Sex differences in the genetic regulation of the blood transcriptome response to glucocorticoid receptor activation
Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocor...
Saved in:
Published in | Translational psychiatry Vol. 11; no. 1; pp. 632 - 14 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
13.12.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (
n
= 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders. |
---|---|
AbstractList | Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (
n
= 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders. Abstract Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders. Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders. Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders. |
ArticleNumber | 632 |
Author | Freisleder, Franz Joseph Arloth, Janine Binder, Elisabeth B. Müller, Nikola S. Lucae, Susanne Piechaczek, Charlotte Moore, Sarah R. Martins, Jade Feldmann, Lisa Schulte-Körne, Gerd Greimel, Ellen Müller-Myhsok, Bertram Halldorsdottir, Thorhildur |
Author_xml | – sequence: 1 givenname: Sarah R. orcidid: 0000-0003-4364-9128 surname: Moore fullname: Moore, Sarah R. email: sarahrosemo@gmail.com organization: BC Children’s Hospital Research Institute and Centre for Molecular Medicine and Therapeutics – sequence: 2 givenname: Thorhildur surname: Halldorsdottir fullname: Halldorsdottir, Thorhildur organization: Reykjavik University – sequence: 3 givenname: Jade orcidid: 0000-0001-6528-8947 surname: Martins fullname: Martins, Jade organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry – sequence: 4 givenname: Susanne surname: Lucae fullname: Lucae, Susanne organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry – sequence: 5 givenname: Bertram surname: Müller-Myhsok fullname: Müller-Myhsok, Bertram organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry – sequence: 6 givenname: Nikola S. surname: Müller fullname: Müller, Nikola S. organization: Institute of Computational Biology, Helmholtz Zentrum München – sequence: 7 givenname: Charlotte surname: Piechaczek fullname: Piechaczek, Charlotte organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital – sequence: 8 givenname: Lisa surname: Feldmann fullname: Feldmann, Lisa organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital – sequence: 9 givenname: Franz Joseph surname: Freisleder fullname: Freisleder, Franz Joseph organization: KBO Heckscher-Klinikum – sequence: 10 givenname: Ellen surname: Greimel fullname: Greimel, Ellen organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital – sequence: 11 givenname: Gerd orcidid: 0000-0002-9960-1572 surname: Schulte-Körne fullname: Schulte-Körne, Gerd organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital – sequence: 12 givenname: Elisabeth B. orcidid: 0000-0001-7088-6618 surname: Binder fullname: Binder, Elisabeth B. organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine – sequence: 13 givenname: Janine orcidid: 0000-0003-3825-4279 surname: Arloth fullname: Arloth, Janine email: arloth@psych.mpg.de organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Institute of Computational Biology, Helmholtz Zentrum München |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34903727$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1TAUjFARLaU_wAJFYsMm4Ff82CChikelSiyAteU4x6mvcu2L7VTl7_G9aaHtot7Y8pkZzzmel81RiAGa5jVG7zGi8kNmmCrZIYI7hEXPO_KsOSG4lx3FUh7dOx83ZzlvUF09k1jgF80xZQpRQcRJk3_ATTt65yBBsJBbH9pyBe0EAYq3bYJpmU3xMbTRHSrDHOPYlmRCtsnvStxCReVdDBnaEttpXmy0MVV29GMtWaig1Bpb_PVB6VXz3Jk5w9ntftr8-vL55_m37vL714vzT5ed5YiXzg6SMj6CMkYNjCNgY-0Ti8FRg9UoBssGJZBk1PSqp4QTR9TQCyadkdYxetpcrLpjNBu9S35r0h8djdeHi5gmbfY2Z9CkNxg4EOFUzwjm0jk1UGlHJmBESFStj6vWbhm2MFoIdQLzA9GHleCv9BSvteRcIcKrwLtbgRR_L5CL3vpsYZ5NgLhkTTiu70ihaIW-fQTdxCWFOqqKQqonTIp9d2_uO_pn5e5vK0CuAJtizgmctr4cPqAa9LPGSO-TpNck6ZokfUiSJpVKHlHv1J8k0ZWUKzhMkP7bfoL1F1Cm3LQ |
CitedBy_id | crossref_primary_10_1016_j_jpsychires_2024_07_004 crossref_primary_10_1016_j_ebiom_2022_104057 crossref_primary_10_1016_j_neuron_2024_10_018 crossref_primary_10_1136_bmjopen_2023_074925 crossref_primary_10_3389_fnbeh_2022_845491 crossref_primary_10_1371_journal_pone_0285123 crossref_primary_10_1016_j_biopsych_2024_10_004 crossref_primary_10_1113_JP286334 crossref_primary_10_1016_j_psychres_2023_115103 crossref_primary_10_4103_jcrsm_jcrsm_6_23 crossref_primary_10_1128_jvi_01886_24 crossref_primary_10_1016_j_brainres_2023_148678 crossref_primary_10_1038_s41380_022_01934_8 crossref_primary_10_1016_j_biopsych_2022_09_033 crossref_primary_10_3390_biomedicines12102181 crossref_primary_10_1002_npr2_12487 |
Cites_doi | 10.1016/j.tig.2014.08.006 10.1016/j.neuroscience.2013.11.014 10.1038/nrg2167 10.4161/epi.6.7.16517 10.1176/appi.ajp.2018.18070857 10.1210/edrv.21.1.0389 10.1093/nar/gkr1079 10.1186/s13742-015-0047-8 10.1093/hmg/dds304 10.1038/nrn1683 10.1002/jnr.23886 10.1038/s41593-018-0206-1 10.1016/j.bbrc.2017.04.005 10.1186/s12915-017-0352-z 10.1093/bioinformatics/btu049 10.1038/s41593-018-0326-7 10.1002/ajmg.b.32747 10.1038/s41588-019-0397-8 10.1210/en.2002-0145 10.1016/j.psyneuen.2017.01.021 10.1016/j.psyneuen.2015.12.021 10.1038/s41593-020-00748-7 10.1038/s41588-018-0147-3 10.1016/j.psyneuen.2012.05.001 10.1016/j.psyneuen.2016.11.036 10.1109/BIBM.2013.6732479 10.1111/jcpp.12697 10.1038/s41467-017-02088-w 10.1101/gr.134981.111 10.1016/S0165-3806(98)00008-X 10.1016/j.cpr.2018.01.006 10.1016/j.biopsych.2018.09.014 10.1038/mp.2008.131 10.1186/1471-2164-15-33 10.1371/journal.pone.0139516 10.1128/MCB.00280-13 10.1530/ey.18.14.14 10.3109/09540261.2010.515205 10.1038/s41588-018-0152-6 10.3389/fgene.2016.00183 10.1038/s41386-020-00792-8 10.1037/bul0000102 10.1038/s41467-018-07692-y 10.1016/j.neuron.2005.02.014 10.1038/s41576-018-0083-1 10.1016/j.biopsych.2018.01.017 10.1016/j.jad.2014.11.002 10.2217/epi.12.18 10.1038/s41588-018-0269-7 10.1038/mp.2012.21 10.1186/s13293-017-0153-7 10.1038/nm.4386 10.1093/bioinformatics/bts163 10.1038/s41386-019-0321-z 10.1111/gbb.12643 10.1093/hmg/ddt582 10.1186/s13229-017-0137-9 10.1016/S0140-6736(12)62129-1 10.1016/j.cell.2019.11.020 10.1038/s41467-019-12576-w 10.1038/nn.4112 10.1093/biostatistics/kxj037 10.1038/nmeth.3547 10.1016/j.jbtep.2008.01.001 10.4161/epi.23470 10.1038/s41598-020-66672-9 10.3109/09540261.2010.514601 10.1038/s41398-019-0373-1 10.1016/j.neuron.2015.05.034 10.1016/j.biopsych.2017.11.016 10.1073/pnas.1804340115 10.1038/mp.2014.163 10.1016/j.bbi.2017.02.006 10.1038/nprot.2017.124 10.1093/bioinformatics/bts034 10.1016/j.psyneuen.2017.04.007 10.1210/endo-117-6-2505 10.3758/bf03193146 10.1038/nature13595 10.1016/j.jbtep.2007.02.003 10.1093/bioinformatics/btv015 10.1038/ng.2756 10.1111/j.1469-8986.2009.00961.x 10.1038/s41588-018-0090-3 10.1007/s13311-014-0282-1 10.1176/appi.ajp.2019.18091014 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41398-021-01756-2 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) ProQuest Health & Medical Collection Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2158-3188 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_25a1e6e27f9542168ff9b38cd47ed007 PMC8669026 34903727 10_1038_s41398_021_01756_2 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 3V. 53G 5VS 7X7 88E 8FI 8FJ AAJSJ AAKDD ABUWG ACGFO ACGFS ACMJI ACSMW ADBBV ADFRT AENEX AFKRA AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS BAWUL BCNDV BENPR BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EMOBN FYUFA GROUPED_DOAJ GX1 HMCUK HYE KQ8 LGEZI LOTEE M1P M~E NADUK NAO NXXTH OK1 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7XB 8FK AARCD AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-cb8346de9aa9b460e4d75617bf3a19d7bc4b970843a5953262f29b5748fa8cf43 |
IEDL.DBID | C6C |
ISSN | 2158-3188 |
IngestDate | Wed Aug 27 01:28:56 EDT 2025 Thu Aug 21 14:14:23 EDT 2025 Mon Jul 21 11:42:53 EDT 2025 Wed Aug 13 10:57:39 EDT 2025 Thu Jan 02 22:56:28 EST 2025 Tue Jul 01 00:55:18 EDT 2025 Thu Apr 24 23:10:00 EDT 2025 Fri Feb 21 02:38:50 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-cb8346de9aa9b460e4d75617bf3a19d7bc4b970843a5953262f29b5748fa8cf43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7088-6618 0000-0003-3825-4279 0000-0002-9960-1572 0000-0001-6528-8947 0000-0003-4364-9128 |
OpenAccessLink | https://www.nature.com/articles/s41398-021-01756-2 |
PMID | 34903727 |
PQID | 2609524874 |
PQPubID | 2041978 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_25a1e6e27f9542168ff9b38cd47ed007 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8669026 proquest_miscellaneous_2610078793 proquest_journals_2609524874 pubmed_primary_34903727 crossref_citationtrail_10_1038_s41398_021_01756_2 crossref_primary_10_1038_s41398_021_01756_2 springer_journals_10_1038_s41398_021_01756_2 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-13 |
PublicationDateYYYYMMDD | 2021-12-13 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States |
PublicationTitle | Translational psychiatry |
PublicationTitleAbbrev | Transl Psychiatry |
PublicationTitleAlternate | Transl Psychiatry |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | ElbauIGBrücklmeierBUhrMArlothJCzamaraDSpoormakerVIThe brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markersProc Natl Acad Sci USA2018115E10206151:CAS:528:DC%2BC1cXitVyhsLbK10.1073/pnas.1804340115 Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet. 2014;30:453–63. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60. ErnstJKellisMChromatin-state discovery and genome annotation with ChromHMMNat Protoc2017122478921:CAS:528:DC%2BC2sXhsl2js7rN10.1038/nprot.2017.124 LeePHAnttilaVWonHFengYCARosenthalJZhuZGenomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disordersCell.201917914691482.e1110.1016/j.cell.2019.11.020 DemontisDWaltersRKMartinJMattheisenMAlsTDAgerboEDiscovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorderNat Genet20195163751:CAS:528:DC%2BC1cXitlWnu77E10.1038/s41588-018-0269-7 OwenDMatthewsSGGlucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptorsEndocrinology.20031442775841:CAS:528:DC%2BD3sXkvF2ksLw%3D10.1210/en.2002-0145 Boyd A, Van de Velde S, Vilagut G, de Graaf R, O׳Neill S, Florescu S, et al. Gender differences in mental disorders and suicidality in Europe: Results from a large cross-sectional population-based study. J Affect Disord. 2015;173:245–54. Arloth J, Bader DM, Röh S, Altmann A. Re-annotator: annotation pipeline for microarray probe sequences. PLoS ONE. 2015;10:e0139516. Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/bf03193146. Davis LK, Stranger BE. The new science of sex differences in neuropsychiatric traits. Am J Med Genet B: Neuropsychiatr Genet. 2019;180:333–4. Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: a review of sex differences. Clin Psychol Rev. 2018;66:69–79. https://doi.org/10.1016/j.cpr.2018.01.006. ReulJMHMDe KloetERTwo receptor systems for corticosterone in rat brain: microdistribution and differential occupationEndocrinology.19851172505111:CAS:528:DyaL28XhsFegtA%3D%3D10.1210/endo-117-6-2505 HalldorsdottirTPiechaczekCSoares de MatosAPCzamaraDPehlVWagenbuechlerPPolygenic risk: predicting depression outcomes in clinical and epidemiological cohorts of youthsAm J Psychiatry20191766152510.1176/appi.ajp.2019.18091014 Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8:689–98. Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol. 2013;33:3594–610. DimasASNicaACMontgomerySBStrangerBERajTBuilASex-biased genetic effects on gene regulation in humansGenome Res2012222368751:CAS:528:DC%2BC38XhvVWgsbfI10.1101/gr.134981.111 Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25–36. Terada A, Tsuda K, Sese J. Fast Westfall-Young permutation procedure for combinatorial regulation discovery. In: Proceedings—2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013. 2013. 153–8. RowsonSABekhbatMKellySDBinderEBHyerMMShawGChronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthoodNeuropsychopharmacology.2019441207151:CAS:528:DC%2BC1MXhtVyrt73L10.1038/s41386-019-0321-z Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics. 2011;6:857–61. Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience. 2014;264:17–24. Diflorio A, Jones I. Is sex important? Gender differences in bipolar disorder. Int Rev Psychiatry. 2010;22:437–52. Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res. 2017;95:301–10. Fadason T, Schierding W, Lumley T, O’Sullivan JM. Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. Nat Commun. 2018;9:5198. Childs E, Dlugos A, De Wit H. Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase. Psychophysiology. 2010;47:550–9. ZhouJTroyanskayaOGPredicting effects of noncoding variants with deep learning-based sequence modelNat Methods20151293141:CAS:528:DC%2BC2MXhtlynsL%2FL10.1038/nmeth.3547 ShabalinAAMatrix eQTL: Ultra fast eQTL analysis via large matrix operationsBioinformatics.201228135381:CAS:528:DC%2BC38XmvF2ksb8%3D10.1093/bioinformatics/bts163 Zimmermann CA, Arloth J, Santarelli S, Löschner A, Weber P, Schmidt MV, et al. Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes. Transl Psychiatry. 2019;9:41. Bourke CH, Raees MQ, Malviya S, Bradburn CA, Binder EB, Neigh GN. Glucocorticoid sensitizers Bag1 and Ppid are regulated by adolescent stress in a sex-dependent manner. Psychoneuroendocrinology. 2013;38:84. WestraHJPetersMJEskoTYaghootkarHSchurmannCKettunenJSystematic identification of trans eQTLs as putative drivers of known disease associationsNat Genet2013451238431:CAS:528:DC%2BC3sXhtl2ksLzK10.1038/ng.2756 SmollerJWKendlerKCraddockNLeePHNealeBMNurnbergerJNIdentification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysisLancet.2013381137191:CAS:528:DC%2BC3sXjsFCnsrk%3D10.1016/S0140-6736(12)62129-1 AryeeMJJaffeAECorrada-BravoHLadd-AcostaCFeinbergAPHansenKDMinfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarraysBioinformatics.201430136391:CAS:528:DC%2BC2cXnslOit78%3D10.1093/bioinformatics/btu049 Anney RJL, Ripke S, Anttila V, Grove J, Holmans P, Huang H, et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21. Kang HJ, Park Y, Yoo KH, Kim KT, Kim ES, Kim JW, et al. Sex differences in the genetic architecture of depression. Sci Rep. 2020;10:1–12. Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5. Yao C, Joehanes R, Johnson AD, Huan T, Esko T, Ying S, et al. Sex- and age-interacting eQTLs in human complex diseases. Hum Mol Genet. 2014;23:1947–56. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27. Girgenti MJ, Duman RS. Analysis of bulk tissue transcriptome data reveals convergence of cell types altered in schizophrenia and bipolar disorder. Biol Psychiatry. 2018;84:772–4. RipkeSNealeBMCorvinAWaltersJTRFarhKHHolmansPABiological insights from 108 schizophrenia-associated genetic lociNature.201451142171:CAS:528:DC%2BC2cXht1WlurrN10.1038/nature13595 Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20:173–90. Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52. Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066. XueAWuYZhuZZhangFKemperKEZhengZGenome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetesNat Commun2018911410.1038/s41467-018-04951-w Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143:783–822. Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions 1. Endocr Rev. 2000;21:55–89. Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066. Boraska V, Jerončić A, Colonna V, Southam L, Nyholt DR, William Rayner N, et al. Genome-wide meta-analysis of common variant differences between men and women. Hum Mol Genet. 2012;21:4805–15. Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18:1413–20. KarisettyBCKhandelwalNKumarAChakravartySSex difference in mouse hypothalamic transcriptome profile in stress-induced depression modelBiochem Biophys Res Commun2017486112281:CAS:528:DC%2BC2sXlslOqsLk%3D10.1016/j.bbrc.2017.04.005 Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry. 2010;22:417–28. LiuJJWEinNPeckKHuangVPruessnerJCVickersKSex differences in salivary cortisol reactivity to the Trier Social Stress Test (TSST): a meta-analysisPsychoneuroendocrinology.20178226371:CAS:528:DC%2BC2sXntlaitro%3D10.1016/j.psyneuen.2017.04.007 Brivio E, Lopez JP, Chen A. Sex differences: transcriptional signatures of stress exposure in male and female brains. Genes Brain Behav. 2020;19:e12643. https://doi.org/10.1111/gbb.12643. PasmanJAVerweijKJHGerringZStringerSSanchez-RoigeSTreurJLGWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influ 1756_CR41 1756_CR42 1756_CR43 1756_CR81 1756_CR40 1756_CR5 1756_CR49 1756_CR6 1756_CR3 D Owen (1756_CR11) 2003; 144 1756_CR4 1756_CR1 1756_CR45 A Xue (1756_CR87) 2018; 9 1756_CR2 SA Rowson (1756_CR26) 2019; 44 1756_CR46 J Zhou (1756_CR72) 2015; 12 1756_CR47 D Demontis (1756_CR80) 2019; 51 1756_CR48 LH Chadwick (1756_CR39) 2012; 4 1756_CR9 JE Savage (1756_CR88) 2018; 50 1756_CR7 AS Dimas (1756_CR44) 2012; 22 1756_CR8 HJ Westra (1756_CR69) 2013; 45 1756_CR30 1756_CR31 1756_CR32 1756_CR33 1756_CR70 JA Pasman (1756_CR86) 2018; 21 1756_CR73 1756_CR38 ML Seney (1756_CR50) 2021; 46 1756_CR78 1756_CR35 1756_CR79 1756_CR36 1756_CR37 PH Lee (1756_CR84) 2019; 179 JJW Liu (1756_CR17) 2017; 82 MM Kelly (1756_CR16) 2008; 39 SG Matthews (1756_CR12) 1998; 107 1756_CR63 1756_CR20 1756_CR64 1756_CR21 1756_CR65 1756_CR22 IG Elbau (1756_CR34) 2018; 115 1756_CR62 AA Shabalin (1756_CR75) 2012; 28 EA Stahl (1756_CR77) 2019; 51 JW Smoller (1756_CR83) 2013; 381 1756_CR28 1756_CR29 1756_CR23 1756_CR67 1756_CR24 BC Karisetty (1756_CR27) 2017; 486 C Adornetto (1756_CR59) 2008; 39 1756_CR68 1756_CR25 T Halldorsdottir (1756_CR60) 2019; 176 J Ernst (1756_CR71) 2017; 12 D Yu (1756_CR82) 2019; 176 1756_CR52 1756_CR53 1756_CR54 1756_CR55 JMHM Reul (1756_CR10) 1985; 117 1756_CR51 JJ Lee (1756_CR85) 2018; 50 1756_CR18 1756_CR19 1756_CR56 1756_CR13 1756_CR57 1756_CR14 1756_CR58 1756_CR15 MJ Aryee (1756_CR74) 2014; 30 S Ripke (1756_CR76) 2014; 511 P Muglia (1756_CR61) 2010; 15 M Chikina (1756_CR66) 2015; 31 |
References_xml | – reference: Zimmermann CA, Arloth J, Santarelli S, Löschner A, Weber P, Schmidt MV, et al. Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes. Transl Psychiatry. 2019;9:41. – reference: Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5. – reference: LeePHAnttilaVWonHFengYCARosenthalJZhuZGenomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disordersCell.201917914691482.e1110.1016/j.cell.2019.11.020 – reference: PasmanJAVerweijKJHGerringZStringerSSanchez-RoigeSTreurJLGWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophreniaNat Neurosci2018211161701:CAS:528:DC%2BC1cXhsF2nsrvF10.1038/s41593-018-0206-1 – reference: Fadason T, Schierding W, Lumley T, O’Sullivan JM. Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. Nat Commun. 2018;9:5198. – reference: MugliaPTozziFGalweyNWFrancksCUpmanyuRKongXQGenome-wide association study of recurrent major depressive disorder in two European case-control cohortsMol Psychiatry2010155896011:CAS:528:DC%2BC3cXmtlams7o%3D10.1038/mp.2008.131 – reference: Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27. – reference: Morishita T, Fayad SM, Higuchi MA, Nestor KA, Foote KD. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurother J Amer Soc Experi NeuroTher. 2014;11:475–84. https://doi.org/10.1007/s13311-014-0282-1. – reference: Anney RJL, Ripke S, Anttila V, Grove J, Holmans P, Huang H, et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21. – reference: Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: a review of sex differences. Clin Psychol Rev. 2018;66:69–79. https://doi.org/10.1016/j.cpr.2018.01.006. – reference: de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75. – reference: Lindén M, Ramírez Sepúlveda JI, James T, Thorlacius GE, Brauner S, Gómez-Cabrero D, et al. Sex influences eQTL effects of SLE and Sjögren’s syndrome-associated genetic polymorphisms. Biol Sex Differ. 2017;8:34. – reference: Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun. 2019;10:4558. – reference: Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20:32–47. – reference: RowsonSABekhbatMKellySDBinderEBHyerMMShawGChronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthoodNeuropsychopharmacology.2019441207151:CAS:528:DC%2BC1MXhtVyrt73L10.1038/s41386-019-0321-z – reference: Santarelli S, Zimmermann C, Kalideris G, Lesuis SL, Arloth J, Uribe A, et al. An adverse early life environment can enhance stress resilience in adulthood. Psychoneuroendocrinology. 2017;78:213–21. – reference: Kang HJ, Park Y, Yoo KH, Kim KT, Kim ES, Kim JW, et al. Sex differences in the genetic architecture of depression. Sci Rep. 2020;10:1–12. – reference: Boyd A, Van de Velde S, Vilagut G, de Graaf R, O׳Neill S, Florescu S, et al. Gender differences in mental disorders and suicidality in Europe: Results from a large cross-sectional population-based study. J Affect Disord. 2015;173:245–54. – reference: Stephens MAC, Mahon PB, McCaul ME, Wand GS. Hypothalamic–pituitary–adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones. Psychoneuroendocrinology. 2016;66:47–55. – reference: Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52. – reference: Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8:689–98. – reference: Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60. – reference: Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143:783–822. – reference: Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience. 2014;264:17–24. – reference: AryeeMJJaffeAECorrada-BravoHLadd-AcostaCFeinbergAPHansenKDMinfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarraysBioinformatics.201430136391:CAS:528:DC%2BC2cXnslOit78%3D10.1093/bioinformatics/btu049 – reference: Boraska V, Jerončić A, Colonna V, Southam L, Nyholt DR, William Rayner N, et al. Genome-wide meta-analysis of common variant differences between men and women. Hum Mol Genet. 2012;21:4805–15. – reference: Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511. – reference: XueAWuYZhuZZhangFKemperKEZhengZGenome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetesNat Commun2018911410.1038/s41467-018-04951-w – reference: OwenDMatthewsSGGlucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptorsEndocrinology.20031442775841:CAS:528:DC%2BD3sXkvF2ksLw%3D10.1210/en.2002-0145 – reference: Moore SR. Commentary: What is the case for candidate gene approaches in the era of high-throughput genomics? A response to Border and Keller (2017). J Child Psychol Psychiatry. 2017;58:331–4. – reference: Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25–36. – reference: DimasASNicaACMontgomerySBStrangerBERajTBuilASex-biased genetic effects on gene regulation in humansGenome Res2012222368751:CAS:528:DC%2BC38XhvVWgsbfI10.1101/gr.134981.111 – reference: Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066. – reference: Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions 1. Endocr Rev. 2000;21:55–89. – reference: Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics. 2011;6:857–61. – reference: Brivio E, Lopez JP, Chen A. Sex differences: transcriptional signatures of stress exposure in male and female brains. Genes Brain Behav. 2020;19:e12643. https://doi.org/10.1111/gbb.12643. – reference: Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet. 2014;30:453–63. – reference: Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23:1102–11. – reference: StahlEABreenGForstnerAJMcQuillinARipkeSTrubetskoyVGenome-wide association study identifies 30 loci associated with bipolar disorderNat Genet2019517938031:CAS:528:DC%2BC1MXoslKqtr8%3D10.1038/s41588-019-0397-8 – reference: DemontisDWaltersRKMartinJMattheisenMAlsTDAgerboEDiscovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorderNat Genet20195163751:CAS:528:DC%2BC1cXitlWnu77E10.1038/s41588-018-0269-7 – reference: Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20:173–90. – reference: RipkeSNealeBMCorvinAWaltersJTRFarhKHHolmansPABiological insights from 108 schizophrenia-associated genetic lociNature.201451142171:CAS:528:DC%2BC2cXht1WlurrN10.1038/nature13595 – reference: Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18:1413–20. – reference: KellyMMTyrkaARAndersonGMPriceLHCarpenterLLSex differences in emotional and physiological responses to the Trier Social Stress TestJ Behav Ther Exp Psychiatry200839879810.1016/j.jbtep.2007.02.003 – reference: Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3. – reference: Bourke CH, Raees MQ, Malviya S, Bradburn CA, Binder EB, Neigh GN. Glucocorticoid sensitizers Bag1 and Ppid are regulated by adolescent stress in a sex-dependent manner. Psychoneuroendocrinology. 2013;38:84. – reference: Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van Grootheest G, et al. Sex differences in the human peripheral blood transcriptome. BMC Genomics. 2014;15:33. – reference: Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066. – reference: Girgenti MJ, Duman RS. Analysis of bulk tissue transcriptome data reveals convergence of cell types altered in schizophrenia and bipolar disorder. Biol Psychiatry. 2018;84:772–4. – reference: ChikinaMZaslavskyESealfonSCCellCODE: A robust latent variable approach to differential expression analysis for heterogeneous cell populationsBioinformatics.2015311584911:CAS:528:DC%2BC28Xhs1ais7nM10.1093/bioinformatics/btv015 – reference: Lee PH, Anttila V, Won H, Feng YCA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–1482.e11. – reference: Davis LK, Stranger BE. The new science of sex differences in neuropsychiatric traits. Am J Med Genet B: Neuropsychiatr Genet. 2019;180:333–4. – reference: YuDSulJHTsetsosFNawazMSHuangAYZelayaIInterrogating the genetic determinants of Tourette’s syndrome and other tiC disorders through genome-wide association studiesAm J Psychiatry20191762172710.1176/appi.ajp.2018.18070857 – reference: Girgenti M, Wang J, Ji D, Cruz D, Stein M, Gelernter J, et al. Transcriptomic organization of the human brain in post-traumatic stress disorder. Nat Neurosci. 2021;24:24–33. – reference: Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7. – reference: LeeJJWedowROkbayAKongEMaghzianOZacherMGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat Genet2018501112211:CAS:528:DC%2BC1cXhtlOis7zI10.1038/s41588-018-0147-3 – reference: Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry. 2010;22:417–28. – reference: SeneyMLLoganRWCritical roles for developmental hormones and genetic sex in stress-induced transcriptional changes associated with depressionNeuropsychopharmacology.202146221210.1038/s41386-020-00792-8 – reference: Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203–9. – reference: Terada A, Tsuda K, Sese J. Fast Westfall-Young permutation procedure for combinatorial regulation discovery. In: Proceedings—2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013. 2013. 153–8. – reference: AdornettoCHensdiekMMeyerAIn-AlbonTFedererMSchneiderSThe factor structure of the Childhood Anxiety Sensitivity Index in German childrenJ Behav Ther Exp Psychiatry2008394041610.1016/j.jbtep.2008.01.001 – reference: WestraHJPetersMJEskoTYaghootkarHSchurmannCKettunenJSystematic identification of trans eQTLs as putative drivers of known disease associationsNat Genet2013451238431:CAS:528:DC%2BC3sXhtl2ksLzK10.1038/ng.2756 – reference: KarisettyBCKhandelwalNKumarAChakravartySSex difference in mouse hypothalamic transcriptome profile in stress-induced depression modelBiochem Biophys Res Commun2017486112281:CAS:528:DC%2BC2sXlslOqsLk%3D10.1016/j.bbrc.2017.04.005 – reference: Yao C, Joehanes R, Johnson AD, Huan T, Esko T, Ying S, et al. Sex- and age-interacting eQTLs in human complex diseases. Hum Mol Genet. 2014;23:1947–56. – reference: Arloth J, Bogdan R, Weber P, Frishman G, Menke A, Wagner KV, et al. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron. 2015;86:1189–202. – reference: SmollerJWKendlerKCraddockNLeePHNealeBMNurnbergerJNIdentification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysisLancet.2013381137191:CAS:528:DC%2BC3sXjsFCnsrk%3D10.1016/S0140-6736(12)62129-1 – reference: ElbauIGBrücklmeierBUhrMArlothJCzamaraDSpoormakerVIThe brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markersProc Natl Acad Sci USA2018115E10206151:CAS:528:DC%2BC1cXitVyhsLbK10.1073/pnas.1804340115 – reference: Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol. 2013;33:3594–610. – reference: LiuJJWEinNPeckKHuangVPruessnerJCVickersKSex differences in salivary cortisol reactivity to the Trier Social Stress Test (TSST): a meta-analysisPsychoneuroendocrinology.20178226371:CAS:528:DC%2BC2sXntlaitro%3D10.1016/j.psyneuen.2017.04.007 – reference: ErnstJKellisMChromatin-state discovery and genome annotation with ChromHMMNat Protoc2017122478921:CAS:528:DC%2BC2sXhsl2js7rN10.1038/nprot.2017.124 – reference: Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res. 2017;95:301–10. – reference: Diflorio A, Jones I. Is sex important? Gender differences in bipolar disorder. Int Rev Psychiatry. 2010;22:437–52. – reference: ShabalinAAMatrix eQTL: Ultra fast eQTL analysis via large matrix operationsBioinformatics.201228135381:CAS:528:DC%2BC38XmvF2ksb8%3D10.1093/bioinformatics/bts163 – reference: Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15:7. – reference: MatthewsSGDynamic changes in glucocorticoid and mineralocorticoid receptor mRNA in the developing guinea pig brainDev Brain Res1998107123321:CAS:528:DyaK1cXitFKhsrw%3D10.1016/S0165-3806(98)00008-X – reference: HalldorsdottirTPiechaczekCSoares de MatosAPCzamaraDPehlVWagenbuechlerPPolygenic risk: predicting depression outcomes in clinical and epidemiological cohorts of youthsAm J Psychiatry20191766152510.1176/appi.ajp.2019.18091014 – reference: Ramikie TS, Ressler KJ. Mechanisms of sex differences in fear and posttraumatic stress disorder. Biol Psychiatry. 2018;83:876–85. – reference: Arloth J, Bader DM, Röh S, Altmann A. Re-annotator: annotation pipeline for microarray probe sequences. PLoS ONE. 2015;10:e0139516. – reference: Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81. – reference: Seney M, Huo Z, Cahill K, French L, Puralewski R, Zhang J, et al. Opposite molecular signatures of depression in men and women. biol psychiatry. 2018;84:18–27. – reference: SavageJEJansenPRStringerSWatanabeKBryoisJDe LeeuwCAGenome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligenceNat Genet20185091291:CAS:528:DC%2BC1cXht1WqsLvF10.1038/s41588-018-0152-6 – reference: ZhouJTroyanskayaOGPredicting effects of noncoding variants with deep learning-based sequence modelNat Methods20151293141:CAS:528:DC%2BC2MXhtlynsL%2FL10.1038/nmeth.3547 – reference: Mayne BT, Bianco-Miotto T, Buckberry S, Breen J, Clifton V, Shoubridge C, et al. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front Genet. 2016;7:183. – reference: ReulJMHMDe KloetERTwo receptor systems for corticosterone in rat brain: microdistribution and differential occupationEndocrinology.19851172505111:CAS:528:DyaL28XhsFegtA%3D%3D10.1210/endo-117-6-2505 – reference: Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/bf03193146. – reference: Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: focus on depression and anxiety. Brain Behav Immun. 2018;67:1–12. – reference: ChadwickLHThe NIH roadmap epigenomics program data resourceEpigenomics20124317241:CAS:528:DC%2BC38XosVahsrg%3D10.2217/epi.12.18 – reference: Childs E, Dlugos A, De Wit H. Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase. Psychophysiology. 2010;47:550–9. – ident: 1756_CR55 doi: 10.1016/j.tig.2014.08.006 – ident: 1756_CR20 doi: 10.1016/j.neuroscience.2013.11.014 – ident: 1756_CR22 doi: 10.1038/nrg2167 – ident: 1756_CR24 doi: 10.4161/epi.6.7.16517 – volume: 176 start-page: 217 year: 2019 ident: 1756_CR82 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2018.18070857 – ident: 1756_CR14 doi: 10.1210/edrv.21.1.0389 – ident: 1756_CR64 doi: 10.1093/nar/gkr1079 – ident: 1756_CR67 doi: 10.1186/s13742-015-0047-8 – ident: 1756_CR31 doi: 10.1093/hmg/dds304 – ident: 1756_CR13 doi: 10.1038/nrn1683 – ident: 1756_CR42 doi: 10.1002/jnr.23886 – volume: 21 start-page: 1161 year: 2018 ident: 1756_CR86 publication-title: Nat Neurosci doi: 10.1038/s41593-018-0206-1 – volume: 486 start-page: 1122 year: 2017 ident: 1756_CR27 publication-title: Biochem Biophys Res Commun doi: 10.1016/j.bbrc.2017.04.005 – ident: 1756_CR43 doi: 10.1186/s12915-017-0352-z – volume: 30 start-page: 1363 year: 2014 ident: 1756_CR74 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btu049 – ident: 1756_CR78 doi: 10.1038/s41593-018-0326-7 – ident: 1756_CR58 doi: 10.1002/ajmg.b.32747 – volume: 51 start-page: 793 year: 2019 ident: 1756_CR77 publication-title: Nat Genet doi: 10.1038/s41588-019-0397-8 – volume: 144 start-page: 2775 year: 2003 ident: 1756_CR11 publication-title: Endocrinology. doi: 10.1210/en.2002-0145 – ident: 1756_CR35 doi: 10.1016/j.psyneuen.2017.01.021 – ident: 1756_CR9 doi: 10.1016/j.psyneuen.2015.12.021 – ident: 1756_CR47 doi: 10.1038/s41593-020-00748-7 – volume: 50 start-page: 1112 year: 2018 ident: 1756_CR85 publication-title: Nat Genet doi: 10.1038/s41588-018-0147-3 – ident: 1756_CR45 doi: 10.1016/j.psyneuen.2012.05.001 – ident: 1756_CR21 – ident: 1756_CR19 doi: 10.1016/j.psyneuen.2016.11.036 – ident: 1756_CR68 doi: 10.1109/BIBM.2013.6732479 – ident: 1756_CR57 doi: 10.1111/jcpp.12697 – volume: 9 start-page: 1 year: 2018 ident: 1756_CR87 publication-title: Nat Commun doi: 10.1038/s41467-017-02088-w – volume: 22 start-page: 2368 year: 2012 ident: 1756_CR44 publication-title: Genome Res doi: 10.1101/gr.134981.111 – volume: 107 start-page: 123 year: 1998 ident: 1756_CR12 publication-title: Dev Brain Res doi: 10.1016/S0165-3806(98)00008-X – ident: 1756_CR18 doi: 10.1016/j.cpr.2018.01.006 – ident: 1756_CR48 doi: 10.1016/j.biopsych.2018.09.014 – volume: 15 start-page: 589 year: 2010 ident: 1756_CR61 publication-title: Mol Psychiatry doi: 10.1038/mp.2008.131 – ident: 1756_CR23 doi: 10.1186/1471-2164-15-33 – ident: 1756_CR62 doi: 10.1371/journal.pone.0139516 – ident: 1756_CR25 doi: 10.1128/MCB.00280-13 – ident: 1756_CR52 – ident: 1756_CR46 doi: 10.1530/ey.18.14.14 – ident: 1756_CR1 doi: 10.3109/09540261.2010.515205 – volume: 50 start-page: 912 year: 2018 ident: 1756_CR88 publication-title: Nat Genet doi: 10.1038/s41588-018-0152-6 – ident: 1756_CR38 doi: 10.3389/fgene.2016.00183 – volume: 46 start-page: 221 year: 2021 ident: 1756_CR50 publication-title: Neuropsychopharmacology. doi: 10.1038/s41386-020-00792-8 – ident: 1756_CR3 doi: 10.1037/bul0000102 – ident: 1756_CR37 doi: 10.1038/s41467-018-07692-y – ident: 1756_CR51 doi: 10.1016/j.neuron.2005.02.014 – ident: 1756_CR30 doi: 10.1038/s41576-018-0083-1 – ident: 1756_CR49 doi: 10.1016/j.biopsych.2018.01.017 – ident: 1756_CR5 doi: 10.1016/j.jad.2014.11.002 – volume: 4 start-page: 317 year: 2012 ident: 1756_CR39 publication-title: Epigenomics doi: 10.2217/epi.12.18 – volume: 51 start-page: 63 year: 2019 ident: 1756_CR80 publication-title: Nat Genet doi: 10.1038/s41588-018-0269-7 – ident: 1756_CR53 doi: 10.1038/mp.2012.21 – ident: 1756_CR41 doi: 10.1186/s13293-017-0153-7 – ident: 1756_CR29 doi: 10.1038/nm.4386 – volume: 28 start-page: 1353 year: 2012 ident: 1756_CR75 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/bts163 – volume: 44 start-page: 1207 year: 2019 ident: 1756_CR26 publication-title: Neuropsychopharmacology. doi: 10.1038/s41386-019-0321-z – ident: 1756_CR28 doi: 10.1111/gbb.12643 – ident: 1756_CR32 doi: 10.1093/hmg/ddt582 – ident: 1756_CR79 doi: 10.1186/s13229-017-0137-9 – volume: 381 start-page: 1371 year: 2013 ident: 1756_CR83 publication-title: Lancet. doi: 10.1016/S0140-6736(12)62129-1 – volume: 179 start-page: 1469 year: 2019 ident: 1756_CR84 publication-title: Cell. doi: 10.1016/j.cell.2019.11.020 – ident: 1756_CR81 doi: 10.1038/s41467-019-12576-w – ident: 1756_CR8 doi: 10.1038/nn.4112 – ident: 1756_CR63 doi: 10.1093/biostatistics/kxj037 – volume: 12 start-page: 931 year: 2015 ident: 1756_CR72 publication-title: Nat Methods doi: 10.1038/nmeth.3547 – volume: 39 start-page: 404 year: 2008 ident: 1756_CR59 publication-title: J Behav Ther Exp Psychiatry doi: 10.1016/j.jbtep.2008.01.001 – ident: 1756_CR73 doi: 10.4161/epi.23470 – ident: 1756_CR56 doi: 10.1038/s41598-020-66672-9 – ident: 1756_CR2 doi: 10.3109/09540261.2010.514601 – ident: 1756_CR36 doi: 10.1038/s41398-019-0373-1 – ident: 1756_CR33 doi: 10.1016/j.neuron.2015.05.034 – ident: 1756_CR4 doi: 10.1016/j.biopsych.2017.11.016 – volume: 115 start-page: E10206 year: 2018 ident: 1756_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1804340115 – ident: 1756_CR7 doi: 10.1038/mp.2014.163 – ident: 1756_CR6 doi: 10.1016/j.bbi.2017.02.006 – volume: 12 start-page: 2478 year: 2017 ident: 1756_CR71 publication-title: Nat Protoc doi: 10.1038/nprot.2017.124 – ident: 1756_CR65 doi: 10.1093/bioinformatics/bts034 – volume: 82 start-page: 26 year: 2017 ident: 1756_CR17 publication-title: Psychoneuroendocrinology. doi: 10.1016/j.psyneuen.2017.04.007 – volume: 117 start-page: 2505 year: 1985 ident: 1756_CR10 publication-title: Endocrinology. doi: 10.1210/endo-117-6-2505 – ident: 1756_CR70 doi: 10.3758/bf03193146 – volume: 511 start-page: 421 year: 2014 ident: 1756_CR76 publication-title: Nature. doi: 10.1038/nature13595 – volume: 39 start-page: 87 year: 2008 ident: 1756_CR16 publication-title: J Behav Ther Exp Psychiatry doi: 10.1016/j.jbtep.2007.02.003 – volume: 31 start-page: 1584 year: 2015 ident: 1756_CR66 publication-title: Bioinformatics. doi: 10.1093/bioinformatics/btv015 – volume: 45 start-page: 1238 year: 2013 ident: 1756_CR69 publication-title: Nat Genet doi: 10.1038/ng.2756 – ident: 1756_CR15 doi: 10.1111/j.1469-8986.2009.00961.x – ident: 1756_CR54 doi: 10.1038/s41588-018-0090-3 – ident: 1756_CR40 doi: 10.1007/s13311-014-0282-1 – volume: 176 start-page: 615 year: 2019 ident: 1756_CR60 publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.2019.18091014 |
SSID | ssj0000548171 |
Score | 2.3615918 |
Snippet | Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone,... Abstract Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 632 |
SubjectTerms | 38 38/39 45/61 631/208/212 692/53/2423 Adolescent Behavioral Sciences Biological Psychology Child Depressive Disorder, Major - genetics Female Gender differences Gene expression Gene Expression Regulation Genome-Wide Association Study Glucocorticoids Humans Male Medicine Medicine & Public Health Neurosciences Pharmacotherapy Psychiatry Quantitative Trait Loci Receptors, Glucocorticoid - genetics Receptors, Glucocorticoid - metabolism Sex Characteristics Transcriptome |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QDogLYnyWDRQkblCtSdx8HAExTUjjApN2i5I0EU-CFr3XSfz5OEnfY4_PC9c6qVLbcezG_pmQ56Ck4YHFVoohl-SYodVBQWuAmcErB30Bnj9_L88u4N1lf3mt1VfOCavwwJVxJ7x3LMrIVTI9cCZ1SsaL3HJHxWGpI8cz71owVVG9QTPFliqZTuiTDVrrXE3Gc_SsetnyvZOoAPb_zsv8NVnypxvTchCd3iG3Fw-SvqorPyQ34niX3Dxf7sjvkc2H-I1u-56gFaCrkaKXR1FTcsEiXdfu8ygPOqVCKcnrdM6nVrEh05eIo0rubKTzREtaO0apOHtaDUjKqTDTmuaaiPpH9z65OH378c1Zu7RWaANGLHMbvBYgh2icMx5kF2FAnjDlk3AoJOUDeKM6DcL1pkcXjydufK9AJ6dDAvGAHIzTGB8RKoXgLnbaD05AikHLwDW-JAQDiXloCNuy2YYFdzy3v_hsy_230LaKxqJobBGN5Q15sZvztaJu_HX06yy93ciMmF0eoB7ZRY_sv_SoIcdb2dtlG28sz3B8HGM6_IpnOzJuwHyr4sY4XeUxOdFEo51ryMOqKruVCDCdQA-xIWpPifaWuk8ZV58KyLeW0mB83JCXW3X7saw_s-Lx_2DFEbnF8z5hvGXimBzM66v4BF2v2T8tu-w7dcgqMA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JixQxFA46gngRd0tHieBNi-ksleUkKg6DMF50oG8hSSXaoFVjdw34830vtQztMtdKqkjlLfnyVkJeSq0sjyzVSrSYkmPb2kQtayuZbYP2simF508_qZMz-XHdrCeD224Kq5x1YlHUbR_RRn7EsTIaB3gt35z_rLFrFHpXpxYa18kNLF2GIV16rRcbC8ARwzSbcmVWwhztQGdjThnHO7RuVM33zqNStv9fWPPvkMk__KblODq-Q25POJK-HQl_l1xL3T1y83TylN8nu8_pF527n4AuoJuOAtajwC-Ytki3Yw96oArtcxkpIex0wLOraJL-R4JZJYI20aGnJbgd7qrwdr9pYQgDYvotxcyI0a77gJwdf_jy_qSeGizUEe4tQx2DEVK1yXpvg1SrJFvYE6ZDFh5IpUOUweqVkcI3tgGgxzO3odHSZG9iluIhOej6Lj0mVAnBfVqZ0Hohc4pGRW7gIzFamVmQFWHzNrs4VR_HJhjfXfGCC-NG0jggjSukcbwir5Z3zsfaG1fOfofUW2Zi3ezyoN9-dZMYOt54llTiOttGcqZMzjYIbOCkUwtwqSKHM-3dJMw7d8l6FXmxDIMYom_Fd6m_wDkYbmJA21Xk0cgqy0qEtCsBOLEieo-J9pa6P9JtvpVS30YpC7fkirye2e1yWf_fiidX_8VTcoujBDBeM3FIDobtRXoG0GoIz4v8_AaqyCHr priority: 102 providerName: ProQuest |
Title | Sex differences in the genetic regulation of the blood transcriptome response to glucocorticoid receptor activation |
URI | https://link.springer.com/article/10.1038/s41398-021-01756-2 https://www.ncbi.nlm.nih.gov/pubmed/34903727 https://www.proquest.com/docview/2609524874 https://www.proquest.com/docview/2610078793 https://pubmed.ncbi.nlm.nih.gov/PMC8669026 https://doaj.org/article/25a1e6e27f9542168ff9b38cd47ed007 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rixMxEA_nHYhfxLerZ4ngN11sHpvHx1654yjcIZ4H_RaSbKIF3ZV2D_zznWQfUj0FPxWaSUkzj8wkM79B6A2XQlNPQilYnUpydF0qL3mpOdG1k5ZXGXj-4lKcX_PVulofIDrWwuSk_Qxpmc30mB32fgfGNhWD0RT8ykqUYHaPEnR7kuqlWE73KuCCKCLJUB8zZ-qWqXtnUIbqv82__DNN8re30nwEnT1A9wffES_61T5EB6F5hO5eDK_jj9HuKvzAY8cT0H-8aTD4dxhkJJUq4m3fdx44gduYR3LaOu7SeZWtR_stAFXOmg24a3FOaIf4FGa3mxqGUhJMu8WpGqK_y32Crs9OPy3Py6GpQukhVulK7xTjog7aWu24mAdew54Q6SKzwB7pPHdazhVnttIVOHc0Uu0qyVW0ykfOnqLDpm3Cc4QFY9SGuXK1ZTwGr4SnCn7Ee80jcbxAZNxm4wfE8dT44qvJL99MmZ41BlhjMmsMLdDbac73Hm_jn9QniXsTZcLKzl-0289mkB1DK0uCCFRGXXFKhIpRO5aaNslQg4tUoOOR92ZQ4J2hCYiPQjQH_-L1NAyql95TbBPam0STUkwUWLgCPetFZVoJ43rOwDcskNwTor2l7o80my8Z3lsJoSEyLtC7Udx-LevvW_Hi_8hfons0aQShJWHH6LDb3oRX4F51bobuyLWcoaPFYnW1gs-T08sPH2dZy2b5yuInkSUkpQ |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anQS8IO4EBhgJniBaYzu-PCDEYFPH1grBJu3Nix0HKkEy2k7An-I3cuwkncplb3utndTxufg7PjeAp1wKTV3mU8HKkJKjy1Q5yVPNM11aWfA8Fp4fT8TokL87yo_W4FefCxPCKnudGBV12bhwR75JQ2U0ivCavzr5loauUcG72rfQaNliz__8jibb_OXuW6TvM0p3tg_ejNKuq0DqEKwvUmcV46L0uii05WLoeSkRREhbsQLXJ63jVsuh4qzIdY7ohlZU21xyVRXKVZzhey_BOmdoygxgfWt78v7D8lYHAZDKZNZl5wyZ2pzjKRGy2Giw2vGPUrpyAsZGAf9Ct38Haf7hqY0H4M51uNYhV_K6ZbUbsObrm3B53Pnmb8H8o_9B-n4rqH3ItCaILglyaEiUJLO26z3yAWmqOBKD5skinJZRdzVfPc6KMbueLBoSw-nROsanm2mJQyEEp5mRkIvR3iTfhsML2fw7MKib2t8DIhijhR8qWxaMV94p4ajClzineZVZnkDWb7NxXb3z0Hbji4l-d6ZMSxqDpDGRNIYm8Hz5zElb7ePc2VuBesuZoVJ3_KGZfTKd4BuaF5kXnspK55xmQlWVtiy0jJK-RICWwEZPe9Opj7k5Y_YEniyHUfCDN6eofXMa5oQAF4X6NYG7LassV8K4HjJEpgnIFSZaWerqSD39HIuLKyE02uUJvOjZ7WxZ_9-K--d_xWO4MjoY75v93cneA7hKgzRkNM3YBgwWs1P_EIHdwj7qpInA8UUL8G8S6F_A |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRaq4IPYGChgJThB1vMTLASGgjFpKKySoNLcQO3YZCZIyMxXw1_h1PDvJVMPSW6-xnTh-iz_7bQCPhZKGOepzyesYkmPqXDslciOoqa2qRJESzx8cyt0j8XZSTNbg1xALE90qB52YFHXdunhHvs1iZjSG8Fpsh94t4v3O-MXJtzxWkIqW1qGcRsci-_7ndzy-zZ_v7SCtnzA2fvPx9W7eVxjIHQL3Re6s5kLW3lSVsUKOvKgVAgplA69wrso6YY0aacGrwhSIdFhgxhZK6FBpFwTH916Cy4oXNMqYmqjl_Q5CIU0V7eN0Rlxvz3G_iPFsLJ7f8TM5W9kLU8mAf-Hcv901_7DZpq1wfA2u9hiWvOyY7jqs-eYGbBz0VvqbMP_gf5Ch8grqITJtCOJMgrwaQybJzB_3RcNIG1JLcp8ni7hvJi3WfvXYK3nverJoSXKsx3Myjm6nNTZFZ5x2RmJURnenfAuOLmTpb8N60zZ-E4jknFV-pG1dcRG809IxjS9xzohArciADstcuj7zeSzA8aVMFniuy440JZKmTKQpWQZPl2NOurwf5_Z-Fam37BlzdqcH7ey47FVAyYqKeumZCqYQjEodgrE8Fo9SvkaolsHWQPuyVyTz8oztM3i0bEYVEO06VePb09gnurpo1LQZ3OlYZTkTLsyII0bNQK0w0cpUV1ua6eeUZlxLafCEnsGzgd3OpvX_pbh7_l88hA0U2_Ld3uH-PbjCojBQllO-BeuL2am_jwhvYR8kUSLw6aJl9zeD92KQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sex+differences+in+the+genetic+regulation+of+the+blood+transcriptome+response+to+glucocorticoid+receptor+activation&rft.jtitle=Translational+psychiatry&rft.au=Moore%2C+Sarah+R.&rft.au=Halldorsdottir%2C+Thorhildur&rft.au=Martins%2C+Jade&rft.au=Lucae%2C+Susanne&rft.date=2021-12-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2158-3188&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41398-021-01756-2&rft.externalDocID=10_1038_s41398_021_01756_2 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3188&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3188&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3188&client=summon |