Sex differences in the genetic regulation of the blood transcriptome response to glucocorticoid receptor activation

Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocor...

Full description

Saved in:
Bibliographic Details
Published inTranslational psychiatry Vol. 11; no. 1; pp. 632 - 14
Main Authors Moore, Sarah R., Halldorsdottir, Thorhildur, Martins, Jade, Lucae, Susanne, Müller-Myhsok, Bertram, Müller, Nikola S., Piechaczek, Charlotte, Feldmann, Lisa, Freisleder, Franz Joseph, Greimel, Ellen, Schulte-Körne, Gerd, Binder, Elisabeth B., Arloth, Janine
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.12.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort ( n  = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
AbstractList Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort ( n  = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
Abstract Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone, cortisol. Here, we explore the genomic variants in 93 females and 196 males regulating the initial transcriptional response to cortisol via glucocorticoid receptor (GR) activation. Gene expression levels in peripheral blood were obtained before and after GR-stimulation with the selective GR agonist dexamethasone to identify differential expression following GR-activation. Sex stratified analyses revealed that while the transcripts responsive to GR-stimulation were mostly overlapping between males and females, the quantitative trait loci (eQTLs) regulation differential transcription to GR-stimulation was distinct. Sex-stratified eQTL SNPs (eSNPs) were located in different functional genomic elements and sex-stratified transcripts were enriched within postmortem brain transcriptional profiles associated with Major Depressive Disorder (MDD) specifically in males and females in the cingulate cortex. Female eSNPs were enriched among SNPs linked to MDD in genome-wide association studies. Finally, transcriptional sensitive genetic profile scores derived from sex-stratified eSNPS regulating differential transcription to GR-stimulation were predictive of depression status and depressive symptoms in a sex-concordant manner in a child and adolescent cohort (n = 584). These results suggest the potential of eQTLs regulating differential transcription to GR-stimulation as biomarkers of sex-specific biological risk for stress-related psychiatric disorders.
ArticleNumber 632
Author Freisleder, Franz Joseph
Arloth, Janine
Binder, Elisabeth B.
Müller, Nikola S.
Lucae, Susanne
Piechaczek, Charlotte
Moore, Sarah R.
Martins, Jade
Feldmann, Lisa
Schulte-Körne, Gerd
Greimel, Ellen
Müller-Myhsok, Bertram
Halldorsdottir, Thorhildur
Author_xml – sequence: 1
  givenname: Sarah R.
  orcidid: 0000-0003-4364-9128
  surname: Moore
  fullname: Moore, Sarah R.
  email: sarahrosemo@gmail.com
  organization: BC Children’s Hospital Research Institute and Centre for Molecular Medicine and Therapeutics
– sequence: 2
  givenname: Thorhildur
  surname: Halldorsdottir
  fullname: Halldorsdottir, Thorhildur
  organization: Reykjavik University
– sequence: 3
  givenname: Jade
  orcidid: 0000-0001-6528-8947
  surname: Martins
  fullname: Martins, Jade
  organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry
– sequence: 4
  givenname: Susanne
  surname: Lucae
  fullname: Lucae, Susanne
  organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry
– sequence: 5
  givenname: Bertram
  surname: Müller-Myhsok
  fullname: Müller-Myhsok, Bertram
  organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry
– sequence: 6
  givenname: Nikola S.
  surname: Müller
  fullname: Müller, Nikola S.
  organization: Institute of Computational Biology, Helmholtz Zentrum München
– sequence: 7
  givenname: Charlotte
  surname: Piechaczek
  fullname: Piechaczek, Charlotte
  organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital
– sequence: 8
  givenname: Lisa
  surname: Feldmann
  fullname: Feldmann, Lisa
  organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital
– sequence: 9
  givenname: Franz Joseph
  surname: Freisleder
  fullname: Freisleder, Franz Joseph
  organization: KBO Heckscher-Klinikum
– sequence: 10
  givenname: Ellen
  surname: Greimel
  fullname: Greimel, Ellen
  organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital
– sequence: 11
  givenname: Gerd
  orcidid: 0000-0002-9960-1572
  surname: Schulte-Körne
  fullname: Schulte-Körne, Gerd
  organization: Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-University (LMU) Hospital
– sequence: 12
  givenname: Elisabeth B.
  orcidid: 0000-0001-7088-6618
  surname: Binder
  fullname: Binder, Elisabeth B.
  organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine
– sequence: 13
  givenname: Janine
  orcidid: 0000-0003-3825-4279
  surname: Arloth
  fullname: Arloth, Janine
  email: arloth@psych.mpg.de
  organization: Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Institute of Computational Biology, Helmholtz Zentrum München
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34903727$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1TAUjFARLaU_wAJFYsMm4Ff82CChikelSiyAteU4x6mvcu2L7VTl7_G9aaHtot7Y8pkZzzmel81RiAGa5jVG7zGi8kNmmCrZIYI7hEXPO_KsOSG4lx3FUh7dOx83ZzlvUF09k1jgF80xZQpRQcRJk3_ATTt65yBBsJBbH9pyBe0EAYq3bYJpmU3xMbTRHSrDHOPYlmRCtsnvStxCReVdDBnaEttpXmy0MVV29GMtWaig1Bpb_PVB6VXz3Jk5w9ntftr8-vL55_m37vL714vzT5ed5YiXzg6SMj6CMkYNjCNgY-0Ti8FRg9UoBssGJZBk1PSqp4QTR9TQCyadkdYxetpcrLpjNBu9S35r0h8djdeHi5gmbfY2Z9CkNxg4EOFUzwjm0jk1UGlHJmBESFStj6vWbhm2MFoIdQLzA9GHleCv9BSvteRcIcKrwLtbgRR_L5CL3vpsYZ5NgLhkTTiu70ihaIW-fQTdxCWFOqqKQqonTIp9d2_uO_pn5e5vK0CuAJtizgmctr4cPqAa9LPGSO-TpNck6ZokfUiSJpVKHlHv1J8k0ZWUKzhMkP7bfoL1F1Cm3LQ
CitedBy_id crossref_primary_10_1016_j_jpsychires_2024_07_004
crossref_primary_10_1016_j_ebiom_2022_104057
crossref_primary_10_1016_j_neuron_2024_10_018
crossref_primary_10_1136_bmjopen_2023_074925
crossref_primary_10_3389_fnbeh_2022_845491
crossref_primary_10_1371_journal_pone_0285123
crossref_primary_10_1016_j_biopsych_2024_10_004
crossref_primary_10_1113_JP286334
crossref_primary_10_1016_j_psychres_2023_115103
crossref_primary_10_4103_jcrsm_jcrsm_6_23
crossref_primary_10_1128_jvi_01886_24
crossref_primary_10_1016_j_brainres_2023_148678
crossref_primary_10_1038_s41380_022_01934_8
crossref_primary_10_1016_j_biopsych_2022_09_033
crossref_primary_10_3390_biomedicines12102181
crossref_primary_10_1002_npr2_12487
Cites_doi 10.1016/j.tig.2014.08.006
10.1016/j.neuroscience.2013.11.014
10.1038/nrg2167
10.4161/epi.6.7.16517
10.1176/appi.ajp.2018.18070857
10.1210/edrv.21.1.0389
10.1093/nar/gkr1079
10.1186/s13742-015-0047-8
10.1093/hmg/dds304
10.1038/nrn1683
10.1002/jnr.23886
10.1038/s41593-018-0206-1
10.1016/j.bbrc.2017.04.005
10.1186/s12915-017-0352-z
10.1093/bioinformatics/btu049
10.1038/s41593-018-0326-7
10.1002/ajmg.b.32747
10.1038/s41588-019-0397-8
10.1210/en.2002-0145
10.1016/j.psyneuen.2017.01.021
10.1016/j.psyneuen.2015.12.021
10.1038/s41593-020-00748-7
10.1038/s41588-018-0147-3
10.1016/j.psyneuen.2012.05.001
10.1016/j.psyneuen.2016.11.036
10.1109/BIBM.2013.6732479
10.1111/jcpp.12697
10.1038/s41467-017-02088-w
10.1101/gr.134981.111
10.1016/S0165-3806(98)00008-X
10.1016/j.cpr.2018.01.006
10.1016/j.biopsych.2018.09.014
10.1038/mp.2008.131
10.1186/1471-2164-15-33
10.1371/journal.pone.0139516
10.1128/MCB.00280-13
10.1530/ey.18.14.14
10.3109/09540261.2010.515205
10.1038/s41588-018-0152-6
10.3389/fgene.2016.00183
10.1038/s41386-020-00792-8
10.1037/bul0000102
10.1038/s41467-018-07692-y
10.1016/j.neuron.2005.02.014
10.1038/s41576-018-0083-1
10.1016/j.biopsych.2018.01.017
10.1016/j.jad.2014.11.002
10.2217/epi.12.18
10.1038/s41588-018-0269-7
10.1038/mp.2012.21
10.1186/s13293-017-0153-7
10.1038/nm.4386
10.1093/bioinformatics/bts163
10.1038/s41386-019-0321-z
10.1111/gbb.12643
10.1093/hmg/ddt582
10.1186/s13229-017-0137-9
10.1016/S0140-6736(12)62129-1
10.1016/j.cell.2019.11.020
10.1038/s41467-019-12576-w
10.1038/nn.4112
10.1093/biostatistics/kxj037
10.1038/nmeth.3547
10.1016/j.jbtep.2008.01.001
10.4161/epi.23470
10.1038/s41598-020-66672-9
10.3109/09540261.2010.514601
10.1038/s41398-019-0373-1
10.1016/j.neuron.2015.05.034
10.1016/j.biopsych.2017.11.016
10.1073/pnas.1804340115
10.1038/mp.2014.163
10.1016/j.bbi.2017.02.006
10.1038/nprot.2017.124
10.1093/bioinformatics/bts034
10.1016/j.psyneuen.2017.04.007
10.1210/endo-117-6-2505
10.3758/bf03193146
10.1038/nature13595
10.1016/j.jbtep.2007.02.003
10.1093/bioinformatics/btv015
10.1038/ng.2756
10.1111/j.1469-8986.2009.00961.x
10.1038/s41588-018-0090-3
10.1007/s13311-014-0282-1
10.1176/appi.ajp.2019.18091014
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41398-021-01756-2
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
ProQuest Health & Medical Collection
Medical Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE

MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2158-3188
EndPage 14
ExternalDocumentID oai_doaj_org_article_25a1e6e27f9542168ff9b38cd47ed007
PMC8669026
34903727
10_1038_s41398_021_01756_2
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
3V.
53G
5VS
7X7
88E
8FI
8FJ
AAJSJ
AAKDD
ABUWG
ACGFO
ACGFS
ACMJI
ACSMW
ADBBV
ADFRT
AENEX
AFKRA
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
BAWUL
BCNDV
BENPR
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
GX1
HMCUK
HYE
KQ8
LGEZI
LOTEE
M1P
M~E
NADUK
NAO
NXXTH
OK1
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-cb8346de9aa9b460e4d75617bf3a19d7bc4b970843a5953262f29b5748fa8cf43
IEDL.DBID C6C
ISSN 2158-3188
IngestDate Wed Aug 27 01:28:56 EDT 2025
Thu Aug 21 14:14:23 EDT 2025
Mon Jul 21 11:42:53 EDT 2025
Wed Aug 13 10:57:39 EDT 2025
Thu Jan 02 22:56:28 EST 2025
Tue Jul 01 00:55:18 EDT 2025
Thu Apr 24 23:10:00 EDT 2025
Fri Feb 21 02:38:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-cb8346de9aa9b460e4d75617bf3a19d7bc4b970843a5953262f29b5748fa8cf43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7088-6618
0000-0003-3825-4279
0000-0002-9960-1572
0000-0001-6528-8947
0000-0003-4364-9128
OpenAccessLink https://www.nature.com/articles/s41398-021-01756-2
PMID 34903727
PQID 2609524874
PQPubID 2041978
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_25a1e6e27f9542168ff9b38cd47ed007
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8669026
proquest_miscellaneous_2610078793
proquest_journals_2609524874
pubmed_primary_34903727
crossref_citationtrail_10_1038_s41398_021_01756_2
crossref_primary_10_1038_s41398_021_01756_2
springer_journals_10_1038_s41398_021_01756_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-13
PublicationDateYYYYMMDD 2021-12-13
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-13
  day: 13
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
PublicationTitle Translational psychiatry
PublicationTitleAbbrev Transl Psychiatry
PublicationTitleAlternate Transl Psychiatry
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References ElbauIGBrücklmeierBUhrMArlothJCzamaraDSpoormakerVIThe brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markersProc Natl Acad Sci USA2018115E10206151:CAS:528:DC%2BC1cXitVyhsLbK10.1073/pnas.1804340115
Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet. 2014;30:453–63.
Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.
ErnstJKellisMChromatin-state discovery and genome annotation with ChromHMMNat Protoc2017122478921:CAS:528:DC%2BC2sXhsl2js7rN10.1038/nprot.2017.124
LeePHAnttilaVWonHFengYCARosenthalJZhuZGenomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disordersCell.201917914691482.e1110.1016/j.cell.2019.11.020
DemontisDWaltersRKMartinJMattheisenMAlsTDAgerboEDiscovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorderNat Genet20195163751:CAS:528:DC%2BC1cXitlWnu77E10.1038/s41588-018-0269-7
OwenDMatthewsSGGlucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptorsEndocrinology.20031442775841:CAS:528:DC%2BD3sXkvF2ksLw%3D10.1210/en.2002-0145
Boyd A, Van de Velde S, Vilagut G, de Graaf R, O׳Neill S, Florescu S, et al. Gender differences in mental disorders and suicidality in Europe: Results from a large cross-sectional population-based study. J Affect Disord. 2015;173:245–54.
Arloth J, Bader DM, Röh S, Altmann A. Re-annotator: annotation pipeline for microarray probe sequences. PLoS ONE. 2015;10:e0139516.
Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/bf03193146.
Davis LK, Stranger BE. The new science of sex differences in neuropsychiatric traits. Am J Med Genet B: Neuropsychiatr Genet. 2019;180:333–4.
Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: a review of sex differences. Clin Psychol Rev. 2018;66:69–79. https://doi.org/10.1016/j.cpr.2018.01.006.
ReulJMHMDe KloetERTwo receptor systems for corticosterone in rat brain: microdistribution and differential occupationEndocrinology.19851172505111:CAS:528:DyaL28XhsFegtA%3D%3D10.1210/endo-117-6-2505
HalldorsdottirTPiechaczekCSoares de MatosAPCzamaraDPehlVWagenbuechlerPPolygenic risk: predicting depression outcomes in clinical and epidemiological cohorts of youthsAm J Psychiatry20191766152510.1176/appi.ajp.2019.18091014
Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8:689–98.
Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol. 2013;33:3594–610.
DimasASNicaACMontgomerySBStrangerBERajTBuilASex-biased genetic effects on gene regulation in humansGenome Res2012222368751:CAS:528:DC%2BC38XhvVWgsbfI10.1101/gr.134981.111
Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25–36.
Terada A, Tsuda K, Sese J. Fast Westfall-Young permutation procedure for combinatorial regulation discovery. In: Proceedings—2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013. 2013. 153–8.
RowsonSABekhbatMKellySDBinderEBHyerMMShawGChronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthoodNeuropsychopharmacology.2019441207151:CAS:528:DC%2BC1MXhtVyrt73L10.1038/s41386-019-0321-z
Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics. 2011;6:857–61.
Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience. 2014;264:17–24.
Diflorio A, Jones I. Is sex important? Gender differences in bipolar disorder. Int Rev Psychiatry. 2010;22:437–52.
Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res. 2017;95:301–10.
Fadason T, Schierding W, Lumley T, O’Sullivan JM. Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. Nat Commun. 2018;9:5198.
Childs E, Dlugos A, De Wit H. Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase. Psychophysiology. 2010;47:550–9.
ZhouJTroyanskayaOGPredicting effects of noncoding variants with deep learning-based sequence modelNat Methods20151293141:CAS:528:DC%2BC2MXhtlynsL%2FL10.1038/nmeth.3547
ShabalinAAMatrix eQTL: Ultra fast eQTL analysis via large matrix operationsBioinformatics.201228135381:CAS:528:DC%2BC38XmvF2ksb8%3D10.1093/bioinformatics/bts163
Zimmermann CA, Arloth J, Santarelli S, Löschner A, Weber P, Schmidt MV, et al. Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes. Transl Psychiatry. 2019;9:41.
Bourke CH, Raees MQ, Malviya S, Bradburn CA, Binder EB, Neigh GN. Glucocorticoid sensitizers Bag1 and Ppid are regulated by adolescent stress in a sex-dependent manner. Psychoneuroendocrinology. 2013;38:84.
WestraHJPetersMJEskoTYaghootkarHSchurmannCKettunenJSystematic identification of trans eQTLs as putative drivers of known disease associationsNat Genet2013451238431:CAS:528:DC%2BC3sXhtl2ksLzK10.1038/ng.2756
SmollerJWKendlerKCraddockNLeePHNealeBMNurnbergerJNIdentification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysisLancet.2013381137191:CAS:528:DC%2BC3sXjsFCnsrk%3D10.1016/S0140-6736(12)62129-1
AryeeMJJaffeAECorrada-BravoHLadd-AcostaCFeinbergAPHansenKDMinfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarraysBioinformatics.201430136391:CAS:528:DC%2BC2cXnslOit78%3D10.1093/bioinformatics/btu049
Anney RJL, Ripke S, Anttila V, Grove J, Holmans P, Huang H, et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21.
Kang HJ, Park Y, Yoo KH, Kim KT, Kim ES, Kim JW, et al. Sex differences in the genetic architecture of depression. Sci Rep. 2020;10:1–12.
Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5.
Yao C, Joehanes R, Johnson AD, Huan T, Esko T, Ying S, et al. Sex- and age-interacting eQTLs in human complex diseases. Hum Mol Genet. 2014;23:1947–56.
Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.
Girgenti MJ, Duman RS. Analysis of bulk tissue transcriptome data reveals convergence of cell types altered in schizophrenia and bipolar disorder. Biol Psychiatry. 2018;84:772–4.
RipkeSNealeBMCorvinAWaltersJTRFarhKHHolmansPABiological insights from 108 schizophrenia-associated genetic lociNature.201451142171:CAS:528:DC%2BC2cXht1WlurrN10.1038/nature13595
Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20:173–90.
Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.
Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066.
XueAWuYZhuZZhangFKemperKEZhengZGenome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetesNat Commun2018911410.1038/s41467-018-04951-w
Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143:783–822.
Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions 1. Endocr Rev. 2000;21:55–89.
Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066.
Boraska V, Jerončić A, Colonna V, Southam L, Nyholt DR, William Rayner N, et al. Genome-wide meta-analysis of common variant differences between men and women. Hum Mol Genet. 2012;21:4805–15.
Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18:1413–20.
KarisettyBCKhandelwalNKumarAChakravartySSex difference in mouse hypothalamic transcriptome profile in stress-induced depression modelBiochem Biophys Res Commun2017486112281:CAS:528:DC%2BC2sXlslOqsLk%3D10.1016/j.bbrc.2017.04.005
Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry. 2010;22:417–28.
LiuJJWEinNPeckKHuangVPruessnerJCVickersKSex differences in salivary cortisol reactivity to the Trier Social Stress Test (TSST): a meta-analysisPsychoneuroendocrinology.20178226371:CAS:528:DC%2BC2sXntlaitro%3D10.1016/j.psyneuen.2017.04.007
Brivio E, Lopez JP, Chen A. Sex differences: transcriptional signatures of stress exposure in male and female brains. Genes Brain Behav. 2020;19:e12643. https://doi.org/10.1111/gbb.12643.
PasmanJAVerweijKJHGerringZStringerSSanchez-RoigeSTreurJLGWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influ
1756_CR41
1756_CR42
1756_CR43
1756_CR81
1756_CR40
1756_CR5
1756_CR49
1756_CR6
1756_CR3
D Owen (1756_CR11) 2003; 144
1756_CR4
1756_CR1
1756_CR45
A Xue (1756_CR87) 2018; 9
1756_CR2
SA Rowson (1756_CR26) 2019; 44
1756_CR46
J Zhou (1756_CR72) 2015; 12
1756_CR47
D Demontis (1756_CR80) 2019; 51
1756_CR48
LH Chadwick (1756_CR39) 2012; 4
1756_CR9
JE Savage (1756_CR88) 2018; 50
1756_CR7
AS Dimas (1756_CR44) 2012; 22
1756_CR8
HJ Westra (1756_CR69) 2013; 45
1756_CR30
1756_CR31
1756_CR32
1756_CR33
1756_CR70
JA Pasman (1756_CR86) 2018; 21
1756_CR73
1756_CR38
ML Seney (1756_CR50) 2021; 46
1756_CR78
1756_CR35
1756_CR79
1756_CR36
1756_CR37
PH Lee (1756_CR84) 2019; 179
JJW Liu (1756_CR17) 2017; 82
MM Kelly (1756_CR16) 2008; 39
SG Matthews (1756_CR12) 1998; 107
1756_CR63
1756_CR20
1756_CR64
1756_CR21
1756_CR65
1756_CR22
IG Elbau (1756_CR34) 2018; 115
1756_CR62
AA Shabalin (1756_CR75) 2012; 28
EA Stahl (1756_CR77) 2019; 51
JW Smoller (1756_CR83) 2013; 381
1756_CR28
1756_CR29
1756_CR23
1756_CR67
1756_CR24
BC Karisetty (1756_CR27) 2017; 486
C Adornetto (1756_CR59) 2008; 39
1756_CR68
1756_CR25
T Halldorsdottir (1756_CR60) 2019; 176
J Ernst (1756_CR71) 2017; 12
D Yu (1756_CR82) 2019; 176
1756_CR52
1756_CR53
1756_CR54
1756_CR55
JMHM Reul (1756_CR10) 1985; 117
1756_CR51
JJ Lee (1756_CR85) 2018; 50
1756_CR18
1756_CR19
1756_CR56
1756_CR13
1756_CR57
1756_CR14
1756_CR58
1756_CR15
MJ Aryee (1756_CR74) 2014; 30
S Ripke (1756_CR76) 2014; 511
P Muglia (1756_CR61) 2010; 15
M Chikina (1756_CR66) 2015; 31
References_xml – reference: Zimmermann CA, Arloth J, Santarelli S, Löschner A, Weber P, Schmidt MV, et al. Stress dynamically regulates co-expression networks of glucocorticoid receptor-dependent MDD and SCZ risk genes. Transl Psychiatry. 2019;9:41.
– reference: Pruitt KD, Tatusova T, Brown GR, Maglott DR. NCBI Reference Sequences (RefSeq): current status, new features and genome annotation policy. Nucleic Acids Res. 2012;40:D130–5.
– reference: LeePHAnttilaVWonHFengYCARosenthalJZhuZGenomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disordersCell.201917914691482.e1110.1016/j.cell.2019.11.020
– reference: PasmanJAVerweijKJHGerringZStringerSSanchez-RoigeSTreurJLGWAS of lifetime cannabis use reveals new risk loci, genetic overlap with psychiatric traits, and a causal influence of schizophreniaNat Neurosci2018211161701:CAS:528:DC%2BC1cXhsF2nsrvF10.1038/s41593-018-0206-1
– reference: Fadason T, Schierding W, Lumley T, O’Sullivan JM. Chromatin interactions and expression quantitative trait loci reveal genetic drivers of multimorbidities. Nat Commun. 2018;9:5198.
– reference: MugliaPTozziFGalweyNWFrancksCUpmanyuRKongXQGenome-wide association study of recurrent major depressive disorder in two European case-control cohortsMol Psychiatry2010155896011:CAS:528:DC%2BC3cXmtlams7o%3D10.1038/mp.2008.131
– reference: Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.
– reference: Morishita T, Fayad SM, Higuchi MA, Nestor KA, Foote KD. Deep brain stimulation for treatment-resistant depression: systematic review of clinical outcomes. Neurother J Amer Soc Experi NeuroTher. 2014;11:475–84. https://doi.org/10.1007/s13311-014-0282-1.
– reference: Anney RJL, Ripke S, Anttila V, Grove J, Holmans P, Huang H, et al. Meta-analysis of GWAS of over 16,000 individuals with autism spectrum disorder highlights a novel locus at 10q24.32 and a significant overlap with schizophrenia. Mol Autism. 2017;8:21.
– reference: Tiwari A, Gonzalez A. Biological alterations affecting risk of adult psychopathology following childhood trauma: a review of sex differences. Clin Psychol Rev. 2018;66:69–79. https://doi.org/10.1016/j.cpr.2018.01.006.
– reference: de Kloet ER, Joëls M, Holsboer F. Stress and the brain: from adaptation to disease. Nat Rev Neurosci. 2005;6:463–75.
– reference: Lindén M, Ramírez Sepúlveda JI, James T, Thorlacius GE, Brauner S, Gómez-Cabrero D, et al. Sex influences eQTL effects of SLE and Sjögren’s syndrome-associated genetic polymorphisms. Biol Sex Differ. 2017;8:34.
– reference: Nievergelt CM, Maihofer AX, Klengel T, Atkinson EG, Chen CY, Choi KW, et al. International meta-analysis of PTSD genome-wide association studies identifies sex- and ancestry-specific genetic risk loci. Nat Commun. 2019;10:4558.
– reference: Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry. 2015;20:32–47.
– reference: RowsonSABekhbatMKellySDBinderEBHyerMMShawGChronic adolescent stress sex-specifically alters the hippocampal transcriptome in adulthoodNeuropsychopharmacology.2019441207151:CAS:528:DC%2BC1MXhtVyrt73L10.1038/s41386-019-0321-z
– reference: Santarelli S, Zimmermann C, Kalideris G, Lesuis SL, Arloth J, Uribe A, et al. An adverse early life environment can enhance stress resilience in adulthood. Psychoneuroendocrinology. 2017;78:213–21.
– reference: Kang HJ, Park Y, Yoo KH, Kim KT, Kim ES, Kim JW, et al. Sex differences in the genetic architecture of depression. Sci Rep. 2020;10:1–12.
– reference: Boyd A, Van de Velde S, Vilagut G, de Graaf R, O׳Neill S, Florescu S, et al. Gender differences in mental disorders and suicidality in Europe: Results from a large cross-sectional population-based study. J Affect Disord. 2015;173:245–54.
– reference: Stephens MAC, Mahon PB, McCaul ME, Wand GS. Hypothalamic–pituitary–adrenal axis response to acute psychosocial stress: Effects of biological sex and circulating sex hormones. Psychoneuroendocrinology. 2016;66:47–55.
– reference: Howard DM, Adams MJ, Clarke TK, Hafferty JD, Gibson J, Shirali M, et al. Genome-wide meta-analysis of depression identifies 102 independent variants and highlights the importance of the prefrontal brain regions. Nat Neurosci. 2019;22:343–52.
– reference: Ellegren H, Parsch J. The evolution of sex-biased genes and sex-biased gene expression. Nat Rev Genet. 2007;8:689–98.
– reference: Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, et al. Deep brain stimulation for treatment-resistant depression. Neuron. 2005;45:651–60.
– reference: Salk RH, Hyde JS, Abramson LY. Gender differences in depression in representative national samples: meta-analyses of diagnoses and symptoms. Psychol Bull. 2017;143:783–822.
– reference: Morrison KE, Rodgers AB, Morgan CP, Bale TL. Epigenetic mechanisms in pubertal brain maturation. Neuroscience. 2014;264:17–24.
– reference: AryeeMJJaffeAECorrada-BravoHLadd-AcostaCFeinbergAPHansenKDMinfi: A flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarraysBioinformatics.201430136391:CAS:528:DC%2BC2cXnslOit78%3D10.1093/bioinformatics/btu049
– reference: Boraska V, Jerončić A, Colonna V, Southam L, Nyholt DR, William Rayner N, et al. Genome-wide meta-analysis of common variant differences between men and women. Hum Mol Genet. 2012;21:4805–15.
– reference: Ripke S, Wray NR, Lewis CM, Hamilton SP, Weissman MM, Breen G, et al. A mega-analysis of genome-wide association studies for major depressive disorder. Mol Psychiatry. 2013;18:497–511.
– reference: XueAWuYZhuZZhangFKemperKEZhengZGenome-wide association analyses identify 143 risk variants and putative regulatory mechanisms for type 2 diabetesNat Commun2018911410.1038/s41467-018-04951-w
– reference: OwenDMatthewsSGGlucocorticoids and sex-dependent development of brain glucocorticoid and mineralocorticoid receptorsEndocrinology.20031442775841:CAS:528:DC%2BD3sXkvF2ksLw%3D10.1210/en.2002-0145
– reference: Moore SR. Commentary: What is the case for candidate gene approaches in the era of high-throughput genomics? A response to Border and Keller (2017). J Child Psychol Psychiatry. 2017;58:331–4.
– reference: Zorn JV, Schür RR, Boks MP, Kahn RS, Joëls M, Vinkers CH. Cortisol stress reactivity across psychiatric disorders: a systematic review and meta-analysis. Psychoneuroendocrinology. 2017;77:25–36.
– reference: DimasASNicaACMontgomerySBStrangerBERajTBuilASex-biased genetic effects on gene regulation in humansGenome Res2012222368751:CAS:528:DC%2BC38XhvVWgsbfI10.1101/gr.134981.111
– reference: Aguet F, Barbeira AN, Bonazzola R, Brown A, Castel SE, Jo B, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066.
– reference: Sapolsky RM, Romero LM, Munck AU. How do glucocorticoids influence stress responses? integrating permissive, suppressive, stimulatory, and preparative actions 1. Endocr Rev. 2000;21:55–89.
– reference: Jessen HM, Auger AP. Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics. 2011;6:857–61.
– reference: Brivio E, Lopez JP, Chen A. Sex differences: transcriptional signatures of stress exposure in male and female brains. Genes Brain Behav. 2020;19:e12643. https://doi.org/10.1111/gbb.12643.
– reference: Gilks WP, Abbott JK, Morrow EH. Sex differences in disease genetics: evidence, evolution, and detection. Trends Genet. 2014;30:453–63.
– reference: Labonté B, Engmann O, Purushothaman I, Menard C, Wang J, Tan C, et al. Sex-specific transcriptional signatures in human depression. Nat Med. 2017;23:1102–11.
– reference: StahlEABreenGForstnerAJMcQuillinARipkeSTrubetskoyVGenome-wide association study identifies 30 loci associated with bipolar disorderNat Genet2019517938031:CAS:528:DC%2BC1MXoslKqtr8%3D10.1038/s41588-019-0397-8
– reference: DemontisDWaltersRKMartinJMattheisenMAlsTDAgerboEDiscovery of the first genome-wide significant risk loci for attention deficit/hyperactivity disorderNat Genet20195163751:CAS:528:DC%2BC1cXitlWnu77E10.1038/s41588-018-0269-7
– reference: Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet. 2019;20:173–90.
– reference: RipkeSNealeBMCorvinAWaltersJTRFarhKHHolmansPABiological insights from 108 schizophrenia-associated genetic lociNature.201451142171:CAS:528:DC%2BC2cXht1WlurrN10.1038/nature13595
– reference: Bale TL, Epperson CN. Sex differences and stress across the lifespan. Nat Neurosci. 2015;18:1413–20.
– reference: KellyMMTyrkaARAndersonGMPriceLHCarpenterLLSex differences in emotional and physiological responses to the Trier Social Stress TestJ Behav Ther Exp Psychiatry200839879810.1016/j.jbtep.2007.02.003
– reference: Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch effects and other unwanted variation in high-throughput experiments. Bioinformatics. 2012;28:882–3.
– reference: Bourke CH, Raees MQ, Malviya S, Bradburn CA, Binder EB, Neigh GN. Glucocorticoid sensitizers Bag1 and Ppid are regulated by adolescent stress in a sex-dependent manner. Psychoneuroendocrinology. 2013;38:84.
– reference: Jansen R, Batista S, Brooks AI, Tischfield JA, Willemsen G, van Grootheest G, et al. Sex differences in the human peripheral blood transcriptome. BMC Genomics. 2014;15:33.
– reference: Oliva M, Muñoz-Aguirre M, Kim-Hellmuth S, Wucher V, Gewirtz ADH, Cotter DJ, et al. The impact of sex on gene expression across human tissues. Science. 2020;369:eaba3066.
– reference: Girgenti MJ, Duman RS. Analysis of bulk tissue transcriptome data reveals convergence of cell types altered in schizophrenia and bipolar disorder. Biol Psychiatry. 2018;84:772–4.
– reference: ChikinaMZaslavskyESealfonSCCellCODE: A robust latent variable approach to differential expression analysis for heterogeneous cell populationsBioinformatics.2015311584911:CAS:528:DC%2BC28Xhs1ais7nM10.1093/bioinformatics/btv015
– reference: Lee PH, Anttila V, Won H, Feng YCA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–1482.e11.
– reference: Davis LK, Stranger BE. The new science of sex differences in neuropsychiatric traits. Am J Med Genet B: Neuropsychiatr Genet. 2019;180:333–4.
– reference: YuDSulJHTsetsosFNawazMSHuangAYZelayaIInterrogating the genetic determinants of Tourette’s syndrome and other tiC disorders through genome-wide association studiesAm J Psychiatry20191762172710.1176/appi.ajp.2018.18070857
– reference: Girgenti M, Wang J, Ji D, Cruz D, Stein M, Gelernter J, et al. Transcriptomic organization of the human brain in post-traumatic stress disorder. Nat Neurosci. 2021;24:24–33.
– reference: Chang CC, Chow CC, Tellier LCAM, Vattikuti S, Purcell SM, Lee JJ. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4:7.
– reference: LeeJJWedowROkbayAKongEMaghzianOZacherMGene discovery and polygenic prediction from a genome-wide association study of educational attainment in 1.1 million individualsNat Genet2018501112211:CAS:528:DC%2BC1cXhtlOis7zI10.1038/s41588-018-0147-3
– reference: Abel KM, Drake R, Goldstein JM. Sex differences in schizophrenia. Int Rev Psychiatry. 2010;22:417–28.
– reference: SeneyMLLoganRWCritical roles for developmental hormones and genetic sex in stress-induced transcriptional changes associated with depressionNeuropsychopharmacology.202146221210.1038/s41386-020-00792-8
– reference: Chen Y, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203–9.
– reference: Terada A, Tsuda K, Sese J. Fast Westfall-Young permutation procedure for combinatorial regulation discovery. In: Proceedings—2013 IEEE International Conference on Bioinformatics and Biomedicine, IEEE BIBM 2013. 2013. 153–8.
– reference: AdornettoCHensdiekMMeyerAIn-AlbonTFedererMSchneiderSThe factor structure of the Childhood Anxiety Sensitivity Index in German childrenJ Behav Ther Exp Psychiatry2008394041610.1016/j.jbtep.2008.01.001
– reference: WestraHJPetersMJEskoTYaghootkarHSchurmannCKettunenJSystematic identification of trans eQTLs as putative drivers of known disease associationsNat Genet2013451238431:CAS:528:DC%2BC3sXhtl2ksLzK10.1038/ng.2756
– reference: KarisettyBCKhandelwalNKumarAChakravartySSex difference in mouse hypothalamic transcriptome profile in stress-induced depression modelBiochem Biophys Res Commun2017486112281:CAS:528:DC%2BC2sXlslOqsLk%3D10.1016/j.bbrc.2017.04.005
– reference: Yao C, Joehanes R, Johnson AD, Huan T, Esko T, Ying S, et al. Sex- and age-interacting eQTLs in human complex diseases. Hum Mol Genet. 2014;23:1947–56.
– reference: Arloth J, Bogdan R, Weber P, Frishman G, Menke A, Wagner KV, et al. Genetic differences in the immediate transcriptome response to stress predict risk-related brain function and psychiatric disorders. Neuron. 2015;86:1189–202.
– reference: SmollerJWKendlerKCraddockNLeePHNealeBMNurnbergerJNIdentification of risk loci with shared effects on five major psychiatric disorders: a genome-wide analysisLancet.2013381137191:CAS:528:DC%2BC3sXjsFCnsrk%3D10.1016/S0140-6736(12)62129-1
– reference: ElbauIGBrücklmeierBUhrMArlothJCzamaraDSpoormakerVIThe brain’s hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markersProc Natl Acad Sci USA2018115E10206151:CAS:528:DC%2BC1cXitVyhsLbK10.1073/pnas.1804340115
– reference: Sugathan A, Waxman DJ. Genome-wide analysis of chromatin states reveals distinct mechanisms of sex-dependent gene regulation in male and female mouse liver. Mol Cell Biol. 2013;33:3594–610.
– reference: LiuJJWEinNPeckKHuangVPruessnerJCVickersKSex differences in salivary cortisol reactivity to the Trier Social Stress Test (TSST): a meta-analysisPsychoneuroendocrinology.20178226371:CAS:528:DC%2BC2sXntlaitro%3D10.1016/j.psyneuen.2017.04.007
– reference: ErnstJKellisMChromatin-state discovery and genome annotation with ChromHMMNat Protoc2017122478921:CAS:528:DC%2BC2sXhsl2js7rN10.1038/nprot.2017.124
– reference: Ratnu VS, Emami MR, Bredy TW. Genetic and epigenetic factors underlying sex differences in the regulation of gene expression in the brain. J Neurosci Res. 2017;95:301–10.
– reference: Diflorio A, Jones I. Is sex important? Gender differences in bipolar disorder. Int Rev Psychiatry. 2010;22:437–52.
– reference: ShabalinAAMatrix eQTL: Ultra fast eQTL analysis via large matrix operationsBioinformatics.201228135381:CAS:528:DC%2BC38XmvF2ksb8%3D10.1093/bioinformatics/bts163
– reference: Gershoni M, Pietrokovski S. The landscape of sex-differential transcriptome and its consequent selection in human adults. BMC Biol. 2017;15:7.
– reference: MatthewsSGDynamic changes in glucocorticoid and mineralocorticoid receptor mRNA in the developing guinea pig brainDev Brain Res1998107123321:CAS:528:DyaK1cXitFKhsrw%3D10.1016/S0165-3806(98)00008-X
– reference: HalldorsdottirTPiechaczekCSoares de MatosAPCzamaraDPehlVWagenbuechlerPPolygenic risk: predicting depression outcomes in clinical and epidemiological cohorts of youthsAm J Psychiatry20191766152510.1176/appi.ajp.2019.18091014
– reference: Ramikie TS, Ressler KJ. Mechanisms of sex differences in fear and posttraumatic stress disorder. Biol Psychiatry. 2018;83:876–85.
– reference: Arloth J, Bader DM, Röh S, Altmann A. Re-annotator: annotation pipeline for microarray probe sequences. PLoS ONE. 2015;10:e0139516.
– reference: Wray NR, Ripke S, Mattheisen M, Trzaskowski M, Byrne EM, Abdellaoui A, et al. Genome-wide association analyses identify 44 risk variants and refine the genetic architecture of major depression. Nat Genet. 2018;50:668–81.
– reference: Seney M, Huo Z, Cahill K, French L, Puralewski R, Zhang J, et al. Opposite molecular signatures of depression in men and women. biol psychiatry. 2018;84:18–27.
– reference: SavageJEJansenPRStringerSWatanabeKBryoisJDe LeeuwCAGenome-wide association meta-analysis in 269,867 individuals identifies new genetic and functional links to intelligenceNat Genet20185091291:CAS:528:DC%2BC1cXht1WqsLvF10.1038/s41588-018-0152-6
– reference: ZhouJTroyanskayaOGPredicting effects of noncoding variants with deep learning-based sequence modelNat Methods20151293141:CAS:528:DC%2BC2MXhtlynsL%2FL10.1038/nmeth.3547
– reference: Mayne BT, Bianco-Miotto T, Buckberry S, Breen J, Clifton V, Shoubridge C, et al. Large scale gene expression meta-analysis reveals tissue-specific, sex-biased gene expression in humans. Front Genet. 2016;7:183.
– reference: ReulJMHMDe KloetERTwo receptor systems for corticosterone in rat brain: microdistribution and differential occupationEndocrinology.19851172505111:CAS:528:DyaL28XhsFegtA%3D%3D10.1210/endo-117-6-2505
– reference: Faul F, Erdfelder E, Lang AG, Buchner A. G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods. 2007;39:175–91. https://doi.org/10.3758/bf03193146.
– reference: Bekhbat M, Neigh GN. Sex differences in the neuro-immune consequences of stress: focus on depression and anxiety. Brain Behav Immun. 2018;67:1–12.
– reference: ChadwickLHThe NIH roadmap epigenomics program data resourceEpigenomics20124317241:CAS:528:DC%2BC38XosVahsrg%3D10.2217/epi.12.18
– reference: Childs E, Dlugos A, De Wit H. Cardiovascular, hormonal, and emotional responses to the TSST in relation to sex and menstrual cycle phase. Psychophysiology. 2010;47:550–9.
– ident: 1756_CR55
  doi: 10.1016/j.tig.2014.08.006
– ident: 1756_CR20
  doi: 10.1016/j.neuroscience.2013.11.014
– ident: 1756_CR22
  doi: 10.1038/nrg2167
– ident: 1756_CR24
  doi: 10.4161/epi.6.7.16517
– volume: 176
  start-page: 217
  year: 2019
  ident: 1756_CR82
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2018.18070857
– ident: 1756_CR14
  doi: 10.1210/edrv.21.1.0389
– ident: 1756_CR64
  doi: 10.1093/nar/gkr1079
– ident: 1756_CR67
  doi: 10.1186/s13742-015-0047-8
– ident: 1756_CR31
  doi: 10.1093/hmg/dds304
– ident: 1756_CR13
  doi: 10.1038/nrn1683
– ident: 1756_CR42
  doi: 10.1002/jnr.23886
– volume: 21
  start-page: 1161
  year: 2018
  ident: 1756_CR86
  publication-title: Nat Neurosci
  doi: 10.1038/s41593-018-0206-1
– volume: 486
  start-page: 1122
  year: 2017
  ident: 1756_CR27
  publication-title: Biochem Biophys Res Commun
  doi: 10.1016/j.bbrc.2017.04.005
– ident: 1756_CR43
  doi: 10.1186/s12915-017-0352-z
– volume: 30
  start-page: 1363
  year: 2014
  ident: 1756_CR74
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btu049
– ident: 1756_CR78
  doi: 10.1038/s41593-018-0326-7
– ident: 1756_CR58
  doi: 10.1002/ajmg.b.32747
– volume: 51
  start-page: 793
  year: 2019
  ident: 1756_CR77
  publication-title: Nat Genet
  doi: 10.1038/s41588-019-0397-8
– volume: 144
  start-page: 2775
  year: 2003
  ident: 1756_CR11
  publication-title: Endocrinology.
  doi: 10.1210/en.2002-0145
– ident: 1756_CR35
  doi: 10.1016/j.psyneuen.2017.01.021
– ident: 1756_CR9
  doi: 10.1016/j.psyneuen.2015.12.021
– ident: 1756_CR47
  doi: 10.1038/s41593-020-00748-7
– volume: 50
  start-page: 1112
  year: 2018
  ident: 1756_CR85
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0147-3
– ident: 1756_CR45
  doi: 10.1016/j.psyneuen.2012.05.001
– ident: 1756_CR21
– ident: 1756_CR19
  doi: 10.1016/j.psyneuen.2016.11.036
– ident: 1756_CR68
  doi: 10.1109/BIBM.2013.6732479
– ident: 1756_CR57
  doi: 10.1111/jcpp.12697
– volume: 9
  start-page: 1
  year: 2018
  ident: 1756_CR87
  publication-title: Nat Commun
  doi: 10.1038/s41467-017-02088-w
– volume: 22
  start-page: 2368
  year: 2012
  ident: 1756_CR44
  publication-title: Genome Res
  doi: 10.1101/gr.134981.111
– volume: 107
  start-page: 123
  year: 1998
  ident: 1756_CR12
  publication-title: Dev Brain Res
  doi: 10.1016/S0165-3806(98)00008-X
– ident: 1756_CR18
  doi: 10.1016/j.cpr.2018.01.006
– ident: 1756_CR48
  doi: 10.1016/j.biopsych.2018.09.014
– volume: 15
  start-page: 589
  year: 2010
  ident: 1756_CR61
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2008.131
– ident: 1756_CR23
  doi: 10.1186/1471-2164-15-33
– ident: 1756_CR62
  doi: 10.1371/journal.pone.0139516
– ident: 1756_CR25
  doi: 10.1128/MCB.00280-13
– ident: 1756_CR52
– ident: 1756_CR46
  doi: 10.1530/ey.18.14.14
– ident: 1756_CR1
  doi: 10.3109/09540261.2010.515205
– volume: 50
  start-page: 912
  year: 2018
  ident: 1756_CR88
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0152-6
– ident: 1756_CR38
  doi: 10.3389/fgene.2016.00183
– volume: 46
  start-page: 221
  year: 2021
  ident: 1756_CR50
  publication-title: Neuropsychopharmacology.
  doi: 10.1038/s41386-020-00792-8
– ident: 1756_CR3
  doi: 10.1037/bul0000102
– ident: 1756_CR37
  doi: 10.1038/s41467-018-07692-y
– ident: 1756_CR51
  doi: 10.1016/j.neuron.2005.02.014
– ident: 1756_CR30
  doi: 10.1038/s41576-018-0083-1
– ident: 1756_CR49
  doi: 10.1016/j.biopsych.2018.01.017
– ident: 1756_CR5
  doi: 10.1016/j.jad.2014.11.002
– volume: 4
  start-page: 317
  year: 2012
  ident: 1756_CR39
  publication-title: Epigenomics
  doi: 10.2217/epi.12.18
– volume: 51
  start-page: 63
  year: 2019
  ident: 1756_CR80
  publication-title: Nat Genet
  doi: 10.1038/s41588-018-0269-7
– ident: 1756_CR53
  doi: 10.1038/mp.2012.21
– ident: 1756_CR41
  doi: 10.1186/s13293-017-0153-7
– ident: 1756_CR29
  doi: 10.1038/nm.4386
– volume: 28
  start-page: 1353
  year: 2012
  ident: 1756_CR75
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/bts163
– volume: 44
  start-page: 1207
  year: 2019
  ident: 1756_CR26
  publication-title: Neuropsychopharmacology.
  doi: 10.1038/s41386-019-0321-z
– ident: 1756_CR28
  doi: 10.1111/gbb.12643
– ident: 1756_CR32
  doi: 10.1093/hmg/ddt582
– ident: 1756_CR79
  doi: 10.1186/s13229-017-0137-9
– volume: 381
  start-page: 1371
  year: 2013
  ident: 1756_CR83
  publication-title: Lancet.
  doi: 10.1016/S0140-6736(12)62129-1
– volume: 179
  start-page: 1469
  year: 2019
  ident: 1756_CR84
  publication-title: Cell.
  doi: 10.1016/j.cell.2019.11.020
– ident: 1756_CR81
  doi: 10.1038/s41467-019-12576-w
– ident: 1756_CR8
  doi: 10.1038/nn.4112
– ident: 1756_CR63
  doi: 10.1093/biostatistics/kxj037
– volume: 12
  start-page: 931
  year: 2015
  ident: 1756_CR72
  publication-title: Nat Methods
  doi: 10.1038/nmeth.3547
– volume: 39
  start-page: 404
  year: 2008
  ident: 1756_CR59
  publication-title: J Behav Ther Exp Psychiatry
  doi: 10.1016/j.jbtep.2008.01.001
– ident: 1756_CR73
  doi: 10.4161/epi.23470
– ident: 1756_CR56
  doi: 10.1038/s41598-020-66672-9
– ident: 1756_CR2
  doi: 10.3109/09540261.2010.514601
– ident: 1756_CR36
  doi: 10.1038/s41398-019-0373-1
– ident: 1756_CR33
  doi: 10.1016/j.neuron.2015.05.034
– ident: 1756_CR4
  doi: 10.1016/j.biopsych.2017.11.016
– volume: 115
  start-page: E10206
  year: 2018
  ident: 1756_CR34
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1804340115
– ident: 1756_CR7
  doi: 10.1038/mp.2014.163
– ident: 1756_CR6
  doi: 10.1016/j.bbi.2017.02.006
– volume: 12
  start-page: 2478
  year: 2017
  ident: 1756_CR71
  publication-title: Nat Protoc
  doi: 10.1038/nprot.2017.124
– ident: 1756_CR65
  doi: 10.1093/bioinformatics/bts034
– volume: 82
  start-page: 26
  year: 2017
  ident: 1756_CR17
  publication-title: Psychoneuroendocrinology.
  doi: 10.1016/j.psyneuen.2017.04.007
– volume: 117
  start-page: 2505
  year: 1985
  ident: 1756_CR10
  publication-title: Endocrinology.
  doi: 10.1210/endo-117-6-2505
– ident: 1756_CR70
  doi: 10.3758/bf03193146
– volume: 511
  start-page: 421
  year: 2014
  ident: 1756_CR76
  publication-title: Nature.
  doi: 10.1038/nature13595
– volume: 39
  start-page: 87
  year: 2008
  ident: 1756_CR16
  publication-title: J Behav Ther Exp Psychiatry
  doi: 10.1016/j.jbtep.2007.02.003
– volume: 31
  start-page: 1584
  year: 2015
  ident: 1756_CR66
  publication-title: Bioinformatics.
  doi: 10.1093/bioinformatics/btv015
– volume: 45
  start-page: 1238
  year: 2013
  ident: 1756_CR69
  publication-title: Nat Genet
  doi: 10.1038/ng.2756
– ident: 1756_CR15
  doi: 10.1111/j.1469-8986.2009.00961.x
– ident: 1756_CR54
  doi: 10.1038/s41588-018-0090-3
– ident: 1756_CR40
  doi: 10.1007/s13311-014-0282-1
– volume: 176
  start-page: 615
  year: 2019
  ident: 1756_CR60
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.2019.18091014
SSID ssj0000548171
Score 2.3615918
Snippet Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress hormone,...
Abstract Substantial sex differences have been reported in the physiological response to stress at multiple levels, including the release of the stress...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 632
SubjectTerms 38
38/39
45/61
631/208/212
692/53/2423
Adolescent
Behavioral Sciences
Biological Psychology
Child
Depressive Disorder, Major - genetics
Female
Gender differences
Gene expression
Gene Expression Regulation
Genome-Wide Association Study
Glucocorticoids
Humans
Male
Medicine
Medicine & Public Health
Neurosciences
Pharmacotherapy
Psychiatry
Quantitative Trait Loci
Receptors, Glucocorticoid - genetics
Receptors, Glucocorticoid - metabolism
Sex Characteristics
Transcriptome
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Nb9UwDI_QDogLYnyWDRQkblCtSdx8HAExTUjjApN2i5I0EU-CFr3XSfz5OEnfY4_PC9c6qVLbcezG_pmQ56Ck4YHFVoohl-SYodVBQWuAmcErB30Bnj9_L88u4N1lf3mt1VfOCavwwJVxJ7x3LMrIVTI9cCZ1SsaL3HJHxWGpI8cz71owVVG9QTPFliqZTuiTDVrrXE3Gc_SsetnyvZOoAPb_zsv8NVnypxvTchCd3iG3Fw-SvqorPyQ34niX3Dxf7sjvkc2H-I1u-56gFaCrkaKXR1FTcsEiXdfu8ygPOqVCKcnrdM6nVrEh05eIo0rubKTzREtaO0apOHtaDUjKqTDTmuaaiPpH9z65OH378c1Zu7RWaANGLHMbvBYgh2icMx5kF2FAnjDlk3AoJOUDeKM6DcL1pkcXjydufK9AJ6dDAvGAHIzTGB8RKoXgLnbaD05AikHLwDW-JAQDiXloCNuy2YYFdzy3v_hsy_230LaKxqJobBGN5Q15sZvztaJu_HX06yy93ciMmF0eoB7ZRY_sv_SoIcdb2dtlG28sz3B8HGM6_IpnOzJuwHyr4sY4XeUxOdFEo51ryMOqKruVCDCdQA-xIWpPifaWuk8ZV58KyLeW0mB83JCXW3X7saw_s-Lx_2DFEbnF8z5hvGXimBzM66v4BF2v2T8tu-w7dcgqMA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1JixQxFA46gngRd0tHieBNi-ksleUkKg6DMF50oG8hSSXaoFVjdw34830vtQztMtdKqkjlLfnyVkJeSq0sjyzVSrSYkmPb2kQtayuZbYP2simF508_qZMz-XHdrCeD224Kq5x1YlHUbR_RRn7EsTIaB3gt35z_rLFrFHpXpxYa18kNLF2GIV16rRcbC8ARwzSbcmVWwhztQGdjThnHO7RuVM33zqNStv9fWPPvkMk__KblODq-Q25POJK-HQl_l1xL3T1y83TylN8nu8_pF527n4AuoJuOAtajwC-Ytki3Yw96oArtcxkpIex0wLOraJL-R4JZJYI20aGnJbgd7qrwdr9pYQgDYvotxcyI0a77gJwdf_jy_qSeGizUEe4tQx2DEVK1yXpvg1SrJFvYE6ZDFh5IpUOUweqVkcI3tgGgxzO3odHSZG9iluIhOej6Lj0mVAnBfVqZ0Hohc4pGRW7gIzFamVmQFWHzNrs4VR_HJhjfXfGCC-NG0jggjSukcbwir5Z3zsfaG1fOfofUW2Zi3ezyoN9-dZMYOt54llTiOttGcqZMzjYIbOCkUwtwqSKHM-3dJMw7d8l6FXmxDIMYom_Fd6m_wDkYbmJA21Xk0cgqy0qEtCsBOLEieo-J9pa6P9JtvpVS30YpC7fkirye2e1yWf_fiidX_8VTcoujBDBeM3FIDobtRXoG0GoIz4v8_AaqyCHr
  priority: 102
  providerName: ProQuest
Title Sex differences in the genetic regulation of the blood transcriptome response to glucocorticoid receptor activation
URI https://link.springer.com/article/10.1038/s41398-021-01756-2
https://www.ncbi.nlm.nih.gov/pubmed/34903727
https://www.proquest.com/docview/2609524874
https://www.proquest.com/docview/2610078793
https://pubmed.ncbi.nlm.nih.gov/PMC8669026
https://doaj.org/article/25a1e6e27f9542168ff9b38cd47ed007
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3rixMxEA_nHYhfxLerZ4ngN11sHpvHx1654yjcIZ4H_RaSbKIF3ZV2D_zznWQfUj0FPxWaSUkzj8wkM79B6A2XQlNPQilYnUpydF0qL3mpOdG1k5ZXGXj-4lKcX_PVulofIDrWwuSk_Qxpmc30mB32fgfGNhWD0RT8ykqUYHaPEnR7kuqlWE73KuCCKCLJUB8zZ-qWqXtnUIbqv82__DNN8re30nwEnT1A9wffES_61T5EB6F5hO5eDK_jj9HuKvzAY8cT0H-8aTD4dxhkJJUq4m3fdx44gduYR3LaOu7SeZWtR_stAFXOmg24a3FOaIf4FGa3mxqGUhJMu8WpGqK_y32Crs9OPy3Py6GpQukhVulK7xTjog7aWu24mAdew54Q6SKzwB7pPHdazhVnttIVOHc0Uu0qyVW0ykfOnqLDpm3Cc4QFY9SGuXK1ZTwGr4SnCn7Ee80jcbxAZNxm4wfE8dT44qvJL99MmZ41BlhjMmsMLdDbac73Hm_jn9QniXsTZcLKzl-0289mkB1DK0uCCFRGXXFKhIpRO5aaNslQg4tUoOOR92ZQ4J2hCYiPQjQH_-L1NAyql95TbBPam0STUkwUWLgCPetFZVoJ43rOwDcskNwTor2l7o80my8Z3lsJoSEyLtC7Udx-LevvW_Hi_8hfons0aQShJWHH6LDb3oRX4F51bobuyLWcoaPFYnW1gs-T08sPH2dZy2b5yuInkSUkpQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD4anQS8IO4EBhgJniBaYzu-PCDEYFPH1grBJu3Nix0HKkEy2k7An-I3cuwkncplb3utndTxufg7PjeAp1wKTV3mU8HKkJKjy1Q5yVPNM11aWfA8Fp4fT8TokL87yo_W4FefCxPCKnudGBV12bhwR75JQ2U0ivCavzr5loauUcG72rfQaNliz__8jibb_OXuW6TvM0p3tg_ejNKuq0DqEKwvUmcV46L0uii05WLoeSkRREhbsQLXJ63jVsuh4qzIdY7ohlZU21xyVRXKVZzhey_BOmdoygxgfWt78v7D8lYHAZDKZNZl5wyZ2pzjKRGy2Giw2vGPUrpyAsZGAf9Ct38Haf7hqY0H4M51uNYhV_K6ZbUbsObrm3B53Pnmb8H8o_9B-n4rqH3ItCaILglyaEiUJLO26z3yAWmqOBKD5skinJZRdzVfPc6KMbueLBoSw-nROsanm2mJQyEEp5mRkIvR3iTfhsML2fw7MKib2t8DIhijhR8qWxaMV94p4ajClzineZVZnkDWb7NxXb3z0Hbji4l-d6ZMSxqDpDGRNIYm8Hz5zElb7ePc2VuBesuZoVJ3_KGZfTKd4BuaF5kXnspK55xmQlWVtiy0jJK-RICWwEZPe9Opj7k5Y_YEniyHUfCDN6eofXMa5oQAF4X6NYG7LassV8K4HjJEpgnIFSZaWerqSD39HIuLKyE02uUJvOjZ7WxZ_9-K--d_xWO4MjoY75v93cneA7hKgzRkNM3YBgwWs1P_EIHdwj7qpInA8UUL8G8S6F_A
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRaq4IPYGChgJThB1vMTLASGgjFpKKySoNLcQO3YZCZIyMxXw1_h1PDvJVMPSW6-xnTh-iz_7bQCPhZKGOepzyesYkmPqXDslciOoqa2qRJESzx8cyt0j8XZSTNbg1xALE90qB52YFHXdunhHvs1iZjSG8Fpsh94t4v3O-MXJtzxWkIqW1qGcRsci-_7ndzy-zZ_v7SCtnzA2fvPx9W7eVxjIHQL3Re6s5kLW3lSVsUKOvKgVAgplA69wrso6YY0aacGrwhSIdFhgxhZK6FBpFwTH916Cy4oXNMqYmqjl_Q5CIU0V7eN0Rlxvz3G_iPFsLJ7f8TM5W9kLU8mAf-Hcv901_7DZpq1wfA2u9hiWvOyY7jqs-eYGbBz0VvqbMP_gf5Ch8grqITJtCOJMgrwaQybJzB_3RcNIG1JLcp8ni7hvJi3WfvXYK3nverJoSXKsx3Myjm6nNTZFZ5x2RmJURnenfAuOLmTpb8N60zZ-E4jknFV-pG1dcRG809IxjS9xzohArciADstcuj7zeSzA8aVMFniuy440JZKmTKQpWQZPl2NOurwf5_Z-Fam37BlzdqcH7ey47FVAyYqKeumZCqYQjEodgrE8Fo9SvkaolsHWQPuyVyTz8oztM3i0bEYVEO06VePb09gnurpo1LQZ3OlYZTkTLsyII0bNQK0w0cpUV1ua6eeUZlxLafCEnsGzgd3OpvX_pbh7_l88hA0U2_Ld3uH-PbjCojBQllO-BeuL2am_jwhvYR8kUSLw6aJl9zeD92KQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sex+differences+in+the+genetic+regulation+of+the+blood+transcriptome+response+to+glucocorticoid+receptor+activation&rft.jtitle=Translational+psychiatry&rft.au=Moore%2C+Sarah+R.&rft.au=Halldorsdottir%2C+Thorhildur&rft.au=Martins%2C+Jade&rft.au=Lucae%2C+Susanne&rft.date=2021-12-13&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2158-3188&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41398-021-01756-2&rft.externalDocID=10_1038_s41398_021_01756_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-3188&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-3188&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-3188&client=summon