In situ wrapping of the cathode material in lithium-sulfur batteries
While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barr...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 479 - 9 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.09.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium–sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g
–1
.
To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability. |
---|---|
AbstractList | While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium–sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g
–1
.
To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability. To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability. While lithium-sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium-sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g-1.To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability.While lithium-sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium-sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g-1.To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability. While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium–sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g –1 . While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium–sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g–1. While lithium-sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their practical applications. Many recent investigations have focused on the development of methods to wrap the sulfur material with a diffusion barrier layer. However, there is a trade-off between a perfect preassembled wrapping layer and electrolyte infiltration into the wrapped sulfur cathode. Here, we demonstrate an in situ wrapping approach to construct a compact layer on carbon/sulfur composite particles with an imperfect wrapping layer. This special configuration suppresses the shuttle effect while allowing polysulfide diffusion within the interior of the wrapped composite particles. As a result, the wrapped cathode for lithium-sulfur batteries greatly improves the Coulombic efficiency and cycle life. Importantly, the capacity decay of the cell at 1000 cycles is as small as 0.03% per cycle at 1672 mA g .To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes the trade-off between limiting polysulfide diffusion and allowing electrolyte infiltration, and affords extraordinary cycling stability. |
ArticleNumber | 479 |
Author | Lu, Wei Chen, Liwei Shen, Yanbin Zhao, Yanfei Lu, Di Lu, An-Hui Chen, Hongwei Hu, Chenji Wu, Xiaodong |
Author_xml | – sequence: 1 givenname: Chenji surname: Hu fullname: Hu, Chenji organization: i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences – sequence: 2 givenname: Hongwei surname: Chen fullname: Chen, Hongwei email: hwchen@hqu.edu.cn organization: College of Materials Science and Engineering, Huaqiao University – sequence: 3 givenname: Yanbin surname: Shen fullname: Shen, Yanbin organization: i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences – sequence: 4 givenname: Di surname: Lu fullname: Lu, Di organization: i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences – sequence: 5 givenname: Yanfei surname: Zhao fullname: Zhao, Yanfei organization: Vacuum Interconnected Nanotech Workstation, SINANO, Chinese Academy of Sciences – sequence: 6 givenname: An-Hui surname: Lu fullname: Lu, An-Hui organization: State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology – sequence: 7 givenname: Xiaodong surname: Wu fullname: Wu, Xiaodong organization: i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences – sequence: 8 givenname: Wei surname: Lu fullname: Lu, Wei organization: i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences – sequence: 9 givenname: Liwei orcidid: 0000-0003-4160-9771 surname: Chen fullname: Chen, Liwei email: lwchen2008@sinano.ac.cn organization: i-Lab, CAS Center for Excellence in Nanoscience, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences, Vacuum Interconnected Nanotech Workstation, SINANO, Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28883433$$D View this record in MEDLINE/PubMed |
BookMark | eNp9ks9rFDEcxYNUbK39BzzIgBcvo_m9mYsgVduFghc9h28ymd0sM8maZCr-92Y7rWwLGggJyec9Hsl7iU5CDA6h1wS_J5ipD5kTLlctJnViKWSrnqEzijlpyYqyk6P9KbrIeYfrYB1RnL9Ap1QpxThjZ-jzOjTZl7n5lWC_92HTxKEpW9dYKNvYu2aC4pKHsfGhGX3Z-nlq8zwOc2oMlMOdy6_Q8wHG7C7u13P04-uX75fX7c23q_Xlp5vWSixLa5xQhlkQtOcOhGLYGkOBMZAYDwMYNnSGSJA9g052nbRSEMdtLxVmverZOVovvn2End4nP0H6rSN4fXcQ00ZDKt6OTndcGEolV0pILlZEAeZWCCt7JakxUL0-Ll772Uyuty6UBOMj08c3wW_1Jt5qIVSnBK0G7-4NUvw5u1z05LN14wjBxTlr0rGVIKrjB_TtE3QX5xTqUx0oKSimklXqzXGiv1EePqsCagFsijknN2jrCxQfDwH9qAnWh2ropRq6VkPfVUOrKqVPpA_u_xWxRZQrHDYuHcX-t-oPEWPKUw |
CitedBy_id | crossref_primary_10_1002_anie_201809907 crossref_primary_10_1021_acsami_8b19593 crossref_primary_10_1038_s41467_021_27866_5 crossref_primary_10_1039_D1TA10181A crossref_primary_10_1016_j_jpowsour_2024_234144 crossref_primary_10_1002_asia_202100176 crossref_primary_10_1016_j_mattod_2018_04_007 crossref_primary_10_1039_C7RA12800B crossref_primary_10_1016_j_apmt_2020_100585 crossref_primary_10_1021_acsami_1c20398 crossref_primary_10_1039_D1TA03300J crossref_primary_10_1016_j_nanoen_2019_03_023 crossref_primary_10_1016_j_electacta_2021_139539 crossref_primary_10_1016_j_solidstatesciences_2022_106998 crossref_primary_10_1016_j_jechem_2020_01_031 crossref_primary_10_1021_acsami_1c04069 crossref_primary_10_1039_C8TA01115J crossref_primary_10_1007_s43938_024_00045_w crossref_primary_10_1088_2515_7655_aadef6 crossref_primary_10_1016_j_electacta_2019_135311 crossref_primary_10_1016_j_jmst_2020_03_001 crossref_primary_10_1021_acs_nanolett_8b05019 crossref_primary_10_1002_smll_202200326 crossref_primary_10_1007_s10854_021_06213_w crossref_primary_10_1002_adfm_201800154 crossref_primary_10_1007_s10853_018_2903_2 crossref_primary_10_1021_acs_energyfuels_0c02647 crossref_primary_10_1016_j_jpowsour_2019_03_015 crossref_primary_10_1021_acsami_2c18695 crossref_primary_10_1039_C9NH00730J crossref_primary_10_1016_j_cej_2021_131774 crossref_primary_10_1021_acsami_8b03201 crossref_primary_10_1002_aenm_202003690 crossref_primary_10_1016_j_electacta_2019_134697 crossref_primary_10_1002_ange_201913540 crossref_primary_10_1002_er_5201 crossref_primary_10_1039_D4RA04740K crossref_primary_10_1002_adfm_201902220 crossref_primary_10_1039_D0TA08573A crossref_primary_10_1002_eom2_12010 crossref_primary_10_1016_j_cej_2019_02_171 crossref_primary_10_1039_D3EE04358D crossref_primary_10_1021_acs_chemrev_2c00196 crossref_primary_10_1016_j_electacta_2018_05_144 crossref_primary_10_1016_j_electacta_2022_140391 crossref_primary_10_1002_adfm_201902820 crossref_primary_10_1016_j_jechem_2020_02_050 crossref_primary_10_1016_j_jallcom_2023_169873 crossref_primary_10_1021_acsami_9b00845 crossref_primary_10_1002_adfm_201800563 crossref_primary_10_1002_elan_202400277 crossref_primary_10_1016_j_ensm_2020_09_005 crossref_primary_10_1016_j_jpowsour_2018_05_061 crossref_primary_10_1016_j_ensm_2019_05_002 crossref_primary_10_1021_acsenergylett_4c01098 crossref_primary_10_1039_C9TA13191D crossref_primary_10_1149_2_0081801jes crossref_primary_10_1016_j_jelechem_2022_116202 crossref_primary_10_1016_j_mtener_2019_08_001 crossref_primary_10_1007_s41918_023_00188_4 crossref_primary_10_1016_j_jpowsour_2021_229617 crossref_primary_10_1002_adma_202003666 crossref_primary_10_1016_j_nantod_2017_12_010 crossref_primary_10_1016_j_jelechem_2019_01_032 crossref_primary_10_1002_smtd_202101428 crossref_primary_10_1021_acsami_8b14196 crossref_primary_10_1016_j_nanoen_2019_04_006 crossref_primary_10_1002_cssc_201902236 crossref_primary_10_1038_s42004_019_0166_8 crossref_primary_10_3390_batteries10100349 crossref_primary_10_1088_2053_1583_acbec4 crossref_primary_10_1021_acsnano_8b07843 crossref_primary_10_1039_D4GC05753H crossref_primary_10_1016_j_jpowsour_2024_235717 crossref_primary_10_1021_acs_nanolett_0c01778 crossref_primary_10_1021_acsami_0c10453 crossref_primary_10_1039_C8TA08048H crossref_primary_10_1039_C8TA05176C crossref_primary_10_1016_j_carbon_2018_08_008 crossref_primary_10_1002_adma_201706643 crossref_primary_10_1002_aenm_201900953 crossref_primary_10_1007_s11581_021_04231_6 crossref_primary_10_1002_adfm_202100586 crossref_primary_10_1021_acsami_0c00376 crossref_primary_10_1039_C8TA12443D crossref_primary_10_1002_adfm_202010499 crossref_primary_10_1016_j_ensm_2019_05_021 crossref_primary_10_1039_C8NR07964A crossref_primary_10_1002_anie_201913540 crossref_primary_10_1002_batt_202200059 crossref_primary_10_1002_aenm_202202182 crossref_primary_10_3390_batteries8120253 crossref_primary_10_1016_j_cej_2022_137050 crossref_primary_10_1002_ange_201809907 crossref_primary_10_1016_j_electacta_2019_02_082 crossref_primary_10_1021_acsnano_9b08396 crossref_primary_10_1039_D0TA02374D crossref_primary_10_1039_D0RA07114E crossref_primary_10_1002_adfm_201901051 crossref_primary_10_1016_j_electacta_2023_142889 crossref_primary_10_1016_j_nanoen_2021_106584 crossref_primary_10_1039_C9TA14003D crossref_primary_10_1016_j_ensm_2018_08_013 crossref_primary_10_1016_j_ensm_2020_06_003 crossref_primary_10_1016_j_cej_2021_130805 crossref_primary_10_1007_s10008_023_05405_0 crossref_primary_10_1002_cphc_201900595 crossref_primary_10_1002_aenm_201800849 crossref_primary_10_1016_j_ensm_2023_102983 crossref_primary_10_1007_s12274_022_4845_x crossref_primary_10_1021_acsaem_0c00205 crossref_primary_10_1016_j_ensm_2018_05_006 crossref_primary_10_1016_j_enchem_2019_100002 crossref_primary_10_6023_A23030083 crossref_primary_10_1016_j_est_2024_111442 crossref_primary_10_1002_aenm_202200660 crossref_primary_10_1016_j_apsusc_2020_146970 crossref_primary_10_1002_admi_201900984 crossref_primary_10_1016_j_nanoen_2018_03_008 crossref_primary_10_1007_s40820_024_01573_4 crossref_primary_10_1002_adfm_201800919 crossref_primary_10_1002_advs_202101123 crossref_primary_10_1039_D3TA06057H crossref_primary_10_1002_admt_202001136 crossref_primary_10_1063_1_5110525 crossref_primary_10_1002_smll_202311086 crossref_primary_10_1002_cssc_201801017 crossref_primary_10_1016_j_cej_2018_08_143 crossref_primary_10_1016_j_jpowsour_2024_234431 crossref_primary_10_1021_acsanm_3c05447 crossref_primary_10_1002_adma_202407070 crossref_primary_10_1002_smtd_202100899 crossref_primary_10_1021_acsnano_1c05330 crossref_primary_10_1021_acs_energyfuels_4c00599 crossref_primary_10_1002_bte2_20220010 crossref_primary_10_1016_j_jallcom_2021_162272 crossref_primary_10_1039_C9TA00535H crossref_primary_10_1002_chem_201806231 crossref_primary_10_1021_acsaem_2c00934 crossref_primary_10_1002_adma_202310547 crossref_primary_10_1021_acssuschemeng_9b04805 crossref_primary_10_1002_aic_18327 |
Cites_doi | 10.1021/jacs.5b07071 10.1021/ja409508q 10.1021/ic50099a013 10.1149/1.1806394 10.1021/cm202467u 10.1002/anie.201405157 10.1038/ncomms8436 10.1002/anie.201304762 10.1002/anie.201100637 10.1002/aenm.201301473 10.1149/2.0181501jes 10.1021/nn203436j 10.1021/nl504963e 10.1039/C4CP00889H 10.1021/nl403130h 10.1038/nmat2460 10.1038/nenergy.2016.94 10.1002/ange.201205292 10.1021/acs.nanolett.5b01837 10.1021/acs.nanolett.5b01294 10.1002/anie.201104237 10.1021/cm402366y 10.1016/j.jpowsour.2012.12.102 10.1016/j.electacta.2012.03.081 10.1016/j.nanoen.2014.02.004 10.1021/cr500062v 10.1149/2.026304jes 10.1002/cssc.201402215 10.1073/pnas.1220992110 10.1038/ncomms2327 10.1039/c1jm00047k 10.1039/C4CC01151A 10.1016/j.nanoen.2016.04.052 10.1038/srep01910 10.1002/adma.201103392 10.1021/ja01596a043 10.1038/nmat3191 10.1039/c2ee02781j |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-017-00656-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_945b2264885645718a04c55c6d862bba PMC5589852 28883433 10_1038_s41467_017_00656_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-be58b3ca52d4ea5830cbb2a33a600ffab3f9b16a6d3a96996c651e4cd6803d8d3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:17 EDT 2025 Thu Aug 21 18:23:22 EDT 2025 Thu Jul 10 17:07:07 EDT 2025 Wed Aug 13 06:42:56 EDT 2025 Mon Jul 21 05:55:54 EDT 2025 Tue Jul 01 02:21:04 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Fri Feb 21 02:41:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-be58b3ca52d4ea5830cbb2a33a600ffab3f9b16a6d3a96996c651e4cd6803d8d3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4160-9771 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-017-00656-8 |
PMID | 28883433 |
PQID | 1936520263 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_945b2264885645718a04c55c6d862bba pubmedcentral_primary_oai_pubmedcentral_nih_gov_5589852 proquest_miscellaneous_1937518942 proquest_journals_1936520263 pubmed_primary_28883433 crossref_citationtrail_10_1038_s41467_017_00656_8 crossref_primary_10_1038_s41467_017_00656_8 springer_journals_10_1038_s41467_017_00656_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-07 |
PublicationDateYYYYMMDD | 2017-09-07 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-07 day: 07 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Fan, Liu, Weng, Sun, Wang (CR37) 2015; 137 Chen (CR12) 2015; 15 Bruce, Freunberger, Hardwick, Tarascon (CR2) 2012; 11 Yin, Xin, Guo, Wan (CR1) 2013; 52 Chen (CR23) 2015; 15 Xu, Hu, Liu, Wu (CR27) 2014; 5 Moy, Manivannan, Narayanan (CR34) 2014; 162 Li (CR15) 2013; 13 Seh (CR13) 2013; 4 Li (CR25) 2013; 110 Zhang (CR36) 2012; 70 Zhang (CR3) 2013; 231 Mikhaylik, Akridge (CR4) 2004; 151 Zhang, Wu, Yuan, Guo, Lou (CR9) 2012; 124 Li (CR35) 2015; 6 Manthiram, Fu, Chung, Zu, Su (CR5) 2014; 114 Shen, Eltzholtz, Iversen (CR33) 2013; 25 Yin, Wang, Yang, Nuli (CR39) 2011; 21 Bartlett, Meguerian (CR19) 1956; 78 Chen (CR11) 2016; 26 Hu (CR16) 2015; 15 Fanous, Wegner, Grimminger, Andresen, Buchmeiser (CR21) 2011; 23 Morgan, Stec, Albridge, Van Wazer (CR22) 1971; 10 Vijayakumar (CR29) 2014; 16 Xiao (CR7) 2012; 24 Bai, Liu, Zhu, Wu, Zhou (CR30) 2016; 1 Yang (CR6) 2011; 5 Chung (CR18) 2011; 50 Zhang (CR24) 2013; 1 Ji, Lee, Nazar (CR14) 2009; 8 Deng (CR31) 2013; 160 Jayaprakash, Shen, Moganty, Corona, Archer (CR8) 2011; 50 Chen (CR17) 2013; 3 Patel, Dominko (CR38) 2014; 7 Wang (CR32) 2014; 53 Palomares (CR26) 2012; 5 Zhou, Yu, Chen, DiSalvo, Abruna (CR10) 2013; 135 Jia (CR28) 2014; 50 Li (CR20) 2014; 4 W Zhou (656_CR10) 2013; 135 HW Chen (656_CR12) 2015; 15 X Ji (656_CR14) 2009; 8 YB Shen (656_CR33) 2013; 25 Y Yang (656_CR6) 2011; 5 D Moy (656_CR34) 2014; 162 HW Chen (656_CR11) 2016; 26 L Xiao (656_CR7) 2012; 24 M Vijayakumar (656_CR29) 2014; 16 A Manthiram (656_CR5) 2014; 114 PD Bartlett (656_CR19) 1956; 78 J Fanous (656_CR21) 2011; 23 S Bai (656_CR30) 2016; 1 SS Zhang (656_CR36) 2012; 70 PG Bruce (656_CR2) 2012; 11 J Xu (656_CR27) 2014; 5 J Wang (656_CR32) 2014; 53 YX Yin (656_CR1) 2013; 52 YV Mikhaylik (656_CR4) 2004; 151 Z Li (656_CR20) 2014; 4 ZW Seh (656_CR13) 2013; 4 W Li (656_CR35) 2015; 6 Q Fan (656_CR37) 2015; 137 C Zhang (656_CR9) 2012; 124 L Yin (656_CR39) 2011; 21 W Li (656_CR15) 2013; 13 V Palomares (656_CR26) 2012; 5 SS Zhang (656_CR24) 2013; 1 WJ Chung (656_CR18) 2011; 50 Z Deng (656_CR31) 2013; 160 H Hu (656_CR16) 2015; 15 N Jayaprakash (656_CR8) 2011; 50 H Jia (656_CR28) 2014; 50 MUM Patel (656_CR38) 2014; 7 HW Chen (656_CR23) 2015; 15 HW Chen (656_CR17) 2013; 3 SS Zhang (656_CR3) 2013; 231 WE Morgan (656_CR22) 1971; 10 W Li (656_CR25) 2013; 110 23299881 - Nat Commun. 2013;4:1331 26200760 - Nano Lett. 2015 Aug 12;15(8):5116-23 26378475 - J Am Chem Soc. 2015 Oct 14;137(40):12946-53 24127640 - Nano Lett. 2013;13(11):5534-40 22278978 - Adv Mater. 2012 Mar 2;24(9):1176-81 24112042 - J Am Chem Soc. 2013 Nov 6;135(44):16736-43 21995642 - ACS Nano. 2011 Nov 22;5(11):9187-93 26148126 - Nano Lett. 2015 Aug 12;15(8):5443-8 19448613 - Nat Mater. 2009 Jun;8(6):500-6 25060633 - Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10099-104 26081242 - Nat Commun. 2015 Jun 17;6:7436 25044737 - ChemSusChem. 2014 Aug;7(8):2167-75 22169914 - Nat Mater. 2011 Dec 15;11(1):19-29 22903794 - Angew Chem Int Ed Engl. 2012 Sep 17;51(38):9592-5 24846751 - Chem Commun (Camb). 2014 Jul 7;50(53):7011-3 23714786 - Sci Rep. 2013;3:1910 24770561 - Phys Chem Chem Phys. 2014 Jun 14;16(22):10923-32 25546227 - Nano Lett. 2015 Jan 14;15(1):798-802 21910196 - Angew Chem Int Ed Engl. 2011 Nov 25;50(48):11409-12 24243546 - Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13186-200 25026475 - Chem Rev. 2014 Dec 10;114(23):11751-87 23589875 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7148-53 21591036 - Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5904-8 |
References_xml | – volume: 137 start-page: 12946 year: 2015 end-page: 12953 ident: CR37 article-title: Ternary hybrid material for high-performance lithium–sulfur battery publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07071 – volume: 135 start-page: 16736 year: 2013 end-page: 16743 ident: CR10 article-title: Yolk-shell structure of polyaniline-coated sulfur for lithium–sulfur batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409508q – volume: 10 start-page: 926 year: 1971 end-page: 930 ident: CR22 article-title: pi.-Bond feedback interpreted from the binding energy of the “2p” electrons of phosphorus publication-title: Inorg. Chem. doi: 10.1021/ic50099a013 – volume: 151 start-page: A1969 year: 2004 end-page: A1974 ident: CR4 article-title: Polysulfide shuttle study in the Li/S battery system publication-title: J. Electrochem. Soc. doi: 10.1149/1.1806394 – volume: 23 start-page: 5024 year: 2011 end-page: 5028 ident: CR21 article-title: Structure-related electrochemistry of sulfur-poly(acrylonitrile) composite cathode materials for rechargeable lithium batteries publication-title: Chem. Mater. doi: 10.1021/cm202467u – volume: 53 start-page: 10099 year: 2014 end-page: 10104 ident: CR32 article-title: Towards a safe lithium–sulfur battery with a flame-inhibiting electrolyte and a sulfur-based composite cathode publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201405157 – volume: 6 start-page: 7436 year: 2015 end-page: 7442 ident: CR35 article-title: The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth publication-title: Nat. Commun. doi: 10.1038/ncomms8436 – volume: 52 start-page: 13186 year: 2013 end-page: 13200 ident: CR1 article-title: Lithium–sulfur batteries: electrochemistry, materials, and prospects publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304762 – volume: 50 start-page: 5904 year: 2011 end-page: 5908 ident: CR8 article-title: Porous hollow carbon@sulfur composites for high-power lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100637 – volume: 4 start-page: 1301473 year: 2014 end-page: 1301480 ident: CR20 article-title: Insight into the electrode mechanism in lithium–sulfur batteries with ordered microporous carbon confined sulfur as the cathode publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301473 – volume: 162 start-page: A1 year: 2014 end-page: A7 ident: CR34 article-title: Direct measurement of polysulfide shuttle current: a window into understanding the performance of lithium–sulfur cells publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181501jes – volume: 5 start-page: 9187 year: 2011 end-page: 9193 ident: CR6 article-title: Improving the performance of lithium–sulfur batteries by conductive polymer coating publication-title: Acs Nano doi: 10.1021/nn203436j – volume: 15 start-page: 798 year: 2015 end-page: 802 ident: CR23 article-title: Monodispersed sulfur nanoparticles for lithium–sulfur batteries with theoretical performance publication-title: Nano Lett. doi: 10.1021/nl504963e – volume: 16 start-page: 10923 year: 2014 end-page: 10932 ident: CR29 article-title: Molecular structure and stability of dissolved lithium polysulfide species publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00889H – volume: 13 start-page: 5534 year: 2013 end-page: 5540 ident: CR15 article-title: Understanding the role of different conductive polymers in improving the nanostructured sulfur cathode performance publication-title: Nano Lett. doi: 10.1021/nl403130h – volume: 8 start-page: 500 year: 2009 end-page: 506 ident: CR14 article-title: A highly ordered nanostructured carbon–sulfur cathode for lithium–sulfur batteries publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 1 start-page: A1 year: 2013 end-page: A7 ident: CR24 article-title: Sulfurized carbon: a class of cathode materials for high performance lithium/sulfur batteries publication-title: Front. Energy Res. – volume: 1 start-page: 16094 year: 2016 end-page: 16099 ident: CR30 article-title: Metal–organic framework-based separator for lithium–sulfur batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.94 – volume: 124 start-page: 9730 year: 2012 end-page: 9733 ident: CR9 article-title: Confining sulfur in double-shelled hollow carbon spheres for lithium–sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201205292 – volume: 15 start-page: 5443 year: 2015 end-page: 5448 ident: CR12 article-title: Rational design of cathode structure for high rate performance lithium–sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01837 – volume: 15 start-page: 5116 year: 2015 end-page: 5123 ident: CR16 article-title: In situ polymerized PAN-assisted S/C nanosphere with enhanced high-power performance as cathode for lithium/sulfur batteries publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01294 – volume: 50 start-page: 11409 year: 2011 end-page: 11412 ident: CR18 article-title: Elemental sulfur as a reactive medium for gold nanoparticles and nanocomposite materials publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201104237 – volume: 25 start-page: 5023 year: 2013 end-page: 5030 ident: CR33 article-title: Controlling size, crystallinity, and electrochemical performance of Li Ti O nanocrystals publication-title: Chem. Mater. doi: 10.1021/cm402366y – volume: 231 start-page: 153 year: 2013 end-page: 162 ident: CR3 article-title: Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.102 – volume: 70 start-page: 344 year: 2012 end-page: 348 ident: CR36 article-title: Role of LiNO in rechargeable lithium/sulfur battery publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.081 – volume: 5 start-page: 67 year: 2014 end-page: 73 ident: CR27 article-title: Improvement of cycle stability for high-voltage lithium-ion batteries by growth of SEI film on cathode publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.004 – volume: 114 start-page: 11751 year: 2014 end-page: 11787 ident: CR5 article-title: Rechargeable lithium–sulfur batteries publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 160 start-page: A553 year: 2013 end-page: A558 ident: CR31 article-title: Electrochemical impedance spectroscopy study of a lithium/sulfur battery: modeling and analysis of capacity fading publication-title: J. Electrochem. Soc. doi: 10.1149/2.026304jes – volume: 7 start-page: 2167 year: 2014 end-page: 2175 ident: CR38 article-title: Application of in operando UV/vis spectroscopy in lithium–sulfur batteries publication-title: Chemsuschem doi: 10.1002/cssc.201402215 – volume: 110 start-page: 7148 year: 2013 end-page: 7153 ident: CR25 article-title: High-performance hollow sulfur nanostructured battery cathode through a scalable, room temperature, one-step, bottom-up approach publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1220992110 – volume: 4 start-page: 1331 year: 2013 end-page: 1337 ident: CR13 article-title: Sulfur-TiO yolk-shell nanoarchitecture with internal void space for long-cycle lithium–sulfur batteries publication-title: Nat. Commun. doi: 10.1038/ncomms2327 – volume: 21 start-page: 6807 year: 2011 end-page: 6810 ident: CR39 article-title: A novel pyrolyzed polyacrylonitrile-sulfur@MWCNT composite cathode material for high-rate rechargeable lithium/sulfur batteries publication-title: J. Mater. Chem. doi: 10.1039/c1jm00047k – volume: 50 start-page: 7011 year: 2014 end-page: 7013 ident: CR28 article-title: TPPi as a flame retardant for rechargeable lithium batteries with sulfur composite cathodes publication-title: Chem. Commun. doi: 10.1039/C4CC01151A – volume: 26 start-page: 43 year: 2016 end-page: 49 ident: CR11 article-title: In-situ activated polycation as a multifunctional additive for Li–S batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.052 – volume: 3 start-page: 1910 year: 2013 end-page: 1916 ident: CR17 article-title: Ultrafine sulfur nanoparticles in conducting polymer shell as cathode materials for high performance lithium/sulfur batteries publication-title: Sci. Rep. doi: 10.1038/srep01910 – volume: 24 start-page: 1176 year: 2012 end-page: 1181 ident: CR7 article-title: A soft approach to encapsulate sulfur: polyaniline nanotubes for lithium–sulfur batteries with long cycle life publication-title: Adv. Mater. doi: 10.1002/adma.201103392 – volume: 78 start-page: 3710 year: 1956 end-page: 3715 ident: CR19 article-title: Reactions of elemental sulfur. I. The uncatalyzed reaction of sulfur with triarylphosphines1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01596a043 – volume: 11 start-page: 19 year: 2012 end-page: 29 ident: CR2 article-title: Li–O and Li–S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 5 start-page: 5884 year: 2012 end-page: 5901 ident: CR26 article-title: Na-ion batteries, recent advances and present challenges to become low cost energy storage systems publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 11 start-page: 19 year: 2012 ident: 656_CR2 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 4 start-page: 1301473 year: 2014 ident: 656_CR20 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201301473 – volume: 162 start-page: A1 year: 2014 ident: 656_CR34 publication-title: J. Electrochem. Soc. doi: 10.1149/2.0181501jes – volume: 50 start-page: 5904 year: 2011 ident: 656_CR8 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201100637 – volume: 23 start-page: 5024 year: 2011 ident: 656_CR21 publication-title: Chem. Mater. doi: 10.1021/cm202467u – volume: 5 start-page: 5884 year: 2012 ident: 656_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/c2ee02781j – volume: 231 start-page: 153 year: 2013 ident: 656_CR3 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2012.12.102 – volume: 53 start-page: 10099 year: 2014 ident: 656_CR32 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201405157 – volume: 1 start-page: 16094 year: 2016 ident: 656_CR30 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.94 – volume: 137 start-page: 12946 year: 2015 ident: 656_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b07071 – volume: 50 start-page: 11409 year: 2011 ident: 656_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201104237 – volume: 5 start-page: 67 year: 2014 ident: 656_CR27 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.02.004 – volume: 15 start-page: 798 year: 2015 ident: 656_CR23 publication-title: Nano Lett. doi: 10.1021/nl504963e – volume: 160 start-page: A553 year: 2013 ident: 656_CR31 publication-title: J. Electrochem. Soc. doi: 10.1149/2.026304jes – volume: 6 start-page: 7436 year: 2015 ident: 656_CR35 publication-title: Nat. Commun. doi: 10.1038/ncomms8436 – volume: 1 start-page: A1 year: 2013 ident: 656_CR24 publication-title: Front. Energy Res. – volume: 114 start-page: 11751 year: 2014 ident: 656_CR5 publication-title: Chem. Rev. doi: 10.1021/cr500062v – volume: 151 start-page: A1969 year: 2004 ident: 656_CR4 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1806394 – volume: 8 start-page: 500 year: 2009 ident: 656_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat2460 – volume: 24 start-page: 1176 year: 2012 ident: 656_CR7 publication-title: Adv. Mater. doi: 10.1002/adma.201103392 – volume: 135 start-page: 16736 year: 2013 ident: 656_CR10 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409508q – volume: 52 start-page: 13186 year: 2013 ident: 656_CR1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201304762 – volume: 124 start-page: 9730 year: 2012 ident: 656_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201205292 – volume: 15 start-page: 5443 year: 2015 ident: 656_CR12 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01837 – volume: 3 start-page: 1910 year: 2013 ident: 656_CR17 publication-title: Sci. Rep. doi: 10.1038/srep01910 – volume: 21 start-page: 6807 year: 2011 ident: 656_CR39 publication-title: J. Mater. Chem. doi: 10.1039/c1jm00047k – volume: 5 start-page: 9187 year: 2011 ident: 656_CR6 publication-title: Acs Nano doi: 10.1021/nn203436j – volume: 4 start-page: 1331 year: 2013 ident: 656_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms2327 – volume: 50 start-page: 7011 year: 2014 ident: 656_CR28 publication-title: Chem. Commun. doi: 10.1039/C4CC01151A – volume: 110 start-page: 7148 year: 2013 ident: 656_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1220992110 – volume: 25 start-page: 5023 year: 2013 ident: 656_CR33 publication-title: Chem. Mater. doi: 10.1021/cm402366y – volume: 10 start-page: 926 year: 1971 ident: 656_CR22 publication-title: Inorg. Chem. doi: 10.1021/ic50099a013 – volume: 13 start-page: 5534 year: 2013 ident: 656_CR15 publication-title: Nano Lett. doi: 10.1021/nl403130h – volume: 7 start-page: 2167 year: 2014 ident: 656_CR38 publication-title: Chemsuschem doi: 10.1002/cssc.201402215 – volume: 16 start-page: 10923 year: 2014 ident: 656_CR29 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP00889H – volume: 70 start-page: 344 year: 2012 ident: 656_CR36 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2012.03.081 – volume: 78 start-page: 3710 year: 1956 ident: 656_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja01596a043 – volume: 26 start-page: 43 year: 2016 ident: 656_CR11 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.04.052 – volume: 15 start-page: 5116 year: 2015 ident: 656_CR16 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01294 – reference: 24846751 - Chem Commun (Camb). 2014 Jul 7;50(53):7011-3 – reference: 21910196 - Angew Chem Int Ed Engl. 2011 Nov 25;50(48):11409-12 – reference: 24243546 - Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13186-200 – reference: 26081242 - Nat Commun. 2015 Jun 17;6:7436 – reference: 21995642 - ACS Nano. 2011 Nov 22;5(11):9187-93 – reference: 24112042 - J Am Chem Soc. 2013 Nov 6;135(44):16736-43 – reference: 23589875 - Proc Natl Acad Sci U S A. 2013 Apr 30;110(18):7148-53 – reference: 25546227 - Nano Lett. 2015 Jan 14;15(1):798-802 – reference: 19448613 - Nat Mater. 2009 Jun;8(6):500-6 – reference: 22278978 - Adv Mater. 2012 Mar 2;24(9):1176-81 – reference: 26200760 - Nano Lett. 2015 Aug 12;15(8):5116-23 – reference: 26148126 - Nano Lett. 2015 Aug 12;15(8):5443-8 – reference: 22903794 - Angew Chem Int Ed Engl. 2012 Sep 17;51(38):9592-5 – reference: 25026475 - Chem Rev. 2014 Dec 10;114(23):11751-87 – reference: 25044737 - ChemSusChem. 2014 Aug;7(8):2167-75 – reference: 21591036 - Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5904-8 – reference: 24127640 - Nano Lett. 2013;13(11):5534-40 – reference: 25060633 - Angew Chem Int Ed Engl. 2014 Sep 15;53(38):10099-104 – reference: 23714786 - Sci Rep. 2013;3:1910 – reference: 24770561 - Phys Chem Chem Phys. 2014 Jun 14;16(22):10923-32 – reference: 23299881 - Nat Commun. 2013;4:1331 – reference: 22169914 - Nat Mater. 2011 Dec 15;11(1):19-29 – reference: 26378475 - J Am Chem Soc. 2015 Oct 14;137(40):12946-53 |
SSID | ssj0000391844 |
Score | 2.578452 |
Snippet | While lithium–sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their... While lithium-sulfur batteries are poised to be the next-generation high-density energy storage devices, the intrinsic polysulfide shuttle has limited their... To suppress the polysulfide shuttling effect in Li-S batteries, here the authors report a carbon/sulfur composite cathode with a wrapping layer that overcomes... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 479 |
SubjectTerms | 704/844/4066/4067 704/844/4066/4069 Batteries Cathodes Diffusion layers Electrode materials Energy storage Humanities and Social Sciences Infiltration Lithium Lithium sulfur batteries multidisciplinary Particulate composites Polysulfides Science Science (multidisciplinary) Sulfur |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LixQxEA6yIHgR37auEsGbNtudSjLVR1_LKujJhb2FPN2BtWeZmUb2328l3TPM-Lx47SRN8VUl9RVJvjD2EolFuzbNahcF1FIkV1tydd1hckqG0PgmX07-_EWfnMpPZ-ps56mvfCZslAcegTvqpHL5sidi1j2hldQ20ivldSAu7lyhRpTzdoqpsgZDR6WLnG7JNIBHK1nWhLwo57Sra9zLREWw_3cs89fDkj_tmJZEdHyH3Z4YJH8zWn6X3Yj9PXZzfFPy6j57_7Hnq_l64D-WNmsvfOOLxInl8SzQugiRE0UtUcfnPScOfj4fvter4SINS-6K2CbVzg_Y6fGHr-9O6umphNpTBbImpBU68FaJIKNVCI13TlgAS4QmJesgkUu01QFsp6nG8Vq1UfqgsYGAAR6yg37Rx8eMC1A074MVCal6aGfOYhMjoI46teBixdoNbMZPOuL5OYsLU_azAc0ItSGoTYHaYMVebcdcjioaf-39Nntj2zMrYJcPFBdmigvzr7io2OHGl2aalitDbFUrQWUnVOzFtpkmVN4lsX1cDKVP3orqpKjYo9H1W0sEIoIEGj3bC4o9U_db-vl5Ee1WCjtU9M_Xm_DZMeuPUDz5H1A8ZbdEift8Xe2QHayXQ3xGVGrtnpdZcw2B5RbV priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkLojxDCzISN4ia-LWTEwLKUpDgRKXeLD_bldqk7G6E-PcdO9nA8uh140TeeXi-8djfEPISEEXbOs5KGxgvBYu2NKjqsoFopfC-clW6nPzlqzo6Fp9P5Mm44bYaj1Vu1sS8UPvOpT3yAwQaSmKmrviby-9l6hqVqqtjC42b5FaNkSYd6YL5x2mPJbGfgxDjXZmKw8FK5JUhLc0p-KoStuJRpu3_F9b8-8jkH3XTHI7m98jdEUfSt4Pid8mN0N4nt4fOkj8fkMNPLcWZ9_TH0iQGhlPaRYpYjyaa1s4HikA12x5dtBSR-NmivyhX_Xnsl9Rmyk3MoB-S4_mHb--PyrFhQukwD1mjvCVY7oxkXgQjgVfOWmY4NwhrYjSWR1SMMspz0yjMdJySdRDOK6i4B88fkZ22a8MTQhmX6P3esAiYQ9Qza6AKgYMKKtbchoLUG7FpN7KJp6YW5zpXtTnoQdQaRa2zqDUU5NX0zuXApXHt6HdJG9PIxIOdf-iWp3p0K90IadNVYIDEioNx1lTCSemUx0zNWlOQ_Y0u9eicK_3LlAryYnqMbpVqJaYNXZ_HpIJUI1hBHg-qn2bCAIALjm_Ptoxia6rbT9rFWabulhIakPjN1xvz-W1a_xXF0-v_xR65w7JFp-to-2RnvezDM4RKa_s8-8MVhQcPow priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDdpCzISN4hI_NrJcWmpykpwgUq9WXZstyu1CdrdCPXfd-w8xEJB4prYkTUPzzcZz2dC3gKiaFuGWW4947lgweYGVZ1XEKwUzhV1EZuTv3xVp2dicS7Pdwgbe2HSof1EaZm26fF02Ie1SC4d99QYNVUO98hepGpH296bzxffFtOflch5DkIMHTIFhzsmb0WhRNZ_F8L886Dkb9XSFIROHpGHA3qk8369j8mOb56Q-_19kjdPyfHnhq6Xm47-XJnIu3BB20AR4dFIzto6TxGeJoujy4Yi_r5cdtf5ursK3YraRLSJefMzcnby6fvRaT5ck5DXmH1sUMoSLK-NZE54I4EXtbXMcG4QzIRgLA-oDmWU46ZSmN_USpZe1E5BwR04_pzsNm3jXxLKuESfd4YFwMyhnFkDhfcclFeh5NZnpBzFpuuBQzxeZXGlUy2bg-5FrVHUOolaQ0beTXN-9Awa_xz9MWpjGhnZr9ODdnWhB2vQlZA2NgADRC4cjK6mELWUtXKYn1lrMnI46lIPLrnWiFSVZJhy8oy8mV6jM8UKiWl826UxsQxVCZaRF73qp5UwAOCC4-zZllFsLXX7TbO8TITdUkIFEr_5fjSfX5b1V1Hs_9_wA_KAJQuPTWmHZHez6vwrBEwb-3rwkFto0Q7a priority: 102 providerName: Springer Nature |
Title | In situ wrapping of the cathode material in lithium-sulfur batteries |
URI | https://link.springer.com/article/10.1038/s41467-017-00656-8 https://www.ncbi.nlm.nih.gov/pubmed/28883433 https://www.proquest.com/docview/1936520263 https://www.proquest.com/docview/1937518942 https://pubmed.ncbi.nlm.nih.gov/PMC5589852 https://doaj.org/article/945b2264885645718a04c55c6d862bba |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7tQ0hcEO8NLJWRuEEgiR9xDgh1y5al0q4QUKm3yI6d3UolgbYR7L9n7CQVhcKBSyvFTmPNw_NN3PkG4JlEFK3jMg21TWjIklKHClUdZrLUnBkTFZErTj6_EGdTNpnx2R707Y46Aa52pnaun9R0uXj549v1G3T4123JuHy1Yt7d3X7rIqoI5T4cYmRKXUeD8w7u-52ZZpjQsK52Zvetjh0Ys0LKKN0KVZ7RfxcM_fPflL8dqfpINb4NtzqISYatTdyBPVvdhRtt08nre_D2fUVW83VDvi-VI2e4JHVJEAYSx-BaG0sQw3qzJPOKIEi_mjdfwlWzKJsl0Z6NE5Pr-zAdn34enYVdL4WwwBRljargUtNC8cQwq7ikUaF1oihViHjKUmlaos6EEoaqTGASVAgeW1YYISNqpKEP4KCqK3sEJKEcNwajklJiehGnWsnIWiqFFWVMtQ0g7sWWFx3RuOt3scj9gTeVeSv1HKWee6nnMoDnm3u-tjQb_5x94rSxmekosv2FenmZdx6XZ4xrVyUspSPMwRCsIlZwXgiDSZzWKoDjXpd5b3Y5wlnBE8xLaQBPN8Poce4YRVW2bvwcd1aVsSSAh63qNyvpTSeAdMsotpa6PVLNrzyrN-cykxx_80VvPr8s66-iePTfD3oMNxNv966I7RgO1svGPkGAtdYD2E9nKX7K8bsBHA6Hk08T_D45vfjwEa-OxGjgX10MvHf9BKuxJwY |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA18Wu9B4SAsuzSx6mVejN27LQrlaTsblT1T_EbGTvJwvLordfEiSYz43l4Mt8AvFQYRdu8HKTWU5ZyWtrUoKjToSqt4M5lRRaak_f25fiQfzkSR2vwo--FCb9V9jYxGmpXF-GMfAsDDSkwU5fs3dn3NEyNCtXVfoRGqxY7_uIcU7b528k2yvcVpaNPBx_HaTdVIC0wWF8gUUJZVhhBHfdGKJYV1lLDmEHfX5bGshKpl0Y6ZoYS04FCitzzwkmVMaccw_deg-ucoScPnemjz8sznYC2rjjvenMyprbmPFqi4AqCs5epWvF_cUzAv2Lbv3_R_KNOG93f6A7c7uJW8r5VtLuw5qt7cKOdZHlxH7YnFUFONeR8ZgLiwzGpS4KxJQmwsLXzBAPjqOtkWhGM_E-mzbd03pyWzYzYCPGJGfsDOLwSVj6E9aqu_CMglAm0Ns7QUmHOkg-sUZn3TEkvy5xZn0Des00XHXp5GKJxqmMVnSndslojq3VktVYJvF4-c9Zid1y6-kOQxnJlwN2OF-rZse62sR5yYUPrsVIBhQf9usl4IUQhHWaG1poENntZ6s4YzPUv1U3gxfI2buNQmzGVr5u4JhTAhpwmsNGKfkkJVUox1LcEBitKsULq6p1qehKhwoVQQyXwnW969fmNrP-y4vHlX_Ecbo4P9nb17mR_5wncolG7QyvcJqwvZo1_imHawj6Le4PA16vejD8Bt2lNtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUaCJ4ia-lb3ASFGV60MqgkxaW-eHdtbpZGMttG0v8av49i5QLnsba-JEznn-p0cn3MQeikBRZuBH6bGEZoy4k2qgdXpSHrDmbVZnoXi5M8zsXvAPh7yww30o62FCccqW5sYDbUt8_CPvA9AQ3CI1AXt--ZYxP548u7sexomSIVMaztOoxaRPXdxDuHb8u10DLx-Rchk5-uH3bSZMJDmANxXsEEuDc01J5Y5zSXNcmOIplQDDvBeG-rhS4QWluqRgNAgF3zgWG6FzKiVlsJ7r6HNYYiKemhze2e2_6X7wxN6r0vGmkqdjMr-kkW7FBxDcP0ilWveMA4N-BfS_fvA5h9Z2-gMJ7fRrQbF4ve12N1BG664i67Xcy0v7qHxtMBAqwqfL3To_3CMS48BaeLQJLa0DgNMjpKP5wWGOOBkXn1Ll9WprxbYxIafEL_fRwdXQswHqFeUhXuEMKEcbI_VxEuIYAZDo2XmHJXCCT-gxiVo0JJN5U0v8zBS41TFnDqVqia1AlKrSGolE_S6e-as7uRx6ertwI1uZejCHS-Ui2PVKLUaMW5CIbKUoScPeHmdsZzzXFiIE43RCdpqeaka07BUvwQ5QS-626DUIVOjC1dWcU1Ih40YSdDDmvXdToiUkjIKTw_XhGJtq-t3ivlJbBzOuRxJDu9804rPb9v6LykeX_4Vz9ENUET1aTrbe4JukijcoS5uC_VWi8o9Bcy2Ms8a5cDo6Kr18SftQ1NJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=In+situ+wrapping+of+the+cathode+material+in+lithium-sulfur+batteries&rft.jtitle=Nature+communications&rft.au=Hu%2C+Chenji&rft.au=Chen%2C+Hongwei&rft.au=Shen%2C+Yanbin&rft.au=Lu%2C+Di&rft.date=2017-09-07&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=8&rft_id=info:doi/10.1038%2Fs41467-017-00656-8&rft_id=info%3Apmid%2F28883433&rft.externalDocID=PMC5589852 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |