Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry
Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 576 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.02.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g
−1
and can sustain 500 cycles at 100 mA g
−1
. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.
Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g
−1
with the storage mechanism governed by 14-electron redox chemistry. |
---|---|
AbstractList | Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g
−1
and can sustain 500 cycles at 100 mA g
−1
. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.
Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g
−1
with the storage mechanism governed by 14-electron redox chemistry. Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g −1 and can sustain 500 cycles at 100 mA g −1 . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g−1 and can sustain 500 cycles at 100 mA g−1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g-1 and can sustain 500 cycles at 100 mA g-1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries.Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g-1 and can sustain 500 cycles at 100 mA g-1. Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework that delivers a large reversible capacity of more than 1500 mAh g−1 with the storage mechanism governed by 14-electron redox chemistry. Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical flexibility at the molecular level, environmental benefit, and cost advantage. However, before any practical implementation takes place, the low capacity, poor structural stability, and sluggish ion/electron diffusion kinetics remain the obstacles that have to be overcome. Here, we report the synthesis of a few-layered two-dimensional covalent organic framework trapped by carbon nanotubes as the anode of lithium-ion batteries. Remarkably, upon activation, this organic electrode delivers a large reversible capacity of 1536 mAh g and can sustain 500 cycles at 100 mA g . Aided by theoretical calculations and electrochemical probing of the electrochemical behavior at different stages of cycling, the storage mechanism is revealed to be governed by 14-electron redox chemistry for a covalent organic framework monomer with one lithium ion per C=N group and six lithium ions per benzene ring. This work may pave the way to the development of high-capacity electrodes for organic rechargeable batteries. |
ArticleNumber | 576 |
Author | Lei, Zhendong Guo, Siyu Liu, Hao Lv, Li-Ping Yang, Qinsi Xu, Yi Wang, Yong Sun, Weiwei Zhang, Yong |
Author_xml | – sequence: 1 givenname: Zhendong surname: Lei fullname: Lei, Zhendong organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, NUS Graduate School for Integrative Sciences & Engineering, National University of Singapore – sequence: 2 givenname: Qinsi surname: Yang fullname: Yang, Qinsi organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University – sequence: 3 givenname: Yi surname: Xu fullname: Xu, Yi organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University – sequence: 4 givenname: Siyu surname: Guo fullname: Guo, Siyu organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University – sequence: 5 givenname: Weiwei surname: Sun fullname: Sun, Weiwei email: vivisun@shu.edu.cn organization: Institute of Green Chemical Engineering and Clean Energy, Shanghai University – sequence: 6 givenname: Hao surname: Liu fullname: Liu, Hao organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University – sequence: 7 givenname: Li-Ping surname: Lv fullname: Lv, Li-Ping organization: Institute of Green Chemical Engineering and Clean Energy, Shanghai University – sequence: 8 givenname: Yong orcidid: 0000-0002-1303-0458 surname: Zhang fullname: Zhang, Yong organization: Department of Biomedical Engineering, National University of Singapore – sequence: 9 givenname: Yong surname: Wang fullname: Wang, Yong email: yongwang@shu.edu.cn organization: Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29422540$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1vFSEUnZgaW2v_gAtD4sbNKDDAwMbENn40aeJG14S5A-_xnAcVmKf999I3tXltomz4Oudw7-E8b45CDLZpXhL8luBOvsuMMNG3mMgWUylV2z9pTihmpCU97Y4O1sfNWc4bXEeniGTsWXNMFaOUM3zSjOcx5uLDCk2-rP28RbnEZFYW-YAg7sxkQ0ExrUzwgFwyW_srph9o5w0yUPzOFB8Dig4R1trJQkl1m-wYfyNY263PJd28aJ46M2V7djefNt8_ffx28aW9-vr58uLDVQsCi9KCdaPjZoQRS8OdBSUVZVKA4CM1WHCihMVKOEc7xy2jQJh1_UAGTHtOXHfaXC66YzQbfZ381qQbHY3X-4PahTapeJishm4kDgbSA-ZMYS5VT-UIoHg1V_Khar1ftK7nYWtHqDYkMz0QfXgT_Fqv4k5zibmQrAq8uRNI8edsc9HVDLDTZIKNc9YUY4JFJ_At9PUj6CbOKVSrNFFKiYrZo14dVnRfyt_PrAC6ACDFnJN19xCC9W1o9BIaXUOj96HRfSXJRyTwZf-ptSs__Z_aLdRc3wkrmw7K_jfrD6bJ1t4 |
CitedBy_id | crossref_primary_10_1002_chem_202303683 crossref_primary_10_1002_chem_202404140 crossref_primary_10_1039_D0TA06206E crossref_primary_10_1002_sstr_202100122 crossref_primary_10_1016_j_cej_2023_142434 crossref_primary_10_1039_D2CS00065B crossref_primary_10_1021_acsnano_3c00358 crossref_primary_10_1039_C9CP02117E crossref_primary_10_1016_j_ensm_2021_12_041 crossref_primary_10_1002_anie_202112924 crossref_primary_10_1016_j_jcat_2023_115112 crossref_primary_10_1002_ange_202423186 crossref_primary_10_1016_j_electacta_2023_142276 crossref_primary_10_1021_acsami_2c04831 crossref_primary_10_1016_j_ensm_2024_103295 crossref_primary_10_1016_j_snb_2020_128501 crossref_primary_10_1021_acsomega_3c09299 crossref_primary_10_1002_anie_201914395 crossref_primary_10_1016_j_cej_2024_154941 crossref_primary_10_1016_j_ccr_2022_214968 crossref_primary_10_1021_acsami_2c11132 crossref_primary_10_1021_acsnano_9b07807 crossref_primary_10_1039_D0QM00335B crossref_primary_10_1002_eem2_12732 crossref_primary_10_1002_smm2_1115 crossref_primary_10_1039_D1TA03784F crossref_primary_10_1002_anie_202206093 crossref_primary_10_1039_D0CS00017E crossref_primary_10_1016_j_jpowsour_2019_227551 crossref_primary_10_1016_j_matt_2021_06_043 crossref_primary_10_1007_s40843_021_1831_1 crossref_primary_10_1016_j_orgel_2019_06_004 crossref_primary_10_1021_acsaem_3c03002 crossref_primary_10_1002_ange_202311460 crossref_primary_10_1002_adma_201903176 crossref_primary_10_1002_ange_202402497 crossref_primary_10_1016_j_electacta_2023_143498 crossref_primary_10_1021_acsami_1c10870 crossref_primary_10_1039_C9CS00880B crossref_primary_10_1016_j_electacta_2022_139947 crossref_primary_10_1021_acs_jpcc_4c04602 crossref_primary_10_1002_aenm_202003054 crossref_primary_10_1002_ange_202113067 crossref_primary_10_1016_j_nanoms_2023_10_002 crossref_primary_10_1002_ghg_2297 crossref_primary_10_1007_s12598_020_01502_5 crossref_primary_10_1039_D1TC00965F crossref_primary_10_1016_j_cej_2020_127454 crossref_primary_10_1007_s40843_023_2626_0 crossref_primary_10_1021_jacs_2c02196 crossref_primary_10_1038_s41467_019_13739_5 crossref_primary_10_1039_C8TA02820F crossref_primary_10_1016_j_carbon_2020_09_003 crossref_primary_10_1021_acsaem_0c02303 crossref_primary_10_1038_s41467_024_54844_4 crossref_primary_10_1039_D0CS01569E crossref_primary_10_1016_j_cej_2023_142658 crossref_primary_10_1021_jacs_3c05914 crossref_primary_10_1002_ange_202401253 crossref_primary_10_1002_anie_202209458 crossref_primary_10_1021_acsanm_2c02647 crossref_primary_10_1002_aenm_201802273 crossref_primary_10_1016_j_jpowsour_2024_234876 crossref_primary_10_1039_D4MA01088D crossref_primary_10_1002_adma_202301190 crossref_primary_10_1021_acsnano_8b02721 crossref_primary_10_1002_anie_202209583 crossref_primary_10_1007_s40242_022_1494_2 crossref_primary_10_1007_s41918_019_00056_0 crossref_primary_10_1039_D3CP05634A crossref_primary_10_1021_acs_nanolett_2c00965 crossref_primary_10_1016_j_matt_2019_07_017 crossref_primary_10_1016_j_tet_2020_131664 crossref_primary_10_1039_D4CC04688A crossref_primary_10_1016_j_apcatb_2021_120548 crossref_primary_10_1016_j_cej_2023_141434 crossref_primary_10_1016_j_ccr_2024_216121 crossref_primary_10_1002_marc_201800565 crossref_primary_10_1039_D4EE02777A crossref_primary_10_1002_smtd_202200314 crossref_primary_10_1021_acsanm_2c03634 crossref_primary_10_3866_PKU_WHXB202303060 crossref_primary_10_1002_adfm_202410372 crossref_primary_10_1021_jacs_8b10334 crossref_primary_10_1016_j_jcis_2024_01_033 crossref_primary_10_1002_ange_202416874 crossref_primary_10_1002_cplu_202000549 crossref_primary_10_1016_j_diamond_2024_110947 crossref_primary_10_1021_acsami_1c03170 crossref_primary_10_1007_s10118_020_2412_z crossref_primary_10_1002_adma_202210082 crossref_primary_10_1002_aenm_201904199 crossref_primary_10_1126_sciadv_adh8060 crossref_primary_10_1002_anie_202219083 crossref_primary_10_34133_2022_9798582 crossref_primary_10_1016_j_ccr_2023_215066 crossref_primary_10_3390_polym13193300 crossref_primary_10_1002_cssc_202301118 crossref_primary_10_1016_j_enchem_2020_100030 crossref_primary_10_1002_anie_202402497 crossref_primary_10_1016_j_jcis_2022_04_166 crossref_primary_10_1016_j_xcrp_2023_101273 crossref_primary_10_1021_acsaem_1c00714 crossref_primary_10_1021_acsaem_3c02197 crossref_primary_10_1021_jacs_1c13005 crossref_primary_10_1016_j_cej_2020_125169 crossref_primary_10_1021_acsaem_8b01432 crossref_primary_10_1021_jacs_2c07596 crossref_primary_10_1002_adma_202002038 crossref_primary_10_1002_eom2_12221 crossref_primary_10_1002_adma_202109870 crossref_primary_10_1016_j_enchem_2020_100048 crossref_primary_10_1016_j_chempr_2022_09_015 crossref_primary_10_1039_D3CS00906H crossref_primary_10_1002_aenm_202200057 crossref_primary_10_1039_D1CS00600B crossref_primary_10_1016_j_molliq_2022_118745 crossref_primary_10_1002_ange_201914395 crossref_primary_10_1002_ente_202100374 crossref_primary_10_1016_j_cej_2020_124071 crossref_primary_10_1007_s41918_022_00135_9 crossref_primary_10_1039_D0SE00610F crossref_primary_10_1002_cssc_202100837 crossref_primary_10_1002_adma_202211152 crossref_primary_10_1016_j_ccr_2021_214152 crossref_primary_10_1016_j_nanoen_2024_110534 crossref_primary_10_1039_D0TA12243B crossref_primary_10_1016_j_ensm_2022_05_021 crossref_primary_10_1016_j_chphma_2021_11_001 crossref_primary_10_1002_cplu_202300620 crossref_primary_10_1016_j_cej_2022_134594 crossref_primary_10_1002_ange_202112924 crossref_primary_10_1038_s41467_021_27573_1 crossref_primary_10_1039_D2MA00330A crossref_primary_10_1002_anie_202423186 crossref_primary_10_1016_j_nanoen_2020_104498 crossref_primary_10_1021_acsaem_2c01472 crossref_primary_10_1021_acsami_9b20384 crossref_primary_10_3389_fenrg_2021_663270 crossref_primary_10_3389_fnut_2022_1075296 crossref_primary_10_1002_smll_202309321 crossref_primary_10_1021_jacs_2c07575 crossref_primary_10_1021_jacs_2c10501 crossref_primary_10_1016_j_seppur_2022_122776 crossref_primary_10_1039_D2TA03953B crossref_primary_10_1016_j_cej_2024_149535 crossref_primary_10_1016_j_compositesb_2022_110334 crossref_primary_10_1039_D4TA03048F crossref_primary_10_1002_smll_202207972 crossref_primary_10_1002_smtd_202300687 crossref_primary_10_1016_j_gee_2022_12_010 crossref_primary_10_1016_j_jelechem_2021_115495 crossref_primary_10_1038_s41467_022_29050_9 crossref_primary_10_1039_D0NH00187B crossref_primary_10_1007_s11426_021_1016_6 crossref_primary_10_1016_j_colsurfa_2022_129707 crossref_primary_10_1021_acs_langmuir_3c02215 crossref_primary_10_1016_j_chempr_2022_08_001 crossref_primary_10_1002_smll_202301847 crossref_primary_10_1002_aenm_201801010 crossref_primary_10_1016_j_matlet_2022_133721 crossref_primary_10_1007_s11581_023_05294_3 crossref_primary_10_1016_j_matre_2021_01_003 crossref_primary_10_1002_adma_202109658 crossref_primary_10_1016_j_carbon_2020_08_064 crossref_primary_10_1021_acsami_0c16116 crossref_primary_10_1039_D2TA08526G crossref_primary_10_1016_j_cej_2022_138052 crossref_primary_10_1021_acsnano_3c08240 crossref_primary_10_1007_s12613_021_2249_7 crossref_primary_10_1021_acs_chemrev_1c00636 crossref_primary_10_1021_acsami_9b17311 crossref_primary_10_3390_molecules28247993 crossref_primary_10_1002_anie_202416874 crossref_primary_10_3390_batteries9020085 crossref_primary_10_1002_aenm_202400521 crossref_primary_10_1016_j_ensm_2020_07_001 crossref_primary_10_1039_D4TA00221K crossref_primary_10_1016_j_jmst_2022_02_049 crossref_primary_10_1002_cctc_202401362 crossref_primary_10_1016_j_ccr_2025_216498 crossref_primary_10_1007_s11426_020_9796_9 crossref_primary_10_1016_j_est_2025_116269 crossref_primary_10_1039_D1TA09433E crossref_primary_10_1002_EXP_20220066 crossref_primary_10_1039_C9NR00088G crossref_primary_10_1016_j_ccr_2021_213782 crossref_primary_10_1016_j_matlet_2020_129235 crossref_primary_10_1039_C8TA04611E crossref_primary_10_1016_j_jmgm_2022_108318 crossref_primary_10_1063_5_0147071 crossref_primary_10_1039_D1SE01649K crossref_primary_10_1039_D4GC03426K crossref_primary_10_1016_j_cej_2025_160004 crossref_primary_10_1002_anie_202310937 crossref_primary_10_1016_j_jpowsour_2019_04_027 crossref_primary_10_1007_s40843_021_2027_3 crossref_primary_10_1002_smll_202105927 crossref_primary_10_1002_celc_202300389 crossref_primary_10_1063_5_0073426 crossref_primary_10_1021_acs_macromol_4c01036 crossref_primary_10_1002_bkcs_12408 crossref_primary_10_1039_D1NR07209A crossref_primary_10_1016_j_jpowsour_2024_234353 crossref_primary_10_1002_adfm_202210184 crossref_primary_10_1039_C8TA11982A crossref_primary_10_1016_j_est_2024_112984 crossref_primary_10_1016_j_tifs_2025_104936 crossref_primary_10_1002_ange_202011484 crossref_primary_10_1002_cnma_202200330 crossref_primary_10_1007_s10967_021_07971_x crossref_primary_10_1002_anie_202401253 crossref_primary_10_1021_acsami_9b08625 crossref_primary_10_1039_D3RA06060H crossref_primary_10_1039_D4TA06789D crossref_primary_10_1002_ange_202302143 crossref_primary_10_1039_D1TA03842G crossref_primary_10_1039_C9ME00104B crossref_primary_10_1021_acs_chemmater_0c03218 crossref_primary_10_1007_s10800_023_01964_2 crossref_primary_10_1039_C8TA10554E crossref_primary_10_1002_ange_202206093 crossref_primary_10_1002_aenm_202301378 crossref_primary_10_1016_j_cej_2022_140283 crossref_primary_10_1039_D0NR08973G crossref_primary_10_1002_cssc_202101623 crossref_primary_10_1016_j_progpolymsci_2023_101691 crossref_primary_10_1002_tcr_202000074 crossref_primary_10_1021_jacs_2c08273 crossref_primary_10_1002_adfm_202100505 crossref_primary_10_1002_adts_201900130 crossref_primary_10_1016_j_ensm_2023_103014 crossref_primary_10_1039_C9TA13384D crossref_primary_10_1002_cssc_202300312 crossref_primary_10_1016_j_cej_2018_06_093 crossref_primary_10_1016_j_electacta_2025_146041 crossref_primary_10_1039_D2EE02742A crossref_primary_10_1021_jacs_9b03467 crossref_primary_10_1039_C8DT05055D crossref_primary_10_1021_jacs_3c09699 crossref_primary_10_1002_adma_202405747 crossref_primary_10_1016_j_matchemphys_2022_126391 crossref_primary_10_1002_anie_202008960 crossref_primary_10_1039_C8DT04716B crossref_primary_10_3390_molecules27196204 crossref_primary_10_3390_coatings12121912 crossref_primary_10_1002_ange_202209458 crossref_primary_10_1016_j_ensm_2023_103143 crossref_primary_10_1039_C9TA08584J crossref_primary_10_1016_j_ensm_2023_103142 crossref_primary_10_1002_adfm_202310668 crossref_primary_10_1002_marc_202200803 crossref_primary_10_1021_jacs_4c05192 crossref_primary_10_1002_ange_202209583 crossref_primary_10_1016_j_apmt_2020_100791 crossref_primary_10_1002_adfm_202204539 crossref_primary_10_1039_D0TA07708A crossref_primary_10_1016_j_est_2023_108006 crossref_primary_10_1016_j_bios_2019_02_040 crossref_primary_10_1021_acs_jpcc_9b09268 crossref_primary_10_1016_j_jiec_2024_01_014 crossref_primary_10_1039_D0CC04749J crossref_primary_10_1002_asia_202100030 crossref_primary_10_1002_aenm_202203921 crossref_primary_10_1016_j_ensm_2019_07_018 crossref_primary_10_1016_j_xcrp_2022_100951 crossref_primary_10_1021_acsami_9b06114 crossref_primary_10_1002_anie_202317135 crossref_primary_10_1002_chem_201805550 crossref_primary_10_1016_j_cej_2021_133023 crossref_primary_10_1007_s11426_022_1269_0 crossref_primary_10_1002_cssc_201903112 crossref_primary_10_1016_j_carbon_2018_10_044 crossref_primary_10_1039_D3TA05892A crossref_primary_10_1007_s41918_024_00218_9 crossref_primary_10_1021_acsnano_3c03918 crossref_primary_10_1016_j_colsurfa_2022_129786 crossref_primary_10_1002_anie_202307459 crossref_primary_10_1039_D1TC02985A crossref_primary_10_3390_molecules29163785 crossref_primary_10_1039_D2TA04581H crossref_primary_10_1007_s12598_023_02525_4 crossref_primary_10_1021_acsami_9b16280 crossref_primary_10_1002_anie_202317015 crossref_primary_10_1002_aesr_202000044 crossref_primary_10_1016_j_ensm_2023_103164 crossref_primary_10_34133_energymatadv_0078 crossref_primary_10_1002_cssc_201903007 crossref_primary_10_1002_cssc_202301851 crossref_primary_10_1021_acsaem_2c03806 crossref_primary_10_1039_D3CS00782K crossref_primary_10_1021_acsnano_9b00165 crossref_primary_10_1002_aenm_202003990 crossref_primary_10_1038_s44160_024_00644_z crossref_primary_10_1002_aenm_202002523 crossref_primary_10_1016_j_ensm_2019_09_005 crossref_primary_10_1002_anie_201913975 crossref_primary_10_1002_ange_202013912 crossref_primary_10_1039_D0TA10785A crossref_primary_10_1039_D0QI01104E crossref_primary_10_1007_s10008_021_04955_5 crossref_primary_10_1021_acsnano_0c05896 crossref_primary_10_1021_acsami_3c12674 crossref_primary_10_1002_anie_202424641 crossref_primary_10_1016_j_tetlet_2020_152656 crossref_primary_10_1016_j_est_2024_115026 crossref_primary_10_1016_j_est_2024_115143 crossref_primary_10_1002_batt_202200413 crossref_primary_10_1039_D2GC04771C crossref_primary_10_1002_adma_202105647 crossref_primary_10_1002_wcms_1660 crossref_primary_10_1007_s41918_022_00152_8 crossref_primary_10_1021_acsaem_2c03154 crossref_primary_10_1002_adfm_202108798 crossref_primary_10_1002_aenm_201902428 crossref_primary_10_1007_s40843_023_2545_y crossref_primary_10_1016_j_cclet_2023_108233 crossref_primary_10_1016_j_chempr_2020_08_021 crossref_primary_10_1016_S1872_5805_21_60001_X crossref_primary_10_1021_acsmaterialslett_4c01672 crossref_primary_10_1016_j_chempr_2020_08_024 crossref_primary_10_1002_nano_202100153 crossref_primary_10_1021_acsami_0c06267 crossref_primary_10_1021_jacs_2c02301 crossref_primary_10_1002_ange_202310937 crossref_primary_10_1021_acsami_8b09546 crossref_primary_10_1016_j_jpowsour_2020_228515 crossref_primary_10_1039_D0EE02848G crossref_primary_10_1002_batt_202200429 crossref_primary_10_1002_smll_202001070 crossref_primary_10_1002_celc_201900848 crossref_primary_10_1002_batt_202000094 crossref_primary_10_1002_adfm_201806937 crossref_primary_10_1016_j_cej_2024_154367 crossref_primary_10_1039_D0CC02438D crossref_primary_10_1002_smll_202410973 crossref_primary_10_1016_j_cej_2022_138116 crossref_primary_10_1002_batt_202200434 crossref_primary_10_1039_D0QM00846J crossref_primary_10_1039_D4TA00892H crossref_primary_10_1016_j_jelechem_2021_115737 crossref_primary_10_1016_j_mtener_2020_100478 crossref_primary_10_1039_D1CS01014J crossref_primary_10_1002_anie_202421008 crossref_primary_10_1016_j_carbon_2022_01_021 crossref_primary_10_1016_j_nanoen_2024_110161 crossref_primary_10_1021_acsami_2c20309 crossref_primary_10_1038_s41467_019_14237_4 crossref_primary_10_1016_j_jpowsour_2022_231041 crossref_primary_10_1039_D1NJ00610J crossref_primary_10_1039_D3TA01794J crossref_primary_10_1016_j_mattod_2023_02_027 crossref_primary_10_1016_j_physb_2023_415027 crossref_primary_10_1016_j_ijhydene_2025_03_120 crossref_primary_10_1002_smll_202005209 crossref_primary_10_1002_adma_202101175 crossref_primary_10_1002_adma_201801600 crossref_primary_10_1016_j_flatc_2024_100645 crossref_primary_10_1039_D1DT01400E crossref_primary_10_1002_ange_201904291 crossref_primary_10_1016_j_jallcom_2019_06_074 crossref_primary_10_1016_j_jpowsour_2021_229827 crossref_primary_10_1021_acsnano_2c03857 crossref_primary_10_1021_acsaem_9b01419 crossref_primary_10_1002_macp_202300427 crossref_primary_10_1016_j_scitotenv_2022_155312 crossref_primary_10_1021_acsnano_4c11262 crossref_primary_10_1002_ange_202421008 crossref_primary_10_3390_ma11060937 crossref_primary_10_1039_D1SC06412F crossref_primary_10_1007_s10008_024_05942_2 crossref_primary_10_1021_acs_jpcc_0c02770 crossref_primary_10_1039_D3TA02683C crossref_primary_10_1016_j_apsusc_2020_146396 crossref_primary_10_1021_acsaem_1c00155 crossref_primary_10_1016_j_est_2023_107561 crossref_primary_10_1002_ange_202302276 crossref_primary_10_1007_s12274_021_3433_9 crossref_primary_10_1002_smll_202100918 crossref_primary_10_3390_ma16010177 crossref_primary_10_1080_08927022_2023_2189980 crossref_primary_10_1016_j_jclepro_2022_134114 crossref_primary_10_1007_s11581_023_04914_2 crossref_primary_10_1039_D2TC01150F crossref_primary_10_1002_anie_202311657 crossref_primary_10_1002_ange_201913975 crossref_primary_10_1002_anie_202013912 crossref_primary_10_1007_s11426_024_2213_2 crossref_primary_10_1002_adsc_202001086 crossref_primary_10_1016_j_cej_2020_125967 crossref_primary_10_1016_j_jcis_2023_03_106 crossref_primary_10_1016_j_memsci_2024_122799 crossref_primary_10_1016_j_electacta_2022_140565 crossref_primary_10_1038_s41570_020_0160_9 crossref_primary_10_1016_j_jcis_2024_12_021 crossref_primary_10_1016_j_microc_2023_109067 crossref_primary_10_1021_acs_chemrev_9b00550 crossref_primary_10_1021_acsaem_3c00586 crossref_primary_10_1039_D1RA06528A crossref_primary_10_1002_EXP_20220144 crossref_primary_10_1016_j_heliyon_2024_e36083 crossref_primary_10_1021_acsaem_0c00729 crossref_primary_10_1021_acscatal_4c01720 crossref_primary_10_1039_D3EE00211J crossref_primary_10_1021_jacs_2c11264 crossref_primary_10_1002_aenm_202100177 crossref_primary_10_1039_D4TA05466K crossref_primary_10_1016_j_cclet_2023_108785 crossref_primary_10_1002_celc_202000963 crossref_primary_10_1021_acsapm_4c01136 crossref_primary_10_1002_adfm_202302874 crossref_primary_10_1007_s12274_022_4273_y crossref_primary_10_1002_chem_202101587 crossref_primary_10_1002_inf2_12277 crossref_primary_10_1002_smll_202303353 crossref_primary_10_1016_j_cej_2024_154449 crossref_primary_10_1016_j_est_2023_109405 crossref_primary_10_1016_j_cej_2019_123111 crossref_primary_10_1039_D3RA01414B crossref_primary_10_1360_TB_2024_0544 crossref_primary_10_1016_j_jallcom_2025_179890 crossref_primary_10_1016_j_colsurfa_2022_130496 crossref_primary_10_1016_j_matt_2024_01_028 crossref_primary_10_1016_j_synthmet_2022_117112 crossref_primary_10_1016_j_jtice_2022_104293 crossref_primary_10_1016_j_apsusc_2021_149849 crossref_primary_10_1038_s41467_023_39544_9 crossref_primary_10_1016_j_cej_2022_139016 crossref_primary_10_1016_j_est_2022_105092 crossref_primary_10_1021_acsami_2c09618 crossref_primary_10_1002_ange_202219083 crossref_primary_10_1002_cssc_202000883 crossref_primary_10_1021_acsami_3c11111 crossref_primary_10_1039_C9CC05710B crossref_primary_10_1021_acsaem_1c02569 crossref_primary_10_1021_acsaem_1c02200 crossref_primary_10_1021_acsami_8b12888 crossref_primary_10_1002_chem_202000722 crossref_primary_10_1039_D0CS00620C crossref_primary_10_1016_j_jechem_2020_05_021 crossref_primary_10_1016_j_jechem_2025_01_062 crossref_primary_10_1002_chem_201903733 crossref_primary_10_1039_D4TA04330H crossref_primary_10_1002_admi_202200800 crossref_primary_10_1016_j_mtchem_2018_12_002 crossref_primary_10_3390_polym16050687 crossref_primary_10_1002_adfm_202101194 crossref_primary_10_1002_adfm_202407479 crossref_primary_10_1016_j_ensm_2021_05_008 crossref_primary_10_1073_pnas_2315407121 crossref_primary_10_1007_s12274_024_6509_5 crossref_primary_10_1007_s10854_023_10832_w crossref_primary_10_1021_acs_iecr_8b01091 crossref_primary_10_1016_j_est_2024_113124 crossref_primary_10_1016_j_mtcomm_2023_107768 crossref_primary_10_1039_C9NR07716B crossref_primary_10_1002_adfm_202003761 crossref_primary_10_1021_acs_chemmater_1c02660 crossref_primary_10_1002_ece2_30 crossref_primary_10_1007_s12598_022_02100_3 crossref_primary_10_1021_acsami_1c14838 crossref_primary_10_1021_acs_jpcc_8b11185 crossref_primary_10_1016_j_xinn_2021_100076 crossref_primary_10_1002_aenm_202204334 crossref_primary_10_1021_acsami_4c06012 crossref_primary_10_1002_sstr_202200126 crossref_primary_10_1021_acsaem_0c02281 crossref_primary_10_1021_jacs_2c12186 crossref_primary_10_1039_D2TA03579K crossref_primary_10_1002_anie_202302276 crossref_primary_10_1039_D3PY01325A crossref_primary_10_1016_j_powtec_2020_05_060 crossref_primary_10_1002_ange_202311657 crossref_primary_10_1021_jacs_3c06723 crossref_primary_10_1002_anie_202011484 crossref_primary_10_1039_D1TA08942K crossref_primary_10_1002_anie_202311460 crossref_primary_10_1002_smll_202202018 crossref_primary_10_1016_j_mser_2024_100771 crossref_primary_10_1515_ntrev_2022_0046 crossref_primary_10_1002_bkcs_12193 crossref_primary_10_1007_s12274_021_3950_6 crossref_primary_10_1002_adsr_202300131 crossref_primary_10_1002_adfm_202003863 crossref_primary_10_1002_smll_202304367 crossref_primary_10_1002_anie_202302143 crossref_primary_10_3389_fphy_2022_890845 crossref_primary_10_1002_anie_202113067 crossref_primary_10_1021_acsami_9b23438 crossref_primary_10_1002_anie_201904291 crossref_primary_10_1021_jacs_3c04657 crossref_primary_10_1002_agt2_525 crossref_primary_10_1016_j_apsusc_2022_154220 crossref_primary_10_1002_ange_202424641 crossref_primary_10_1021_jacs_0c05130 crossref_primary_10_1016_j_vacuum_2025_114124 crossref_primary_10_1021_acsnano_1c05497 crossref_primary_10_1016_j_cej_2022_136584 crossref_primary_10_1016_j_est_2025_115746 crossref_primary_10_1016_j_cclet_2024_110305 crossref_primary_10_1515_ntrev_2022_0057 crossref_primary_10_1016_j_cej_2022_136345 crossref_primary_10_1021_jacs_3c11182 crossref_primary_10_1016_j_ijbiomac_2024_129690 crossref_primary_10_1016_j_nanoen_2021_105958 crossref_primary_10_1039_D1CC06308A crossref_primary_10_1002_advs_202400626 crossref_primary_10_1002_marc_202200782 crossref_primary_10_1002_adma_201901640 crossref_primary_10_1016_j_jcis_2021_05_081 crossref_primary_10_1021_acs_energyfuels_3c01366 crossref_primary_10_1039_D3TA05959F crossref_primary_10_1016_j_apsusc_2022_153481 crossref_primary_10_1016_j_cej_2024_150812 crossref_primary_10_1039_D0EE02309D crossref_primary_10_1021_jacs_0c00923 crossref_primary_10_1002_aenm_201904230 crossref_primary_10_1039_D1RA00794G crossref_primary_10_1002_ange_202317015 crossref_primary_10_1016_j_cej_2020_124924 crossref_primary_10_1016_j_mtchem_2024_102140 crossref_primary_10_1021_acs_energyfuels_4c03634 crossref_primary_10_1002_ange_202317135 crossref_primary_10_1002_aenm_202101880 crossref_primary_10_1016_j_ensm_2021_05_043 crossref_primary_10_1016_j_ensm_2021_04_008 crossref_primary_10_1016_j_mtener_2019_100359 crossref_primary_10_1016_j_cej_2022_137687 crossref_primary_10_1002_pol_20210940 crossref_primary_10_1016_j_jpowsour_2022_231340 crossref_primary_10_1016_j_ensm_2022_06_018 crossref_primary_10_1016_j_apsusc_2021_152024 crossref_primary_10_1016_j_ensm_2021_06_010 crossref_primary_10_1016_j_ensm_2021_06_012 crossref_primary_10_1002_adfm_202107703 crossref_primary_10_1002_aesr_202300217 crossref_primary_10_1016_j_ssi_2020_115247 crossref_primary_10_1016_j_polymer_2018_12_030 crossref_primary_10_1002_ange_202307459 crossref_primary_10_1039_D3NR05797F crossref_primary_10_1039_C9TA05552E crossref_primary_10_1021_jacs_3c06764 crossref_primary_10_1016_j_apsusc_2023_158079 crossref_primary_10_1002_aenm_202100330 crossref_primary_10_1021_acs_jpclett_1c02004 crossref_primary_10_1002_idm2_12070 crossref_primary_10_1016_j_cej_2021_131630 crossref_primary_10_1039_D0TA01727B crossref_primary_10_1002_smll_201904830 crossref_primary_10_1021_acsami_4c12813 crossref_primary_10_1039_C8TA11230D crossref_primary_10_1039_D3RA07655E crossref_primary_10_1016_j_cej_2019_01_178 crossref_primary_10_1002_aenm_202100321 crossref_primary_10_1002_eem2_12797 crossref_primary_10_1016_j_apsusc_2022_155877 crossref_primary_10_1039_C9SC02340B crossref_primary_10_2139_ssrn_3773790 crossref_primary_10_1021_acsnano_9b07360 crossref_primary_10_1021_acscatal_1c03441 crossref_primary_10_1002_bkcs_11911 crossref_primary_10_1021_acscatal_4c04968 crossref_primary_10_1021_acsami_2c08366 crossref_primary_10_2139_ssrn_4055903 crossref_primary_10_1002_aenm_202402489 crossref_primary_10_1016_j_electacta_2025_145850 crossref_primary_10_1021_acssuschemeng_1c08678 crossref_primary_10_1039_C9DT04788C crossref_primary_10_1002_marc_202200108 crossref_primary_10_1016_j_jallcom_2022_167064 crossref_primary_10_1021_acsami_3c10304 crossref_primary_10_1016_j_jpowsour_2022_232326 crossref_primary_10_1002_ange_202008960 crossref_primary_10_1007_s42114_024_01201_0 crossref_primary_10_1016_j_seppur_2023_124977 |
Cites_doi | 10.1002/adma.200602584 10.1021/acs.nanolett.6b05227 10.1039/C2TA00063F 10.1021/acs.nanolett.5b04105 10.1021/acsami.6b15637 10.1002/anie.201304496 10.1039/C4TA00523F 10.1038/nchem.2696 10.1021/acscentsci.6b00220 10.1021/acsnano.6b07692 10.1021/acsami.6b16769 10.1002/anie.201301850 10.1038/natrevmats.2016.68 10.1039/C6MH00072J 10.1002/anie.201202476 10.1002/aenm.201402189 10.1039/C2CS35072F 10.1002/adma.201505917 10.1038/451652a 10.1002/adma.201505788 10.1002/anie.201103493 10.1038/ncomms6335 10.1038/srep07404 10.1002/adma.201400910 10.1038/nenergy.2017.74 10.1021/ja206846p 10.1021/cm901452z 10.1038/ncomms13065 10.1002/smll.201303423 10.1039/C6SC05532J 10.1021/ja306663g 10.1021/jacs.7b02648 10.1002/adfm.201601631 10.1021/acs.nanolett.6b00870 10.1039/C2CC36622C 10.1126/science.aal1585 10.1039/C6CC09906H 10.1039/C4PY01383B 10.1021/acs.chemmater.6b01954 10.1002/aenm.201600461 10.1021/ja1012849 10.1002/anie.201604519 10.1021/jacs.6b05568 10.1039/C4CC01002G 10.1021/acs.chemmater.6b04178 10.1002/anie.201410154 10.1021/acsami.5b12370 10.1002/anie.201503072 10.1039/C6TA07606H 10.1002/aenm.201100795 10.1038/srep08225 10.1002/cssc.201601571 10.1002/adma.201200751 10.1039/C6TA06449C |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-02889-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_c3d1fcb17c05490589728dcc9503885b PMC5805684 29422540 10_1038_s41467_018_02889_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-cefdf5adcd08a5fec9892486c65d2a065196e096ff23f5e42c14ef7b1b02751f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:13 EDT 2025 Thu Aug 21 14:05:30 EDT 2025 Tue Aug 05 11:17:33 EDT 2025 Wed Aug 13 08:04:54 EDT 2025 Wed Feb 19 02:32:36 EST 2025 Thu Apr 24 22:58:05 EDT 2025 Tue Jul 01 02:21:09 EDT 2025 Fri Feb 21 02:39:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-cefdf5adcd08a5fec9892486c65d2a065196e096ff23f5e42c14ef7b1b02751f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1303-0458 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-02889-7 |
PMID | 29422540 |
PQID | 1999660404 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c3d1fcb17c05490589728dcc9503885b pubmedcentral_primary_oai_pubmedcentral_nih_gov_5805684 proquest_miscellaneous_2001063604 proquest_journals_1999660404 pubmed_primary_29422540 crossref_primary_10_1038_s41467_018_02889_7 crossref_citationtrail_10_1038_s41467_018_02889_7 springer_journals_10_1038_s41467_018_02889_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-02-08 |
PublicationDateYYYYMMDD | 2018-02-08 |
PublicationDate_xml | – month: 02 year: 2018 text: 2018-02-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Goodenough (CR4) 2010; 22 Jin (CR6) 2016; 16 Wu (CR26) 2015; 5 Li. (CR7) 2016; 7 Han (CR23) 2007; 19 Mulzer (CR46) 2016; 2 Yang (CR49) 2016; 4 Su (CR32) 2015; 54 Chandra (CR41) 2017; 29 Peng (CR54) 2016; 28 Peng (CR18) 2017; 2 Buyukcakir (CR39) 2017; 9 Liu (CR53) 2017; 9 Ren (CR15) 2012; 24 Diercks (CR34) 2017; 355 Huang (CR35) 2016; 68 Sun (CR27) 2016; 55 Li (CR5) 2016; 26 Liang (CR29) 2012; 2 Xu (CR9) 2014; 50 Ding (CR55) 2011; 133 Hu (CR28) 2016; 28 Vazquez-Molina (CR44) 2016; 138 Zhu (CR12) 2013; 49 Lee (CR19) 2013; 52 Wang (CR2) 2014; 26 Yang (CR51) 2016; 8 Yoo (CR17) 2016; 16 Xiang (CR36) 2015; 6 Deng (CR40) 2017; 9 Xu (CR47) 2017; 53 Kou (CR14) 2011; 50 Lin. (CR8) 2015; 350 Huang (CR30) 2014; 11 Liao (CR48) 2014; 2 Nokami (CR24) 2012; 134 Kwon (CR33) 2014; 4 Xiang (CR10) 2016; 28 Wu (CR13) 2015; 54 Walker (CR22) 2010; 132 Bai (CR50) 2016; 4 Shi (CR11) 2017; 17 Li (CR43) 2017; 8 Wang (CR52) 2017; 139 Armand (CR1) 2008; 451 Tian (CR31) 2016; 3 Xiang (CR37) 2013; 1 Ding (CR38) 2013; 42 Zhuang (CR16) 2013; 52 Medina (CR45) 2017; 3 Hong (CR20) 2014; 5 Bhanja (CR42) 2017; 10 Lei (CR3) 2016; 6 Sakaushi (CR21) 2012; 51 Xu (CR25) 2015; 5 DD Medina (2889_CR45) 2017; 3 T Sun (2889_CR27) 2016; 55 XC Li (2889_CR43) 2017; 8 Z Li. (2889_CR7) 2016; 7 ZH Xiang (2889_CR37) 2013; 1 YZ Su (2889_CR32) 2015; 54 S Wu (2889_CR26) 2015; 5 S Chandra (2889_CR41) 2017; 29 S Wang (2889_CR52) 2017; 139 X Deng (2889_CR40) 2017; 9 TQ Lin. (2889_CR8) 2015; 350 JT Yoo (2889_CR17) 2016; 16 T Nokami (2889_CR24) 2012; 134 K Sakaushi (2889_CR21) 2012; 51 JB Goodenough (2889_CR4) 2010; 22 SY Ding (2889_CR38) 2013; 42 SQ Xu (2889_CR47) 2017; 53 F Xu (2889_CR9) 2014; 50 H Li (2889_CR5) 2016; 26 BB Tian (2889_CR31) 2016; 3 Y Shi (2889_CR11) 2017; 17 YL Liang (2889_CR29) 2012; 2 CR Mulzer (2889_CR46) 2016; 2 FY Jin (2889_CR6) 2016; 16 Y Kou (2889_CR14) 2011; 50 PF Hu (2889_CR28) 2016; 28 XY Han (2889_CR23) 2007; 19 H Yang (2889_CR51) 2016; 8 MS Kwon (2889_CR33) 2014; 4 DH Yang (2889_CR49) 2016; 4 W Liu (2889_CR53) 2017; 9 XD Zhuang (2889_CR16) 2013; 52 J Hong (2889_CR20) 2014; 5 Y Lei (2889_CR3) 2016; 6 ZH Xiang (2889_CR10) 2016; 28 O Buyukcakir (2889_CR39) 2017; 9 YS Huang (2889_CR30) 2014; 11 CX Peng (2889_CR18) 2017; 2 LM Zhu (2889_CR12) 2013; 49 F Xu (2889_CR25) 2015; 5 DA Vazquez-Molina (2889_CR44) 2016; 138 XF Wang (2889_CR2) 2014; 26 SY Ding (2889_CR55) 2011; 133 N Huang (2889_CR35) 2016; 68 HP Liao (2889_CR48) 2014; 2 LY Bai (2889_CR50) 2016; 4 SJ Ren (2889_CR15) 2012; 24 M Lee (2889_CR19) 2013; 52 JS Wu (2889_CR13) 2015; 54 YW Peng (2889_CR54) 2016; 28 ZH Xiang (2889_CR36) 2015; 6 CS Diercks (2889_CR34) 2017; 355 M Armand (2889_CR1) 2008; 451 P Bhanja (2889_CR42) 2017; 10 W Walker (2889_CR22) 2010; 132 |
References_xml | – volume: 19 start-page: 1616 year: 2007 end-page: 1621 ident: CR23 article-title: Aromatic carbonyl derivative polymers as high-performance Li-ion storage materials publication-title: Adv. Mater. doi: 10.1002/adma.200602584 – volume: 17 start-page: 1906 year: 2017 end-page: 1914 ident: CR11 article-title: Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in Li-Ion batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05227 – volume: 1 start-page: 2691 year: 2013 end-page: 2718 ident: CR37 article-title: Porous covalent-organic materials: synthesis, clean energy application and design publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00063F – volume: 16 start-page: 440 year: 2016 end-page: 447 ident: CR6 article-title: Efficient activation of high-loading sulfur by small CNTs confined inside a large CNT for high-capacity and high-rate lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04105 – volume: 9 start-page: 3514 year: 2017 end-page: 3523 ident: CR40 article-title: Porphyrin-based porous organic frameworks as a biomimetic catalyst for highly efficient colorimetric immunoassay publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15637 – volume: 52 start-page: 9668 year: 2013 end-page: 9672 ident: CR16 article-title: Two-dimensional sandwich-type, graphene-based conjugated microporous polymers publication-title: Angew. Chem. doi: 10.1002/anie.201304496 – volume: 2 start-page: 8854 year: 2014 end-page: 8858 ident: CR48 article-title: Covalent-organic frameworks: potential host materials for sulfur impregnation in lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00523F – volume: 9 start-page: 563 year: 2017 end-page: 570 ident: CR53 article-title: A two-dimensional conjugated aromatic polymer via C-C coupling reaction publication-title: Nat. Chem. doi: 10.1038/nchem.2696 – volume: 2 start-page: 667 year: 2016 end-page: 673 ident: CR46 article-title: Superior charge storage and power density of a conducting polymer-modified covalent organic framework publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00220 – volume: 3 start-page: 2706 year: 2017 end-page: 2713 ident: CR45 article-title: Directional charge-carrier transport in oriented benzodithiophene covalent organic framework thin films publication-title: ACS Nano doi: 10.1021/acsnano.6b07692 – volume: 9 start-page: 7209 year: 2017 end-page: 7216 ident: CR39 article-title: Charged covalent triazine frameworks for CO capture and conversion publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16769 – volume: 52 start-page: 8322 year: 2013 end-page: 8328 ident: CR19 article-title: Redox cofactor from biological energy transduction as molecularly tunable energy-storage compound publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301850 – volume: 68 start-page: 16068 year: 2016 ident: CR35 article-title: Covalent organic frameworks: a materials platform for structural and functional designs publication-title: Nat. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 3 start-page: 429 year: 2016 end-page: 433 ident: CR31 article-title: Polyquinoneimines for lithium storage: more than the sum of its parts publication-title: Mater. Horiz. doi: 10.1039/C6MH00072J – volume: 51 start-page: 7850 year: 2012 end-page: 7854 ident: CR21 article-title: An energy storage principle using bipolar porous polymeric frameworks publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201202476 – volume: 5 start-page: 1402189 year: 2015 ident: CR26 article-title: Nanostructured conjugated ladder polymers for stable and fast lithium storage anodes with high-capacity publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402189 – volume: 42 start-page: 548 year: 2013 end-page: 568 ident: CR38 article-title: Covalent organic frameworks (COFs): from design to applications publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 28 start-page: 3486 year: 2016 end-page: 3492 ident: CR28 article-title: Renewable-biomolecule-based full lithium-ion batteries publication-title: Adv. Mater. doi: 10.1002/adma.201505917 – volume: 451 start-page: 652 year: 2008 end-page: 657 ident: CR1 article-title: Building better batteries publication-title: Nature doi: 10.1038/451652a – volume: 28 start-page: 6253 year: 2016 end-page: 6261 ident: CR10 article-title: Edge functionalization of graphene and two-dimensional covalent organic polymers for energy conversion and storage publication-title: Adv. Mater. doi: 10.1002/adma.201505788 – volume: 50 start-page: 8753 year: 2011 end-page: 8757 ident: CR14 article-title: Supercapacitive energy storage and electric power supply using an aza-fused p-conjugated microporous framework publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103493 – volume: 5 year: 2014 ident: CR20 article-title: Biologically inspired pteridine redox centres for rechargeable batteries publication-title: Nat. Commun. doi: 10.1038/ncomms6335 – volume: 4 year: 2014 ident: CR33 article-title: Synthesis of ordered mesoporous phenanthrenequinone-carbon via π-π interaction-dependent vapor pressure for rechargeable batteries publication-title: Sci. Rep. doi: 10.1038/srep07404 – volume: 26 start-page: 4763 year: 2014 end-page: 4782 ident: CR2 article-title: Flexible energy-storage devices: design consideration and recent progress publication-title: Adv. Mater. doi: 10.1002/adma.201400910 – volume: 2 start-page: 17074 year: 2017 ident: CR18 article-title: Reversible multi-electron redox chemistry of π-conjugated N-containing heteroaromatic molecule-based organic cathodes publication-title: Nat. Energy doi: 10.1038/nenergy.2017.74 – volume: 133 start-page: 19816 year: 2011 end-page: 19822 ident: CR55 article-title: Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki-miyaura coupling reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 22 start-page: 587 year: 2010 end-page: 603 ident: CR4 article-title: Challenges for rechargeable Li batteries publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 7 year: 2016 ident: CR7 article-title: A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms13065 – volume: 11 start-page: 2226 year: 2014 end-page: 2232 ident: CR30 article-title: Amphiphilic polymer promoted assembly of macroporous graphene/SnO frameworks with tunable porosity for high-performance lithium storage publication-title: Small doi: 10.1002/smll.201303423 – volume: 8 start-page: 2959 year: 2017 end-page: 2965 ident: CR43 article-title: Redox-active triazatruxene-based conjugated microporous polymers for high-performance supercapacitors publication-title: Chem. Sci. doi: 10.1039/C6SC05532J – volume: 134 start-page: 19694 year: 2012 end-page: 19700 ident: CR24 article-title: Polymer-bound pyrene-4,5,9,10-tetraone for fast-charge and -discharge lithium-ion batteries with high capacity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306663g – volume: 139 start-page: 4258 year: 2017 end-page: 4261 ident: CR52 article-title: Exfoliation of covalent organic frameworks into few-layer redox-active nanosheets as cathode materials for lithium-ion batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02648 – volume: 26 start-page: 8345 year: 2016 end-page: 8353 ident: CR5 article-title: Carbon nanotubes rooted in porous ternary metal sulfide@N/S-doped carbon dodecahedron: bimetal-organic-frameworks derivation and electrochemical application for high-capacity and long-life lithium-ion batteries publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601631 – volume: 16 start-page: 3292 year: 2016 end-page: 3300 ident: CR17 article-title: COF-net on CNT-net as a molecularly designed, hierarchical porous chemical trap for polysulfides in lithium-sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00870 – volume: 49 start-page: 567 year: 2013 end-page: 569 ident: CR12 article-title: An all-organic rechargeable battery using bipolar polyparaphenylene as a redox-active cathode and anode publication-title: Chem. Commun. doi: 10.1039/C2CC36622C – volume: 355 start-page: 1585 year: 2017 ident: CR34 article-title: The atom, the molecule, and the covalent organic framework publication-title: Science doi: 10.1126/science.aal1585 – volume: 53 start-page: 2431 year: 2017 end-page: 2434 ident: CR47 article-title: Construction of 2D covalent organic frameworks by taking advantage of the variable orientation of imine bonds publication-title: Chem. Commun. doi: 10.1039/C6CC09906H – volume: 6 start-page: 1896 year: 2015 end-page: 1911 ident: CR36 article-title: Well-defined two dimensional covalent organic polymers: rational design, controlled syntheses, and potential applications publication-title: Polym. Chem. doi: 10.1039/C4PY01383B – volume: 28 start-page: 5095 year: 2016 end-page: 5101 ident: CR54 article-title: Room temperature batch and continuous flow synthesis of water-stable covalent organic frameworks (COFs) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01954 – volume: 350 start-page: 62 year: 2015 end-page: 67 ident: CR8 article-title: Nitrogen-doped mesoporous carbon of extraordinary capacitance for electrochemical energy storage publication-title: Science – volume: 6 start-page: 1600461 year: 2016 ident: CR3 article-title: Functional Nanostructuring for efficient energy conversion and storage publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600461 – volume: 132 start-page: 6517 year: 2010 end-page: 6523 ident: CR22 article-title: Ethoxycarbonyl-based organic electrode for Li-batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1012849 – volume: 55 start-page: 10662 year: 2016 end-page: 10666 ident: CR27 article-title: A biodegradable polydopamine-derived electrode material for high-capacity and long-life lithium-ion and sodium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604519 – volume: 138 start-page: 9767 year: 2016 end-page: 9770 ident: CR44 article-title: Mechanically shaped two-dimensional covalent organic frameworks reveal crystallographic alignment and fast Li-Ion conductivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05568 – volume: 50 start-page: 4788 year: 2014 end-page: 4790 ident: CR9 article-title: Redox-active conjugated microporous polymers: a new organic platform for highly efficient energy storage publication-title: Chem. Commun. doi: 10.1039/C4CC01002G – volume: 29 start-page: 2074 year: 2017 end-page: 2080 ident: CR41 article-title: Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04178 – volume: 54 start-page: 1812 year: 2015 end-page: 1816 ident: CR32 article-title: Compact coupled graphene and porous polyaryltriazine-derived frameworks as high performance cathodes for lithium-ion batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410154 – volume: 8 start-page: 5366 year: 2016 end-page: 5375 ident: CR51 article-title: High conductive two-dimensional covalent organic framework for lithium storage with large capacity publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12370 – volume: 54 start-page: 7354 year: 2015 end-page: 7358 ident: CR13 article-title: Pushing up lithium storage through nanostructured polyazaacene analogues as anode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503072 – volume: 4 start-page: 18621 year: 2016 end-page: 18627 ident: CR49 article-title: Structure-modulated crystalline covalent organic frameworks as high-rate cathodes for Li-ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07606H – volume: 2 start-page: 742 year: 2012 end-page: 769 ident: CR29 article-title: Organic electrode materials for rechargeable lithium batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100795 – volume: 5 year: 2015 ident: CR25 article-title: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage publication-title: Sci. Rep. doi: 10.1038/srep08225 – volume: 10 start-page: 921 year: 2017 end-page: 929 ident: CR42 article-title: A new triazine based covalent organic framework for high-performance capacitive energy storage publication-title: ChemSusChem doi: 10.1002/cssc.201601571 – volume: 24 start-page: 2357 year: 2012 end-page: 2361 ident: CR15 article-title: Porous, fluorescent, covalent triazine-based frameworks via room-temperature and microwave-assisted synthesis publication-title: Adv. Mater. doi: 10.1002/adma.201200751 – volume: 4 start-page: 14106 year: 2016 end-page: 14110 ident: CR50 article-title: Two fully conjugated covalent organic frameworks as anode materials for lithium ion batteries publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06449C – volume: 5 year: 2015 ident: 2889_CR25 publication-title: Sci. Rep. doi: 10.1038/srep08225 – volume: 134 start-page: 19694 year: 2012 ident: 2889_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306663g – volume: 28 start-page: 3486 year: 2016 ident: 2889_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201505917 – volume: 52 start-page: 8322 year: 2013 ident: 2889_CR19 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201301850 – volume: 42 start-page: 548 year: 2013 ident: 2889_CR38 publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35072F – volume: 9 start-page: 3514 year: 2017 ident: 2889_CR40 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b15637 – volume: 2 start-page: 667 year: 2016 ident: 2889_CR46 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.6b00220 – volume: 49 start-page: 567 year: 2013 ident: 2889_CR12 publication-title: Chem. Commun. doi: 10.1039/C2CC36622C – volume: 29 start-page: 2074 year: 2017 ident: 2889_CR41 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04178 – volume: 4 start-page: 18621 year: 2016 ident: 2889_CR49 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA07606H – volume: 28 start-page: 6253 year: 2016 ident: 2889_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201505788 – volume: 4 start-page: 14106 year: 2016 ident: 2889_CR50 publication-title: J. Mater. Chem. A doi: 10.1039/C6TA06449C – volume: 8 start-page: 5366 year: 2016 ident: 2889_CR51 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12370 – volume: 50 start-page: 8753 year: 2011 ident: 2889_CR14 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201103493 – volume: 28 start-page: 5095 year: 2016 ident: 2889_CR54 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b01954 – volume: 52 start-page: 9668 year: 2013 ident: 2889_CR16 publication-title: Angew. Chem. doi: 10.1002/anie.201304496 – volume: 138 start-page: 9767 year: 2016 ident: 2889_CR44 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b05568 – volume: 16 start-page: 440 year: 2016 ident: 2889_CR6 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04105 – volume: 16 start-page: 3292 year: 2016 ident: 2889_CR17 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00870 – volume: 6 start-page: 1600461 year: 2016 ident: 2889_CR3 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201600461 – volume: 350 start-page: 62 year: 2015 ident: 2889_CR8 publication-title: Science – volume: 55 start-page: 10662 year: 2016 ident: 2889_CR27 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201604519 – volume: 17 start-page: 1906 year: 2017 ident: 2889_CR11 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b05227 – volume: 2 start-page: 742 year: 2012 ident: 2889_CR29 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201100795 – volume: 3 start-page: 2706 year: 2017 ident: 2889_CR45 publication-title: ACS Nano doi: 10.1021/acsnano.6b07692 – volume: 51 start-page: 7850 year: 2012 ident: 2889_CR21 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201202476 – volume: 6 start-page: 1896 year: 2015 ident: 2889_CR36 publication-title: Polym. Chem. doi: 10.1039/C4PY01383B – volume: 2 start-page: 17074 year: 2017 ident: 2889_CR18 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.74 – volume: 1 start-page: 2691 year: 2013 ident: 2889_CR37 publication-title: J. Mater. Chem. A doi: 10.1039/C2TA00063F – volume: 19 start-page: 1616 year: 2007 ident: 2889_CR23 publication-title: Adv. Mater. doi: 10.1002/adma.200602584 – volume: 9 start-page: 7209 year: 2017 ident: 2889_CR39 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b16769 – volume: 53 start-page: 2431 year: 2017 ident: 2889_CR47 publication-title: Chem. Commun. doi: 10.1039/C6CC09906H – volume: 133 start-page: 19816 year: 2011 ident: 2889_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja206846p – volume: 5 year: 2014 ident: 2889_CR20 publication-title: Nat. Commun. doi: 10.1038/ncomms6335 – volume: 2 start-page: 8854 year: 2014 ident: 2889_CR48 publication-title: J. Mater. Chem. A doi: 10.1039/C4TA00523F – volume: 26 start-page: 4763 year: 2014 ident: 2889_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.201400910 – volume: 8 start-page: 2959 year: 2017 ident: 2889_CR43 publication-title: Chem. Sci. doi: 10.1039/C6SC05532J – volume: 24 start-page: 2357 year: 2012 ident: 2889_CR15 publication-title: Adv. Mater. doi: 10.1002/adma.201200751 – volume: 5 start-page: 1402189 year: 2015 ident: 2889_CR26 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201402189 – volume: 68 start-page: 16068 year: 2016 ident: 2889_CR35 publication-title: Nat. Mater. doi: 10.1038/natrevmats.2016.68 – volume: 50 start-page: 4788 year: 2014 ident: 2889_CR9 publication-title: Chem. Commun. doi: 10.1039/C4CC01002G – volume: 132 start-page: 6517 year: 2010 ident: 2889_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja1012849 – volume: 139 start-page: 4258 year: 2017 ident: 2889_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b02648 – volume: 451 start-page: 652 year: 2008 ident: 2889_CR1 publication-title: Nature doi: 10.1038/451652a – volume: 3 start-page: 429 year: 2016 ident: 2889_CR31 publication-title: Mater. Horiz. doi: 10.1039/C6MH00072J – volume: 54 start-page: 1812 year: 2015 ident: 2889_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201410154 – volume: 355 start-page: 1585 year: 2017 ident: 2889_CR34 publication-title: Science doi: 10.1126/science.aal1585 – volume: 11 start-page: 2226 year: 2014 ident: 2889_CR30 publication-title: Small doi: 10.1002/smll.201303423 – volume: 26 start-page: 8345 year: 2016 ident: 2889_CR5 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601631 – volume: 9 start-page: 563 year: 2017 ident: 2889_CR53 publication-title: Nat. Chem. doi: 10.1038/nchem.2696 – volume: 22 start-page: 587 year: 2010 ident: 2889_CR4 publication-title: Chem. Mater. doi: 10.1021/cm901452z – volume: 4 year: 2014 ident: 2889_CR33 publication-title: Sci. Rep. doi: 10.1038/srep07404 – volume: 10 start-page: 921 year: 2017 ident: 2889_CR42 publication-title: ChemSusChem doi: 10.1002/cssc.201601571 – volume: 54 start-page: 7354 year: 2015 ident: 2889_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201503072 – volume: 7 year: 2016 ident: 2889_CR7 publication-title: Nat. Commun. doi: 10.1038/ncomms13065 |
SSID | ssj0000391844 |
Score | 2.6754336 |
Snippet | Conjugated polymeric molecules have been heralded as promising electrode materials for the next-generation energy-storage technologies owing to their chemical... Conjugated polymeric molecules are promising electrode materials for batteries. Here the authors show a two-dimensional few-layered covalent organic framework... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 576 |
SubjectTerms | 639/301/299/161/891 639/4077/4079/891 Activation Batteries Benzene Carbon nanotubes Covalence Electrochemical analysis Electrochemistry Electrode materials Electrodes Electron diffusion Electrons Energy storage Humanities and Social Sciences Lithium Lithium-ion batteries multidisciplinary Nanotechnology Nanotubes Rechargeable batteries Science Science (multidisciplinary) Structural stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiEdLAy1ypd7AahzbiXPsIqoKqZxYqTfLGdvqSjRB7C6i_75jO1ntQoEL12SSjGbG84jH8xFy6tHleW4Vq6zwDOOxZx3mBUw2IFphoeEyHnC--lxfzuWna3W9BfUVe8LyeOAsuDMQjgfoeAOYXLQRBK-ptANo0xwT1UXvizFvq5hKPli0WLrI8ZQMUp4tZfIJJdcMQ6puWbMTidLA_oeyzN-bJX_ZMU2B6OIZeTpmkPQ8c_6cPPL9C_I4Y0revSRuNgzL2MtMMcG-Waxvaex_RK9BFz2FAQ0Lv0AzmBPQMPVm0R8LS-Mhh_yLlg6BcskmkBwax4r-pDChw-2T-cXHLx8u2QilwAArlBUDH1xQ1oErtVXBQ6ux8NI11MpVFtMQXIgeq5kQKhGUlxVw6UPT8S5ua_IgDsheP_T-kFAlsWJxHa-rTkrQXpetjxpxVojSc14QPonVwDhnPMJdfDVpv1tok1VhUBUmqcI0BXm3eeZbnrLxV-pZ1NaGMk7IThdQdma0G_MvuynI0aRrMy7bpeGp_EO_JgtysrmNko27KLb3w3oZcTuxjBZ1pHmVTWPDSdVK9I-yLEizYzQ7rO7e6Rc3aai30piKanzn-8m8ttj6oyhe_w9RvCFPqrwuWKmPyN7q-9ofY6q16t6mVXUPstwjug priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6tx7CTOCVHEUiHBiUq9Wc7EVleiSSG7Vfn3zDhOYHn0uvFmvZ7xzDee8XyMvfRo8rx0pSic8gL9sRct4gKha1CNclBLTRecP32ujo71x5PyJB24jamscraJ0VB3A9AZ-YGMyBxVTr85_yaINYqyq4lC4zq7IdHTUEmXWX1Yzlio-7nROt2VyZU5GHW0DLk0Ah2raUS9449i2_5_Yc2_Syb_yJtGd7S6w24nHMnfToK_y675_h67OTFL_rjPusNhGKmimSPMPl1vzzhVQaLt4Ouew4Dqhb_AJ0on4GGu0OIXa8fpqsN0UMuHwKUWM1UOp-ailxxmjrgH7Hj1_su7I5EIFQRgnLIR4EMXStdBlxtXBg-NwfDLVFCVXeEQjOB29BjThFCoUHpdgNQ-1K1sKbkpg3rI9vqh948ZLzXGLV0rq6LVGow3eYNixzc7pXIvZcbkvKwWUrdxIr34amPWWxk7icKiKGwUha0z9mr5zvnUa-PK0YckrWUk9cmOH-Da2bTtLKhOBmhlDQhNG6JQrGmW0MQuOGWbsf1Z1jZt3tH-UrWMvVge48pSLsX1ftiOxN6JwbSqaMyjSTWWmRSNRiup84zVO0qzM9XdJ_36NLb2Lg0CUoPvfD2r12_T-u9SPLn6Xzxlt4pJ40Vu9tne5vvWP0MotWmfx_3yEzEvG9o priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CLtH6urRLBNw1uNslu9vEqlnKgL1roW8jOJvRAd4t3J_rfO8l-4Gkt-Lr52CHzkZlk8huAV55MnhdO88JJz2k_9rwhv4CrCmUtHVZCxQfOHz6W5xdqeakv96CY3sKkpP0EaZnM9JQd9natkkrnwnDaEU3NqztwEKHaSbYPFovlp-V8shIxz41S4wuZXJobBu_sQgms_yYP8-9EyT9uS9MmdHYI90fvkS0Geo9gz3cP4O5QT_LnQ2hP-34d85gZOddXq-1XFnMfyWKwVcewJ6GiP7ChkBOyMOVlse8rx-IDh-F4lvWBCcWnAjksQor-YDhVhnsEF2fvP78752MZBY4UnWw4-tAG7Vpsc-N08FgbCrpMiaVuC0cuCCmhp0gmhEIG7VWBQvlQNaKJV5oiyMew3_WdfwpMK4pW2kaURaMUGm_ymphNMzspcy9EBmJaVosjxngsdfHFprtuaezACkussIkVtsrg9TzmekDYuLX3aeTW3DOiY6cPtHZ2lBaLshUBG1EhOaR1LJxYRSqxTtg3usngZOK1HVV2bUUK_cimqQxezs20svEGxXW-365jzU4KoWUZ-zwZRGOmpKgV2UaVZ1DtCM0Oqbst3eoqAXprQ26ooTnfTOL1G1n_XIpn_9f9GO4Vgwbw3JzA_ubb1j8nh2rTvBg16Bc5tBsP priority: 102 providerName: Springer Nature |
Title | Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry |
URI | https://link.springer.com/article/10.1038/s41467-018-02889-7 https://www.ncbi.nlm.nih.gov/pubmed/29422540 https://www.proquest.com/docview/1999660404 https://www.proquest.com/docview/2001063604 https://pubmed.ncbi.nlm.nih.gov/PMC5805684 https://doaj.org/article/c3d1fcb17c05490589728dcc9503885b |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8IL7JGJWReANDHDux84BQW61MlTYhoFLfrMSxtUojYWuLtv-es5NUFAriJZUSxz3d98X2_QBeWXR5lhUpTQpuKcZjS0vMC6iQhue8MJIJf8D57Dw7nYnpPJ3vQQ931DFwubO083hSs-vLtzdXtx_Q4N-3R8bVu6UI5h4zRTFaqpzKfTjEyCQ9osFZl-4Hz8xzLGj8QnMSC0ZxAO_O0eyeZitWhZb-u_LQP7dT_ramGkLV5D7c63JMMmyV4gHs2foh3GlRJ28fQTVqmqXf7UwwBb9YrL8Rv0MS_QpZ1MQ0qHr4D6SFezLE9bu3yI9FQfwxiPYjLmkcYYL2MDrENx69IabHj3sMs8nJ1_Ep7cAWqMEaZkWNdZVLi8pUsSpSZ02usDRTmcnSKikwUUFTtVjvOJdwl1qRGCaskyUr_cInc_wJHNRNbZ8BSQXWNFXJsqQUwiir4hxVAmcuOI8tYxGwnq3adJ3IPSDGpQ4r4lzpVhQaRaGDKLSM4PXmne9tH45_jh55aW1G-h7a4QbyTncmqQ2vmDMlkwbT1tzDK0pPpclDh5y0jOC4l7Xu9VKzUCCi5xMRvNw8Rs76dZaits166ZE9sdDmmR_ztFWNDSVJLtCDijgCuaU0W6RuP6kXF6Htd6owWVU455tevX4h66-sOPoPMp_D3aRVexqrYzhYXa_tC8y1VuUA9uVc4lVNPg7gcDicfpni7-jk_NNnvDvOxoPwFWMQDO0nvI4plQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAASPBCazGsZM4B4QosGzp49RKvZnEsdWVIClkF-if4jcy4yQLy6O3XhOv4_V8nhnbM_MBPHGo8pwoU56U0nG0x45X6BdwlVtZyNLmQlGC895-Nj1U74_SozX4MebCUFjlqBODoq5bS2fkmyJ45gg59fLkMyfWKLpdHSk0eljsuNNvuGXrXmy_Qfk-TZLJ24PXUz6wCnCLzvqcW-drn5a1rWNdpt7ZQuMeRGc2S-ukRIuMmHTo2HufSJ86lVihnM8rUdENn_AS-70AF5VES06Z6ZN3yzMdqraulRpyc2KpNzsVNFEsNEdDrguer9i_QBPwL9_27xDNP-5pg_mbXIOrg9_KXvVAuw5rrrkBl3omy9ObUG-1bUcR1Azd-uPZ4hOjqEvUVWzWMNsinPELrKeQssyPEWHs66xklFrRHwyz1jOh-EjNw6iY6XdmR066W3B4LlN9G9abtnF3gaUK90l1JbKkUspqp-MCYYY9l1LGTogIxDitxg7VzYlk46MJt-xSm14UBkVhgihMHsGz5W9O-toeZ7beImktW1Jd7vAA584My9xYWQtvK5FbdIULomzMaZS2CFV30iqCjVHWZlAWnfkF7QgeL1_jzNLdTdm4dtERWyhu3mVGbe700FiOJCkUamUVR5CvgGZlqKtvmtlxKCWeanSANfb5fITXb8P671TcO_tfPILL04O9XbO7vb9zH64kPfp5rDdgff5l4R6gGzevHoa1w-DDeS_Wn2C4WcA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUBcEG8CBYwEJ7A2jp2Nc0CIpV21FFYVolJvJnFsdSVICtkF-tf4dczkBcujt14Tr-P1fB7PeMbzATx2qPKcyGIeZdJx3I8dz9Eu4CqxMpWZTYSiC85v55PdQ_X6KD7agB_9XRhKq-x1YqOoi8rSGflYNJY5Qk6NfZcWcbA9e3HymRODFEVaezqNFiL77vQbum_1871tlPWTKJrtvH-1yzuGAW7RcF9y63zh46ywRaiz2DubavRH9MRO4iLKcHdGfDo08r2PpI-diqxQzie5yCnaJ7zEfi_AZkJe0Qg2pzvzg3fDCQ_VXtdKdTd1QqnHtWr0Uig0x21dpzxZ2w0b0oB_Wbp_J2z-EbVtNsPZVbjSWbHsZQu7a7DhyutwseW1PL0BxbSqasqnZmjkHy9WnxjlYKLmYouS2QrBjV9gLaGUZb7PD2NfFxmjixbtMTGrPBOK90Q9jEqbfme2Z6i7CYfnMtm3YFRWpbsDLFboNRW5mES5UlY7HaYIOuw5kzJ0QgQg-mk1tqt1TpQbH00Tc5fatKIwKArTiMIkATwdfnPSVvo4s_WUpDW0pCrdzQOcO9MtemNlIbzNRWLRME6JwDGhUdq0qcET5wFs9bI2neqozS-gB_BoeI0zS5GcrHTVqibuUHTl5YTa3G6hMYwkShXqaBUGkKyBZm2o62_KxXFTWDzWaA5r7PNZD6_fhvXfqbh79r94CJdwoZo3e_P9e3A5asHPQ70Fo-WXlbuPNt0yf9AtHgYfznu9_gREql9S |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boosting+lithium+storage+in+covalent+organic+framework+via+activation+of+14-electron+redox+chemistry&rft.jtitle=Nature+communications&rft.au=Lei%2C+Zhendong&rft.au=Yang%2C+Qinsi&rft.au=Xu%2C+Yi&rft.au=Guo%2C+Siyu&rft.date=2018-02-08&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=576&rft_id=info:doi/10.1038%2Fs41467-018-02889-7&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |