Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity...
Saved in:
Published in | Signal transduction and targeted therapy Vol. 5; no. 1; pp. 299 - 13 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.12.2020
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19. |
---|---|
AbstractList | Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19. Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19.Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5-MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19. Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more than 10 million individuals. A typical feature of COVID-19 is the suppression of type I and III interferon (IFN)-mediated antiviral immunity. However, the molecular mechanism by which SARS-CoV-2 evades antiviral immunity remains elusive. Here, we reported that the SARS-CoV-2 membrane (M) protein inhibits the production of type I and III IFNs induced by the cytosolic dsRNA-sensing pathway mediated by RIG-I/MDA-5–MAVS signaling. In addition, the SARS-CoV-2 M protein suppresses type I and III IFN induction stimulated by SeV infection or poly (I:C) transfection. Mechanistically, the SARS-CoV-2 M protein interacts with RIG-I, MAVS, and TBK1, thus preventing the formation of the multiprotein complex containing RIG-I, MAVS, TRAF3, and TBK1 and subsequently impeding the phosphorylation, nuclear translocation, and activation of IRF3. Consequently, ectopic expression of the SARS-CoV-2 M protein facilitates the replication of vesicular stomatitis virus. Taken together, these results indicate that the SARS-CoV-2 M protein antagonizes type I and III IFN production by targeting RIG-I/MDA-5 signaling, which subsequently attenuates antiviral immunity and enhances viral replication. This study provides insight into the interpretation of SARS-CoV-2-induced antiviral immune suppression and illuminates the pathogenic mechanism of COVID-19. |
ArticleNumber | 299 |
Author | Han, Lulu Zhang, Jing Zhan, Peng Wang, Pei-Hui Zheng, Yi Kang, Dongwei Nan, Mei-Ling Liu, Xinyong Zhuang, Meng-Wei Gao, Chengjiang |
Author_xml | – sequence: 1 givenname: Yi surname: Zheng fullname: Zheng, Yi organization: Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University – sequence: 2 givenname: Meng-Wei surname: Zhuang fullname: Zhuang, Meng-Wei organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University – sequence: 3 givenname: Lulu surname: Han fullname: Han, Lulu organization: Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University – sequence: 4 givenname: Jing surname: Zhang fullname: Zhang, Jing organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University – sequence: 5 givenname: Mei-Ling surname: Nan fullname: Nan, Mei-Ling organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University – sequence: 6 givenname: Peng surname: Zhan fullname: Zhan, Peng organization: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China–Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province – sequence: 7 givenname: Dongwei orcidid: 0000-0001-9232-953X surname: Kang fullname: Kang, Dongwei organization: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China–Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province – sequence: 8 givenname: Xinyong surname: Liu fullname: Liu, Xinyong organization: Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, China–Belgium Collaborative Research Center for Innovative Antiviral Drugs of Shandong Province – sequence: 9 givenname: Chengjiang surname: Gao fullname: Gao, Chengjiang email: cgao@sdu.edu.cn organization: Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University – sequence: 10 givenname: Pei-Hui orcidid: 0000-0001-6853-2423 surname: Wang fullname: Wang, Pei-Hui email: pei-hui.wang@connect.hku.hk organization: Key Laboratory for Experimental Teratology of Ministry of Education and Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Suzhou Research Institute, Shandong University, Shandong University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33372174$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1P3DAUjCqqQil_oIfKUi_LIcWfcXKptKItjQSqBG2vluO8LF5l7cV2kPbv9JfWy1IKHDj56Xlm3vh53hZ7zjsoivcEfyKY1SeRE9bQElNcYsxZXcpXxQHFoilZxcTeo3q_OIpxiTEmFZNS8DfFPmNMUiL5QfHnCm4hANJmSoACxLUNOvmwQXHj-uBXgIwP3ulbG6aIKJpdzS-vylP_u6THaAWrLmgHaHZxjNbBJ7AOWXdtO5siSps1oBZp16O2bXM_QRggi22h_WSSzWW3QUmHBSTrFuiyPSvbk4sv81KgaBdOj7n7rng96DHC0f15WPz69vXn6ffy_MdZezo_L02Fq1R2UhKtcVMBDIT2mNFG9pWQoutJJRnnhvAaKNN4MFJowipjRNcJUeHOCM3ZYdHudHuvl2od7EqHjfLaqruGDwulQ7JmBEVq0lCjhcGacQyDJrQZel4B5oRIEFnr805rPXUr6A24FPT4RPTpjbPXauFvlZRVTbPdw2J2LxD8zQQxqZWNBsYxb9tPUVEumeRVTba-Pz6DLv0U8u52KIYpk01GfXjs6MHKvyhkAN0BTPAxBhgeIASrbeTULnIqR07dRU5tbdbPSMYmvf3Y_Co7vkxlO2rMc9wCwn_bL7D-Ap2p6Zc |
CitedBy_id | crossref_primary_10_1038_s12276_021_00602_1 crossref_primary_10_1080_22221751_2024_2341144 crossref_primary_10_1371_journal_ppat_1011792 crossref_primary_10_1016_j_lfs_2022_120624 crossref_primary_10_1038_s41392_022_01223_4 crossref_primary_10_1111_febs_15961 crossref_primary_10_1038_s41392_021_00575_7 crossref_primary_10_3389_fimmu_2021_637152 crossref_primary_10_1016_j_ijbiomac_2024_129523 crossref_primary_10_3389_fimmu_2023_1156758 crossref_primary_10_3389_fbioe_2023_1124100 crossref_primary_10_1007_s12275_022_1502_8 crossref_primary_10_3390_v13061115 crossref_primary_10_1007_s12275_022_1525_1 crossref_primary_10_1038_s41467_024_54762_5 crossref_primary_10_1128_jvi_00003_24 crossref_primary_10_3390_microorganisms10030501 crossref_primary_10_1128_mbio_00971_22 crossref_primary_10_1186_s13567_024_01299_6 crossref_primary_10_1136_bmjopen_2022_060775 crossref_primary_10_1007_s00018_023_04808_6 crossref_primary_10_2147_IJN_S341890 crossref_primary_10_1007_s00441_024_03900_y crossref_primary_10_1128_spectrum_00182_22 crossref_primary_10_1089_jir_2021_0060 crossref_primary_10_3390_ph15091053 crossref_primary_10_1080_22221751_2021_1898291 crossref_primary_10_3389_fmicb_2021_682603 crossref_primary_10_1002_jmr_70002 crossref_primary_10_1016_j_jconrel_2022_01_046 crossref_primary_10_1016_j_chembiol_2021_10_008 crossref_primary_10_1183_23120541_00605_2022 crossref_primary_10_4049_jimmunol_2100684 crossref_primary_10_3389_fcimb_2022_998748 crossref_primary_10_3390_pathogens11050538 crossref_primary_10_1038_s41392_024_01753_z crossref_primary_10_1016_j_coviro_2021_11_015 crossref_primary_10_1080_14737175_2024_2440543 crossref_primary_10_3390_v15020352 crossref_primary_10_1016_j_biopha_2022_113368 crossref_primary_10_3390_v15040864 crossref_primary_10_1007_s00018_025_05605_z crossref_primary_10_4049_immunohorizons_2200010 crossref_primary_10_3389_fmicb_2022_858460 crossref_primary_10_3389_fimmu_2023_1130398 crossref_primary_10_1016_j_bbrc_2021_05_073 crossref_primary_10_3390_vaccines11061014 crossref_primary_10_3389_fimmu_2021_755512 crossref_primary_10_1089_ars_2021_0167 crossref_primary_10_3389_fcimb_2022_888582 crossref_primary_10_1002_jmv_70074 crossref_primary_10_1007_s00251_021_01228_3 crossref_primary_10_3389_fimmu_2021_657363 crossref_primary_10_3390_v14071349 crossref_primary_10_1016_j_patter_2021_100242 crossref_primary_10_1111_imm_13577 crossref_primary_10_3390_idr13010013 crossref_primary_10_1038_s41418_022_00928_x crossref_primary_10_1128_jvi_00205_23 crossref_primary_10_3399_BJGPO_2023_0089 crossref_primary_10_1016_j_bbagrm_2023_194984 crossref_primary_10_1007_s10753_022_01734_w crossref_primary_10_1096_fj_202201973RR crossref_primary_10_3390_ijms222111483 crossref_primary_10_31083_j_fbl2810273 crossref_primary_10_3390_ijms23031716 crossref_primary_10_1016_j_crviro_2021_100013 crossref_primary_10_3389_fimmu_2021_767726 crossref_primary_10_3389_fimmu_2022_904686 crossref_primary_10_3389_fcimb_2022_849017 crossref_primary_10_1186_s12964_024_01949_4 crossref_primary_10_3389_fimmu_2021_693579 crossref_primary_10_1016_j_jbc_2023_104960 crossref_primary_10_1038_s41598_022_15930_z crossref_primary_10_3389_fimmu_2022_937667 crossref_primary_10_1161_CIRCRESAHA_123_321878 crossref_primary_10_12677_acm_2024_1461844 crossref_primary_10_1080_14787210_2022_2078307 crossref_primary_10_1080_17460441_2023_2175812 crossref_primary_10_1080_22221751_2024_2372344 crossref_primary_10_1002_adtp_202100044 crossref_primary_10_3389_fimmu_2021_750969 crossref_primary_10_3389_fimmu_2023_1249607 crossref_primary_10_1016_j_isci_2023_108080 crossref_primary_10_1371_journal_pone_0314061 crossref_primary_10_1073_pnas_2202370119 crossref_primary_10_1038_s12276_021_00691_y crossref_primary_10_1002_jmv_28561 crossref_primary_10_1002_jmv_28680 crossref_primary_10_1042_BST20221037 crossref_primary_10_3389_fimmu_2022_951614 crossref_primary_10_3390_cells10081995 crossref_primary_10_3389_fimmu_2021_780900 crossref_primary_10_1126_sciadv_abi6802 crossref_primary_10_1159_000543608 crossref_primary_10_1080_14787210_2024_2400548 crossref_primary_10_3389_frma_2021_683212 crossref_primary_10_3389_fimmu_2021_750279 crossref_primary_10_1038_s41467_022_35345_8 crossref_primary_10_1007_s10067_024_07265_z crossref_primary_10_3390_ani14030448 crossref_primary_10_1002_mef2_29 crossref_primary_10_1016_j_chom_2021_05_004 crossref_primary_10_1016_j_ailsci_2021_100020 crossref_primary_10_1371_journal_ppat_1009753 crossref_primary_10_3390_pathogens12020243 crossref_primary_10_1002_iid3_70127 crossref_primary_10_3390_cimb45010003 crossref_primary_10_1016_j_molimm_2022_11_020 crossref_primary_10_3389_fimmu_2022_984448 crossref_primary_10_3390_jcm10235474 crossref_primary_10_1038_s41392_021_00800_3 crossref_primary_10_3389_fimmu_2023_1185233 crossref_primary_10_1038_s41598_022_10763_2 crossref_primary_10_3389_fcimb_2022_1041682 crossref_primary_10_1021_acs_jproteome_1c00783 crossref_primary_10_3748_wjg_v29_i13_1942 crossref_primary_10_3389_fimmu_2023_1302504 crossref_primary_10_1016_j_virusres_2023_199134 crossref_primary_10_1093_bib_bbad261 crossref_primary_10_1016_S2213_2600_21_00407_0 crossref_primary_10_1089_hs_2023_0008 crossref_primary_10_3390_ijms23158285 crossref_primary_10_1016_j_csbj_2021_04_001 crossref_primary_10_3390_v14051025 crossref_primary_10_21886_2219_8075_2022_13_4_45_52 crossref_primary_10_3389_fimmu_2021_633769 crossref_primary_10_3390_v14020189 crossref_primary_10_1093_infdis_jiad458 crossref_primary_10_3390_biom13091344 crossref_primary_10_1002_iid3_1020 crossref_primary_10_1016_j_jpha_2021_03_006 crossref_primary_10_1016_j_intimp_2022_108531 crossref_primary_10_1016_j_jnutbio_2021_108821 crossref_primary_10_3389_fimmu_2024_1332440 crossref_primary_10_1007_s11010_022_04593_z crossref_primary_10_1016_j_bbadis_2021_166260 crossref_primary_10_1093_pnasnexus_pgad021 crossref_primary_10_3389_fimmu_2023_1290578 crossref_primary_10_1016_j_celrep_2024_115080 crossref_primary_10_1017_S0950268821001060 crossref_primary_10_3389_fmicb_2021_744348 crossref_primary_10_1002_jmv_28366 crossref_primary_10_1016_j_cellsig_2024_111387 crossref_primary_10_1007_s12264_023_01110_0 crossref_primary_10_1016_j_micres_2024_127659 crossref_primary_10_3389_fimmu_2021_662989 crossref_primary_10_3390_v13071359 crossref_primary_10_3389_fmicb_2022_934993 crossref_primary_10_3390_vaccines10101764 crossref_primary_10_1002_med_21845 crossref_primary_10_1080_22221751_2021_1922097 crossref_primary_10_15252_msb_202110387 crossref_primary_10_3390_v16020238 crossref_primary_10_1093_femsre_fuad042 crossref_primary_10_1186_s12985_023_01968_6 crossref_primary_10_1183_16000617_0197_2022 crossref_primary_10_1002_hep_31857 crossref_primary_10_3389_fimmu_2022_984553 crossref_primary_10_1016_j_smim_2021_101522 crossref_primary_10_3390_ijms24119353 crossref_primary_10_1186_s41479_023_00106_8 crossref_primary_10_1128_jvi_02049_24 crossref_primary_10_1007_s12035_024_04178_5 crossref_primary_10_3389_fimmu_2022_883159 crossref_primary_10_1186_s13578_023_01188_z crossref_primary_10_1002_jmv_27965 crossref_primary_10_1111_imr_13114 crossref_primary_10_1128_jvi_00400_22 crossref_primary_10_1002_jmv_27050 crossref_primary_10_3390_v13020170 crossref_primary_10_1016_j_celrep_2024_114248 crossref_primary_10_3389_fcimb_2024_1353971 crossref_primary_10_1186_s12929_022_00811_4 crossref_primary_10_1016_j_ymthe_2022_02_014 crossref_primary_10_3390_ani15020149 crossref_primary_10_1038_s41392_022_00878_3 crossref_primary_10_1016_j_apsb_2023_02_010 crossref_primary_10_1007_s00011_022_01555_5 crossref_primary_10_3389_fcimb_2021_790422 crossref_primary_10_1016_j_jbc_2022_101677 crossref_primary_10_1038_s41390_023_02549_7 crossref_primary_10_3389_fimmu_2022_1010911 crossref_primary_10_3389_fimmu_2023_1129190 crossref_primary_10_1016_j_fsi_2024_110021 crossref_primary_10_1128_AAC_00083_21 crossref_primary_10_1016_j_vetmic_2021_109189 crossref_primary_10_1016_j_virusres_2024_199341 crossref_primary_10_1080_15548627_2023_2291939 crossref_primary_10_2147_JIR_S329697 crossref_primary_10_3389_fphar_2022_915565 crossref_primary_10_3390_v14030530 crossref_primary_10_1099_jgv_0_001918 crossref_primary_10_3390_v13102060 crossref_primary_10_1093_bioinformatics_btab147 crossref_primary_10_3390_microorganisms11030689 crossref_primary_10_1128_JVI_00747_21 crossref_primary_10_3390_biom11111550 crossref_primary_10_52396_JUSTC_2022_0020 crossref_primary_10_1016_j_fsi_2023_108685 crossref_primary_10_1016_j_apmt_2021_101256 crossref_primary_10_3389_fphar_2022_805344 crossref_primary_10_3390_biom12111680 crossref_primary_10_3389_fmicb_2021_805472 crossref_primary_10_1111_sji_13043 crossref_primary_10_7759_cureus_36258 crossref_primary_10_1002_JLB_4COVA0121_084RR crossref_primary_10_3390_v14061247 crossref_primary_10_3389_fcimb_2021_766922 crossref_primary_10_3390_molecules28073020 crossref_primary_10_1371_journal_pone_0302818 |
Cites_doi | 10.1128/JVI.00985-20 10.1016/j.cell.2020.04.035 10.1038/s41579-018-0118-9 10.1016/j.immuni.2019.03.025 10.1371/journal.pone.0008729 10.1186/s12915-016-0292-z 10.1038/cmi.2013.30 10.1016/j.coviro.2012.04.004 10.1016/j.celrep.2020.107863 10.1038/s41467-020-17665-9 10.1056/NEJMoa2001017 10.1128/JVI.00099-20 10.1038/s41586-020-2588-y 10.1128/JVI.01410-20 10.1016/j.antiviral.2013.05.016 10.1126/science.abc6027 10.1038/ni.3588 10.1186/s13063-020-04382-3 10.1002/jmv.25946 10.1016/j.cell.2020.04.026 10.15252/emmm.201606413 10.1016/j.immuni.2020.04.023 10.1002/jmv.26139 10.1016/j.cell.2020.04.011 10.1126/science.aaa2630 10.1038/cmi.2013.61 10.1016/j.chom.2020.05.008 10.1126/science.1232458 10.1038/ni.3641 10.1016/S0140-6736(20)31042-4 10.1016/j.antiviral.2020.104811 10.15252/embr.201439637 10.1093/nar/gky186 10.1016/j.tcb.2020.02.008 10.1126/science.abc3545 10.1038/emi.2016.33 10.1080/22221751.2020.1780953 10.1038/s41586-020-2012-7 10.1093/cid/ciaa453 10.1016/j.chom.2020.04.017 10.1074/jbc.M109.008227 10.1074/jbc.M608618200 10.1038/s41586-020-2008-3 10.15252/embr.201845737 10.1101/2020.04.11.20061473 10.1101/2020.08.16.252973 10.1101/2020.04.30.071357 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU COVID DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41392-020-00438-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Biological Science Database (ProQuest) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2059-3635 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_18192ca5c0a340efa129fd46e04117e5 PMC7768267 33372174 10_1038_s41392_020_00438_7 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81901604; 31730026; 81525012; 81930039 funderid: https://doi.org/10.13039/501100001809 – fundername: The COVID-19 emergency tackling research project of Shandong University (Grant No. 2020XGB03 to P.-H.W) – fundername: The Fundamental Research Funds of Shandong University (21510078614099), the Fundamental Research Funds of Cheeloo College of Medicine (21510089393109) to Y.Z – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: SBK2020042706 funderid: https://doi.org/10.13039/501100004608 – fundername: China Postdoctoral Science Foundation grantid: 2018M642662 funderid: https://doi.org/10.13039/501100002858 – fundername: The Key Research and Development Project of Shandong Province (2020SFXGFY08) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81525012 – fundername: Natural Science Foundation of Jiangsu Province (Jiangsu Provincial Natural Science Foundation) grantid: SBK2020042706 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81901604 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 31730026 – fundername: China Postdoctoral Science Foundation grantid: 2018M642662 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81930039 – fundername: ; – fundername: ; grantid: 2018M642662 – fundername: ; grantid: SBK2020042706 – fundername: ; grantid: 81901604; 31730026; 81525012; 81930039 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE M7P NAO OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7T5 7XB 8FE 8FH 8FK AARCD AZQEC COVID DWQXO GNUQQ H94 K9. LK8 PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-b771aa096eef12d03297d6575bd167344c148e23a0fc75a136cc5bb5560bc5a43 |
IEDL.DBID | 7X7 |
ISSN | 2059-3635 2095-9907 |
IngestDate | Wed Aug 27 01:25:10 EDT 2025 Thu Aug 21 18:21:06 EDT 2025 Thu Jul 10 17:34:52 EDT 2025 Wed Aug 13 11:12:57 EDT 2025 Thu Apr 03 07:05:49 EDT 2025 Tue Jul 01 03:15:13 EDT 2025 Thu Apr 24 22:50:45 EDT 2025 Fri Feb 21 02:39:13 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-b771aa096eef12d03297d6575bd167344c148e23a0fc75a136cc5bb5560bc5a43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6853-2423 0000-0001-9232-953X |
OpenAccessLink | https://www.proquest.com/docview/2473302379?pq-origsite=%requestingapplication% |
PMID | 33372174 |
PQID | 2473302379 |
PQPubID | 2041911 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_18192ca5c0a340efa129fd46e04117e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7768267 proquest_miscellaneous_2473746814 proquest_journals_2473302379 pubmed_primary_33372174 crossref_primary_10_1038_s41392_020_00438_7 crossref_citationtrail_10_1038_s41392_020_00438_7 springer_journals_10_1038_s41392_020_00438_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-12-28 |
PublicationDateYYYYMMDD | 2020-12-28 |
PublicationDate_xml | – month: 12 year: 2020 text: 2020-12-28 day: 28 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Signal transduction and targeted therapy |
PublicationTitleAbbrev | Sig Transduct Target Ther |
PublicationTitleAlternate | Signal Transduct Target Ther |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Cui, Li, Shi (CR4) 2019; 17 Tao, Yang, Zhou, Gong (CR40) 2020; 30 Totura, Baric (CR8) 2012; 2 Wang (CR46) 2013; 10 Hu (CR10) 2015; 16 CR39 Irvani (CR22) 2020; 21 Stanifer (CR28) 2020; 32 Sun (CR12) 2013; 339 Blanco-Melo (CR6) 2020; 181 Onoguchi (CR13) 2007; 282 CR31 Lokugamage (CR25) 2020; 94 Yuen (CR38) 2020; 9 Kim (CR5) 2020; 181 Hung (CR21) 2020; 395 Vanderheiden (CR26) 2020; 94 Liu (CR42) 2017; 18 Lei (CR16) 2020; 11 Ni (CR7) 2020; 52 Wang (CR47) 2018; 19 Lazear, Schoggins, Diamond (CR30) 2019; 50 Hadjadj (CR17) 2020; 369 Yoshikawa (CR15) 2010; 5 Zhuang (CR33) 2020; 92 O’Brien (CR27) 2020; 71 Siu (CR34) 2009; 284 Davidson (CR29) 2016; 8 Song (CR43) 2016; 17 Wang (CR36) 2020; 92 Siu (CR37) 2014; 11 Broggi (CR19) 2020; 369 Lui (CR35) 2016; 5 Liu (CR11) 2015; 347 Zhu (CR3) 2020; 382 Chang, Liu, Chang, Chang (CR14) 2020; 94 Pourcelot (CR41) 2016; 14 CR24 Wang (CR44) 2018; 46 Wu (CR1) 2020; 579 Ziegler (CR32) 2020; 181 Mantlo (CR23) 2020; 179 Zhou (CR2) 2020; 579 Zhou (CR18) 2020; 27 Park, Iwasaki (CR9) 2020; 27 Lucas (CR20) 2020; 584 Wang (CR45) 2013; 99 KL Siu (438_CR34) 2009; 284 E Mantlo (438_CR23) 2020; 179 B Wang (438_CR36) 2020; 92 PY Lui (438_CR35) 2016; 5 PH Wang (438_CR46) 2013; 10 N Zhu (438_CR3) 2020; 382 A Park (438_CR9) 2020; 27 CGK Ziegler (438_CR32) 2020; 181 P Zhou (438_CR2) 2020; 579 438_CR24 MW Zhuang (438_CR33) 2020; 92 KL Siu (438_CR37) 2014; 11 F Wu (438_CR1) 2020; 579 B Liu (438_CR42) 2017; 18 K Onoguchi (438_CR13) 2007; 282 X Lei (438_CR16) 2020; 11 S Liu (438_CR11) 2015; 347 L Ni (438_CR7) 2020; 52 L Sun (438_CR12) 2013; 339 Z Zhou (438_CR18) 2020; 27 ML Stanifer (438_CR28) 2020; 32 D Kim (438_CR5) 2020; 181 G Song (438_CR43) 2016; 17 J Cui (438_CR4) 2019; 17 J Hadjadj (438_CR17) 2020; 369 A Vanderheiden (438_CR26) 2020; 94 Y Tao (438_CR40) 2020; 30 YH Hu (438_CR10) 2015; 16 M Pourcelot (438_CR41) 2016; 14 PH Wang (438_CR44) 2018; 46 IF Hung (438_CR21) 2020; 395 KG Lokugamage (438_CR25) 2020; 94 HM Lazear (438_CR30) 2019; 50 SSN Irvani (438_CR22) 2020; 21 TR O’Brien (438_CR27) 2020; 71 PH Wang (438_CR47) 2018; 19 PH Wang (438_CR45) 2013; 99 CK Yuen (438_CR38) 2020; 9 A Broggi (438_CR19) 2020; 369 CY Chang (438_CR14) 2020; 94 438_CR31 D Blanco-Melo (438_CR6) 2020; 181 S Davidson (438_CR29) 2016; 8 C Lucas (438_CR20) 2020; 584 T Yoshikawa (438_CR15) 2010; 5 AL Totura (438_CR8) 2012; 2 438_CR39 |
References_xml | – volume: 94 start-page: e00985-20 year: 2020 ident: CR26 article-title: Type I and Type III Interferons Restrict SARS-CoV-2 Infection of Human Airway Epithelial Cultures publication-title: J. Virol. doi: 10.1128/JVI.00985-20 – volume: 181 start-page: 1016 year: 2020 end-page: 1035.e1019 ident: CR32 article-title: SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 17 start-page: 181 year: 2019 end-page: 192 ident: CR4 article-title: Origin and evolution of pathogenic coronaviruses publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0118-9 – volume: 50 start-page: 907 year: 2019 end-page: 923 ident: CR30 article-title: Shared and distinct functions of Type I and Type III Interferons publication-title: Immunity doi: 10.1016/j.immuni.2019.03.025 – volume: 5 start-page: e8729 year: 2010 ident: CR15 article-title: Dynamic innate immune responses of human bronchial epithelial cells to severe acute respiratory syndrome-associated coronavirus infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0008729 – volume: 14 year: 2016 ident: CR41 article-title: The Golgi apparatus acts as a platform for TBK1 activation after viral RNA sensing publication-title: BMC Biol. doi: 10.1186/s12915-016-0292-z – volume: 10 start-page: 423 year: 2013 end-page: 436 ident: CR46 article-title: The shrimp IKK-NF-kappaB signaling pathway regulates antimicrobial peptide expression and may be subverted by white spot syndrome virus to facilitate viral gene expression publication-title: Cell Mol. Immunol. doi: 10.1038/cmi.2013.30 – volume: 2 start-page: 264 year: 2012 end-page: 275 ident: CR8 article-title: SARS coronavirus pathogenesis: host innate immune responses and viral antagonism of interferon publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2012.04.004 – volume: 32 start-page: 107863 year: 2020 ident: CR28 article-title: Critical role of Type III interferon in controlling SARS-CoV-2 infection in human intestinal epithelial cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107863 – volume: 11 year: 2020 ident: CR16 article-title: Activation and evasion of type I interferon responses by SARS-CoV-2 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17665-9 – ident: CR39 – volume: 382 start-page: 727 year: 2020 end-page: 733 ident: CR3 article-title: A novel coronavirus from patients with pneumonia in China, 2019 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 94 start-page: e00099-20 year: 2020 ident: CR14 article-title: Middle East respiratory syndrome coronavirus nucleocapsid protein suppresses Type I and Type III interferon induction by targeting RIG-I signaling publication-title: J. Virol. doi: 10.1128/JVI.00099-20 – volume: 584 start-page: 463 year: 2020 end-page: 469 ident: CR20 article-title: Longitudinal analyses reveal immunological misfiring in severe COVID-19 publication-title: Nature doi: 10.1038/s41586-020-2588-y – volume: 94 start-page: e01410-20 year: 2020 ident: CR25 article-title: Type I Interferon Susceptibility Distinguishes SARS-CoV-2 from SARS-CoV publication-title: J. Virol. doi: 10.1128/JVI.01410-20 – volume: 99 start-page: 270 year: 2013 end-page: 280 ident: CR45 article-title: Nucleic acid-induced antiviral immunity in shrimp publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.05.016 – volume: 369 start-page: 718 year: 2020 end-page: 724 ident: CR17 article-title: Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients publication-title: Science doi: 10.1126/science.abc6027 – volume: 17 start-page: 1342 year: 2016 end-page: 1351 ident: CR43 article-title: E3 ubiquitin ligase RNF128 promotes innate antiviral immunity through K63-linked ubiquitination of TBK1 publication-title: Nat. Immunol. doi: 10.1038/ni.3588 – volume: 21 year: 2020 ident: CR22 article-title: Effectiveness of Interferon Beta 1a, compared to Interferon Beta 1b and the usual therapeutic regimen to treat adults with moderate to severe COVID-19: structured summary of a study protocol for a randomized controlled trial publication-title: Trials doi: 10.1186/s13063-020-04382-3 – volume: 92 start-page: 1684 year: 2020 end-page: 1689 ident: CR36 article-title: Long-term coexistence of SARS-CoV-2 with antibody response in COVID-19 patients publication-title: J. Med. Virol. doi: 10.1002/jmv.25946 – volume: 181 start-page: 1036 year: 2020 end-page: 1045.e1039 ident: CR6 article-title: Imbalanced host response to SARS-CoV-2 drives development of COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 19 start-page: e45737 year: 2018 ident: CR47 article-title: Inhibition of AIM2 inflammasome activation by a novel transcript isoform of IFI16 publication-title: EMBO Rep. – volume: 8 start-page: 1099 year: 2016 end-page: 1112 ident: CR29 article-title: IFNlambda is a potent anti-influenza therapeutic without the inflammatory side effects of IFNalpha treatment publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201606413 – volume: 52 start-page: 971 year: 2020 end-page: 977.e973 ident: CR7 article-title: Detection of SARS-CoV-2-specific humoral and cellular immunity in COVID-19 convalescent individuals publication-title: Immunity doi: 10.1016/j.immuni.2020.04.023 – volume: 92 start-page: 2693 year: 2020 end-page: 2701 ident: CR33 article-title: Increasing host cellular receptor-angiotensin-converting enzyme 2 expression by coronavirus may facilitate 2019-nCoV (or SARS-CoV-2) infection publication-title: J. Med. Virol. doi: 10.1002/jmv.26139 – volume: 181 start-page: 914 year: 2020 end-page: 921.e910 ident: CR5 article-title: The architecture of SARS-CoV-2 transcriptome publication-title: Cell doi: 10.1016/j.cell.2020.04.011 – volume: 347 start-page: aaa2630 year: 2015 ident: CR11 article-title: Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation publication-title: Science doi: 10.1126/science.aaa2630 – volume: 11 start-page: 141 year: 2014 end-page: 149 ident: CR37 article-title: Suppression of innate antiviral response by severe acute respiratory syndrome coronavirus M protein is mediated through the first transmembrane domain publication-title: Cell Mol. Immunol. doi: 10.1038/cmi.2013.61 – volume: 27 start-page: 870 year: 2020 end-page: 878 ident: CR9 article-title: Type I and Type III Interferons—induction, signaling, evasion, and application to combat COVID-19 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.05.008 – volume: 339 start-page: 786 year: 2013 end-page: 791 ident: CR12 article-title: Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway publication-title: Science doi: 10.1126/science.1232458 – volume: 18 start-page: 214 year: 2017 end-page: 224 ident: CR42 article-title: The ubiquitin E3 ligase TRIM31 promotes aggregation and activation of the signaling adaptor MAVS through Lys63-linked polyubiquitination publication-title: Nat. Immunol. doi: 10.1038/ni.3641 – volume: 395 start-page: 1695 year: 2020 end-page: 1704 ident: CR21 article-title: Triple combination of interferon beta-1b, lopinavir-ritonavir, and ribavirin in the treatment of patients admitted to hospital with COVID-19: an open-label, randomised, phase 2 trial publication-title: Lancet doi: 10.1016/S0140-6736(20)31042-4 – volume: 179 start-page: 104811 year: 2020 ident: CR23 article-title: Antiviral activities of type I interferons to SARS-CoV-2 infection publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2020.104811 – volume: 16 start-page: 447 year: 2015 end-page: 455 ident: CR10 article-title: WDFY1 mediates TLR3/4 signaling by recruiting TRIF publication-title: EMBO Rep. doi: 10.15252/embr.201439637 – ident: CR31 – volume: 46 start-page: 4054 year: 2018 end-page: 4071 ident: CR44 article-title: A novel transcript isoform of STING that sequesters cGAMP and dominantly inhibits innate nucleic acid sensing publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky186 – volume: 30 start-page: 467 year: 2020 end-page: 477 ident: CR40 article-title: Golgi apparatus: an emerging platform for innate immunity publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.02.008 – volume: 369 start-page: 706 year: 2020 end-page: 712 ident: CR19 article-title: Type III interferons disrupt the lung epithelial barrier upon viral recognition publication-title: Science doi: 10.1126/science.abc3545 – volume: 5 year: 2016 ident: CR35 article-title: Middle East respiratory syndrome coronavirus M protein suppresses type I interferon expression through the inhibition of TBK1-dependent phosphorylation of IRF3 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2016.33 – volume: 9 start-page: 1418 year: 2020 end-page: 1428 ident: CR38 article-title: SARS-CoV-2 nsp13, nsp14, nsp15 and orf6 function as potent interferon antagonists publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1780953 – volume: 579 start-page: 270 year: 2020 end-page: 273 ident: CR2 article-title: A pneumonia outbreak associated with a new coronavirus of probable bat origin publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 71 start-page: 1410 year: 2020 end-page: 1412 ident: CR27 article-title: Weak induction of interferon expression by SARS-CoV-2 supports clinical trials of interferon lambda to treat early COVID-19 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa453 – volume: 27 start-page: 883 year: 2020 end-page: 890.e882 ident: CR18 article-title: Heightened innate immune responses in the respiratory tract of COVID-19 patients publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.017 – volume: 284 start-page: 16202 year: 2009 end-page: 16209 ident: CR34 article-title: Severe acute respiratory syndrome coronavirus M protein inhibits type I interferon production by impeding the formation of TRAF3.TANK.TBK1/IKKepsilon complex publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.008227 – ident: CR24 – volume: 282 start-page: 7576 year: 2007 end-page: 7581 ident: CR13 article-title: Viral infections activate types I and III interferon genes through a common mechanism publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608618200 – volume: 579 start-page: 265 year: 2020 end-page: 269 ident: CR1 article-title: A new coronavirus associated with human respiratory disease in China publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 5 year: 2016 ident: 438_CR35 publication-title: Emerg. Microbes Infect. doi: 10.1038/emi.2016.33 – volume: 584 start-page: 463 year: 2020 ident: 438_CR20 publication-title: Nature doi: 10.1038/s41586-020-2588-y – volume: 19 start-page: e45737 year: 2018 ident: 438_CR47 publication-title: EMBO Rep. doi: 10.15252/embr.201845737 – volume: 16 start-page: 447 year: 2015 ident: 438_CR10 publication-title: EMBO Rep. doi: 10.15252/embr.201439637 – volume: 46 start-page: 4054 year: 2018 ident: 438_CR44 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gky186 – volume: 27 start-page: 883 year: 2020 ident: 438_CR18 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.04.017 – ident: 438_CR24 doi: 10.1101/2020.04.11.20061473 – volume: 21 year: 2020 ident: 438_CR22 publication-title: Trials doi: 10.1186/s13063-020-04382-3 – ident: 438_CR39 doi: 10.1101/2020.08.16.252973 – volume: 9 start-page: 1418 year: 2020 ident: 438_CR38 publication-title: Emerg. Microbes Infect. doi: 10.1080/22221751.2020.1780953 – volume: 181 start-page: 914 year: 2020 ident: 438_CR5 publication-title: Cell doi: 10.1016/j.cell.2020.04.011 – volume: 347 start-page: aaa2630 year: 2015 ident: 438_CR11 publication-title: Science doi: 10.1126/science.aaa2630 – volume: 30 start-page: 467 year: 2020 ident: 438_CR40 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2020.02.008 – volume: 17 start-page: 181 year: 2019 ident: 438_CR4 publication-title: Nat. Rev. Microbiol. doi: 10.1038/s41579-018-0118-9 – volume: 382 start-page: 727 year: 2020 ident: 438_CR3 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2001017 – volume: 579 start-page: 265 year: 2020 ident: 438_CR1 publication-title: Nature doi: 10.1038/s41586-020-2008-3 – volume: 369 start-page: 706 year: 2020 ident: 438_CR19 publication-title: Science doi: 10.1126/science.abc3545 – volume: 71 start-page: 1410 year: 2020 ident: 438_CR27 publication-title: Clin. Infect. Dis. doi: 10.1093/cid/ciaa453 – volume: 181 start-page: 1016 year: 2020 ident: 438_CR32 publication-title: Cell doi: 10.1016/j.cell.2020.04.035 – volume: 284 start-page: 16202 year: 2009 ident: 438_CR34 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.008227 – volume: 339 start-page: 786 year: 2013 ident: 438_CR12 publication-title: Science doi: 10.1126/science.1232458 – volume: 14 year: 2016 ident: 438_CR41 publication-title: BMC Biol. doi: 10.1186/s12915-016-0292-z – volume: 92 start-page: 1684 year: 2020 ident: 438_CR36 publication-title: J. Med. Virol. doi: 10.1002/jmv.25946 – volume: 11 year: 2020 ident: 438_CR16 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17665-9 – volume: 181 start-page: 1036 year: 2020 ident: 438_CR6 publication-title: Cell doi: 10.1016/j.cell.2020.04.026 – volume: 94 start-page: e00099-20 year: 2020 ident: 438_CR14 publication-title: J. Virol. doi: 10.1128/JVI.00099-20 – volume: 50 start-page: 907 year: 2019 ident: 438_CR30 publication-title: Immunity doi: 10.1016/j.immuni.2019.03.025 – volume: 282 start-page: 7576 year: 2007 ident: 438_CR13 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M608618200 – volume: 179 start-page: 104811 year: 2020 ident: 438_CR23 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2020.104811 – volume: 5 start-page: e8729 year: 2010 ident: 438_CR15 publication-title: PLoS ONE doi: 10.1371/journal.pone.0008729 – volume: 17 start-page: 1342 year: 2016 ident: 438_CR43 publication-title: Nat. Immunol. doi: 10.1038/ni.3588 – volume: 92 start-page: 2693 year: 2020 ident: 438_CR33 publication-title: J. Med. Virol. doi: 10.1002/jmv.26139 – volume: 52 start-page: 971 year: 2020 ident: 438_CR7 publication-title: Immunity doi: 10.1016/j.immuni.2020.04.023 – volume: 369 start-page: 718 year: 2020 ident: 438_CR17 publication-title: Science doi: 10.1126/science.abc6027 – volume: 18 start-page: 214 year: 2017 ident: 438_CR42 publication-title: Nat. Immunol. doi: 10.1038/ni.3641 – volume: 27 start-page: 870 year: 2020 ident: 438_CR9 publication-title: Cell Host Microbe doi: 10.1016/j.chom.2020.05.008 – volume: 2 start-page: 264 year: 2012 ident: 438_CR8 publication-title: Curr. Opin. Virol. doi: 10.1016/j.coviro.2012.04.004 – volume: 395 start-page: 1695 year: 2020 ident: 438_CR21 publication-title: Lancet doi: 10.1016/S0140-6736(20)31042-4 – volume: 579 start-page: 270 year: 2020 ident: 438_CR2 publication-title: Nature doi: 10.1038/s41586-020-2012-7 – volume: 94 start-page: e00985-20 year: 2020 ident: 438_CR26 publication-title: J. Virol. doi: 10.1128/JVI.00985-20 – ident: 438_CR31 doi: 10.1101/2020.04.30.071357 – volume: 94 start-page: e01410-20 year: 2020 ident: 438_CR25 publication-title: J. Virol. doi: 10.1128/JVI.01410-20 – volume: 99 start-page: 270 year: 2013 ident: 438_CR45 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2013.05.016 – volume: 11 start-page: 141 year: 2014 ident: 438_CR37 publication-title: Cell Mol. Immunol. doi: 10.1038/cmi.2013.61 – volume: 32 start-page: 107863 year: 2020 ident: 438_CR28 publication-title: Cell Rep. doi: 10.1016/j.celrep.2020.107863 – volume: 10 start-page: 423 year: 2013 ident: 438_CR46 publication-title: Cell Mol. Immunol. doi: 10.1038/cmi.2013.30 – volume: 8 start-page: 1099 year: 2016 ident: 438_CR29 publication-title: EMBO Mol. Med. doi: 10.15252/emmm.201606413 |
SSID | ssj0001637754 ssib046561479 ssib044760960 ssib048695610 |
Score | 2.5762284 |
Snippet | Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has affected more... Abstract Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has quickly spread worldwide and has... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 299 |
SubjectTerms | 631/250/255 631/250/262 Animals Antiviral drugs Cancer Research Cell Biology Chlorocebus aethiops Coronaviruses COVID-19 COVID-19 - genetics COVID-19 - metabolism DEAD Box Protein 58 - genetics DEAD Box Protein 58 - metabolism HEK293 Cells HeLa Cells Humans Interferon Lambda Interferon Type I - biosynthesis Interferon Type I - genetics Interferon-Induced Helicase, IFIH1 - genetics Interferon-Induced Helicase, IFIH1 - metabolism Interferons - biosynthesis Interferons - genetics Internal Medicine Medicine Medicine & Public Health Oncology Pathology Proteins Receptors, Immunologic SARS-CoV-2 - genetics SARS-CoV-2 - metabolism Severe acute respiratory syndrome coronavirus 2 Signal Transduction Vero Cells Viral Matrix Proteins - genetics Viral Matrix Proteins - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQUB6BggYJoVZgNY6dePe4FEqDtBy6FPUW-RU1UjeL9oHUv8MvZcbJbrs8L1xjJ3I8Y3s-z8w3jL0MQXq0Ww23StZceSm5EWbInRfW5qIugqME5_Gn4uRMfTzPz2-U-qKYsI4euJu4Q0GMXc7kLjVSpaE2eEDVXhUhVULoENlL8cy7Aabi7Uohidqtz5JJ5eBwgbs1BVpmlEitcJXrrZMoEvb_zsr8NVjyJ49pPIiO77I7vQUJo27k99it0N5nu6MW0fP0Cl5BjOmMl-W77PskoKoGMG61DDC_dqvDmqkAHFEYmG_NfLWADPYno9MJP5p94dkBTMMUsXQbYH98AJHQoWmhaS8a2ywXQJe3UIJpPZRlCcQ7Ma8Dfoy6-o6UFuwVdLHm-CtwWn7g5eH43YjnQHEjhlLhH7Cz4_efj054X5WBOwQ7S261FsYg8gmhFplPZTbUntw31otCS6UcIqyQSZPWTudGyMK5HOWOppV1uVHyIdtpZ214zEBZNECCsQ5xjQqpt8S-b52RJmTBK58wsZZQ5XrKcqqccVlF17kcVJ1UK5RqFaVa6YS93rzztSPs-GvvtyT4TU8i244PUAWrXgWrf6lgwvbWalP1O8CiypSWVJBJDxP2YtOMa5ccMii62arro1UxECphjzot24xESqkJLiZMb-nf1lC3W9rmIvKDa4SQWYH_9matqdfD-vNUPPkfU_GU3c5oiQnK-d9jO8v5KjxDq21pn8cF-gOtCD0r priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEF9qBfFFtFUbrTKCSIuGZj-SvXs8T2sjnA89K30L-xUb8BK5D6H_jn-pO5vkjtMq-JqdDbOZmc3MzsxvCXnpHLfeb1WxFryMheU8VlQNY2Op1iktM2ewwXnyKTu7EB8v08sdwvpemFC0HyAtwzbdV4edLPxmi3WSDPughTdSeYvcRuh21OpxNt6cq2QcQd26_piED26YuvUPClD9N_mXf5ZJ_pYrDb-g0_vkXuc7wqjl9gHZcfUe2R_5hTSza3gFoZozHJPvkTuTLmm-T35OnddXB8qslg7mm9w69HAFYBDHQP2o5qsFMDiajs6n8bj5ErNjmLmZD6hrB0eTYwioDlUNVX1V6Wq5ADzBhRxUbSHPc0DwiXnp_MuQ1LbItKCvoS0496uC8_xDnJ9M3o3iFLB4RGE__ENycfr-8_gs7q5miI2PeJaxlpIq5cMf50rKbMLZUFrM4WhLM8mFMD7McoyrpDQyVZRnxqRe-N6_0iZVgj8iu3VTuwMCQnsvxCltfHAjXGI1QvBro7hyzFlhI0J7YRWmwy3H6zO-FSF_zgdFK-DCC7gIAi5kRF6v53xvUTv-Sf0WdWBNiYjb4UEz_1p0GlhQRI4zKjWJ4iJxpfKOUmlF5hJBqXRpRA57DSq6bWBRMCE53sokhxF5sR72BoxZGS-6ZtXSSJENqIjI41bh1pxwziXGjBGRW6q4xer2SF1dBZBw6eNIlvm1vemVdsPW3z_Fk_8jf0ruMrQrii3-h2R3OV-5Z95JW-rnwSp_AerRNgc priority: 102 providerName: Springer Nature |
Title | Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) membrane (M) protein inhibits type I and III interferon production by targeting RIG-I/MDA-5 signaling |
URI | https://link.springer.com/article/10.1038/s41392-020-00438-7 https://www.ncbi.nlm.nih.gov/pubmed/33372174 https://www.proquest.com/docview/2473302379 https://www.proquest.com/docview/2473746814 https://pubmed.ncbi.nlm.nih.gov/PMC7768267 https://doaj.org/article/18192ca5c0a340efa129fd46e04117e5 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bb9MwFLZge-EFAeMSGJWRENoE0eLYidsn1JWOtVIn1DLUt8i3sEg0Hb0g7YUfwy_lHCdNVS57SZTEieyc4-Nz83cIee0ct6C3qlALnofCch4qpjqhsUzrhOWpM7jBeXSRnl-K4TSZ1g63ZZ1WuZGJXlDbuUEf-UksJMcCN7Lz_vp7iFWjMLpal9C4S_YRugxTuuS0WU6FkClq6M11irCX26iUaKedRn3wPpmUIyAc1qOLsIQhGI71PpuIt0-WIO8xVTPGrdgC5ITcWcs85P-_9NS_0y3_iLn6pezsAblf66C0WzHNQ3LHlY_IQbcE-3t2Q99QnxXq3e0H5NfEAbM7qsx65ehiG5inG6wDahAEQf0oFusljenRpDuehL35lzA-pjM3A2u8dPRodEw9JERR0qK8KnSxWlJ0_9IBVaWlg8GAInLFInfwMWxqK1hbqm9ola0OQ6HjwcdwcDL60A0TipknCjfTPyaXZ_3PvfOwrusQGjCXVqGWkikFlHEuZ7GNeNyRFgNA2rJUciEM2Ggu5irKjUwU46kxCXAOKGfaJErwJ2SvnJfuGaFCgwrjlDZgGQkXWY34_doorlzsrLABYRsKZaYGPcfaG98yH3zn7ayiagZUzTxVMxmQt8071xXkx62tT5HwTUuE6_Y35ouvWT37M4awc0YlJlJcRC5XoGXlVqQuEoxJlwTkcMM2WS1DltmW4wPyqnkMsx9DOkC6-bpqI0XaZiIgTysua3rCOZdocAZE7vDfTld3n5TFlUcYl2CEximM7d2GU7fd-v-veH77KF6QezFOHoZ4AIdkb7VYu5eg0a10y0_bFtnvdoeTIZxP-xefxnC3l_Za3ksCx9HP_m9H6Efw |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxELZK-gAvCChHoICRALWiq6zX3nXygFB6kaVNhNIW9W3xtTQS2ZQcoPwdfgC_kZk9EoWjb31M1lnZmfF4Ps_MN4S8dI5b8FuVpwVPPWE59xRTLc9YpnXI0sgZLHDu9qLOmfhwHp6vkV9VLQymVVY2MTfUdmTwjrwRCMmxwY1svbv85mHXKIyuVi00CrU4cvMfANkmb-N9kO-rIDg8ON3reGVXAc-Asz71tJRMKfDcnUtZYH0etKTF8IO2LJJcCAMIwQVc-amRoWI8MiaEeYNroE2oBIf33iDrggOUqZH13YPex36lwULICDHB4nOERJvLOJhoRq2Fw5LfAkUcKeiwA56PTRMBqpaVPT5vNiZwwmByaIDF3wIsk1w5PfMmA__yjP9O8Pwjypsfnod3yO3S66XtQk3vkjWX3SMb7QwQ_3BOX9M8DzW_4N8gP08cbC9HlZlNHR0vUwFoxa5ADdIuqO-D8WxCA7p10u6feHujT16wTYduCPg_c3Sru01zEopBRgfZxUAPphOKF840piqzNI5jilwZ49TBy3CoLYh0qZ7TIj8elkL78XsvbnT3215IMddFYfn-fXJ2LTJ_QGrZKHOPCBUanCantAEsJpxvNXYM0EZx5QJnha0TVkkoMSXNOnb7-Jrk4X7eTAqpJiDVJJdqIuvkzeI3lwXJyJWjd1Hwi5FIEJ5_MRp_SUp7kzAkujMqNL7iwnepAr8utSJyvmBMurBONiu1SUqrNUmWe6xOXiweg73BIBKIbjQrxkgRNZmok4eFli1mwjmXCHHrRK7o38pUV59kg4uc01wC7A0iWNtOpanLaf3_r3h89Sqek5ud0-5xchz3jp6QWwFuJIZsBJukNh3P3FPwJ6f6WbmJKfl83XbjN4XCf0Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF6VIiFeEFAOQ4FFAtQKrHi9a2_ygFBoCDUlFWopypvZyzQScUoOUP4OP4Nfx4yvKBx962PijbWbuXdmviHkiXPcgt-qfC145gvLua-Y6vjGMq0jlsXOYIPz4DDePxHvhtFwg_yqe2GwrLLWiYWithODd-StUEiOA25kp5VVZREfev1XZ998nCCFmdZ6nEbJIgdu-QPCt9nLpAe0fhqG_Tcf9_b9asKAb8Bxn_taSqYUePHOZSy0AQ870mIqQlsWSy6EgWjBhVwFmZGRYjw2JoIzgJugTaQEh_deIpcljxjKmBw2plwIGWN00HyOEXJzlRET7bjTuC7FfVDMEYwOZ-EFOD4Rgtaqxyfg7dYMbA2WiYbYBi5AR8k1O1qMG_iXj_x3qecf-d7CjPavk2uV_0u7JcPeIBsuv0m2ujnE_uMlfUaLitTiqn-L_Dx2IGiOKrOYOzpdFQXQGmeBGgRgUN9H08WMhnTnuHt07O9NPvnhLh27sQZD7OjOYJcWcBSjnI7y05EezWcUr55pQlVuaZIkFFEzppmDl-FSW0LqUr2kZaU8HIUeJW_9pDXodf2IYtWLwkb-W-TkQih-m2zmk9zdJVRocJ-c0gaiMuECq3F2gDaKKxc6K6xHWE2h1FSA6zj342taJP55Oy2pmgJV04KqqfTI8-Y3ZyXcyLmrXyPhm5UIFV58MZl-SSvNkzKEvDMqMoHiInCZAg8vsyJ2gWBMusgj2zXbpJX-mqUrafPI4-YxaB5MJwHpJotyjRRxmwmP3Cm5rNkJ51xisOsRucZ_a1tdf5KPTgt0cwkBcBjD2V7UnLra1v__invnn-IRuQLaIn2fHB7cJ1dDlCOGsATbZHM-XbgH4FjO9cNCgin5fNEq4zd0IYIU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Severe+acute+respiratory+syndrome+coronavirus+2+%28SARS-CoV-2%29+membrane+%28M%29+protein+inhibits+type+I+and+III+interferon+production+by+targeting+RIG-I%2FMDA-5+signaling&rft.jtitle=Signal+transduction+and+targeted+therapy&rft.au=Zheng%2C+Yi&rft.au=Meng-Wei%2C+Zhuang&rft.au=Han%2C+Lulu&rft.au=Zhang%2C+Jing&rft.date=2020-12-28&rft.pub=Nature+Publishing+Group&rft.issn=2095-9907&rft.eissn=2059-3635&rft.volume=5&rft.issue=1&rft_id=info:doi/10.1038%2Fs41392-020-00438-7&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-3635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-3635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-3635&client=summon |