High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst

Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrog...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 3485 - 8
Main Authors Qiu, Weibin, Xie, Xiao-Ying, Qiu, Jianding, Fang, Wei-Hai, Liang, Ruping, Ren, Xiang, Ji, Xuqiang, Cui, Guanwei, Asiri, Abdullah M., Cui, Ganglong, Tang, Bo, Sun, Xuping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 28.08.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h –1  mg –1 cat. and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations. Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of inert nitrogen. Here the authors report a metal-free catalyst that selectively reduces nitrogen to ammonia with high efficiency and stability.
AbstractList Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h –1  mg –1 cat. and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations. Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of inert nitrogen. Here the authors report a metal-free catalyst that selectively reduces nitrogen to ammonia with high efficiency and stability.
Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h–1 mg–1cat. and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.
Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h –1  mg –1 cat. and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.
Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber-Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h  mg and a fairly high Faradaic efficiency of 15.95% at -0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.
Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of inert nitrogen. Here the authors report a metal-free catalyst that selectively reduces nitrogen to ammonia with high efficiency and stability.
Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber-Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h-1 mg-1cat. and a fairly high Faradaic efficiency of 15.95% at -0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber-Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h-1 mg-1cat. and a fairly high Faradaic efficiency of 15.95% at -0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.
ArticleNumber 3485
Author Cui, Ganglong
Tang, Bo
Fang, Wei-Hai
Xie, Xiao-Ying
Qiu, Jianding
Sun, Xuping
Ren, Xiang
Liang, Ruping
Ji, Xuqiang
Asiri, Abdullah M.
Cui, Guanwei
Qiu, Weibin
Author_xml – sequence: 1
  givenname: Weibin
  orcidid: 0000-0002-2648-4221
  surname: Qiu
  fullname: Qiu, Weibin
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, College of Chemistry, Nanchang University
– sequence: 2
  givenname: Xiao-Ying
  surname: Xie
  fullname: Xie, Xiao-Ying
  organization: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University
– sequence: 3
  givenname: Jianding
  orcidid: 0000-0002-6793-9499
  surname: Qiu
  fullname: Qiu, Jianding
  organization: College of Chemistry, Nanchang University
– sequence: 4
  givenname: Wei-Hai
  surname: Fang
  fullname: Fang, Wei-Hai
  organization: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University
– sequence: 5
  givenname: Ruping
  surname: Liang
  fullname: Liang, Ruping
  organization: College of Chemistry, Nanchang University
– sequence: 6
  givenname: Xiang
  surname: Ren
  fullname: Ren, Xiang
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 7
  givenname: Xuqiang
  surname: Ji
  fullname: Ji, Xuqiang
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
– sequence: 8
  givenname: Guanwei
  surname: Cui
  fullname: Cui, Guanwei
  organization: College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University
– sequence: 9
  givenname: Abdullah M.
  orcidid: 0000-0001-7905-3209
  surname: Asiri
  fullname: Asiri, Abdullah M.
  organization: Chemistry Department, Faculty of Science and Center of Excellence for Advanced Materials Research, King Abdulaziz University
– sequence: 10
  givenname: Ganglong
  surname: Cui
  fullname: Cui, Ganglong
  email: ganglong.cui@bnu.edu.cn
  organization: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University
– sequence: 11
  givenname: Bo
  surname: Tang
  fullname: Tang, Bo
  email: tangb@sdnu.edu.cn
  organization: College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University
– sequence: 12
  givenname: Xuping
  orcidid: 0000-0002-5326-3838
  surname: Sun
  fullname: Sun, Xuping
  email: xpsun@uestc.edu.cn
  organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30154483$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQjFARLaV_gAOKxIVLwI4_Yl-QUAW0UiUucLYcZ536KbEftoPaf4_z0kLbQ33xaj0z2vHO6-rIBw9V9RajjxgR8SlRTHnXICwaxDomGvaiOmkRxQ3uWnL0oD6uzlLaoXKIxILSV9UxQZhRKshJZS_ceN3sIdoQZ-0N1DpmZ51xeqq9yzGM4GvrbnR2wdc613ruHfhcm-AHtzZTvSTnx1rXM2Q9NTYC1DCBKWSjS-c25TfVS6unBGd392n169vXn-cXzdWP75fnX64awxHPjeg5BSK4Rda2AulBDKWyhlFNh160gK3tSUslp6jrEVDTgsSSgTBIGy7IaXW56Q5B79Q-ulnHWxW0U4dGiKNa_ZkJVG9JJ5mWBHec6sFKAOBs6IzhneTAitbnTWu_9DMMppiOenok-vjFu2s1hj-KY0xaIYvAhzuBGH4vkLKaXTIwTdpDWJJqkeSMcXyAvn8C3YUl-vJVK4oy1kmxunv3cKJ_o9yvswDEBjAxpBTBKuPyYXNlQDcpjNQaHrWFR5XwqEN41Oq2fUK9V3-WRDZSKmA_Qvw_9jOsv7nC2Nc
CitedBy_id crossref_primary_10_1093_femsec_fiaa225
crossref_primary_10_26599_NRE_2023_9120047
crossref_primary_10_1007_s11090_024_10514_3
crossref_primary_10_1002_cssc_202200741
crossref_primary_10_1039_D0NH00287A
crossref_primary_10_1002_anie_202004213
crossref_primary_10_1039_D2CS00041E
crossref_primary_10_1016_j_electacta_2023_143360
crossref_primary_10_1039_D0NR07362H
crossref_primary_10_1002_anie_201903014
crossref_primary_10_1021_acsami_4c15913
crossref_primary_10_1021_jacs_3c12780
crossref_primary_10_1021_jacs_9b13349
crossref_primary_10_1038_s41467_019_12312_4
crossref_primary_10_1021_acsanm_2c00379
crossref_primary_10_1016_j_ijhydene_2021_07_039
crossref_primary_10_1039_C9TA06523G
crossref_primary_10_1039_D4DT01956C
crossref_primary_10_1016_j_electacta_2022_139934
crossref_primary_10_1021_acsnano_2c11954
crossref_primary_10_1039_D1TA08241H
crossref_primary_10_1016_j_apcatb_2024_124728
crossref_primary_10_1021_acssuschemeng_9b00852
crossref_primary_10_1039_C9CC01703H
crossref_primary_10_1039_C9CC00602H
crossref_primary_10_1002_adma_202007650
crossref_primary_10_59717_j_xinn_mater_2024_100060
crossref_primary_10_1016_j_mcat_2023_113117
crossref_primary_10_1002_adma_202306633
crossref_primary_10_1039_D2DT01258H
crossref_primary_10_1016_j_nanoen_2020_105391
crossref_primary_10_1002_smll_202004809
crossref_primary_10_1039_D4NR00640B
crossref_primary_10_1016_j_cclet_2019_10_041
crossref_primary_10_1016_j_ijhydene_2019_08_104
crossref_primary_10_1021_acs_inorgchem_0c02058
crossref_primary_10_1021_acs_inorgchem_0c02176
crossref_primary_10_1002_advs_201902390
crossref_primary_10_1039_D0CY01824D
crossref_primary_10_1002_aenm_202003294
crossref_primary_10_1016_j_jallcom_2019_06_311
crossref_primary_10_1016_j_jes_2023_06_027
crossref_primary_10_1021_acssuschemeng_2c04715
crossref_primary_10_1039_D1TA09013E
crossref_primary_10_1039_C9TA09910G
crossref_primary_10_1016_j_checat_2024_101239
crossref_primary_10_1021_acscatal_9b00366
crossref_primary_10_1016_j_chemosphere_2020_129478
crossref_primary_10_1016_j_jcis_2023_05_108
crossref_primary_10_1021_jacs_4c06657
crossref_primary_10_1016_j_ijhydene_2022_09_074
crossref_primary_10_1039_C9CC00726A
crossref_primary_10_1039_C9CC01920K
crossref_primary_10_1021_acsenergylett_0c01857
crossref_primary_10_1002_smll_202000421
crossref_primary_10_1007_s40843_020_1522_y
crossref_primary_10_1002_chem_202100851
crossref_primary_10_1021_acsami_1c21789
crossref_primary_10_1016_j_jclepro_2023_136314
crossref_primary_10_1021_acscatal_4c05730
crossref_primary_10_1002_slct_201900253
crossref_primary_10_1039_C9CC09179C
crossref_primary_10_1002_adfm_202106713
crossref_primary_10_1002_ange_201911153
crossref_primary_10_1016_j_ijhydene_2019_10_174
crossref_primary_10_1039_C9TA11378A
crossref_primary_10_1039_D0CP04315J
crossref_primary_10_1039_C9CS00422J
crossref_primary_10_1002_ange_202003518
crossref_primary_10_1016_j_mtphys_2021_100396
crossref_primary_10_1002_adma_202007509
crossref_primary_10_1002_smll_202100372
crossref_primary_10_1021_acsami_9b18263
crossref_primary_10_1021_acscatal_9b02794
crossref_primary_10_1021_acscatal_1c05820
crossref_primary_10_35848_1347_4065_ad2fde
crossref_primary_10_1021_acs_jpcc_1c10781
crossref_primary_10_1073_pnas_2318408121
crossref_primary_10_1002_aenm_201903172
crossref_primary_10_1016_j_cej_2022_135417
crossref_primary_10_1016_j_jcis_2021_09_134
crossref_primary_10_1021_jacs_0c00409
crossref_primary_10_1039_C9CC05684J
crossref_primary_10_1039_D1CC03139B
crossref_primary_10_1093_nsr_nwz019
crossref_primary_10_1039_D0TA10494A
crossref_primary_10_1002_adma_202007733
crossref_primary_10_1016_j_cej_2023_143841
crossref_primary_10_1016_j_mcat_2023_113665
crossref_primary_10_1002_ange_202308262
crossref_primary_10_1039_D0TA04580B
crossref_primary_10_1039_C9NR02782C
crossref_primary_10_1016_j_chemosphere_2021_129578
crossref_primary_10_1002_adma_202313086
crossref_primary_10_1016_j_apsusc_2020_145855
crossref_primary_10_1021_acsenergylett_0c01317
crossref_primary_10_1093_nsr_nwaa088
crossref_primary_10_1021_acscatal_9b03895
crossref_primary_10_3390_membranes12100969
crossref_primary_10_1039_C9TA09264A
crossref_primary_10_1039_D1TA08257D
crossref_primary_10_1073_pnas_2204638119
crossref_primary_10_1016_j_cclet_2022_03_060
crossref_primary_10_1016_j_mcat_2023_113676
crossref_primary_10_1016_j_optmat_2022_112137
crossref_primary_10_1016_j_enchem_2020_100040
crossref_primary_10_1039_C9NJ00869A
crossref_primary_10_1021_acs_jpclett_2c00918
crossref_primary_10_1039_D0TA11231C
crossref_primary_10_1007_s40820_021_00651_1
crossref_primary_10_1016_j_mattod_2019_05_004
crossref_primary_10_1039_D0TA04709K
crossref_primary_10_1002_adfm_202413703
crossref_primary_10_1016_j_apcatb_2021_120216
crossref_primary_10_1039_C9TA07096F
crossref_primary_10_1021_acsami_9b08480
crossref_primary_10_1007_s12274_021_3583_9
crossref_primary_10_1016_j_gee_2022_01_010
crossref_primary_10_1039_D2SC02625B
crossref_primary_10_1007_s12598_021_01904_z
crossref_primary_10_1021_acsami_4c09370
crossref_primary_10_1039_C9NJ04792A
crossref_primary_10_1002_adma_201906477
crossref_primary_10_1021_acs_energyfuels_3c01628
crossref_primary_10_1016_j_apsusc_2020_146606
crossref_primary_10_1002_cctc_201900536
crossref_primary_10_1002_celc_201901786
crossref_primary_10_1021_acs_jpclett_1c01307
crossref_primary_10_1002_adma_201907690
crossref_primary_10_1002_smll_202002885
crossref_primary_10_1039_C9TA01624D
crossref_primary_10_1021_acsnano_3c10058
crossref_primary_10_1039_D0NR04981F
crossref_primary_10_1002_cssc_201902429
crossref_primary_10_1002_aenm_202001289
crossref_primary_10_1039_D0CC01759K
crossref_primary_10_1039_D0CC04374E
crossref_primary_10_1002_advs_201801182
crossref_primary_10_1002_ange_202202087
crossref_primary_10_1007_s00339_020_04186_x
crossref_primary_10_1002_smtd_201800251
crossref_primary_10_1021_acs_inorgchem_4c02353
crossref_primary_10_1016_j_cplett_2021_138939
crossref_primary_10_1016_j_apcata_2022_118866
crossref_primary_10_1039_C8NR09564G
crossref_primary_10_3390_plants13030355
crossref_primary_10_1016_j_jhazmat_2023_130890
crossref_primary_10_1016_j_apcata_2019_05_025
crossref_primary_10_1016_j_cjche_2021_11_016
crossref_primary_10_1039_C9CC00647H
crossref_primary_10_1007_s40843_022_2263_x
crossref_primary_10_1039_D0QI00749H
crossref_primary_10_1021_acsami_1c10967
crossref_primary_10_1016_j_cej_2020_126033
crossref_primary_10_1016_j_jece_2022_107713
crossref_primary_10_1002_cphc_201900519
crossref_primary_10_1007_s12274_020_2733_9
crossref_primary_10_1039_D3DT00686G
crossref_primary_10_1002_adma_202108079
crossref_primary_10_1021_acscatal_8b03802
crossref_primary_10_1039_D0TA06747D
crossref_primary_10_1039_D0TA08914A
crossref_primary_10_1039_D2CP02516G
crossref_primary_10_1021_acs_jpcc_1c06464
crossref_primary_10_26599_NRE_2022_9120022
crossref_primary_10_1016_j_joule_2019_05_001
crossref_primary_10_1039_D2CY01465C
crossref_primary_10_1016_j_apsusc_2021_149614
crossref_primary_10_1039_C9CC02409C
crossref_primary_10_1002_smll_202310268
crossref_primary_10_1039_C9TA13485A
crossref_primary_10_1039_D1QM01620B
crossref_primary_10_1039_D1DT03284D
crossref_primary_10_1039_C9NR08777J
crossref_primary_10_1007_s12274_022_4803_7
crossref_primary_10_1021_acs_energyfuels_3c05091
crossref_primary_10_1002_ange_201911338
crossref_primary_10_1016_j_cclet_2021_08_102
crossref_primary_10_1016_j_seppur_2024_129638
crossref_primary_10_1002_celc_201801484
crossref_primary_10_1016_j_cej_2023_142384
crossref_primary_10_26599_NRE_2022_9120010
crossref_primary_10_1002_aenm_202000177
crossref_primary_10_1016_j_jechem_2019_01_027
crossref_primary_10_1016_j_jechem_2020_04_014
crossref_primary_10_1016_j_jechem_2024_01_024
crossref_primary_10_1021_acscatal_9b00994
crossref_primary_10_1016_j_jcis_2019_08_067
crossref_primary_10_1016_j_cclet_2021_02_043
crossref_primary_10_1039_D1TA04638A
crossref_primary_10_1021_acssuschemeng_0c01206
crossref_primary_10_1002_anie_201911153
crossref_primary_10_1016_j_ijhydene_2023_12_128
crossref_primary_10_1039_D1TA04614D
crossref_primary_10_1021_acs_jpcc_9b04730
crossref_primary_10_1073_pnas_2305604120
crossref_primary_10_1021_acscatal_9b02944
crossref_primary_10_1002_cphc_202000147
crossref_primary_10_1039_C9QI00301K
crossref_primary_10_1021_acscatal_0c02606
crossref_primary_10_1039_D0NR00030B
crossref_primary_10_1002_celc_201900320
crossref_primary_10_3866_PKU_WHXB202306048
crossref_primary_10_1039_C9CC07708A
crossref_primary_10_1039_D4GC01566E
crossref_primary_10_1016_j_seppur_2024_128882
crossref_primary_10_1039_D1NR06411H
crossref_primary_10_1016_j_apcatb_2021_120144
crossref_primary_10_1021_jacs_9b07963
crossref_primary_10_1016_j_apsusc_2021_150867
crossref_primary_10_1002_anie_202007672
crossref_primary_10_1021_acs_inorgchem_9b00606
crossref_primary_10_1021_acsami_9b14187
crossref_primary_10_1021_acsnano_0c01340
crossref_primary_10_1039_D0CC05917J
crossref_primary_10_1021_acscatal_3c04398
crossref_primary_10_1039_C9TA13026H
crossref_primary_10_1016_j_checat_2023_100871
crossref_primary_10_1039_C9TA05505C
crossref_primary_10_1063_5_0223392
crossref_primary_10_1002_admi_202101842
crossref_primary_10_1002_asia_202000310
crossref_primary_10_1039_C9CC08352A
crossref_primary_10_1016_j_jcis_2021_02_086
crossref_primary_10_1021_jacsau_3c00087
crossref_primary_10_1039_C9TA03654G
crossref_primary_10_1039_D1MA00814E
crossref_primary_10_1098_rsos_212004
crossref_primary_10_1039_C9TA08806G
crossref_primary_10_1016_j_apcatb_2021_121001
crossref_primary_10_1021_acssuschemeng_4c02341
crossref_primary_10_1039_C8TA10433F
crossref_primary_10_1021_acs_inorgchem_9b01707
crossref_primary_10_1016_j_apsusc_2022_156077
crossref_primary_10_1016_j_jechem_2024_01_077
crossref_primary_10_1021_acs_energyfuels_4c00802
crossref_primary_10_1016_j_esci_2022_04_008
crossref_primary_10_1039_C9NR06469A
crossref_primary_10_1002_qua_26548
crossref_primary_10_1021_acsnano_2c00507
crossref_primary_10_1016_j_cattod_2024_114723
crossref_primary_10_1039_D2CP01446G
crossref_primary_10_1021_acs_inorgchem_9b01823
crossref_primary_10_1039_D2QI00140C
crossref_primary_10_1021_acsaem_2c00405
crossref_primary_10_1039_C9CC08234D
crossref_primary_10_1021_acsnano_2c07260
crossref_primary_10_1002_cctc_201900041
crossref_primary_10_1021_acsaem_9b01135
crossref_primary_10_1021_jacs_3c14816
crossref_primary_10_1002_aenm_202001364
crossref_primary_10_1039_D1SE00338K
crossref_primary_10_1039_D0NH00242A
crossref_primary_10_1039_C9TA06076F
crossref_primary_10_1021_acsami_4c00162
crossref_primary_10_1021_acs_inorgchem_9b00622
crossref_primary_10_1039_C9TA13044F
crossref_primary_10_1002_adom_202001671
crossref_primary_10_1016_j_mcat_2019_110705
crossref_primary_10_1039_C9DT04827H
crossref_primary_10_1016_j_electacta_2018_12_084
crossref_primary_10_1002_ange_201813174
crossref_primary_10_1021_acssuschemeng_8b05332
crossref_primary_10_1002_adfm_202008983
crossref_primary_10_1039_D1TA02998C
crossref_primary_10_1039_D1NA00426C
crossref_primary_10_1088_1674_1056_28_6_066201
crossref_primary_10_1016_j_apcatb_2020_118919
crossref_primary_10_1039_D4EE03156C
crossref_primary_10_1016_j_nanoen_2020_105078
crossref_primary_10_1039_D2CC00952H
crossref_primary_10_1016_j_jece_2024_114454
crossref_primary_10_1016_j_xcrp_2020_100232
crossref_primary_10_1039_D1SE00644D
crossref_primary_10_1002_cctc_202400115
crossref_primary_10_1002_aenm_202103289
crossref_primary_10_1016_j_xcrp_2021_100438
crossref_primary_10_1016_j_cclet_2022_107888
crossref_primary_10_1002_chem_202000695
crossref_primary_10_1002_tcr_202400234
crossref_primary_10_1016_j_cclet_2021_03_077
crossref_primary_10_1039_D0NR07971E
crossref_primary_10_1007_s12274_018_2268_5
crossref_primary_10_1021_acsami_1c20807
crossref_primary_10_1039_C9CC10087C
crossref_primary_10_1039_C9TA01410A
crossref_primary_10_1002_adfm_202107280
crossref_primary_10_1039_D4TA04797D
crossref_primary_10_1002_anie_201913122
crossref_primary_10_1016_j_chempr_2021_10_008
crossref_primary_10_1007_s12274_019_2323_x
crossref_primary_10_1002_anie_202207807
crossref_primary_10_1021_acsenergylett_0c01384
crossref_primary_10_1039_D0TA05282E
crossref_primary_10_1016_j_cattod_2022_12_010
crossref_primary_10_1021_acs_jpcc_3c05006
crossref_primary_10_1039_D0TA03622F
crossref_primary_10_1016_j_enchem_2019_100011
crossref_primary_10_1021_acsanm_4c05030
crossref_primary_10_1016_j_ccr_2022_214981
crossref_primary_10_1016_j_mattod_2020_09_006
crossref_primary_10_1039_D2EE00358A
crossref_primary_10_1002_adfm_202004009
crossref_primary_10_1007_s10800_022_01712_y
crossref_primary_10_1007_s40242_020_0182_3
crossref_primary_10_1039_D0CP03246H
crossref_primary_10_1039_D0DT02560G
crossref_primary_10_1002_ange_202207807
crossref_primary_10_1002_celc_202201001
crossref_primary_10_1021_acscatal_9b03180
crossref_primary_10_1021_acs_jpcc_8b11696
crossref_primary_10_1016_j_jcis_2022_02_074
crossref_primary_10_1016_j_cclet_2021_12_054
crossref_primary_10_1039_D1CS00120E
crossref_primary_10_1016_j_apmt_2020_100620
crossref_primary_10_1039_C8NA00300A
crossref_primary_10_1039_D1MA00680K
crossref_primary_10_1039_D2CY00910B
crossref_primary_10_1002_asia_201900618
crossref_primary_10_1016_j_jechem_2022_03_042
crossref_primary_10_1039_D0SE00915F
crossref_primary_10_1016_j_mcat_2024_114044
crossref_primary_10_1039_C8CC07186A
crossref_primary_10_1039_D1NJ04909G
crossref_primary_10_1039_D1TA08512C
crossref_primary_10_1016_j_apcatb_2022_121574
crossref_primary_10_1016_j_mtphys_2020_100310
crossref_primary_10_1021_acs_jpclett_4c01978
crossref_primary_10_1021_acs_jpcc_1c02397
crossref_primary_10_1088_2053_1583_ac217a
crossref_primary_10_1002_eem2_12298
crossref_primary_10_1039_C8TA11201K
crossref_primary_10_1039_C9TA13812A
crossref_primary_10_1039_C9TA00016J
crossref_primary_10_1016_j_mattod_2020_04_012
crossref_primary_10_1039_D0TA11522C
crossref_primary_10_1039_D0CC02217A
crossref_primary_10_1002_cctc_201801208
crossref_primary_10_1039_D3QI01673K
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1016_j_cej_2023_145368
crossref_primary_10_1016_j_xcrp_2023_101521
crossref_primary_10_1002_anie_201811728
crossref_primary_10_1007_s41918_022_00164_4
crossref_primary_10_1002_smll_202501949
crossref_primary_10_1039_C8QI01145A
crossref_primary_10_1002_sstr_202200306
crossref_primary_10_1016_j_jechem_2021_01_016
crossref_primary_10_1016_j_inoche_2020_108169
crossref_primary_10_1021_acscatal_0c01127
crossref_primary_10_1039_D0SE00828A
crossref_primary_10_1016_j_ijhydene_2023_05_206
crossref_primary_10_1016_j_enchem_2023_100108
crossref_primary_10_1039_D1QI00306B
crossref_primary_10_1016_j_matt_2020_07_032
crossref_primary_10_1016_j_nanoen_2022_107363
crossref_primary_10_1021_acsaem_9b00102
crossref_primary_10_1007_s12274_020_3202_1
crossref_primary_10_1038_s41929_021_00599_w
crossref_primary_10_1021_acs_chemrev_3c00459
crossref_primary_10_3390_en17102291
crossref_primary_10_3389_fenrg_2020_602438
crossref_primary_10_1002_adfm_202109422
crossref_primary_10_1039_D0TA01453B
crossref_primary_10_1016_j_ces_2023_119076
crossref_primary_10_1002_smtd_202100699
crossref_primary_10_1016_S1872_5805_24_60836_X
crossref_primary_10_1021_acs_jpclett_0c01128
crossref_primary_10_1021_acssuschemeng_9b01178
crossref_primary_10_1002_adma_202312645
crossref_primary_10_1002_adfm_202005779
crossref_primary_10_1360_TB_2024_0858
crossref_primary_10_1002_cssc_202101461
crossref_primary_10_1039_C8TA10497B
crossref_primary_10_1016_j_cej_2021_132649
crossref_primary_10_1016_j_fuel_2024_131750
crossref_primary_10_1002_ange_202007672
crossref_primary_10_1039_D1QM00269D
crossref_primary_10_1002_smll_201803111
crossref_primary_10_1016_j_apcatb_2020_119606
crossref_primary_10_1021_jacs_4c02631
crossref_primary_10_15541_jim20220033
crossref_primary_10_3390_molecules29246025
crossref_primary_10_1021_acssuschemeng_0c09009
crossref_primary_10_1039_C9NR08705B
crossref_primary_10_1039_D3TA03675H
crossref_primary_10_1002_advs_201801829
crossref_primary_10_1002_ange_201908415
crossref_primary_10_1002_anie_202202087
crossref_primary_10_1007_s10562_024_04681_3
crossref_primary_10_1002_adma_201904870
crossref_primary_10_1021_acsomega_2c03588
crossref_primary_10_1039_C9TA09439C
crossref_primary_10_1016_j_cattod_2022_09_004
crossref_primary_10_1002_slct_202204988
crossref_primary_10_1016_j_fuel_2022_123982
crossref_primary_10_1002_adfm_201906579
crossref_primary_10_3390_catal12030296
crossref_primary_10_1002_cnma_202000110
crossref_primary_10_1039_C9CC03413G
crossref_primary_10_1021_jacs_2c01245
crossref_primary_10_1016_j_cej_2023_144493
crossref_primary_10_20964_2020_10_46
crossref_primary_10_1002_adma_202101126
crossref_primary_10_1021_acsnano_2c00596
crossref_primary_10_1021_acscatal_9b00959
crossref_primary_10_1016_j_mssp_2024_108368
crossref_primary_10_1039_C9TA05155D
crossref_primary_10_1021_acssuschemeng_2c03159
crossref_primary_10_1039_D0TA10510D
crossref_primary_10_1002_cphc_202200864
crossref_primary_10_1038_s41557_020_0520_6
crossref_primary_10_1016_j_apcatb_2019_118477
crossref_primary_10_1039_C8QI01049H
crossref_primary_10_1016_j_cattod_2022_09_011
crossref_primary_10_1080_00268976_2023_2299232
crossref_primary_10_1039_D1TA07426A
crossref_primary_10_1016_j_seppur_2024_129422
crossref_primary_10_1039_D0TA03991H
crossref_primary_10_1039_C9CC05978D
crossref_primary_10_1016_j_cej_2024_157961
crossref_primary_10_1021_acscatal_0c02745
crossref_primary_10_1007_s12274_020_3049_5
crossref_primary_10_1016_j_cej_2022_140106
crossref_primary_10_1016_j_arabjc_2024_105950
crossref_primary_10_1016_j_jcis_2021_07_083
crossref_primary_10_12677_japc_2024_134067
crossref_primary_10_1039_D0TA01572E
crossref_primary_10_1039_D4NA00281D
crossref_primary_10_1002_adfm_202200333
crossref_primary_10_1007_s41918_019_00061_3
crossref_primary_10_1039_D3NJ01668D
crossref_primary_10_1039_D2TA03563D
crossref_primary_10_1016_j_ceramint_2024_07_275
crossref_primary_10_1016_j_flatc_2019_100133
crossref_primary_10_1002_anie_201911338
crossref_primary_10_1016_j_apcatb_2020_119746
crossref_primary_10_1021_acsami_2c08534
crossref_primary_10_1002_adma_202205270
crossref_primary_10_1007_s12274_019_2352_5
crossref_primary_10_1016_j_surfin_2024_105401
crossref_primary_10_1039_C9NR08969A
crossref_primary_10_1039_C8CC06524A
crossref_primary_10_1002_advs_202205786
crossref_primary_10_1016_j_apcatb_2020_118892
crossref_primary_10_1039_C9CC06574A
crossref_primary_10_1016_j_apcatb_2019_118568
crossref_primary_10_1016_j_apcatb_2020_119622
crossref_primary_10_1016_j_ijhydene_2020_09_187
crossref_primary_10_1039_C9TA04382A
crossref_primary_10_1016_j_jcat_2019_05_018
crossref_primary_10_1039_D4TA04256E
crossref_primary_10_1002_adfm_202001244
crossref_primary_10_1016_j_cattod_2021_06_008
crossref_primary_10_3390_molecules28062781
crossref_primary_10_1002_anie_202308262
crossref_primary_10_1039_C9CC02310K
crossref_primary_10_1002_chem_201901668
crossref_primary_10_1016_j_apcatb_2022_121755
crossref_primary_10_1002_smtd_201900474
crossref_primary_10_1021_acsanm_0c01300
crossref_primary_10_1016_j_cattod_2024_114662
crossref_primary_10_1021_acscatal_2c02629
crossref_primary_10_1002_admi_201901034
crossref_primary_10_1039_C9TA04706A
crossref_primary_10_1021_acsami_9b14143
crossref_primary_10_1021_acs_jpca_1c05243
crossref_primary_10_1002_smtd_201900337
crossref_primary_10_1016_j_cattod_2022_10_020
crossref_primary_10_1039_C9CC00461K
crossref_primary_10_1016_j_coco_2020_100551
crossref_primary_10_1021_acs_jpclett_0c01450
crossref_primary_10_1016_j_ccr_2022_214468
crossref_primary_10_1021_acscentsci_8b00734
crossref_primary_10_1021_acs_chemmater_9b05313
crossref_primary_10_1002_advs_202204205
crossref_primary_10_1021_acsami_1c04619
crossref_primary_10_1016_j_apenergy_2023_121960
crossref_primary_10_1002_cctc_202201411
crossref_primary_10_1021_acssuschemeng_0c00330
crossref_primary_10_1039_D2CY01507B
crossref_primary_10_1016_j_apsusc_2022_154935
crossref_primary_10_1016_j_jpcs_2019_109141
crossref_primary_10_1002_advs_202102721
crossref_primary_10_1039_C9TA04902A
crossref_primary_10_1002_ece2_39
crossref_primary_10_1021_acsami_4c17137
crossref_primary_10_1016_j_fuel_2021_122203
crossref_primary_10_1016_j_apsusc_2021_151020
crossref_primary_10_1039_D1CC06778H
crossref_primary_10_1016_j_ccr_2023_215143
crossref_primary_10_1016_j_cclet_2021_05_025
crossref_primary_10_1002_chem_202403328
crossref_primary_10_1002_anie_202003518
crossref_primary_10_1002_sus2_3
crossref_primary_10_1039_C9CC05309C
crossref_primary_10_3390_membranes9090112
crossref_primary_10_1002_aenm_202100346
crossref_primary_10_1063_5_0123687
crossref_primary_10_1002_anie_201813174
crossref_primary_10_1007_s41918_024_00236_7
crossref_primary_10_1002_smll_202005616
crossref_primary_10_1039_C9DT04441H
crossref_primary_10_1002_adfm_202210759
crossref_primary_10_1016_j_chemosphere_2023_139621
crossref_primary_10_1002_adfm_202010052
crossref_primary_10_1007_s40843_023_2805_y
crossref_primary_10_1016_j_materresbull_2021_111294
crossref_primary_10_1016_j_nanoen_2020_105321
crossref_primary_10_1002_cssc_202400902
crossref_primary_10_1002_smll_201805103
crossref_primary_10_1002_adma_202000299
crossref_primary_10_1002_adma_202001267
crossref_primary_10_1021_acssuschemeng_0c04021
crossref_primary_10_1039_D0NJ04365F
crossref_primary_10_1016_j_cej_2021_128419
crossref_primary_10_1073_pnas_2306673120
crossref_primary_10_1186_s40580_020_00251_6
crossref_primary_10_1002_aenm_201902020
crossref_primary_10_1002_smtd_201900356
crossref_primary_10_1002_adma_202201853
crossref_primary_10_1007_s11467_021_1067_8
crossref_primary_10_1016_j_nanoen_2019_06_019
crossref_primary_10_1016_j_algal_2019_101775
crossref_primary_10_1016_j_nanoen_2020_104469
crossref_primary_10_1016_j_mtener_2021_100681
crossref_primary_10_1021_acsami_3c12822
crossref_primary_10_1039_C8NR08724E
crossref_primary_10_1039_D4TA02284J
crossref_primary_10_1021_acsami_1c07063
crossref_primary_10_1039_D3QI00568B
crossref_primary_10_1021_acsami_0c11487
crossref_primary_10_1002_eem2_12120
crossref_primary_10_1007_s12274_019_2600_8
crossref_primary_10_1039_D3TA04848A
crossref_primary_10_1016_j_apcatb_2020_118693
crossref_primary_10_1002_cssc_202000670
crossref_primary_10_1016_j_cej_2022_139606
crossref_primary_10_1016_j_chempr_2022_03_015
crossref_primary_10_1021_acsnano_4c05956
crossref_primary_10_1016_j_chempr_2021_01_009
crossref_primary_10_1016_j_jcis_2021_05_027
crossref_primary_10_1002_admi_202102242
crossref_primary_10_1021_acsami_2c11674
crossref_primary_10_1002_ange_202004213
crossref_primary_10_1021_acsami_9b08055
crossref_primary_10_1021_acscatal_0c01081
crossref_primary_10_1002_smll_202411665
crossref_primary_10_1142_S1793604721510279
crossref_primary_10_3724_SP_J_1249_2024_03323
crossref_primary_10_1002_cctc_202001775
crossref_primary_10_1016_j_scib_2019_12_019
crossref_primary_10_1002_aenm_201803406
crossref_primary_10_1088_1674_1056_abe3f6
crossref_primary_10_1002_ange_201811728
crossref_primary_10_1039_C9TA05016G
crossref_primary_10_1021_acs_nanolett_0c00698
crossref_primary_10_1021_acscatal_3c02410
crossref_primary_10_1021_acs_chemrev_9b00538
crossref_primary_10_1021_acs_chemrev_9b00659
crossref_primary_10_1021_acsami_9b02511
crossref_primary_10_1002_anie_201908415
crossref_primary_10_1016_j_apcatb_2020_118589
crossref_primary_10_1039_C9CS00159J
crossref_primary_10_1007_s11051_021_05177_6
crossref_primary_10_1021_acsaem_4c02204
crossref_primary_10_1002_ange_201903014
crossref_primary_10_1002_sus2_7
crossref_primary_10_1002_smll_202104043
crossref_primary_10_1021_acsnano_2c06441
crossref_primary_10_1021_acsami_9b12675
crossref_primary_10_1039_D1TA10534E
crossref_primary_10_1039_C9TA10346E
crossref_primary_10_1002_eem2_12348
crossref_primary_10_1016_j_mtphys_2022_100609
crossref_primary_10_1039_D0TA08741F
crossref_primary_10_1093_nsr_nwaa213
crossref_primary_10_1007_s10853_019_03538_0
crossref_primary_10_1021_acs_jpcc_2c01224
crossref_primary_10_1002_adfm_202208474
crossref_primary_10_1016_j_enconman_2023_117482
crossref_primary_10_1021_acsami_1c11872
crossref_primary_10_1016_j_apsusc_2021_152272
crossref_primary_10_1016_j_cej_2024_148853
crossref_primary_10_1039_C8NR10401H
crossref_primary_10_1007_s12274_020_2637_8
crossref_primary_10_1016_j_nanoms_2019_07_002
crossref_primary_10_1039_C9NR03678D
crossref_primary_10_1039_C9CY00907H
crossref_primary_10_1039_D1CY01442K
crossref_primary_10_1039_D3CP03453D
crossref_primary_10_1016_j_apcatb_2020_119325
crossref_primary_10_1016_j_cogsc_2022_100652
crossref_primary_10_1021_acssuschemeng_3c07455
crossref_primary_10_1039_D2CP00062H
crossref_primary_10_1021_acscatal_9b04103
crossref_primary_10_3390_fire6120456
crossref_primary_10_1002_aenm_202203032
crossref_primary_10_1021_acs_iecr_8b04045
crossref_primary_10_1016_j_mattod_2019_03_002
crossref_primary_10_1016_j_apcatb_2021_120840
crossref_primary_10_1039_D0QI00035C
crossref_primary_10_1016_j_jcat_2019_10_029
crossref_primary_10_1002_smll_202102814
crossref_primary_10_1002_chem_201902156
crossref_primary_10_1016_j_jcis_2021_11_087
crossref_primary_10_1021_acscatal_4c03415
crossref_primary_10_1021_acsami_1c11889
crossref_primary_10_1016_j_cej_2021_130650
crossref_primary_10_1155_2024_5685619
crossref_primary_10_1021_acs_accounts_1c00446
crossref_primary_10_1039_D4NJ00210E
crossref_primary_10_1016_j_apsusc_2022_153468
crossref_primary_10_1016_j_diamond_2020_108210
crossref_primary_10_3390_nano12193413
crossref_primary_10_1002_aenm_201803935
crossref_primary_10_1016_j_ijhydene_2020_12_147
crossref_primary_10_1021_acscatal_4c03782
crossref_primary_10_1016_j_cej_2023_146137
crossref_primary_10_1021_acssuschemeng_0c07365
crossref_primary_10_1016_j_mseb_2021_115341
crossref_primary_10_1016_j_jpcs_2023_111483
crossref_primary_10_1016_j_ica_2021_120700
crossref_primary_10_1002_adfm_201904090
crossref_primary_10_1016_j_apcatb_2021_120615
crossref_primary_10_1177_13621688211046351
crossref_primary_10_1007_s40843_020_1572_3
crossref_primary_10_1007_s12598_024_02727_4
crossref_primary_10_1039_C9CC00936A
crossref_primary_10_1002_smll_201903500
crossref_primary_10_1039_D1CC01451J
crossref_primary_10_20964_2020_11_71
crossref_primary_10_1039_D0CP00698J
crossref_primary_10_1021_acs_jpcc_9b05436
crossref_primary_10_1021_acscatal_8b05134
crossref_primary_10_1016_j_jechem_2023_03_024
crossref_primary_10_1021_acs_inorgchem_0c01596
crossref_primary_10_1016_j_pecs_2020_100860
crossref_primary_10_1021_acs_nanolett_3c03962
crossref_primary_10_1002_adfm_202002731
crossref_primary_10_1021_acscatal_2c04527
crossref_primary_10_1021_acssuschemeng_3c08408
crossref_primary_10_1007_s12274_020_2956_9
crossref_primary_10_1016_j_jcis_2021_05_061
crossref_primary_10_1016_j_jcis_2020_03_062
crossref_primary_10_1016_j_xcrp_2024_101977
crossref_primary_10_1039_C8TA11025E
crossref_primary_10_1002_smll_202205959
crossref_primary_10_1039_D0NR01359E
crossref_primary_10_1039_D1TA00262G
crossref_primary_10_1016_j_chempr_2020_07_006
crossref_primary_10_1016_j_coelec_2021_100723
crossref_primary_10_1002_cssc_202000487
crossref_primary_10_1039_C8TA09840A
crossref_primary_10_1016_j_cej_2024_158995
crossref_primary_10_1002_adma_202407239
crossref_primary_10_1002_ange_201913122
crossref_primary_10_1002_adma_201902709
crossref_primary_10_1093_nsr_nwaa136
crossref_primary_10_1039_C8CC09867K
crossref_primary_10_1039_D1QI00258A
Cites_doi 10.1126/science.aaf2091
10.1021/cr950055x
10.1126/science.1238663
10.1039/c0ee00071j
10.1021/jacs.7b04393
10.1021/acsenergylett.7b01133
10.1039/C7EE02716H
10.1007/978-1-4757-9592-9
10.1002/anie.201511189
10.1039/C1CP22271F
10.1039/C4CS00085D
10.1016/j.carbon.2016.03.044
10.1039/c2jm30538k
10.1002/anie.200301553
10.1021/acscatal.7b02165
10.1038/nchem.1620
10.1038/scientificamerican0797-76
10.1039/C7TA06139K
10.1103/PhysRevLett.77.3865
10.1021/acs.accounts.6b00033
10.1021/cr8003696
10.1021/cr020610c
10.1126/science.aad4998
10.1002/aenm.201500658
10.1021/ac60072a044
10.1016/j.cattod.2016.06.014
10.1038/nature15246
10.1126/science.aaq1684
10.1002/anie.201801538
10.1039/C4CP05501B
10.1039/C8TA03974G
10.1002/anie.201609533
10.1002/adma.201604799
10.1039/P29930000799
10.1016/j.nanoen.2017.01.042
10.1016/j.chemphys.2005.05.038
10.1039/C7TA10866D
10.1038/ncomms3483
10.1063/1.1316015
10.1038/22672
10.1021/jp047349j
10.1002/adma.201800191
10.1016/j.matchemphys.2010.05.041
10.1038/ncomms14874
10.1063/1.458452
10.1002/adma.201606550
10.1038/nmat3696
10.1016/j.cattod.2016.05.008
10.1126/science.8484118
10.1002/jcc.20495
10.1038/nchem.1476
10.1039/C7EE02220D
10.1039/C8CC03627F
10.1039/C8NR04524K
10.1007/978-1-4020-3611-8_2
10.1533/9781845694944.4.533
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-05758-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest - Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Open Access资源_DOAJ
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database

CrossRef
PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_bf3795a931764adf9eee65d7cc6796e5
PMC6113289
30154483
10_1038_s41467_018_05758_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-8b64e386f0ff280ad8d0fffc54a4db82e1ffb32496407b0e4c2e9195e8c0ac683
IEDL.DBID 7X7
ISSN 2041-1723
IngestDate Wed Aug 27 01:26:06 EDT 2025
Thu Aug 21 18:40:28 EDT 2025
Fri Jul 11 16:33:12 EDT 2025
Wed Aug 13 04:44:23 EDT 2025
Thu Apr 03 07:02:10 EDT 2025
Thu Apr 24 22:55:23 EDT 2025
Tue Jul 01 02:21:16 EDT 2025
Fri Feb 21 02:39:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-8b64e386f0ff280ad8d0fffc54a4db82e1ffb32496407b0e4c2e9195e8c0ac683
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5326-3838
0000-0002-2648-4221
0000-0001-7905-3209
0000-0002-6793-9499
OpenAccessLink https://www.proquest.com/docview/2094557988?pq-origsite=%requestingapplication%
PMID 30154483
PQID 2094557988
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_bf3795a931764adf9eee65d7cc6796e5
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113289
proquest_miscellaneous_2096556189
proquest_journals_2094557988
pubmed_primary_30154483
crossref_citationtrail_10_1038_s41467_018_05758_5
crossref_primary_10_1038_s41467_018_05758_5
springer_journals_10_1038_s41467_018_05758_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-08-28
PublicationDateYYYYMMDD 2018-08-28
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-28
  day: 28
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Liu (CR30) 2018; 6
Schlögl (CR2) 2003; 42
Zhang (CR34) 2018; 30
Oshikiri, Ueno, Misawa (CR49) 2016; 55
Skúlason (CR54) 2012; 14
Han (CR36) 2018; 6
van der Ham, Koper, Hetterscheid (CR24) 2014; 43
CR37
Vineesh (CR45) 2015; 5
Song (CR43) 2017; 33
CR32
Minakshi, Blackford (CR40) 2010; 123
Seh (CR25) 2017; 355
Jennings (CR15) 1991
Grimme (CR53) 2006; 27
Shi (CR27) 2017; 29
Mu (CR42) 2016; 103
CR4
Bao (CR28) 2017; 29
Zhu, Zhang, Ruther, Hamers (CR7) 2013; 12
Rosca, Duca, DeGroot, Koper (CR3) 2009; 109
Čorić, Mercado, Bill, Vinyard, Holland (CR10) 2015; 256
Eizawa (CR12) 2017; 8
Shima (CR8) 2013; 340
Lv (CR38) 2018; 57
Liu (CR39) 2018; 8
Yang, Chen, Wang (CR35) 2017; 5
Nørskov, Rossmeisl, Logadottir, Lindqvist (CR56) 2004; 108
Brown (CR11) 2016; 352
CR18
Guo, Ran, Vasileff, Qiao (CR26) 2018; 11
CR17
CR16
Kitano (CR6) 2012; 4
Kou, Guo, He, Zhang, Mu (CR44) 2017; 3
Kyriakou, Garagounis, Vasileiou, Vourros, Stoukides (CR23) 2017; 286
Klamt, Schüürmann (CR55) 1993; 0
Smil (CR14) 1997; 277
Tanaka, Nishibayashi, Yoshizawa (CR19) 2016; 49
Perdew, Burke, Ernzerhof (CR52) 1996; 77
Delley (CR50) 1990; 92
Delley (CR51) 2000; 113
MacKay, Fryzuk (CR5) 2004; 104
Burgess, Lowe (CR21) 1996; 96
Rossmeisl, Logadottir, Nørskov (CR57) 2005; 319
MacLeod, Holland (CR9) 2013; 5
Chen (CR31) 2017; 56
Lv, Peng, Wu, Pan, Mu (CR41) 2012; 22
Watt, Chrisp (CR48) 1952; 24
Légaré (CR13) 2018; 359
Shipman, Symes (CR22) 2017; 286
Chen (CR33) 2017; 139
Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR58) 2010; 3
Zhou (CR47) 2017; 10
Reddy, Liu, Hirata, Fujita, Chen (CR46) 2013; 4
Chan, Kim, Rees (CR20) 1993; 260
Smil (CR1) 1999; 400
Kugler, Luhn, Schramm, Rahimi, Wessling (CR29) 2015; 17
S Mu (5758_CR42) 2016; 103
KM Reddy (5758_CR46) 2013; 4
MK Chan (5758_CR20) 1993; 260
MM Shi (5758_CR27) 2017; 29
MA Shipman (5758_CR22) 2017; 286
K Kugler (5758_CR29) 2015; 17
Y Liu (5758_CR39) 2018; 8
GW Watt (5758_CR48) 1952; 24
I Čorić (5758_CR10) 2015; 256
5758_CR18
5758_CR17
V Smil (5758_CR14) 1997; 277
5758_CR16
CJM van der Ham (5758_CR24) 2014; 43
BK Burgess (5758_CR21) 1996; 96
J Rossmeisl (5758_CR57) 2005; 319
A Klamt (5758_CR55) 1993; 0
JK Nørskov (5758_CR56) 2004; 108
Hm Liu (5758_CR30) 2018; 6
H Lv (5758_CR41) 2012; 22
MA Légaré (5758_CR13) 2018; 359
H Tanaka (5758_CR19) 2016; 49
B Delley (5758_CR51) 2000; 113
E Skúlason (5758_CR54) 2012; 14
BA MacKay (5758_CR5) 2004; 104
L Zhang (5758_CR34) 2018; 30
V Smil (5758_CR1) 1999; 400
M Minakshi (5758_CR40) 2010; 123
M Kitano (5758_CR6) 2012; 4
S Grimme (5758_CR53) 2006; 27
KA Brown (5758_CR11) 2016; 352
V Kyriakou (5758_CR23) 2017; 286
A Eizawa (5758_CR12) 2017; 8
S Chen (5758_CR31) 2017; 56
D Zhu (5758_CR7) 2013; 12
ZW Seh (5758_CR25) 2017; 355
C Lv (5758_CR38) 2018; 57
T Oshikiri (5758_CR49) 2016; 55
5758_CR37
S Song (5758_CR43) 2017; 33
5758_CR32
KC MacLeod (5758_CR9) 2013; 5
AA Peterson (5758_CR58) 2010; 3
R Schlögl (5758_CR2) 2003; 42
Z Kou (5758_CR44) 2017; 3
J Han (5758_CR36) 2018; 6
JR Jennings (5758_CR15) 1991
GF Chen (5758_CR33) 2017; 139
D Yang (5758_CR35) 2017; 5
5758_CR4
T Shima (5758_CR8) 2013; 340
B Delley (5758_CR50) 1990; 92
D Bao (5758_CR28) 2017; 29
TV Vineesh (5758_CR45) 2015; 5
C Guo (5758_CR26) 2018; 11
JP Perdew (5758_CR52) 1996; 77
V Rosca (5758_CR3) 2009; 109
F Zhou (5758_CR47) 2017; 10
8484118 - Science. 1993 May 7;260(5109):792-4
23812710 - Science. 2013 Jun 28;340(6140):1549-52
11848849 - Chem Rev. 1996 Nov 7;96(7):2983-3012
28693318 - J Am Chem Soc. 2017 Jul 26;139(29):9771-9774
29473991 - Angew Chem Int Ed Engl. 2018 May 22;57(21):6073-6076
23089869 - Nat Chem. 2012 Nov;4(11):934-40
14871129 - Chem Rev. 2004 Feb;104(2):385-401
27105472 - Acc Chem Res. 2016 May 17;49(5):987-95
29808517 - Adv Mater. 2018 Jul;30(28):e1800191
28082532 - Science. 2017 Jan 13;355(6321)
10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
25556769 - Phys Chem Chem Phys. 2015 Feb 7;17(5):3768-82
30003198 - Chem Commun (Camb). 2018 Jul 26;54(61):8474-8477
24052052 - Nat Commun. 2013;4:2483
19438198 - Chem Rev. 2009 Jun;109(6):2209-44
28128489 - Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2699-2703
27859722 - Adv Mater. 2017 Jan;29(3)
24802308 - Chem Soc Rev. 2014 Aug 7;43(15):5183-91
23787744 - Nat Chem. 2013 Jul;5(7):559-65
26890286 - Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3942-6
23812128 - Nat Mater. 2013 Sep;12(9):836-41
29472479 - Science. 2018 Feb 23;359(6378):896-900
22146855 - Phys Chem Chem Phys. 2012 Jan 21;14(3):1235-45
27102481 - Science. 2016 Apr 22;352(6284):448-50
30027985 - Nanoscale. 2018 Aug 2;10(30):14386-14389
28374835 - Nat Commun. 2017 Apr 04;8:14874
16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99
26416755 - Nature. 2015 Oct 1;526(7571):96-9
12746811 - Angew Chem Int Ed Engl. 2003 May 9;42(18):2004-8
28240391 - Adv Mater. 2017 May;29(17)
References_xml – volume: 352
  start-page: 448
  year: 2016
  end-page: 450
  ident: CR11
  article-title: Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid
  publication-title: Science
  doi: 10.1126/science.aaf2091
– volume: 96
  start-page: 2983
  year: 1996
  end-page: 3012
  ident: CR21
  article-title: Mechanism of molybdenum nitrogenase
  publication-title: Chem. Rev.
  doi: 10.1021/cr950055x
– volume: 340
  start-page: 1549
  year: 2013
  end-page: 1552
  ident: CR8
  article-title: Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex
  publication-title: Science
  doi: 10.1126/science.1238663
– volume: 3
  start-page: 1311
  year: 2010
  end-page: 1315
  ident: CR58
  article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 139
  start-page: 9771
  year: 2017
  end-page: 9774
  ident: CR33
  article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li incorporation strategy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04393
– volume: 3
  start-page: 184
  year: 2017
  end-page: 190
  ident: CR44
  article-title: Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01133
– volume: 10
  start-page: 2516
  year: 2017
  end-page: 2520
  ident: CR47
  article-title: Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02716H
– year: 1991
  ident: CR15
  publication-title: Catalytic ammonia synthesis: fundamentals and practice.
  doi: 10.1007/978-1-4757-9592-9
– ident: CR4
– volume: 55
  start-page: 3942
  year: 2016
  end-page: 3946
  ident: CR49
  article-title: Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511189
– volume: 14
  start-page: 1235
  year: 2012
  end-page: 1245
  ident: CR54
  article-title: A theoretical evaluation of possible transition metal electro-catalysts for N reduction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– ident: CR16
– volume: 43
  start-page: 5183
  year: 2014
  end-page: 5191
  ident: CR24
  article-title: Challenges in reduction of dinitrogen by proton and electron transfer
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– volume: 103
  start-page: 449
  year: 2016
  end-page: 456
  ident: CR42
  article-title: Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2016.03.044
– volume: 22
  start-page: 9155
  year: 2012
  end-page: 9160
  ident: CR41
  article-title: Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30538k
– volume: 42
  start-page: 2004
  year: 2003
  end-page: 2008
  ident: CR2
  article-title: Catalytic synthesis of ammonia—a “never-ending story”?
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200301553
– volume: 8
  start-page: 1186
  year: 2018
  end-page: 1191
  ident: CR39
  article-title: Facile ammonia synthesis from electrocatalytic N reduction under ambient conditions on N-doped porous carbon
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02165
– volume: 5
  start-page: 559
  year: 2013
  end-page: 565
  ident: CR9
  article-title: Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1620
– volume: 277
  start-page: 76
  year: 1997
  end-page: 81
  ident: CR14
  article-title: Global population and the nitrogen cycle
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0797-76
– volume: 5
  start-page: 18967
  year: 2017
  end-page: 18971
  ident: CR35
  article-title: Electrochemical reduction of aqueous nitrogen (N ) at a low overpotential on (110)-oriented Mo nanofilm
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06139K
– volume: 77
  start-page: 3865
  year: 1996
  ident: CR52
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 49
  start-page: 987
  year: 2016
  end-page: 995
  ident: CR19
  article-title: Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00033
– volume: 109
  start-page: 2209
  year: 2009
  end-page: 2244
  ident: CR3
  article-title: Nitrogen cycle electrocatalysis
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 104
  start-page: 385
  year: 2004
  end-page: 401
  ident: CR5
  article-title: Dinitrogen coordination chemistry: on the biomimetic borderlands
  publication-title: Chem. Rev.
  doi: 10.1021/cr020610c
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: CR25
  article-title: Combining theory and experiment in electrocatalysis: insights into materials design
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 5
  start-page: 1500658
  year: 2015
  ident: CR45
  article-title: Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500658
– volume: 24
  start-page: 2006
  year: 1952
  end-page: 2008
  ident: CR48
  article-title: Spectrophotometric method for determination of hydrazine
  publication-title: Anal. Chem.
  doi: 10.1021/ac60072a044
– volume: 286
  start-page: 2
  year: 2017
  end-page: 13
  ident: CR23
  article-title: Progress in the electrochemical synthesis of ammonia
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.06.014
– volume: 256
  start-page: 96
  year: 2015
  end-page: 99
  ident: CR10
  article-title: Binding of dinitrogen to an iron-sulfur-carbon site
  publication-title: Nature
  doi: 10.1038/nature15246
– volume: 359
  start-page: 896
  year: 2018
  end-page: 900
  ident: CR13
  article-title: Nitrogen fixation andreduction at boron
  publication-title: Science
  doi: 10.1126/science.aaq1684
– ident: CR32
– volume: 57
  start-page: 6073
  year: 2018
  end-page: 6076
  ident: CR38
  article-title: An amorphous noble-metal-free electrocatalyst enables N fixation under ambient conditions
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801538
– volume: 17
  start-page: 3768
  year: 2015
  end-page: 3782
  ident: CR29
  article-title: Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH synthesis
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05501B
– volume: 6
  start-page: 12974
  year: 2018
  end-page: 12977
  ident: CR36
  article-title: MoO nanosheets for efficient electrocatalytic N fixation to NH
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03974G
– volume: 56
  start-page: 2699
  year: 2017
  end-page: 2703
  ident: CR31
  article-title: Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201609533
– volume: 29
  start-page: 1604799
  year: 2017
  ident: CR28
  article-title: Electrochemical reduction of N under ambient conditions for artificial N fixation and renewable energy storage using N /NH cycle
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– volume: 0
  start-page: 799
  year: 1993
  end-page: 805
  ident: CR55
  article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/P29930000799
– volume: 33
  start-page: 195
  year: 2017
  end-page: 204
  ident: CR43
  article-title: B C as a stable non-carbon-based oxygen electrode material for lithiumoxygen batteries
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.042
– volume: 319
  start-page: 178
  year: 2005
  end-page: 184
  ident: CR57
  article-title: Electrolysis of water on (oxidized) metal surfaces
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.05.038
– ident: CR18
– volume: 6
  start-page: 3211
  year: 2018
  end-page: 3217
  ident: CR30
  article-title: Surfactant-free atomically ultrathin rhodium nanosheets nanoassemblies for efficient nitrogen electroreduction
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10866D
– volume: 4
  year: 2013
  ident: CR46
  article-title: Atomic structure of amorphous shear bands in boron carbide
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3483
– ident: CR37
– volume: 113
  start-page: 7756
  year: 2000
  end-page: 7764
  ident: CR51
  article-title: From molecules to solids with the DMol approach
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 400
  start-page: 415
  year: 1999
  ident: CR1
  article-title: Detonator of the population explosion
  publication-title: Nature
  doi: 10.1038/22672
– volume: 108
  start-page: 17886
  year: 2004
  end-page: 17892
  ident: CR56
  article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 30
  start-page: 1800191
  year: 2018
  ident: CR34
  article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on MoS catalyst: theoretical and experimental studies
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800191
– volume: 123
  start-page: 700
  year: 2010
  end-page: 705
  ident: CR40
  article-title: Electrochemical characteristics of B C or BN added MnO cathode material for alkaline batteries
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.05.041
– volume: 8
  year: 2017
  ident: CR12
  article-title: Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14874
– volume: 92
  start-page: 508
  year: 1990
  end-page: 517
  ident: CR50
  article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 29
  start-page: 1606550
  year: 2017
  ident: CR27
  article-title: Au sub-nanoclusters on TiO toward highly efficient and selective electrocatalyst for N conversion to NH at ambient conditions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 12
  start-page: 836
  year: 2013
  end-page: 841
  ident: CR7
  article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3696
– volume: 286
  start-page: 57
  year: 2017
  end-page: 68
  ident: CR22
  article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.008
– ident: CR17
– volume: 260
  start-page: 792
  year: 1993
  end-page: 794
  ident: CR20
  article-title: The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures
  publication-title: Science
  doi: 10.1126/science.8484118
– volume: 27
  start-page: 1787
  year: 2006
  end-page: 1799
  ident: CR53
  article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 4
  start-page: 934
  year: 2012
  end-page: 940
  ident: CR6
  article-title: Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1476
– volume: 11
  start-page: 45
  year: 2018
  end-page: 56
  ident: CR26
  article-title: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH ) under ambient conditions
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02220D
– volume: 29
  start-page: 1606550
  year: 2017
  ident: 5758_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201606550
– volume: 42
  start-page: 2004
  year: 2003
  ident: 5758_CR2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200301553
– volume: 104
  start-page: 385
  year: 2004
  ident: 5758_CR5
  publication-title: Chem. Rev.
  doi: 10.1021/cr020610c
– ident: 5758_CR16
– volume: 24
  start-page: 2006
  year: 1952
  ident: 5758_CR48
  publication-title: Anal. Chem.
  doi: 10.1021/ac60072a044
– volume: 12
  start-page: 836
  year: 2013
  ident: 5758_CR7
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3696
– volume: 5
  start-page: 18967
  year: 2017
  ident: 5758_CR35
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA06139K
– volume: 6
  start-page: 12974
  year: 2018
  ident: 5758_CR36
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C8TA03974G
– volume: 139
  start-page: 9771
  year: 2017
  ident: 5758_CR33
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b04393
– volume: 6
  start-page: 3211
  year: 2018
  ident: 5758_CR30
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C7TA10866D
– volume: 3
  start-page: 184
  year: 2017
  ident: 5758_CR44
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.7b01133
– volume: 3
  start-page: 1311
  year: 2010
  ident: 5758_CR58
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00071j
– volume: 340
  start-page: 1549
  year: 2013
  ident: 5758_CR8
  publication-title: Science
  doi: 10.1126/science.1238663
– volume: 11
  start-page: 45
  year: 2018
  ident: 5758_CR26
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02220D
– volume: 109
  start-page: 2209
  year: 2009
  ident: 5758_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/cr8003696
– volume: 8
  start-page: 1186
  year: 2018
  ident: 5758_CR39
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.7b02165
– volume: 56
  start-page: 2699
  year: 2017
  ident: 5758_CR31
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201609533
– volume: 14
  start-page: 1235
  year: 2012
  ident: 5758_CR54
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C1CP22271F
– volume: 359
  start-page: 896
  year: 2018
  ident: 5758_CR13
  publication-title: Science
  doi: 10.1126/science.aaq1684
– ident: 5758_CR37
  doi: 10.1039/C8CC03627F
– volume: 277
  start-page: 76
  year: 1997
  ident: 5758_CR14
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0797-76
– volume: 108
  start-page: 17886
  year: 2004
  ident: 5758_CR56
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp047349j
– volume: 10
  start-page: 2516
  year: 2017
  ident: 5758_CR47
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C7EE02716H
– volume: 355
  start-page: eaad4998
  year: 2017
  ident: 5758_CR25
  publication-title: Science
  doi: 10.1126/science.aad4998
– volume: 260
  start-page: 792
  year: 1993
  ident: 5758_CR20
  publication-title: Science
  doi: 10.1126/science.8484118
– ident: 5758_CR32
  doi: 10.1039/C8NR04524K
– volume-title: Catalytic ammonia synthesis: fundamentals and practice.
  year: 1991
  ident: 5758_CR15
  doi: 10.1007/978-1-4757-9592-9
– volume: 96
  start-page: 2983
  year: 1996
  ident: 5758_CR21
  publication-title: Chem. Rev.
  doi: 10.1021/cr950055x
– volume: 5
  start-page: 1500658
  year: 2015
  ident: 5758_CR45
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201500658
– volume: 55
  start-page: 3942
  year: 2016
  ident: 5758_CR49
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201511189
– volume: 319
  start-page: 178
  year: 2005
  ident: 5758_CR57
  publication-title: Chem. Phys.
  doi: 10.1016/j.chemphys.2005.05.038
– volume: 30
  start-page: 1800191
  year: 2018
  ident: 5758_CR34
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800191
– ident: 5758_CR18
– volume: 77
  start-page: 3865
  year: 1996
  ident: 5758_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 4
  start-page: 934
  year: 2012
  ident: 5758_CR6
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1476
– volume: 27
  start-page: 1787
  year: 2006
  ident: 5758_CR53
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20495
– volume: 49
  start-page: 987
  year: 2016
  ident: 5758_CR19
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00033
– volume: 286
  start-page: 2
  year: 2017
  ident: 5758_CR23
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.06.014
– volume: 113
  start-page: 7756
  year: 2000
  ident: 5758_CR51
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1316015
– volume: 5
  start-page: 559
  year: 2013
  ident: 5758_CR9
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1620
– volume: 286
  start-page: 57
  year: 2017
  ident: 5758_CR22
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2016.05.008
– volume: 43
  start-page: 5183
  year: 2014
  ident: 5758_CR24
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00085D
– volume: 17
  start-page: 3768
  year: 2015
  ident: 5758_CR29
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP05501B
– volume: 57
  start-page: 6073
  year: 2018
  ident: 5758_CR38
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201801538
– ident: 5758_CR17
  doi: 10.1007/978-1-4020-3611-8_2
– volume: 103
  start-page: 449
  year: 2016
  ident: 5758_CR42
  publication-title: Carbon N. Y.
  doi: 10.1016/j.carbon.2016.03.044
– volume: 123
  start-page: 700
  year: 2010
  ident: 5758_CR40
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2010.05.041
– volume: 33
  start-page: 195
  year: 2017
  ident: 5758_CR43
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.01.042
– volume: 400
  start-page: 415
  year: 1999
  ident: 5758_CR1
  publication-title: Nature
  doi: 10.1038/22672
– volume: 8
  year: 2017
  ident: 5758_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14874
– volume: 29
  start-page: 1604799
  year: 2017
  ident: 5758_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604799
– ident: 5758_CR4
  doi: 10.1533/9781845694944.4.533
– volume: 352
  start-page: 448
  year: 2016
  ident: 5758_CR11
  publication-title: Science
  doi: 10.1126/science.aaf2091
– volume: 22
  start-page: 9155
  year: 2012
  ident: 5758_CR41
  publication-title: J. Mater. Chem.
  doi: 10.1039/c2jm30538k
– volume: 92
  start-page: 508
  year: 1990
  ident: 5758_CR50
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.458452
– volume: 0
  start-page: 799
  year: 1993
  ident: 5758_CR55
  publication-title: J. Chem. Soc., Perkin Trans. 2
  doi: 10.1039/P29930000799
– volume: 256
  start-page: 96
  year: 2015
  ident: 5758_CR10
  publication-title: Nature
  doi: 10.1038/nature15246
– volume: 4
  year: 2013
  ident: 5758_CR46
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3483
– reference: 24052052 - Nat Commun. 2013;4:2483
– reference: 29808517 - Adv Mater. 2018 Jul;30(28):e1800191
– reference: 22146855 - Phys Chem Chem Phys. 2012 Jan 21;14(3):1235-45
– reference: 23787744 - Nat Chem. 2013 Jul;5(7):559-65
– reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99
– reference: 28374835 - Nat Commun. 2017 Apr 04;8:14874
– reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868
– reference: 27102481 - Science. 2016 Apr 22;352(6284):448-50
– reference: 11848849 - Chem Rev. 1996 Nov 7;96(7):2983-3012
– reference: 28128489 - Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2699-2703
– reference: 29473991 - Angew Chem Int Ed Engl. 2018 May 22;57(21):6073-6076
– reference: 26890286 - Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3942-6
– reference: 29472479 - Science. 2018 Feb 23;359(6378):896-900
– reference: 27859722 - Adv Mater. 2017 Jan;29(3):
– reference: 8484118 - Science. 1993 May 7;260(5109):792-4
– reference: 26416755 - Nature. 2015 Oct 1;526(7571):96-9
– reference: 30003198 - Chem Commun (Camb). 2018 Jul 26;54(61):8474-8477
– reference: 23089869 - Nat Chem. 2012 Nov;4(11):934-40
– reference: 27105472 - Acc Chem Res. 2016 May 17;49(5):987-95
– reference: 23812128 - Nat Mater. 2013 Sep;12(9):836-41
– reference: 30027985 - Nanoscale. 2018 Aug 2;10(30):14386-14389
– reference: 23812710 - Science. 2013 Jun 28;340(6140):1549-52
– reference: 28082532 - Science. 2017 Jan 13;355(6321):
– reference: 24802308 - Chem Soc Rev. 2014 Aug 7;43(15):5183-91
– reference: 25556769 - Phys Chem Chem Phys. 2015 Feb 7;17(5):3768-82
– reference: 12746811 - Angew Chem Int Ed Engl. 2003 May 9;42(18):2004-8
– reference: 19438198 - Chem Rev. 2009 Jun;109(6):2209-44
– reference: 14871129 - Chem Rev. 2004 Feb;104(2):385-401
– reference: 28693318 - J Am Chem Soc. 2017 Jul 26;139(29):9771-9774
– reference: 28240391 - Adv Mater. 2017 May;29(17):
SSID ssj0000391844
Score 2.6915433
Snippet Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology....
Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3485
SubjectTerms 140/131
140/133
140/146
147/135
147/143
639/301/299/161
639/638/77/886
Ammonia
Boron
Boron carbide
Catalysis
Catalysts
Chemical reduction
Density functional theory
Electrocatalysts
Electrochemistry
Humanities and Social Sciences
Hydrogen-based energy
multidisciplinary
Nitrogen
Nitrogen fixation
Organic chemistry
Science
Science (multidisciplinary)
Stability analysis
SummonAdditionalLinks – databaseName: Open Access资源_DOAJ
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI365WieBNl-7m602OKpYi6MlCbyHJTrRg95X3tmD_eyfJvtc-Py_ewia7ZDMzmZlk5jeMvRQJg04kaRE8lBJmrbVBUsvAIBIEJXLu8MdP5uhYfTjRJ9dKfeWYsAoPXBfuICS5sNpb0nNG-SFZRDR6WMSYT0CwoJeSzrvmTJU9WFpyXdScJdNJOFirsid0PbTZRIFW72iiAtj_Oyvz12DJn25MiyI6vMNuzxYkf1NnfpfdwPEeu1lrSl7eZylHbrTnV_kAPP9jxYngJL-rJbEMT6ffC0m4n7g_CzkpkpNnPNQALp6j4b9wz8-QbPM2rRD5XC-nHPdcrqcH7Pjw_ed3R-1cTKGN5KNMLQSjUIJJXUoCOj_AQK0UtfJqCCCwTymQdWXzzV7oUEWBtrcaIXY-GpAP2d64HPEx41EYiKDjMJigLBjoNQay5ILRQYsYGtZvFtbFGWk8F7z45sqNtwRXieGIGK4Qw-mGvdq-c15xNv46-m2m13ZkxsguD4hz3Mw57l-c07D9DbXdLLhrR7yktM4gbg17se0mkcv3KH7E5UUZY3JVUbANe1SZYzsTWaq6gWzYYodtdqa62zOefi2w3qbvpcjffL1hsKtp_XkpnvyPpXjKbokiGbRrwj7bm1YX-IyMrSk8L3L1A6djJ3U
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXxJvQgozEDQKJXzs-IASIqkIqJ1bqzbIdu1RqsyWbSt1_37GTbLWw9GbFDznzsGdsz3yEvGUxOBlR0zxYyBBmpdaOY0lBwyI4wVLs8NFPdTgXP47l8Q6Z4I5GAi63unYJT2renX24-rP6jAr_aQgZh49LkdW9qqFM1geU8g65izvTLCnq0Wju55WZa3RoxBg7s73rxv6U0_hvsz3_fUL51z1q3p4OHpIHo11JvwyC8IjshPYxuTcgTa6ekJjec5QXN1ECNInMkD2ColZ3CxQkGk-vMqOo7ak9dylUkqK_3AzPumh6I39CLT0PSKwydiHQEUUnHwKtlv1TMj_4_uvbYTlCLJQePZe-BKdE4KBiFSODyjbQYCl6KaxoHLBQx-jQ5tLpvs9VQXgWdK1lAF9Zr4A_I7vtog0vCPVMgQfpm0Y5oUFBLYND-84p6STzriD1RFjjx_zjCQbjzOR7cA5mYIZBZpjMDCML8m7d52LIvnFr66-JX-uWKXN2_rDoTsyoiMZFPtPSarSblLBN1CEEJZuZ9-lELeAg-xO3zSSNhqETLGVK7VaQN-tqVMR0u2LbsLjMbVTCGgVdkOeDcKxnwjPWG_CCzDbEZmOqmzXt6e-c7FvVNWdpzPeTgN1M6_-keHn7X-yR-yzLPK6SsE92--4yvELjqnevs8ZcA3p5IX4
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgi1utqKxF808Xd3M7kUQ-WUqhPFvoWcq0Fu6ecswX7781kL-VoFXwLm0nIZmaSSTLzDSHvWIpOpqxpHiyUFGa11o7nkoLAEjjBMHb45Ks6OhXHZ_Jsh7ApFqY47RdIy7JMT95hHzeiqHTTQo0WBtTyHrmP0O0o1Uu1nO9VEPEchBjjYxoOdzTd2oMKVP9d9uWfbpK_vZWWLejwMXk02o700zDaPbITuyfkwZBN8uYpSeizUV_dRgJQ_K8BIYJmzV2vsrDQdPGzMIPantpLh-GQNJ-Jw-C6RdEP_pxaehmzVV6ndYx0zJRTLnpuNv0zcnr45dvyqB7TKNQ-n076GpwSkYNKTUoMGhsg5FLyUlgRHLDYpuSyXaXxTc81UXgWdatlBN9Yr4A_J7vdqosvCfVMgQfpQ1BOaFDQyuiyDeeUdJJ5V5F2mljjR4xxTHXxw5S3bg5mYIbJzDCFGUZW5P3c5mpA2Pgn9Wfk10yJ6Njlw2p9bkZpMS7xhZZWZ9tICRuSjjEqGRbe461ZzJ3sT9w2o8puDMsHXSkRvq0ib-fqrGz4gmK7uLouNArziYKuyItBOOaR8JLPDXhFFltiszXU7Zru4nsB9FZtyxn2-WESsNth_X0qXv0f-WvykBUdyCsj7JPdfn0dD7JB1bs3RYN-AeliHBY
  priority: 102
  providerName: Springer Nature
Title High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
URI https://link.springer.com/article/10.1038/s41467-018-05758-5
https://www.ncbi.nlm.nih.gov/pubmed/30154483
https://www.proquest.com/docview/2094557988
https://www.proquest.com/docview/2096556189
https://pubmed.ncbi.nlm.nih.gov/PMC6113289
https://doaj.org/article/bf3795a931764adf9eee65d7cc6796e5
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUN9raZ-UOSz08jDc1KoGVsK-TNWF9dYbWzxIX2v--d7CRkH31xjK0YWXcnn-5Ovx9j7zPvtPRoaQZqCBRmcVnqHM8U2MyDFhntHT45VcdnYjaX8yHgthrKKtdzYpiobWsoRo6L9FJISehanxe_Y2KNouzqQKFxn-0TdBmVdBXzYhNjIfRzEGLYK5Pk8GklwsyQpBCTowKx3PkeBdj-f_maf5dM_pE3DZ-j6WP2aPAj-bgX_BN2zzVP2YOeWfLmGfNUvxEvtrsCOKlIjxbB0YqXLSoO9xfXQTC87nh9qWlrJMf1se3LuDjVxJ_zml869NBjv3SOD6w5Iehzs-qes7Pp0Y_JcTxQKsQGVypdDFoJl4PyifcZJLUFi2feSFELqyFzqfcafayS8ns6ccJkrsSRdWCS2ijIX7C9pm3cK8ZNpsCANNYqLUpQkEqn0Z_TSmqZGR2xdD2wlRnwxon24lcV8t45VL0wKhRGFYRRyYh92Pxn0aNt3Nn6kOS1aUlI2eFCuzyvBsOrtM-LUtYl-klK1NaXzjklbWEMRdAcPuRgLe1qMN9VtVW2iL3b3EbDo2xK3bj2KrRRxC0KZcRe9sqx6UkeuN0gj1ixozY7Xd2901z8DODeKk3zjJ75ca1g2279fyhe3_0Wb9jDLOg8zopwwPa65ZV7i85Up0fBYvAI0y8jtj8ez77P8Pfw6PTrN7w6UZNRCFPg8UTALeeGJRI
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4k2ggJHgBKvuem1nfECIV5XSx6mVcjNrr10q0SQkqSB_it_IjHc3UXj01tsq61hezzfjsWc8H2MvRAxORdQ0DxUkCrPMGFfik4ZaRHBS0N3hg0M9OJafh2q4wX51d2EorbKziclQ12NPZ-S4STdSKaqu9XbyPSPWKIqudhQaDSz2wuIHbtlmb3Y_onxfCrHz6ejDIGtZBTKPzvo8A6dlKEHHPEYBeVVDjU_RK1nJ2oEIRYwO3QxDIS6XB-lFMIVRAXxeeQ0l9nuFXcWFNyeN6g_7yzMdqrYOUrZ3c_IStmcyWaK8gIwcI8jU2vqXaAL-5dv-naL5R5w2LX87t9jN1m_l7xqg3WYbYXSHXWuYLBd3WaR8kWyyuoXACZJNdQqOVmM6RqDyePozAYFXc16dObqKyXE_XjdpY5xy8E94xc8C7giyOA2Btyw96ZBpMZvfY8eXMtn32eZoPAoPGfdCgwfl61o7aUBDoYJD_9Fp5ZTwrseKbmKtb-ubE83GN5vi7CXYRhgWhWGTMKzqsVfL_0ya6h4Xtn5P8lq2pMrc6Yfx9MS2im5dLPtGVQb9Mi2rOpoQglZ133s6sQvYyVYnbduai5ldgbvHni9fo6JT9KYahfF5aqOJyxRMjz1owLEcSZm45KDssf4abNaGuv5mdPo1FRPXRVEK6vN1B7DVsP4_FY8u_opn7Prg6GDf7u8e7j1mN0TCP1pk2GKb8-l5eIKO3Nw9TdrD2ZfLVtff2nhcLw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChgJThA1cWxnfEAIKKuWQsWBSnszsWOXSnSz7KaC_Wv8OsbOY7U8eustShzL8XwzGXvG8xHylHlnhEdNs1BCpDBLlDI5XkmomAfDWTg7_PFQ7h3x9xMx2SC_-rMwIa2yt4nRUFe1DXvkuEhXXIhQXWvHd2kRn3bHr2bfk8AgFSKtPZ1GC5EDt_yBy7fFy_1dlPUzxsbvPr_dSzqGgcSi494kYCR3OUifes8gLSuo8MpbwUteGWAu896gy6FCuMukjlvmVKaEA5uWVkKO_V4il4tcZEHHikkx7O-EyuvAeXdOJ81hZ8GjVUozSIKTBIlY-xdGyoB_-bl_p2v-EbONv8LxDXK982Hp6xZ0N8mGm94iV1pWy-Vt4kPuSDJbnUigAZ5tpQqKFmReI2ipP_kZQUHLhpanJhzLpLg2r9oUMhry8Y9pSU8drg4SP3eOdow9ccNpuWjukKMLmey7ZHNaT909Qi2TYEHYqpKGK5CQCWfQlzRSGMGsGZGsn1htu1rngXLjm44x9xx0KwyNwtBRGFqMyPPhnVlb6ePc1m-CvIaWoUp3vFHPj3Wn9Nr4vFCiVOijSV5WXjnnpKgKa8PuncNOtntp6850LPQK6CPyZHiMSh8iOeXU1WexjQy8pqBGZKsFxzCSPPLKQT4ixRps1oa6_mR68jUWFpdZlrPQ54seYKth_X8q7p__FY_JVVRU_WH_8OABucYi_NE4wzbZbOZn7iH6dI15FJWHki8Xra2_AQPXYGU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+artificial+nitrogen+fixation+at+ambient+conditions+using+a+metal-free+electrocatalyst&rft.jtitle=Nature+communications&rft.au=Qiu%2C+Weibin&rft.au=Xiao-Ying%2C+Xie&rft.au=Qiu%2C+Jianding&rft.au=Wei-Hai%2C+Fang&rft.date=2018-08-28&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=9&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-05758-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon