Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy
Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 1704 - 14 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
12.04.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics.
Mitochondria are a source of reactive oxygen species, which can be exploited to induce the death of cancer cells. Here, the authors use nanoparticles that release camptothecin in a reactive oxygen species dependent manner, leading to cancer cell death. |
---|---|
AbstractList | Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics. Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics. Mitochondria are a source of reactive oxygen species, which can be exploited to induce the death of cancer cells. Here, the authors use nanoparticles that release camptothecin in a reactive oxygen species dependent manner, leading to cancer cell death. Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics.Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics. Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is produced in mitochondria. In situ mitochondrial ROS amplification is a promising strategy to enhance cancer therapy. Here we report cancer cell and mitochondria dual-targeting polyprodrug nanoreactors (DT-PNs) covalently tethered with a high content of repeating camptothecin (CPT) units, which release initial free CPT in the presence of endogenous mitochondrial ROS (mtROS). The in situ released CPT acts as a cellular respiration inhibitor, inducing mtROS upregulation, thus achieving subsequent self-circulation of CPT release and mtROS burst. This mtROS amplification endows long-term high oxidative stress to induce cancer cell apoptosis. This current strategy of endogenously activated mtROS amplification for enhanced chemodynamic therapy overcomes the short lifespan and action range of ROS, avoids the penetration limitation of exogenous light in photodynamic therapy, and is promising for theranostics.Mitochondria are a source of reactive oxygen species, which can be exploited to induce the death of cancer cells. Here, the authors use nanoparticles that release camptothecin in a reactive oxygen species dependent manner, leading to cancer cell death. Mitochondria are a source of reactive oxygen species, which can be exploited to induce the death of cancer cells. Here, the authors use nanoparticles that release camptothecin in a reactive oxygen species dependent manner, leading to cancer cell death. |
ArticleNumber | 1704 |
Author | Xing, Da Zhang, Wenjia Hu, Xianglong Shen, Qi |
Author_xml | – sequence: 1 givenname: Wenjia surname: Zhang fullname: Zhang, Wenjia organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, College of Biophotonics, South China Normal University – sequence: 2 givenname: Xianglong orcidid: 0000-0001-9202-1543 surname: Hu fullname: Hu, Xianglong email: xlhu@scnu.edu.cn organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, College of Biophotonics, South China Normal University – sequence: 3 givenname: Qi surname: Shen fullname: Shen, Qi organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, College of Biophotonics, South China Normal University – sequence: 4 givenname: Da surname: Xing fullname: Xing, Da email: xingda@scnu.edu.cn organization: MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, College of Biophotonics, South China Normal University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30979885$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUjVARLaU_wAJZYsMm4EcS2xskVPGoVMQG1taNfTPjKmMHO6k6S_4cz0wpbRf1xlfX5xzfx3lZHYUYsKpeM_qeUaE-5IY1nawp0zXVbdfV4ll1wmnDaia5OLoXH1dnOV_RcoRmqmleVMeCaqmVak-qP9_9HO06Bpc81HlC6wdviUvLiiQcETISCK7EYGd_jSTebFcYyB6JmfRLyjPxwS0WHem3ZIrjdkpxLxAgxD0xpkwsBIJhDcEisWvcxHmNCabtq-r5AGPGs9v7tPr15fPP82_15Y-vF-efLmvb0W6utQQ3OAViGAYhUUqKziETg2wt8kaXFHKhWOssOMl4r3qrBdpBMlC9VuK0ujjoughXZkp-A2lrInizT8S0MpBmb0c0nWsdyAYY67tGIipJLW-B8jJx2jpRtD4etKal36CzGOYE4wPRhy_Br80qXpuu6VineRF4dyuQ4u8F82w2PlscRwgYl2w4p7pjuw0X6NtH0Ku4pFBGtUMpyVnZdEG9uV_RXSn_Nl0A_ACwKeaccLiDMGp2jjIHR5niKLN3lNn1qR6RrJ9h9nHXlR-fpooDNZd_wgrT_7KfYP0F_pDjVA |
CitedBy_id | crossref_primary_10_1016_j_jconrel_2020_08_045 crossref_primary_10_1002_adma_202007778 crossref_primary_10_1016_j_carbpol_2025_123375 crossref_primary_10_1186_s12951_022_01445_2 crossref_primary_10_1021_acs_biomac_3c01240 crossref_primary_10_1016_j_nano_2021_102422 crossref_primary_10_1021_acsami_1c04868 crossref_primary_10_1002_adhm_202001550 crossref_primary_10_1021_acsami_9b13214 crossref_primary_10_3389_fbioe_2024_1361966 crossref_primary_10_3389_fchem_2021_755419 crossref_primary_10_1016_j_ecoenv_2024_116350 crossref_primary_10_1021_acsami_1c07223 crossref_primary_10_1177_2472630320977450 crossref_primary_10_1002_anie_202423446 crossref_primary_10_3390_molecules27041245 crossref_primary_10_1016_j_jconrel_2024_12_017 crossref_primary_10_1039_D3NR04147F crossref_primary_10_1021_acs_biomac_9b00424 crossref_primary_10_1155_2022_2249749 crossref_primary_10_1038_s41467_022_29872_7 crossref_primary_10_1039_D4PY00660G crossref_primary_10_1016_j_ajps_2023_100872 crossref_primary_10_1021_acsami_9b01370 crossref_primary_10_1016_j_ejmech_2024_117233 crossref_primary_10_1016_j_smaim_2024_03_003 crossref_primary_10_1038_s41467_020_20210_3 crossref_primary_10_1039_D1CC02670D crossref_primary_10_1016_j_colsurfb_2024_113990 crossref_primary_10_1016_j_biomaterials_2021_121005 crossref_primary_10_1016_j_isci_2020_101144 crossref_primary_10_1002_adfm_202206876 crossref_primary_10_1021_acsnano_4c03172 crossref_primary_10_1039_D5CB00006H crossref_primary_10_1080_08927022_2022_2037586 crossref_primary_10_1016_j_cej_2020_126125 crossref_primary_10_1016_j_ccr_2022_215004 crossref_primary_10_1007_s10876_021_02194_2 crossref_primary_10_1002_anse_202200068 crossref_primary_10_1186_s12951_021_01136_4 crossref_primary_10_1002_smtd_202100581 crossref_primary_10_1021_acsnano_2c06705 crossref_primary_10_1016_j_nantod_2024_102223 crossref_primary_10_14348_molcells_2023_2095 crossref_primary_10_1039_D4CS00404C crossref_primary_10_1016_j_cej_2022_136172 crossref_primary_10_1039_C9BM01692A crossref_primary_10_1021_acsami_0c13943 crossref_primary_10_1002_smll_201902642 crossref_primary_10_1007_s11426_024_2065_2 crossref_primary_10_1007_s40820_020_00490_6 crossref_primary_10_1039_D3TB01887C crossref_primary_10_1016_j_jconrel_2024_04_007 crossref_primary_10_1002_anie_202105607 crossref_primary_10_1021_acsmacrolett_0c00488 crossref_primary_10_1245_s10434_020_09373_x crossref_primary_10_1080_10717544_2023_2232952 crossref_primary_10_1021_acssensors_1c01674 crossref_primary_10_1016_j_phrs_2021_105800 crossref_primary_10_1039_D0QI00538J crossref_primary_10_1126_sciadv_abb7422 crossref_primary_10_1002_cmdc_202100659 crossref_primary_10_1016_j_nantod_2024_102231 crossref_primary_10_1021_acsabm_9b00811 crossref_primary_10_1002_adma_202203734 crossref_primary_10_1016_j_ejphar_2020_173488 crossref_primary_10_1021_acsnano_3c00326 crossref_primary_10_1039_D1BM01133B crossref_primary_10_1021_acsbiomaterials_1c00254 crossref_primary_10_1016_j_biomaterials_2021_121224 crossref_primary_10_1038_s42003_025_07457_6 crossref_primary_10_1016_j_jconrel_2021_10_030 crossref_primary_10_1039_D4TB01762E crossref_primary_10_1016_j_addr_2023_114773 crossref_primary_10_1016_j_mtbio_2024_101327 crossref_primary_10_1002_adfm_202200791 crossref_primary_10_1038_s41416_022_01789_4 crossref_primary_10_1016_j_jconrel_2019_12_040 crossref_primary_10_1016_j_progpolymsci_2023_101765 crossref_primary_10_1016_j_carbpol_2020_115930 crossref_primary_10_1002_idm2_12210 crossref_primary_10_1002_adma_202000542 crossref_primary_10_1016_j_jconrel_2023_11_021 crossref_primary_10_1002_adfm_202008460 crossref_primary_10_1039_D1TB01893K crossref_primary_10_1016_j_biopha_2020_111103 crossref_primary_10_1021_acsnano_3c03308 crossref_primary_10_1016_j_ajps_2020_10_002 crossref_primary_10_1016_j_biomaterials_2020_120341 crossref_primary_10_1016_j_dyepig_2022_110764 crossref_primary_10_1016_j_arabjc_2024_105603 crossref_primary_10_1039_D2CB00166G crossref_primary_10_1002_med_21989 crossref_primary_10_1039_D2BM00212D crossref_primary_10_1016_j_isci_2024_109591 crossref_primary_10_1002_adfm_202209278 crossref_primary_10_1002_mabi_202300590 crossref_primary_10_1038_s41467_021_21436_5 crossref_primary_10_1589_jpts_35_793 crossref_primary_10_59761_RCR5095 crossref_primary_10_1016_j_cej_2020_127108 crossref_primary_10_1002_ange_202012237 crossref_primary_10_1002_ange_202014415 crossref_primary_10_1002_anie_201915826 crossref_primary_10_1002_mabi_202300116 crossref_primary_10_1021_acsnano_3c13225 crossref_primary_10_1039_C9SC06441A crossref_primary_10_1016_j_jconrel_2023_06_004 crossref_primary_10_3390_cells9041065 crossref_primary_10_1039_C9SC05997K crossref_primary_10_3389_fphar_2024_1446030 crossref_primary_10_1021_acsami_1c18311 crossref_primary_10_1016_j_biomaterials_2020_120210 crossref_primary_10_1016_j_dyepig_2022_110652 crossref_primary_10_1021_acsnano_3c06019 crossref_primary_10_1002_adma_202209529 crossref_primary_10_2174_1874609816666230320122018 crossref_primary_10_1007_s12274_022_4599_5 crossref_primary_10_1021_acs_molpharmaceut_4c01334 crossref_primary_10_1016_j_jconrel_2023_07_048 crossref_primary_10_1002_anie_202214992 crossref_primary_10_1002_anie_201915833 crossref_primary_10_1002_cnma_202100532 crossref_primary_10_1016_j_jconrel_2021_03_021 crossref_primary_10_1016_j_jconrel_2020_05_031 crossref_primary_10_1021_acs_jmedchem_3c02115 crossref_primary_10_1021_acsnano_2c05379 crossref_primary_10_1016_j_bbcan_2022_188705 crossref_primary_10_1007_s11064_020_02971_x crossref_primary_10_1134_S0003683824604451 crossref_primary_10_1039_D1CC04379J crossref_primary_10_1016_j_nantod_2024_102147 crossref_primary_10_1021_acs_biomac_4c01273 crossref_primary_10_1155_2020_8837893 crossref_primary_10_1002_adtp_202000074 crossref_primary_10_1016_j_mtadv_2022_100266 crossref_primary_10_1002_ange_202214992 crossref_primary_10_3390_molecules26154472 crossref_primary_10_1002_advs_202411720 crossref_primary_10_1155_2021_9951712 crossref_primary_10_1002_adhm_202100938 crossref_primary_10_1016_j_actbio_2021_03_045 crossref_primary_10_1021_acsanm_4c01611 crossref_primary_10_1039_D0QM00503G crossref_primary_10_1021_acsabm_3c00130 crossref_primary_10_3390_ijms25147952 crossref_primary_10_1016_j_biomaterials_2022_121572 crossref_primary_10_1039_D4BM00003J crossref_primary_10_1021_acs_biomac_9b01578 crossref_primary_10_1021_acsnano_3c10173 crossref_primary_10_1021_acs_nanolett_0c03127 crossref_primary_10_1002_adhm_202302063 crossref_primary_10_1016_j_jconrel_2024_08_035 crossref_primary_10_1007_s12274_020_3028_x crossref_primary_10_1002_mog2_67 crossref_primary_10_1002_smll_202411736 crossref_primary_10_1016_j_cclet_2021_11_048 crossref_primary_10_1016_j_ijpharm_2021_120671 crossref_primary_10_1016_j_jconrel_2020_05_014 crossref_primary_10_1016_j_mtbio_2022_100353 crossref_primary_10_1021_acsami_9b10211 crossref_primary_10_1039_D3QI01653F crossref_primary_10_1016_j_jconrel_2024_07_004 crossref_primary_10_1016_j_talanta_2024_126002 crossref_primary_10_1186_s12951_022_01570_y crossref_primary_10_1002_adfm_201903850 crossref_primary_10_1021_acsomega_3c02901 crossref_primary_10_1016_j_ecoenv_2024_117049 crossref_primary_10_1021_acsami_2c03463 crossref_primary_10_1002_adfm_202103134 crossref_primary_10_1021_acs_bioconjchem_2c00559 crossref_primary_10_1038_s41419_020_02992_y crossref_primary_10_1039_D2TB00609J crossref_primary_10_1002_ange_201915826 crossref_primary_10_1002_anie_202014415 crossref_primary_10_1021_acsmacrolett_2c00059 crossref_primary_10_3390_molecules27248862 crossref_primary_10_1039_D4PY00493K crossref_primary_10_1002_anie_202012237 crossref_primary_10_1039_D3NR02000B crossref_primary_10_1186_s12885_019_6288_7 crossref_primary_10_1002_mabi_202000424 crossref_primary_10_1016_j_biomaterials_2021_121084 crossref_primary_10_1016_j_omtn_2020_01_034 crossref_primary_10_1016_j_cej_2022_141229 crossref_primary_10_1016_j_cej_2024_158468 crossref_primary_10_1021_acsabm_2c00641 crossref_primary_10_1016_j_cej_2022_137889 crossref_primary_10_3390_pharmaceutics15071827 crossref_primary_10_1021_acsami_0c16110 crossref_primary_10_1016_j_biomaterials_2019_119702 crossref_primary_10_1016_j_addr_2024_115195 crossref_primary_10_1021_acsami_1c20030 crossref_primary_10_3390_ijms25021233 crossref_primary_10_1002_adhm_202203242 crossref_primary_10_1002_ange_201915833 crossref_primary_10_1016_j_micromeso_2022_112198 crossref_primary_10_1016_j_jconrel_2023_08_032 crossref_primary_10_1002_adfm_202300780 crossref_primary_10_1016_j_cej_2021_130171 crossref_primary_10_1038_s41467_019_12233_2 crossref_primary_10_2147_IJN_S240301 crossref_primary_10_1016_j_actbio_2022_07_055 crossref_primary_10_1016_j_bioactmat_2024_11_009 crossref_primary_10_1039_D1NJ00326G crossref_primary_10_1039_C9OB02075F crossref_primary_10_1021_acsanm_3c00722 crossref_primary_10_1039_D3ME00002H crossref_primary_10_1002_cnma_201900697 crossref_primary_10_1039_D0CC00382D crossref_primary_10_3389_fendo_2022_789008 crossref_primary_10_1002_adhm_202201611 crossref_primary_10_1016_j_ijbiomac_2025_140553 crossref_primary_10_1002_smsc_202300164 crossref_primary_10_1002_ange_202105607 crossref_primary_10_1016_j_jtumed_2024_07_002 crossref_primary_10_1186_s12951_024_02925_3 crossref_primary_10_1039_D0TB02190C crossref_primary_10_1208_s12249_020_1629_z crossref_primary_10_1021_acsami_2c02354 crossref_primary_10_1002_adfm_202107518 crossref_primary_10_1002_ange_202423446 crossref_primary_10_2217_nnm_2020_0266 crossref_primary_10_1021_jacs_4c12140 crossref_primary_10_1080_15583724_2023_2209159 crossref_primary_10_1039_D1BM00668A crossref_primary_10_1021_acsnano_3c03450 crossref_primary_10_1016_j_jconrel_2024_06_014 crossref_primary_10_3389_fcell_2021_728172 crossref_primary_10_1039_C9DT04576G crossref_primary_10_3390_cells11203288 crossref_primary_10_1016_j_jconrel_2020_02_038 crossref_primary_10_1016_j_biomaterials_2019_119726 crossref_primary_10_1016_j_nantod_2021_101288 crossref_primary_10_1002_adhm_202202710 crossref_primary_10_1016_j_nantod_2021_101162 crossref_primary_10_1021_acsami_1c06668 crossref_primary_10_1002_adma_202403588 crossref_primary_10_1080_15548627_2020_1831815 crossref_primary_10_1016_j_jddst_2022_103886 crossref_primary_10_3390_pharmaceutics14081534 crossref_primary_10_1016_j_ceramint_2021_01_214 crossref_primary_10_3390_ijms232012624 crossref_primary_10_1111_odi_14404 crossref_primary_10_1007_s40242_022_2121_y crossref_primary_10_1016_j_bioorg_2024_107210 crossref_primary_10_1016_j_jconrel_2021_12_015 crossref_primary_10_1021_acsnano_4c08567 crossref_primary_10_1007_s11244_024_01934_8 crossref_primary_10_1016_j_jconrel_2022_06_044 crossref_primary_10_1021_acs_biomac_2c00302 crossref_primary_10_15212_bioi_2021_0011 crossref_primary_10_1021_acsami_1c11583 crossref_primary_10_1016_j_nantod_2024_102519 crossref_primary_10_1016_j_ijpharm_2021_121281 crossref_primary_10_1002_adfm_202418138 crossref_primary_10_1016_j_dyepig_2020_108877 crossref_primary_10_1002_anie_202413350 crossref_primary_10_1021_acs_chemrev_3c00062 crossref_primary_10_1039_D2NH00590E crossref_primary_10_1016_j_nantod_2024_102323 crossref_primary_10_3390_pharmaceutics14122657 crossref_primary_10_1002_adma_202203820 crossref_primary_10_1016_j_jconrel_2020_08_006 crossref_primary_10_1002_adma_202312153 crossref_primary_10_1002_cnma_202000622 crossref_primary_10_1021_acs_nanolett_1c01220 crossref_primary_10_1039_D1TB02470A crossref_primary_10_3389_fphar_2022_847048 crossref_primary_10_1152_ajpregu_00105_2021 crossref_primary_10_1007_s12274_020_3264_0 crossref_primary_10_1002_adtp_202400363 crossref_primary_10_1002_ange_202413350 crossref_primary_10_2147_IJN_S336632 crossref_primary_10_3389_fimmu_2022_833040 crossref_primary_10_1016_j_ijbiomac_2024_130654 crossref_primary_10_1016_j_jconrel_2021_11_014 crossref_primary_10_1039_D3DT00317E crossref_primary_10_1186_s12951_020_00653_y crossref_primary_10_1007_s12274_022_5002_2 crossref_primary_10_1016_j_tiv_2020_104795 crossref_primary_10_3724_SP_J_1123_2020_11014 crossref_primary_10_1039_D1BM01802G crossref_primary_10_1038_s41467_021_22594_2 crossref_primary_10_1038_s41467_024_53135_2 crossref_primary_10_1002_cnr2_1942 crossref_primary_10_1021_acsami_1c02019 crossref_primary_10_1126_sciadv_aax9778 crossref_primary_10_1016_j_bbadis_2020_165808 crossref_primary_10_1016_j_biomaterials_2024_122513 crossref_primary_10_1021_acsami_3c12184 crossref_primary_10_1089_ars_2020_8058 crossref_primary_10_3389_fonc_2021_656184 crossref_primary_10_1016_j_biomaterials_2022_121947 crossref_primary_10_1039_D1QM00752A crossref_primary_10_1039_D3DT03654E crossref_primary_10_1002_smll_202309850 crossref_primary_10_1007_s12274_023_6296_4 crossref_primary_10_1002_mabi_202100091 crossref_primary_10_1016_j_cej_2019_122426 crossref_primary_10_1515_mr_2024_0044 crossref_primary_10_3390_biom14091096 crossref_primary_10_1016_j_actbio_2020_04_052 crossref_primary_10_1021_acsanm_3c00953 crossref_primary_10_1021_acsnano_2c09342 crossref_primary_10_1002_adhm_202300267 crossref_primary_10_1016_j_addr_2021_113830 crossref_primary_10_1002_marc_202100918 crossref_primary_10_1007_s12274_022_4166_0 crossref_primary_10_1016_j_jconrel_2020_07_010 crossref_primary_10_1016_j_ejmech_2021_113528 crossref_primary_10_1039_C9TB02199J crossref_primary_10_1038_s41467_024_55658_0 crossref_primary_10_1021_acsnano_0c04375 crossref_primary_10_1039_D4CC02702G crossref_primary_10_1002_adhm_202101855 crossref_primary_10_3390_pharmaceutics15030976 crossref_primary_10_1016_j_jconrel_2022_06_007 crossref_primary_10_1039_C9RA08142A crossref_primary_10_1016_j_bjao_2022_100116 crossref_primary_10_3390_molecules26113332 crossref_primary_10_1002_anie_202403880 crossref_primary_10_1016_j_cclet_2020_05_034 crossref_primary_10_1002_ange_202403880 crossref_primary_10_1021_acsmaterialslett_4c01214 crossref_primary_10_1016_j_colsurfb_2020_111276 crossref_primary_10_1039_D1DT04070G crossref_primary_10_1021_acsomega_4c03825 crossref_primary_10_3389_fphy_2021_759005 crossref_primary_10_1186_s12951_021_01191_x |
Cites_doi | 10.1002/anie.201209633 10.1002/adma.201706307 10.1038/nmat2859 10.1021/ja303372u 10.1038/srep03468 10.1038/nprot.2007.327 10.1152/physrev.00013.2006 10.7150/thno.5411 10.1016/j.addr.2009.05.010 10.1016/j.mito.2004.07.027 10.1038/s41467-017-00047-z 10.1021/acsmacrolett.6b00474 10.4155/fmc-2017-0008 10.1021/jacs.8b01641 10.1002/ange.201805664 10.1126/science.1130481 10.1016/j.biomaterials.2015.10.056 10.1021/ja5105848 10.1126/science.1117105 10.1016/j.biomaterials.2017.10.034 10.1074/jbc.M210432200 10.1016/j.biomaterials.2018.10.010 10.1124/pr.54.1.101 10.1016/j.biomaterials.2018.03.035 10.1016/j.bbagen.2010.06.001 10.1038/srep43435 10.1007/978-1-4939-2288-8_15 10.1126/science.1115035 10.1002/anie.201406442 10.1002/anie.201712027 10.1016/j.drup.2004.01.004 10.1038/nrd2803 10.4155/fmc.12.190 10.1021/acs.chemmater.8b01149 10.1002/smll.201802008 10.1021/acs.nanolett.6b04269 10.1089/ars.2011.3969 10.1038/sj.cdd.4400740 10.1073/pnas.81.5.1361 10.1074/jbc.M406705200 10.1038/sj.cdd.4401435 10.1002/adma.201700141 10.1021/ja409686x 10.1016/j.jphotobiol.2009.12.003 10.1126/science.281.5381.1309 10.1021/nn201477y 10.1021/ja303998y 10.1038/ncomms12967 10.1039/C7TB02609A 10.1016/j.cell.2006.06.010 10.1016/j.chempr.2017.10.002 10.1016/j.tcb.2008.01.006 10.1002/adfm.201400279 10.1021/acs.biomac.7b00693 10.1021/acs.nanolett.7b03531 10.1016/j.mito.2010.06.004 10.1002/anie.201510031 10.1002/anie.201408897 10.1002/adfm.201703674 10.1021/acsami.5b04025 10.1002/mabi.201700174 10.1038/ncomms7907 10.7150/thno.24015 10.1016/S0014-5793(01)03228-8 10.7150/thno.15433 10.1016/S0891-5849(00)00158-1 10.1021/cr9001403 10.1002/anie.201402189 10.1074/jbc.M009093200 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-09566-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Database ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 14 |
ExternalDocumentID | oai_doaj_org_article_6d5da74a11b647ee870c25a0246705d3 PMC6461692 30979885 10_1038_s41467_019_09566_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-97adfd8a3fff37e770edde13f75ce2497e7e23815dcad712b8bc93ecf71a8b983 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:39 EDT 2025 Thu Aug 21 18:33:06 EDT 2025 Tue Aug 05 11:01:05 EDT 2025 Wed Aug 13 08:05:58 EDT 2025 Mon Jul 21 05:44:09 EDT 2025 Thu Apr 24 23:02:02 EDT 2025 Tue Jul 01 02:21:27 EDT 2025 Fri Feb 21 02:38:52 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-97adfd8a3fff37e770edde13f75ce2497e7e23815dcad712b8bc93ecf71a8b983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9202-1543 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-09566-3 |
PMID | 30979885 |
PQID | 2208721204 |
PQPubID | 546298 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6d5da74a11b647ee870c25a0246705d3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6461692 proquest_miscellaneous_2209611467 proquest_journals_2208721204 pubmed_primary_30979885 crossref_primary_10_1038_s41467_019_09566_3 crossref_citationtrail_10_1038_s41467_019_09566_3 springer_journals_10_1038_s41467_019_09566_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-04-12 |
PublicationDateYYYYMMDD | 2019-04-12 |
PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-12 day: 12 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Pei (CR48) 2019; 188 Yuan, Liu, Liu (CR6) 2014; 53 Biasutto, Dong, Zoratti, Neuzil (CR20) 2010; 10 Cao, Xiao, Xing, Hu (CR33) 2018; 14 Trachootham, Alexandre, Huang (CR21) 2009; 8 Xu (CR28) 2016; 76 Zhu, Liu, Hu, Liu (CR31) 2017; 18 Zhang, Hu, Sang, Wang, Yan (CR46) 2016; 5 Hu, Li, Liu, Zhang, Liu (CR42) 2015; 7 Kelso (CR52) 2001; 276 Zhou (CR61) 2014; 53 Lin (CR69) 2018; 57 Modica-Napolitano, Singh (CR17) 2004; 4 Szewczyk, Wojtczak (CR8) 2002; 54 Lei (CR53) 2010; 98 Green, Reed (CR65) 1998; 281 Lakhani (CR63) 2006; 311 Katsamakas, Chatzisideri, Thysiadis, Sarli (CR49) 2017; 9 Perry (CR10) 2000; 28 Shao (CR67) 2016; 7 Gilmore (CR60) 2017; 7 Noh (CR70) 2015; 6 Boyer (CR41) 2009; 109 Xu (CR30) 2017; 29 Chen (CR55) 2013; 3 Pathania, Millard, Neamati (CR12) 2009; 61 Sanchez-Alcazar, Ault, Khodjakov, Schneider (CR39) 2000; 7 Nelson, Tewey, Liu (CR40) 1984; 81 Xia (CR62) 2002; 510 Vondrusova, Bezawork-Geleta, Sachaphibulkij, Truksa, Neuzil (CR19) 2015; 1265 Yue (CR24) 2016; 6 De Gracia Lux (CR3) 2012; 134 Hu, Gao, Feng, Liu (CR13) 2014; 53 Wang, Liang, Zhang, Xing, Hu (CR32) 2018; 30 Pelicano, Carney, Huang (CR11) 2004; 7 Sen (CR38) 2004; 11 Szatrowski, Nathan (CR2) 1991; 51 Sun (CR58) 2018; 8 Allen, Johnson, Walker (CR45) 2011; 5 Kroemer, Galluzzi, Brenner (CR64) 2007; 87 Li (CR35) 2018; 140 Zhou (CR43) 2017; 27 Hu (CR27) 2018; 30 Hu (CR25) 2013; 135 Spierings (CR15) 2005; 310 Mao (CR47) 2017; 3 Jiang (CR23) 2018; 6 Shim, Xia (CR4) 2013; 52 Li (CR37) 2017; 17 Mukhopadhyay (CR59) 2007; 2 Wang, Shim, Levinson, Sung, Xia (CR7) 2014; 24 Chen (CR29) 2017; 17 Chan (CR56) 2006; 125 Zhang (CR36) 2016; 55 Hu, Liu, Li, Wang, Liu (CR26) 2015; 137 Wen, Zhu, Huang (CR18) 2013; 5 Gogvadze, Orrenius, Zhivotovsky (CR9) 2008; 18 Lee (CR50) 2012; 134 Ma (CR68) 2017; 17 Huang (CR44) 2013; 3 Jeena (CR14) 2017; 8 Zhang (CR22) 2018; 153 Wilson (CR5) 2010; 9 Sen (CR66) 2004; 279 Li (CR57) 2003; 278 Tang, Liu, He, Bu (CR16) 2019; 131 Porteous (CR54) 2010; 1800 Smith, Hartley, Murphy (CR51) 2011; 15 Rhee (CR1) 2006; 312 Tan, Deng, Liu, Hu, Liu (CR34) 2018; 178 N Sen (9566_CR38) 2004; 11 D Trachootham (9566_CR21) 2009; 8 D Mao (9566_CR47) 2017; 3 RAJ Smith (9566_CR51) 2011; 15 J Noh (9566_CR70) 2015; 6 JJ Li (9566_CR37) 2017; 17 WH Lei (9566_CR53) 2010; 98 ZX Zhou (9566_CR61) 2014; 53 JS Modica-Napolitano (9566_CR17) 2004; 4 KN Zhu (9566_CR31) 2017; 18 JJ Tan (9566_CR34) 2018; 178 TP Szatrowski (9566_CR2) 1991; 51 A Szewczyk (9566_CR8) 2002; 54 DD Zhang (9566_CR22) 2018; 153 J Shao (9566_CR67) 2016; 7 F Zhou (9566_CR43) 2017; 27 CM Porteous (9566_CR54) 2010; 1800 DS Wilson (9566_CR5) 2010; 9 P Mukhopadhyay (9566_CR59) 2007; 2 CX Yue (9566_CR24) 2016; 6 D Chen (9566_CR29) 2017; 17 JA Sanchez-Alcazar (9566_CR39) 2000; 7 S Wen (9566_CR18) 2013; 5 XL Hu (9566_CR27) 2018; 30 XD Xu (9566_CR30) 2017; 29 BL Allen (9566_CR45) 2011; 5 WH Chen (9566_CR55) 2013; 3 G Huang (9566_CR44) 2013; 3 XL Hu (9566_CR25) 2013; 135 D Pathania (9566_CR12) 2009; 61 B Cao (9566_CR33) 2018; 14 G Perry (9566_CR10) 2000; 28 BL Gilmore (9566_CR60) 2017; 7 DR Green (9566_CR65) 1998; 281 Y Yuan (9566_CR6) 2014; 53 C Boyer (9566_CR41) 2009; 109 M Vondrusova (9566_CR19) 2015; 1265 XD Xu (9566_CR28) 2016; 76 L Biasutto (9566_CR20) 2010; 10 V Gogvadze (9566_CR9) 2008; 18 XL Hu (9566_CR42) 2015; 7 T Xia (9566_CR62) 2002; 510 G Kroemer (9566_CR64) 2007; 87 P Pei (9566_CR48) 2019; 188 MT Jeena (9566_CR14) 2017; 8 QL Hu (9566_CR13) 2014; 53 WH Wang (9566_CR32) 2018; 30 MJ Jiang (9566_CR23) 2018; 6 GF Kelso (9566_CR52) 2001; 276 CY Sun (9566_CR58) 2018; 8 S Katsamakas (9566_CR49) 2017; 9 DC Chan (9566_CR56) 2006; 125 J Zhang (9566_CR46) 2016; 5 SA Lakhani (9566_CR63) 2006; 311 LS Lin (9566_CR69) 2018; 57 PA Ma (9566_CR68) 2017; 17 XL Hu (9566_CR26) 2015; 137 C Zhang (9566_CR36) 2016; 55 Y Wang (9566_CR7) 2014; 24 C De Gracia Lux (9566_CR3) 2012; 134 MS Shim (9566_CR4) 2013; 52 D Spierings (9566_CR15) 2005; 310 NY Li (9566_CR57) 2003; 278 H Pelicano (9566_CR11) 2004; 7 Z Tang (9566_CR16) 2019; 131 EM Nelson (9566_CR40) 1984; 81 MH Lee (9566_CR50) 2012; 134 N Sen (9566_CR66) 2004; 279 SG Rhee (9566_CR1) 2006; 312 Y Li (9566_CR35) 2018; 140 31182721 - Nat Commun. 2019 Jun 10;10(1):2597 31586056 - Nat Commun. 2019 Oct 4;10(1):4591 |
References_xml | – volume: 52 start-page: 6926 year: 2013 end-page: 6929 ident: CR4 article-title: A reactive oxygen species (ROS)-responsive polymer for safe, efficient, and targeted gene delivery in cancer cells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209633 – volume: 30 start-page: 1706307 year: 2018 ident: CR27 article-title: Concurrent drug unplugging and permeabilization of polyprodrug-gated crosslinked vesicles for cancer combination chemotherapy publication-title: Adv. Mater. doi: 10.1002/adma.201706307 – volume: 9 start-page: 923 year: 2010 end-page: 928 ident: CR5 article-title: Orally delivered thioketal nanoparticles loaded with tnf-alpha-sirna target inflammation and inhibit gene expression in the intestines publication-title: Nat. Mater. doi: 10.1038/nmat2859 – volume: 134 start-page: 15758 year: 2012 end-page: 15764 ident: CR3 article-title: Biocompatible polymeric nanoparticles degrade and release cargo in response to biologically relevant levels of hydrogen peroxide publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303372u – volume: 3 year: 2013 ident: CR55 article-title: Dual-targeting pro-apoptotic peptide for programmed cancer cell death via specific mitochondria damage publication-title: Sci. Rep. doi: 10.1038/srep03468 – volume: 2 start-page: 2295 year: 2007 end-page: 2301 ident: CR59 article-title: Simultaneous detection of apoptosis and mitochondrial superoxide production in live cells by flow cytometry and confocal microscopy publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.327 – volume: 87 start-page: 99 year: 2007 end-page: 163 ident: CR64 article-title: Mitochondrial membrane permeabilization in cell death publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2006 – volume: 3 start-page: 116 year: 2013 end-page: 126 ident: CR44 article-title: Superparamagnetic iron oxide nanoparticles: Amplifying ROS stress to improve anticancer drug efficacy publication-title: Theranostics doi: 10.7150/thno.5411 – volume: 61 start-page: 1250 year: 2009 end-page: 1275 ident: CR12 article-title: Opportunities in discovery and delivery of anticancer drugs targeting mitochondria and cancer cell metabolism publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.05.010 – volume: 4 start-page: 755 year: 2004 end-page: 762 ident: CR17 article-title: Mitochondrial dysfunction in cancer publication-title: Mitochondrion doi: 10.1016/j.mito.2004.07.027 – volume: 8 year: 2017 ident: CR14 article-title: Mitochondria localization induced self-assembly of peptide amphiphiles for cellular dysfunction publication-title: Nat. Commun. doi: 10.1038/s41467-017-00047-z – volume: 5 start-page: 919 year: 2016 end-page: 924 ident: CR46 article-title: Peroxynitrite (ONOO ) redox signaling molecule-responsive polymersomes publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.6b00474 – volume: 9 start-page: 579 year: 2017 end-page: 604 ident: CR49 article-title: RGD-mediated delivery of small-molecule drugs publication-title: Future Med. Chem. doi: 10.4155/fmc-2017-0008 – volume: 140 start-page: 4164 year: 2018 end-page: 4171 ident: CR35 article-title: Positively charged polyprodrug amphiphiles with enhanced drug loading and reactive oxygen species-responsive release ability for traceable synergistic therapy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01641 – volume: 131 start-page: 958 year: 2019 end-page: 968 ident: CR16 article-title: Chemodynamic therapy: tumour microenvironment-mediated fenton and fenton-like reactions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201805664 – volume: 312 start-page: 1882 year: 2006 end-page: 1883 ident: CR1 article-title: H O , a necessary evil for cell signaling publication-title: Science doi: 10.1126/science.1130481 – volume: 76 start-page: 238 year: 2016 end-page: 249 ident: CR28 article-title: Smart and hyper-fast responsive polyprodrug nanoplatform for targeted cancer therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.056 – volume: 137 start-page: 362 year: 2015 end-page: 368 ident: CR26 article-title: Cell-penetrating hyperbranched polyprodrug amphiphiles for synergistic reductive milieu-triggered drug release and enhanced magnetic resonance signals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5105848 – volume: 310 start-page: 66 year: 2005 end-page: 67 ident: CR15 article-title: Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis publication-title: Science doi: 10.1126/science.1117105 – volume: 51 start-page: 794 year: 1991 end-page: 798 ident: CR2 article-title: Production of large amounts of hydrogen peroxide by human tumor cells publication-title: Cancer Res. – volume: 153 start-page: 14 year: 2018 end-page: 26 ident: CR22 article-title: Mitochondrial specific photodynamic therapy by rare-earth nanoparticles mediated near-infrared graphene quantum dots publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.034 – volume: 278 start-page: 8516 year: 2003 end-page: 8525 ident: CR57 article-title: Mitochondrial complex i inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210432200 – volume: 188 start-page: 74 year: 2019 end-page: 82 ident: CR48 article-title: Ros-sensitive thioketal-linked polyphosphoester-doxorubicin conjugate for precise phototriggered locoregional chemotherapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.10.010 – volume: 54 start-page: 101 year: 2002 end-page: 127 ident: CR8 article-title: Mitochondria as a pharmacological target publication-title: Pharmacol. Rev. doi: 10.1124/pr.54.1.101 – volume: 178 start-page: 608 year: 2018 end-page: 619 ident: CR34 article-title: Anti-inflammatory polymersomes of redox-responsive polyprodrug amphiphiles with inflammation-triggered indomethacin release characteristics publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.035 – volume: 1800 start-page: 1009 year: 2010 end-page: 1017 ident: CR54 article-title: Rapid uptake of lipophilic triphenylphosphonium cations by mitochondria in vivo following intravenous injection: Implications for mitochondria-specific therapies and probes publication-title: BBA-Gen. Subj. doi: 10.1016/j.bbagen.2010.06.001 – volume: 7 start-page: 1 year: 2017 end-page: 9 ident: CR60 article-title: Molecular analysis of brca1 in human breast cancer cells under oxidative stress publication-title: Sci. Rep. doi: 10.1038/srep43435 – volume: 1265 start-page: 195 year: 2015 end-page: 208 ident: CR19 article-title: The effect of mitochondrially targeted anticancer agents on mitochondrial (super)complexes publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2288-8_15 – volume: 311 start-page: 847 year: 2006 end-page: 851 ident: CR63 article-title: Caspases 3 and 7: key mediators of mitochondrial events of apoptosis publication-title: Science doi: 10.1126/science.1115035 – volume: 53 start-page: 10949 year: 2014 end-page: 10955 ident: CR61 article-title: Molecularly precise dendrimer-drug conjugates with tunable drug release for cancer therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406442 – volume: 57 start-page: 4902 year: 2018 end-page: 4906 ident: CR69 article-title: Simultaneous fenton-like ion delivery and glutathione depletion by MnO -based nanoagent to enhance chemodynamic therapy publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712027 – volume: 7 start-page: 97 year: 2004 end-page: 110 ident: CR11 article-title: ROS stress in cancer cells and therapeutic implications publication-title: Drug Resist. Updat doi: 10.1016/j.drup.2004.01.004 – volume: 8 start-page: 579 year: 2009 end-page: 591 ident: CR21 article-title: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2803 – volume: 5 start-page: 53 year: 2013 end-page: 67 ident: CR18 article-title: Targeting cancer cell mitochondria as a therapeutic approach publication-title: Future Med. Chem. doi: 10.4155/fmc.12.190 – volume: 30 start-page: 3486 year: 2018 end-page: 3498 ident: CR32 article-title: Cascade-promoted photo-chemotherapy against resistant cancers by enzyme-responsive polyprodrug nanoplatforms publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01149 – volume: 14 start-page: 1802008 year: 2018 ident: CR33 article-title: Polyprodrug antimicrobials: remarkable membrane damage and concurrent drug release to combat antibiotic resistance of methicillin-resistant staphylococcus aureus publication-title: Small doi: 10.1002/smll.201802008 – volume: 17 start-page: 928 year: 2017 end-page: 937 ident: CR68 article-title: Enhanced cisplatin chemotherapy by iron oxide nanocarrier-mediated generation of highly toxic reactive oxygen species publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04269 – volume: 15 start-page: 3021 year: 2011 end-page: 3038 ident: CR51 article-title: Mitochondria-targeted small molecule therapeutics and probes publication-title: Antioxid. Redox Sign doi: 10.1089/ars.2011.3969 – volume: 7 start-page: 1090 year: 2000 end-page: 1100 ident: CR39 article-title: Increased mitochondrial cytochrome c levels and mitochondrial hyperpolarization precede camptothecin-induced apoptosis in jurkat cells publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400740 – volume: 81 start-page: 1361 year: 1984 end-page: 1365 ident: CR40 article-title: Mechanism of antitumor drug action: Poisoning of mammalian DNA topoisomerase ii on DNA by 4′-(9-acridinylamino)-methanesulfon-m-anisidide publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.81.5.1361 – volume: 279 start-page: 52366 year: 2004 end-page: 52375 ident: CR66 article-title: Camptothecin-induced imbalance in intracellular cation homeostasis regulates programmed cell death in unicellular hemoflagellate leishmania donovani publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406705200 – volume: 11 start-page: 924 year: 2004 end-page: 936 ident: CR38 article-title: Camptothecin induced mitochondrial dysfunction leading to programmed cell death in unicellular hemoflagellate leishmania donovani publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401435 – volume: 29 start-page: 1700141 year: 2017 ident: CR30 article-title: ROS-responsive polyprodrug nanoparticles for triggered drug delivery and effective cancer therapy publication-title: Adv. Mater. doi: 10.1002/adma.201700141 – volume: 135 start-page: 17617 year: 2013 end-page: 17629 ident: CR25 article-title: Polyprodrug amphiphiles: hierarchical assemblies for shape-regulated cellular internalization, trafficking, and drug delivery publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409686x – volume: 98 start-page: 167 year: 2010 end-page: 171 ident: CR53 article-title: Mitochondria-targeting properties and photodynamic activities of porphyrin derivatives bearing cationic pendant publication-title: J. Photoch. Photobio. B doi: 10.1016/j.jphotobiol.2009.12.003 – volume: 281 start-page: 1309 year: 1998 end-page: 1312 ident: CR65 article-title: Mitochondria and apoptosis publication-title: Science doi: 10.1126/science.281.5381.1309 – volume: 5 start-page: 5263 year: 2011 end-page: 5272 ident: CR45 article-title: Encapsulation and enzyme-mediated release of molecular cargo in polysulfide nanoparticles publication-title: ACS Nano doi: 10.1021/nn201477y – volume: 134 start-page: 12668 year: 2012 end-page: 12674 ident: CR50 article-title: Direct fluorescence monitoring of the delivery and cellular uptake of a cancer-targeted rgd peptide-appended naphthalimide theragnostic prodrug publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303998y – volume: 7 year: 2016 ident: CR67 article-title: Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy publication-title: Nat. Commun. doi: 10.1038/ncomms12967 – volume: 6 start-page: 2557 year: 2018 end-page: 2565 ident: CR23 article-title: A simple mitochondrial targeting AIEgen for image-guided two-photon excited photodynamic therapy publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02609A – volume: 125 start-page: 1241 year: 2006 end-page: 1252 ident: CR56 article-title: Mitochondria: Dynamic organelles in disease, aging, and development publication-title: Cell doi: 10.1016/j.cell.2006.06.010 – volume: 3 start-page: 991 year: 2017 end-page: 1007 ident: CR47 article-title: Chemiluminescence-guided cancer therapy using a chemiexcited photosensitizer publication-title: Chem doi: 10.1016/j.chempr.2017.10.002 – volume: 18 start-page: 165 year: 2008 end-page: 173 ident: CR9 article-title: Mitochondria in cancer cells: what is so special about them? publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2008.01.006 – volume: 24 start-page: 4206 year: 2014 end-page: 4220 ident: CR7 article-title: Stimuli-responsive materials for controlled release of theranostic agents publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400279 – volume: 18 start-page: 2571 year: 2017 end-page: 2582 ident: CR31 article-title: Near-infrared light-activated photochemical internalization of reduction-responsive polyprodrug vesicles for synergistic photodynamic therapy and chemotherapy publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00693 – volume: 17 start-page: 6983 year: 2017 end-page: 6990 ident: CR37 article-title: Polymer prodrug-based nanoreactors activated by tumor acidity for orchestrated oxidation/chemotherapy publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03531 – volume: 10 start-page: 670 year: 2010 end-page: 681 ident: CR20 article-title: Mitochondrially targeted anti-cancer agents publication-title: Mitochondrion doi: 10.1016/j.mito.2010.06.004 – volume: 55 start-page: 2101 year: 2016 end-page: 2106 ident: CR36 article-title: Synthesis of iron nanometallic glasses and their application in cancer therapy by a localized fenton reaction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510031 – volume: 53 start-page: 14225 year: 2014 end-page: 14229 ident: CR13 article-title: Mitochondria-targeted cancer therapy using a light-up probe with aggregation-induced-emission characteristics publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408897 – volume: 27 start-page: 1703674 year: 2017 ident: CR43 article-title: Theranostic prodrug vesicles for reactive oxygen species-triggered ultrafast drug release and local-regional therapy of metastatic triple-negative breast cancer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703674 – volume: 7 start-page: 15551 year: 2015 end-page: 15560 ident: CR42 article-title: Intracellular cascade FRET for temperature imaging of living cells with polymeric ratiometric fluorescent thermometers publication-title: Acs Appl. Mater. Inter doi: 10.1021/acsami.5b04025 – volume: 17 start-page: 1700174 year: 2017 ident: CR29 article-title: Self-assembled polyprodrug amphiphile for subcutaneous xenograft tumor inhibition with prolonged acting time in vivo publication-title: Macromol. Biosci. doi: 10.1002/mabi.201700174 – volume: 6 year: 2015 ident: CR70 article-title: Amplification of oxidative stress by a dual stimuli-responsive hybrid drug enhances cancer cell death publication-title: Nat. Commun. doi: 10.1038/ncomms7907 – volume: 8 start-page: 2939 year: 2018 end-page: 2953 ident: CR58 article-title: Cascade-amplifying synergistic effects of chemo-photodynamic therapy using ros-responsive polymeric nanocarriers publication-title: Theranostics doi: 10.7150/thno.24015 – volume: 510 start-page: 62 year: 2002 end-page: 66 ident: CR62 article-title: A study on permeability transition pore opening and cytochrome c release from mitochondria, induced by caspase-3 in vitro publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)03228-8 – volume: 6 start-page: 2352 year: 2016 end-page: 2366 ident: CR24 article-title: Ros-responsive mitochondria-targeting blended nanoparticles: Chemo-and photodynamic synergistic therapy for lung cancer with on-demand drug release upon irradiation with a single light source publication-title: Theranostics doi: 10.7150/thno.15433 – volume: 28 start-page: 831 year: 2000 end-page: 834 ident: CR10 article-title: How important is oxidative damage? Lessons from alzheimer’s disease publication-title: Free Radic. Bio. Med doi: 10.1016/S0891-5849(00)00158-1 – volume: 109 start-page: 5402 year: 2009 end-page: 5436 ident: CR41 article-title: Bioapplications of raft polymerization publication-title: Chem. Rev. doi: 10.1021/cr9001403 – volume: 53 start-page: 7163 year: 2014 end-page: 7168 ident: CR6 article-title: Conjugated-polyelectrolyte-based polyprodrug: targeted and image-guided photodynamic and chemotherapy with on-demand drug release upon irradiation with a single light source publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402189 – volume: 276 start-page: 4588 year: 2001 end-page: 4596 ident: CR52 article-title: Selective targeting of a redox-active ubiquinone to mitochondria within cells - antioxidant and antiapoptotic properties publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009093200 – volume: 18 start-page: 165 year: 2008 ident: 9566_CR9 publication-title: Trends Cell Biol. doi: 10.1016/j.tcb.2008.01.006 – volume: 188 start-page: 74 year: 2019 ident: 9566_CR48 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.10.010 – volume: 87 start-page: 99 year: 2007 ident: 9566_CR64 publication-title: Physiol. Rev. doi: 10.1152/physrev.00013.2006 – volume: 6 start-page: 2557 year: 2018 ident: 9566_CR23 publication-title: J. Mater. Chem. B doi: 10.1039/C7TB02609A – volume: 24 start-page: 4206 year: 2014 ident: 9566_CR7 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201400279 – volume: 5 start-page: 919 year: 2016 ident: 9566_CR46 publication-title: ACS Macro Lett. doi: 10.1021/acsmacrolett.6b00474 – volume: 5 start-page: 53 year: 2013 ident: 9566_CR18 publication-title: Future Med. Chem. doi: 10.4155/fmc.12.190 – volume: 125 start-page: 1241 year: 2006 ident: 9566_CR56 publication-title: Cell doi: 10.1016/j.cell.2006.06.010 – volume: 18 start-page: 2571 year: 2017 ident: 9566_CR31 publication-title: Biomacromolecules doi: 10.1021/acs.biomac.7b00693 – volume: 279 start-page: 52366 year: 2004 ident: 9566_CR66 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M406705200 – volume: 2 start-page: 2295 year: 2007 ident: 9566_CR59 publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.327 – volume: 134 start-page: 12668 year: 2012 ident: 9566_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303998y – volume: 81 start-page: 1361 year: 1984 ident: 9566_CR40 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.81.5.1361 – volume: 17 start-page: 1700174 year: 2017 ident: 9566_CR29 publication-title: Macromol. Biosci. doi: 10.1002/mabi.201700174 – volume: 1265 start-page: 195 year: 2015 ident: 9566_CR19 publication-title: Methods Mol. Biol. doi: 10.1007/978-1-4939-2288-8_15 – volume: 53 start-page: 14225 year: 2014 ident: 9566_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201408897 – volume: 135 start-page: 17617 year: 2013 ident: 9566_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja409686x – volume: 76 start-page: 238 year: 2016 ident: 9566_CR28 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2015.10.056 – volume: 9 start-page: 579 year: 2017 ident: 9566_CR49 publication-title: Future Med. Chem. doi: 10.4155/fmc-2017-0008 – volume: 140 start-page: 4164 year: 2018 ident: 9566_CR35 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b01641 – volume: 29 start-page: 1700141 year: 2017 ident: 9566_CR30 publication-title: Adv. Mater. doi: 10.1002/adma.201700141 – volume: 30 start-page: 3486 year: 2018 ident: 9566_CR32 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.8b01149 – volume: 14 start-page: 1802008 year: 2018 ident: 9566_CR33 publication-title: Small doi: 10.1002/smll.201802008 – volume: 5 start-page: 5263 year: 2011 ident: 9566_CR45 publication-title: ACS Nano doi: 10.1021/nn201477y – volume: 11 start-page: 924 year: 2004 ident: 9566_CR38 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4401435 – volume: 311 start-page: 847 year: 2006 ident: 9566_CR63 publication-title: Science doi: 10.1126/science.1115035 – volume: 134 start-page: 15758 year: 2012 ident: 9566_CR3 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja303372u – volume: 9 start-page: 923 year: 2010 ident: 9566_CR5 publication-title: Nat. Mater. doi: 10.1038/nmat2859 – volume: 7 start-page: 97 year: 2004 ident: 9566_CR11 publication-title: Drug Resist. Updat doi: 10.1016/j.drup.2004.01.004 – volume: 30 start-page: 1706307 year: 2018 ident: 9566_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201706307 – volume: 17 start-page: 6983 year: 2017 ident: 9566_CR37 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03531 – volume: 98 start-page: 167 year: 2010 ident: 9566_CR53 publication-title: J. Photoch. Photobio. B doi: 10.1016/j.jphotobiol.2009.12.003 – volume: 137 start-page: 362 year: 2015 ident: 9566_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5105848 – volume: 131 start-page: 958 year: 2019 ident: 9566_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201805664 – volume: 6 year: 2015 ident: 9566_CR70 publication-title: Nat. Commun. doi: 10.1038/ncomms7907 – volume: 310 start-page: 66 year: 2005 ident: 9566_CR15 publication-title: Science doi: 10.1126/science.1117105 – volume: 510 start-page: 62 year: 2002 ident: 9566_CR62 publication-title: FEBS Lett. doi: 10.1016/S0014-5793(01)03228-8 – volume: 109 start-page: 5402 year: 2009 ident: 9566_CR41 publication-title: Chem. Rev. doi: 10.1021/cr9001403 – volume: 61 start-page: 1250 year: 2009 ident: 9566_CR12 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2009.05.010 – volume: 27 start-page: 1703674 year: 2017 ident: 9566_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201703674 – volume: 4 start-page: 755 year: 2004 ident: 9566_CR17 publication-title: Mitochondrion doi: 10.1016/j.mito.2004.07.027 – volume: 8 start-page: 2939 year: 2018 ident: 9566_CR58 publication-title: Theranostics doi: 10.7150/thno.24015 – volume: 17 start-page: 928 year: 2017 ident: 9566_CR68 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04269 – volume: 51 start-page: 794 year: 1991 ident: 9566_CR2 publication-title: Cancer Res. – volume: 8 start-page: 579 year: 2009 ident: 9566_CR21 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd2803 – volume: 57 start-page: 4902 year: 2018 ident: 9566_CR69 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712027 – volume: 281 start-page: 1309 year: 1998 ident: 9566_CR65 publication-title: Science doi: 10.1126/science.281.5381.1309 – volume: 7 start-page: 15551 year: 2015 ident: 9566_CR42 publication-title: Acs Appl. Mater. Inter doi: 10.1021/acsami.5b04025 – volume: 178 start-page: 608 year: 2018 ident: 9566_CR34 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.03.035 – volume: 276 start-page: 4588 year: 2001 ident: 9566_CR52 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M009093200 – volume: 3 start-page: 991 year: 2017 ident: 9566_CR47 publication-title: Chem doi: 10.1016/j.chempr.2017.10.002 – volume: 28 start-page: 831 year: 2000 ident: 9566_CR10 publication-title: Free Radic. Bio. Med doi: 10.1016/S0891-5849(00)00158-1 – volume: 54 start-page: 101 year: 2002 ident: 9566_CR8 publication-title: Pharmacol. Rev. doi: 10.1124/pr.54.1.101 – volume: 15 start-page: 3021 year: 2011 ident: 9566_CR51 publication-title: Antioxid. Redox Sign doi: 10.1089/ars.2011.3969 – volume: 3 start-page: 116 year: 2013 ident: 9566_CR44 publication-title: Theranostics doi: 10.7150/thno.5411 – volume: 153 start-page: 14 year: 2018 ident: 9566_CR22 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.10.034 – volume: 7 start-page: 1 year: 2017 ident: 9566_CR60 publication-title: Sci. Rep. doi: 10.1038/srep43435 – volume: 53 start-page: 10949 year: 2014 ident: 9566_CR61 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406442 – volume: 10 start-page: 670 year: 2010 ident: 9566_CR20 publication-title: Mitochondrion doi: 10.1016/j.mito.2010.06.004 – volume: 7 year: 2016 ident: 9566_CR67 publication-title: Nat. Commun. doi: 10.1038/ncomms12967 – volume: 312 start-page: 1882 year: 2006 ident: 9566_CR1 publication-title: Science doi: 10.1126/science.1130481 – volume: 52 start-page: 6926 year: 2013 ident: 9566_CR4 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201209633 – volume: 6 start-page: 2352 year: 2016 ident: 9566_CR24 publication-title: Theranostics doi: 10.7150/thno.15433 – volume: 278 start-page: 8516 year: 2003 ident: 9566_CR57 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M210432200 – volume: 55 start-page: 2101 year: 2016 ident: 9566_CR36 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201510031 – volume: 7 start-page: 1090 year: 2000 ident: 9566_CR39 publication-title: Cell Death Differ. doi: 10.1038/sj.cdd.4400740 – volume: 3 year: 2013 ident: 9566_CR55 publication-title: Sci. Rep. doi: 10.1038/srep03468 – volume: 8 year: 2017 ident: 9566_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-017-00047-z – volume: 1800 start-page: 1009 year: 2010 ident: 9566_CR54 publication-title: BBA-Gen. Subj. doi: 10.1016/j.bbagen.2010.06.001 – volume: 53 start-page: 7163 year: 2014 ident: 9566_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402189 – reference: 31182721 - Nat Commun. 2019 Jun 10;10(1):2597 – reference: 31586056 - Nat Commun. 2019 Oct 4;10(1):4591 |
SSID | ssj0000391844 |
Score | 2.6766167 |
Snippet | Cancer cells exhibit slightly elevated levels of reactive oxygen species (ROS) compared with normal cells, and approximately 90% of intracellular ROS is... Mitochondria are a source of reactive oxygen species, which can be exploited to induce the death of cancer cells. Here, the authors use nanoparticles that... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1704 |
SubjectTerms | 14/1 14/19 631/154 631/67 639/638/455/952 692/699/67 Amplification Animals Antineoplastic Agents - chemistry Apoptosis Camptothecin Camptothecin - chemistry Cancer Cell Line, Tumor Chemotherapy Drug delivery systems Drug Liberation Female Flow Cytometry Humanities and Social Sciences Humans Life span Mice Mice, Inbred BALB C Microscopy, Fluorescence Mitochondria Mitochondria - metabolism multidisciplinary Nanomedicine - methods Nanotechnology Neoplasms - metabolism Oxidative Stress Oxygen Photochemotherapy Photodynamic therapy Precision medicine Prodrugs Reactive oxygen species Reactive Oxygen Species - metabolism Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEB-kIHgR6-e2VSJ406XZzfdRxVKEerLQW8gmWSvUbHn7HviO_udOsvuefX5evC2b2RBmfjOT2WRmAF6IFv2a0K7utAk1Z97XWgZfG2k0WsooY5f_Q559kKfn_P2FuLjR6ivfCZvKA0-MO5ZBBKe4a5pOchUj4su3wqFrkYqKUOp8os-7EUwVG8wMhi58zpKhTB-PvNgEmnN2MCaQNdvxRKVg_-92mb9elvzpxLQ4opN7cHfeQZLX08r34VZM9-H21FNy_QC-naGOok1LAaFV50TKfBmIhMXqE8kNUtBrEZcCPrti6sjwdY0gIoUyjgSZPC4JRuoo80C6NbkernJaVJkguTSUD4fFSFAoJKbLDBuCov8y53KtH8L5ybuPb0_ruc9C7TF8WdZGudAH7Vjf90xFpWhEo9ewXgkfMTzDVzF7dhG8C6ppO915w6LvVeN0ZzR7BHtpSPEJEIUBkqBBSd8wjrMiIaVR46ZPlMiqgmbDc-vnIuS5F8aVLYfhTNtJThblZIucLKvg5fab66kEx1-p32RRbilz-ezyAkFlZ1DZf4GqgqMNEOys06NtW6oxXm4pr-D5dhi1MR-xuBSHVaExMid6qwoeT7jZroRRk4vDiQrUDqJ2lro7kj5florfkstGmraCVxvs_VjWn1lx8D9YcQh32qI0ubzlEewtF6v4FPdhy-5ZUbnvHEsvZw priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlad-JkTAsRSIZUTlXqzHNtpkVpn2exK7LH_nLHj3Wp59LZKJpbX883L9swg9EY0YNeEtqTTrSecOUe09I60stWgKYMMXdqHPP4mj07411NxWjbcxnKtcqMTs6L2g0t75IdNQzVEKw3l7-c_SeoalU5XSwuN2-hODZYmXenSsy_bPZZU_VxzXnJlKNOHI8-agabMHYgMJGE79iiX7f-Xr_n3lck_zk2zOZo9QPeLH4k_TIx_iG6F-AjdnTpLrh-jq2OQVNBs0QPASEqnTFeCsF-sznBqkwK2C9vo4bfNCg8Pv9YAJZwpw4hhqcclhngdOO9xt8bz4SIlR-UBoo1D_nBYjBhYg0M8T-DBAIDLktG1foJOZp-_fzoipdsCcRDELEmrrO-9tqzve6aCUjSA6qtZr4QLEKTBo5Dsu_DOelU3ne5cy4LrVW1112r2FO3FIYbnCCsIkwT1SrqacRgVCCkNGlw_keOrCtWbNTeulCJPHTEuTD4SZ9pMfDLAJ5P5ZFiF3m6_mU-FOG6k_phYuaVMRbTzg2FxZopMGumFt4rbuu4kVyGA6nKNsOC1SEWFh0EONkAwRbJHc43DCr3evgaZTActNoZhlWlamdK9VYWeTbjZzoTRNpWIExVSO4jamerum_jjPNf9llzWsm0q9G6Dvetp_X8p9m_-Fy_QvSaLQypfeYD2lotVeAl-1rJ7lYXpN2c3J4c priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LaxQxGA-1RfAivh2tEsGbDmbynuMqlrJQL1roLWSSTCvUTNnZBffY_7xfMg9ZrYK3IfMlhHzvJN8vCL0VFPya0LZsdO1LzpwrtfSurGWtwVIGGZq0D3nyRR6f8uWZONtDdKqFyZf2M6RlNtPT7bAPPc8qTVLJDYT0smR30EGCagfZPlgsll-X885KwjzXnI8VMoTpWzrveKEM1n9bhPnnRcnfTkuzEzp6gO6P0SNeDPN9iPZCfITuDu9Jbh-j6xPQT7Bn0YNYlamIMl0Ewn61OcfpcRTwWNhGD982mznc_dyCAOFMGXoMC9yvMWTpwG-Pmy2-6i5TSVQeINrY5Y7dqsfAEBziRRIZDGz_MdZxbZ-g06PP3z4dl-MbC6WD1GVd1sr61mvL2rZlKihFAhi8irVKuACpGTSF5NWFd9arija6cTULrlWV1U2t2VO0H7sYniOsIDkSxCvpKsZhVCAkJGgI-ETOqgpUTWtu3AhAnt7BuDT5IJxpM_DJAJ9M5pNhBXo397ka4Df-Sf0xsXKmTNDZuaFbnZtRlIz0wlvFbVU1kqsQwGA5KizEKlIR4WGQw0kQzKjPvaGUaMiVKeEFejP_Bk1Mxys2hm6TaWqZirxVgZ4NcjPPhJE6AcOJAqkdidqZ6u6f-P0io31LLitZ0wK9n2Tv17T-vhQv_o_8JbpHs3okEMtDtL9ebcIriLbWzetRvW4A2l4m3A priority: 102 providerName: Springer Nature |
Title | Mitochondria-specific drug release and reactive oxygen species burst induced by polyprodrug nanoreactors can enhance chemotherapy |
URI | https://link.springer.com/article/10.1038/s41467-019-09566-3 https://www.ncbi.nlm.nih.gov/pubmed/30979885 https://www.proquest.com/docview/2208721204 https://www.proquest.com/docview/2209611467 https://pubmed.ncbi.nlm.nih.gov/PMC6461692 https://doaj.org/article/6d5da74a11b647ee870c25a0246705d3 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwEB7tQ0hcEG8CS2UkbhBI4viRA0LdasuqUlcIqNRb5NjOLlJJlqaVtkf-OWMnKSqUvTSVM7YczzeemTgzA_CaJajXmFRhITMTplTrUHKjw4xnEndKy23h3kNOL_j5LJ3M2fwA-nJH3QI2e107V09qtly8u_m5-YgC_6ENGZfvm9SLe-TCcdDc5yE9hGPUTMJVNJh25r7fmWmGDk3axc7s77qjn3wa_32257-fUP51jurV0_g-3OvsSjJsgfAADmz1EO60lSY3j-DXFCUXH7YyCLjQhVe6T4SIWa4viSubgrqMqMrgf-U3QFLfbBBaxFPahuDSNyuC_jsiwZBiQ67rhQuW8gNUqqp9x3rZEGQVsdWVAxNBQPzoIrw2j2E2Pvs2Og-76guhRqdmFWZCmdJIRcuypMIKEVncCmNaCqYtOm3YZJ2-Z0YrI-KkkIXOqNWliJUsMkmfwFFVV_YZEIFuE4uM4DqmKY6KhFFkJZqCzPtbAcT9mue6S03uKmQscn9ETmXe8ilHPuWeTzkN4M22z3WbmONW6lPHyi2lS6rtG-rlZd7JaM4NM0qkKo4LngprcSvTCVNoxXARMYODnPRAyHug5kkSSfSikygN4NX2NsqoO3hRla3XnibjLvxbBPC0xc12JjTKXMo4FoDYQdTOVHfvVN-vfB5wnvKYZ0kAb3vs_ZnW_5fi-e1P8QLuJl4cXDrLEzhaLdf2Jdpdq2IAh2Iu8FeOPw3geDicfJ3g9fTs4vMXbB3x0cC_0Rh4ofsNOi0xkQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4iaxM8cEOJVtrTbUyv1ZhzbaSsVZ9nsCvbIH-I3MnaSrZZHb71FiWM5mc_fzNieGYSeswL0GpM6rWRpU0qMSSW3Ji15KYEpHXdVWIcc7_PRIf18xI7W0K8hFiYcqxw4MRK1bUxYI98qikyCt1Jk9M3kWxqqRoXd1aGERgeLXbf4Di5b-3rnA8j3RVFsfzx4P0r7qgKpAWN9lpZC29pKTeq6JsIJkTmY4jmpBTMOnBG45YIeY9ZoK_KikpUpiTO1yLWsSkmg3yvoKiWgyUNk-van5ZpOyLYuKe1jczIit1oamSgLkULgifCUrOi_WCbgX7bt30c0_9injepv-xa62dut-G0HtNtozfk76FpXyXJxF_0cAzMAk3oLgE5D-GY4goTtdH6MQ1kW0JVYewvXOhIsbn4sALo4tnQtBtG2M3zqLSDN4mqBJ81ZCMaKHXjtm_hiM20xQAE7fxLAigFwX_sIssU9dHgpcriP1n3j3QOEBbhlLLOCm5xQ6BUaZpmTYGqy6M8lKB_-uTJ96vNQgeNMxS14IlUnJwVyUlFOiiTo5fKdSZf448LW74Ioly1D0u54o5keq54DFLfMakF1nlecCueAKk3BNFhJXGTMQiebAxBUzyStOsd9gp4tHwMHhI0d7V0zj21KHsLLRYI2OtwsR0KyMqSkYwkSK4haGerqE396EvOMc8pzXhYJejVg73xY__8VDy_-iqfo-uhgvKf2dvZ3H6EbRZwaIXXmJlqfTefuMdh4s-pJnFgYfbnsmfwbxDZmtw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkaCE0SbxPEjB4Qo7aqldFUhKvXmOrbTVirOstkV7JG_xa9j7CRbLY_eeosSx3Iy33yesT0zCL2kGcxrVKi4FIWJc6J1LJjRccEKAUxpmS39OuT-mO0c5h-P6NEa-tXHwvhjlT0nBqI2tfZr5MMsSwR4K1mSD6vuWMTB1ujd5FvsK0j5nda-nEYLkT27-A7uW_N2dwtk_SrLRttfPuzEXYWBWIPhPosLrkxlhCJVVRFuOU8sqHtKKk61BccEblk_p1GjleFpVopSF8TqiqdKlIUg0O81tM69VzRA65vb44PPyxUen3td5HkXqZMQMWzywEuJjxsCv4TFZGU2DEUD_mXp_n1g849d2zAZjm6jW50Vi9-3sLuD1qy7i663dS0X99DPfeAJ4FVnAN6xD-b0B5Kwmc5PsC_SAjMnVs7AtQp0i-sfCwAyDi1tg0HQzQyfOQO4M7hc4El97kOzQgdOuTq8WE8bDMDA1p166GKA39cunmxxHx1eiSQeoIGrnX2EMAcnjSaGM52SHHqFhkliBRieNHh3EUr7fy51lwjd1-M4l2FDngjZykmCnGSQkyQRer18Z9KmAbm09aYX5bKlT-EdbtTTE9kxgmSGGsVzlaYly7m1QJw6owpsJsYTaqCTjR4IsuOVRl5oQYReLB8DI_htHuVsPQ9tCuaDzXmEHra4WY6EJIVPUEcjxFcQtTLU1Sfu7DRkHWc5S1mRRehNj72LYf3_Vzy-_CueoxugxfLT7njvCbqZBc3weTQ30GA2ndunYPDNymedZmF0fNXK_BtLJWxJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mitochondria-specific+drug+release+and+reactive+oxygen+species+burst+induced+by+polyprodrug+nanoreactors+can+enhance+chemotherapy&rft.jtitle=Nature+communications&rft.au=Zhang+Wenjia&rft.au=Hu+Xianglong&rft.au=Shen%2C+Qi&rft.au=Xing+Da&rft.date=2019-04-12&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-09566-3&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |