Bayesian method to predict individual SNP genotypes from gene expression data
Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data sets, they show that it is possible to infer a genotypic barcode specific to an individual, although the identification of an individual as a par...
Saved in:
Published in | Nature genetics Vol. 44; no. 5; pp. 603 - 608 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
Nature Publishing Group US
01.05.2012
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data sets, they show that it is possible to infer a genotypic barcode specific to an individual, although the identification of an individual as a participant in a study is limited by factors such as the availability of large-scale expression quantitative trait loci (eQTLs) and expression data sets.
RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative
cis
eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at
P
adjusted
≤ 1 × 10
−5
. When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at
P
adjusted
≤ 1 × 10
−5
. We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. |
---|---|
AbstractList | RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at [P.sub.adjusted] ≤ 1 x [10.sup.-5]. When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at [P.sub.adjusted] ≤ 1 x [10.sup.-5]. We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data sets, they show that it is possible to infer a genotypic barcode specific to an individual, although the identification of an individual as a participant in a study is limited by factors such as the availability of large-scale expression quantitative trait loci (eQTLs) and expression data sets. RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P adjusted ≤ 1 × 10 −5 . When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P adjusted ≤ 1 × 10 −5 . We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at Padjusted ≤ 1 × 1010^sup -5^. When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at Padjusted ≤ 1 × 10^sup -5^. We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. [PUBLICATION ABSTRACT] RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P(adjusted) ≤ 1 × 10(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P(adjusted) ≤ 1 × 10(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P sub(adjusted) less than or equal to 1 x 10 super(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P sub(adjusted) less than or equal to 1 x 10 super(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P(adjusted) ≤ 1 × 10(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P(adjusted) ≤ 1 × 10(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P(adjusted) ≤ 1 × 10(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P(adjusted) ≤ 1 × 10(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. |
Audience | Academic |
Author | Woo, Sangsoon Schadt, Eric E Hao, Ke |
Author_xml | – sequence: 1 givenname: Eric E surname: Schadt fullname: Schadt, Eric E email: eric.schadt@mssm.edu organization: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine – sequence: 2 givenname: Sangsoon surname: Woo fullname: Woo, Sangsoon organization: Department of Biostatistics, University of Washington, Present addresses: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA – sequence: 3 givenname: Ke surname: Hao fullname: Hao, Ke email: ke.hao@mssm.edu organization: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, Research Genetics, Rosetta Inpharmatics |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25876543$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/22484626$$D View this record in MEDLINE/PubMed |
BookMark | eNqN0k1v1DAQBuAIFdEPEP8ARUIIOGSxHduxj6UqUKlQRIFr5LUnwVVib20Hdf99HbpV2cKhysFJ9MxI8473ix3nHRTFc4wWGNXinesXhFDxqNjDjPIKN1js5HfEcUVRzXeL_RgvEMKUIvGk2J0t5YTvFZ_fqzVEq1w5QvrlTZl8uQpgrE6ldcb-tmZSQ3n-5WvZg_NpvYJYdsGP8yeUcJVxjNa70qiknhaPOzVEeLY5D4ofH46_H32qTs8-nhwdnlaaI56q5RJjyQhntMNMKI6BS0QVKMk01tBRZTAxDJamk4ZwrTqZCxokFONUNqQ-KN7c9F0FfzlBTO1oo4ZhUA78FNucCRWYM4YeQLHkuCGyzvTlPXrhp-DyIFkRjAWvJbtTvRqgta7zKSg9N20PiRCykTWa1eI_Kj8GRqvz8jqb_28VvN0qyCbBVerVFGN7cv7t4fbs57Z9sRlqWo5g2lWwowrr9vYKZPBqA1TUauiCctrGO8dEkxc1p1PdOB18jAG6VtukUl59nswOOaI5dtG6_k_v7F_f87ct_5WbFcUsXA_h79y36TXyeOTq |
CODEN | NGENEC |
CitedBy_id | crossref_primary_10_1093_aje_kwad107 crossref_primary_10_1016_j_jhin_2015_01_005 crossref_primary_10_1038_s41576_020_0257_5 crossref_primary_10_1016_j_tig_2013_02_001 crossref_primary_10_1093_phe_phu023 crossref_primary_10_3389_fnhum_2021_761424 crossref_primary_10_1038_s41467_018_04875_5 crossref_primary_10_1142_S021812662250236X crossref_primary_10_1186_s13148_015_0079_z crossref_primary_10_1038_nrg3263 crossref_primary_10_1194_jlr_M048710 crossref_primary_10_1145_2767007 crossref_primary_10_1534_g3_115_019778 crossref_primary_10_1016_j_ajhg_2016_02_020 crossref_primary_10_1093_nar_gkw269 crossref_primary_10_1007_s12033_020_00296_2 crossref_primary_10_3389_fmed_2021_784455 crossref_primary_10_1038_msb_2012_47 crossref_primary_10_22230_cjc_2014v39n4a2743 crossref_primary_10_1093_nop_npw029 crossref_primary_10_1097_MIB_0000000000000340 crossref_primary_10_1002_ddr_21211 crossref_primary_10_1002_alz_12092 crossref_primary_10_1038_ng_2653 crossref_primary_10_1016_j_neunet_2025_107343 crossref_primary_10_1007_s10606_016_9248_7 crossref_primary_10_1016_j_patter_2024_101096 crossref_primary_10_1165_rcmb_2014_0381OC crossref_primary_10_1186_s13148_022_01263_1 crossref_primary_10_1186_s13059_021_02553_2 crossref_primary_10_1038_s41467_025_57393_6 crossref_primary_10_1371_journal_pcbi_1002549 crossref_primary_10_3233_JCS_171107 crossref_primary_10_1002_pra2_2015_145052010050 crossref_primary_10_1146_annurev_genom_083115_022536 crossref_primary_10_2217_pme_13_104 crossref_primary_10_1016_j_neuroimage_2020_117208 crossref_primary_10_1534_g3_113_007690 crossref_primary_10_1016_j_ajhg_2012_08_034 crossref_primary_10_7763_IJBBB_2014_V4_370 crossref_primary_10_1371_journal_pone_0067899 crossref_primary_10_1126_science_1234593 crossref_primary_10_2217_pme_14_17 crossref_primary_10_1038_jhg_2014_121 crossref_primary_10_1016_j_xgen_2025_100769 crossref_primary_10_1038_s41576_021_00428_7 crossref_primary_10_1212_NXG_0000000000000517 crossref_primary_10_1038_nmeth_3779 crossref_primary_10_1038_nrg3723 crossref_primary_10_1371_journal_pone_0171324 crossref_primary_10_2478_popets_2019_0004 crossref_primary_10_1186_s13195_021_00919_z crossref_primary_10_1016_j_jalz_2015_05_009 crossref_primary_10_1126_science_1229566 crossref_primary_10_1016_j_cell_2024_09_012 crossref_primary_10_1038_s41598_023_34866_6 crossref_primary_10_3390_app122010586 crossref_primary_10_1111_imb_12378 crossref_primary_10_2196_54332 crossref_primary_10_1016_j_ins_2019_09_036 crossref_primary_10_1111_nyas_13211 crossref_primary_10_1177_2168479017744774 crossref_primary_10_1016_j_neurobiolaging_2019_12_001 crossref_primary_10_1371_journal_pgen_1004383 crossref_primary_10_1038_nbt_2926 crossref_primary_10_1038_s41588_024_01825_4 crossref_primary_10_1186_s13059_021_02477_x crossref_primary_10_1371_journal_pcbi_1003790 crossref_primary_10_1186_s13059_014_0460_9 crossref_primary_10_1093_nar_gky780 crossref_primary_10_1038_ng_2951 crossref_primary_10_2139_ssrn_2234133 crossref_primary_10_1038_tp_2014_96 crossref_primary_10_1038_nbt_3696 crossref_primary_10_1038_s42003_023_04791_5 crossref_primary_10_1109_TCBB_2018_2859380 crossref_primary_10_1186_s13059_015_0723_0 crossref_primary_10_1523_JNEUROSCI_1184_19_2019 crossref_primary_10_1038_nature_2012_10507 crossref_primary_10_1186_s13059_022_02841_5 crossref_primary_10_1016_j_atherosclerosis_2015_12_009 crossref_primary_10_1098_rsta_2017_0350 crossref_primary_10_1038_npjsba_2015_10 crossref_primary_10_1186_s13059_016_0948_6 crossref_primary_10_1186_gm527 crossref_primary_10_1016_j_cell_2020_09_036 |
Cites_doi | 10.1038/nature06757 10.1093/nar/gkn764 10.1371/journal.pone.0008695 10.1038/nature09410 10.1126/science.1174148 10.1038/nature09270 10.1371/journal.pbio.0060107 10.1038/nature06758 10.1038/nm733 10.1038/ng.325 10.1101/gr.103341.109 10.1186/1471-2164-9-379 10.1056/NEJMoa0804525 10.1038/ng.686 10.1038/nature01434 10.1093/nar/gki890 10.1371/journal.pgen.1000932 10.1093/nar/gkg763 10.1002/gcc.20391 10.1158/1078-0432.CCR-06-2236 10.1038/ng.685 10.1101/gr.112821.110 10.1371/journal.pone.0020090 10.1016/j.ajhg.2010.02.020 10.1016/j.ajhg.2010.11.007 10.1038/nature09266 10.1093/nar/gkl995 10.1126/science.328.5978.558 10.1371/journal.pbio.0060083 10.1038/nature02168 |
ContentType | Journal Article |
Copyright | Springer Nature America, Inc. 2012 2015 INIST-CNRS COPYRIGHT 2012 Nature Publishing Group Copyright Nature Publishing Group May 2012 |
Copyright_xml | – notice: Springer Nature America, Inc. 2012 – notice: 2015 INIST-CNRS – notice: COPYRIGHT 2012 Nature Publishing Group – notice: Copyright Nature Publishing Group May 2012 |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM IOV ISR 3V. 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7X7 7XB 88A 88E 8AO 8C1 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. LK8 M0S M1P M2O M7N M7P MBDVC P64 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U RC3 7X8 |
DOI | 10.1038/ng.2248 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Gale In Context: Opposing Viewpoints Gale In Context: Science ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Entomology Abstracts (Full archive) Industrial and Applied Microbiology Abstracts (Microbiology A) Neurosciences Abstracts Nucleic Acids Abstracts Virology and AIDS Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database ProQuest Research Library Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Research Library (Corporate) Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Research Library Prep ProQuest Central Student ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Virology and AIDS Abstracts ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts ProQuest Research Library ProQuest Public Health ProQuest Central Basic ProQuest SciTech Collection ProQuest Medical Library ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Research Library Prep MEDLINE Genetics Abstracts MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Agriculture Biology |
EISSN | 1546-1718 |
EndPage | 608 |
ExternalDocumentID | 2692185461 A288979305 22484626 25876543 10_1038_ng_2248 |
Genre | Journal Article |
GeographicLocations | United States |
GeographicLocations_xml | – name: United States |
GroupedDBID | --- -DZ -~X .55 .GJ 0R~ 123 29M 2FS 36B 39C 3O- 3V. 4.4 53G 5BI 5M7 5RE 5S5 70F 7X7 85S 88A 88E 8AO 8C1 8FE 8FH 8FI 8FJ 8G5 8R4 8R5 AAEEF AAHBH AARCD AAYOK AAYZH AAZLF ABAWZ ABCQX ABDBF ABDPE ABEFU ABJNI ABLJU ABOCM ABTAH ABUWG ACBWK ACGFO ACGFS ACIWK ACMJI ACNCT ACPRK ACUHS ADBBV ADFRT AENEX AEUYN AFBBN AFFNX AFKRA AFRAH AFSHS AGAYW AGCDD AGHTU AHBCP AHMBA AHOSX AHSBF AIBTJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARMCB ASPBG AVWKF AXYYD AZFZN AZQEC B0M BBNVY BENPR BHPHI BKKNO BPHCQ BVXVI CCPQU CS3 DB5 DU5 DWQXO EAD EAP EBC EBD EBS EE. EJD EMB EMK EMOBN EPL ESX EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH GX1 HCIFZ HMCUK HVGLF HZ~ IAO IH2 IHR INH INR IOV ISR ITC L7B LGEZI LK8 LOTEE M0L M1P M2O M7P MVM N9A NADUK NNMJJ NXXTH ODYON P2P PKN PQQKQ PROAC PSQYO Q2X RIG RNS RNT RNTTT RVV SHXYY SIXXV SJN SNYQT SOJ SV3 TAOOD TBHMF TDRGL TN5 TSG TUS UKHRP VQA X7M XJT XOL Y6R YHZ ZGI ZXP ZY4 ~8M ~KM AAYXX ABFSG ACMFV ACSTC AETEA AFANA ALPWD ATHPR CITATION PHGZM PHGZT AEZWR AFHIU AHWEU AIXLP IQODW NFIDA PJZUB PPXIY PQGLB CGR CUY CVF ECM EIF NPM AEIIB PMFND 7QL 7QP 7QR 7SS 7T7 7TK 7TM 7U9 7XB 8FD 8FK C1K FR3 H94 K9. M7N MBDVC P64 PKEHL PQEST PQUKI PRINS Q9U RC3 7X8 |
ID | FETCH-LOGICAL-c606t-bb11952654f158a61e6904aea95c1cef4ad12d5ebdf9d26caf9119708a5649723 |
IEDL.DBID | 7X7 |
ISSN | 1061-4036 1546-1718 |
IngestDate | Thu Jul 10 23:59:42 EDT 2025 Thu Jul 10 17:55:54 EDT 2025 Fri Jul 25 08:52:21 EDT 2025 Tue Jun 17 21:12:33 EDT 2025 Tue Jun 10 20:47:33 EDT 2025 Fri Jun 27 04:36:56 EDT 2025 Fri Jun 27 03:56:48 EDT 2025 Wed Feb 19 01:51:17 EST 2025 Mon Jul 21 09:14:00 EDT 2025 Tue Jul 01 01:50:10 EDT 2025 Thu Apr 24 23:04:02 EDT 2025 Fri Feb 21 02:37:43 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Genotype Method Single nucleotide polymorphism Gene expression |
Language | English |
License | http://www.springer.com/tdm CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-bb11952654f158a61e6904aea95c1cef4ad12d5ebdf9d26caf9119708a5649723 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
PMID | 22484626 |
PQID | 1021186395 |
PQPubID | 33429 |
PageCount | 6 |
ParticipantIDs | proquest_miscellaneous_1034816550 proquest_miscellaneous_1019617293 proquest_journals_1021186395 gale_infotracmisc_A288979305 gale_infotracacademiconefile_A288979305 gale_incontextgauss_ISR_A288979305 gale_incontextgauss_IOV_A288979305 pubmed_primary_22484626 pascalfrancis_primary_25876543 crossref_citationtrail_10_1038_ng_2248 crossref_primary_10_1038_ng_2248 springer_journals_10_1038_ng_2248 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2012-05-01 |
PublicationDateYYYYMMDD | 2012-05-01 |
PublicationDate_xml | – month: 05 year: 2012 text: 2012-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: New York, NY – name: United States |
PublicationTitle | Nature genetics |
PublicationTitleAbbrev | Nat Genet |
PublicationTitleAlternate | Nat Genet |
PublicationYear | 2012 |
Publisher | Nature Publishing Group US Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group US – name: Nature Publishing Group |
References | Tan (CR15) 2003; 31 Wang, Ooi, Hui (CR19) 2007; 13 Beer (CR1) 2002; 8 Parkinson (CR4) 2007; 35 Dimas (CR6) 2009; 325 Emilsson (CR20) 2008; 452 Barrett (CR3) 2009; 37 CR13 Zhong (CR27) 2010; 6 Schadt (CR9) 2003; 422 Hertzberg (CR12) 2007; 46 Greenawalt (CR7) 2011; 21 Speliotes (CR24) 2010; 42 Zhong, Yang, Kaplan, Molony, Schadt (CR28) 2010; 86 Couzin-Frankel (CR30) 2010; 328 Lamb (CR18) 2011; 6 Lanktree (CR29) 2011; 88 Yang (CR11) 2009; 41 Chen (CR5) 2008; 452 Smith, Kruglyak (CR10) 2008; 6 Heid (CR21) 2010; 42 Musunuru (CR23) 2010; 466 Teslovich (CR25) 2010; 466 Hoshida (CR2) 2008; 359 Schadt (CR8) 2008; 6 Barnes, Freudenberg, Thompson, Aronow, Pavlidis (CR17) 2005; 33 Baumbusch (CR16) 2008; 9 Lango Allen (CR22) 2010; 467 Hao, Chudin, Greenawalt, Schadt (CR14) 2010; 5 Yang (CR26) 2010; 20 H Zhong (BFng2248_CR28) 2010; 86 K Hao (BFng2248_CR14) 2010; 5 AS Dimas (BFng2248_CR6) 2009; 325 Y Chen (BFng2248_CR5) 2008; 452 X Yang (BFng2248_CR11) 2009; 41 DM Greenawalt (BFng2248_CR7) 2011; 21 TM Teslovich (BFng2248_CR25) 2010; 466 V Emilsson (BFng2248_CR20) 2008; 452 PK Tan (BFng2248_CR15) 2003; 31 MB Lanktree (BFng2248_CR29) 2011; 88 K Musunuru (BFng2248_CR23) 2010; 466 H Parkinson (BFng2248_CR4) 2007; 35 EN Smith (BFng2248_CR10) 2008; 6 H Lango Allen (BFng2248_CR22) 2010; 467 T Barrett (BFng2248_CR3) 2009; 37 X Yang (BFng2248_CR26) 2010; 20 SM Wang (BFng2248_CR19) 2007; 13 EK Speliotes (BFng2248_CR24) 2010; 42 DG Beer (BFng2248_CR1) 2002; 8 Y Hoshida (BFng2248_CR2) 2008; 359 H Zhong (BFng2248_CR27) 2010; 6 JR Lamb (BFng2248_CR18) 2011; 6 L Hertzberg (BFng2248_CR12) 2007; 46 EE Schadt (BFng2248_CR8) 2008; 6 M Barnes (BFng2248_CR17) 2005; 33 IM Heid (BFng2248_CR21) 2010; 42 J Couzin-Frankel (BFng2248_CR30) 2010; 328 LO Baumbusch (BFng2248_CR16) 2008; 9 BFng2248_CR13 EE Schadt (BFng2248_CR9) 2003; 422 12646919 - Nature. 2003 Mar 20;422(6929):297-302 20463879 - PLoS Genet. 2010 May 06;6(5):e1000932 20084173 - PLoS One. 2010 Jan 13;5(1):e8695 21602305 - Genome Res. 2011 Jul;21(7):1008-16 18344981 - Nature. 2008 Mar 27;452(7186):423-8 16237126 - Nucleic Acids Res. 2005 Oct 19;33(18):5914-23 18416601 - PLoS Biol. 2008 Apr 15;6(4):e83 20686566 - Nature. 2010 Aug 5;466(7307):714-9 14685227 - Nature. 2003 Dec 18;426(6968):789-96 19644074 - Science. 2009 Sep 4;325(5945):1246-50 18462017 - PLoS Biol. 2008 May 6;6(5):e107 20686565 - Nature. 2010 Aug 5;466(7307):707-13 20935629 - Nat Genet. 2010 Nov;42(11):949-60 20935630 - Nat Genet. 2010 Nov;42(11):937-48 20430983 - Science. 2010 Apr 30;328(5978):558 12118244 - Nat Med. 2002 Aug;8(8):816-24 18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90 20881960 - Nature. 2010 Oct 14;467(7317):832-8 18691401 - BMC Genomics. 2008 Aug 08;9:379 21194676 - Am J Hum Genet. 2011 Jan 7;88(1):6-18 17044051 - Genes Chromosomes Cancer. 2007 Jan;46(1):75-86 21750698 - PLoS One. 2011;6(7):e20090 18344982 - Nature. 2008 Mar 27;452(7186):429-35 17975138 - Clin Cancer Res. 2007 Nov 1;13(21):6275-83 20538623 - Genome Res. 2010 Aug;20(8):1020-36 17132828 - Nucleic Acids Res. 2007 Jan;35(Database issue):D747-50 14500831 - Nucleic Acids Res. 2003 Oct 1;31(19):5676-84 20346437 - Am J Hum Genet. 2010 Apr 9;86(4):581-91 18923165 - N Engl J Med. 2008 Nov 6;359(19):1995-2004 19270708 - Nat Genet. 2009 Apr;41(4):415-23 |
References_xml | – volume: 452 start-page: 429 year: 2008 end-page: 435 ident: CR5 article-title: Variations in DNA elucidate molecular networks that cause disease publication-title: Nature doi: 10.1038/nature06757 – volume: 37 start-page: D885 year: 2009 end-page: D890 ident: CR3 article-title: NCBI GEO: archive for high-throughput functional genomic data publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn764 – volume: 5 start-page: e8695 year: 2010 ident: CR14 article-title: Magnitude of stratification in human populations and impacts on genome wide association studies publication-title: PLoS ONE doi: 10.1371/journal.pone.0008695 – volume: 467 start-page: 832 year: 2010 end-page: 838 ident: CR22 article-title: Hundreds of variants clustered in genomic loci and biological pathways affect human height publication-title: Nature doi: 10.1038/nature09410 – volume: 325 start-page: 1246 year: 2009 end-page: 1250 ident: CR6 article-title: Common regulatory variation impacts gene expression in a cell type–dependent manner publication-title: Science doi: 10.1126/science.1174148 – volume: 466 start-page: 707 year: 2010 end-page: 713 ident: CR25 article-title: Biological, clinical and population relevance of 95 loci for blood lipids publication-title: Nature doi: 10.1038/nature09270 – volume: 6 start-page: e107 year: 2008 ident: CR8 article-title: Mapping the genetic architecture of gene expression in human liver publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060107 – volume: 452 start-page: 423 year: 2008 end-page: 428 ident: CR20 article-title: Genetics of gene expression and its effect on disease publication-title: Nature doi: 10.1038/nature06758 – volume: 8 start-page: 816 year: 2002 end-page: 824 ident: CR1 article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma publication-title: Nat. Med. doi: 10.1038/nm733 – volume: 41 start-page: 415 year: 2009 end-page: 423 ident: CR11 article-title: Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks publication-title: Nat. Genet. doi: 10.1038/ng.325 – volume: 20 start-page: 1020 year: 2010 end-page: 1036 ident: CR26 article-title: Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver publication-title: Genome Res. doi: 10.1101/gr.103341.109 – volume: 9 start-page: 379 year: 2008 ident: CR16 article-title: Comparison of the Agilent, ROMA/NimbleGen and Illumina platforms for classification of copy number alterations in human breast tumors publication-title: BMC Genomics doi: 10.1186/1471-2164-9-379 – volume: 359 start-page: 1995 year: 2008 end-page: 2004 ident: CR2 article-title: Gene expression in fixed tissues and outcome in hepatocellular carcinoma publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0804525 – volume: 42 start-page: 937 year: 2010 end-page: 948 ident: CR24 article-title: Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index publication-title: Nat. Genet. doi: 10.1038/ng.686 – volume: 422 start-page: 297 year: 2003 end-page: 302 ident: CR9 article-title: Genetics of gene expression surveyed in maize, mouse and man publication-title: Nature doi: 10.1038/nature01434 – volume: 33 start-page: 5914 year: 2005 end-page: 5923 ident: CR17 article-title: Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki890 – volume: 6 start-page: e1000932 year: 2010 ident: CR27 article-title: Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000932 – volume: 31 start-page: 5676 year: 2003 end-page: 5684 ident: CR15 article-title: Evaluation of gene expression measurements from commercial microarray platforms publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg763 – volume: 46 start-page: 75 year: 2007 end-page: 86 ident: CR12 article-title: Prediction of chromosomal aneuploidy from gene expression data publication-title: Genes Chromosom. Cancer doi: 10.1002/gcc.20391 – volume: 13 start-page: 6275 year: 2007 end-page: 6283 ident: CR19 article-title: Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-2236 – volume: 42 start-page: 949 year: 2010 end-page: 960 ident: CR21 article-title: Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution publication-title: Nat. Genet. doi: 10.1038/ng.685 – volume: 21 start-page: 1008 year: 2011 end-page: 1016 ident: CR7 article-title: A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort publication-title: Genome Res. doi: 10.1101/gr.112821.110 – volume: 6 start-page: e20090 year: 2011 ident: CR18 article-title: Predictive genes in adjacent normal tissue are preferentially altered by sCNV during tumorigenesis in liver cancer and may rate limiting publication-title: PLoS ONE doi: 10.1371/journal.pone.0020090 – ident: CR13 – volume: 86 start-page: 581 year: 2010 end-page: 591 ident: CR28 article-title: Integrating pathway analysis and genetics of gene expression for genome-wide association studies publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.02.020 – volume: 88 start-page: 6 year: 2011 end-page: 18 ident: CR29 article-title: Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.007 – volume: 466 start-page: 714 year: 2010 end-page: 719 ident: CR23 article-title: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus publication-title: Nature doi: 10.1038/nature09266 – volume: 35 start-page: D747 year: 2007 end-page: D750 ident: CR4 article-title: ArrayExpress—a public database of microarray experiments and gene expression profiles publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl995 – volume: 328 start-page: 558 year: 2010 ident: CR30 article-title: Ethics. DNA returned to tribe, raising questions about consent publication-title: Science doi: 10.1126/science.328.5978.558 – volume: 6 start-page: e83 year: 2008 ident: CR10 article-title: Gene-environment interaction in yeast gene expression publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060083 – volume: 42 start-page: 937 year: 2010 ident: BFng2248_CR24 publication-title: Nat. Genet. doi: 10.1038/ng.686 – volume: 42 start-page: 949 year: 2010 ident: BFng2248_CR21 publication-title: Nat. Genet. doi: 10.1038/ng.685 – volume: 86 start-page: 581 year: 2010 ident: BFng2248_CR28 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.02.020 – volume: 467 start-page: 832 year: 2010 ident: BFng2248_CR22 publication-title: Nature doi: 10.1038/nature09410 – volume: 466 start-page: 714 year: 2010 ident: BFng2248_CR23 publication-title: Nature doi: 10.1038/nature09266 – volume: 452 start-page: 423 year: 2008 ident: BFng2248_CR20 publication-title: Nature doi: 10.1038/nature06758 – volume: 9 start-page: 379 year: 2008 ident: BFng2248_CR16 publication-title: BMC Genomics doi: 10.1186/1471-2164-9-379 – volume: 466 start-page: 707 year: 2010 ident: BFng2248_CR25 publication-title: Nature doi: 10.1038/nature09270 – volume: 31 start-page: 5676 year: 2003 ident: BFng2248_CR15 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkg763 – volume: 359 start-page: 1995 year: 2008 ident: BFng2248_CR2 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa0804525 – volume: 41 start-page: 415 year: 2009 ident: BFng2248_CR11 publication-title: Nat. Genet. doi: 10.1038/ng.325 – volume: 33 start-page: 5914 year: 2005 ident: BFng2248_CR17 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gki890 – volume: 8 start-page: 816 year: 2002 ident: BFng2248_CR1 publication-title: Nat. Med. doi: 10.1038/nm733 – volume: 452 start-page: 429 year: 2008 ident: BFng2248_CR5 publication-title: Nature doi: 10.1038/nature06757 – volume: 35 start-page: D747 year: 2007 ident: BFng2248_CR4 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkl995 – volume: 6 start-page: e1000932 year: 2010 ident: BFng2248_CR27 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1000932 – volume: 6 start-page: e20090 year: 2011 ident: BFng2248_CR18 publication-title: PLoS ONE doi: 10.1371/journal.pone.0020090 – volume: 46 start-page: 75 year: 2007 ident: BFng2248_CR12 publication-title: Genes Chromosom. Cancer doi: 10.1002/gcc.20391 – volume: 6 start-page: e107 year: 2008 ident: BFng2248_CR8 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060107 – volume: 20 start-page: 1020 year: 2010 ident: BFng2248_CR26 publication-title: Genome Res. doi: 10.1101/gr.103341.109 – volume: 13 start-page: 6275 year: 2007 ident: BFng2248_CR19 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-06-2236 – volume: 328 start-page: 558 year: 2010 ident: BFng2248_CR30 publication-title: Science doi: 10.1126/science.328.5978.558 – ident: BFng2248_CR13 doi: 10.1038/nature02168 – volume: 422 start-page: 297 year: 2003 ident: BFng2248_CR9 publication-title: Nature doi: 10.1038/nature01434 – volume: 6 start-page: e83 year: 2008 ident: BFng2248_CR10 publication-title: PLoS Biol. doi: 10.1371/journal.pbio.0060083 – volume: 88 start-page: 6 year: 2011 ident: BFng2248_CR29 publication-title: Am. J. Hum. Genet. doi: 10.1016/j.ajhg.2010.11.007 – volume: 21 start-page: 1008 year: 2011 ident: BFng2248_CR7 publication-title: Genome Res. doi: 10.1101/gr.112821.110 – volume: 37 start-page: D885 year: 2009 ident: BFng2248_CR3 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkn764 – volume: 325 start-page: 1246 year: 2009 ident: BFng2248_CR6 publication-title: Science doi: 10.1126/science.1174148 – volume: 5 start-page: e8695 year: 2010 ident: BFng2248_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0008695 – reference: 18923165 - N Engl J Med. 2008 Nov 6;359(19):1995-2004 – reference: 19270708 - Nat Genet. 2009 Apr;41(4):415-23 – reference: 20686565 - Nature. 2010 Aug 5;466(7307):707-13 – reference: 21602305 - Genome Res. 2011 Jul;21(7):1008-16 – reference: 17975138 - Clin Cancer Res. 2007 Nov 1;13(21):6275-83 – reference: 16237126 - Nucleic Acids Res. 2005 Oct 19;33(18):5914-23 – reference: 20686566 - Nature. 2010 Aug 5;466(7307):714-9 – reference: 20935630 - Nat Genet. 2010 Nov;42(11):937-48 – reference: 21750698 - PLoS One. 2011;6(7):e20090 – reference: 20463879 - PLoS Genet. 2010 May 06;6(5):e1000932 – reference: 20538623 - Genome Res. 2010 Aug;20(8):1020-36 – reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96 – reference: 18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90 – reference: 20430983 - Science. 2010 Apr 30;328(5978):558 – reference: 18344981 - Nature. 2008 Mar 27;452(7186):423-8 – reference: 18344982 - Nature. 2008 Mar 27;452(7186):429-35 – reference: 19644074 - Science. 2009 Sep 4;325(5945):1246-50 – reference: 12118244 - Nat Med. 2002 Aug;8(8):816-24 – reference: 20084173 - PLoS One. 2010 Jan 13;5(1):e8695 – reference: 21194676 - Am J Hum Genet. 2011 Jan 7;88(1):6-18 – reference: 17132828 - Nucleic Acids Res. 2007 Jan;35(Database issue):D747-50 – reference: 18691401 - BMC Genomics. 2008 Aug 08;9:379 – reference: 18462017 - PLoS Biol. 2008 May 6;6(5):e107 – reference: 20346437 - Am J Hum Genet. 2010 Apr 9;86(4):581-91 – reference: 17044051 - Genes Chromosomes Cancer. 2007 Jan;46(1):75-86 – reference: 14500831 - Nucleic Acids Res. 2003 Oct 1;31(19):5676-84 – reference: 12646919 - Nature. 2003 Mar 20;422(6929):297-302 – reference: 20881960 - Nature. 2010 Oct 14;467(7317):832-8 – reference: 20935629 - Nat Genet. 2010 Nov;42(11):949-60 – reference: 18416601 - PLoS Biol. 2008 Apr 15;6(4):e83 |
SSID | ssj0014408 |
Score | 2.4206152 |
Snippet | Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data... RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing... |
SourceID | proquest gale pubmed pascalfrancis crossref springer |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 603 |
SubjectTerms | 631/1647/2017 631/208/199 631/208/729/743 631/553/2714 Adipose Tissue - metabolism Agriculture Animal Genetics and Genomics Bayes Theorem Bayesian statistical decision theory Biological and medical sciences Biomedical and Life Sciences Biomedicine Cancer Research Cohort Studies Computer Simulation Deoxyribonucleic acid DNA Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Profiling Gene Function Gene mapping Genealogy Genetics Genetics of eukaryotes. Biological and molecular evolution Genotype Genotype & phenotype Genotypes Human Genetics Humans Identification and classification Liver - metabolism Methods Polymorphism, Single Nucleotide - genetics Privacy Proteins Quantitative Trait Loci Single nucleotide polymorphisms Studies technical-report |
Title | Bayesian method to predict individual SNP genotypes from gene expression data |
URI | https://link.springer.com/article/10.1038/ng.2248 https://www.ncbi.nlm.nih.gov/pubmed/22484626 https://www.proquest.com/docview/1021186395 https://www.proquest.com/docview/1019617293 https://www.proquest.com/docview/1034816550 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw0GKgPU1og210QGUmxJ4ymsR2nScECASTKAjG1DfLduxq0pR0JJXg3--uccMiPlQpUuVLdLmcz_d9hOwOdZzHzqXRwDIfMekHkRYmjSwXzhjthi7FQuGLkTi7ZT_GfBwcblVIq1zIxLmgzkuLPvJ9HEEdSzhP-cH0b4RTozC6GkZovCEr2LoMU7qG49bgwrhlUwon0E7CMOVqU2Yu94vJdzi8ZOc0CjL53VRXQB_fDLZ4TvN8EjWdH0an78lq0CLpYfPZP5AlV6yRt81cyYd1cnGkHxxWR9JmQDStSzq9w5BMTX-3FVj0ZnRFsUcrumErioUm-NdRdx-yYwuKCaQfye3pyc_jsyjMTYgsmCN1ZAwSIxGc-ZhLLWIHJjDTTmfcxtZ5pvM4ybkzuc_yRFjtMwwmDqTmguEUsk9kuSgLt0EoKE_CeAMr0rJMWgnq4xAMTwe_PNOyR_YW9FM2NBXH2RZ_1Dy4nUpVTBQSukdoCzht-mg8BfmKH0BhV4oC014melZV6vzylzpMpMxAkgz4S0A31x2gbwHIl4CN1aHUAN4Ju111ILc6kLC3bGe532GGFvWEwynCWQr3L7hDhc1fqUdW7ZGddhkfjQlthStnCAOiD5THLH0NBqukBdiQPfK54bxHBIBgDIxRuHvBiv8j0CHsl9eR3ERfBTqVMItziyzXdzO3DZpWbfrz7QRXeRz3ycrRyejq-h-gvCf3 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSIZBQxU2glAVxPJnG9u5m_YBQC60S2oSqB-rbsl6vIyRkhzoR5Kf4Rmbio1iFvlV-snZsjWdn5_BcAC_7xk9850KvZ3nqcZX2PCPj0LNCujg2ru9CKhQejeXghH86Facr8LuuhaG0ylomLgV1klv6R75JI6h9hfpUvJ_-8GhqFEVX6xEaJVvsucVPdNmKd8OPuL-vgmB35_jDwKumCngWjfWZF8fU5SyQgqe-UEb6Dh1EbpyJhPWtS7lJ_CARLk7SKAmkNWlEobaeMkJymtGF770GqzxEV6YDq9s744PDJm5B85uX8VVJnhkFRtfKwna1mU3eorpULf1XaYFbU1PgjqTlKI1_2boX4rRL9bd7G9Yqu5VtlYx2B1Zcdheul5MsF_dgtG0WjuoxWTmSms1yNj2jINCMfWtqvtjR-IBRV1j68VswKm2hW8fcryofN2OUsnofTq6Epg-gk-WZewQMzTUZpzGuKMsjZRUarH10dR1eSWRUF17X9NO2amNO0zS-62U4PVQ6m2gidBdYAzgtO3dcBHlBG6CpD0ZGiTYTMy8KPfz8RW8FSkUou3rif0BHhy2gNxVQmiM21lTFDfhN1F-rBbnegsTTbFvLGy1maFAPBOotwUN8vuYOXYmbQp8fji48b5bp1ZRCl7l8TjAobNFcjcLLYKguW6LX2oWHJeedI4AE4-j-4tM1K_6NQIuwjy9H8hncGByP9vX-cLz3BG6iDRqUOaTr0Jmdzd1TtPNm8UZ1uBh8verz_AeI4GOj |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDICQ0cacwhkFcnkKbxHacB4QGo1oZKxPbUN-M49gVEkrKkgr6a3wd59RJRzTY25SnyCeRc3yuOTdCniU6zENr42BgmAuYdINAiywODBc2y7RNbIyFwvtjsXvMPkz4ZI38bmthMK2ylYlLQZ2XBv-R93EEdShBn_K-a9IiDnaGb2Y_ApwghZHWdpyGJ5E9u_gJ7lv1erQDZ_08iobvj97tBs2EgcCA4V4HWYYdzyLBmQu51CK04CwybXXKTWisYzoPo5zbLHdpHgmjXYpht4HUXDCc1wXvvUQuJzEPkceSycrZw5ipL8MT6KNhiHTDl7jLfjF9BYpTdjRhow-uz3QFZ-P8UI1_Wb1nIrZLRTi8QTYaC5Zue5K7SdZscYtc8TMtF7fJ_lu9sFiZSf1walqXdHaC4aCafltVf9HD8QHF_rD4C7iiWOSCt5baX01mbkExefUOOb4QjN4l60VZ2PuEguEmMpfBijQslUaC6ZqA02vhylMte-RFiz9lmobmOFfju1oG1mOpiqlCRPcIXQHOfA-PsyBP8QAUdsQokLamel5VavTpi9qOpExBig34_4AOP3eAXjZAroTdGN2UOcA3YaetDuRmBxL42nSWtzrEsNp6xEGDcRbD8y11qEbwVOqUTXrkyWoZX43JdIUt5wgDYhcM1zQ-DwYrtAX4rz1yz1Pe6QYAYQwcYXi6JcW_N9BB7IPzN_mYXAUuVh9H472H5BoYo5FPJt0k6_XJ3D4Cg6_OtpacRcnXi2blPzfSZnM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+method+to+predict+individual+SNP+genotypes+from+gene+expression+data&rft.jtitle=Nature+genetics&rft.au=SCHADT%2C+Eric+E&rft.au=WOO%2C+Sangsoon&rft.au=KE+HAO&rft.date=2012-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.volume=44&rft.issue=5&rft.spage=603&rft.epage=608&rft_id=info:doi/10.1038%2Fng.2248&rft.externalDBID=n%2Fa&rft.externalDocID=25876543 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon |