Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers
Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications suc...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 543 - 7 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.09.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS
2
was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers.
Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional. |
---|---|
AbstractList | Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS
2
was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers. Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers.Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional. Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS2 was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers. Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional. Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS 2 was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers. Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional. Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS2 was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers.Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional.Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature vertical 2D lasing from monolayer semiconductors is fundamentally interesting and highly desired for appealing on-chip laser applications such as optical interconnects and supercomputing. Here, we present room-temperature low-threshold lasing from 2D semiconductor activated vertical-cavity surface-emitting lasers (VCSELs) under continuous-wave pumping. 2D lasing is achieved from a 2D semiconductor. Structurally, dielectric oxides were used to construct the half-wavelength-thick cavity and distributed Bragg reflectors, in favour of single-mode operation and ultralow optical loss; in the cavity centre, the direct-bandgap monolayer WS2 was embedded as the gain medium, compatible with the planar VCSEL configuration and the monolithic integration technology. This work demonstrates 2D semiconductor activated VCSELs with desirable emission characteristics, which represents a major step towards practical optoelectronic applications of 2D semiconductor lasers.Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional semiconductor activated vertical-cavity surface-emitting lasers where both the gain material and the lasing characteristics are two-dimensional. |
ArticleNumber | 543 |
Author | Chin, Xin Yu Cong, Chunxiao Wang, Zilong Soci, Cesare Huang, Wei Wu, Lishu Chen, Yu Wang, Jianpu Peimyoo, Namphung Shang, Jingzhi Zou, Chenji Yu, Ting |
Author_xml | – sequence: 1 givenname: Jingzhi surname: Shang fullname: Shang, Jingzhi organization: NanjingTech-NTU Joint Center of Research and Development, Nanjing Tech University, Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 2 givenname: Chunxiao orcidid: 0000-0001-9786-825X surname: Cong fullname: Cong, Chunxiao organization: State Key Laboratory of ASIC & System, School of Information Science and Technology, Fudan University – sequence: 3 givenname: Zilong surname: Wang fullname: Wang, Zilong organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 4 givenname: Namphung surname: Peimyoo fullname: Peimyoo, Namphung organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 5 givenname: Lishu surname: Wu fullname: Wu, Lishu organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 6 givenname: Chenji surname: Zou fullname: Zou, Chenji organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 7 givenname: Yu surname: Chen fullname: Chen, Yu organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 8 givenname: Xin Yu surname: Chin fullname: Chin, Xin Yu organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 9 givenname: Jianpu surname: Wang fullname: Wang, Jianpu organization: Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech) – sequence: 10 givenname: Cesare surname: Soci fullname: Soci, Cesare organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University – sequence: 11 givenname: Wei surname: Huang fullname: Huang, Wei email: iamwhuang@njtech.edu.cn organization: Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), SICAM, Nanjing University of Posts and Telecommunications – sequence: 12 givenname: Ting orcidid: 0000-0002-0113-2895 surname: Yu fullname: Yu, Ting email: yuting@ntu.edu.sg organization: Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28912420$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhUVJadI0f6CLYuimG7d62ZY3hZL0EQgU-liLa-l6qsG2ppI8If--cpyUSaAVCAnpnI-DdJ6To8lPSMhLRt8yKtS7KJmsm5KyPGkjRXn9hJxwKlnJGi6ODvbH5CzGLc1DtExJ-Ywcc9UyLjk9Id-_eT-WCccdBkhzwIJfFBFHZ_xkZ5N8KMAkt4eEtthjSM7AUBrYu3RTxDn0YLDM8pTctCkGiBjiC_K0hyHi2d16Sn5--vjj_Et59fXz5fmHq9LUtE4lGN5Ca1mHdS-7SvWNbKygfSOs6RAAqayM4j3jYJRVlqpaSFGrSlnWoFXilFyuXOthq3fBjRButAenbw982GhYAg-oLRN1K5iyoJRc9rITfZ3RXCGr0GbW-5W1m7sRrcEpBRgeQB_eTO6X3vi9rqq2raoqA97cAYL_PWNMenTR4DDAhH6OmrWSUtlWDc3S14-kWz-HKT9VVgmluGz4Anx1mOhvlPu_ywK1CkzwMQbstXEJkvNLQDdoRvXSFL02Reem6Num6Ots5Y-s9_T_msRqilk8bTAcxP636w_CONGv |
CitedBy_id | crossref_primary_10_1007_s12274_018_2142_5 crossref_primary_10_1002_adma_202003733 crossref_primary_10_1002_pssr_202200367 crossref_primary_10_1515_nanoph_2019_0533 crossref_primary_10_1515_nanoph_2020_0524 crossref_primary_10_1038_s41699_019_0099_1 crossref_primary_10_1021_acsmaterialslett_0c00277 crossref_primary_10_1002_adom_201701296 crossref_primary_10_1103_PhysRevB_103_115301 crossref_primary_10_1002_admt_202000154 crossref_primary_10_1016_j_optmat_2022_112682 crossref_primary_10_1103_PhysRevB_102_115302 crossref_primary_10_1002_adom_202001982 crossref_primary_10_1007_s12274_019_2294_y crossref_primary_10_1039_D3NH00246B crossref_primary_10_1039_C8CS00332G crossref_primary_10_1002_adom_202300278 crossref_primary_10_1364_OME_481317 crossref_primary_10_1021_acs_inorgchem_3c02293 crossref_primary_10_1016_j_omx_2021_100130 crossref_primary_10_1002_adom_202200538 crossref_primary_10_1021_acsphotonics_4c01437 crossref_primary_10_1002_inf2_12050 crossref_primary_10_1016_j_cej_2023_145896 crossref_primary_10_1016_j_jmat_2023_02_005 crossref_primary_10_1038_s41586_019_1779_x crossref_primary_10_1002_adfm_202103945 crossref_primary_10_1063_5_0214626 crossref_primary_10_7498_aps_67_20172395 crossref_primary_10_1515_nanoph_2024_0702 crossref_primary_10_1021_acsami_8b12701 crossref_primary_10_1002_adfm_202110119 crossref_primary_10_1038_s41377_023_01338_5 crossref_primary_10_1002_adfm_201900040 crossref_primary_10_1002_adom_202202782 crossref_primary_10_1021_acsphotonics_2c01541 crossref_primary_10_1016_j_ssc_2025_115831 crossref_primary_10_1021_acsnano_1c09844 crossref_primary_10_1021_acsnano_4c00547 crossref_primary_10_29026_oes_2022_220006 crossref_primary_10_1103_PhysRevB_100_245302 crossref_primary_10_1126_sciadv_aax7398 crossref_primary_10_1002_aelm_202200768 crossref_primary_10_1039_D3NH00139C crossref_primary_10_1002_adma_202103527 crossref_primary_10_1021_acssuschemeng_4c03964 crossref_primary_10_1021_acsphotonics_9b00096 crossref_primary_10_1364_OE_415232 crossref_primary_10_1002_smsc_202000053 crossref_primary_10_1021_acsphotonics_4c00549 crossref_primary_10_1117_1_OE_59_1_017107 crossref_primary_10_1021_acs_jpcc_8b12179 crossref_primary_10_1103_PhysRevApplied_12_014011 crossref_primary_10_1002_adom_202102702 crossref_primary_10_1021_acs_chemrev_3c00851 crossref_primary_10_1002_adma_201903030 crossref_primary_10_1088_2053_1583_ab8542 crossref_primary_10_1021_acs_nanolett_4c04963 crossref_primary_10_1021_acs_nanolett_4c03479 crossref_primary_10_1021_acs_nanolett_1c04640 crossref_primary_10_1002_admt_202200032 crossref_primary_10_1021_acsphotonics_2c01705 crossref_primary_10_1063_5_0052458 crossref_primary_10_1002_lpor_202400271 crossref_primary_10_34133_2020_9075697 crossref_primary_10_1088_1361_6528_abde61 crossref_primary_10_1002_pssa_201800120 crossref_primary_10_1088_1361_6633_ac45f9 crossref_primary_10_1039_D1TC01850G crossref_primary_10_1002_lpor_202000482 crossref_primary_10_1021_acsmaterialslett_4c02218 crossref_primary_10_1002_adma_201802687 crossref_primary_10_1002_aelm_202000688 crossref_primary_10_1002_adma_202414174 crossref_primary_10_1016_j_pmatsci_2021_100814 crossref_primary_10_1126_sciadv_aav4506 crossref_primary_10_1007_s12274_022_4143_7 crossref_primary_10_1021_acs_jpcc_2c00789 crossref_primary_10_1021_acsnano_2c00914 crossref_primary_10_1002_adma_201707627 crossref_primary_10_1063_5_0189072 crossref_primary_10_1117_1_OE_58_9_097110 crossref_primary_10_3390_mi14061102 crossref_primary_10_1016_j_apcatb_2018_08_017 crossref_primary_10_1021_acs_nanolett_4c00705 crossref_primary_10_1039_D0TC02703K crossref_primary_10_1007_s12200_024_00109_3 crossref_primary_10_1021_acsanm_0c02186 crossref_primary_10_1364_OME_435902 crossref_primary_10_1021_acsnano_8b04511 crossref_primary_10_1016_j_jmat_2022_11_007 crossref_primary_10_1021_acs_nanolett_1c01162 crossref_primary_10_1007_s12274_020_3036_x crossref_primary_10_1002_smtd_201800019 crossref_primary_10_1021_acsami_0c19443 crossref_primary_10_1103_PhysRevB_111_L041408 crossref_primary_10_1002_adom_202200799 crossref_primary_10_1021_acsphotonics_4c00644 crossref_primary_10_3390_ma16072591 crossref_primary_10_1007_s12274_020_3073_5 crossref_primary_10_1007_s11467_018_0795_x crossref_primary_10_1021_acs_nanolett_0c02432 crossref_primary_10_1088_1674_4926_45_4_041701 crossref_primary_10_1002_adma_201808319 crossref_primary_10_1515_nanoph_2022_0380 crossref_primary_10_1109_JPROC_2019_2936424 crossref_primary_10_1002_adom_201900538 crossref_primary_10_1016_j_optcom_2019_124443 crossref_primary_10_1021_acs_jpclett_9b03589 crossref_primary_10_3390_nano14070614 crossref_primary_10_1088_1361_648X_ac699e |
Cites_doi | 10.1021/nn5059908 10.1038/nphoton.2010.86 10.1103/PhysRevLett.73.1785 10.1021/nn4046002 10.1038/nphoton.2013.303 10.1038/nature11615 10.1021/nn500480u 10.1038/ncomms9579 10.1038/nnano.2014.26 10.1103/PhysRevLett.105.136805 10.1038/nphys2942 10.1126/science.256.5053.66 10.1038/nphoton.2008.266 10.1038/nmat4205 10.1073/pnas.2634328100 10.1103/PhysRevA.44.657 10.1039/C5NR00383K 10.1038/nature14290 10.1038/nphoton.2014.304 10.1063/1.2355476 10.1038/nphoton.2007.17 10.1021/nl502075n 10.1038/nphoton.2010.94 10.1021/nl503636c 10.1063/1.106693 10.1038/nature05131 10.1063/1.4901836 10.1038/nphoton.2015.197 10.1038/nphoton.2009.32 10.1021/acs.nanolett.5b01665 10.1038/371571a0 10.1021/nl503312x 10.1021/acs.nanolett.6b00536 10.1038/nphoton.2015.282 10.1063/1.1645992 10.1038/srep33134 10.1038/nature01939 10.1007/978-3-642-24986-0_13 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-017-00743-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_d1369318da88413694b3f6f1228e15ed PMC5599555 28912420 10_1038_s41467_017_00743_w |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-ac29a9d1be6f4b58f747d30f73dcbeaae045c82f12ac8d8d0863436858d17ed83 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:32 EDT 2025 Thu Aug 21 14:10:53 EDT 2025 Fri Jul 11 16:29:12 EDT 2025 Wed Aug 13 06:44:44 EDT 2025 Wed Feb 19 02:40:47 EST 2025 Thu Apr 24 22:50:28 EDT 2025 Tue Jul 01 02:21:04 EDT 2025 Fri Feb 21 02:41:48 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-ac29a9d1be6f4b58f747d30f73dcbeaae045c82f12ac8d8d0863436858d17ed83 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9786-825X 0000-0002-0113-2895 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-017-00743-w |
PMID | 28912420 |
PQID | 1938824725 |
PQPubID | 546298 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d1369318da88413694b3f6f1228e15ed pubmedcentral_primary_oai_pubmedcentral_nih_gov_5599555 proquest_miscellaneous_1940049570 proquest_journals_1938824725 pubmed_primary_28912420 crossref_citationtrail_10_1038_s41467_017_00743_w crossref_primary_10_1038_s41467_017_00743_w springer_journals_10_1038_s41467_017_00743_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-14 |
PublicationDateYYYYMMDD | 2017-09-14 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-14 day: 14 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Mak, Shan (CR9) 2016; 10 Amani (CR14) 2016; 16 Lopez-Sanchez (CR36) 2014; 8 Withers (CR34) 2015; 14 Salehzadeh, Djavid, Tran, Shih, Mi (CR3) 2015; 15 Saxena (CR29) 2013; 7 Kapon, Sirbu (CR32) 2009; 3 CR18 Ross (CR37) 2014; 9 Shang (CR22) 2015; 9 Yokoyama (CR21) 1992; 256 Alduino, Paniccia (CR10) 2007; 1 Pimputkar, Speck, DenBaars, Nakamura (CR16) 2009; 3 Kasprzak (CR28) 2006; 443 Xu, Yao, Xiao, Heinz (CR8) 2014; 10 Yamamoto, Machida, Bjork (CR19) 1991; 44 Bjork, Karlsson, Yamamoto (CR26) 1992; 60 Deng, Weihs, Snoke, Bloch, Yamamoto (CR27) 2003; 100 Vahala (CR31) 2003; 424 Liu (CR4) 2015; 9 Mak, Lee, Hone, Shan, Heinz (CR13) 2010; 105 Mohideen, Slusher, Jahnke, Koch (CR25) 1994; 73 Gourley (CR30) 1994; 371 Yuan, Huang (CR23) 2015; 7 Chu (CR33) 2006; 89 Fujii (CR17) 2004; 84 Moreau (CR38) 2012; 492 Cheng (CR35) 2014; 14 Wu (CR1) 2015; 520 Kena-Cohen, Forrest (CR24) 2010; 4 Schwarz (CR7) 2014; 14 Liu (CR20) 2014; 105 Peimyoo (CR12) 2013; 7 Flatten (CR6) 2016; 6 Ye (CR2) 2015; 9 Wang, Zhang, Rana (CR15) 2015; 15 Caulfield, Dolev (CR11) 2010; 4 Dufferwiel (CR5) 2015; 6 J Kasprzak (743_CR28) 2006; 443 O Lopez-Sanchez (743_CR36) 2014; 8 JZ Shang (743_CR22) 2015; 9 Y Ye (743_CR2) 2015; 9 XZ Liu (743_CR4) 2015; 9 S Pimputkar (743_CR16) 2009; 3 O Salehzadeh (743_CR3) 2015; 15 G Bjork (743_CR26) 1992; 60 Y Yamamoto (743_CR19) 1991; 44 A Moreau (743_CR38) 2012; 492 E Kapon (743_CR32) 2009; 3 S Schwarz (743_CR7) 2014; 14 JS Ross (743_CR37) 2014; 9 HL Liu (743_CR20) 2014; 105 KF Mak (743_CR9) 2016; 10 PL Gourley (743_CR30) 1994; 371 SF Wu (743_CR1) 2015; 520 M Amani (743_CR14) 2016; 16 HN Wang (743_CR15) 2015; 15 S Kena-Cohen (743_CR24) 2010; 4 S Dufferwiel (743_CR5) 2015; 6 HJ Caulfield (743_CR11) 2010; 4 KJ Vahala (743_CR31) 2003; 424 H Yokoyama (743_CR21) 1992; 256 LC Flatten (743_CR6) 2016; 6 F Withers (743_CR34) 2015; 14 KF Mak (743_CR13) 2010; 105 D Saxena (743_CR29) 2013; 7 T Fujii (743_CR17) 2004; 84 JT Chu (743_CR33) 2006; 89 U Mohideen (743_CR25) 1994; 73 R Cheng (743_CR35) 2014; 14 A Alduino (743_CR10) 2007; 1 743_CR18 XD Xu (743_CR8) 2014; 10 N Peimyoo (743_CR12) 2013; 7 H Deng (743_CR27) 2003; 100 L Yuan (743_CR23) 2015; 7 26214363 - Nano Lett. 2015 Aug 12;15(8):5302-6 25826397 - Nanoscale. 2015 Apr 28;7(16):7402-8 12917698 - Nature. 2003 Aug 14;424(6950):839-46 25157588 - Nano Lett. 2014 Oct 8;14(10):5590-7 25778703 - Nature. 2015 Apr 2;520(7545):69-72 24601517 - ACS Nano. 2014 Mar 25;8(3):3042-8 26978038 - Nano Lett. 2016 Apr 13;16(4):2786-91 25375802 - Nano Lett. 2014 Dec 10;14(12):7003-8 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805 25643033 - Nat Mater. 2015 Mar;14(3):301-6 17802593 - Science. 1992 Apr 3;256(5053):66-70 10056886 - Phys Rev Lett. 1994 Sep 26;73(13):1785-1788 25560634 - ACS Nano. 2015 Jan 27;9(1):647-55 27640988 - Sci Rep. 2016 Sep 19;6:33134 17006506 - Nature. 2006 Sep 28;443(7110):409-14 14673089 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15318-23 24608230 - Nat Nanotechnol. 2014 Apr;9(4):268-72 24266716 - ACS Nano. 2013 Dec 23;7(12):10985-94 25546602 - Nano Lett. 2015 Jan 14;15(1):339-45 26446783 - Nat Commun. 2015 Oct 08;6:8579 9905716 - Phys Rev A. 1991 Jul 1;44(1):657-668 23222613 - Nature. 2012 Dec 6;492(7427):86-9 |
References_xml | – volume: 9 start-page: 647 year: 2015 end-page: 655 ident: CR22 article-title: Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor publication-title: ACS Nano doi: 10.1021/nn5059908 – volume: 4 start-page: 371 year: 2010 end-page: 375 ident: CR24 article-title: Room-temperature polariton lasing in an organic single-crystal microcavity publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.86 – volume: 73 start-page: 1785 year: 1994 end-page: 1788 ident: CR25 article-title: Semiconductor microlaser linewidths publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.1785 – volume: 7 start-page: 10985 year: 2013 end-page: 10994 ident: CR12 article-title: Nonblinking, intense two-dimensional light emitter: monolayer WS Triangles publication-title: ACS Nano doi: 10.1021/nn4046002 – ident: CR18 – volume: 7 start-page: 963 year: 2013 end-page: 968 ident: CR29 article-title: Optically pumped room-temperature GaAs publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.303 – volume: 492 start-page: 86 year: 2012 end-page: 89 ident: CR38 article-title: Controlled-reflectance surfaces with film-coupled colloidal nanoantennas publication-title: Nature doi: 10.1038/nature11615 – volume: 8 start-page: 3042 year: 2014 end-page: 3048 ident: CR36 article-title: Light generation and harvesting in a van der Waals heterostructure publication-title: Acs Nano doi: 10.1021/nn500480u – volume: 6 year: 2015 ident: CR5 article-title: Exciton-polaritons in van der Waals heterostructures embedded in tunable microcavities publication-title: Nat. Commun. doi: 10.1038/ncomms9579 – volume: 9 start-page: 268 year: 2014 end-page: 272 ident: CR37 article-title: Electrically tunable excitonic light-emitting diodes based on monolayer WSe p-n junctions publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.26 – volume: 105 year: 2010 ident: CR13 article-title: Atomically thin MoS : A new direct-gap semiconductor publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 10 start-page: 343 year: 2014 end-page: 350 ident: CR8 article-title: Spin and pseudospins in layered transition metal dichalcogenides publication-title: Nat. Phys doi: 10.1038/nphys2942 – volume: 256 start-page: 66 year: 1992 end-page: 70 ident: CR21 article-title: Physics and device applications of optical microcavities publication-title: Science doi: 10.1126/science.256.5053.66 – volume: 3 start-page: 27 year: 2009 end-page: 29 ident: CR32 article-title: Long-wavelength VCSELs: Power-efficient answer publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.266 – volume: 14 start-page: 301 year: 2015 end-page: 306 ident: CR34 article-title: Light-emitting diodes by band-structure engineering in van der Waals heterostructures publication-title: Nat. Mater. doi: 10.1038/nmat4205 – volume: 100 start-page: 15318 year: 2003 end-page: 15323 ident: CR27 article-title: Polariton lasing vs. photon lasing in a semiconductor microcavity publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2634328100 – volume: 44 start-page: 657 year: 1991 end-page: 668 ident: CR19 article-title: Microcavity semiconductor-laser with enhanced spontaneous emission publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.44.657 – volume: 7 start-page: 7402 year: 2015 end-page: 7408 ident: CR23 article-title: Exciton dynamics and annihilation in WS 2D semiconductors publication-title: Nanoscale doi: 10.1039/C5NR00383K – volume: 520 start-page: 69 year: 2015 end-page: 72 ident: CR1 article-title: Monolayer semiconductor nanocavity lasers with ultralow thresholds publication-title: Nature doi: 10.1038/nature14290 – volume: 9 start-page: 30 year: 2015 end-page: 34 ident: CR4 article-title: Strong light-matter coupling in two-dimensional atomic crystals publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.304 – volume: 89 year: 2006 ident: CR33 article-title: Emission characteristics of optically pumped GaN-based vertical-cavity surface emitting lasers publication-title: Appl. Phys. Lett. doi: 10.1063/1.2355476 – volume: 1 start-page: 153 year: 2007 end-page: 155 ident: CR10 article-title: Interconnects-Wiring electronics with light publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.17 – volume: 14 start-page: 5590 year: 2014 end-page: 5597 ident: CR35 article-title: Electroluminescence and Photocurrent generation from atomically sharp WSe /MoS Heterojunction p-n Diodes publication-title: Nano. Lett. doi: 10.1021/nl502075n – volume: 4 start-page: 261 year: 2010 end-page: 263 ident: CR11 article-title: Why future supercomputing requires optics publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.94 – volume: 15 start-page: 339 year: 2015 end-page: 345 ident: CR15 article-title: Ultrafast dynamics of defect-assisted electron hole recombination in mono layer MoS publication-title: Nano Lett. doi: 10.1021/nl503636c – volume: 60 start-page: 304 year: 1992 end-page: 306 ident: CR26 article-title: On the linewidth of microcavity lasers publication-title: Appl. Phys. Lett. doi: 10.1063/1.106693 – volume: 443 start-page: 409 year: 2006 end-page: 414 ident: CR28 article-title: Bose-Einstein condensation of exciton polaritons publication-title: Nature. doi: 10.1038/nature05131 – volume: 105 year: 2014 ident: CR20 article-title: Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901836 – volume: 9 start-page: 733 year: 2015 end-page: 737 ident: CR2 article-title: Monolayer excitonic laser publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.197 – volume: 3 start-page: 179 year: 2009 end-page: 181 ident: CR16 article-title: Prospects for LED lighting publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.32 – volume: 15 start-page: 5302 year: 2015 end-page: 5306 ident: CR3 article-title: Optically pumped two-dimensional MoS lasers operating at room-temperature publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01665 – volume: 371 start-page: 571 year: 1994 end-page: 577 ident: CR30 article-title: Microstructured semiconductor lasers for high-speed information processing publication-title: Nature doi: 10.1038/371571a0 – volume: 14 start-page: 7003 year: 2014 end-page: 7008 ident: CR7 article-title: Two-dimensional metal-chalcogenide films in tunable optical microcavities publication-title: Nano. Lett. doi: 10.1021/nl503312x – volume: 16 start-page: 2786 year: 2016 end-page: 2791 ident: CR14 article-title: Recombination kinetics and effects of superacid treatment in sulfur- and selenium-based transition metal dichalcogenides publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00536 – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR9 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.282 – volume: 84 start-page: 855 year: 2004 end-page: 857 ident: CR17 article-title: Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening publication-title: Appl. Phys. Lett. doi: 10.1063/1.1645992 – volume: 6 year: 2016 ident: CR6 article-title: Room-temperature exciton-polaritons with two-dimensional WS publication-title: Sci. Rep doi: 10.1038/srep33134 – volume: 424 start-page: 839 year: 2003 end-page: 846 ident: CR31 article-title: Optical microcavities publication-title: Nature doi: 10.1038/nature01939 – volume: 10 start-page: 343 year: 2014 ident: 743_CR8 publication-title: Nat. Phys doi: 10.1038/nphys2942 – volume: 60 start-page: 304 year: 1992 ident: 743_CR26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.106693 – volume: 7 start-page: 7402 year: 2015 ident: 743_CR23 publication-title: Nanoscale doi: 10.1039/C5NR00383K – volume: 424 start-page: 839 year: 2003 ident: 743_CR31 publication-title: Nature doi: 10.1038/nature01939 – volume: 6 year: 2015 ident: 743_CR5 publication-title: Nat. Commun. doi: 10.1038/ncomms9579 – volume: 9 start-page: 733 year: 2015 ident: 743_CR2 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.197 – volume: 6 year: 2016 ident: 743_CR6 publication-title: Sci. Rep doi: 10.1038/srep33134 – volume: 14 start-page: 301 year: 2015 ident: 743_CR34 publication-title: Nat. Mater. doi: 10.1038/nmat4205 – volume: 9 start-page: 647 year: 2015 ident: 743_CR22 publication-title: ACS Nano doi: 10.1021/nn5059908 – volume: 3 start-page: 27 year: 2009 ident: 743_CR32 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.266 – volume: 492 start-page: 86 year: 2012 ident: 743_CR38 publication-title: Nature doi: 10.1038/nature11615 – volume: 44 start-page: 657 year: 1991 ident: 743_CR19 publication-title: Phys. Rev. A doi: 10.1103/PhysRevA.44.657 – volume: 105 year: 2014 ident: 743_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4901836 – ident: 743_CR18 doi: 10.1007/978-3-642-24986-0_13 – volume: 1 start-page: 153 year: 2007 ident: 743_CR10 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.17 – volume: 7 start-page: 10985 year: 2013 ident: 743_CR12 publication-title: ACS Nano doi: 10.1021/nn4046002 – volume: 73 start-page: 1785 year: 1994 ident: 743_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.73.1785 – volume: 14 start-page: 5590 year: 2014 ident: 743_CR35 publication-title: Nano. Lett. doi: 10.1021/nl502075n – volume: 7 start-page: 963 year: 2013 ident: 743_CR29 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.303 – volume: 89 year: 2006 ident: 743_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.2355476 – volume: 4 start-page: 371 year: 2010 ident: 743_CR24 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.86 – volume: 14 start-page: 7003 year: 2014 ident: 743_CR7 publication-title: Nano. Lett. doi: 10.1021/nl503312x – volume: 3 start-page: 179 year: 2009 ident: 743_CR16 publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.32 – volume: 520 start-page: 69 year: 2015 ident: 743_CR1 publication-title: Nature doi: 10.1038/nature14290 – volume: 105 year: 2010 ident: 743_CR13 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.136805 – volume: 15 start-page: 339 year: 2015 ident: 743_CR15 publication-title: Nano Lett. doi: 10.1021/nl503636c – volume: 256 start-page: 66 year: 1992 ident: 743_CR21 publication-title: Science doi: 10.1126/science.256.5053.66 – volume: 9 start-page: 30 year: 2015 ident: 743_CR4 publication-title: Nat. Photon. doi: 10.1038/nphoton.2014.304 – volume: 16 start-page: 2786 year: 2016 ident: 743_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00536 – volume: 371 start-page: 571 year: 1994 ident: 743_CR30 publication-title: Nature doi: 10.1038/371571a0 – volume: 100 start-page: 15318 year: 2003 ident: 743_CR27 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2634328100 – volume: 84 start-page: 855 year: 2004 ident: 743_CR17 publication-title: Appl. Phys. Lett. doi: 10.1063/1.1645992 – volume: 9 start-page: 268 year: 2014 ident: 743_CR37 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.26 – volume: 8 start-page: 3042 year: 2014 ident: 743_CR36 publication-title: Acs Nano doi: 10.1021/nn500480u – volume: 10 start-page: 216 year: 2016 ident: 743_CR9 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.282 – volume: 15 start-page: 5302 year: 2015 ident: 743_CR3 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b01665 – volume: 4 start-page: 261 year: 2010 ident: 743_CR11 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.94 – volume: 443 start-page: 409 year: 2006 ident: 743_CR28 publication-title: Nature. doi: 10.1038/nature05131 – reference: 24601517 - ACS Nano. 2014 Mar 25;8(3):3042-8 – reference: 9905716 - Phys Rev A. 1991 Jul 1;44(1):657-668 – reference: 10056886 - Phys Rev Lett. 1994 Sep 26;73(13):1785-1788 – reference: 23222613 - Nature. 2012 Dec 6;492(7427):86-9 – reference: 21230799 - Phys Rev Lett. 2010 Sep 24;105(13):136805 – reference: 25643033 - Nat Mater. 2015 Mar;14(3):301-6 – reference: 25375802 - Nano Lett. 2014 Dec 10;14(12):7003-8 – reference: 17006506 - Nature. 2006 Sep 28;443(7110):409-14 – reference: 12917698 - Nature. 2003 Aug 14;424(6950):839-46 – reference: 24266716 - ACS Nano. 2013 Dec 23;7(12):10985-94 – reference: 26446783 - Nat Commun. 2015 Oct 08;6:8579 – reference: 14673089 - Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15318-23 – reference: 26214363 - Nano Lett. 2015 Aug 12;15(8):5302-6 – reference: 25157588 - Nano Lett. 2014 Oct 8;14(10):5590-7 – reference: 27640988 - Sci Rep. 2016 Sep 19;6:33134 – reference: 25546602 - Nano Lett. 2015 Jan 14;15(1):339-45 – reference: 25778703 - Nature. 2015 Apr 2;520(7545):69-72 – reference: 26978038 - Nano Lett. 2016 Apr 13;16(4):2786-91 – reference: 25826397 - Nanoscale. 2015 Apr 28;7(16):7402-8 – reference: 25560634 - ACS Nano. 2015 Jan 27;9(1):647-55 – reference: 17802593 - Science. 1992 Apr 3;256(5053):66-70 – reference: 24608230 - Nat Nanotechnol. 2014 Apr;9(4):268-72 |
SSID | ssj0000391844 |
Score | 2.5824697 |
Snippet | Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature... Two-dimensional (2D) semiconductors are opening a new platform for revitalizing widely spread optoelectronic applications. The realisation of room-temperature... Two-dimensional materials have recently emerged as interesting materials for optoelectronic applications. Here, Shang et al. demonstrate two-dimensional... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 543 |
SubjectTerms | 639/624/1020/1093 639/925/357/1018 Bragg reflectors Humanities and Social Sciences Integration Laser applications Lasers Lasing multidisciplinary Optical interconnects Optical pumping Optoelectronics Oxides Room temperature Science Science (multidisciplinary) Semiconductor lasers Semiconductors Single mode operation Temperature effects Vertical cavity surface emission lasers |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBZhoZBLaZukdZsWB3JrxVoPW_KxjywhkBzSBvYmZD1ooXjDPhry7zMje5d1m6SX3Iw1wmI0mvnGkr4h5DgEIVRU-OtNFRS5c6hl3FLBg-bM-Uol3oLzi-r0Sp5Ny-lWqS88E9bRA3eKG3smqhoMz1utJT7LRsQqMs51YGXw6H0h5m0lU8kHixpSF9nfkimEHi9k8gnolFPYpDeDSJQI--9Dmf8elvxrxzQFoskL8rxHkPnnbuQvyU5oX5FnXU3J2z3y_RKgMEXGqZ4uOeff8gUegZ-1yO06m-d4l-EPYEyfp2LMMEvUWawhkS9W82hdoCCezkPngK0BH-6Tq8nJj6-ntK-cQB0kJEtqHa9t7VkTqiibUkdIGrwoohLeNcHaAEDOaQ5atE577SGvER0VvWcqeC0OyKidteENyaPQZR21tUx5Ka2CvgI3DwOXEF9LnRG21qJxPa04Vrf4bdL2ttCm07wBzZukeXOTkY-bPtcdqcaj0l9wcjaSSIidXoCZmN5MzP_MJCOH66k1_SpdGACvkGBIxcuMHG2aYX3hpoltw2yFMujl6lIVGXndWcJmJJCsAjzi0KIGNjIY6rCl_fUzcXgnorcSvvtpbU1bw3pQFW-fQhXvyC5Py6CmTB6S0XK-Cu8BWS2bD2kR3QG7Xx3h priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKKyQuCMorUFAqcQOr60di54RoYVtVggNQqTfL8aMgoaRsdqn498w43sDy6C2KHcWZGY8_eybfEPI8BCFUVHj0pmYUuXOoZdxSwYPmzPlaJd6Cd-_rkzN5el6d5wO3IadVrn1ictS-d3hGfgBAA8CgVLx6dfmNYtUojK7mEho3yA6DlQZTuvT8eDpjQfZzLWX-V2Ym9MEgk2dA15wWT3q1sR4l2v5_Yc2_Uyb_iJum5Wh-h9zOOLJ8PSr-LtkK3S65OVaW_HGPfPwAgJgi71QmTS75m3LARPi-Q4bXflHiHw3fAWn6MpVkBl1RZ7GSRDmsFtG6QKF7yoouAWEDSrxPzuZvPx2d0Fw_gTrYliypdbyxjWdtqKNsKx1h6-DFLCrhXRusDQDnnOYRdOO01x52N2IkpPdMBa_FA7Ld9V14RMoodNVEbS1TXkqr4FmBIcTAJayylS4IW0vRuEwujjUuvpoU5BbajJI3IHmTJG-uCvJieuZypNa4tvchKmfqibTY6Ua_uDB5lhnPRN2Al_JWa4nXshWxhg_kOrAq-ILsrVVr8lwdzC_LKsj-1AyzDEMntgv9Cvugr2sqNSvIw9ESppHAlhVAEocWtWEjG0PdbOm-fE5M3onurYL3vlxb02_D-q8oHl__FU_ILZ4MvKFM7pHt5WIVngJyWrbP0vT4CXnIFmU priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qi-CL1PvaKiv4psGTy26yj6fVUg7og7XQt5BNslqQXTmXlv57Z7IXPFoF35bNhM1OJsk3yeQbgNcxSqkbTVtvesaIO4c5LhyTIhrBfSh14i34-Kk8PVeLi-JiB8R4FyYF7SdKyzRNj9Fh71YqDWmaU9Oqx67vwB5RtaNt783ni7PFtLNCnOdGqeGGzEyaWypvrUKJrP82hPlnoORvp6VpETrZh_sDesznfXsfwE5sH8LdPp_kzSM4-4wwmBHb1ECVnIv3-YrC37uWeF27ZU73GK4QX4Y8JWLGHmLeUf6IfLVZNs5HhuIpFjpHXI3Y8DGcn3z4cnzKhqwJzKMzsmbOi8pVgdexbFRdmAYdhiBnjZbB19G5iCDOG9Fgj3gTTECfRvY09IHrGIx8Artt18ZnkDfSFFVjnOM6KOU01pV0cBiFwrW1MBnwUYvWD5TilNniu01H29LYXvMWNW-T5u11Bm-mOj96Qo1_Sh9R50ySRIadXnTLr3YwDhu4LCucm4IzRtGzqmVT4g8KE3kRQwaHY9faYYSuLAJXdC6UFkUGr6ZiHFt0YOLa2G1Ihma4qtCzDJ72ljC1BB1VhEYCS_SWjWw1dbukvfyW-LsTyVuB3307WtMvzfqrKp7_n_gB3BPJ4CvG1SHsrpeb-ALx07p-OQyYnyx6Ffw priority: 102 providerName: Springer Nature |
Title | Room-temperature 2D semiconductor activated vertical-cavity surface-emitting lasers |
URI | https://link.springer.com/article/10.1038/s41467-017-00743-w https://www.ncbi.nlm.nih.gov/pubmed/28912420 https://www.proquest.com/docview/1938824725 https://www.proquest.com/docview/1940049570 https://pubmed.ncbi.nlm.nih.gov/PMC5599555 https://doaj.org/article/d1369318da88413694b3f6f1228e15ed |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED_tQ0i8THwTGFWQeAND_ZHYeUCoKytTpU1oo1LfLCd2AGlKRtoy9t9zdpKKQkG8tFV8ad3z2fe7nP07gBfOcS5L6R-9ySHx3DnEUGYIZ04xWthUBt6C07P0ZCam82S-A325o06Bi62hna8nNWsuX__4dvMOJ_zb9si4erMQYbr79TZ4RHK9C_vomaSvaHDawf2wMvMMAxqfaGZDQQkK8O4czfav2fBVgdJ_Gw79czvlbznV4Komd-Cgw5jxqDWKu7Djqntwq606eXMfLs4RLBPPSdURKsfsfbzwm-TryrO_1k3sTzt8RxRq41CuGceRFMZXmYgXq6Y0hSMoHnZMx4i-EUE-gNnk-NP4hHS1FUiBIcuSmIJlJrM0d2kp8kSVGFZYPiwlt0XujHEI9QrFShy3QlllMfLhLVm9pdJZxR_CXlVX7jHEJVdJVipjqLRCGIn3cp9edEygB05UBLTXoi464nFf_-JShwQ4V7rVvEbN66B5fR3By_U9Vy3txj-lj_zgrCU9ZXa4UDefdTcDtaU8zXAFs0Yp4T-LnJcp_kGmHE2cjeCwH1rdm6FGeIshiJAsieD5uhlnoE-rmMrVKy_j18EskcMIHrWWsO4JhrMIoBi2yA0b2ejqZkv19Utg-Q5UcAn-7qvemn7p1l9V8eQ_uvkUbrNg5Rmh4hD2ls3KPUNotcwHsCvnEl_V5MMA9kej6cUU34-Ozz6e49VxOh6EhxaDMK9-AlXLJGE |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxJtAgSDBCaxubGftHBACyrKljwO0Um-uEzuAhJKy2WXVP8VvZMZ5wPLorbcodhJnPJ757LG_AXjivRCqVLT0pkaMuHOYTbhlgnvNk8KNVeAt2NsfTw_l-6P0aA1-9GdhaFtlbxODoXZ1QWvkmwg0EAxKxdOXJ98YZY2i6GqfQqNVix1_usQpW_Niewv79ynnk7cHb6asyyrACgTrc2YLntnMJbkflzJPdYmA2olRqYQrcm-tR5BTaF5iiwvttEPML1qadpco77TA916Ai1KgJ6eT6ZN3w5oOsa1rKbuzOSOhNxsZLBG5guCs2XLF_4U0Af_Ctn9v0fwjThvc3-QaXO1wa_yqVbTrsOarG3CpzWR5ehM-fkAAzojnqiNpjvlW3NDG-7oiRtl6FtMJiu-IbF0cUkCjbrDCUuaKuFnMSlt4htXDLuwYET2i0ltweC6SvQ3rVV35uxCXQqdZqa1NlJPSKnxWUMjSc4lePdURJL0UTdGRmVNOja8mBNWFNq3kDUreBMmbZQTPhmdOWiqPM2u_ps4ZahINd7hRzz6ZblQbl4hxhlbRWa0lXctclGP8Qa59knoXwUbftaazDY35pckRPB6KcVRTqMZWvl5QHbKtWapGEdxpNWFoCU6REZRxLFErOrLS1NWS6svnwBwe6OVS_O7zXpt-a9Z_RXHv7L94BJenB3u7Znd7f-c-XOFB2TOWyA1Yn88W_gGitnn-MAyVGI7Pe2z-BNZvVE0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiDeBAosEJ7CStb1r7wEhShq1FKKqUKk311l7AQntljyI-tf4dcx4HxAevfUWxd7EO54Zf_aMvwF46r0QqlB09KaGjLhzmI25ZYJ7zePcpSrwFryfpLtH8u1xcrwBP9q7MJRW2frE4KhdldMZ-QCBBoJBqXgyKJq0iIPR-NXpN0YVpCjS2pbTqFVk35-tcPs2f7k3wrl-xvl45-ObXdZUGGA5AvcFsznPbObiqU8LOU10geDaiWGhhMun3lqPgCfXvMDR59pph_hf1JTtLlbeaYG_ewk2Fe2KerC5vTM5OOxOeIh7XUvZ3NQZCj2Yy-CXaGEISzdbra2GoWjAv5Du3wmbf0Rtw2I4vg7XGhQbva7V7gZs-PImXK7rWp7dgg-HCMcZsV41lM0RH0VzSsOvSuKXrWYR3af4jjjXRaEgNGoKyy3VsYjmy1lhc8-we8jJjhDfI0a9DUcXIts70Cur0t-DqBA6yQptbayclFbhs4ICmJ5LXOMT3Ye4laLJG2pzqrDx1YQQu9CmlrxByZsgebPqw_PumdOa2OPc3ts0OV1PIuUOX1SzT6axceNikWboI53VWtJnORVFii_ItY8T7_qw1U6taTzF3PzS6z486ZrRxilwY0tfLakPedosUcM-3K01oRsJbpgRonFsUWs6sjbU9Zbyy-fAIx7I5hL83xetNv02rP-K4v75b_EYrqBdmnd7k_0HcJUHXc9YLLegt5gt_UOEcIvpo8ZWIji5aPP8CVR-Wd8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Room-temperature+2D+semiconductor+activated+vertical-cavity+surface-emitting+lasers&rft.jtitle=Nature+communications&rft.au=Shang%2C+Jingzhi&rft.au=Cong%2C+Chunxiao&rft.au=Wang%2C+Zilong&rft.au=Peimyoo%2C+Namphung&rft.date=2017-09-14&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=8&rft.issue=1&rft.spage=543&rft_id=info:doi/10.1038%2Fs41467-017-00743-w&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |