSLTMRqkSrTG-9wbcFBwtOd1MH35ZnulQtXUlRHc3J-FqeyaCJqI8iCz8WqzYv9Am4F_Y9u8UzT_itMH8De_CnQ63sp2W0e7Bmq_vw622k-XiAfzcqZmp66YN7MfV1Ht2Qa13Y8SxzrO-EwXra5izecOoG3Kve5klGE95S-ENrKnYGeohZokrp4xOimeMkvTHzHk_YV23i_FDOL6W7X8E63VT-8fA0AAXVZVmUlkphPWqQn9KGXxElApxWQRpv9XadhXP6XPPdIi8c6Vb8mgkjw7k0YsI3iyfmbT1Pq6c_YEouJxJtbrDH810rDvR10LiIgtncpmVKAupclYoBMamQJXnBC5zq6e_7hTITF-yewQvl8Mo-hTPMbVvzts5A7rxpiLYbNlluRLOC8pAxBG5wkgrS10dqU-_h_LiUlHBnjyCtz3LXS7r_1vx5OqveAG3R0cH-3p_93DvKWxkJBHUVmewBevz6bl_htBuXj4P8sTg23UL8G8fkV3A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVCAuiDeBAosEJ7AS22vv5oBQSxu1FKIKUam3Zb2PgFTZIUlV8tf4dcysH1V49Nab5V1ba8_rm53ZGYCXqUhtMqKkMK99xDl3Ec2M4iRPbSaH2oSU_0-TfP-YfzjJTjbgV3sWhtIqW50YFLWtDO2RD9BNQNNO9doGvkmLONodv5v9iKiDFEVa23YaNYscutU5um-Ltwe7SOtXSTLe-_J-P2o6DEQGgfsyssNUo8eAkBthzDCWTmtuEeIUMtXp0GcuS7QV3olRjg5bzGPpjckFWmktZYGWGd97DTYFeUU92NzZmxx97nZ4qPa65Lw5qTNM5WDBg16irIgkXK3WrGFoGvAvpPt3wuYfUdtgDMe34VaDYtl2zXZ3YMOVd-F63ddydQ9-bpdMl2VVh_kjP3eOnVMj3ghRrXWs7UvB2ormbFkx6o3camJmCNRTFlN4A6s8O0WtxAzx6JzRvvGCUcr-lFnnZqzpfTG9D8dXQoAH0Cur0j0ChuY49z5OhDSCc-OkR-9KanyEFxJRWh_i9lcr09Q_p889VSEOn0pVk0cheVQgj1r14XX3zKyu_nHp7B2iYDeTKneHG9V8qhpFoLjAReZWZyIpUDJiaQ2XCJN1jgrQclzmVkt_1aiThbpg_j686IZREVB0R5euOqvnjOj8m-zDw5pdupWkaU75iDgi1hhpbanrI-X3b6HYuJBUvifrw5uW5S6W9f9f8fjyr3gON1B41ceDyeETuJmQQFCPndEW9JbzM_cUcd6yeNYIFIOvVy3DvwFxKmNS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+annotation-free+whole-slide+training+approach+to+pathological+classification+of+lung+cancer+types+using+deep+learning&rft.jtitle=Nature+communications&rft.au=Chi-Long+Chen&rft.au=Chi-Chung+Chen&rft.au=Wei-Hsiang+Yu&rft.au=Szu-Hua+Chen&rft.date=2021-02-19&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-021-21467-y&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47ff16da572b44e18dc48650a6b00d47 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |