Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry

Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 576 - 13
Main Authors Lei, Zhendong, Yang, Qinsi, Xu, Yi, Guo, Siyu, Sun, Weiwei, Liu, Hao, Lv, Li-Ping, Zhang, Yong, Wang, Yong
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.02.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g −1 and can sustain 500 cycles at 100 mA g −1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g −1 with the storage mechanism governed by 14-electron redox chemistry.
AbstractList Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g −1 and can sustain 500 cycles at 100 mA g −1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g −1 with the storage mechanism governed by 14-electron redox chemistry.
Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g −1 and can sustain 500 cycles at 100 mA g −1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.
Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g−1 and can sustain 500 cycles at 100 mA g−1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.
Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g-1 and can sustain 500 cycles at 100 mA g-1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g-1 and can sustain 500 cycles at 100 mA g-1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.
Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g−1 with the storage mechanism governed by 14-electron redox chemistry.
Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g and can sustain 500 cycles at 100 mA g . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.
ArticleNumber 576
Author Lei, Zhendong
Guo, Siyu
Liu, Hao
Lv, Li-Ping
Yang, Qinsi
Xu, Yi
Wang, Yong
Sun, Weiwei
Zhang, Yong
Author_xml – sequence: 1
  givenname: Zhendong
  surname: Lei
  fullname: Lei, Zhendong
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore
– sequence: 2
  givenname: Qinsi
  surname: Yang
  fullname: Yang, Qinsi
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University
– sequence: 3
  givenname: Yi
  surname: Xu
  fullname: Xu, Yi
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University
– sequence: 4
  givenname: Siyu
  surname: Guo
  fullname: Guo, Siyu
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University
– sequence: 5
  givenname: Weiwei
  surname: Sun
  fullname: Sun, Weiwei
  email: vivisun@shu.edu.cn
  organization: Institute of Green Chemical Engineering and Clean Energy, Shanghai University
– sequence: 6
  givenname: Hao
  surname: Liu
  fullname: Liu, Hao
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University
– sequence: 7
  givenname: Li-Ping
  surname: Lv
  fullname: Lv, Li-Ping
  organization: Institute of Green Chemical Engineering and Clean Energy, Shanghai University
– sequence: 8
  givenname: Yong
  orcidid: 0000-0002-1303-0458
  surname: Zhang
  fullname: Zhang, Yong
  organization: Department of Biomedical Engineering, National University of Singapore
– sequence: 9
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
  email: yongwang@shu.edu.cn
  organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29422540$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1vFSEUnZgaW2v_gAtD4sbNKDDAwMbENn40aeJG14S5A-_xnAcVmKf999I3tXltomz4Oudw7-E8b45CDLZpXhL8luBOvsuMMNG3mMgWUylV2z9pTihmpCU97Y4O1sfNWc4bXEeniGTsWXNMFaOUM3zSjOcx5uLDCk2-rP28RbnEZFYW-YAg7sxkQ0ExrUzwgFwyW_srph9o5w0yUPzOFB8Dig4R1trJQkl1m-wYfyNY263PJd28aJ46M2V7djefNt8_ffx28aW9-vr58uLDVQsCi9KCdaPjZoQRS8OdBSUVZVKA4CM1WHCihMVKOEc7xy2jQJh1_UAGTHtOXHfaXC66YzQbfZ381qQbHY3X-4PahTapeJishm4kDgbSA-ZMYS5VT-UIoHg1V_Khar1ftK7nYWtHqDYkMz0QfXgT_Fqv4k5zibmQrAq8uRNI8edsc9HVDLDTZIKNc9YUY4JFJ_At9PUj6CbOKVSrNFFKiYrZo14dVnRfyt_PrAC6ACDFnJN19xCC9W1o9BIaXUOj96HRfSXJRyTwZf-ptSs__Z_aLdRc3wkrmw7K_jfrD6bJ1t4
CitedBy_id crossref_primary_10_1002_chem_202303683
crossref_primary_10_1002_chem_202404140
crossref_primary_10_1039_D0TA06206E
crossref_primary_10_1002_sstr_202100122
crossref_primary_10_1016_j_cej_2023_142434
crossref_primary_10_1039_D2CS00065B
crossref_primary_10_1021_acsnano_3c00358
crossref_primary_10_1039_C9CP02117E
crossref_primary_10_1016_j_ensm_2021_12_041
crossref_primary_10_1002_anie_202112924
crossref_primary_10_1016_j_jcat_2023_115112
crossref_primary_10_1002_ange_202423186
crossref_primary_10_1016_j_electacta_2023_142276
crossref_primary_10_1021_acsami_2c04831
crossref_primary_10_1016_j_ensm_2024_103295
crossref_primary_10_1016_j_snb_2020_128501
crossref_primary_10_1021_acsomega_3c09299
crossref_primary_10_1002_anie_201914395
crossref_primary_10_1016_j_cej_2024_154941
crossref_primary_10_1016_j_ccr_2022_214968
crossref_primary_10_1021_acsami_2c11132
crossref_primary_10_1021_acsnano_9b07807
crossref_primary_10_1039_D0QM00335B
crossref_primary_10_1002_eem2_12732
crossref_primary_10_1002_smm2_1115
crossref_primary_10_1039_D1TA03784F
crossref_primary_10_1002_anie_202206093
crossref_primary_10_1039_D0CS00017E
crossref_primary_10_1016_j_jpowsour_2019_227551
crossref_primary_10_1016_j_matt_2021_06_043
crossref_primary_10_1007_s40843_021_1831_1
crossref_primary_10_1016_j_orgel_2019_06_004
crossref_primary_10_1021_acsaem_3c03002
crossref_primary_10_1002_ange_202311460
crossref_primary_10_1002_adma_201903176
crossref_primary_10_1002_ange_202402497
crossref_primary_10_1016_j_electacta_2023_143498
crossref_primary_10_1021_acsami_1c10870
crossref_primary_10_1039_C9CS00880B
crossref_primary_10_1016_j_electacta_2022_139947
crossref_primary_10_1021_acs_jpcc_4c04602
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1002_ange_202113067
crossref_primary_10_1016_j_nanoms_2023_10_002
crossref_primary_10_1002_ghg_2297
crossref_primary_10_1007_s12598_020_01502_5
crossref_primary_10_1039_D1TC00965F
crossref_primary_10_1016_j_cej_2020_127454
crossref_primary_10_1007_s40843_023_2626_0
crossref_primary_10_1021_jacs_2c02196
crossref_primary_10_1038_s41467_019_13739_5
crossref_primary_10_1039_C8TA02820F
crossref_primary_10_1016_j_carbon_2020_09_003
crossref_primary_10_1021_acsaem_0c02303
crossref_primary_10_1038_s41467_024_54844_4
crossref_primary_10_1039_D0CS01569E
crossref_primary_10_1016_j_cej_2023_142658
crossref_primary_10_1021_jacs_3c05914
crossref_primary_10_1002_ange_202401253
crossref_primary_10_1002_anie_202209458
crossref_primary_10_1021_acsanm_2c02647
crossref_primary_10_1002_aenm_201802273
crossref_primary_10_1016_j_jpowsour_2024_234876
crossref_primary_10_1039_D4MA01088D
crossref_primary_10_1002_adma_202301190
crossref_primary_10_1021_acsnano_8b02721
crossref_primary_10_1002_anie_202209583
crossref_primary_10_1007_s40242_022_1494_2
crossref_primary_10_1007_s41918_019_00056_0
crossref_primary_10_1039_D3CP05634A
crossref_primary_10_1021_acs_nanolett_2c00965
crossref_primary_10_1016_j_matt_2019_07_017
crossref_primary_10_1016_j_tet_2020_131664
crossref_primary_10_1039_D4CC04688A
crossref_primary_10_1016_j_apcatb_2021_120548
crossref_primary_10_1016_j_cej_2023_141434
crossref_primary_10_1016_j_ccr_2024_216121
crossref_primary_10_1002_marc_201800565
crossref_primary_10_1039_D4EE02777A
crossref_primary_10_1002_smtd_202200314
crossref_primary_10_1021_acsanm_2c03634
crossref_primary_10_3866_PKU_WHXB202303060
crossref_primary_10_1002_adfm_202410372
crossref_primary_10_1021_jacs_8b10334
crossref_primary_10_1016_j_jcis_2024_01_033
crossref_primary_10_1002_ange_202416874
crossref_primary_10_1002_cplu_202000549
crossref_primary_10_1016_j_diamond_2024_110947
crossref_primary_10_1021_acsami_1c03170
crossref_primary_10_1007_s10118_020_2412_z
crossref_primary_10_1002_adma_202210082
crossref_primary_10_1002_aenm_201904199
crossref_primary_10_1126_sciadv_adh8060
crossref_primary_10_1002_anie_202219083
crossref_primary_10_34133_2022_9798582
crossref_primary_10_1016_j_ccr_2023_215066
crossref_primary_10_3390_polym13193300
crossref_primary_10_1002_cssc_202301118
crossref_primary_10_1016_j_enchem_2020_100030
crossref_primary_10_1002_anie_202402497
crossref_primary_10_1016_j_jcis_2022_04_166
crossref_primary_10_1016_j_xcrp_2023_101273
crossref_primary_10_1021_acsaem_1c00714
crossref_primary_10_1021_acsaem_3c02197
crossref_primary_10_1021_jacs_1c13005
crossref_primary_10_1016_j_cej_2020_125169
crossref_primary_10_1021_acsaem_8b01432
crossref_primary_10_1021_jacs_2c07596
crossref_primary_10_1002_adma_202002038
crossref_primary_10_1002_eom2_12221
crossref_primary_10_1002_adma_202109870
crossref_primary_10_1016_j_enchem_2020_100048
crossref_primary_10_1016_j_chempr_2022_09_015
crossref_primary_10_1039_D3CS00906H
crossref_primary_10_1002_aenm_202200057
crossref_primary_10_1039_D1CS00600B
crossref_primary_10_1016_j_molliq_2022_118745
crossref_primary_10_1002_ange_201914395
crossref_primary_10_1002_ente_202100374
crossref_primary_10_1016_j_cej_2020_124071
crossref_primary_10_1007_s41918_022_00135_9
crossref_primary_10_1039_D0SE00610F
crossref_primary_10_1002_cssc_202100837
crossref_primary_10_1002_adma_202211152
crossref_primary_10_1016_j_ccr_2021_214152
crossref_primary_10_1016_j_nanoen_2024_110534
crossref_primary_10_1039_D0TA12243B
crossref_primary_10_1016_j_ensm_2022_05_021
crossref_primary_10_1016_j_chphma_2021_11_001
crossref_primary_10_1002_cplu_202300620
crossref_primary_10_1016_j_cej_2022_134594
crossref_primary_10_1002_ange_202112924
crossref_primary_10_1038_s41467_021_27573_1
crossref_primary_10_1039_D2MA00330A
crossref_primary_10_1002_anie_202423186
crossref_primary_10_1016_j_nanoen_2020_104498
crossref_primary_10_1021_acsaem_2c01472
crossref_primary_10_1021_acsami_9b20384
crossref_primary_10_3389_fenrg_2021_663270
crossref_primary_10_3389_fnut_2022_1075296
crossref_primary_10_1002_smll_202309321
crossref_primary_10_1021_jacs_2c07575
crossref_primary_10_1021_jacs_2c10501
crossref_primary_10_1016_j_seppur_2022_122776
crossref_primary_10_1039_D2TA03953B
crossref_primary_10_1016_j_cej_2024_149535
crossref_primary_10_1016_j_compositesb_2022_110334
crossref_primary_10_1039_D4TA03048F
crossref_primary_10_1002_smll_202207972
crossref_primary_10_1002_smtd_202300687
crossref_primary_10_1016_j_gee_2022_12_010
crossref_primary_10_1016_j_jelechem_2021_115495
crossref_primary_10_1038_s41467_022_29050_9
crossref_primary_10_1039_D0NH00187B
crossref_primary_10_1007_s11426_021_1016_6
crossref_primary_10_1016_j_colsurfa_2022_129707
crossref_primary_10_1021_acs_langmuir_3c02215
crossref_primary_10_1016_j_chempr_2022_08_001
crossref_primary_10_1002_smll_202301847
crossref_primary_10_1002_aenm_201801010
crossref_primary_10_1016_j_matlet_2022_133721
crossref_primary_10_1007_s11581_023_05294_3
crossref_primary_10_1016_j_matre_2021_01_003
crossref_primary_10_1002_adma_202109658
crossref_primary_10_1016_j_carbon_2020_08_064
crossref_primary_10_1021_acsami_0c16116
crossref_primary_10_1039_D2TA08526G
crossref_primary_10_1016_j_cej_2022_138052
crossref_primary_10_1021_acsnano_3c08240
crossref_primary_10_1007_s12613_021_2249_7
crossref_primary_10_1021_acs_chemrev_1c00636
crossref_primary_10_1021_acsami_9b17311
crossref_primary_10_3390_molecules28247993
crossref_primary_10_1002_anie_202416874
crossref_primary_10_3390_batteries9020085
crossref_primary_10_1002_aenm_202400521
crossref_primary_10_1016_j_ensm_2020_07_001
crossref_primary_10_1039_D4TA00221K
crossref_primary_10_1016_j_jmst_2022_02_049
crossref_primary_10_1002_cctc_202401362
crossref_primary_10_1016_j_ccr_2025_216498
crossref_primary_10_1007_s11426_020_9796_9
crossref_primary_10_1016_j_est_2025_116269
crossref_primary_10_1039_D1TA09433E
crossref_primary_10_1002_EXP_20220066
crossref_primary_10_1039_C9NR00088G
crossref_primary_10_1016_j_ccr_2021_213782
crossref_primary_10_1016_j_matlet_2020_129235
crossref_primary_10_1039_C8TA04611E
crossref_primary_10_1016_j_jmgm_2022_108318
crossref_primary_10_1063_5_0147071
crossref_primary_10_1039_D1SE01649K
crossref_primary_10_1039_D4GC03426K
crossref_primary_10_1016_j_cej_2025_160004
crossref_primary_10_1002_anie_202310937
crossref_primary_10_1016_j_jpowsour_2019_04_027
crossref_primary_10_1007_s40843_021_2027_3
crossref_primary_10_1002_smll_202105927
crossref_primary_10_1002_celc_202300389
crossref_primary_10_1063_5_0073426
crossref_primary_10_1021_acs_macromol_4c01036
crossref_primary_10_1002_bkcs_12408
crossref_primary_10_1039_D1NR07209A
crossref_primary_10_1016_j_jpowsour_2024_234353
crossref_primary_10_1002_adfm_202210184
crossref_primary_10_1039_C8TA11982A
crossref_primary_10_1016_j_est_2024_112984
crossref_primary_10_1016_j_tifs_2025_104936
crossref_primary_10_1002_ange_202011484
crossref_primary_10_1002_cnma_202200330
crossref_primary_10_1007_s10967_021_07971_x
crossref_primary_10_1002_anie_202401253
crossref_primary_10_1021_acsami_9b08625
crossref_primary_10_1039_D3RA06060H
crossref_primary_10_1039_D4TA06789D
crossref_primary_10_1002_ange_202302143
crossref_primary_10_1039_D1TA03842G
crossref_primary_10_1039_C9ME00104B
crossref_primary_10_1021_acs_chemmater_0c03218
crossref_primary_10_1007_s10800_023_01964_2
crossref_primary_10_1039_C8TA10554E
crossref_primary_10_1002_ange_202206093
crossref_primary_10_1002_aenm_202301378
crossref_primary_10_1016_j_cej_2022_140283
crossref_primary_10_1039_D0NR08973G
crossref_primary_10_1002_cssc_202101623
crossref_primary_10_1016_j_progpolymsci_2023_101691
crossref_primary_10_1002_tcr_202000074
crossref_primary_10_1021_jacs_2c08273
crossref_primary_10_1002_adfm_202100505
crossref_primary_10_1002_adts_201900130
crossref_primary_10_1016_j_ensm_2023_103014
crossref_primary_10_1039_C9TA13384D
crossref_primary_10_1002_cssc_202300312
crossref_primary_10_1016_j_cej_2018_06_093
crossref_primary_10_1016_j_electacta_2025_146041
crossref_primary_10_1039_D2EE02742A
crossref_primary_10_1021_jacs_9b03467
crossref_primary_10_1039_C8DT05055D
crossref_primary_10_1021_jacs_3c09699
crossref_primary_10_1002_adma_202405747
crossref_primary_10_1016_j_matchemphys_2022_126391
crossref_primary_10_1002_anie_202008960
crossref_primary_10_1039_C8DT04716B
crossref_primary_10_3390_molecules27196204
crossref_primary_10_3390_coatings12121912
crossref_primary_10_1002_ange_202209458
crossref_primary_10_1016_j_ensm_2023_103143
crossref_primary_10_1039_C9TA08584J
crossref_primary_10_1016_j_ensm_2023_103142
crossref_primary_10_1002_adfm_202310668
crossref_primary_10_1002_marc_202200803
crossref_primary_10_1021_jacs_4c05192
crossref_primary_10_1002_ange_202209583
crossref_primary_10_1016_j_apmt_2020_100791
crossref_primary_10_1002_adfm_202204539
crossref_primary_10_1039_D0TA07708A
crossref_primary_10_1016_j_est_2023_108006
crossref_primary_10_1016_j_bios_2019_02_040
crossref_primary_10_1021_acs_jpcc_9b09268
crossref_primary_10_1016_j_jiec_2024_01_014
crossref_primary_10_1039_D0CC04749J
crossref_primary_10_1002_asia_202100030
crossref_primary_10_1002_aenm_202203921
crossref_primary_10_1016_j_ensm_2019_07_018
crossref_primary_10_1016_j_xcrp_2022_100951
crossref_primary_10_1021_acsami_9b06114
crossref_primary_10_1002_anie_202317135
crossref_primary_10_1002_chem_201805550
crossref_primary_10_1016_j_cej_2021_133023
crossref_primary_10_1007_s11426_022_1269_0
crossref_primary_10_1002_cssc_201903112
crossref_primary_10_1016_j_carbon_2018_10_044
crossref_primary_10_1039_D3TA05892A
crossref_primary_10_1007_s41918_024_00218_9
crossref_primary_10_1021_acsnano_3c03918
crossref_primary_10_1016_j_colsurfa_2022_129786
crossref_primary_10_1002_anie_202307459
crossref_primary_10_1039_D1TC02985A
crossref_primary_10_3390_molecules29163785
crossref_primary_10_1039_D2TA04581H
crossref_primary_10_1007_s12598_023_02525_4
crossref_primary_10_1021_acsami_9b16280
crossref_primary_10_1002_anie_202317015
crossref_primary_10_1002_aesr_202000044
crossref_primary_10_1016_j_ensm_2023_103164
crossref_primary_10_34133_energymatadv_0078
crossref_primary_10_1002_cssc_201903007
crossref_primary_10_1002_cssc_202301851
crossref_primary_10_1021_acsaem_2c03806
crossref_primary_10_1039_D3CS00782K
crossref_primary_10_1021_acsnano_9b00165
crossref_primary_10_1002_aenm_202003990
crossref_primary_10_1038_s44160_024_00644_z
crossref_primary_10_1002_aenm_202002523
crossref_primary_10_1016_j_ensm_2019_09_005
crossref_primary_10_1002_anie_201913975
crossref_primary_10_1002_ange_202013912
crossref_primary_10_1039_D0TA10785A
crossref_primary_10_1039_D0QI01104E
crossref_primary_10_1007_s10008_021_04955_5
crossref_primary_10_1021_acsnano_0c05896
crossref_primary_10_1021_acsami_3c12674
crossref_primary_10_1002_anie_202424641
crossref_primary_10_1016_j_tetlet_2020_152656
crossref_primary_10_1016_j_est_2024_115026
crossref_primary_10_1016_j_est_2024_115143
crossref_primary_10_1002_batt_202200413
crossref_primary_10_1039_D2GC04771C
crossref_primary_10_1002_adma_202105647
crossref_primary_10_1002_wcms_1660
crossref_primary_10_1007_s41918_022_00152_8
crossref_primary_10_1021_acsaem_2c03154
crossref_primary_10_1002_adfm_202108798
crossref_primary_10_1002_aenm_201902428
crossref_primary_10_1007_s40843_023_2545_y
crossref_primary_10_1016_j_cclet_2023_108233
crossref_primary_10_1016_j_chempr_2020_08_021
crossref_primary_10_1016_S1872_5805_21_60001_X
crossref_primary_10_1021_acsmaterialslett_4c01672
crossref_primary_10_1016_j_chempr_2020_08_024
crossref_primary_10_1002_nano_202100153
crossref_primary_10_1021_acsami_0c06267
crossref_primary_10_1021_jacs_2c02301
crossref_primary_10_1002_ange_202310937
crossref_primary_10_1021_acsami_8b09546
crossref_primary_10_1016_j_jpowsour_2020_228515
crossref_primary_10_1039_D0EE02848G
crossref_primary_10_1002_batt_202200429
crossref_primary_10_1002_smll_202001070
crossref_primary_10_1002_celc_201900848
crossref_primary_10_1002_batt_202000094
crossref_primary_10_1002_adfm_201806937
crossref_primary_10_1016_j_cej_2024_154367
crossref_primary_10_1039_D0CC02438D
crossref_primary_10_1002_smll_202410973
crossref_primary_10_1016_j_cej_2022_138116
crossref_primary_10_1002_batt_202200434
crossref_primary_10_1039_D0QM00846J
crossref_primary_10_1039_D4TA00892H
crossref_primary_10_1016_j_jelechem_2021_115737
crossref_primary_10_1016_j_mtener_2020_100478
crossref_primary_10_1039_D1CS01014J
crossref_primary_10_1002_anie_202421008
crossref_primary_10_1016_j_carbon_2022_01_021
crossref_primary_10_1016_j_nanoen_2024_110161
crossref_primary_10_1021_acsami_2c20309
crossref_primary_10_1038_s41467_019_14237_4
crossref_primary_10_1016_j_jpowsour_2022_231041
crossref_primary_10_1039_D1NJ00610J
crossref_primary_10_1039_D3TA01794J
crossref_primary_10_1016_j_mattod_2023_02_027
crossref_primary_10_1016_j_physb_2023_415027
crossref_primary_10_1016_j_ijhydene_2025_03_120
crossref_primary_10_1002_smll_202005209
crossref_primary_10_1002_adma_202101175
crossref_primary_10_1002_adma_201801600
crossref_primary_10_1016_j_flatc_2024_100645
crossref_primary_10_1039_D1DT01400E
crossref_primary_10_1002_ange_201904291
crossref_primary_10_1016_j_jallcom_2019_06_074
crossref_primary_10_1016_j_jpowsour_2021_229827
crossref_primary_10_1021_acsnano_2c03857
crossref_primary_10_1021_acsaem_9b01419
crossref_primary_10_1002_macp_202300427
crossref_primary_10_1016_j_scitotenv_2022_155312
crossref_primary_10_1021_acsnano_4c11262
crossref_primary_10_1002_ange_202421008
crossref_primary_10_3390_ma11060937
crossref_primary_10_1039_D1SC06412F
crossref_primary_10_1007_s10008_024_05942_2
crossref_primary_10_1021_acs_jpcc_0c02770
crossref_primary_10_1039_D3TA02683C
crossref_primary_10_1016_j_apsusc_2020_146396
crossref_primary_10_1021_acsaem_1c00155
crossref_primary_10_1016_j_est_2023_107561
crossref_primary_10_1002_ange_202302276
crossref_primary_10_1007_s12274_021_3433_9
crossref_primary_10_1002_smll_202100918
crossref_primary_10_3390_ma16010177
crossref_primary_10_1080_08927022_2023_2189980
crossref_primary_10_1016_j_jclepro_2022_134114
crossref_primary_10_1007_s11581_023_04914_2
crossref_primary_10_1039_D2TC01150F
crossref_primary_10_1002_anie_202311657
crossref_primary_10_1002_ange_201913975
crossref_primary_10_1002_anie_202013912
crossref_primary_10_1007_s11426_024_2213_2
crossref_primary_10_1002_adsc_202001086
crossref_primary_10_1016_j_cej_2020_125967
crossref_primary_10_1016_j_jcis_2023_03_106
crossref_primary_10_1016_j_memsci_2024_122799
crossref_primary_10_1016_j_electacta_2022_140565
crossref_primary_10_1038_s41570_020_0160_9
crossref_primary_10_1016_j_jcis_2024_12_021
crossref_primary_10_1016_j_microc_2023_109067
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1021_acsaem_3c00586
crossref_primary_10_1039_D1RA06528A
crossref_primary_10_1002_EXP_20220144
crossref_primary_10_1016_j_heliyon_2024_e36083
crossref_primary_10_1021_acsaem_0c00729
crossref_primary_10_1021_acscatal_4c01720
crossref_primary_10_1039_D3EE00211J
crossref_primary_10_1021_jacs_2c11264
crossref_primary_10_1002_aenm_202100177
crossref_primary_10_1039_D4TA05466K
crossref_primary_10_1016_j_cclet_2023_108785
crossref_primary_10_1002_celc_202000963
crossref_primary_10_1021_acsapm_4c01136
crossref_primary_10_1002_adfm_202302874
crossref_primary_10_1007_s12274_022_4273_y
crossref_primary_10_1002_chem_202101587
crossref_primary_10_1002_inf2_12277
crossref_primary_10_1002_smll_202303353
crossref_primary_10_1016_j_cej_2024_154449
crossref_primary_10_1016_j_est_2023_109405
crossref_primary_10_1016_j_cej_2019_123111
crossref_primary_10_1039_D3RA01414B
crossref_primary_10_1360_TB_2024_0544
crossref_primary_10_1016_j_jallcom_2025_179890
crossref_primary_10_1016_j_colsurfa_2022_130496
crossref_primary_10_1016_j_matt_2024_01_028
crossref_primary_10_1016_j_synthmet_2022_117112
crossref_primary_10_1016_j_jtice_2022_104293
crossref_primary_10_1016_j_apsusc_2021_149849
crossref_primary_10_1038_s41467_023_39544_9
crossref_primary_10_1016_j_cej_2022_139016
crossref_primary_10_1016_j_est_2022_105092
crossref_primary_10_1021_acsami_2c09618
crossref_primary_10_1002_ange_202219083
crossref_primary_10_1002_cssc_202000883
crossref_primary_10_1021_acsami_3c11111
crossref_primary_10_1039_C9CC05710B
crossref_primary_10_1021_acsaem_1c02569
crossref_primary_10_1021_acsaem_1c02200
crossref_primary_10_1021_acsami_8b12888
crossref_primary_10_1002_chem_202000722
crossref_primary_10_1039_D0CS00620C
crossref_primary_10_1016_j_jechem_2020_05_021
crossref_primary_10_1016_j_jechem_2025_01_062
crossref_primary_10_1002_chem_201903733
crossref_primary_10_1039_D4TA04330H
crossref_primary_10_1002_admi_202200800
crossref_primary_10_1016_j_mtchem_2018_12_002
crossref_primary_10_3390_polym16050687
crossref_primary_10_1002_adfm_202101194
crossref_primary_10_1002_adfm_202407479
crossref_primary_10_1016_j_ensm_2021_05_008
crossref_primary_10_1073_pnas_2315407121
crossref_primary_10_1007_s12274_024_6509_5
crossref_primary_10_1007_s10854_023_10832_w
crossref_primary_10_1021_acs_iecr_8b01091
crossref_primary_10_1016_j_est_2024_113124
crossref_primary_10_1016_j_mtcomm_2023_107768
crossref_primary_10_1039_C9NR07716B
crossref_primary_10_1002_adfm_202003761
crossref_primary_10_1021_acs_chemmater_1c02660
crossref_primary_10_1002_ece2_30
crossref_primary_10_1007_s12598_022_02100_3
crossref_primary_10_1021_acsami_1c14838
crossref_primary_10_1021_acs_jpcc_8b11185
crossref_primary_10_1016_j_xinn_2021_100076
crossref_primary_10_1002_aenm_202204334
crossref_primary_10_1021_acsami_4c06012
crossref_primary_10_1002_sstr_202200126
crossref_primary_10_1021_acsaem_0c02281
crossref_primary_10_1021_jacs_2c12186
crossref_primary_10_1039_D2TA03579K
crossref_primary_10_1002_anie_202302276
crossref_primary_10_1039_D3PY01325A
crossref_primary_10_1016_j_powtec_2020_05_060
crossref_primary_10_1002_ange_202311657
crossref_primary_10_1021_jacs_3c06723
crossref_primary_10_1002_anie_202011484
crossref_primary_10_1039_D1TA08942K
crossref_primary_10_1002_anie_202311460
crossref_primary_10_1002_smll_202202018
crossref_primary_10_1016_j_mser_2024_100771
crossref_primary_10_1515_ntrev_2022_0046
crossref_primary_10_1002_bkcs_12193
crossref_primary_10_1007_s12274_021_3950_6
crossref_primary_10_1002_adsr_202300131
crossref_primary_10_1002_adfm_202003863
crossref_primary_10_1002_smll_202304367
crossref_primary_10_1002_anie_202302143
crossref_primary_10_3389_fphy_2022_890845
crossref_primary_10_1002_anie_202113067
crossref_primary_10_1021_acsami_9b23438
crossref_primary_10_1002_anie_201904291
crossref_primary_10_1021_jacs_3c04657
crossref_primary_10_1002_agt2_525
crossref_primary_10_1016_j_apsusc_2022_154220
crossref_primary_10_1002_ange_202424641
crossref_primary_10_1021_jacs_0c05130
crossref_primary_10_1016_j_vacuum_2025_114124
crossref_primary_10_1021_acsnano_1c05497
crossref_primary_10_1016_j_cej_2022_136584
crossref_primary_10_1016_j_est_2025_115746
crossref_primary_10_1016_j_cclet_2024_110305
crossref_primary_10_1515_ntrev_2022_0057
crossref_primary_10_1016_j_cej_2022_136345
crossref_primary_10_1021_jacs_3c11182
crossref_primary_10_1016_j_ijbiomac_2024_129690
crossref_primary_10_1016_j_nanoen_2021_105958
crossref_primary_10_1039_D1CC06308A
crossref_primary_10_1002_advs_202400626
crossref_primary_10_1002_marc_202200782
crossref_primary_10_1002_adma_201901640
crossref_primary_10_1016_j_jcis_2021_05_081
crossref_primary_10_1021_acs_energyfuels_3c01366
crossref_primary_10_1039_D3TA05959F
crossref_primary_10_1016_j_apsusc_2022_153481
crossref_primary_10_1016_j_cej_2024_150812
crossref_primary_10_1039_D0EE02309D
crossref_primary_10_1021_jacs_0c00923
crossref_primary_10_1002_aenm_201904230
crossref_primary_10_1039_D1RA00794G
crossref_primary_10_1002_ange_202317015
crossref_primary_10_1016_j_cej_2020_124924
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1021_acs_energyfuels_4c03634
crossref_primary_10_1002_ange_202317135
crossref_primary_10_1002_aenm_202101880
crossref_primary_10_1016_j_ensm_2021_05_043
crossref_primary_10_1016_j_ensm_2021_04_008
crossref_primary_10_1016_j_mtener_2019_100359
crossref_primary_10_1016_j_cej_2022_137687
crossref_primary_10_1002_pol_20210940
crossref_primary_10_1016_j_jpowsour_2022_231340
crossref_primary_10_1016_j_ensm_2022_06_018
crossref_primary_10_1016_j_apsusc_2021_152024
crossref_primary_10_1016_j_ensm_2021_06_010
crossref_primary_10_1016_j_ensm_2021_06_012
crossref_primary_10_1002_adfm_202107703
crossref_primary_10_1002_aesr_202300217
crossref_primary_10_1016_j_ssi_2020_115247
crossref_primary_10_1016_j_polymer_2018_12_030
crossref_primary_10_1002_ange_202307459
crossref_primary_10_1039_D3NR05797F
crossref_primary_10_1039_C9TA05552E
crossref_primary_10_1021_jacs_3c06764
crossref_primary_10_1016_j_apsusc_2023_158079
crossref_primary_10_1002_aenm_202100330
crossref_primary_10_1021_acs_jpclett_1c02004
crossref_primary_10_1002_idm2_12070
crossref_primary_10_1016_j_cej_2021_131630
crossref_primary_10_1039_D0TA01727B
crossref_primary_10_1002_smll_201904830
crossref_primary_10_1021_acsami_4c12813
crossref_primary_10_1039_C8TA11230D
crossref_primary_10_1039_D3RA07655E
crossref_primary_10_1016_j_cej_2019_01_178
crossref_primary_10_1002_aenm_202100321
crossref_primary_10_1002_eem2_12797
crossref_primary_10_1016_j_apsusc_2022_155877
crossref_primary_10_1039_C9SC02340B
crossref_primary_10_2139_ssrn_3773790
crossref_primary_10_1021_acsnano_9b07360
crossref_primary_10_1021_acscatal_1c03441
crossref_primary_10_1002_bkcs_11911
crossref_primary_10_1021_acscatal_4c04968
crossref_primary_10_1021_acsami_2c08366
crossref_primary_10_2139_ssrn_4055903
crossref_primary_10_1002_aenm_202402489
crossref_primary_10_1016_j_electacta_2025_145850
crossref_primary_10_1021_acssuschemeng_1c08678
crossref_primary_10_1039_C9DT04788C
crossref_primary_10_1002_marc_202200108
crossref_primary_10_1016_j_jallcom_2022_167064
crossref_primary_10_1021_acsami_3c10304
crossref_primary_10_1016_j_jpowsour_2022_232326
crossref_primary_10_1002_ange_202008960
crossref_primary_10_1007_s42114_024_01201_0
crossref_primary_10_1016_j_seppur_2023_124977
Cites_doi 10.1002/adma.200602584
10.1021/acs.nanolett.6b05227
10.1039/C2TA00063F
10.1021/acs.nanolett.5b04105
10.1021/acsami.6b15637
10.1002/anie.201304496
10.1039/C4TA00523F
10.1038/nchem.2696
10.1021/acscentsci.6b00220
10.1021/acsnano.6b07692
10.1021/acsami.6b16769
10.1002/anie.201301850
10.1038/natrevmats.2016.68
10.1039/C6MH00072J
10.1002/anie.201202476
10.1002/aenm.201402189
10.1039/C2CS35072F
10.1002/adma.201505917
10.1038/451652a
10.1002/adma.201505788
10.1002/anie.201103493
10.1038/ncomms6335
10.1038/srep07404
10.1002/adma.201400910
10.1038/nenergy.2017.74
10.1021/ja206846p
10.1021/cm901452z
10.1038/ncomms13065
10.1002/smll.201303423
10.1039/C6SC05532J
10.1021/ja306663g
10.1021/jacs.7b02648
10.1002/adfm.201601631
10.1021/acs.nanolett.6b00870
10.1039/C2CC36622C
10.1126/science.aal1585
10.1039/C6CC09906H
10.1039/C4PY01383B
10.1021/acs.chemmater.6b01954
10.1002/aenm.201600461
10.1021/ja1012849
10.1002/anie.201604519
10.1021/jacs.6b05568
10.1039/C4CC01002G
10.1021/acs.chemmater.6b04178
10.1002/anie.201410154
10.1021/acsami.5b12370
10.1002/anie.201503072
10.1039/C6TA07606H
10.1002/aenm.201100795
10.1038/srep08225
10.1002/cssc.201601571
10.1002/adma.201200751
10.1039/C6TA06449C
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-02889-7
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
Publicly Available Content Database
MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_c3d1fcb17c05490589728dcc9503885b
PMC5805684
29422540
10_1038_s41467_018_02889_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-cefdf5adcd08a5fec9892486c65d2a065196e096ff23f5e42c14ef7b1b02751f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:13 EDT 2025
Thu Aug 21 14:05:30 EDT 2025
Tue Aug 05 11:17:33 EDT 2025
Wed Aug 13 08:04:54 EDT 2025
Wed Feb 19 02:32:36 EST 2025
Thu Apr 24 22:58:05 EDT 2025
Tue Jul 01 02:21:09 EDT 2025
Fri Feb 21 02:39:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-cefdf5adcd08a5fec9892486c65d2a065196e096ff23f5e42c14ef7b1b02751f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1303-0458
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-02889-7
PMID 29422540
PQID 1999660404
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_c3d1fcb17c05490589728dcc9503885b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805684
proquest_miscellaneous_2001063604
proquest_journals_1999660404
pubmed_primary_29422540
crossref_primary_10_1038_s41467_018_02889_7
crossref_citationtrail_10_1038_s41467_018_02889_7
springer_journals_10_1038_s41467_018_02889_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-02-08
PublicationDateYYYYMMDD 2018-02-08
PublicationDate_xml – month: 02
  year: 2018
  text: 2018-02-08
  day: 08
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Goodenough (CR4) 2010; 22
Jin (CR6) 2016; 16
Wu (CR26) 2015; 5
Li. (CR7) 2016; 7
Han (CR23) 2007; 19
Mulzer (CR46) 2016; 2
Yang (CR49) 2016; 4
Su (CR32) 2015; 54
Chandra (CR41) 2017; 29
Peng (CR54) 2016; 28
Peng (CR18) 2017; 2
Buyukcakir (CR39) 2017; 9
Liu (CR53) 2017; 9
Ren (CR15) 2012; 24
Diercks (CR34) 2017; 355
Huang (CR35) 2016; 68
Sun (CR27) 2016; 55
Li (CR5) 2016; 26
Liang (CR29) 2012; 2
Xu (CR9) 2014; 50
Ding (CR55) 2011; 133
Hu (CR28) 2016; 28
Vazquez-Molina (CR44) 2016; 138
Zhu (CR12) 2013; 49
Lee (CR19) 2013; 52
Wang (CR2) 2014; 26
Yang (CR51) 2016; 8
Yoo (CR17) 2016; 16
Xiang (CR36) 2015; 6
Deng (CR40) 2017; 9
Xu (CR47) 2017; 53
Kou (CR14) 2011; 50
Lin. (CR8) 2015; 350
Huang (CR30) 2014; 11
Liao (CR48) 2014; 2
Nokami (CR24) 2012; 134
Kwon (CR33) 2014; 4
Xiang (CR10) 2016; 28
Wu (CR13) 2015; 54
Walker (CR22) 2010; 132
Bai (CR50) 2016; 4
Shi (CR11) 2017; 17
Li (CR43) 2017; 8
Wang (CR52) 2017; 139
Armand (CR1) 2008; 451
Tian (CR31) 2016; 3
Xiang (CR37) 2013; 1
Ding (CR38) 2013; 42
Zhuang (CR16) 2013; 52
Medina (CR45) 2017; 3
Hong (CR20) 2014; 5
Bhanja (CR42) 2017; 10
Lei (CR3) 2016; 6
Sakaushi (CR21) 2012; 51
Xu (CR25) 2015; 5
DD Medina (2889_CR45) 2017; 3
T Sun (2889_CR27) 2016; 55
XC Li (2889_CR43) 2017; 8
Z Li. (2889_CR7) 2016; 7
ZH Xiang (2889_CR37) 2013; 1
YZ Su (2889_CR32) 2015; 54
S Wu (2889_CR26) 2015; 5
S Chandra (2889_CR41) 2017; 29
S Wang (2889_CR52) 2017; 139
X Deng (2889_CR40) 2017; 9
TQ Lin. (2889_CR8) 2015; 350
JT Yoo (2889_CR17) 2016; 16
T Nokami (2889_CR24) 2012; 134
K Sakaushi (2889_CR21) 2012; 51
JB Goodenough (2889_CR4) 2010; 22
SY Ding (2889_CR38) 2013; 42
SQ Xu (2889_CR47) 2017; 53
F Xu (2889_CR9) 2014; 50
H Li (2889_CR5) 2016; 26
BB Tian (2889_CR31) 2016; 3
Y Shi (2889_CR11) 2017; 17
YL Liang (2889_CR29) 2012; 2
CR Mulzer (2889_CR46) 2016; 2
FY Jin (2889_CR6) 2016; 16
Y Kou (2889_CR14) 2011; 50
PF Hu (2889_CR28) 2016; 28
XY Han (2889_CR23) 2007; 19
H Yang (2889_CR51) 2016; 8
MS Kwon (2889_CR33) 2014; 4
DH Yang (2889_CR49) 2016; 4
W Liu (2889_CR53) 2017; 9
XD Zhuang (2889_CR16) 2013; 52
J Hong (2889_CR20) 2014; 5
Y Lei (2889_CR3) 2016; 6
ZH Xiang (2889_CR10) 2016; 28
O Buyukcakir (2889_CR39) 2017; 9
YS Huang (2889_CR30) 2014; 11
CX Peng (2889_CR18) 2017; 2
LM Zhu (2889_CR12) 2013; 49
F Xu (2889_CR25) 2015; 5
DA Vazquez-Molina (2889_CR44) 2016; 138
XF Wang (2889_CR2) 2014; 26
SY Ding (2889_CR55) 2011; 133
N Huang (2889_CR35) 2016; 68
HP Liao (2889_CR48) 2014; 2
LY Bai (2889_CR50) 2016; 4
SJ Ren (2889_CR15) 2012; 24
M Lee (2889_CR19) 2013; 52
JS Wu (2889_CR13) 2015; 54
YW Peng (2889_CR54) 2016; 28
ZH Xiang (2889_CR36) 2015; 6
CS Diercks (2889_CR34) 2017; 355
M Armand (2889_CR1) 2008; 451
P Bhanja (2889_CR42) 2017; 10
W Walker (2889_CR22) 2010; 132
References_xml – volume: 19
  start-page: 1616
  year: 2007
  end-page: 1621
  ident: CR23
  article-title: Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602584
– volume: 17
  start-page: 1906
  year: 2017
  end-page: 1914
  ident: CR11
  article-title: Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in Li-Ion batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05227
– volume: 1
  start-page: 2691
  year: 2013
  end-page: 2718
  ident: CR37
  article-title: Porous covalent-organic materials: synthesis, clean energy application and design
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00063F
– volume: 16
  start-page: 440
  year: 2016
  end-page: 447
  ident: CR6
  article-title: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04105
– volume: 9
  start-page: 3514
  year: 2017
  end-page: 3523
  ident: CR40
  article-title: Porphyrin-based porous organic frameworks as a biomimetic catalyst for highly efficient colorimetric immunoassay
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15637
– volume: 52
  start-page: 9668
  year: 2013
  end-page: 9672
  ident: CR16
  article-title: Two-dimensional sandwich-type, graphene-based conjugated microporous polymers
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201304496
– volume: 2
  start-page: 8854
  year: 2014
  end-page: 8858
  ident: CR48
  article-title: Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00523F
– volume: 9
  start-page: 563
  year: 2017
  end-page: 570
  ident: CR53
  article-title: A two-dimensional conjugated aromatic polymer via C-C coupling reaction
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2696
– volume: 2
  start-page: 667
  year: 2016
  end-page: 673
  ident: CR46
  article-title: Superior charge storage and power density of a conducting polymer-modified covalent organic framework
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00220
– volume: 3
  start-page: 2706
  year: 2017
  end-page: 2713
  ident: CR45
  article-title: Directional charge-carrier transport in oriented benzodithiophene covalent organic framework thin films
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07692
– volume: 9
  start-page: 7209
  year: 2017
  end-page: 7216
  ident: CR39
  article-title: Charged covalent triazine frameworks for CO capture and conversion
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16769
– volume: 52
  start-page: 8322
  year: 2013
  end-page: 8328
  ident: CR19
  article-title: Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301850
– volume: 68
  start-page: 16068
  year: 2016
  ident: CR35
  article-title: Covalent organic frameworks: a materials platform for structural and functional designs
  publication-title: Nat. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 3
  start-page: 429
  year: 2016
  end-page: 433
  ident: CR31
  article-title: Polyquinoneimines for lithium storage: more than the sum of its parts
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00072J
– volume: 51
  start-page: 7850
  year: 2012
  end-page: 7854
  ident: CR21
  article-title: An energy storage principle using bipolar porous polymeric frameworks
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201202476
– volume: 5
  start-page: 1402189
  year: 2015
  ident: CR26
  article-title: Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402189
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  ident: CR38
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 28
  start-page: 3486
  year: 2016
  end-page: 3492
  ident: CR28
  article-title: Renewable-biomolecule-based full lithium-ion batteries
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505917
– volume: 451
  start-page: 652
  year: 2008
  end-page: 657
  ident: CR1
  article-title: Building better batteries
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 28
  start-page: 6253
  year: 2016
  end-page: 6261
  ident: CR10
  article-title: Edge functionalization of graphene and two-dimensional covalent organic polymers for energy conversion and storage
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505788
– volume: 50
  start-page: 8753
  year: 2011
  end-page: 8757
  ident: CR14
  article-title: Supercapacitive energy storage and electric power supply using an aza-fused p-conjugated microporous framework
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103493
– volume: 5
  year: 2014
  ident: CR20
  article-title: Biologically inspired pteridine redox centres for rechargeable batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6335
– volume: 4
  year: 2014
  ident: CR33
  article-title: Synthesis of ordered mesoporous phenanthrenequinone-carbon via π-π interaction-dependent vapor pressure for rechargeable batteries
  publication-title: Sci. Rep.
  doi: 10.1038/srep07404
– volume: 26
  start-page: 4763
  year: 2014
  end-page: 4782
  ident: CR2
  article-title: Flexible energy-storage devices: design consideration and recent progress
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400910
– volume: 2
  start-page: 17074
  year: 2017
  ident: CR18
  article-title: Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.74
– volume: 133
  start-page: 19816
  year: 2011
  end-page: 19822
  ident: CR55
  article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-miyaura coupling reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206846p
– volume: 22
  start-page: 587
  year: 2010
  end-page: 603
  ident: CR4
  article-title: Challenges for rechargeable Li batteries
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 7
  year: 2016
  ident: CR7
  article-title: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13065
– volume: 11
  start-page: 2226
  year: 2014
  end-page: 2232
  ident: CR30
  article-title: Amphiphilic polymer promoted assembly of macroporous graphene/SnO frameworks with tunable porosity for high-performance lithium storage
  publication-title: Small
  doi: 10.1002/smll.201303423
– volume: 8
  start-page: 2959
  year: 2017
  end-page: 2965
  ident: CR43
  article-title: Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05532J
– volume: 134
  start-page: 19694
  year: 2012
  end-page: 19700
  ident: CR24
  article-title: Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306663g
– volume: 139
  start-page: 4258
  year: 2017
  end-page: 4261
  ident: CR52
  article-title: Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02648
– volume: 26
  start-page: 8345
  year: 2016
  end-page: 8353
  ident: CR5
  article-title: Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601631
– volume: 16
  start-page: 3292
  year: 2016
  end-page: 3300
  ident: CR17
  article-title: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00870
– volume: 49
  start-page: 567
  year: 2013
  end-page: 569
  ident: CR12
  article-title: An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC36622C
– volume: 355
  start-page: 1585
  year: 2017
  ident: CR34
  article-title: The atom, the molecule, and the covalent organic framework
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 53
  start-page: 2431
  year: 2017
  end-page: 2434
  ident: CR47
  article-title: Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09906H
– volume: 6
  start-page: 1896
  year: 2015
  end-page: 1911
  ident: CR36
  article-title: Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY01383B
– volume: 28
  start-page: 5095
  year: 2016
  end-page: 5101
  ident: CR54
  article-title: Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01954
– volume: 350
  start-page: 62
  year: 2015
  end-page: 67
  ident: CR8
  article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage
  publication-title: Science
– volume: 6
  start-page: 1600461
  year: 2016
  ident: CR3
  article-title: Functional Nanostructuring for efficient energy conversion and storage
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600461
– volume: 132
  start-page: 6517
  year: 2010
  end-page: 6523
  ident: CR22
  article-title: Ethoxycarbonyl-based organic electrode for Li-batteries
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1012849
– volume: 55
  start-page: 10662
  year: 2016
  end-page: 10666
  ident: CR27
  article-title: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604519
– volume: 138
  start-page: 9767
  year: 2016
  end-page: 9770
  ident: CR44
  article-title: Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-Ion conductivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05568
– volume: 50
  start-page: 4788
  year: 2014
  end-page: 4790
  ident: CR9
  article-title: Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01002G
– volume: 29
  start-page: 2074
  year: 2017
  end-page: 2080
  ident: CR41
  article-title: Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04178
– volume: 54
  start-page: 1812
  year: 2015
  end-page: 1816
  ident: CR32
  article-title: Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410154
– volume: 8
  start-page: 5366
  year: 2016
  end-page: 5375
  ident: CR51
  article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12370
– volume: 54
  start-page: 7354
  year: 2015
  end-page: 7358
  ident: CR13
  article-title: Pushing up lithium storage through nanostructured polyazaacene analogues as anode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503072
– volume: 4
  start-page: 18621
  year: 2016
  end-page: 18627
  ident: CR49
  article-title: Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07606H
– volume: 2
  start-page: 742
  year: 2012
  end-page: 769
  ident: CR29
  article-title: Organic electrode materials for rechargeable lithium batteries
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100795
– volume: 5
  year: 2015
  ident: CR25
  article-title: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage
  publication-title: Sci. Rep.
  doi: 10.1038/srep08225
– volume: 10
  start-page: 921
  year: 2017
  end-page: 929
  ident: CR42
  article-title: A new triazine based covalent organic framework for high-performance capacitive energy storage
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601571
– volume: 24
  start-page: 2357
  year: 2012
  end-page: 2361
  ident: CR15
  article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200751
– volume: 4
  start-page: 14106
  year: 2016
  end-page: 14110
  ident: CR50
  article-title: Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06449C
– volume: 5
  year: 2015
  ident: 2889_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep08225
– volume: 134
  start-page: 19694
  year: 2012
  ident: 2889_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306663g
– volume: 28
  start-page: 3486
  year: 2016
  ident: 2889_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505917
– volume: 52
  start-page: 8322
  year: 2013
  ident: 2889_CR19
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201301850
– volume: 42
  start-page: 548
  year: 2013
  ident: 2889_CR38
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 9
  start-page: 3514
  year: 2017
  ident: 2889_CR40
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b15637
– volume: 2
  start-page: 667
  year: 2016
  ident: 2889_CR46
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00220
– volume: 49
  start-page: 567
  year: 2013
  ident: 2889_CR12
  publication-title: Chem. Commun.
  doi: 10.1039/C2CC36622C
– volume: 29
  start-page: 2074
  year: 2017
  ident: 2889_CR41
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04178
– volume: 4
  start-page: 18621
  year: 2016
  ident: 2889_CR49
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA07606H
– volume: 28
  start-page: 6253
  year: 2016
  ident: 2889_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505788
– volume: 4
  start-page: 14106
  year: 2016
  ident: 2889_CR50
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C6TA06449C
– volume: 8
  start-page: 5366
  year: 2016
  ident: 2889_CR51
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12370
– volume: 50
  start-page: 8753
  year: 2011
  ident: 2889_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201103493
– volume: 28
  start-page: 5095
  year: 2016
  ident: 2889_CR54
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b01954
– volume: 52
  start-page: 9668
  year: 2013
  ident: 2889_CR16
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201304496
– volume: 138
  start-page: 9767
  year: 2016
  ident: 2889_CR44
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b05568
– volume: 16
  start-page: 440
  year: 2016
  ident: 2889_CR6
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04105
– volume: 16
  start-page: 3292
  year: 2016
  ident: 2889_CR17
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00870
– volume: 6
  start-page: 1600461
  year: 2016
  ident: 2889_CR3
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201600461
– volume: 350
  start-page: 62
  year: 2015
  ident: 2889_CR8
  publication-title: Science
– volume: 55
  start-page: 10662
  year: 2016
  ident: 2889_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201604519
– volume: 17
  start-page: 1906
  year: 2017
  ident: 2889_CR11
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b05227
– volume: 2
  start-page: 742
  year: 2012
  ident: 2889_CR29
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201100795
– volume: 3
  start-page: 2706
  year: 2017
  ident: 2889_CR45
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07692
– volume: 51
  start-page: 7850
  year: 2012
  ident: 2889_CR21
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201202476
– volume: 6
  start-page: 1896
  year: 2015
  ident: 2889_CR36
  publication-title: Polym. Chem.
  doi: 10.1039/C4PY01383B
– volume: 2
  start-page: 17074
  year: 2017
  ident: 2889_CR18
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.74
– volume: 1
  start-page: 2691
  year: 2013
  ident: 2889_CR37
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C2TA00063F
– volume: 19
  start-page: 1616
  year: 2007
  ident: 2889_CR23
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200602584
– volume: 9
  start-page: 7209
  year: 2017
  ident: 2889_CR39
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b16769
– volume: 53
  start-page: 2431
  year: 2017
  ident: 2889_CR47
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC09906H
– volume: 133
  start-page: 19816
  year: 2011
  ident: 2889_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja206846p
– volume: 5
  year: 2014
  ident: 2889_CR20
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6335
– volume: 2
  start-page: 8854
  year: 2014
  ident: 2889_CR48
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C4TA00523F
– volume: 26
  start-page: 4763
  year: 2014
  ident: 2889_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201400910
– volume: 8
  start-page: 2959
  year: 2017
  ident: 2889_CR43
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC05532J
– volume: 24
  start-page: 2357
  year: 2012
  ident: 2889_CR15
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201200751
– volume: 5
  start-page: 1402189
  year: 2015
  ident: 2889_CR26
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201402189
– volume: 68
  start-page: 16068
  year: 2016
  ident: 2889_CR35
  publication-title: Nat. Mater.
  doi: 10.1038/natrevmats.2016.68
– volume: 50
  start-page: 4788
  year: 2014
  ident: 2889_CR9
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC01002G
– volume: 132
  start-page: 6517
  year: 2010
  ident: 2889_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja1012849
– volume: 139
  start-page: 4258
  year: 2017
  ident: 2889_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02648
– volume: 451
  start-page: 652
  year: 2008
  ident: 2889_CR1
  publication-title: Nature
  doi: 10.1038/451652a
– volume: 3
  start-page: 429
  year: 2016
  ident: 2889_CR31
  publication-title: Mater. Horiz.
  doi: 10.1039/C6MH00072J
– volume: 54
  start-page: 1812
  year: 2015
  ident: 2889_CR32
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201410154
– volume: 355
  start-page: 1585
  year: 2017
  ident: 2889_CR34
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 11
  start-page: 2226
  year: 2014
  ident: 2889_CR30
  publication-title: Small
  doi: 10.1002/smll.201303423
– volume: 26
  start-page: 8345
  year: 2016
  ident: 2889_CR5
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601631
– volume: 9
  start-page: 563
  year: 2017
  ident: 2889_CR53
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2696
– volume: 22
  start-page: 587
  year: 2010
  ident: 2889_CR4
  publication-title: Chem. Mater.
  doi: 10.1021/cm901452z
– volume: 4
  year: 2014
  ident: 2889_CR33
  publication-title: Sci. Rep.
  doi: 10.1038/srep07404
– volume: 10
  start-page: 921
  year: 2017
  ident: 2889_CR42
  publication-title: ChemSusChem
  doi: 10.1002/cssc.201601571
– volume: 54
  start-page: 7354
  year: 2015
  ident: 2889_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201503072
– volume: 7
  year: 2016
  ident: 2889_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13065
SSID ssj0000391844
Score 2.6754336
Snippet Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical...
Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 576
SubjectTerms 639/301/299/161/891
639/4077/4079/891
Activation
Batteries
Benzene
Carbon nanotubes
Covalence
Electrochemical analysis
Electrochemistry
Electrode materials
Electrodes
Electron diffusion
Electrons
Energy storage
Humanities and Social Sciences
Lithium
Lithium-ion batteries
multidisciplinary
Nanotechnology
Nanotubes
Rechargeable batteries
Science
Science (multidisciplinary)
Structural stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiEdLAy1ypd7AahzbiXPsIqoKqZxYqTfLGdvqSjRB7C6i_75jO1ntQoEL12SSjGbG84jH8xFy6tHleW4Vq6zwDOOxZx3mBUw2IFphoeEyHnC--lxfzuWna3W9BfUVe8LyeOAsuDMQjgfoeAOYXLQRBK-ptANo0xwT1UXvizFvq5hKPli0WLrI8ZQMUp4tZfIJJdcMQ6puWbMTidLA_oeyzN-bJX_ZMU2B6OIZeTpmkPQ8c_6cPPL9C_I4Y0revSRuNgzL2MtMMcG-Waxvaex_RK9BFz2FAQ0Lv0AzmBPQMPVm0R8LS-Mhh_yLlg6BcskmkBwax4r-pDChw-2T-cXHLx8u2QilwAArlBUDH1xQ1oErtVXBQ6ux8NI11MpVFtMQXIgeq5kQKhGUlxVw6UPT8S5ua_IgDsheP_T-kFAlsWJxHa-rTkrQXpetjxpxVojSc14QPonVwDhnPMJdfDVpv1tok1VhUBUmqcI0BXm3eeZbnrLxV-pZ1NaGMk7IThdQdma0G_MvuynI0aRrMy7bpeGp_EO_JgtysrmNko27KLb3w3oZcTuxjBZ1pHmVTWPDSdVK9I-yLEizYzQ7rO7e6Rc3aai30piKanzn-8m8ttj6oyhe_w9RvCFPqrwuWKmPyN7q-9ofY6q16t6mVXUPstwjug
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6tx7CTOCVHEUiHBiUq9Wc7EVleiSSG7Vfn3zDhOYHn0uvFmvZ7xzDee8XyMvfRo8rx0pSic8gL9sRct4gKha1CNclBLTRecP32ujo71x5PyJB24jamscraJ0VB3A9AZ-YGMyBxVTr85_yaINYqyq4lC4zq7IdHTUEmXWX1Yzlio-7nROt2VyZU5GHW0DLk0Ah2raUS9449i2_5_Yc2_Syb_yJtGd7S6w24nHMnfToK_y675_h67OTFL_rjPusNhGKmimSPMPl1vzzhVQaLt4Ouew4Dqhb_AJ0on4GGu0OIXa8fpqsN0UMuHwKUWM1UOp-ailxxmjrgH7Hj1_su7I5EIFQRgnLIR4EMXStdBlxtXBg-NwfDLVFCVXeEQjOB29BjThFCoUHpdgNQ-1K1sKbkpg3rI9vqh948ZLzXGLV0rq6LVGow3eYNixzc7pXIvZcbkvKwWUrdxIr34amPWWxk7icKiKGwUha0z9mr5zvnUa-PK0YckrWUk9cmOH-Da2bTtLKhOBmhlDQhNG6JQrGmW0MQuOGWbsf1Z1jZt3tH-UrWMvVge48pSLsX1ftiOxN6JwbSqaMyjSTWWmRSNRiup84zVO0qzM9XdJ_36NLb2Lg0CUoPvfD2r12_T-u9SPLn6Xzxlt4pJ40Vu9tne5vvWP0MotWmfx_3yEzEvG9o
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLtH6urRLBNw1uNslu9vEqlnKgL1roW8jOJvRAd4t3J_rfO8l-4Gkt-Lr52CHzkZlk8huAV55MnhdO88JJz2k_9rwhv4CrCmUtHVZCxQfOHz6W5xdqeakv96CY3sKkpP0EaZnM9JQd9natkkrnwnDaEU3NqztwEKHaSbYPFovlp-V8shIxz41S4wuZXJobBu_sQgms_yYP8-9EyT9uS9MmdHYI90fvkS0Geo9gz3cP4O5QT_LnQ2hP-34d85gZOddXq-1XFnMfyWKwVcewJ6GiP7ChkBOyMOVlse8rx-IDh-F4lvWBCcWnAjksQor-YDhVhnsEF2fvP78752MZBY4UnWw4-tAG7Vpsc-N08FgbCrpMiaVuC0cuCCmhp0gmhEIG7VWBQvlQNaKJV5oiyMew3_WdfwpMK4pW2kaURaMUGm_ymphNMzspcy9EBmJaVosjxngsdfHFprtuaezACkussIkVtsrg9TzmekDYuLX3aeTW3DOiY6cPtHZ2lBaLshUBG1EhOaR1LJxYRSqxTtg3usngZOK1HVV2bUUK_cimqQxezs20svEGxXW-365jzU4KoWUZ-zwZRGOmpKgV2UaVZ1DtCM0Oqbst3eoqAXprQ26ooTnfTOL1G1n_XIpn_9f9GO4Vgwbw3JzA_ubb1j8nh2rTvBg16Bc5tBsP
  priority: 102
  providerName: Springer Nature
Title Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry
URI https://link.springer.com/article/10.1038/s41467-018-02889-7
https://www.ncbi.nlm.nih.gov/pubmed/29422540
https://www.proquest.com/docview/1999660404
https://www.proquest.com/docview/2001063604
https://pubmed.ncbi.nlm.nih.gov/PMC5805684
https://doaj.org/article/c3d1fcb17c05490589728dcc9503885b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JGJWReANDHDux84BQW61MlTYhoFLfrMSxtUojYWuLtv-es5NUFAriJZUSxz3d98X2_QBeWXR5lhUpTQpuKcZjS0vMC6iQhue8MJIJf8D57Dw7nYnpPJ3vQQ931DFwubO083hSs-vLtzdXtx_Q4N-3R8bVu6UI5h4zRTFaqpzKfTjEyCQ9osFZl-4Hz8xzLGj8QnMSC0ZxAO_O0eyeZitWhZb-u_LQP7dT_ramGkLV5D7c63JMMmyV4gHs2foh3GlRJ28fQTVqmqXf7UwwBb9YrL8Rv0MS_QpZ1MQ0qHr4D6SFezLE9bu3yI9FQfwxiPYjLmkcYYL2MDrENx69IabHj3sMs8nJ1_Ep7cAWqMEaZkWNdZVLi8pUsSpSZ02usDRTmcnSKikwUUFTtVjvOJdwl1qRGCaskyUr_cInc_wJHNRNbZ8BSQXWNFXJsqQUwiir4hxVAmcuOI8tYxGwnq3adJ3IPSDGpQ4r4lzpVhQaRaGDKLSM4PXmne9tH45_jh55aW1G-h7a4QbyTncmqQ2vmDMlkwbT1tzDK0pPpclDh5y0jOC4l7Xu9VKzUCCi5xMRvNw8Rs76dZaits166ZE9sdDmmR_ztFWNDSVJLtCDijgCuaU0W6RuP6kXF6Htd6owWVU455tevX4h66-sOPoPMp_D3aRVexqrYzhYXa_tC8y1VuUA9uVc4lVNPg7gcDicfpni7-jk_NNnvDvOxoPwFWMQDO0nvI4plQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCazGsZM4B4QosGzp49RKvZnEsdWVIClkF-if4jcy4yQLy6O3XhOv4_V8nhnbM_MBPHGo8pwoU56U0nG0x45X6BdwlVtZyNLmQlGC895-Nj1U74_SozX4MebCUFjlqBODoq5bS2fkmyJ45gg59fLkMyfWKLpdHSk0eljsuNNvuGXrXmy_Qfk-TZLJ24PXUz6wCnCLzvqcW-drn5a1rWNdpt7ZQuMeRGc2S-ukRIuMmHTo2HufSJ86lVihnM8rUdENn_AS-70AF5VES06Z6ZN3yzMdqraulRpyc2KpNzsVNFEsNEdDrguer9i_QBPwL9_27xDNP-5pg_mbXIOrg9_KXvVAuw5rrrkBl3omy9ObUG-1bUcR1Azd-uPZ4hOjqEvUVWzWMNsinPELrKeQssyPEWHs66xklFrRHwyz1jOh-EjNw6iY6XdmR066W3B4LlN9G9abtnF3gaUK90l1JbKkUspqp-MCYYY9l1LGTogIxDitxg7VzYlk46MJt-xSm14UBkVhgihMHsGz5W9O-toeZ7beImktW1Jd7vAA584My9xYWQtvK5FbdIULomzMaZS2CFV30iqCjVHWZlAWnfkF7QgeL1_jzNLdTdm4dtERWyhu3mVGbe700FiOJCkUamUVR5CvgGZlqKtvmtlxKCWeanSANfb5fITXb8P671TcO_tfPILL04O9XbO7vb9zH64kPfp5rDdgff5l4R6gGzevHoa1w-DDeS_Wn2C4WcA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2jp2Nc0CIpV21FFYVolJvJnFsdSVICtkF-tf4dczkBcujt14Tr-P1fB7PeMbzATx2qPKcyGIeZdJx3I8dz9Eu4CqxMpWZTYSiC85v55PdQ_X6KD7agB_9XRhKq-x1YqOoi8rSGflYNJY5Qk6NfZcWcbA9e3HymRODFEVaezqNFiL77vQbum_1871tlPWTKJrtvH-1yzuGAW7RcF9y63zh46ywRaiz2DubavRH9MRO4iLKcHdGfDo08r2PpI-diqxQzie5yCnaJ7zEfi_AZkJe0Qg2pzvzg3fDCQ_VXtdKdTd1QqnHtWr0Uig0x21dpzxZ2w0b0oB_Wbp_J2z-EbVtNsPZVbjSWbHsZQu7a7DhyutwseW1PL0BxbSqasqnZmjkHy9WnxjlYKLmYouS2QrBjV9gLaGUZb7PD2NfFxmjixbtMTGrPBOK90Q9jEqbfme2Z6i7CYfnMtm3YFRWpbsDLFboNRW5mES5UlY7HaYIOuw5kzJ0QgQg-mk1tqt1TpQbH00Tc5fatKIwKArTiMIkATwdfnPSVvo4s_WUpDW0pCrdzQOcO9MtemNlIbzNRWLRME6JwDGhUdq0qcET5wFs9bI2neqozS-gB_BoeI0zS5GcrHTVqibuUHTl5YTa3G6hMYwkShXqaBUGkKyBZm2o62_KxXFTWDzWaA5r7PNZD6_fhvXfqbh79r94CJdwoZo3e_P9e3A5asHPQ70Fo-WXlbuPNt0yf9AtHgYfznu9_gREql9S
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+lithium+storage+in+covalent+organic+framework+via+activation+of+14-electron+redox+chemistry&rft.jtitle=Nature+communications&rft.au=Lei%2C+Zhendong&rft.au=Yang%2C+Qinsi&rft.au=Xu%2C+Yi&rft.au=Guo%2C+Siyu&rft.date=2018-02-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=576&rft_id=info:doi/10.1038%2Fs41467-018-02889-7&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon