Bayesian method to predict individual SNP genotypes from gene expression data

Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data sets, they show that it is possible to infer a genotypic barcode specific to an individual, although the identification of an individual as a par...

Full description

Saved in:
Bibliographic Details
Published inNature genetics Vol. 44; no. 5; pp. 603 - 608
Main Authors Schadt, Eric E, Woo, Sangsoon, Hao, Ke
Format Journal Article
LanguageEnglish
Published New York Nature Publishing Group US 01.05.2012
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data sets, they show that it is possible to infer a genotypic barcode specific to an individual, although the identification of an individual as a participant in a study is limited by factors such as the availability of large-scale expression quantitative trait loci (eQTLs) and expression data sets. RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P adjusted ≤ 1 × 10 −5 . When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P adjusted ≤ 1 × 10 −5 . We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.
AbstractList RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at [P.sub.adjusted] ≤ 1 x [10.sup.-5]. When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at [P.sub.adjusted] ≤ 1 x [10.sup.-5]. We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.
Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data sets, they show that it is possible to infer a genotypic barcode specific to an individual, although the identification of an individual as a participant in a study is limited by factors such as the availability of large-scale expression quantitative trait loci (eQTLs) and expression data sets. RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P adjusted ≤ 1 × 10 −5 . When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P adjusted ≤ 1 × 10 −5 . We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.
RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at Padjusted ≤ 1 × 1010^sup -5^. When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at Padjusted ≤ 1 × 10^sup -5^. We discuss the implications of deriving genotypic information from RNA data deposited in the public domain. [PUBLICATION ABSTRACT]
RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P(adjusted) ≤ 1 × 10(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P(adjusted) ≤ 1 × 10(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.
RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P sub(adjusted) less than or equal to 1 x 10 super(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P sub(adjusted) less than or equal to 1 x 10 super(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.
RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P(adjusted) ≤ 1 × 10(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P(adjusted) ≤ 1 × 10(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing published putative cis eQTLs, we developed a Bayesian approach to predict SNP genotypes that is based only on RNA expression data. We show that predicted genotypes can accurately and uniquely identify individuals in large populations. When inferring genotypes from an expression data set using eQTLs of the same tissue type (but from an independent cohort), we were able to resolve 99% of the identities of individuals in the cohort at P(adjusted) ≤ 1 × 10(-5). When eQTLs derived from one tissue were used to predict genotypes using expression data from a different tissue, the identities of 90% of the study subjects could be resolved at P(adjusted) ≤ 1 × 10(-5). We discuss the implications of deriving genotypic information from RNA data deposited in the public domain.
Audience Academic
Author Woo, Sangsoon
Schadt, Eric E
Hao, Ke
Author_xml – sequence: 1
  givenname: Eric E
  surname: Schadt
  fullname: Schadt, Eric E
  email: eric.schadt@mssm.edu
  organization: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine
– sequence: 2
  givenname: Sangsoon
  surname: Woo
  fullname: Woo, Sangsoon
  organization: Department of Biostatistics, University of Washington, Present addresses: Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA, and Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
– sequence: 3
  givenname: Ke
  surname: Hao
  fullname: Hao, Ke
  email: ke.hao@mssm.edu
  organization: Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, Research Genetics, Rosetta Inpharmatics
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=25876543$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/22484626$$D View this record in MEDLINE/PubMed
BookMark eNqN0k1v1DAQBuAIFdEPEP8ARUIIOGSxHduxj6UqUKlQRIFr5LUnwVVib20Hdf99HbpV2cKhysFJ9MxI8473ix3nHRTFc4wWGNXinesXhFDxqNjDjPIKN1js5HfEcUVRzXeL_RgvEMKUIvGk2J0t5YTvFZ_fqzVEq1w5QvrlTZl8uQpgrE6ldcb-tmZSQ3n-5WvZg_NpvYJYdsGP8yeUcJVxjNa70qiknhaPOzVEeLY5D4ofH46_H32qTs8-nhwdnlaaI56q5RJjyQhntMNMKI6BS0QVKMk01tBRZTAxDJamk4ZwrTqZCxokFONUNqQ-KN7c9F0FfzlBTO1oo4ZhUA78FNucCRWYM4YeQLHkuCGyzvTlPXrhp-DyIFkRjAWvJbtTvRqgta7zKSg9N20PiRCykTWa1eI_Kj8GRqvz8jqb_28VvN0qyCbBVerVFGN7cv7t4fbs57Z9sRlqWo5g2lWwowrr9vYKZPBqA1TUauiCctrGO8dEkxc1p1PdOB18jAG6VtukUl59nswOOaI5dtG6_k_v7F_f87ct_5WbFcUsXA_h79y36TXyeOTq
CODEN NGENEC
CitedBy_id crossref_primary_10_1093_aje_kwad107
crossref_primary_10_1016_j_jhin_2015_01_005
crossref_primary_10_1038_s41576_020_0257_5
crossref_primary_10_1016_j_tig_2013_02_001
crossref_primary_10_1093_phe_phu023
crossref_primary_10_3389_fnhum_2021_761424
crossref_primary_10_1038_s41467_018_04875_5
crossref_primary_10_1142_S021812662250236X
crossref_primary_10_1186_s13148_015_0079_z
crossref_primary_10_1038_nrg3263
crossref_primary_10_1194_jlr_M048710
crossref_primary_10_1145_2767007
crossref_primary_10_1534_g3_115_019778
crossref_primary_10_1016_j_ajhg_2016_02_020
crossref_primary_10_1093_nar_gkw269
crossref_primary_10_1007_s12033_020_00296_2
crossref_primary_10_3389_fmed_2021_784455
crossref_primary_10_1038_msb_2012_47
crossref_primary_10_22230_cjc_2014v39n4a2743
crossref_primary_10_1093_nop_npw029
crossref_primary_10_1097_MIB_0000000000000340
crossref_primary_10_1002_ddr_21211
crossref_primary_10_1002_alz_12092
crossref_primary_10_1038_ng_2653
crossref_primary_10_1016_j_neunet_2025_107343
crossref_primary_10_1007_s10606_016_9248_7
crossref_primary_10_1016_j_patter_2024_101096
crossref_primary_10_1165_rcmb_2014_0381OC
crossref_primary_10_1186_s13148_022_01263_1
crossref_primary_10_1186_s13059_021_02553_2
crossref_primary_10_1038_s41467_025_57393_6
crossref_primary_10_1371_journal_pcbi_1002549
crossref_primary_10_3233_JCS_171107
crossref_primary_10_1002_pra2_2015_145052010050
crossref_primary_10_1146_annurev_genom_083115_022536
crossref_primary_10_2217_pme_13_104
crossref_primary_10_1016_j_neuroimage_2020_117208
crossref_primary_10_1534_g3_113_007690
crossref_primary_10_1016_j_ajhg_2012_08_034
crossref_primary_10_7763_IJBBB_2014_V4_370
crossref_primary_10_1371_journal_pone_0067899
crossref_primary_10_1126_science_1234593
crossref_primary_10_2217_pme_14_17
crossref_primary_10_1038_jhg_2014_121
crossref_primary_10_1016_j_xgen_2025_100769
crossref_primary_10_1038_s41576_021_00428_7
crossref_primary_10_1212_NXG_0000000000000517
crossref_primary_10_1038_nmeth_3779
crossref_primary_10_1038_nrg3723
crossref_primary_10_1371_journal_pone_0171324
crossref_primary_10_2478_popets_2019_0004
crossref_primary_10_1186_s13195_021_00919_z
crossref_primary_10_1016_j_jalz_2015_05_009
crossref_primary_10_1126_science_1229566
crossref_primary_10_1016_j_cell_2024_09_012
crossref_primary_10_1038_s41598_023_34866_6
crossref_primary_10_3390_app122010586
crossref_primary_10_1111_imb_12378
crossref_primary_10_2196_54332
crossref_primary_10_1016_j_ins_2019_09_036
crossref_primary_10_1111_nyas_13211
crossref_primary_10_1177_2168479017744774
crossref_primary_10_1016_j_neurobiolaging_2019_12_001
crossref_primary_10_1371_journal_pgen_1004383
crossref_primary_10_1038_nbt_2926
crossref_primary_10_1038_s41588_024_01825_4
crossref_primary_10_1186_s13059_021_02477_x
crossref_primary_10_1371_journal_pcbi_1003790
crossref_primary_10_1186_s13059_014_0460_9
crossref_primary_10_1093_nar_gky780
crossref_primary_10_1038_ng_2951
crossref_primary_10_2139_ssrn_2234133
crossref_primary_10_1038_tp_2014_96
crossref_primary_10_1038_nbt_3696
crossref_primary_10_1038_s42003_023_04791_5
crossref_primary_10_1109_TCBB_2018_2859380
crossref_primary_10_1186_s13059_015_0723_0
crossref_primary_10_1523_JNEUROSCI_1184_19_2019
crossref_primary_10_1038_nature_2012_10507
crossref_primary_10_1186_s13059_022_02841_5
crossref_primary_10_1016_j_atherosclerosis_2015_12_009
crossref_primary_10_1098_rsta_2017_0350
crossref_primary_10_1038_npjsba_2015_10
crossref_primary_10_1186_s13059_016_0948_6
crossref_primary_10_1186_gm527
crossref_primary_10_1016_j_cell_2020_09_036
Cites_doi 10.1038/nature06757
10.1093/nar/gkn764
10.1371/journal.pone.0008695
10.1038/nature09410
10.1126/science.1174148
10.1038/nature09270
10.1371/journal.pbio.0060107
10.1038/nature06758
10.1038/nm733
10.1038/ng.325
10.1101/gr.103341.109
10.1186/1471-2164-9-379
10.1056/NEJMoa0804525
10.1038/ng.686
10.1038/nature01434
10.1093/nar/gki890
10.1371/journal.pgen.1000932
10.1093/nar/gkg763
10.1002/gcc.20391
10.1158/1078-0432.CCR-06-2236
10.1038/ng.685
10.1101/gr.112821.110
10.1371/journal.pone.0020090
10.1016/j.ajhg.2010.02.020
10.1016/j.ajhg.2010.11.007
10.1038/nature09266
10.1093/nar/gkl995
10.1126/science.328.5978.558
10.1371/journal.pbio.0060083
10.1038/nature02168
ContentType Journal Article
Copyright Springer Nature America, Inc. 2012
2015 INIST-CNRS
COPYRIGHT 2012 Nature Publishing Group
Copyright Nature Publishing Group May 2012
Copyright_xml – notice: Springer Nature America, Inc. 2012
– notice: 2015 INIST-CNRS
– notice: COPYRIGHT 2012 Nature Publishing Group
– notice: Copyright Nature Publishing Group May 2012
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
IOV
ISR
3V.
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7X7
7XB
88A
88E
8AO
8C1
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
H94
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7N
M7P
MBDVC
P64
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
RC3
7X8
DOI 10.1038/ng.2248
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Gale In Context: Opposing Viewpoints
Gale In Context: Science
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Entomology Abstracts (Full archive)
Industrial and Applied Microbiology Abstracts (Microbiology A)
Neurosciences Abstracts
Nucleic Acids Abstracts
Virology and AIDS Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Public Health Database
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
ProQuest Research Library
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biological Science Database
Research Library (Corporate)
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Research Library Prep
ProQuest Central Student
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Virology and AIDS Abstracts
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Neurosciences Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
ProQuest Research Library
ProQuest Public Health
ProQuest Central Basic
ProQuest SciTech Collection
ProQuest Medical Library
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

Research Library Prep
MEDLINE
Genetics Abstracts
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
Biology
EISSN 1546-1718
EndPage 608
ExternalDocumentID 2692185461
A288979305
22484626
25876543
10_1038_ng_2248
Genre Journal Article
GeographicLocations United States
GeographicLocations_xml – name: United States
GroupedDBID ---
-DZ
-~X
.55
.GJ
0R~
123
29M
2FS
36B
39C
3O-
3V.
4.4
53G
5BI
5M7
5RE
5S5
70F
7X7
85S
88A
88E
8AO
8C1
8FE
8FH
8FI
8FJ
8G5
8R4
8R5
AAEEF
AAHBH
AARCD
AAYOK
AAYZH
AAZLF
ABAWZ
ABCQX
ABDBF
ABDPE
ABEFU
ABJNI
ABLJU
ABOCM
ABTAH
ABUWG
ACBWK
ACGFO
ACGFS
ACIWK
ACMJI
ACNCT
ACPRK
ACUHS
ADBBV
ADFRT
AENEX
AEUYN
AFBBN
AFFNX
AFKRA
AFRAH
AFSHS
AGAYW
AGCDD
AGHTU
AHBCP
AHMBA
AHOSX
AHSBF
AIBTJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
ARMCB
ASPBG
AVWKF
AXYYD
AZFZN
AZQEC
B0M
BBNVY
BENPR
BHPHI
BKKNO
BPHCQ
BVXVI
CCPQU
CS3
DB5
DU5
DWQXO
EAD
EAP
EBC
EBD
EBS
EE.
EJD
EMB
EMK
EMOBN
EPL
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
GNUQQ
GUQSH
GX1
HCIFZ
HMCUK
HVGLF
HZ~
IAO
IH2
IHR
INH
INR
IOV
ISR
ITC
L7B
LGEZI
LK8
LOTEE
M0L
M1P
M2O
M7P
MVM
N9A
NADUK
NNMJJ
NXXTH
ODYON
P2P
PKN
PQQKQ
PROAC
PSQYO
Q2X
RIG
RNS
RNT
RNTTT
RVV
SHXYY
SIXXV
SJN
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TN5
TSG
TUS
UKHRP
VQA
X7M
XJT
XOL
Y6R
YHZ
ZGI
ZXP
ZY4
~8M
~KM
AAYXX
ABFSG
ACMFV
ACSTC
AETEA
AFANA
ALPWD
ATHPR
CITATION
PHGZM
PHGZT
AEZWR
AFHIU
AHWEU
AIXLP
IQODW
NFIDA
PJZUB
PPXIY
PQGLB
CGR
CUY
CVF
ECM
EIF
NPM
AEIIB
PMFND
7QL
7QP
7QR
7SS
7T7
7TK
7TM
7U9
7XB
8FD
8FK
C1K
FR3
H94
K9.
M7N
MBDVC
P64
PKEHL
PQEST
PQUKI
PRINS
Q9U
RC3
7X8
ID FETCH-LOGICAL-c606t-bb11952654f158a61e6904aea95c1cef4ad12d5ebdf9d26caf9119708a5649723
IEDL.DBID 7X7
ISSN 1061-4036
1546-1718
IngestDate Thu Jul 10 23:59:42 EDT 2025
Thu Jul 10 17:55:54 EDT 2025
Fri Jul 25 08:52:21 EDT 2025
Tue Jun 17 21:12:33 EDT 2025
Tue Jun 10 20:47:33 EDT 2025
Fri Jun 27 04:36:56 EDT 2025
Fri Jun 27 03:56:48 EDT 2025
Wed Feb 19 01:51:17 EST 2025
Mon Jul 21 09:14:00 EDT 2025
Tue Jul 01 01:50:10 EDT 2025
Thu Apr 24 23:04:02 EDT 2025
Fri Feb 21 02:37:43 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Genotype
Method
Single nucleotide polymorphism
Gene expression
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-bb11952654f158a61e6904aea95c1cef4ad12d5ebdf9d26caf9119708a5649723
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PMID 22484626
PQID 1021186395
PQPubID 33429
PageCount 6
ParticipantIDs proquest_miscellaneous_1034816550
proquest_miscellaneous_1019617293
proquest_journals_1021186395
gale_infotracmisc_A288979305
gale_infotracacademiconefile_A288979305
gale_incontextgauss_ISR_A288979305
gale_incontextgauss_IOV_A288979305
pubmed_primary_22484626
pascalfrancis_primary_25876543
crossref_citationtrail_10_1038_ng_2248
crossref_primary_10_1038_ng_2248
springer_journals_10_1038_ng_2248
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2012-05-01
PublicationDateYYYYMMDD 2012-05-01
PublicationDate_xml – month: 05
  year: 2012
  text: 2012-05-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: New York, NY
– name: United States
PublicationTitle Nature genetics
PublicationTitleAbbrev Nat Genet
PublicationTitleAlternate Nat Genet
PublicationYear 2012
Publisher Nature Publishing Group US
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group US
– name: Nature Publishing Group
References Tan (CR15) 2003; 31
Wang, Ooi, Hui (CR19) 2007; 13
Beer (CR1) 2002; 8
Parkinson (CR4) 2007; 35
Dimas (CR6) 2009; 325
Emilsson (CR20) 2008; 452
Barrett (CR3) 2009; 37
CR13
Zhong (CR27) 2010; 6
Schadt (CR9) 2003; 422
Hertzberg (CR12) 2007; 46
Greenawalt (CR7) 2011; 21
Speliotes (CR24) 2010; 42
Zhong, Yang, Kaplan, Molony, Schadt (CR28) 2010; 86
Couzin-Frankel (CR30) 2010; 328
Lamb (CR18) 2011; 6
Lanktree (CR29) 2011; 88
Yang (CR11) 2009; 41
Chen (CR5) 2008; 452
Smith, Kruglyak (CR10) 2008; 6
Heid (CR21) 2010; 42
Musunuru (CR23) 2010; 466
Teslovich (CR25) 2010; 466
Hoshida (CR2) 2008; 359
Schadt (CR8) 2008; 6
Barnes, Freudenberg, Thompson, Aronow, Pavlidis (CR17) 2005; 33
Baumbusch (CR16) 2008; 9
Lango Allen (CR22) 2010; 467
Hao, Chudin, Greenawalt, Schadt (CR14) 2010; 5
Yang (CR26) 2010; 20
H Zhong (BFng2248_CR28) 2010; 86
K Hao (BFng2248_CR14) 2010; 5
AS Dimas (BFng2248_CR6) 2009; 325
Y Chen (BFng2248_CR5) 2008; 452
X Yang (BFng2248_CR11) 2009; 41
DM Greenawalt (BFng2248_CR7) 2011; 21
TM Teslovich (BFng2248_CR25) 2010; 466
V Emilsson (BFng2248_CR20) 2008; 452
PK Tan (BFng2248_CR15) 2003; 31
MB Lanktree (BFng2248_CR29) 2011; 88
K Musunuru (BFng2248_CR23) 2010; 466
H Parkinson (BFng2248_CR4) 2007; 35
EN Smith (BFng2248_CR10) 2008; 6
H Lango Allen (BFng2248_CR22) 2010; 467
T Barrett (BFng2248_CR3) 2009; 37
X Yang (BFng2248_CR26) 2010; 20
SM Wang (BFng2248_CR19) 2007; 13
EK Speliotes (BFng2248_CR24) 2010; 42
DG Beer (BFng2248_CR1) 2002; 8
Y Hoshida (BFng2248_CR2) 2008; 359
H Zhong (BFng2248_CR27) 2010; 6
JR Lamb (BFng2248_CR18) 2011; 6
L Hertzberg (BFng2248_CR12) 2007; 46
EE Schadt (BFng2248_CR8) 2008; 6
M Barnes (BFng2248_CR17) 2005; 33
IM Heid (BFng2248_CR21) 2010; 42
J Couzin-Frankel (BFng2248_CR30) 2010; 328
LO Baumbusch (BFng2248_CR16) 2008; 9
BFng2248_CR13
EE Schadt (BFng2248_CR9) 2003; 422
12646919 - Nature. 2003 Mar 20;422(6929):297-302
20463879 - PLoS Genet. 2010 May 06;6(5):e1000932
20084173 - PLoS One. 2010 Jan 13;5(1):e8695
21602305 - Genome Res. 2011 Jul;21(7):1008-16
18344981 - Nature. 2008 Mar 27;452(7186):423-8
16237126 - Nucleic Acids Res. 2005 Oct 19;33(18):5914-23
18416601 - PLoS Biol. 2008 Apr 15;6(4):e83
20686566 - Nature. 2010 Aug 5;466(7307):714-9
14685227 - Nature. 2003 Dec 18;426(6968):789-96
19644074 - Science. 2009 Sep 4;325(5945):1246-50
18462017 - PLoS Biol. 2008 May 6;6(5):e107
20686565 - Nature. 2010 Aug 5;466(7307):707-13
20935629 - Nat Genet. 2010 Nov;42(11):949-60
20935630 - Nat Genet. 2010 Nov;42(11):937-48
20430983 - Science. 2010 Apr 30;328(5978):558
12118244 - Nat Med. 2002 Aug;8(8):816-24
18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90
20881960 - Nature. 2010 Oct 14;467(7317):832-8
18691401 - BMC Genomics. 2008 Aug 08;9:379
21194676 - Am J Hum Genet. 2011 Jan 7;88(1):6-18
17044051 - Genes Chromosomes Cancer. 2007 Jan;46(1):75-86
21750698 - PLoS One. 2011;6(7):e20090
18344982 - Nature. 2008 Mar 27;452(7186):429-35
17975138 - Clin Cancer Res. 2007 Nov 1;13(21):6275-83
20538623 - Genome Res. 2010 Aug;20(8):1020-36
17132828 - Nucleic Acids Res. 2007 Jan;35(Database issue):D747-50
14500831 - Nucleic Acids Res. 2003 Oct 1;31(19):5676-84
20346437 - Am J Hum Genet. 2010 Apr 9;86(4):581-91
18923165 - N Engl J Med. 2008 Nov 6;359(19):1995-2004
19270708 - Nat Genet. 2009 Apr;41(4):415-23
References_xml – volume: 452
  start-page: 429
  year: 2008
  end-page: 435
  ident: CR5
  article-title: Variations in DNA elucidate molecular networks that cause disease
  publication-title: Nature
  doi: 10.1038/nature06757
– volume: 37
  start-page: D885
  year: 2009
  end-page: D890
  ident: CR3
  article-title: NCBI GEO: archive for high-throughput functional genomic data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn764
– volume: 5
  start-page: e8695
  year: 2010
  ident: CR14
  article-title: Magnitude of stratification in human populations and impacts on genome wide association studies
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008695
– volume: 467
  start-page: 832
  year: 2010
  end-page: 838
  ident: CR22
  article-title: Hundreds of variants clustered in genomic loci and biological pathways affect human height
  publication-title: Nature
  doi: 10.1038/nature09410
– volume: 325
  start-page: 1246
  year: 2009
  end-page: 1250
  ident: CR6
  article-title: Common regulatory variation impacts gene expression in a cell type–dependent manner
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 466
  start-page: 707
  year: 2010
  end-page: 713
  ident: CR25
  article-title: Biological, clinical and population relevance of 95 loci for blood lipids
  publication-title: Nature
  doi: 10.1038/nature09270
– volume: 6
  start-page: e107
  year: 2008
  ident: CR8
  article-title: Mapping the genetic architecture of gene expression in human liver
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060107
– volume: 452
  start-page: 423
  year: 2008
  end-page: 428
  ident: CR20
  article-title: Genetics of gene expression and its effect on disease
  publication-title: Nature
  doi: 10.1038/nature06758
– volume: 8
  start-page: 816
  year: 2002
  end-page: 824
  ident: CR1
  article-title: Gene-expression profiles predict survival of patients with lung adenocarcinoma
  publication-title: Nat. Med.
  doi: 10.1038/nm733
– volume: 41
  start-page: 415
  year: 2009
  end-page: 423
  ident: CR11
  article-title: Validation of candidate causal genes for obesity that affect shared metabolic pathways and networks
  publication-title: Nat. Genet.
  doi: 10.1038/ng.325
– volume: 20
  start-page: 1020
  year: 2010
  end-page: 1036
  ident: CR26
  article-title: Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver
  publication-title: Genome Res.
  doi: 10.1101/gr.103341.109
– volume: 9
  start-page: 379
  year: 2008
  ident: CR16
  article-title: Comparison of the Agilent, ROMA/NimbleGen and Illumina platforms for classification of copy number alterations in human breast tumors
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-379
– volume: 359
  start-page: 1995
  year: 2008
  end-page: 2004
  ident: CR2
  article-title: Gene expression in fixed tissues and outcome in hepatocellular carcinoma
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0804525
– volume: 42
  start-page: 937
  year: 2010
  end-page: 948
  ident: CR24
  article-title: Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index
  publication-title: Nat. Genet.
  doi: 10.1038/ng.686
– volume: 422
  start-page: 297
  year: 2003
  end-page: 302
  ident: CR9
  article-title: Genetics of gene expression surveyed in maize, mouse and man
  publication-title: Nature
  doi: 10.1038/nature01434
– volume: 33
  start-page: 5914
  year: 2005
  end-page: 5923
  ident: CR17
  article-title: Experimental comparison and cross-validation of the Affymetrix and Illumina gene expression analysis platforms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki890
– volume: 6
  start-page: e1000932
  year: 2010
  ident: CR27
  article-title: Liver and adipose expression associated SNPs are enriched for association to type 2 diabetes
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000932
– volume: 31
  start-page: 5676
  year: 2003
  end-page: 5684
  ident: CR15
  article-title: Evaluation of gene expression measurements from commercial microarray platforms
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg763
– volume: 46
  start-page: 75
  year: 2007
  end-page: 86
  ident: CR12
  article-title: Prediction of chromosomal aneuploidy from gene expression data
  publication-title: Genes Chromosom. Cancer
  doi: 10.1002/gcc.20391
– volume: 13
  start-page: 6275
  year: 2007
  end-page: 6283
  ident: CR19
  article-title: Identification and validation of a novel gene signature associated with the recurrence of human hepatocellular carcinoma
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2236
– volume: 42
  start-page: 949
  year: 2010
  end-page: 960
  ident: CR21
  article-title: Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution
  publication-title: Nat. Genet.
  doi: 10.1038/ng.685
– volume: 21
  start-page: 1008
  year: 2011
  end-page: 1016
  ident: CR7
  article-title: A survey of the genetics of stomach, liver, and adipose gene expression from a morbidly obese cohort
  publication-title: Genome Res.
  doi: 10.1101/gr.112821.110
– volume: 6
  start-page: e20090
  year: 2011
  ident: CR18
  article-title: Predictive genes in adjacent normal tissue are preferentially altered by sCNV during tumorigenesis in liver cancer and may rate limiting
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020090
– ident: CR13
– volume: 86
  start-page: 581
  year: 2010
  end-page: 591
  ident: CR28
  article-title: Integrating pathway analysis and genetics of gene expression for genome-wide association studies
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.02.020
– volume: 88
  start-page: 6
  year: 2011
  end-page: 18
  ident: CR29
  article-title: Meta-analysis of dense genecentric association studies reveals common and uncommon variants associated with height
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.007
– volume: 466
  start-page: 714
  year: 2010
  end-page: 719
  ident: CR23
  article-title: From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus
  publication-title: Nature
  doi: 10.1038/nature09266
– volume: 35
  start-page: D747
  year: 2007
  end-page: D750
  ident: CR4
  article-title: ArrayExpress—a public database of microarray experiments and gene expression profiles
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl995
– volume: 328
  start-page: 558
  year: 2010
  ident: CR30
  article-title: Ethics. DNA returned to tribe, raising questions about consent
  publication-title: Science
  doi: 10.1126/science.328.5978.558
– volume: 6
  start-page: e83
  year: 2008
  ident: CR10
  article-title: Gene-environment interaction in yeast gene expression
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060083
– volume: 42
  start-page: 937
  year: 2010
  ident: BFng2248_CR24
  publication-title: Nat. Genet.
  doi: 10.1038/ng.686
– volume: 42
  start-page: 949
  year: 2010
  ident: BFng2248_CR21
  publication-title: Nat. Genet.
  doi: 10.1038/ng.685
– volume: 86
  start-page: 581
  year: 2010
  ident: BFng2248_CR28
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.02.020
– volume: 467
  start-page: 832
  year: 2010
  ident: BFng2248_CR22
  publication-title: Nature
  doi: 10.1038/nature09410
– volume: 466
  start-page: 714
  year: 2010
  ident: BFng2248_CR23
  publication-title: Nature
  doi: 10.1038/nature09266
– volume: 452
  start-page: 423
  year: 2008
  ident: BFng2248_CR20
  publication-title: Nature
  doi: 10.1038/nature06758
– volume: 9
  start-page: 379
  year: 2008
  ident: BFng2248_CR16
  publication-title: BMC Genomics
  doi: 10.1186/1471-2164-9-379
– volume: 466
  start-page: 707
  year: 2010
  ident: BFng2248_CR25
  publication-title: Nature
  doi: 10.1038/nature09270
– volume: 31
  start-page: 5676
  year: 2003
  ident: BFng2248_CR15
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkg763
– volume: 359
  start-page: 1995
  year: 2008
  ident: BFng2248_CR2
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa0804525
– volume: 41
  start-page: 415
  year: 2009
  ident: BFng2248_CR11
  publication-title: Nat. Genet.
  doi: 10.1038/ng.325
– volume: 33
  start-page: 5914
  year: 2005
  ident: BFng2248_CR17
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gki890
– volume: 8
  start-page: 816
  year: 2002
  ident: BFng2248_CR1
  publication-title: Nat. Med.
  doi: 10.1038/nm733
– volume: 452
  start-page: 429
  year: 2008
  ident: BFng2248_CR5
  publication-title: Nature
  doi: 10.1038/nature06757
– volume: 35
  start-page: D747
  year: 2007
  ident: BFng2248_CR4
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkl995
– volume: 6
  start-page: e1000932
  year: 2010
  ident: BFng2248_CR27
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1000932
– volume: 6
  start-page: e20090
  year: 2011
  ident: BFng2248_CR18
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0020090
– volume: 46
  start-page: 75
  year: 2007
  ident: BFng2248_CR12
  publication-title: Genes Chromosom. Cancer
  doi: 10.1002/gcc.20391
– volume: 6
  start-page: e107
  year: 2008
  ident: BFng2248_CR8
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060107
– volume: 20
  start-page: 1020
  year: 2010
  ident: BFng2248_CR26
  publication-title: Genome Res.
  doi: 10.1101/gr.103341.109
– volume: 13
  start-page: 6275
  year: 2007
  ident: BFng2248_CR19
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-06-2236
– volume: 328
  start-page: 558
  year: 2010
  ident: BFng2248_CR30
  publication-title: Science
  doi: 10.1126/science.328.5978.558
– ident: BFng2248_CR13
  doi: 10.1038/nature02168
– volume: 422
  start-page: 297
  year: 2003
  ident: BFng2248_CR9
  publication-title: Nature
  doi: 10.1038/nature01434
– volume: 6
  start-page: e83
  year: 2008
  ident: BFng2248_CR10
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.0060083
– volume: 88
  start-page: 6
  year: 2011
  ident: BFng2248_CR29
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2010.11.007
– volume: 21
  start-page: 1008
  year: 2011
  ident: BFng2248_CR7
  publication-title: Genome Res.
  doi: 10.1101/gr.112821.110
– volume: 37
  start-page: D885
  year: 2009
  ident: BFng2248_CR3
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkn764
– volume: 325
  start-page: 1246
  year: 2009
  ident: BFng2248_CR6
  publication-title: Science
  doi: 10.1126/science.1174148
– volume: 5
  start-page: e8695
  year: 2010
  ident: BFng2248_CR14
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008695
– reference: 18923165 - N Engl J Med. 2008 Nov 6;359(19):1995-2004
– reference: 19270708 - Nat Genet. 2009 Apr;41(4):415-23
– reference: 20686565 - Nature. 2010 Aug 5;466(7307):707-13
– reference: 21602305 - Genome Res. 2011 Jul;21(7):1008-16
– reference: 17975138 - Clin Cancer Res. 2007 Nov 1;13(21):6275-83
– reference: 16237126 - Nucleic Acids Res. 2005 Oct 19;33(18):5914-23
– reference: 20686566 - Nature. 2010 Aug 5;466(7307):714-9
– reference: 20935630 - Nat Genet. 2010 Nov;42(11):937-48
– reference: 21750698 - PLoS One. 2011;6(7):e20090
– reference: 20463879 - PLoS Genet. 2010 May 06;6(5):e1000932
– reference: 20538623 - Genome Res. 2010 Aug;20(8):1020-36
– reference: 14685227 - Nature. 2003 Dec 18;426(6968):789-96
– reference: 18940857 - Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90
– reference: 20430983 - Science. 2010 Apr 30;328(5978):558
– reference: 18344981 - Nature. 2008 Mar 27;452(7186):423-8
– reference: 18344982 - Nature. 2008 Mar 27;452(7186):429-35
– reference: 19644074 - Science. 2009 Sep 4;325(5945):1246-50
– reference: 12118244 - Nat Med. 2002 Aug;8(8):816-24
– reference: 20084173 - PLoS One. 2010 Jan 13;5(1):e8695
– reference: 21194676 - Am J Hum Genet. 2011 Jan 7;88(1):6-18
– reference: 17132828 - Nucleic Acids Res. 2007 Jan;35(Database issue):D747-50
– reference: 18691401 - BMC Genomics. 2008 Aug 08;9:379
– reference: 18462017 - PLoS Biol. 2008 May 6;6(5):e107
– reference: 20346437 - Am J Hum Genet. 2010 Apr 9;86(4):581-91
– reference: 17044051 - Genes Chromosomes Cancer. 2007 Jan;46(1):75-86
– reference: 14500831 - Nucleic Acids Res. 2003 Oct 1;31(19):5676-84
– reference: 12646919 - Nature. 2003 Mar 20;422(6929):297-302
– reference: 20881960 - Nature. 2010 Oct 14;467(7317):832-8
– reference: 20935629 - Nat Genet. 2010 Nov;42(11):949-60
– reference: 18416601 - PLoS Biol. 2008 Apr 15;6(4):e83
SSID ssj0014408
Score 2.4206152
Snippet Eric Schadt and colleagues report a Bayesian method to predict individual SNP genotypes based on RNA expression data. Using simulations and empirical data...
RNA profiling can be used to capture the expression patterns of many genes that are associated with expression quantitative trait loci (eQTLs). Employing...
SourceID proquest
gale
pubmed
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 603
SubjectTerms 631/1647/2017
631/208/199
631/208/729/743
631/553/2714
Adipose Tissue - metabolism
Agriculture
Animal Genetics and Genomics
Bayes Theorem
Bayesian statistical decision theory
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cohort Studies
Computer Simulation
Deoxyribonucleic acid
DNA
Fundamental and applied biological sciences. Psychology
Gene expression
Gene Expression Profiling
Gene Function
Gene mapping
Genealogy
Genetics
Genetics of eukaryotes. Biological and molecular evolution
Genotype
Genotype & phenotype
Genotypes
Human Genetics
Humans
Identification and classification
Liver - metabolism
Methods
Polymorphism, Single Nucleotide - genetics
Privacy
Proteins
Quantitative Trait Loci
Single nucleotide polymorphisms
Studies
technical-report
Title Bayesian method to predict individual SNP genotypes from gene expression data
URI https://link.springer.com/article/10.1038/ng.2248
https://www.ncbi.nlm.nih.gov/pubmed/22484626
https://www.proquest.com/docview/1021186395
https://www.proquest.com/docview/1019617293
https://www.proquest.com/docview/1034816550
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1dT9sw0GKgPU1og210QGUmxJ4ymsR2nScECASTKAjG1DfLduxq0pR0JJXg3--uccMiPlQpUuVLdLmcz_d9hOwOdZzHzqXRwDIfMekHkRYmjSwXzhjthi7FQuGLkTi7ZT_GfBwcblVIq1zIxLmgzkuLPvJ9HEEdSzhP-cH0b4RTozC6GkZovCEr2LoMU7qG49bgwrhlUwon0E7CMOVqU2Yu94vJdzi8ZOc0CjL53VRXQB_fDLZ4TvN8EjWdH0an78lq0CLpYfPZP5AlV6yRt81cyYd1cnGkHxxWR9JmQDStSzq9w5BMTX-3FVj0ZnRFsUcrumErioUm-NdRdx-yYwuKCaQfye3pyc_jsyjMTYgsmCN1ZAwSIxGc-ZhLLWIHJjDTTmfcxtZ5pvM4ybkzuc_yRFjtMwwmDqTmguEUsk9kuSgLt0EoKE_CeAMr0rJMWgnq4xAMTwe_PNOyR_YW9FM2NBXH2RZ_1Dy4nUpVTBQSukdoCzht-mg8BfmKH0BhV4oC014melZV6vzylzpMpMxAkgz4S0A31x2gbwHIl4CN1aHUAN4Ju111ILc6kLC3bGe532GGFvWEwynCWQr3L7hDhc1fqUdW7ZGddhkfjQlthStnCAOiD5THLH0NBqukBdiQPfK54bxHBIBgDIxRuHvBiv8j0CHsl9eR3ERfBTqVMItziyzXdzO3DZpWbfrz7QRXeRz3ycrRyejq-h-gvCf3
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3ZbtNAcFRSIZBQxU2glAVxPJnG9u5m_YBQC60S2oSqB-rbsl6vIyRkhzoR5Kf4Rmbio1iFvlV-snZsjWdn5_BcAC_7xk9850KvZ3nqcZX2PCPj0LNCujg2ru9CKhQejeXghH86Facr8LuuhaG0ylomLgV1klv6R75JI6h9hfpUvJ_-8GhqFEVX6xEaJVvsucVPdNmKd8OPuL-vgmB35_jDwKumCngWjfWZF8fU5SyQgqe-UEb6Dh1EbpyJhPWtS7lJ_CARLk7SKAmkNWlEobaeMkJymtGF770GqzxEV6YDq9s744PDJm5B85uX8VVJnhkFRtfKwna1mU3eorpULf1XaYFbU1PgjqTlKI1_2boX4rRL9bd7G9Yqu5VtlYx2B1Zcdheul5MsF_dgtG0WjuoxWTmSms1yNj2jINCMfWtqvtjR-IBRV1j68VswKm2hW8fcryofN2OUsnofTq6Epg-gk-WZewQMzTUZpzGuKMsjZRUarH10dR1eSWRUF17X9NO2amNO0zS-62U4PVQ6m2gidBdYAzgtO3dcBHlBG6CpD0ZGiTYTMy8KPfz8RW8FSkUou3rif0BHhy2gNxVQmiM21lTFDfhN1F-rBbnegsTTbFvLGy1maFAPBOotwUN8vuYOXYmbQp8fji48b5bp1ZRCl7l8TjAobNFcjcLLYKguW6LX2oWHJeedI4AE4-j-4tM1K_6NQIuwjy9H8hncGByP9vX-cLz3BG6iDRqUOaTr0Jmdzd1TtPNm8UZ1uBh8verz_AeI4GOj
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3bbtMw1BpDICQ0cacwhkFcnkKbxHacB4QGo1oZKxPbUN-M49gVEkrKkgr6a3wd59RJRzTY25SnyCeRc3yuOTdCniU6zENr42BgmAuYdINAiywODBc2y7RNbIyFwvtjsXvMPkz4ZI38bmthMK2ylYlLQZ2XBv-R93EEdShBn_K-a9IiDnaGb2Y_ApwghZHWdpyGJ5E9u_gJ7lv1erQDZ_08iobvj97tBs2EgcCA4V4HWYYdzyLBmQu51CK04CwybXXKTWisYzoPo5zbLHdpHgmjXYpht4HUXDCc1wXvvUQuJzEPkceSycrZw5ipL8MT6KNhiHTDl7jLfjF9BYpTdjRhow-uz3QFZ-P8UI1_Wb1nIrZLRTi8QTYaC5Zue5K7SdZscYtc8TMtF7fJ_lu9sFiZSf1walqXdHaC4aCafltVf9HD8QHF_rD4C7iiWOSCt5baX01mbkExefUOOb4QjN4l60VZ2PuEguEmMpfBijQslUaC6ZqA02vhylMte-RFiz9lmobmOFfju1oG1mOpiqlCRPcIXQHOfA-PsyBP8QAUdsQokLamel5VavTpi9qOpExBig34_4AOP3eAXjZAroTdGN2UOcA3YaetDuRmBxL42nSWtzrEsNp6xEGDcRbD8y11qEbwVOqUTXrkyWoZX43JdIUt5wgDYhcM1zQ-DwYrtAX4rz1yz1Pe6QYAYQwcYXi6JcW_N9BB7IPzN_mYXAUuVh9H472H5BoYo5FPJt0k6_XJ3D4Cg6_OtpacRcnXi2blPzfSZnM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+method+to+predict+individual+SNP+genotypes+from+gene+expression+data&rft.jtitle=Nature+genetics&rft.au=SCHADT%2C+Eric+E&rft.au=WOO%2C+Sangsoon&rft.au=KE+HAO&rft.date=2012-05-01&rft.pub=Nature+Publishing+Group&rft.issn=1061-4036&rft.volume=44&rft.issue=5&rft.spage=603&rft.epage=608&rft_id=info:doi/10.1038%2Fng.2248&rft.externalDBID=n%2Fa&rft.externalDocID=25876543
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1061-4036&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1061-4036&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1061-4036&client=summon