Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity...

Full description

Saved in:
Bibliographic Details
Published inSignal transduction and targeted therapy Vol. 5; no. 1; pp. 299 - 13
Main Authors Zheng, Yi, Zhuang, Meng-Wei, Han, Lulu, Zhang, Jing, Nan, Mei-Ling, Zhan, Peng, Kang, Dongwei, Liu, Xinyong, Gao, Chengjiang, Wang, Pei-Hui
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.12.2020
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.
AbstractList Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.
Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.
ArticleNumber 299
Author Han, Lulu
Zhang, Jing
Zhan, Peng
Wang, Pei-Hui
Zheng, Yi
Kang, Dongwei
Nan, Mei-Ling
Liu, Xinyong
Zhuang, Meng-Wei
Gao, Chengjiang
Author_xml – sequence: 1
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
  organization: Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University
– sequence: 2
  givenname: Meng-Wei
  surname: Zhuang
  fullname: Zhuang, Meng-Wei
  organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University
– sequence: 3
  givenname: Lulu
  surname: Han
  fullname: Han, Lulu
  organization: Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University
– sequence: 4
  givenname: Jing
  surname: Zhang
  fullname: Zhang, Jing
  organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University
– sequence: 5
  givenname: Mei-Ling
  surname: Nan
  fullname: Nan, Mei-Ling
  organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University
– sequence: 6
  givenname: Peng
  surname: Zhan
  fullname: Zhan, Peng
  organization: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China–Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province
– sequence: 7
  givenname: Dongwei
  orcidid: 0000-0001-9232-953X
  surname: Kang
  fullname: Kang, Dongwei
  organization: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China–Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province
– sequence: 8
  givenname: Xinyong
  surname: Liu
  fullname: Liu, Xinyong
  organization: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China–Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province
– sequence: 9
  givenname: Chengjiang
  surname: Gao
  fullname: Gao, Chengjiang
  email: cgao@sdu.edu.cn
  organization: Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University
– sequence: 10
  givenname: Pei-Hui
  orcidid: 0000-0001-6853-2423
  surname: Wang
  fullname: Wang, Pei-Hui
  email: pei-hui.wang@connect.hku.hk
  organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Suzhou Research Institute, Shandong University, Shandong University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33372174$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1P3DAUjCqqQil_oIfKUi_LIcWfcXKptKItjQSqBG2vluO8LF5l7cV2kPbv9JfWy1IKHDj56Xlm3vh53hZ7zjsoivcEfyKY1SeRE9bQElNcYsxZXcpXxQHFoilZxcTeo3q_OIpxiTEmFZNS8DfFPmNMUiL5QfHnCm4hANJmSoACxLUNOvmwQXHj-uBXgIwP3ulbG6aIKJpdzS-vylP_u6THaAWrLmgHaHZxjNbBJ7AOWXdtO5siSps1oBZp16O2bXM_QRggi22h_WSSzWW3QUmHBSTrFuiyPSvbk4sv81KgaBdOj7n7rng96DHC0f15WPz69vXn6ffy_MdZezo_L02Fq1R2UhKtcVMBDIT2mNFG9pWQoutJJRnnhvAaKNN4MFJowipjRNcJUeHOCM3ZYdHudHuvl2od7EqHjfLaqruGDwulQ7JmBEVq0lCjhcGacQyDJrQZel4B5oRIEFnr805rPXUr6A24FPT4RPTpjbPXauFvlZRVTbPdw2J2LxD8zQQxqZWNBsYxb9tPUVEumeRVTba-Pz6DLv0U8u52KIYpk01GfXjs6MHKvyhkAN0BTPAxBhgeIASrbeTULnIqR07dRU5tbdbPSMYmvf3Y_Co7vkxlO2rMc9wCwn_bL7D-Ap2p6Zc
CitedBy_id crossref_primary_10_1038_s12276_021_00602_1
crossref_primary_10_1080_22221751_2024_2341144
crossref_primary_10_1371_journal_ppat_1011792
crossref_primary_10_1016_j_lfs_2022_120624
crossref_primary_10_1038_s41392_022_01223_4
crossref_primary_10_1111_febs_15961
crossref_primary_10_1038_s41392_021_00575_7
crossref_primary_10_3389_fimmu_2021_637152
crossref_primary_10_1016_j_ijbiomac_2024_129523
crossref_primary_10_3389_fimmu_2023_1156758
crossref_primary_10_3389_fbioe_2023_1124100
crossref_primary_10_1007_s12275_022_1502_8
crossref_primary_10_3390_v13061115
crossref_primary_10_1007_s12275_022_1525_1
crossref_primary_10_1038_s41467_024_54762_5
crossref_primary_10_1128_jvi_00003_24
crossref_primary_10_3390_microorganisms10030501
crossref_primary_10_1128_mbio_00971_22
crossref_primary_10_1186_s13567_024_01299_6
crossref_primary_10_1136_bmjopen_2022_060775
crossref_primary_10_1007_s00018_023_04808_6
crossref_primary_10_2147_IJN_S341890
crossref_primary_10_1007_s00441_024_03900_y
crossref_primary_10_1128_spectrum_00182_22
crossref_primary_10_1089_jir_2021_0060
crossref_primary_10_3390_ph15091053
crossref_primary_10_1080_22221751_2021_1898291
crossref_primary_10_3389_fmicb_2021_682603
crossref_primary_10_1002_jmr_70002
crossref_primary_10_1016_j_jconrel_2022_01_046
crossref_primary_10_1016_j_chembiol_2021_10_008
crossref_primary_10_1183_23120541_00605_2022
crossref_primary_10_4049_jimmunol_2100684
crossref_primary_10_3389_fcimb_2022_998748
crossref_primary_10_3390_pathogens11050538
crossref_primary_10_1038_s41392_024_01753_z
crossref_primary_10_1016_j_coviro_2021_11_015
crossref_primary_10_1080_14737175_2024_2440543
crossref_primary_10_3390_v15020352
crossref_primary_10_1016_j_biopha_2022_113368
crossref_primary_10_3390_v15040864
crossref_primary_10_1007_s00018_025_05605_z
crossref_primary_10_4049_immunohorizons_2200010
crossref_primary_10_3389_fmicb_2022_858460
crossref_primary_10_3389_fimmu_2023_1130398
crossref_primary_10_1016_j_bbrc_2021_05_073
crossref_primary_10_3390_vaccines11061014
crossref_primary_10_3389_fimmu_2021_755512
crossref_primary_10_1089_ars_2021_0167
crossref_primary_10_3389_fcimb_2022_888582
crossref_primary_10_1002_jmv_70074
crossref_primary_10_1007_s00251_021_01228_3
crossref_primary_10_3389_fimmu_2021_657363
crossref_primary_10_3390_v14071349
crossref_primary_10_1016_j_patter_2021_100242
crossref_primary_10_1111_imm_13577
crossref_primary_10_3390_idr13010013
crossref_primary_10_1038_s41418_022_00928_x
crossref_primary_10_1128_jvi_00205_23
crossref_primary_10_3399_BJGPO_2023_0089
crossref_primary_10_1016_j_bbagrm_2023_194984
crossref_primary_10_1007_s10753_022_01734_w
crossref_primary_10_1096_fj_202201973RR
crossref_primary_10_3390_ijms222111483
crossref_primary_10_31083_j_fbl2810273
crossref_primary_10_3390_ijms23031716
crossref_primary_10_1016_j_crviro_2021_100013
crossref_primary_10_3389_fimmu_2021_767726
crossref_primary_10_3389_fimmu_2022_904686
crossref_primary_10_3389_fcimb_2022_849017
crossref_primary_10_1186_s12964_024_01949_4
crossref_primary_10_3389_fimmu_2021_693579
crossref_primary_10_1016_j_jbc_2023_104960
crossref_primary_10_1038_s41598_022_15930_z
crossref_primary_10_3389_fimmu_2022_937667
crossref_primary_10_1161_CIRCRESAHA_123_321878
crossref_primary_10_12677_acm_2024_1461844
crossref_primary_10_1080_14787210_2022_2078307
crossref_primary_10_1080_17460441_2023_2175812
crossref_primary_10_1080_22221751_2024_2372344
crossref_primary_10_1002_adtp_202100044
crossref_primary_10_3389_fimmu_2021_750969
crossref_primary_10_3389_fimmu_2023_1249607
crossref_primary_10_1016_j_isci_2023_108080
crossref_primary_10_1371_journal_pone_0314061
crossref_primary_10_1073_pnas_2202370119
crossref_primary_10_1038_s12276_021_00691_y
crossref_primary_10_1002_jmv_28561
crossref_primary_10_1002_jmv_28680
crossref_primary_10_1042_BST20221037
crossref_primary_10_3389_fimmu_2022_951614
crossref_primary_10_3390_cells10081995
crossref_primary_10_3389_fimmu_2021_780900
crossref_primary_10_1126_sciadv_abi6802
crossref_primary_10_1159_000543608
crossref_primary_10_1080_14787210_2024_2400548
crossref_primary_10_3389_frma_2021_683212
crossref_primary_10_3389_fimmu_2021_750279
crossref_primary_10_1038_s41467_022_35345_8
crossref_primary_10_1007_s10067_024_07265_z
crossref_primary_10_3390_ani14030448
crossref_primary_10_1002_mef2_29
crossref_primary_10_1016_j_chom_2021_05_004
crossref_primary_10_1016_j_ailsci_2021_100020
crossref_primary_10_1371_journal_ppat_1009753
crossref_primary_10_3390_pathogens12020243
crossref_primary_10_1002_iid3_70127
crossref_primary_10_3390_cimb45010003
crossref_primary_10_1016_j_molimm_2022_11_020
crossref_primary_10_3389_fimmu_2022_984448
crossref_primary_10_3390_jcm10235474
crossref_primary_10_1038_s41392_021_00800_3
crossref_primary_10_3389_fimmu_2023_1185233
crossref_primary_10_1038_s41598_022_10763_2
crossref_primary_10_3389_fcimb_2022_1041682
crossref_primary_10_1021_acs_jproteome_1c00783
crossref_primary_10_3748_wjg_v29_i13_1942
crossref_primary_10_3389_fimmu_2023_1302504
crossref_primary_10_1016_j_virusres_2023_199134
crossref_primary_10_1093_bib_bbad261
crossref_primary_10_1016_S2213_2600_21_00407_0
crossref_primary_10_1089_hs_2023_0008
crossref_primary_10_3390_ijms23158285
crossref_primary_10_1016_j_csbj_2021_04_001
crossref_primary_10_3390_v14051025
crossref_primary_10_21886_2219_8075_2022_13_4_45_52
crossref_primary_10_3389_fimmu_2021_633769
crossref_primary_10_3390_v14020189
crossref_primary_10_1093_infdis_jiad458
crossref_primary_10_3390_biom13091344
crossref_primary_10_1002_iid3_1020
crossref_primary_10_1016_j_jpha_2021_03_006
crossref_primary_10_1016_j_intimp_2022_108531
crossref_primary_10_1016_j_jnutbio_2021_108821
crossref_primary_10_3389_fimmu_2024_1332440
crossref_primary_10_1007_s11010_022_04593_z
crossref_primary_10_1016_j_bbadis_2021_166260
crossref_primary_10_1093_pnasnexus_pgad021
crossref_primary_10_3389_fimmu_2023_1290578
crossref_primary_10_1016_j_celrep_2024_115080
crossref_primary_10_1017_S0950268821001060
crossref_primary_10_3389_fmicb_2021_744348
crossref_primary_10_1002_jmv_28366
crossref_primary_10_1016_j_cellsig_2024_111387
crossref_primary_10_1007_s12264_023_01110_0
crossref_primary_10_1016_j_micres_2024_127659
crossref_primary_10_3389_fimmu_2021_662989
crossref_primary_10_3390_v13071359
crossref_primary_10_3389_fmicb_2022_934993
crossref_primary_10_3390_vaccines10101764
crossref_primary_10_1002_med_21845
crossref_primary_10_1080_22221751_2021_1922097
crossref_primary_10_15252_msb_202110387
crossref_primary_10_3390_v16020238
crossref_primary_10_1093_femsre_fuad042
crossref_primary_10_1186_s12985_023_01968_6
crossref_primary_10_1183_16000617_0197_2022
crossref_primary_10_1002_hep_31857
crossref_primary_10_3389_fimmu_2022_984553
crossref_primary_10_1016_j_smim_2021_101522
crossref_primary_10_3390_ijms24119353
crossref_primary_10_1186_s41479_023_00106_8
crossref_primary_10_1128_jvi_02049_24
crossref_primary_10_1007_s12035_024_04178_5
crossref_primary_10_3389_fimmu_2022_883159
crossref_primary_10_1186_s13578_023_01188_z
crossref_primary_10_1002_jmv_27965
crossref_primary_10_1111_imr_13114
crossref_primary_10_1128_jvi_00400_22
crossref_primary_10_1002_jmv_27050
crossref_primary_10_3390_v13020170
crossref_primary_10_1016_j_celrep_2024_114248
crossref_primary_10_3389_fcimb_2024_1353971
crossref_primary_10_1186_s12929_022_00811_4
crossref_primary_10_1016_j_ymthe_2022_02_014
crossref_primary_10_3390_ani15020149
crossref_primary_10_1038_s41392_022_00878_3
crossref_primary_10_1016_j_apsb_2023_02_010
crossref_primary_10_1007_s00011_022_01555_5
crossref_primary_10_3389_fcimb_2021_790422
crossref_primary_10_1016_j_jbc_2022_101677
crossref_primary_10_1038_s41390_023_02549_7
crossref_primary_10_3389_fimmu_2022_1010911
crossref_primary_10_3389_fimmu_2023_1129190
crossref_primary_10_1016_j_fsi_2024_110021
crossref_primary_10_1128_AAC_00083_21
crossref_primary_10_1016_j_vetmic_2021_109189
crossref_primary_10_1016_j_virusres_2024_199341
crossref_primary_10_1080_15548627_2023_2291939
crossref_primary_10_2147_JIR_S329697
crossref_primary_10_3389_fphar_2022_915565
crossref_primary_10_3390_v14030530
crossref_primary_10_1099_jgv_0_001918
crossref_primary_10_3390_v13102060
crossref_primary_10_1093_bioinformatics_btab147
crossref_primary_10_3390_microorganisms11030689
crossref_primary_10_1128_JVI_00747_21
crossref_primary_10_3390_biom11111550
crossref_primary_10_52396_JUSTC_2022_0020
crossref_primary_10_1016_j_fsi_2023_108685
crossref_primary_10_1016_j_apmt_2021_101256
crossref_primary_10_3389_fphar_2022_805344
crossref_primary_10_3390_biom12111680
crossref_primary_10_3389_fmicb_2021_805472
crossref_primary_10_1111_sji_13043
crossref_primary_10_7759_cureus_36258
crossref_primary_10_1002_JLB_4COVA0121_084RR
crossref_primary_10_3390_v14061247
crossref_primary_10_3389_fcimb_2021_766922
crossref_primary_10_3390_molecules28073020
crossref_primary_10_1371_journal_pone_0302818
Cites_doi 10.1128/JVI.00985-20
10.1016/j.cell.2020.04.035
10.1038/s41579-018-0118-9
10.1016/j.immuni.2019.03.025
10.1371/journal.pone.0008729
10.1186/s12915-016-0292-z
10.1038/cmi.2013.30
10.1016/j.coviro.2012.04.004
10.1016/j.celrep.2020.107863
10.1038/s41467-020-17665-9
10.1056/NEJMoa2001017
10.1128/JVI.00099-20
10.1038/s41586-020-2588-y
10.1128/JVI.01410-20
10.1016/j.antiviral.2013.05.016
10.1126/science.abc6027
10.1038/ni.3588
10.1186/s13063-020-04382-3
10.1002/jmv.25946
10.1016/j.cell.2020.04.026
10.15252/emmm.201606413
10.1016/j.immuni.2020.04.023
10.1002/jmv.26139
10.1016/j.cell.2020.04.011
10.1126/science.aaa2630
10.1038/cmi.2013.61
10.1016/j.chom.2020.05.008
10.1126/science.1232458
10.1038/ni.3641
10.1016/S0140-6736(20)31042-4
10.1016/j.antiviral.2020.104811
10.15252/embr.201439637
10.1093/nar/gky186
10.1016/j.tcb.2020.02.008
10.1126/science.abc3545
10.1038/emi.2016.33
10.1080/22221751.2020.1780953
10.1038/s41586-020-2012-7
10.1093/cid/ciaa453
10.1016/j.chom.2020.04.017
10.1074/jbc.M109.008227
10.1074/jbc.M608618200
10.1038/s41586-020-2008-3
10.15252/embr.201845737
10.1101/2020.04.11.20061473
10.1101/2020.08.16.252973
10.1101/2020.04.30.071357
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
COVID
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41392-020-00438-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Biological Science Database (ProQuest)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef

MEDLINE

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2059-3635
EndPage 13
ExternalDocumentID oai_doaj_org_article_18192ca5c0a340efa129fd46e04117e5
PMC7768267
33372174
10_1038_s41392_020_00438_7
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81901604; 31730026; 81525012; 81930039
  funderid: https://doi.org/10.13039/501100001809
– fundername: The COVID-19 emergency tackling research project of Shandong University (Grant No. 2020XGB03 to P.-H.W)
– fundername: The Fundamental Research Funds of Shandong University (21510078614099), the Fundamental Research Funds of Cheeloo College of Medicine (21510089393109) to Y.Z
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: SBK2020042706
  funderid: https://doi.org/10.13039/501100004608
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M642662
  funderid: https://doi.org/10.13039/501100002858
– fundername: The Key Research and Development Project of Shandong Province (2020SFXGFY08)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81525012
– fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation)
  grantid: SBK2020042706
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81901604
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 31730026
– fundername: China Postdoctoral Science Foundation
  grantid: 2018M642662
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81930039
– fundername: ;
– fundername: ;
  grantid: 2018M642662
– fundername: ;
  grantid: SBK2020042706
– fundername: ;
  grantid: 81901604; 31730026; 81525012; 81930039
GroupedDBID 0R~
3V.
5VS
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
M7P
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FE
8FH
8FK
AARCD
AZQEC
COVID
DWQXO
GNUQQ
H94
K9.
LK8
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-b771aa096eef12d03297d6575bd167344c148e23a0fc75a136cc5bb5560bc5a43
IEDL.DBID 7X7
ISSN 2059-3635
2095-9907
IngestDate Wed Aug 27 01:25:10 EDT 2025
Thu Aug 21 18:21:06 EDT 2025
Thu Jul 10 17:34:52 EDT 2025
Wed Aug 13 11:12:57 EDT 2025
Thu Apr 03 07:05:49 EDT 2025
Tue Jul 01 03:15:13 EDT 2025
Thu Apr 24 22:50:45 EDT 2025
Fri Feb 21 02:39:13 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-b771aa096eef12d03297d6575bd167344c148e23a0fc75a136cc5bb5560bc5a43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6853-2423
0000-0001-9232-953X
OpenAccessLink https://www.proquest.com/docview/2473302379?pq-origsite=%requestingapplication%
PMID 33372174
PQID 2473302379
PQPubID 2041911
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_18192ca5c0a340efa129fd46e04117e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768267
proquest_miscellaneous_2473746814
proquest_journals_2473302379
pubmed_primary_33372174
crossref_primary_10_1038_s41392_020_00438_7
crossref_citationtrail_10_1038_s41392_020_00438_7
springer_journals_10_1038_s41392_020_00438_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-12-28
PublicationDateYYYYMMDD 2020-12-28
PublicationDate_xml – month: 12
  year: 2020
  text: 2020-12-28
  day: 28
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Signal transduction and targeted therapy
PublicationTitleAbbrev Sig Transduct Target Ther
PublicationTitleAlternate Signal Transduct Target Ther
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References Cui, Li, Shi (CR4) 2019; 17
Tao, Yang, Zhou, Gong (CR40) 2020; 30
Totura, Baric (CR8) 2012; 2
Wang (CR46) 2013; 10
Hu (CR10) 2015; 16
CR39
Irvani (CR22) 2020; 21
Stanifer (CR28) 2020; 32
Sun (CR12) 2013; 339
Blanco-Melo (CR6) 2020; 181
Onoguchi (CR13) 2007; 282
CR31
Lokugamage (CR25) 2020; 94
Yuen (CR38) 2020; 9
Kim (CR5) 2020; 181
Hung (CR21) 2020; 395
Vanderheiden (CR26) 2020; 94
Liu (CR42) 2017; 18
Lei (CR16) 2020; 11
Ni (CR7) 2020; 52
Wang (CR47) 2018; 19
Lazear, Schoggins, Diamond (CR30) 2019; 50
Hadjadj (CR17) 2020; 369
Yoshikawa (CR15) 2010; 5
Zhuang (CR33) 2020; 92
O’Brien (CR27) 2020; 71
Siu (CR34) 2009; 284
Davidson (CR29) 2016; 8
Song (CR43) 2016; 17
Wang (CR36) 2020; 92
Siu (CR37) 2014; 11
Broggi (CR19) 2020; 369
Lui (CR35) 2016; 5
Liu (CR11) 2015; 347
Zhu (CR3) 2020; 382
Chang, Liu, Chang, Chang (CR14) 2020; 94
Pourcelot (CR41) 2016; 14
CR24
Wang (CR44) 2018; 46
Wu (CR1) 2020; 579
Ziegler (CR32) 2020; 181
Mantlo (CR23) 2020; 179
Zhou (CR2) 2020; 579
Zhou (CR18) 2020; 27
Park, Iwasaki (CR9) 2020; 27
Lucas (CR20) 2020; 584
Wang (CR45) 2013; 99
KL Siu (438_CR34) 2009; 284
E Mantlo (438_CR23) 2020; 179
B Wang (438_CR36) 2020; 92
PY Lui (438_CR35) 2016; 5
PH Wang (438_CR46) 2013; 10
N Zhu (438_CR3) 2020; 382
A Park (438_CR9) 2020; 27
CGK Ziegler (438_CR32) 2020; 181
P Zhou (438_CR2) 2020; 579
438_CR24
MW Zhuang (438_CR33) 2020; 92
KL Siu (438_CR37) 2014; 11
F Wu (438_CR1) 2020; 579
B Liu (438_CR42) 2017; 18
K Onoguchi (438_CR13) 2007; 282
X Lei (438_CR16) 2020; 11
S Liu (438_CR11) 2015; 347
L Ni (438_CR7) 2020; 52
L Sun (438_CR12) 2013; 339
Z Zhou (438_CR18) 2020; 27
ML Stanifer (438_CR28) 2020; 32
D Kim (438_CR5) 2020; 181
G Song (438_CR43) 2016; 17
J Cui (438_CR4) 2019; 17
J Hadjadj (438_CR17) 2020; 369
A Vanderheiden (438_CR26) 2020; 94
Y Tao (438_CR40) 2020; 30
YH Hu (438_CR10) 2015; 16
M Pourcelot (438_CR41) 2016; 14
PH Wang (438_CR44) 2018; 46
IF Hung (438_CR21) 2020; 395
KG Lokugamage (438_CR25) 2020; 94
HM Lazear (438_CR30) 2019; 50
SSN Irvani (438_CR22) 2020; 21
TR O’Brien (438_CR27) 2020; 71
PH Wang (438_CR47) 2018; 19
PH Wang (438_CR45) 2013; 99
CK Yuen (438_CR38) 2020; 9
A Broggi (438_CR19) 2020; 369
CY Chang (438_CR14) 2020; 94
438_CR31
D Blanco-Melo (438_CR6) 2020; 181
S Davidson (438_CR29) 2016; 8
C Lucas (438_CR20) 2020; 584
T Yoshikawa (438_CR15) 2010; 5
AL Totura (438_CR8) 2012; 2
438_CR39
References_xml – volume: 94
  start-page: e00985-20
  year: 2020
  ident: CR26
  article-title: Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures
  publication-title: J. Virol.
  doi: 10.1128/JVI.00985-20
– volume: 181
  start-page: 1016
  year: 2020
  end-page: 1035.e1019
  ident: CR32
  article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.035
– volume: 17
  start-page: 181
  year: 2019
  end-page: 192
  ident: CR4
  article-title: Origin and evolution of pathogenic coronaviruses
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0118-9
– volume: 50
  start-page: 907
  year: 2019
  end-page: 923
  ident: CR30
  article-title: Shared and distinct functions of Type I and Type III Interferons
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.025
– volume: 5
  start-page: e8729
  year: 2010
  ident: CR15
  article-title: Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008729
– volume: 14
  year: 2016
  ident: CR41
  article-title: The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing
  publication-title: BMC Biol.
  doi: 10.1186/s12915-016-0292-z
– volume: 10
  start-page: 423
  year: 2013
  end-page: 436
  ident: CR46
  article-title: The shrimp IKK-NF-kappaB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/cmi.2013.30
– volume: 2
  start-page: 264
  year: 2012
  end-page: 275
  ident: CR8
  article-title: SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2012.04.004
– volume: 32
  start-page: 107863
  year: 2020
  ident: CR28
  article-title: Critical role of Type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107863
– volume: 11
  year: 2020
  ident: CR16
  article-title: Activation and evasion of type I interferon responses by SARS-CoV-2
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17665-9
– ident: CR39
– volume: 382
  start-page: 727
  year: 2020
  end-page: 733
  ident: CR3
  article-title: A novel coronavirus from patients with pneumonia in China, 2019
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 94
  start-page: e00099-20
  year: 2020
  ident: CR14
  article-title: Middle East respiratory syndrome coronavirus nucleocapsid protein suppresses Type I and Type III interferon induction by targeting RIG-I signaling
  publication-title: J. Virol.
  doi: 10.1128/JVI.00099-20
– volume: 584
  start-page: 463
  year: 2020
  end-page: 469
  ident: CR20
  article-title: Longitudinal analyses reveal immunological misfiring in severe COVID-19
  publication-title: Nature
  doi: 10.1038/s41586-020-2588-y
– volume: 94
  start-page: e01410-20
  year: 2020
  ident: CR25
  article-title: Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV
  publication-title: J. Virol.
  doi: 10.1128/JVI.01410-20
– volume: 99
  start-page: 270
  year: 2013
  end-page: 280
  ident: CR45
  article-title: Nucleic acid-induced antiviral immunity in shrimp
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.05.016
– volume: 369
  start-page: 718
  year: 2020
  end-page: 724
  ident: CR17
  article-title: Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients
  publication-title: Science
  doi: 10.1126/science.abc6027
– volume: 17
  start-page: 1342
  year: 2016
  end-page: 1351
  ident: CR43
  article-title: E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3588
– volume: 21
  year: 2020
  ident: CR22
  article-title: Effectiveness of Interferon Beta 1a, compared to Interferon Beta 1b and the usual therapeutic regimen to treat adults with moderate to severe COVID-19: structured summary of a study protocol for a randomized controlled trial
  publication-title: Trials
  doi: 10.1186/s13063-020-04382-3
– volume: 92
  start-page: 1684
  year: 2020
  end-page: 1689
  ident: CR36
  article-title: Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25946
– volume: 181
  start-page: 1036
  year: 2020
  end-page: 1045.e1039
  ident: CR6
  article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 19
  start-page: e45737
  year: 2018
  ident: CR47
  article-title: Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16
  publication-title: EMBO Rep.
– volume: 8
  start-page: 1099
  year: 2016
  end-page: 1112
  ident: CR29
  article-title: IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201606413
– volume: 52
  start-page: 971
  year: 2020
  end-page: 977.e973
  ident: CR7
  article-title: Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.023
– volume: 92
  start-page: 2693
  year: 2020
  end-page: 2701
  ident: CR33
  article-title: Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26139
– volume: 181
  start-page: 914
  year: 2020
  end-page: 921.e910
  ident: CR5
  article-title: The architecture of SARS-CoV-2 transcriptome
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.011
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: CR11
  article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 11
  start-page: 141
  year: 2014
  end-page: 149
  ident: CR37
  article-title: Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/cmi.2013.61
– volume: 27
  start-page: 870
  year: 2020
  end-page: 878
  ident: CR9
  article-title: Type I and Type III Interferons—induction, signaling, evasion, and application to combat COVID-19
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.05.008
– volume: 339
  start-page: 786
  year: 2013
  end-page: 791
  ident: CR12
  article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 18
  start-page: 214
  year: 2017
  end-page: 224
  ident: CR42
  article-title: The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3641
– volume: 395
  start-page: 1695
  year: 2020
  end-page: 1704
  ident: CR21
  article-title: Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31042-4
– volume: 179
  start-page: 104811
  year: 2020
  ident: CR23
  article-title: Antiviral activities of type I interferons to SARS-CoV-2 infection
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2020.104811
– volume: 16
  start-page: 447
  year: 2015
  end-page: 455
  ident: CR10
  article-title: WDFY1 mediates TLR3/4 signaling by recruiting TRIF
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439637
– ident: CR31
– volume: 46
  start-page: 4054
  year: 2018
  end-page: 4071
  ident: CR44
  article-title: A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky186
– volume: 30
  start-page: 467
  year: 2020
  end-page: 477
  ident: CR40
  article-title: Golgi apparatus: an emerging platform for innate immunity
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.02.008
– volume: 369
  start-page: 706
  year: 2020
  end-page: 712
  ident: CR19
  article-title: Type III interferons disrupt the lung epithelial barrier upon viral recognition
  publication-title: Science
  doi: 10.1126/science.abc3545
– volume: 5
  year: 2016
  ident: CR35
  article-title: Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2016.33
– volume: 9
  start-page: 1418
  year: 2020
  end-page: 1428
  ident: CR38
  article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1780953
– volume: 579
  start-page: 270
  year: 2020
  end-page: 273
  ident: CR2
  article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 71
  start-page: 1410
  year: 2020
  end-page: 1412
  ident: CR27
  article-title: Weak induction of interferon expression by SARS-CoV-2 supports clinical trials of interferon lambda to treat early COVID-19
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa453
– volume: 27
  start-page: 883
  year: 2020
  end-page: 890.e882
  ident: CR18
  article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.017
– volume: 284
  start-page: 16202
  year: 2009
  end-page: 16209
  ident: CR34
  article-title: Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.008227
– ident: CR24
– volume: 282
  start-page: 7576
  year: 2007
  end-page: 7581
  ident: CR13
  article-title: Viral infections activate types I and III interferon genes through a common mechanism
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608618200
– volume: 579
  start-page: 265
  year: 2020
  end-page: 269
  ident: CR1
  article-title: A new coronavirus associated with human respiratory disease in China
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 5
  year: 2016
  ident: 438_CR35
  publication-title: Emerg. Microbes Infect.
  doi: 10.1038/emi.2016.33
– volume: 584
  start-page: 463
  year: 2020
  ident: 438_CR20
  publication-title: Nature
  doi: 10.1038/s41586-020-2588-y
– volume: 19
  start-page: e45737
  year: 2018
  ident: 438_CR47
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201845737
– volume: 16
  start-page: 447
  year: 2015
  ident: 438_CR10
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201439637
– volume: 46
  start-page: 4054
  year: 2018
  ident: 438_CR44
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky186
– volume: 27
  start-page: 883
  year: 2020
  ident: 438_CR18
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.04.017
– ident: 438_CR24
  doi: 10.1101/2020.04.11.20061473
– volume: 21
  year: 2020
  ident: 438_CR22
  publication-title: Trials
  doi: 10.1186/s13063-020-04382-3
– ident: 438_CR39
  doi: 10.1101/2020.08.16.252973
– volume: 9
  start-page: 1418
  year: 2020
  ident: 438_CR38
  publication-title: Emerg. Microbes Infect.
  doi: 10.1080/22221751.2020.1780953
– volume: 181
  start-page: 914
  year: 2020
  ident: 438_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.011
– volume: 347
  start-page: aaa2630
  year: 2015
  ident: 438_CR11
  publication-title: Science
  doi: 10.1126/science.aaa2630
– volume: 30
  start-page: 467
  year: 2020
  ident: 438_CR40
  publication-title: Trends Cell Biol.
  doi: 10.1016/j.tcb.2020.02.008
– volume: 17
  start-page: 181
  year: 2019
  ident: 438_CR4
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/s41579-018-0118-9
– volume: 382
  start-page: 727
  year: 2020
  ident: 438_CR3
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2001017
– volume: 579
  start-page: 265
  year: 2020
  ident: 438_CR1
  publication-title: Nature
  doi: 10.1038/s41586-020-2008-3
– volume: 369
  start-page: 706
  year: 2020
  ident: 438_CR19
  publication-title: Science
  doi: 10.1126/science.abc3545
– volume: 71
  start-page: 1410
  year: 2020
  ident: 438_CR27
  publication-title: Clin. Infect. Dis.
  doi: 10.1093/cid/ciaa453
– volume: 181
  start-page: 1016
  year: 2020
  ident: 438_CR32
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.035
– volume: 284
  start-page: 16202
  year: 2009
  ident: 438_CR34
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.008227
– volume: 339
  start-page: 786
  year: 2013
  ident: 438_CR12
  publication-title: Science
  doi: 10.1126/science.1232458
– volume: 14
  year: 2016
  ident: 438_CR41
  publication-title: BMC Biol.
  doi: 10.1186/s12915-016-0292-z
– volume: 92
  start-page: 1684
  year: 2020
  ident: 438_CR36
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25946
– volume: 11
  year: 2020
  ident: 438_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17665-9
– volume: 181
  start-page: 1036
  year: 2020
  ident: 438_CR6
  publication-title: Cell
  doi: 10.1016/j.cell.2020.04.026
– volume: 94
  start-page: e00099-20
  year: 2020
  ident: 438_CR14
  publication-title: J. Virol.
  doi: 10.1128/JVI.00099-20
– volume: 50
  start-page: 907
  year: 2019
  ident: 438_CR30
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.03.025
– volume: 282
  start-page: 7576
  year: 2007
  ident: 438_CR13
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M608618200
– volume: 179
  start-page: 104811
  year: 2020
  ident: 438_CR23
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2020.104811
– volume: 5
  start-page: e8729
  year: 2010
  ident: 438_CR15
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008729
– volume: 17
  start-page: 1342
  year: 2016
  ident: 438_CR43
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3588
– volume: 92
  start-page: 2693
  year: 2020
  ident: 438_CR33
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.26139
– volume: 52
  start-page: 971
  year: 2020
  ident: 438_CR7
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.04.023
– volume: 369
  start-page: 718
  year: 2020
  ident: 438_CR17
  publication-title: Science
  doi: 10.1126/science.abc6027
– volume: 18
  start-page: 214
  year: 2017
  ident: 438_CR42
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.3641
– volume: 27
  start-page: 870
  year: 2020
  ident: 438_CR9
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2020.05.008
– volume: 2
  start-page: 264
  year: 2012
  ident: 438_CR8
  publication-title: Curr. Opin. Virol.
  doi: 10.1016/j.coviro.2012.04.004
– volume: 395
  start-page: 1695
  year: 2020
  ident: 438_CR21
  publication-title: Lancet
  doi: 10.1016/S0140-6736(20)31042-4
– volume: 579
  start-page: 270
  year: 2020
  ident: 438_CR2
  publication-title: Nature
  doi: 10.1038/s41586-020-2012-7
– volume: 94
  start-page: e00985-20
  year: 2020
  ident: 438_CR26
  publication-title: J. Virol.
  doi: 10.1128/JVI.00985-20
– ident: 438_CR31
  doi: 10.1101/2020.04.30.071357
– volume: 94
  start-page: e01410-20
  year: 2020
  ident: 438_CR25
  publication-title: J. Virol.
  doi: 10.1128/JVI.01410-20
– volume: 99
  start-page: 270
  year: 2013
  ident: 438_CR45
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2013.05.016
– volume: 11
  start-page: 141
  year: 2014
  ident: 438_CR37
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/cmi.2013.61
– volume: 32
  start-page: 107863
  year: 2020
  ident: 438_CR28
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2020.107863
– volume: 10
  start-page: 423
  year: 2013
  ident: 438_CR46
  publication-title: Cell Mol. Immunol.
  doi: 10.1038/cmi.2013.30
– volume: 8
  start-page: 1099
  year: 2016
  ident: 438_CR29
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201606413
SSID ssj0001637754
ssib046561479
ssib044760960
ssib048695610
Score 2.5762284
Snippet Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more...
Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 299
SubjectTerms 631/250/255
631/250/262
Animals
Antiviral drugs
Cancer Research
Cell Biology
Chlorocebus aethiops
Coronaviruses
COVID-19
COVID-19 - genetics
COVID-19 - metabolism
DEAD Box Protein 58 - genetics
DEAD Box Protein 58 - metabolism
HEK293 Cells
HeLa Cells
Humans
Interferon Lambda
Interferon Type I - biosynthesis
Interferon Type I - genetics
Interferon-Induced Helicase, IFIH1 - genetics
Interferon-Induced Helicase, IFIH1 - metabolism
Interferons - biosynthesis
Interferons - genetics
Internal Medicine
Medicine
Medicine & Public Health
Oncology
Pathology
Proteins
Receptors, Immunologic
SARS-CoV-2 - genetics
SARS-CoV-2 - metabolism
Severe acute respiratory syndrome coronavirus 2
Signal Transduction
Vero Cells
Viral Matrix Proteins - genetics
Viral Matrix Proteins - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BggYJoVZgNY6dePe4FEqDtBy6FPUW-RU1UjeL9oHUv8MvZcbJbrs8L1xjJ3I8Y3s-z8w3jL0MQXq0Ww23StZceSm5EWbInRfW5qIugqME5_Gn4uRMfTzPz2-U-qKYsI4euJu4Q0GMXc7kLjVSpaE2eEDVXhUhVULoENlL8cy7Aabi7Uohidqtz5JJ5eBwgbs1BVpmlEitcJXrrZMoEvb_zsr8NVjyJ49pPIiO77I7vQUJo27k99it0N5nu6MW0fP0Cl5BjOmMl-W77PskoKoGMG61DDC_dqvDmqkAHFEYmG_NfLWADPYno9MJP5p94dkBTMMUsXQbYH98AJHQoWmhaS8a2ywXQJe3UIJpPZRlCcQ7Ma8Dfoy6-o6UFuwVdLHm-CtwWn7g5eH43YjnQHEjhlLhH7Cz4_efj054X5WBOwQ7S261FsYg8gmhFplPZTbUntw31otCS6UcIqyQSZPWTudGyMK5HOWOppV1uVHyIdtpZ214zEBZNECCsQ5xjQqpt8S-b52RJmTBK58wsZZQ5XrKcqqccVlF17kcVJ1UK5RqFaVa6YS93rzztSPs-GvvtyT4TU8i244PUAWrXgWrf6lgwvbWalP1O8CiypSWVJBJDxP2YtOMa5ccMii62arro1UxECphjzot24xESqkJLiZMb-nf1lC3W9rmIvKDa4SQWYH_9matqdfD-vNUPPkfU_GU3c5oiQnK-d9jO8v5KjxDq21pn8cF-gOtCD0r
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qBfFFtFUbrTKCSIuGZj-SvXs8T2sjnA89K30L-xUb8BK5D6H_jn-pO5vkjtMq-JqdDbOZmc3MzsxvCXnpHLfeb1WxFryMheU8VlQNY2Op1iktM2ewwXnyKTu7EB8v08sdwvpemFC0HyAtwzbdV4edLPxmi3WSDPughTdSeYvcRuh21OpxNt6cq2QcQd26_piED26YuvUPClD9N_mXf5ZJ_pYrDb-g0_vkXuc7wqjl9gHZcfUe2R_5hTSza3gFoZozHJPvkTuTLmm-T35OnddXB8qslg7mm9w69HAFYBDHQP2o5qsFMDiajs6n8bj5ErNjmLmZD6hrB0eTYwioDlUNVX1V6Wq5ADzBhRxUbSHPc0DwiXnp_MuQ1LbItKCvoS0496uC8_xDnJ9M3o3iFLB4RGE__ENycfr-8_gs7q5miI2PeJaxlpIq5cMf50rKbMLZUFrM4WhLM8mFMD7McoyrpDQyVZRnxqRe-N6_0iZVgj8iu3VTuwMCQnsvxCltfHAjXGI1QvBro7hyzFlhI0J7YRWmwy3H6zO-FSF_zgdFK-DCC7gIAi5kRF6v53xvUTv-Sf0WdWBNiYjb4UEz_1p0GlhQRI4zKjWJ4iJxpfKOUmlF5hJBqXRpRA57DSq6bWBRMCE53sokhxF5sR72BoxZGS-6ZtXSSJENqIjI41bh1pxwziXGjBGRW6q4xer2SF1dBZBw6eNIlvm1vemVdsPW3z_Fk_8jf0ruMrQrii3-h2R3OV-5Z95JW-rnwSp_AerRNgc
  priority: 102
  providerName: Springer Nature
Title Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling
URI https://link.springer.com/article/10.1038/s41392-020-00438-7
https://www.ncbi.nlm.nih.gov/pubmed/33372174
https://www.proquest.com/docview/2473302379
https://www.proquest.com/docview/2473746814
https://pubmed.ncbi.nlm.nih.gov/PMC7768267
https://doaj.org/article/18192ca5c0a340efa129fd46e04117e5
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZge-EFAeMSGJWRENoE0eLYidsn1JWOtVIn1DLUt8i3sEg0Hb0g7YUfwy_lHCdNVS57SZTEieyc4-Nz83cIee0ct6C3qlALnofCch4qpjqhsUzrhOWpM7jBeXSRnl-K4TSZ1g63ZZ1WuZGJXlDbuUEf-UksJMcCN7Lz_vp7iFWjMLpal9C4S_YRugxTuuS0WU6FkClq6M11irCX26iUaKedRn3wPpmUIyAc1qOLsIQhGI71PpuIt0-WIO8xVTPGrdgC5ITcWcs85P-_9NS_0y3_iLn6pezsAblf66C0WzHNQ3LHlY_IQbcE-3t2Q99QnxXq3e0H5NfEAbM7qsx65ehiG5inG6wDahAEQf0oFusljenRpDuehL35lzA-pjM3A2u8dPRodEw9JERR0qK8KnSxWlJ0_9IBVaWlg8GAInLFInfwMWxqK1hbqm9ola0OQ6HjwcdwcDL60A0TipknCjfTPyaXZ_3PvfOwrusQGjCXVqGWkikFlHEuZ7GNeNyRFgNA2rJUciEM2Ggu5irKjUwU46kxCXAOKGfaJErwJ2SvnJfuGaFCgwrjlDZgGQkXWY34_doorlzsrLABYRsKZaYGPcfaG98yH3zn7ayiagZUzTxVMxmQt8071xXkx62tT5HwTUuE6_Y35ouvWT37M4awc0YlJlJcRC5XoGXlVqQuEoxJlwTkcMM2WS1DltmW4wPyqnkMsx9DOkC6-bpqI0XaZiIgTysua3rCOZdocAZE7vDfTld3n5TFlUcYl2CEximM7d2GU7fd-v-veH77KF6QezFOHoZ4AIdkb7VYu5eg0a10y0_bFtnvdoeTIZxP-xefxnC3l_Za3ksCx9HP_m9H6Efw
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZK-gAvCChHoICRALWiq6zX3nXygFB6kaVNhNIW9W3xtTQS2ZQcoPwdfgC_kZk9EoWjb31M1lnZmfF4Ps_MN4S8dI5b8FuVpwVPPWE59xRTLc9YpnXI0sgZLHDu9qLOmfhwHp6vkV9VLQymVVY2MTfUdmTwjrwRCMmxwY1svbv85mHXKIyuVi00CrU4cvMfANkmb-N9kO-rIDg8ON3reGVXAc-Asz71tJRMKfDcnUtZYH0etKTF8IO2LJJcCAMIwQVc-amRoWI8MiaEeYNroE2oBIf33iDrggOUqZH13YPex36lwULICDHB4nOERJvLOJhoRq2Fw5LfAkUcKeiwA56PTRMBqpaVPT5vNiZwwmByaIDF3wIsk1w5PfMmA__yjP9O8Pwjypsfnod3yO3S66XtQk3vkjWX3SMb7QwQ_3BOX9M8DzW_4N8gP08cbC9HlZlNHR0vUwFoxa5ADdIuqO-D8WxCA7p10u6feHujT16wTYduCPg_c3Sru01zEopBRgfZxUAPphOKF840piqzNI5jilwZ49TBy3CoLYh0qZ7TIj8elkL78XsvbnT3215IMddFYfn-fXJ2LTJ_QGrZKHOPCBUanCantAEsJpxvNXYM0EZx5QJnha0TVkkoMSXNOnb7-Jrk4X7eTAqpJiDVJJdqIuvkzeI3lwXJyJWjd1Hwi5FIEJ5_MRp_SUp7kzAkujMqNL7iwnepAr8utSJyvmBMurBONiu1SUqrNUmWe6xOXiweg73BIBKIbjQrxkgRNZmok4eFli1mwjmXCHHrRK7o38pUV59kg4uc01wC7A0iWNtOpanLaf3_r3h89Sqek5ud0-5xchz3jp6QWwFuJIZsBJukNh3P3FPwJ6f6WbmJKfl83XbjN4XCf0Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIiFeEFAOQ4FFAtQKrHi9a2_ygFBoCDUlFWopypvZyzQScUoOUP4OP4Nfx4yvKBx962PijbWbuXdmviHkiXPcgt-qfC145gvLua-Y6vjGMq0jlsXOYIPz4DDePxHvhtFwg_yqe2GwrLLWiYWithODd-StUEiOA25kp5VVZREfev1XZ998nCCFmdZ6nEbJIgdu-QPCt9nLpAe0fhqG_Tcf9_b9asKAb8Bxn_taSqYUePHOZSy0AQ870mIqQlsWSy6EgWjBhVwFmZGRYjw2JoIzgJugTaQEh_deIpcljxjKmBw2plwIGWN00HyOEXJzlRET7bjTuC7FfVDMEYwOZ-EFOD4Rgtaqxyfg7dYMbA2WiYbYBi5AR8k1O1qMG_iXj_x3qecf-d7CjPavk2uV_0u7JcPeIBsuv0m2ujnE_uMlfUaLitTiqn-L_Dx2IGiOKrOYOzpdFQXQGmeBGgRgUN9H08WMhnTnuHt07O9NPvnhLh27sQZD7OjOYJcWcBSjnI7y05EezWcUr55pQlVuaZIkFFEzppmDl-FSW0LqUr2kZaU8HIUeJW_9pDXodf2IYtWLwkb-W-TkQih-m2zmk9zdJVRocJ-c0gaiMuECq3F2gDaKKxc6K6xHWE2h1FSA6zj342taJP55Oy2pmgJV04KqqfTI8-Y3ZyXcyLmrXyPhm5UIFV58MZl-SSvNkzKEvDMqMoHiInCZAg8vsyJ2gWBMusgj2zXbpJX-mqUrafPI4-YxaB5MJwHpJotyjRRxmwmP3Cm5rNkJ51xisOsRucZ_a1tdf5KPTgt0cwkBcBjD2V7UnLra1v__invnn-IRuQLaIn2fHB7cJ1dDlCOGsATbZHM-XbgH4FjO9cNCgin5fNEq4zd0IYIU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+acute+respiratory+syndrome+coronavirus+2+%28SARS-CoV-2%29+membrane+%28M%29+protein+inhibits+type+I+and+III+interferon+production+by+targeting+RIG-I%2FMDA-5+signaling&rft.jtitle=Signal+transduction+and+targeted+therapy&rft.au=Zheng%2C+Yi&rft.au=Meng-Wei%2C+Zhuang&rft.au=Han%2C+Lulu&rft.au=Zhang%2C+Jing&rft.date=2020-12-28&rft.pub=Nature+Publishing+Group&rft.issn=2095-9907&rft.eissn=2059-3635&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41392-020-00438-7&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-3635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-3635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-3635&client=summon