Simple non-fused electron acceptors for efficient and stable organic solar cells

The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aro...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 2152 - 9
Main Authors Yu, Zhi-Peng, Liu, Zhi-Xi, Chen, Fang-Xiao, Qin, Ran, Lau, Tsz-Ki, Yin, Jing-Lin, Kong, Xueqian, Lu, Xinhui, Shi, Minmin, Li, Chang-Zhi, Chen, Hongzheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 14.05.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives. Non-fullerene electron acceptors have pushed the efficiency of organic solar cells up to 15% but they all contain fused rings and are inconvenient to synthetic access. Here Yu et al. develop fully unfused acceptors featuring non-covalent intramolecular interactions, high efficiencies and high stability.
AbstractList Non-fullerene electron acceptors have pushed the efficiency of organic solar cells up to 15% but they all contain fused rings and are inconvenient to synthetic access. Here Yu et al. develop fully unfused acceptors featuring non-covalent intramolecular interactions, high efficiencies and high stability.
The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.
The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.
The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives. Non-fullerene electron acceptors have pushed the efficiency of organic solar cells up to 15% but they all contain fused rings and are inconvenient to synthetic access. Here Yu et al. develop fully unfused acceptors featuring non-covalent intramolecular interactions, high efficiencies and high stability.
The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential toward practical application. In this work, simple non-fused-ring electron acceptors are developed through two-step synthesis from single aromatic units for constructing efficient OSCs. With the assistance of non-covalent interactions, these rotatable non-fused acceptors (in solution) allow transiting into planar and stackable conformation in condensed solid, promoting acceptors not only feasible solution-processability, but also excellent film characteristics. As results, decent power conversion efficiencies of 10.27% and 13.97% can be achieved in single and tandem OSCs consisting of simple solution-cast blends, in which the fully unfused acceptors exhibit exceptionally low synthetic complexity index. In addition, the unfused acceptor and its based OSCs exhibit promising stabilities under continuous illumination. Overall, this work reveals valuable insights on the structural design of simple and effective electron acceptors with great practical perspectives.Non-fullerene electron acceptors have pushed the efficiency of organic solar cells up to 15% but they all contain fused rings and are inconvenient to synthetic access. Here Yu et al. develop fully unfused acceptors featuring non-covalent intramolecular interactions, high efficiencies and high stability.
ArticleNumber 2152
Author Chen, Fang-Xiao
Shi, Minmin
Yu, Zhi-Peng
Li, Chang-Zhi
Yin, Jing-Lin
Lu, Xinhui
Lau, Tsz-Ki
Chen, Hongzheng
Liu, Zhi-Xi
Qin, Ran
Kong, Xueqian
Author_xml – sequence: 1
  givenname: Zhi-Peng
  surname: Yu
  fullname: Yu, Zhi-Peng
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
– sequence: 2
  givenname: Zhi-Xi
  surname: Liu
  fullname: Liu, Zhi-Xi
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
– sequence: 3
  givenname: Fang-Xiao
  surname: Chen
  fullname: Chen, Fang-Xiao
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
– sequence: 4
  givenname: Ran
  surname: Qin
  fullname: Qin, Ran
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
– sequence: 5
  givenname: Tsz-Ki
  surname: Lau
  fullname: Lau, Tsz-Ki
  organization: Department of Physics, The Chinese University of Hong Kong
– sequence: 6
  givenname: Jing-Lin
  surname: Yin
  fullname: Yin, Jing-Lin
  organization: Department of Chemistry, Zhejiang University
– sequence: 7
  givenname: Xueqian
  orcidid: 0000-0002-1901-9073
  surname: Kong
  fullname: Kong, Xueqian
  organization: Department of Chemistry, Zhejiang University
– sequence: 8
  givenname: Xinhui
  orcidid: 0000-0002-1908-3294
  surname: Lu
  fullname: Lu, Xinhui
  organization: Department of Physics, The Chinese University of Hong Kong
– sequence: 9
  givenname: Minmin
  surname: Shi
  fullname: Shi, Minmin
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
– sequence: 10
  givenname: Chang-Zhi
  surname: Li
  fullname: Li, Chang-Zhi
  email: czli@zju.edu.cn
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
– sequence: 11
  givenname: Hongzheng
  surname: Chen
  fullname: Chen, Hongzheng
  organization: State Key Laboratory of Silicon Materials, MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31089140$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUjVARLaU_wAJFYsMm4GsnfmyQUMWjUiWQgLV141wPHmXiwc5Uol-PZ1JK20W98euc43Ovz_PqaIoTVdVLYG-BCf0ut9BK1TAwDTBmdHP9pDrhrIUGFBdHd9bH1VnOa1aGMKDb9ll1LIBpAy07qb59D5vtSHVRb_wu01DTSG5OcarROdrOMeXax1ST98EFmuYap6HOM_aFFdMKp-DqHEdMtaNxzC-qpx7HTGc382n189PHH-dfmsuvny_OP1w2TjI5N4i67xz20imHYlC96EkO4LVnkoPqyEM3qNYA151E33UcUDCtNRuE1wLFaXWx6A4R13abwgbTHxsx2MNBcWYxzcGNZBmBQ9BGkjStAoVcoWmNJwNlZ_Za7xet7a7f0OBKlQnHe6L3b6bwy67ilZUdqFbwIvDmRiDF3zvKs92EvG8HThR32XIuSuel1qZAXz-AruMuTaVVBcU7AGMOqFd3Hd1a-fdxBcAXgEsx50T-FgLM7gNil4DYEhB7CIi9LiT9gOTCjHOI-6rC-DhVLNRc3plWlP7bfoT1F3Yhz3s
CitedBy_id crossref_primary_10_1016_j_cej_2024_150579
crossref_primary_10_1016_j_dyepig_2023_111808
crossref_primary_10_1002_anie_202408960
crossref_primary_10_1002_ejoc_202401337
crossref_primary_10_1016_j_isci_2020_100965
crossref_primary_10_1002_cjoc_202000666
crossref_primary_10_1007_s10118_022_2825_y
crossref_primary_10_1039_D3TC01742G
crossref_primary_10_1002_solr_202300453
crossref_primary_10_1016_j_nanoen_2020_105161
crossref_primary_10_1021_jacs_0c04084
crossref_primary_10_1016_j_jphotochem_2024_115983
crossref_primary_10_1016_j_trechm_2021_09_008
crossref_primary_10_1002_ange_202413135
crossref_primary_10_1016_j_dyepig_2022_110680
crossref_primary_10_1021_jacs_4c00090
crossref_primary_10_1002_aenm_202400928
crossref_primary_10_1016_j_cej_2024_149584
crossref_primary_10_1039_D0TA03058A
crossref_primary_10_1016_j_isci_2021_103027
crossref_primary_10_1007_s11426_019_9599_1
crossref_primary_10_1039_D2TA09500A
crossref_primary_10_1016_j_cej_2024_154935
crossref_primary_10_1007_s11426_019_9684_8
crossref_primary_10_1021_acsami_3c19612
crossref_primary_10_1016_j_orgel_2020_105662
crossref_primary_10_1021_acsapm_0c00791
crossref_primary_10_1021_acsenergylett_2c00985
crossref_primary_10_1007_s10118_020_2435_5
crossref_primary_10_1039_D4TA00933A
crossref_primary_10_1002_solr_202400153
crossref_primary_10_1002_anie_202403051
crossref_primary_10_1021_acsami_3c01194
crossref_primary_10_1039_D4CC03236E
crossref_primary_10_1002_anie_202404142
crossref_primary_10_1021_acsami_2c03723
crossref_primary_10_1039_D4TC01176G
crossref_primary_10_1021_acsami_2c22292
crossref_primary_10_1039_D2TC01237E
crossref_primary_10_1002_adma_202110569
crossref_primary_10_1021_acs_jpcb_5c00283
crossref_primary_10_1039_D3NJ00845B
crossref_primary_10_1021_acsenergylett_0c00537
crossref_primary_10_1002_anie_202208383
crossref_primary_10_1002_solr_202000286
crossref_primary_10_1002_solr_202100094
crossref_primary_10_1002_ange_202416751
crossref_primary_10_1002_anie_202214931
crossref_primary_10_1007_s11426_021_1159_y
crossref_primary_10_1021_acsami_0c14774
crossref_primary_10_1021_acsami_0c11384
crossref_primary_10_1016_j_cclet_2023_109099
crossref_primary_10_1002_solr_202300891
crossref_primary_10_1002_anie_202314362
crossref_primary_10_1002_cjoc_202300521
crossref_primary_10_1002_marc_202200530
crossref_primary_10_1039_D1TA04623C
crossref_primary_10_1002_aenm_202303169
crossref_primary_10_1021_acsaem_2c03634
crossref_primary_10_1021_acsami_0c12100
crossref_primary_10_1039_D2TA08367A
crossref_primary_10_1002_adma_202107330
crossref_primary_10_1016_j_cej_2023_142743
crossref_primary_10_1021_acs_chemmater_2c03521
crossref_primary_10_1039_D0MH01585G
crossref_primary_10_1002_ange_202408960
crossref_primary_10_1016_j_cej_2023_141659
crossref_primary_10_1016_j_giant_2024_100338
crossref_primary_10_1016_j_jechem_2024_04_050
crossref_primary_10_1039_D2TC05164H
crossref_primary_10_1002_solr_202000337
crossref_primary_10_1016_j_enchem_2020_100042
crossref_primary_10_1002_ange_202214088
crossref_primary_10_1039_D4TC00502C
crossref_primary_10_1039_C9TA09241B
crossref_primary_10_1002_adma_202406329
crossref_primary_10_1039_D2PY00139J
crossref_primary_10_1021_acsaem_2c00475
crossref_primary_10_1039_D4TA09019E
crossref_primary_10_1002_anie_202413135
crossref_primary_10_1002_qua_27254
crossref_primary_10_1039_C9TC05166J
crossref_primary_10_1021_acsapm_3c01243
crossref_primary_10_1002_anie_202209021
crossref_primary_10_1002_solr_202000253
crossref_primary_10_1038_s41467_021_25638_9
crossref_primary_10_1002_cjoc_202300542
crossref_primary_10_1002_adma_201904283
crossref_primary_10_1021_acsami_0c11159
crossref_primary_10_1039_D0TA03703F
crossref_primary_10_1007_s12613_024_2903_y
crossref_primary_10_1002_adma_202001160
crossref_primary_10_1002_adma_202212236
crossref_primary_10_1021_acsami_2c13304
crossref_primary_10_1021_acs_macromol_1c02111
crossref_primary_10_1016_j_jpap_2022_100129
crossref_primary_10_1002_anie_202010856
crossref_primary_10_1002_solr_202000421
crossref_primary_10_1016_j_dyepig_2023_111768
crossref_primary_10_1039_D2TA02604J
crossref_primary_10_1002_nano_202000027
crossref_primary_10_1073_pnas_2007799117
crossref_primary_10_1002_adom_202302210
crossref_primary_10_1038_s41467_021_23389_1
crossref_primary_10_1021_acsami_4c01354
crossref_primary_10_1002_anie_202416751
crossref_primary_10_1039_D1TA10707K
crossref_primary_10_1002_anie_202101867
crossref_primary_10_1038_s41467_020_16509_w
crossref_primary_10_1021_acsaem_0c02719
crossref_primary_10_1002_cssc_202100746
crossref_primary_10_1002_smll_202405525
crossref_primary_10_1002_solr_202000537
crossref_primary_10_1002_ange_202100390
crossref_primary_10_1039_D1TC01746B
crossref_primary_10_1002_ange_202209021
crossref_primary_10_1039_D0TC05261B
crossref_primary_10_1016_j_dyepig_2022_110178
crossref_primary_10_1002_aenm_202003570
crossref_primary_10_1021_acsaem_1c01737
crossref_primary_10_1039_D3TC00625E
crossref_primary_10_1016_j_dyepig_2020_108416
crossref_primary_10_1016_j_cplett_2022_139750
crossref_primary_10_1021_acsami_2c04530
crossref_primary_10_1002_adma_202419923
crossref_primary_10_1002_ange_202314362
crossref_primary_10_1016_j_cclet_2022_107968
crossref_primary_10_1039_D1QM01622A
crossref_primary_10_1002_adma_201903441
crossref_primary_10_1002_adma_202108090
crossref_primary_10_1039_D2ME00068G
crossref_primary_10_1016_j_dyepig_2022_111033
crossref_primary_10_1039_D2NJ01108E
crossref_primary_10_1360_TB_2024_0449
crossref_primary_10_1021_acsaem_2c01831
crossref_primary_10_1021_acsaem_1c00617
crossref_primary_10_1002_sstr_202100055
crossref_primary_10_1039_D0CC04297H
crossref_primary_10_1016_j_orgel_2021_106194
crossref_primary_10_1021_acsapm_1c01406
crossref_primary_10_1039_D0TA12288B
crossref_primary_10_1007_s11426_022_1222_y
crossref_primary_10_1039_C9TA11285E
crossref_primary_10_1088_1674_4926_44_5_052201
crossref_primary_10_1021_acsenergylett_2c00476
crossref_primary_10_1039_D3CS00895A
crossref_primary_10_1002_ange_202403051
crossref_primary_10_1007_s10118_022_2751_z
crossref_primary_10_1002_ange_202404142
crossref_primary_10_1002_smsc_202200006
crossref_primary_10_1002_anie_202316495
crossref_primary_10_1021_acsaem_2c01945
crossref_primary_10_1002_ente_202100912
crossref_primary_10_1002_cjoc_202400960
crossref_primary_10_1002_ange_202105861
crossref_primary_10_1039_D2IM00037G
crossref_primary_10_1007_s42452_022_05128_3
crossref_primary_10_1002_adfm_202112433
crossref_primary_10_1002_smll_201907681
crossref_primary_10_1039_D1CC01170G
crossref_primary_10_1002_ange_202208383
crossref_primary_10_1002_cjoc_202300006
crossref_primary_10_1002_cssc_202402226
crossref_primary_10_1007_s10118_022_2750_0
crossref_primary_10_1002_chem_202102252
crossref_primary_10_1039_D2QM00088A
crossref_primary_10_1002_ange_202214931
crossref_primary_10_1002_aenm_202002572
crossref_primary_10_1039_D4TA07953A
crossref_primary_10_1038_s41578_023_00606_5
crossref_primary_10_1021_acsapm_4c02826
crossref_primary_10_1016_j_cej_2022_134987
crossref_primary_10_1039_D1TC04097A
crossref_primary_10_1039_D2NJ04490K
crossref_primary_10_3390_molecules28083515
crossref_primary_10_1007_s40843_022_2019_4
crossref_primary_10_1021_acsami_2c01190
crossref_primary_10_1039_D2MA00382A
crossref_primary_10_1002_cjoc_202200852
crossref_primary_10_1002_slct_202401831
crossref_primary_10_1016_j_xcrp_2022_100957
crossref_primary_10_1021_acsaem_4c00735
crossref_primary_10_1002_smtd_202300036
crossref_primary_10_1021_acsaem_0c00689
crossref_primary_10_1016_j_jmgm_2023_108563
crossref_primary_10_1021_acs_chemmater_0c00097
crossref_primary_10_1016_j_cej_2021_132298
crossref_primary_10_1002_ange_202219245
crossref_primary_10_1007_s00339_021_04735_y
crossref_primary_10_1002_solr_202101034
crossref_primary_10_1039_D0SE00335B
crossref_primary_10_1039_D1RA03233J
crossref_primary_10_1002_cssc_202100689
crossref_primary_10_1021_acsami_9b19676
crossref_primary_10_1021_polymscitech_4c00054
crossref_primary_10_1002_adfm_202101742
crossref_primary_10_1002_anie_202403753
crossref_primary_10_1246_bcsj_20200231
crossref_primary_10_1039_D0TA06394K
crossref_primary_10_1016_j_jmgm_2024_108722
crossref_primary_10_1016_j_esci_2022_10_010
crossref_primary_10_1016_j_jechem_2020_03_036
crossref_primary_10_1039_D3NJ05123D
crossref_primary_10_1021_acsami_4c03446
crossref_primary_10_3389_femat_2022_851294
crossref_primary_10_1021_accountsmr_2c00052
crossref_primary_10_1021_acs_macromol_2c02184
crossref_primary_10_1039_D3NJ05159E
crossref_primary_10_1002_smtd_202401511
crossref_primary_10_1002_cptc_202300256
crossref_primary_10_1002_adfm_202304752
crossref_primary_10_1002_ange_202316495
crossref_primary_10_1002_smll_202305631
crossref_primary_10_1002_smtd_201900531
crossref_primary_10_1016_j_nanoen_2022_107463
crossref_primary_10_1021_acsami_1c21089
crossref_primary_10_1016_j_orgel_2021_106132
crossref_primary_10_1002_adom_202200371
crossref_primary_10_1002_agt2_469
crossref_primary_10_1016_j_orgel_2021_106131
crossref_primary_10_1021_acsenergylett_0c02053
crossref_primary_10_1021_acsami_0c00837
crossref_primary_10_1039_D5CP00267B
crossref_primary_10_1016_j_cej_2022_139312
crossref_primary_10_1002_anie_202100390
crossref_primary_10_1016_j_cej_2022_137375
crossref_primary_10_1016_j_isci_2019_08_038
crossref_primary_10_1016_j_nanoen_2020_104861
crossref_primary_10_1016_j_dyepig_2024_112629
crossref_primary_10_1021_acsapm_9b00859
crossref_primary_10_1021_acsaem_1c00369
crossref_primary_10_1007_s11426_019_9669_3
crossref_primary_10_1039_D4CS00132J
crossref_primary_10_1002_agt2_111
crossref_primary_10_1016_j_orgel_2022_106512
crossref_primary_10_1016_j_cej_2023_145131
crossref_primary_10_1002_aenm_202002746
crossref_primary_10_1016_j_dyepig_2023_111478
crossref_primary_10_1002_inf2_12595
crossref_primary_10_1039_D4TC03646H
crossref_primary_10_1016_j_nanoen_2023_108853
crossref_primary_10_1063_1_5129588
crossref_primary_10_1039_D1QM00026H
crossref_primary_10_1016_j_mtener_2021_100938
crossref_primary_10_1002_adfm_202418659
crossref_primary_10_1002_anie_202400565
crossref_primary_10_1016_j_jechem_2022_03_030
crossref_primary_10_1002_adom_202202525
crossref_primary_10_1021_acsapm_9b00833
crossref_primary_10_1016_j_orgel_2022_106562
crossref_primary_10_1016_j_mtener_2021_100802
crossref_primary_10_1002_adfm_202406501
crossref_primary_10_1002_adfm_202108861
crossref_primary_10_1016_j_cclet_2019_12_003
crossref_primary_10_1007_s11426_021_1078_5
crossref_primary_10_1021_acsphotonics_4c01232
crossref_primary_10_1002_solr_202300095
crossref_primary_10_1021_acsaem_9b01667
crossref_primary_10_1002_adma_202001621
crossref_primary_10_1038_s41560_021_00820_x
crossref_primary_10_1039_D4EE02027H
crossref_primary_10_1039_C9TA09961A
crossref_primary_10_1002_adma_202310362
crossref_primary_10_1039_D3TA07296G
crossref_primary_10_1016_j_dyepig_2020_108335
crossref_primary_10_1002_ange_202010856
crossref_primary_10_1016_j_dyepig_2021_109801
crossref_primary_10_1021_acsami_1c02652
crossref_primary_10_1039_D0TA06146H
crossref_primary_10_1039_C9TC04798K
crossref_primary_10_1039_D3TA00372H
crossref_primary_10_1039_D2TA09188G
crossref_primary_10_1002_cjoc_202200579
crossref_primary_10_1002_marc_202200085
crossref_primary_10_1002_aenm_202100056
crossref_primary_10_1016_j_cej_2021_131473
crossref_primary_10_1021_acsaem_3c02429
crossref_primary_10_1002_aenm_202102591
crossref_primary_10_1039_D4TC03545C
crossref_primary_10_1039_D2NJ04513C
crossref_primary_10_1002_sus2_82
crossref_primary_10_1002_inf2_12276
crossref_primary_10_1002_agt2_281
crossref_primary_10_1007_s10118_022_2888_9
crossref_primary_10_1002_inf2_12271
crossref_primary_10_1016_j_dyepig_2020_108789
crossref_primary_10_1002_adma_202301671
crossref_primary_10_1021_acsami_0c22946
crossref_primary_10_1016_j_cclet_2022_06_015
crossref_primary_10_1016_j_cej_2023_144472
crossref_primary_10_1002_cssc_202200034
crossref_primary_10_1021_acsaem_2c03095
crossref_primary_10_1002_adfm_202300202
crossref_primary_10_1002_aenm_202102000
crossref_primary_10_1016_j_cej_2021_130397
crossref_primary_10_1016_j_joule_2024_05_011
crossref_primary_10_1016_j_dyepig_2024_112415
crossref_primary_10_1039_D0TA01340D
crossref_primary_10_1088_2516_1075_ad1e3a
crossref_primary_10_1016_j_dyepig_2020_108319
crossref_primary_10_1007_s11426_022_1449_4
crossref_primary_10_1016_j_joule_2021_03_014
crossref_primary_10_1039_D2EE00271J
crossref_primary_10_1039_D4EE02551B
crossref_primary_10_1021_acsami_9b18076
crossref_primary_10_1002_adma_201906175
crossref_primary_10_1002_smtd_202200007
crossref_primary_10_1002_adfm_202305445
crossref_primary_10_1002_aenm_202103977
crossref_primary_10_1021_acsami_2c21574
crossref_primary_10_1002_solr_201900446
crossref_primary_10_1039_C9TA07760J
crossref_primary_10_1021_acsami_1c09597
crossref_primary_10_1039_D4TC05497K
crossref_primary_10_1007_s11426_020_9868_8
crossref_primary_10_1021_acsami_0c13993
crossref_primary_10_1002_adma_201906045
crossref_primary_10_1016_j_dyepig_2021_109560
crossref_primary_10_1039_C9EE03710A
crossref_primary_10_1039_D1TC05550J
crossref_primary_10_1002_adfm_202000383
crossref_primary_10_1002_aenm_202304063
crossref_primary_10_1002_sstr_202000016
crossref_primary_10_1021_acsaem_2c02330
crossref_primary_10_1002_adfm_202315476
crossref_primary_10_1016_j_xcrp_2022_101169
crossref_primary_10_1039_D1TA09392D
crossref_primary_10_1002_adfm_202102189
crossref_primary_10_1002_ange_202400565
crossref_primary_10_1139_cjc_2021_0134
crossref_primary_10_1002_aenm_202100492
crossref_primary_10_1002_cjoc_201900495
crossref_primary_10_1039_C9TA08328F
crossref_primary_10_1016_j_solener_2021_11_077
crossref_primary_10_1007_s11426_020_9747_9
crossref_primary_10_1002_anie_202214088
crossref_primary_10_1021_acsami_4c06589
crossref_primary_10_1002_smll_202304368
crossref_primary_10_1021_acsaem_2c02489
crossref_primary_10_1016_j_cej_2021_131828
crossref_primary_10_1016_j_nanoen_2019_104243
crossref_primary_10_1016_j_solener_2021_10_048
crossref_primary_10_1002_jctb_7530
crossref_primary_10_1016_j_cej_2021_129768
crossref_primary_10_1002_solr_202100806
crossref_primary_10_1007_s11426_021_1180_6
crossref_primary_10_1002_adfm_202108614
crossref_primary_10_1002_bio_4843
crossref_primary_10_1021_acs_accounts_4c00592
crossref_primary_10_1039_D2TA06706D
crossref_primary_10_1016_j_nanoen_2021_105957
crossref_primary_10_1039_D0TC00075B
crossref_primary_10_1002_cjoc_202100323
crossref_primary_10_1016_j_cej_2024_151806
crossref_primary_10_6023_A22020081
crossref_primary_10_1002_anie_202219245
crossref_primary_10_1002_aenm_202000823
crossref_primary_10_1016_j_dyepig_2025_112667
crossref_primary_10_1016_j_cej_2022_135384
crossref_primary_10_1002_solr_201900480
crossref_primary_10_1002_anie_202105861
crossref_primary_10_1002_adfm_202000456
crossref_primary_10_1039_C9TC03819A
crossref_primary_10_1021_acsaem_2c01179
crossref_primary_10_1002_adfm_202106735
crossref_primary_10_1007_s11426_021_9991_0
crossref_primary_10_1021_acsami_9b12583
crossref_primary_10_1002_solr_202100868
crossref_primary_10_1016_j_synthmet_2024_117574
crossref_primary_10_1021_acsaem_3c02238
crossref_primary_10_1039_C9TA14070K
crossref_primary_10_1002_marc_202100828
crossref_primary_10_1039_D4TA06146B
crossref_primary_10_1021_acsami_0c14922
crossref_primary_10_1039_C9TA06311K
crossref_primary_10_1002_solr_202000062
crossref_primary_10_1021_acsami_0c01850
crossref_primary_10_1021_acsami_1c22520
crossref_primary_10_1039_C9TC05358A
crossref_primary_10_1039_D4EE04879B
crossref_primary_10_1016_j_mtener_2024_101591
crossref_primary_10_1021_acsaem_0c02083
crossref_primary_10_1021_acsami_1c06299
crossref_primary_10_1002_adom_202402257
crossref_primary_10_1007_s13391_022_00378_0
crossref_primary_10_1016_j_synthmet_2020_116625
crossref_primary_10_1038_s41467_021_25394_w
crossref_primary_10_1021_acs_accounts_0c00009
crossref_primary_10_1007_s11426_022_1502_3
crossref_primary_10_1002_ange_202403753
crossref_primary_10_1039_D0QM00826E
crossref_primary_10_1002_solr_201900269
crossref_primary_10_1016_j_orgel_2020_106029
crossref_primary_10_1021_jacs_2c05303
crossref_primary_10_1016_j_surfin_2022_102185
crossref_primary_10_1016_j_nanoen_2023_108661
crossref_primary_10_1039_C9TC04680A
crossref_primary_10_1088_2399_7532_abf337
crossref_primary_10_1002_adma_202302259
crossref_primary_10_1039_D2TA09159C
crossref_primary_10_1016_j_synthmet_2021_116922
crossref_primary_10_1021_acsenergylett_0c00857
crossref_primary_10_1021_acs_jpclett_4c00153
crossref_primary_10_1002_ange_202101867
crossref_primary_10_1021_acsaem_3c02261
crossref_primary_10_1021_acsami_4c17283
Cites_doi 10.1038/nenergy.2015.27
10.1021/jacs.6b00853
10.1039/C4EE01529K
10.1002/adma.201606729
10.1038/nmat5063
10.1103/PhysRevB.82.245207
10.1002/adma.201800868
10.1021/acs.chemmater.6b02264
10.1021/acs.chemmater.8b04087
10.1038/natrevmats.2018.3
10.1038/ncomms13740
10.1002/aenm.201602540
10.1126/science.aat2612
10.1002/adma.201803769
10.1016/j.joule.2018.09.001
10.1038/s41566-018-0104-9
10.1021/jacs.7b00566
10.1039/C8TA03753A
10.1038/s41467-018-03207-x
10.1002/adma.201602642
10.1021/acs.chemrev.7b00084
10.1002/adma.201404317
10.1002/adma.201701308
10.1039/c2jm15126j
10.1021/jacs.7b13239
10.1002/adma.201802888
10.1038/s41560-018-0263-4
10.1038/ncomms11585
10.1002/aenm.201700465
10.1016/j.scib.2017.11.003
10.1021/jacs.7b11278
10.1021/jp304009g
10.1021/acs.chemmater.8b02276
10.1002/smll.201701120
10.1002/adma.201606574
10.1039/C4EE03424D
10.1021/acs.chemmater.7b02853
10.3866/PKU.WHXB201805091
ContentType Journal Article
Copyright The Author(s) 2019
The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-10098-z
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
CrossRef

PubMed
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_0e1ca1896e694717a27a949fe917179a
PMC6517432
31089140
10_1038_s41467_019_10098_z
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: This research was funded by National Natural Science Foundation of China (Nos. 21722404, 21674093, and 21734008)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-aa8b5cab6c7ca3d7b3be6d1f8f062175ef15d74912856af5521a308880d3f83a3
IEDL.DBID C6C
ISSN 2041-1723
IngestDate Wed Aug 27 01:19:12 EDT 2025
Thu Aug 21 18:18:16 EDT 2025
Fri Jul 11 05:12:51 EDT 2025
Wed Aug 13 09:47:53 EDT 2025
Mon Jul 21 05:40:51 EDT 2025
Thu Apr 24 22:54:02 EDT 2025
Tue Jul 01 02:21:29 EDT 2025
Fri Feb 21 02:38:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-aa8b5cab6c7ca3d7b3be6d1f8f062175ef15d74912856af5521a308880d3f83a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1908-3294
0000-0002-1901-9073
OpenAccessLink https://www.nature.com/articles/s41467-019-10098-z
PMID 31089140
PQID 2225119989
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_0e1ca1896e694717a27a949fe917179a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6517432
proquest_miscellaneous_2231846889
proquest_journals_2225119989
pubmed_primary_31089140
crossref_primary_10_1038_s41467_019_10098_z
crossref_citationtrail_10_1038_s41467_019_10098_z
springer_journals_10_1038_s41467_019_10098_z
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-14
PublicationDateYYYYMMDD 2019-05-14
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-14
  day: 14
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Cowan, Roy, Heeger (CR38) 2010; 82
Sun (CR26) 2018; 9
Deng (CR6) 2016; 7
Li (CR18) 2017; 139
Zhao (CR4) 2016; 1
Liu (CR32) 2017; 139
Lin (CR15) 2016; 138
Huang, Yang, Facchetti, Marks (CR33) 2017; 117
Cheng, Li, Zhan, Yang (CR7) 2018; 12
Yi (CR29) 2019; 31
Li, Lu, Wei (CR19) 2017; 7
Meng (CR23) 2018; 361
Huang (CR5) 2017; 29
Wang (CR16) 2017; 29
Nguyen (CR31) 2014; 7
Mai Jiangquan (CR25) 2016; 28
Yao (CR20) 2018; 140
Zhang, Qin, Zhu, Hou (CR8) 2018; 30
Yao (CR12) 2016; 28
Li, Liu, Li, Shi, Chen (CR22) 2017; 13
Sigalov, Doronina, Sidorkin (CR35) 2012; 116
Xiao, Jia, Ding (CR21) 2017; 62
Lin (CR10) 2015; 27
Chen, Xu, Liu, Chen, Xia, Yang, Lau, Zhang, Lu, Yip, Jen, Chen, Li (CR27) 2018; 30
Huang (CR13) 2018; 30
Mai (CR37) 2018; 30
Holliday (CR14) 2016; 7
Yan (CR2) 2018; 3
Li, Yip, Jen (CR3) 2012; 22
Fan (CR9) 2018; 3
Min (CR24) 2017; 7
Hou, Inganas, Friend, Gao (CR1) 2018; 17
Liu (CR17) 2017; 29
Li (CR28) 2018; 6
Lin (CR11) 2015; 8
Zhang (CR30) 2019; 35
Du (CR34) 2018; 3
Shi (CR36) 2017; 29
J Zhao (10098_CR4) 2016; 1
H Li (10098_CR19) 2017; 7
P Cheng (10098_CR7) 2018; 12
Y Lin (10098_CR11) 2015; 8
S Li (10098_CR22) 2017; 13
W Wang (10098_CR16) 2017; 29
Y Li (10098_CR18) 2017; 139
C Huang (10098_CR13) 2018; 30
J Mai (10098_CR37) 2018; 30
CZ Li (10098_CR3) 2012; 22
S Zhang (10098_CR8) 2018; 30
Fang-Xiao Chen (10098_CR27) 2018; 30
L Meng (10098_CR23) 2018; 361
J Hou (10098_CR1) 2018; 17
Y Lin (10098_CR15) 2016; 138
Z Zhang (10098_CR30) 2019; 35
S Li (10098_CR28) 2018; 6
C Yan (10098_CR2) 2018; 3
B Fan (10098_CR9) 2018; 3
Z Yao (10098_CR20) 2018; 140
D Deng (10098_CR6) 2016; 7
J Min (10098_CR24) 2017; 7
H Yao (10098_CR12) 2016; 28
YQQ Yi (10098_CR29) 2019; 31
J Huang (10098_CR5) 2017; 29
S Holliday (10098_CR14) 2016; 7
Y Liu (10098_CR32) 2017; 139
C Sun (10098_CR26) 2018; 9
X Shi (10098_CR36) 2017; 29
F Liu (10098_CR17) 2017; 29
Mai Jiangquan (10098_CR25) 2016; 28
TL Nguyen (10098_CR31) 2014; 7
SR Cowan (10098_CR38) 2010; 82
Z Xiao (10098_CR21) 2017; 62
MV Sigalov (10098_CR35) 2012; 116
Y Lin (10098_CR10) 2015; 27
H Huang (10098_CR33) 2017; 117
X Du (10098_CR34) 2018; 3
References_xml – volume: 1
  start-page: 15027
  year: 2016
  ident: CR4
  article-title: Efficient organic solar cells processed from hydrocarbon solvents
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.27
– volume: 138
  start-page: 2973
  year: 2016
  end-page: 2976
  ident: CR15
  article-title: A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00853
– volume: 7
  start-page: 3040
  year: 2014
  end-page: 3051
  ident: CR31
  article-title: Semi-crystalline photovoltaic polymers with efficiency exceeding 9% in a ∼300 nm thick conventional single-cell device
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01529K
– volume: 29
  start-page: 1606729
  year: 2017
  ident: CR5
  article-title: Highly efficient organic solar cells consisting of double bulk heterojunction layers
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606729
– volume: 17
  start-page: 119
  year: 2018
  end-page: 128
  ident: CR1
  article-title: Organic solar cells based on non-fullerene acceptors
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 82
  start-page: 245207
  year: 2010
  ident: CR38
  article-title: Recombination in polymer-fullerene bulk heterojunction solar cells
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.245207
– volume: 30
  start-page: 1800868
  year: 2018
  ident: CR8
  article-title: Over 14% efficiency in polymer solar cells enabled by a chlorinated polymer donor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800868
– volume: 28
  start-page: 6186
  year: 2016
  end-page: 6195
  ident: CR25
  article-title: Understanding morphology compatibility for high-performance ternary organic solar cells
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02264
– volume: 31
  start-page: 904
  year: 2019
  end-page: 911
  ident: CR29
  article-title: Small molecule acceptors with a nonfused architecture for high-performance organic photovoltaics
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04087
– volume: 3
  start-page: 18003
  year: 2018
  end-page: 18022
  ident: CR2
  article-title: Non-fullerene acceptors for organic solar cells
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.3
– volume: 7
  start-page: 13740
  year: 2016
  end-page: 13749
  ident: CR6
  article-title: Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13740
– volume: 7
  start-page: 1602540
  year: 2017
  ident: CR19
  article-title: Polymer/small molecule/fullerene based ternary solar cells
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602540
– volume: 361
  start-page: 1094
  year: 2018
  end-page: 1100
  ident: CR23
  article-title: Organic and solution-processed tandem solar cells with 17.3% efficiency
  publication-title: Science
  doi: 10.1126/science.aat2612
– volume: 30
  start-page: 1803769
  issue: 52
  year: 2018
  ident: CR27
  article-title: Near-Infrared Electron Acceptors with Fluorinated Regioisomeric Backbone for Highly Efficient Polymer Solar Cells
  publication-title: Advanced Materials
  doi: 10.1002/adma.201803769
– volume: 3
  start-page: 215
  year: 2018
  end-page: 226
  ident: CR34
  article-title: Efficient polymer solar cells based on non-fullerene acceptors with potential device lifetime approaching 10 years
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.001
– volume: 12
  start-page: 131
  year: 2018
  end-page: 142
  ident: CR7
  article-title: Next-generation organic photovoltaics based on non-fullerene acceptors
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0104-9
– volume: 139
  start-page: 3356
  year: 2017
  end-page: 3359
  ident: CR32
  article-title: Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00566
– volume: 6
  start-page: 12132
  year: 2018
  end-page: 12141
  ident: CR28
  article-title: Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C–D–A type non-fullerene acceptors
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03753A
– volume: 35
  start-page: 394
  year: 2019
  end-page: 401
  ident: CR30
  article-title: A simple electron acceptor with unfused backbone for polymer solar cells
  publication-title: Acta Phys.-Chim. Sin.
– volume: 9
  start-page: 743
  year: 2018
  end-page: 753
  ident: CR26
  article-title: A low cost and high performance polymer donor material for polymer solar cells
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03207-x
– volume: 28
  start-page: 8283
  year: 2016
  end-page: 8287
  ident: CR12
  article-title: Design and synthesis of a low bandgap small molecule acceptor for efficient polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602642
– volume: 117
  start-page: 10291
  year: 2017
  end-page: 10318
  ident: CR33
  article-title: Organic and polymeric semiconductors enhanced by noncovalent conformational locks
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00084
– volume: 27
  start-page: 1170
  year: 2015
  end-page: 1174
  ident: CR10
  article-title: An electron acceptor challenging fullerenes for efficient polymer solar cells
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
– volume: 29
  start-page: 1701308
  year: 2017
  ident: CR16
  article-title: Fused hexacyclic nonfullerene acceptor with strong near-infrared absorption for semitransparent organic solar cells with 9.77% efficiency
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701308
– volume: 22
  start-page: 4161
  year: 2012
  end-page: 4178
  ident: CR3
  article-title: Functional fullerenes for organic photovoltaics
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15126j
– volume: 140
  start-page: 2054
  year: 2018
  end-page: 2057
  ident: CR20
  article-title: Dithienopicenocarbazole-based acceptors for efficient organic solar cells with optoelectronic response over 1000 nm and an extremely low energy loss
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13239
– volume: 30
  start-page: 1802888
  year: 2018
  ident: CR37
  article-title: Hidden structure ordering along backbone of fused-ring electron acceptors enhanced by ternary bulk heterojunction
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802888
– volume: 3
  start-page: 1051
  year: 2018
  end-page: 1058
  ident: CR9
  article-title: Fine-tuning of the chemical structure of photoactive materials for highly efficient organic photovoltaics
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0263-4
– volume: 7
  start-page: 11585
  year: 2016
  end-page: 11596
  ident: CR14
  article-title: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11585
– volume: 7
  start-page: 1700465
  year: 2017
  ident: CR24
  article-title: Evaluation of electron donor materials for solution-processed organic solar cells via a novel figure of merit
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700465
– volume: 62
  start-page: 1562
  year: 2017
  end-page: 1564
  ident: CR21
  article-title: Ternary organic solar cells offer 14% power conversion efficiency
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.11.003
– volume: 139
  start-page: 17114
  year: 2017
  end-page: 17119
  ident: CR18
  article-title: High efficiency near-infrared and semitransparent non-fullerene acceptor organic photovoltaic cells
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11278
– volume: 116
  start-page: 7718
  year: 2012
  end-page: 7725
  ident: CR35
  article-title: C(Ar)-H…O hydrogen bonds in substituted isobenzofuranone derivatives: geometric, topological, and NMR characterization
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp304009g
– volume: 30
  start-page: 5429
  year: 2018
  end-page: 5434
  ident: CR13
  article-title: Highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02276
– volume: 13
  start-page: 1701120
  year: 2017
  ident: CR22
  article-title: Efficient organic solar cells with non-fullerene acceptors
  publication-title: Small
  doi: 10.1002/smll.201701120
– volume: 29
  start-page: 1606574
  year: 2017
  ident: CR17
  article-title: Efficient semitransparent solar cells with high NIR responsiveness enabled by a small-bandgap electron acceptor
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606574
– volume: 8
  start-page: 610
  year: 2015
  end-page: 616
  ident: CR11
  article-title: High-performance fullerene-free polymer solar cells with 6.31% efficiency
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03424D
– volume: 29
  start-page: 8369
  year: 2017
  end-page: 8376
  ident: CR36
  article-title: Design of a highly crystalline low-band gap fused-ring electron acceptor for high-efficiency solar cells with low energy loss
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02853
– volume: 29
  start-page: 1606729
  year: 2017
  ident: 10098_CR5
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606729
– volume: 13
  start-page: 1701120
  year: 2017
  ident: 10098_CR22
  publication-title: Small
  doi: 10.1002/smll.201701120
– volume: 28
  start-page: 6186
  year: 2016
  ident: 10098_CR25
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b02264
– volume: 30
  start-page: 5429
  year: 2018
  ident: 10098_CR13
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b02276
– volume: 7
  start-page: 13740
  year: 2016
  ident: 10098_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13740
– volume: 82
  start-page: 245207
  year: 2010
  ident: 10098_CR38
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.82.245207
– volume: 30
  start-page: 1800868
  year: 2018
  ident: 10098_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800868
– volume: 27
  start-page: 1170
  year: 2015
  ident: 10098_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404317
– volume: 3
  start-page: 215
  year: 2018
  ident: 10098_CR34
  publication-title: Joule
  doi: 10.1016/j.joule.2018.09.001
– volume: 361
  start-page: 1094
  year: 2018
  ident: 10098_CR23
  publication-title: Science
  doi: 10.1126/science.aat2612
– volume: 30
  start-page: 1802888
  year: 2018
  ident: 10098_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802888
– volume: 28
  start-page: 8283
  year: 2016
  ident: 10098_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201602642
– volume: 62
  start-page: 1562
  year: 2017
  ident: 10098_CR21
  publication-title: Sci. Bull.
  doi: 10.1016/j.scib.2017.11.003
– volume: 7
  start-page: 11585
  year: 2016
  ident: 10098_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11585
– volume: 6
  start-page: 12132
  year: 2018
  ident: 10098_CR28
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03753A
– volume: 9
  start-page: 743
  year: 2018
  ident: 10098_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03207-x
– volume: 31
  start-page: 904
  year: 2019
  ident: 10098_CR29
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b04087
– volume: 8
  start-page: 610
  year: 2015
  ident: 10098_CR11
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE03424D
– volume: 29
  start-page: 1606574
  year: 2017
  ident: 10098_CR17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606574
– volume: 7
  start-page: 1700465
  year: 2017
  ident: 10098_CR24
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201700465
– volume: 29
  start-page: 1701308
  year: 2017
  ident: 10098_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201701308
– volume: 116
  start-page: 7718
  year: 2012
  ident: 10098_CR35
  publication-title: J. Phys. Chem. A
  doi: 10.1021/jp304009g
– volume: 29
  start-page: 8369
  year: 2017
  ident: 10098_CR36
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02853
– volume: 3
  start-page: 18003
  year: 2018
  ident: 10098_CR2
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2018.3
– volume: 22
  start-page: 4161
  year: 2012
  ident: 10098_CR3
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm15126j
– volume: 7
  start-page: 3040
  year: 2014
  ident: 10098_CR31
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE01529K
– volume: 1
  start-page: 15027
  year: 2016
  ident: 10098_CR4
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2015.27
– volume: 35
  start-page: 394
  year: 2019
  ident: 10098_CR30
  publication-title: Acta Phys.-Chim. Sin.
  doi: 10.3866/PKU.WHXB201805091
– volume: 117
  start-page: 10291
  year: 2017
  ident: 10098_CR33
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00084
– volume: 17
  start-page: 119
  year: 2018
  ident: 10098_CR1
  publication-title: Nat. Mater.
  doi: 10.1038/nmat5063
– volume: 138
  start-page: 2973
  year: 2016
  ident: 10098_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00853
– volume: 139
  start-page: 17114
  year: 2017
  ident: 10098_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11278
– volume: 30
  start-page: 1803769
  issue: 52
  year: 2018
  ident: 10098_CR27
  publication-title: Advanced Materials
  doi: 10.1002/adma.201803769
– volume: 139
  start-page: 3356
  year: 2017
  ident: 10098_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00566
– volume: 12
  start-page: 131
  year: 2018
  ident: 10098_CR7
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0104-9
– volume: 3
  start-page: 1051
  year: 2018
  ident: 10098_CR9
  publication-title: Nat. Energy
  doi: 10.1038/s41560-018-0263-4
– volume: 140
  start-page: 2054
  year: 2018
  ident: 10098_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b13239
– volume: 7
  start-page: 1602540
  year: 2017
  ident: 10098_CR19
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201602540
SSID ssj0000391844
Score 2.6788123
Snippet The flexibility in structural design of organic semiconductors endows organic solar cells (OSCs) not only great function-tunabilities, but also high potential...
Non-fullerene electron acceptors have pushed the efficiency of organic solar cells up to 15% but they all contain fused rings and are inconvenient to synthetic...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2152
SubjectTerms 140/131
140/146
140/58
147/3
639/301
639/301/299
639/301/299/946
Conformation
Electrons
Energy conversion efficiency
Fullerenes
Humanities and Social Sciences
multidisciplinary
Organic chemistry
Organic semiconductors
Photovoltaic cells
Science
Science (multidisciplinary)
Solar cells
Structural design
Structural engineering
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSyQxEA4iLHgR3fXRrkoEb9rYPUmnk6MuO8iCIqjgLeSJgowyPXPQX79V6Z5xxufF63SaFF8qVfVNJ18Rsu-FcLGwwFQjYzlXwFmNrcCXVRlMHSPjBV5OPjsXp9f83011M9PqC8-EtfLALXBHRSidKaUSQSgIpLXp1UZxFQPwDHCmVBpBzpshUykGw1yS8-6WTMHkUcNTTICKBiIPimg-z2WiJNj_XpX59rDkqy-mKRH1V8hyV0HS49byVbIQBj_Jj7an5NMvcnF5h4K_FGh9HsdN8HTS6YYah2dYHoYNhUqVhiQeAdNRM_AUikQLb7VNnhxtkPFS_Fe_WSPX_b9Xf07zrm1C7oCNjHJjpK2cscLVzjBfW2aD8GWUsRBAQKoQy8rXXEFmqoSJFSRwwyDYyMKzKJlh62QRbAybeO5JRgFFAyu95xEWAhYvFl5YA5PIimeknECoXacpjq0t7nX6ts2kbmHXALtOsOvnjBxM33lsFTU-HX2CKzMdiWrY6QfAQ3c-or_ykYxsT9ZVd1u00Uh0S7xhqDKyN30MmwuxNYPwMMYxEPK4kDhmo3WDqSVQF0sF9DQj9ZyDzJk6_2Rwd5sEvAXKg7NeRg4nrvRi1sdQbH0HFL_JUg_3AOrP8m2yOBqOww6UVSO7m3bQf-_6HNU
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA-1RfBFtPVjtZYIfdOlu5dsPp5ExVIKFUEL9xbyiQW5q927h_av70w2u-X86Ottlp2bTGbml0x-Q8hhEMKnxgFSTYzVXANmta4DW9ZttDIlxhu8nHz2VZyc89N5Ny8bbn0pqxx9YnbUYelxj_wIcUmLF8L0h8vfNXaNwtPV0kLjAdlB6jIs6ZJzOe2xIPu54rzclWmYOup59gyQ14D_QSrNm414lGn7_5Vr_l0y-ce5aQ5Hx0_I45JH0o_DxD8lW3GxSx4OnSWv98i37xdI-0sB3Ndp3cdAx3431HqsZFle9RTyVRozhQR8jtpFoJAqOnhraPXkaY-4l-Lefv-MnB9_-fH5pC7NE2oPmGRVW6tc560TXnrLgnTMRRHapFIjAIZ0MbVdkFxDfOqETR2EccvA5agmsKSYZc_JNsgYX2L1k0oCUgfWhsBT6y1MYWqCcBY-ojpekXZUofGFWRwbXPwy-YSbKTOo3YDaTVa7uanIu-mdy4FX497Rn3BmppHIiZ1_AH2YssRME0G0VmkRhYaQK-1MWs11ioBIwe3YiuyP82rKQu3NnVlV5O30GJYY6tYu4nKNY8DxcaFwzIvBDCZJIDtWGkBqReSGgWyIuvlkcfEz03gLJAlns4q8H03pTqz_q-LV_f_iNXk0Q-tGflm-T7ZXV-v4BtKmlTvIa-MWl4EVQA
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB9qRfBF6ndqlRV802hyu9nsPpRSxVKEiqAHfVv2kxbKVS930Pavd2aTnJyegq-XWTL8dj4vu78BeBWk9Kly2KkmzkuhsWe1rkFb1nW0bUpcVHQ5-eSzPJ6KT6fN6RaM444GALuNrR3Nk5rOL95e_bg-QIff76-Mq3edyO6OxQoGFeLHvLkFtzEzteSoJ0O5nyMzaqCEGO7ObF66lp8yjf-m2vPPI5S_fUfN6eloB-4NdSU77A3hPmzF2QO400-avH4IX76eEw0ww2a_TMsuBjbOv2HW08mWy3nHsH5lMVNK4OuYnQWGpaPDVf3oJ886AovRf_3dI5geffz24bgchimUHnuURWmtco23TvrWWx5ax12UoU4qVRLbkiamugmt0JivGmlTg2ndcgxBqgo8KW75Y9hGHeNTOg2lksRSgtchiFR7i1uaqiCdxZeoRhRQjxAaPzCN08CLC5O_eHNletgNwm4y7OamgNerNd97no1_Sr-nnVlJEkd2_gHxMIPLmSqiarXSMkqNKbi1k9ZqoVPEDhXDkC1gb9xXM9qdofa3pnuHuoCXq8focoStncXLJclgIBRSkcyT3gxWmmC1rDQ2rQW0awaypur6k9n5Wab1lkQazicFvBlN6Zdaf4di9__En8HdCVk78c-KPdhezJfxOZZVC_ci-8pP76gdKg
  priority: 102
  providerName: Scholars Portal
Title Simple non-fused electron acceptors for efficient and stable organic solar cells
URI https://link.springer.com/article/10.1038/s41467-019-10098-z
https://www.ncbi.nlm.nih.gov/pubmed/31089140
https://www.proquest.com/docview/2225119989
https://www.proquest.com/docview/2231846889
https://pubmed.ncbi.nlm.nih.gov/PMC6517432
https://doaj.org/article/0e1ca1896e694717a27a949fe917179a
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB7yoNBLSfp0ki4q9Naa2itZlo-bJduwkBCaBvYmZD1oIGxKvHtofn1m5EfZNin0YoM9wsNoNA959A3ARyelDVmNmWrgPBUV5qymLlCXq9ybMgQuMjqcfHYuT6_EfFEstmDcn4WJRfsR0jKa6b467Esj4pLGgAQNB2Fg3m_DLkG3k1ZP5XTYVyHEcyVEdz4m4-qRoRs-KEL1PxZf_l0m-ce_0uiCZnvwoosd2aTldh-2_PIlPGu7Sf56BReX1wT1yzChT8O68Y71PW6YsVS9cnvXMIxRmY-wEfg5ZpaOYXhY46i2vZNlDeW6jPbzm9dwNTv5Pj1Nu4YJqcU8ZJUao-rCmlra0hruyprXXro8qJBJTD0KH_LClaJCn1RIEwp03YajmVGZ40Fxw9_ADvLo31HFkwoSwwWeOydCbg1OW8icrA1-RBUigbwXobYdmjg1tbjR8a82V7oVu0ax6yh2fZ_Ap2HMzxZL45_UxzQzAyXhYMcHKA_d6YXOPLKWq0p6WaGbLc24NJWogscsFE2NSeCon1fdLc5GU4qb09nCKoEPw2tcViRbs_S3a6JBYyekIpq3rRoMnGBErCpMTBMoNxRkg9XNN8vrHxG6WxIwOB8n8LlXpd9sPS2Kg_8jP4TnY9J2wpgVR7Czulv79xg6reoRbJeLEq9q9nUEu5PJ_HKO9-OT84tvo7iORnFTAq9nQj0AZOYaTg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwEB6VIgQviJtAASPBE0RNYsdxHhDiqrb0EBKttG-uE9uiUpVtm12h9kfxG5lxjmo5-tbXjbOZjL-5YvsbgFdWytonFVaqnvNYlFizmipHLJepM4X3XCR0OHlnV072xddpPl2BX8NZGNpWOfjE4KjtrKZv5OtUl6R0IKx8f3wSU9coWl0dWmh0sNhyZz-xZGvfbX7G-X2dZRtf9j5N4r6rQFxjsj6PjVFVXptK1kVtuC0qXjlpU698IjE_z51Pc1uIEh13Lo3PMb4ZjraoEsu94obj_16D6xh4E7KoYlqM33SIbV0J0Z_NSbhab0XwRJhHob8j6s7zpfgX2gT8K7f9e4vmH-u0Ifxt3IHbfd7KPnRAuwsrrrkHN7pOlmf34dv3Q6IZZs2sif2idZYN_XWYqWnnzOy0ZZgfMxcoK_BxzDSWYWpa4V1da6matVRnM1pLaB_A_pWo9SGsoozuMe22Ul5iqsJTa4VPa4OQ8YmVlcGHqFxEkA4q1HXPZE4NNY50WFHnSndq16h2HdSuzyN4M95z3PF4XDr6I83MOJI4uMMPqA_dm7ROHIqWqlI6WWKIL0xWmFKU3mEFjG7ORLA2zKvuHUOrL2AcwcvxMpo06dY0bragMehohVQ05lEHg1ESRJ0qsSiOoFgCyJKoy1eawx-BNlwSKTnPIng7QOlCrP-r4snlb_ECbk72drb19ubu1lO4lRHSidtWrMHq_HThnmHKNq-eBzthcHDVhvkbmUtSNw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEagXxJtAASPBCaJNYsd2DggBZdVSqCpBpb0Zxw9RqcqWZleo_Wn8OmacR7U8eut142wm45nxN_H4G0KeOyFsyGrIVANjKa8gZzV1CbZc5d7IEBjP8HDy5z2xfcA_zsrZGvk1nIXBssohJsZA7eYWv5FPMC_J8UBYNQl9WcT-1vTN8Y8UO0jhTuvQTqMzkV1_-hPSt_b1zhbM9YuimH74-n477TsMpBaA-yI1RtWlNbWw0hrmZM1qL1weVMgEYPXSh7x0klcQxEthQglrnWHglypzLChmGPzvFXJVsjJHH5MzOX7fQeZ1xXl_TidjatLyGJUAU0HsQxrPs5W1MLYM-BfO_btc848927gUTm-SGz2GpW87o7tF1nxzm1zrulqe3iH7Xw6Rcpg28yYNy9Y7OvTaocZiFc38pKWAlamP9BXwOGoaRwGm1nBX12bK0hZzbor7Cu1dcnApar1H1kFG_wArr1QQAFtY7hwPuTVgPiFzojbwEFXyhOSDCrXtWc2xucaRjrvrTOlO7RrUrqPa9VlCXo73HHecHheOfoczM45EPu74A-hD9-6tMw-i5aoSXlSw3EtTSFPxKnjIhiHkmYRsDvOq-yDR6nOTTsiz8TK4N-rWNH6-xDEQdLlQOOZ-ZwajJIDMVQUJckLkioGsiLp6pTn8HinEBRKUsyIhrwZTOhfr_6p4ePFbPCXXwSX1p5293Udko0BDR5pbvknWFydL_xjQ26J-Et2Ekm-X7Ze_AWgVVm0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simple+non-fused+electron+acceptors+for+efficient+and+stable+organic+solar+cells&rft.jtitle=Nature+communications&rft.au=Yu%2C+Zhi-Peng&rft.au=Liu%2C+Zhi-Xi&rft.au=Chen%2C+Fang-Xiao&rft.au=Qin%2C+Ran&rft.date=2019-05-14&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-10098-z&rft.externalDocID=10_1038_s41467_019_10098_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon