High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst
Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrog...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 3485 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.08.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h
–1
mg
–1
cat.
and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.
Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of inert nitrogen. Here the authors report a metal-free catalyst that selectively reduces nitrogen to ammonia with high efficiency and stability. |
---|---|
AbstractList | Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h
–1
mg
–1
cat.
and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.
Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of inert nitrogen. Here the authors report a metal-free catalyst that selectively reduces nitrogen to ammonia with high efficiency and stability. Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h–1 mg–1cat. and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations. Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber–Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h –1 mg –1 cat. and a fairly high Faradaic efficiency of 15.95% at –0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations. Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber-Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h mg and a fairly high Faradaic efficiency of 15.95% at -0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations. Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of inert nitrogen. Here the authors report a metal-free catalyst that selectively reduces nitrogen to ammonia with high efficiency and stability. Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber-Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h-1 mg-1cat. and a fairly high Faradaic efficiency of 15.95% at -0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations.Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology. Electrochemical reduction is emerging as a sustainable strategy for artificial nitrogen fixation at ambient conditions by tackling the hydrogen- and energy-intensive operations of the Haber-Bosch process. However, it is severely challenged by nitrogen activation and requires efficient catalysts for the nitrogen reduction reaction. Here we report that a boron carbide nanosheet acts as a metal-free catalyst for high-performance electrochemical nitrogen-to-ammonia fixation at ambient conditions. The catalyst can achieve a high ammonia yield of 26.57 μg h-1 mg-1cat. and a fairly high Faradaic efficiency of 15.95% at -0.75 V versus reversible hydrogen electrode, placing it among the most active aqueous-based nitrogen reduction reaction electrocatalysts. Notably, it also shows high electrochemical stability and excellent selectivity. The catalytic mechanism is assessed using density functional theory calculations. |
ArticleNumber | 3485 |
Author | Cui, Ganglong Tang, Bo Fang, Wei-Hai Xie, Xiao-Ying Qiu, Jianding Sun, Xuping Ren, Xiang Liang, Ruping Ji, Xuqiang Asiri, Abdullah M. Cui, Guanwei Qiu, Weibin |
Author_xml | – sequence: 1 givenname: Weibin orcidid: 0000-0002-2648-4221 surname: Qiu fullname: Qiu, Weibin organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, College of Chemistry, Nanchang University – sequence: 2 givenname: Xiao-Ying surname: Xie fullname: Xie, Xiao-Ying organization: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University – sequence: 3 givenname: Jianding orcidid: 0000-0002-6793-9499 surname: Qiu fullname: Qiu, Jianding organization: College of Chemistry, Nanchang University – sequence: 4 givenname: Wei-Hai surname: Fang fullname: Fang, Wei-Hai organization: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University – sequence: 5 givenname: Ruping surname: Liang fullname: Liang, Ruping organization: College of Chemistry, Nanchang University – sequence: 6 givenname: Xiang surname: Ren fullname: Ren, Xiang organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 7 givenname: Xuqiang surname: Ji fullname: Ji, Xuqiang organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China – sequence: 8 givenname: Guanwei surname: Cui fullname: Cui, Guanwei organization: College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University – sequence: 9 givenname: Abdullah M. orcidid: 0000-0001-7905-3209 surname: Asiri fullname: Asiri, Abdullah M. organization: Chemistry Department, Faculty of Science and Center of Excellence for Advanced Materials Research, King Abdulaziz University – sequence: 10 givenname: Ganglong surname: Cui fullname: Cui, Ganglong email: ganglong.cui@bnu.edu.cn organization: Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University – sequence: 11 givenname: Bo surname: Tang fullname: Tang, Bo email: tangb@sdnu.edu.cn organization: College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University – sequence: 12 givenname: Xuping orcidid: 0000-0002-5326-3838 surname: Sun fullname: Sun, Xuping email: xpsun@uestc.edu.cn organization: Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30154483$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1TAQjFARLaV_gAOKxIVLwI4_Yl-QUAW0UiUucLYcZ536KbEftoPaf4_z0kLbQ33xaj0z2vHO6-rIBw9V9RajjxgR8SlRTHnXICwaxDomGvaiOmkRxQ3uWnL0oD6uzlLaoXKIxILSV9UxQZhRKshJZS_ceN3sIdoQZ-0N1DpmZ51xeqq9yzGM4GvrbnR2wdc613ruHfhcm-AHtzZTvSTnx1rXM2Q9NTYC1DCBKWSjS-c25TfVS6unBGd392n169vXn-cXzdWP75fnX64awxHPjeg5BSK4Rda2AulBDKWyhlFNh160gK3tSUslp6jrEVDTgsSSgTBIGy7IaXW56Q5B79Q-ulnHWxW0U4dGiKNa_ZkJVG9JJ5mWBHec6sFKAOBs6IzhneTAitbnTWu_9DMMppiOenok-vjFu2s1hj-KY0xaIYvAhzuBGH4vkLKaXTIwTdpDWJJqkeSMcXyAvn8C3YUl-vJVK4oy1kmxunv3cKJ_o9yvswDEBjAxpBTBKuPyYXNlQDcpjNQaHrWFR5XwqEN41Oq2fUK9V3-WRDZSKmA_Qvw_9jOsv7nC2Nc |
CitedBy_id | crossref_primary_10_1093_femsec_fiaa225 crossref_primary_10_26599_NRE_2023_9120047 crossref_primary_10_1007_s11090_024_10514_3 crossref_primary_10_1002_cssc_202200741 crossref_primary_10_1039_D0NH00287A crossref_primary_10_1002_anie_202004213 crossref_primary_10_1039_D2CS00041E crossref_primary_10_1016_j_electacta_2023_143360 crossref_primary_10_1039_D0NR07362H crossref_primary_10_1002_anie_201903014 crossref_primary_10_1021_acsami_4c15913 crossref_primary_10_1021_jacs_3c12780 crossref_primary_10_1021_jacs_9b13349 crossref_primary_10_1038_s41467_019_12312_4 crossref_primary_10_1021_acsanm_2c00379 crossref_primary_10_1016_j_ijhydene_2021_07_039 crossref_primary_10_1039_C9TA06523G crossref_primary_10_1039_D4DT01956C crossref_primary_10_1016_j_electacta_2022_139934 crossref_primary_10_1021_acsnano_2c11954 crossref_primary_10_1039_D1TA08241H crossref_primary_10_1016_j_apcatb_2024_124728 crossref_primary_10_1021_acssuschemeng_9b00852 crossref_primary_10_1039_C9CC01703H crossref_primary_10_1039_C9CC00602H crossref_primary_10_1002_adma_202007650 crossref_primary_10_59717_j_xinn_mater_2024_100060 crossref_primary_10_1016_j_mcat_2023_113117 crossref_primary_10_1002_adma_202306633 crossref_primary_10_1039_D2DT01258H crossref_primary_10_1016_j_nanoen_2020_105391 crossref_primary_10_1002_smll_202004809 crossref_primary_10_1039_D4NR00640B crossref_primary_10_1016_j_cclet_2019_10_041 crossref_primary_10_1016_j_ijhydene_2019_08_104 crossref_primary_10_1021_acs_inorgchem_0c02058 crossref_primary_10_1021_acs_inorgchem_0c02176 crossref_primary_10_1002_advs_201902390 crossref_primary_10_1039_D0CY01824D crossref_primary_10_1002_aenm_202003294 crossref_primary_10_1016_j_jallcom_2019_06_311 crossref_primary_10_1016_j_jes_2023_06_027 crossref_primary_10_1021_acssuschemeng_2c04715 crossref_primary_10_1039_D1TA09013E crossref_primary_10_1039_C9TA09910G crossref_primary_10_1016_j_checat_2024_101239 crossref_primary_10_1021_acscatal_9b00366 crossref_primary_10_1016_j_chemosphere_2020_129478 crossref_primary_10_1016_j_jcis_2023_05_108 crossref_primary_10_1021_jacs_4c06657 crossref_primary_10_1016_j_ijhydene_2022_09_074 crossref_primary_10_1039_C9CC00726A crossref_primary_10_1039_C9CC01920K crossref_primary_10_1021_acsenergylett_0c01857 crossref_primary_10_1002_smll_202000421 crossref_primary_10_1007_s40843_020_1522_y crossref_primary_10_1002_chem_202100851 crossref_primary_10_1021_acsami_1c21789 crossref_primary_10_1016_j_jclepro_2023_136314 crossref_primary_10_1021_acscatal_4c05730 crossref_primary_10_1002_slct_201900253 crossref_primary_10_1039_C9CC09179C crossref_primary_10_1002_adfm_202106713 crossref_primary_10_1002_ange_201911153 crossref_primary_10_1016_j_ijhydene_2019_10_174 crossref_primary_10_1039_C9TA11378A crossref_primary_10_1039_D0CP04315J crossref_primary_10_1039_C9CS00422J crossref_primary_10_1002_ange_202003518 crossref_primary_10_1016_j_mtphys_2021_100396 crossref_primary_10_1002_adma_202007509 crossref_primary_10_1002_smll_202100372 crossref_primary_10_1021_acsami_9b18263 crossref_primary_10_1021_acscatal_9b02794 crossref_primary_10_1021_acscatal_1c05820 crossref_primary_10_35848_1347_4065_ad2fde crossref_primary_10_1021_acs_jpcc_1c10781 crossref_primary_10_1073_pnas_2318408121 crossref_primary_10_1002_aenm_201903172 crossref_primary_10_1016_j_cej_2022_135417 crossref_primary_10_1016_j_jcis_2021_09_134 crossref_primary_10_1021_jacs_0c00409 crossref_primary_10_1039_C9CC05684J crossref_primary_10_1039_D1CC03139B crossref_primary_10_1093_nsr_nwz019 crossref_primary_10_1039_D0TA10494A crossref_primary_10_1002_adma_202007733 crossref_primary_10_1016_j_cej_2023_143841 crossref_primary_10_1016_j_mcat_2023_113665 crossref_primary_10_1002_ange_202308262 crossref_primary_10_1039_D0TA04580B crossref_primary_10_1039_C9NR02782C crossref_primary_10_1016_j_chemosphere_2021_129578 crossref_primary_10_1002_adma_202313086 crossref_primary_10_1016_j_apsusc_2020_145855 crossref_primary_10_1021_acsenergylett_0c01317 crossref_primary_10_1093_nsr_nwaa088 crossref_primary_10_1021_acscatal_9b03895 crossref_primary_10_3390_membranes12100969 crossref_primary_10_1039_C9TA09264A crossref_primary_10_1039_D1TA08257D crossref_primary_10_1073_pnas_2204638119 crossref_primary_10_1016_j_cclet_2022_03_060 crossref_primary_10_1016_j_mcat_2023_113676 crossref_primary_10_1016_j_optmat_2022_112137 crossref_primary_10_1016_j_enchem_2020_100040 crossref_primary_10_1039_C9NJ00869A crossref_primary_10_1021_acs_jpclett_2c00918 crossref_primary_10_1039_D0TA11231C crossref_primary_10_1007_s40820_021_00651_1 crossref_primary_10_1016_j_mattod_2019_05_004 crossref_primary_10_1039_D0TA04709K crossref_primary_10_1002_adfm_202413703 crossref_primary_10_1016_j_apcatb_2021_120216 crossref_primary_10_1039_C9TA07096F crossref_primary_10_1021_acsami_9b08480 crossref_primary_10_1007_s12274_021_3583_9 crossref_primary_10_1016_j_gee_2022_01_010 crossref_primary_10_1039_D2SC02625B crossref_primary_10_1007_s12598_021_01904_z crossref_primary_10_1021_acsami_4c09370 crossref_primary_10_1039_C9NJ04792A crossref_primary_10_1002_adma_201906477 crossref_primary_10_1021_acs_energyfuels_3c01628 crossref_primary_10_1016_j_apsusc_2020_146606 crossref_primary_10_1002_cctc_201900536 crossref_primary_10_1002_celc_201901786 crossref_primary_10_1021_acs_jpclett_1c01307 crossref_primary_10_1002_adma_201907690 crossref_primary_10_1002_smll_202002885 crossref_primary_10_1039_C9TA01624D crossref_primary_10_1021_acsnano_3c10058 crossref_primary_10_1039_D0NR04981F crossref_primary_10_1002_cssc_201902429 crossref_primary_10_1002_aenm_202001289 crossref_primary_10_1039_D0CC01759K crossref_primary_10_1039_D0CC04374E crossref_primary_10_1002_advs_201801182 crossref_primary_10_1002_ange_202202087 crossref_primary_10_1007_s00339_020_04186_x crossref_primary_10_1002_smtd_201800251 crossref_primary_10_1021_acs_inorgchem_4c02353 crossref_primary_10_1016_j_cplett_2021_138939 crossref_primary_10_1016_j_apcata_2022_118866 crossref_primary_10_1039_C8NR09564G crossref_primary_10_3390_plants13030355 crossref_primary_10_1016_j_jhazmat_2023_130890 crossref_primary_10_1016_j_apcata_2019_05_025 crossref_primary_10_1016_j_cjche_2021_11_016 crossref_primary_10_1039_C9CC00647H crossref_primary_10_1007_s40843_022_2263_x crossref_primary_10_1039_D0QI00749H crossref_primary_10_1021_acsami_1c10967 crossref_primary_10_1016_j_cej_2020_126033 crossref_primary_10_1016_j_jece_2022_107713 crossref_primary_10_1002_cphc_201900519 crossref_primary_10_1007_s12274_020_2733_9 crossref_primary_10_1039_D3DT00686G crossref_primary_10_1002_adma_202108079 crossref_primary_10_1021_acscatal_8b03802 crossref_primary_10_1039_D0TA06747D crossref_primary_10_1039_D0TA08914A crossref_primary_10_1039_D2CP02516G crossref_primary_10_1021_acs_jpcc_1c06464 crossref_primary_10_26599_NRE_2022_9120022 crossref_primary_10_1016_j_joule_2019_05_001 crossref_primary_10_1039_D2CY01465C crossref_primary_10_1016_j_apsusc_2021_149614 crossref_primary_10_1039_C9CC02409C crossref_primary_10_1002_smll_202310268 crossref_primary_10_1039_C9TA13485A crossref_primary_10_1039_D1QM01620B crossref_primary_10_1039_D1DT03284D crossref_primary_10_1039_C9NR08777J crossref_primary_10_1007_s12274_022_4803_7 crossref_primary_10_1021_acs_energyfuels_3c05091 crossref_primary_10_1002_ange_201911338 crossref_primary_10_1016_j_cclet_2021_08_102 crossref_primary_10_1016_j_seppur_2024_129638 crossref_primary_10_1002_celc_201801484 crossref_primary_10_1016_j_cej_2023_142384 crossref_primary_10_26599_NRE_2022_9120010 crossref_primary_10_1002_aenm_202000177 crossref_primary_10_1016_j_jechem_2019_01_027 crossref_primary_10_1016_j_jechem_2020_04_014 crossref_primary_10_1016_j_jechem_2024_01_024 crossref_primary_10_1021_acscatal_9b00994 crossref_primary_10_1016_j_jcis_2019_08_067 crossref_primary_10_1016_j_cclet_2021_02_043 crossref_primary_10_1039_D1TA04638A crossref_primary_10_1021_acssuschemeng_0c01206 crossref_primary_10_1002_anie_201911153 crossref_primary_10_1016_j_ijhydene_2023_12_128 crossref_primary_10_1039_D1TA04614D crossref_primary_10_1021_acs_jpcc_9b04730 crossref_primary_10_1073_pnas_2305604120 crossref_primary_10_1021_acscatal_9b02944 crossref_primary_10_1002_cphc_202000147 crossref_primary_10_1039_C9QI00301K crossref_primary_10_1021_acscatal_0c02606 crossref_primary_10_1039_D0NR00030B crossref_primary_10_1002_celc_201900320 crossref_primary_10_3866_PKU_WHXB202306048 crossref_primary_10_1039_C9CC07708A crossref_primary_10_1039_D4GC01566E crossref_primary_10_1016_j_seppur_2024_128882 crossref_primary_10_1039_D1NR06411H crossref_primary_10_1016_j_apcatb_2021_120144 crossref_primary_10_1021_jacs_9b07963 crossref_primary_10_1016_j_apsusc_2021_150867 crossref_primary_10_1002_anie_202007672 crossref_primary_10_1021_acs_inorgchem_9b00606 crossref_primary_10_1021_acsami_9b14187 crossref_primary_10_1021_acsnano_0c01340 crossref_primary_10_1039_D0CC05917J crossref_primary_10_1021_acscatal_3c04398 crossref_primary_10_1039_C9TA13026H crossref_primary_10_1016_j_checat_2023_100871 crossref_primary_10_1039_C9TA05505C crossref_primary_10_1063_5_0223392 crossref_primary_10_1002_admi_202101842 crossref_primary_10_1002_asia_202000310 crossref_primary_10_1039_C9CC08352A crossref_primary_10_1016_j_jcis_2021_02_086 crossref_primary_10_1021_jacsau_3c00087 crossref_primary_10_1039_C9TA03654G crossref_primary_10_1039_D1MA00814E crossref_primary_10_1098_rsos_212004 crossref_primary_10_1039_C9TA08806G crossref_primary_10_1016_j_apcatb_2021_121001 crossref_primary_10_1021_acssuschemeng_4c02341 crossref_primary_10_1039_C8TA10433F crossref_primary_10_1021_acs_inorgchem_9b01707 crossref_primary_10_1016_j_apsusc_2022_156077 crossref_primary_10_1016_j_jechem_2024_01_077 crossref_primary_10_1021_acs_energyfuels_4c00802 crossref_primary_10_1016_j_esci_2022_04_008 crossref_primary_10_1039_C9NR06469A crossref_primary_10_1002_qua_26548 crossref_primary_10_1021_acsnano_2c00507 crossref_primary_10_1016_j_cattod_2024_114723 crossref_primary_10_1039_D2CP01446G crossref_primary_10_1021_acs_inorgchem_9b01823 crossref_primary_10_1039_D2QI00140C crossref_primary_10_1021_acsaem_2c00405 crossref_primary_10_1039_C9CC08234D crossref_primary_10_1021_acsnano_2c07260 crossref_primary_10_1002_cctc_201900041 crossref_primary_10_1021_acsaem_9b01135 crossref_primary_10_1021_jacs_3c14816 crossref_primary_10_1002_aenm_202001364 crossref_primary_10_1039_D1SE00338K crossref_primary_10_1039_D0NH00242A crossref_primary_10_1039_C9TA06076F crossref_primary_10_1021_acsami_4c00162 crossref_primary_10_1021_acs_inorgchem_9b00622 crossref_primary_10_1039_C9TA13044F crossref_primary_10_1002_adom_202001671 crossref_primary_10_1016_j_mcat_2019_110705 crossref_primary_10_1039_C9DT04827H crossref_primary_10_1016_j_electacta_2018_12_084 crossref_primary_10_1002_ange_201813174 crossref_primary_10_1021_acssuschemeng_8b05332 crossref_primary_10_1002_adfm_202008983 crossref_primary_10_1039_D1TA02998C crossref_primary_10_1039_D1NA00426C crossref_primary_10_1088_1674_1056_28_6_066201 crossref_primary_10_1016_j_apcatb_2020_118919 crossref_primary_10_1039_D4EE03156C crossref_primary_10_1016_j_nanoen_2020_105078 crossref_primary_10_1039_D2CC00952H crossref_primary_10_1016_j_jece_2024_114454 crossref_primary_10_1016_j_xcrp_2020_100232 crossref_primary_10_1039_D1SE00644D crossref_primary_10_1002_cctc_202400115 crossref_primary_10_1002_aenm_202103289 crossref_primary_10_1016_j_xcrp_2021_100438 crossref_primary_10_1016_j_cclet_2022_107888 crossref_primary_10_1002_chem_202000695 crossref_primary_10_1002_tcr_202400234 crossref_primary_10_1016_j_cclet_2021_03_077 crossref_primary_10_1039_D0NR07971E crossref_primary_10_1007_s12274_018_2268_5 crossref_primary_10_1021_acsami_1c20807 crossref_primary_10_1039_C9CC10087C crossref_primary_10_1039_C9TA01410A crossref_primary_10_1002_adfm_202107280 crossref_primary_10_1039_D4TA04797D crossref_primary_10_1002_anie_201913122 crossref_primary_10_1016_j_chempr_2021_10_008 crossref_primary_10_1007_s12274_019_2323_x crossref_primary_10_1002_anie_202207807 crossref_primary_10_1021_acsenergylett_0c01384 crossref_primary_10_1039_D0TA05282E crossref_primary_10_1016_j_cattod_2022_12_010 crossref_primary_10_1021_acs_jpcc_3c05006 crossref_primary_10_1039_D0TA03622F crossref_primary_10_1016_j_enchem_2019_100011 crossref_primary_10_1021_acsanm_4c05030 crossref_primary_10_1016_j_ccr_2022_214981 crossref_primary_10_1016_j_mattod_2020_09_006 crossref_primary_10_1039_D2EE00358A crossref_primary_10_1002_adfm_202004009 crossref_primary_10_1007_s10800_022_01712_y crossref_primary_10_1007_s40242_020_0182_3 crossref_primary_10_1039_D0CP03246H crossref_primary_10_1039_D0DT02560G crossref_primary_10_1002_ange_202207807 crossref_primary_10_1002_celc_202201001 crossref_primary_10_1021_acscatal_9b03180 crossref_primary_10_1021_acs_jpcc_8b11696 crossref_primary_10_1016_j_jcis_2022_02_074 crossref_primary_10_1016_j_cclet_2021_12_054 crossref_primary_10_1039_D1CS00120E crossref_primary_10_1016_j_apmt_2020_100620 crossref_primary_10_1039_C8NA00300A crossref_primary_10_1039_D1MA00680K crossref_primary_10_1039_D2CY00910B crossref_primary_10_1002_asia_201900618 crossref_primary_10_1016_j_jechem_2022_03_042 crossref_primary_10_1039_D0SE00915F crossref_primary_10_1016_j_mcat_2024_114044 crossref_primary_10_1039_C8CC07186A crossref_primary_10_1039_D1NJ04909G crossref_primary_10_1039_D1TA08512C crossref_primary_10_1016_j_apcatb_2022_121574 crossref_primary_10_1016_j_mtphys_2020_100310 crossref_primary_10_1021_acs_jpclett_4c01978 crossref_primary_10_1021_acs_jpcc_1c02397 crossref_primary_10_1088_2053_1583_ac217a crossref_primary_10_1002_eem2_12298 crossref_primary_10_1039_C8TA11201K crossref_primary_10_1039_C9TA13812A crossref_primary_10_1039_C9TA00016J crossref_primary_10_1016_j_mattod_2020_04_012 crossref_primary_10_1039_D0TA11522C crossref_primary_10_1039_D0CC02217A crossref_primary_10_1002_cctc_201801208 crossref_primary_10_1039_D3QI01673K crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1016_j_cej_2023_145368 crossref_primary_10_1016_j_xcrp_2023_101521 crossref_primary_10_1002_anie_201811728 crossref_primary_10_1007_s41918_022_00164_4 crossref_primary_10_1002_smll_202501949 crossref_primary_10_1039_C8QI01145A crossref_primary_10_1002_sstr_202200306 crossref_primary_10_1016_j_jechem_2021_01_016 crossref_primary_10_1016_j_inoche_2020_108169 crossref_primary_10_1021_acscatal_0c01127 crossref_primary_10_1039_D0SE00828A crossref_primary_10_1016_j_ijhydene_2023_05_206 crossref_primary_10_1016_j_enchem_2023_100108 crossref_primary_10_1039_D1QI00306B crossref_primary_10_1016_j_matt_2020_07_032 crossref_primary_10_1016_j_nanoen_2022_107363 crossref_primary_10_1021_acsaem_9b00102 crossref_primary_10_1007_s12274_020_3202_1 crossref_primary_10_1038_s41929_021_00599_w crossref_primary_10_1021_acs_chemrev_3c00459 crossref_primary_10_3390_en17102291 crossref_primary_10_3389_fenrg_2020_602438 crossref_primary_10_1002_adfm_202109422 crossref_primary_10_1039_D0TA01453B crossref_primary_10_1016_j_ces_2023_119076 crossref_primary_10_1002_smtd_202100699 crossref_primary_10_1016_S1872_5805_24_60836_X crossref_primary_10_1021_acs_jpclett_0c01128 crossref_primary_10_1021_acssuschemeng_9b01178 crossref_primary_10_1002_adma_202312645 crossref_primary_10_1002_adfm_202005779 crossref_primary_10_1360_TB_2024_0858 crossref_primary_10_1002_cssc_202101461 crossref_primary_10_1039_C8TA10497B crossref_primary_10_1016_j_cej_2021_132649 crossref_primary_10_1016_j_fuel_2024_131750 crossref_primary_10_1002_ange_202007672 crossref_primary_10_1039_D1QM00269D crossref_primary_10_1002_smll_201803111 crossref_primary_10_1016_j_apcatb_2020_119606 crossref_primary_10_1021_jacs_4c02631 crossref_primary_10_15541_jim20220033 crossref_primary_10_3390_molecules29246025 crossref_primary_10_1021_acssuschemeng_0c09009 crossref_primary_10_1039_C9NR08705B crossref_primary_10_1039_D3TA03675H crossref_primary_10_1002_advs_201801829 crossref_primary_10_1002_ange_201908415 crossref_primary_10_1002_anie_202202087 crossref_primary_10_1007_s10562_024_04681_3 crossref_primary_10_1002_adma_201904870 crossref_primary_10_1021_acsomega_2c03588 crossref_primary_10_1039_C9TA09439C crossref_primary_10_1016_j_cattod_2022_09_004 crossref_primary_10_1002_slct_202204988 crossref_primary_10_1016_j_fuel_2022_123982 crossref_primary_10_1002_adfm_201906579 crossref_primary_10_3390_catal12030296 crossref_primary_10_1002_cnma_202000110 crossref_primary_10_1039_C9CC03413G crossref_primary_10_1021_jacs_2c01245 crossref_primary_10_1016_j_cej_2023_144493 crossref_primary_10_20964_2020_10_46 crossref_primary_10_1002_adma_202101126 crossref_primary_10_1021_acsnano_2c00596 crossref_primary_10_1021_acscatal_9b00959 crossref_primary_10_1016_j_mssp_2024_108368 crossref_primary_10_1039_C9TA05155D crossref_primary_10_1021_acssuschemeng_2c03159 crossref_primary_10_1039_D0TA10510D crossref_primary_10_1002_cphc_202200864 crossref_primary_10_1038_s41557_020_0520_6 crossref_primary_10_1016_j_apcatb_2019_118477 crossref_primary_10_1039_C8QI01049H crossref_primary_10_1016_j_cattod_2022_09_011 crossref_primary_10_1080_00268976_2023_2299232 crossref_primary_10_1039_D1TA07426A crossref_primary_10_1016_j_seppur_2024_129422 crossref_primary_10_1039_D0TA03991H crossref_primary_10_1039_C9CC05978D crossref_primary_10_1016_j_cej_2024_157961 crossref_primary_10_1021_acscatal_0c02745 crossref_primary_10_1007_s12274_020_3049_5 crossref_primary_10_1016_j_cej_2022_140106 crossref_primary_10_1016_j_arabjc_2024_105950 crossref_primary_10_1016_j_jcis_2021_07_083 crossref_primary_10_12677_japc_2024_134067 crossref_primary_10_1039_D0TA01572E crossref_primary_10_1039_D4NA00281D crossref_primary_10_1002_adfm_202200333 crossref_primary_10_1007_s41918_019_00061_3 crossref_primary_10_1039_D3NJ01668D crossref_primary_10_1039_D2TA03563D crossref_primary_10_1016_j_ceramint_2024_07_275 crossref_primary_10_1016_j_flatc_2019_100133 crossref_primary_10_1002_anie_201911338 crossref_primary_10_1016_j_apcatb_2020_119746 crossref_primary_10_1021_acsami_2c08534 crossref_primary_10_1002_adma_202205270 crossref_primary_10_1007_s12274_019_2352_5 crossref_primary_10_1016_j_surfin_2024_105401 crossref_primary_10_1039_C9NR08969A crossref_primary_10_1039_C8CC06524A crossref_primary_10_1002_advs_202205786 crossref_primary_10_1016_j_apcatb_2020_118892 crossref_primary_10_1039_C9CC06574A crossref_primary_10_1016_j_apcatb_2019_118568 crossref_primary_10_1016_j_apcatb_2020_119622 crossref_primary_10_1016_j_ijhydene_2020_09_187 crossref_primary_10_1039_C9TA04382A crossref_primary_10_1016_j_jcat_2019_05_018 crossref_primary_10_1039_D4TA04256E crossref_primary_10_1002_adfm_202001244 crossref_primary_10_1016_j_cattod_2021_06_008 crossref_primary_10_3390_molecules28062781 crossref_primary_10_1002_anie_202308262 crossref_primary_10_1039_C9CC02310K crossref_primary_10_1002_chem_201901668 crossref_primary_10_1016_j_apcatb_2022_121755 crossref_primary_10_1002_smtd_201900474 crossref_primary_10_1021_acsanm_0c01300 crossref_primary_10_1016_j_cattod_2024_114662 crossref_primary_10_1021_acscatal_2c02629 crossref_primary_10_1002_admi_201901034 crossref_primary_10_1039_C9TA04706A crossref_primary_10_1021_acsami_9b14143 crossref_primary_10_1021_acs_jpca_1c05243 crossref_primary_10_1002_smtd_201900337 crossref_primary_10_1016_j_cattod_2022_10_020 crossref_primary_10_1039_C9CC00461K crossref_primary_10_1016_j_coco_2020_100551 crossref_primary_10_1021_acs_jpclett_0c01450 crossref_primary_10_1016_j_ccr_2022_214468 crossref_primary_10_1021_acscentsci_8b00734 crossref_primary_10_1021_acs_chemmater_9b05313 crossref_primary_10_1002_advs_202204205 crossref_primary_10_1021_acsami_1c04619 crossref_primary_10_1016_j_apenergy_2023_121960 crossref_primary_10_1002_cctc_202201411 crossref_primary_10_1021_acssuschemeng_0c00330 crossref_primary_10_1039_D2CY01507B crossref_primary_10_1016_j_apsusc_2022_154935 crossref_primary_10_1016_j_jpcs_2019_109141 crossref_primary_10_1002_advs_202102721 crossref_primary_10_1039_C9TA04902A crossref_primary_10_1002_ece2_39 crossref_primary_10_1021_acsami_4c17137 crossref_primary_10_1016_j_fuel_2021_122203 crossref_primary_10_1016_j_apsusc_2021_151020 crossref_primary_10_1039_D1CC06778H crossref_primary_10_1016_j_ccr_2023_215143 crossref_primary_10_1016_j_cclet_2021_05_025 crossref_primary_10_1002_chem_202403328 crossref_primary_10_1002_anie_202003518 crossref_primary_10_1002_sus2_3 crossref_primary_10_1039_C9CC05309C crossref_primary_10_3390_membranes9090112 crossref_primary_10_1002_aenm_202100346 crossref_primary_10_1063_5_0123687 crossref_primary_10_1002_anie_201813174 crossref_primary_10_1007_s41918_024_00236_7 crossref_primary_10_1002_smll_202005616 crossref_primary_10_1039_C9DT04441H crossref_primary_10_1002_adfm_202210759 crossref_primary_10_1016_j_chemosphere_2023_139621 crossref_primary_10_1002_adfm_202010052 crossref_primary_10_1007_s40843_023_2805_y crossref_primary_10_1016_j_materresbull_2021_111294 crossref_primary_10_1016_j_nanoen_2020_105321 crossref_primary_10_1002_cssc_202400902 crossref_primary_10_1002_smll_201805103 crossref_primary_10_1002_adma_202000299 crossref_primary_10_1002_adma_202001267 crossref_primary_10_1021_acssuschemeng_0c04021 crossref_primary_10_1039_D0NJ04365F crossref_primary_10_1016_j_cej_2021_128419 crossref_primary_10_1073_pnas_2306673120 crossref_primary_10_1186_s40580_020_00251_6 crossref_primary_10_1002_aenm_201902020 crossref_primary_10_1002_smtd_201900356 crossref_primary_10_1002_adma_202201853 crossref_primary_10_1007_s11467_021_1067_8 crossref_primary_10_1016_j_nanoen_2019_06_019 crossref_primary_10_1016_j_algal_2019_101775 crossref_primary_10_1016_j_nanoen_2020_104469 crossref_primary_10_1016_j_mtener_2021_100681 crossref_primary_10_1021_acsami_3c12822 crossref_primary_10_1039_C8NR08724E crossref_primary_10_1039_D4TA02284J crossref_primary_10_1021_acsami_1c07063 crossref_primary_10_1039_D3QI00568B crossref_primary_10_1021_acsami_0c11487 crossref_primary_10_1002_eem2_12120 crossref_primary_10_1007_s12274_019_2600_8 crossref_primary_10_1039_D3TA04848A crossref_primary_10_1016_j_apcatb_2020_118693 crossref_primary_10_1002_cssc_202000670 crossref_primary_10_1016_j_cej_2022_139606 crossref_primary_10_1016_j_chempr_2022_03_015 crossref_primary_10_1021_acsnano_4c05956 crossref_primary_10_1016_j_chempr_2021_01_009 crossref_primary_10_1016_j_jcis_2021_05_027 crossref_primary_10_1002_admi_202102242 crossref_primary_10_1021_acsami_2c11674 crossref_primary_10_1002_ange_202004213 crossref_primary_10_1021_acsami_9b08055 crossref_primary_10_1021_acscatal_0c01081 crossref_primary_10_1002_smll_202411665 crossref_primary_10_1142_S1793604721510279 crossref_primary_10_3724_SP_J_1249_2024_03323 crossref_primary_10_1002_cctc_202001775 crossref_primary_10_1016_j_scib_2019_12_019 crossref_primary_10_1002_aenm_201803406 crossref_primary_10_1088_1674_1056_abe3f6 crossref_primary_10_1002_ange_201811728 crossref_primary_10_1039_C9TA05016G crossref_primary_10_1021_acs_nanolett_0c00698 crossref_primary_10_1021_acscatal_3c02410 crossref_primary_10_1021_acs_chemrev_9b00538 crossref_primary_10_1021_acs_chemrev_9b00659 crossref_primary_10_1021_acsami_9b02511 crossref_primary_10_1002_anie_201908415 crossref_primary_10_1016_j_apcatb_2020_118589 crossref_primary_10_1039_C9CS00159J crossref_primary_10_1007_s11051_021_05177_6 crossref_primary_10_1021_acsaem_4c02204 crossref_primary_10_1002_ange_201903014 crossref_primary_10_1002_sus2_7 crossref_primary_10_1002_smll_202104043 crossref_primary_10_1021_acsnano_2c06441 crossref_primary_10_1021_acsami_9b12675 crossref_primary_10_1039_D1TA10534E crossref_primary_10_1039_C9TA10346E crossref_primary_10_1002_eem2_12348 crossref_primary_10_1016_j_mtphys_2022_100609 crossref_primary_10_1039_D0TA08741F crossref_primary_10_1093_nsr_nwaa213 crossref_primary_10_1007_s10853_019_03538_0 crossref_primary_10_1021_acs_jpcc_2c01224 crossref_primary_10_1002_adfm_202208474 crossref_primary_10_1016_j_enconman_2023_117482 crossref_primary_10_1021_acsami_1c11872 crossref_primary_10_1016_j_apsusc_2021_152272 crossref_primary_10_1016_j_cej_2024_148853 crossref_primary_10_1039_C8NR10401H crossref_primary_10_1007_s12274_020_2637_8 crossref_primary_10_1016_j_nanoms_2019_07_002 crossref_primary_10_1039_C9NR03678D crossref_primary_10_1039_C9CY00907H crossref_primary_10_1039_D1CY01442K crossref_primary_10_1039_D3CP03453D crossref_primary_10_1016_j_apcatb_2020_119325 crossref_primary_10_1016_j_cogsc_2022_100652 crossref_primary_10_1021_acssuschemeng_3c07455 crossref_primary_10_1039_D2CP00062H crossref_primary_10_1021_acscatal_9b04103 crossref_primary_10_3390_fire6120456 crossref_primary_10_1002_aenm_202203032 crossref_primary_10_1021_acs_iecr_8b04045 crossref_primary_10_1016_j_mattod_2019_03_002 crossref_primary_10_1016_j_apcatb_2021_120840 crossref_primary_10_1039_D0QI00035C crossref_primary_10_1016_j_jcat_2019_10_029 crossref_primary_10_1002_smll_202102814 crossref_primary_10_1002_chem_201902156 crossref_primary_10_1016_j_jcis_2021_11_087 crossref_primary_10_1021_acscatal_4c03415 crossref_primary_10_1021_acsami_1c11889 crossref_primary_10_1016_j_cej_2021_130650 crossref_primary_10_1155_2024_5685619 crossref_primary_10_1021_acs_accounts_1c00446 crossref_primary_10_1039_D4NJ00210E crossref_primary_10_1016_j_apsusc_2022_153468 crossref_primary_10_1016_j_diamond_2020_108210 crossref_primary_10_3390_nano12193413 crossref_primary_10_1002_aenm_201803935 crossref_primary_10_1016_j_ijhydene_2020_12_147 crossref_primary_10_1021_acscatal_4c03782 crossref_primary_10_1016_j_cej_2023_146137 crossref_primary_10_1021_acssuschemeng_0c07365 crossref_primary_10_1016_j_mseb_2021_115341 crossref_primary_10_1016_j_jpcs_2023_111483 crossref_primary_10_1016_j_ica_2021_120700 crossref_primary_10_1002_adfm_201904090 crossref_primary_10_1016_j_apcatb_2021_120615 crossref_primary_10_1177_13621688211046351 crossref_primary_10_1007_s40843_020_1572_3 crossref_primary_10_1007_s12598_024_02727_4 crossref_primary_10_1039_C9CC00936A crossref_primary_10_1002_smll_201903500 crossref_primary_10_1039_D1CC01451J crossref_primary_10_20964_2020_11_71 crossref_primary_10_1039_D0CP00698J crossref_primary_10_1021_acs_jpcc_9b05436 crossref_primary_10_1021_acscatal_8b05134 crossref_primary_10_1016_j_jechem_2023_03_024 crossref_primary_10_1021_acs_inorgchem_0c01596 crossref_primary_10_1016_j_pecs_2020_100860 crossref_primary_10_1021_acs_nanolett_3c03962 crossref_primary_10_1002_adfm_202002731 crossref_primary_10_1021_acscatal_2c04527 crossref_primary_10_1021_acssuschemeng_3c08408 crossref_primary_10_1007_s12274_020_2956_9 crossref_primary_10_1016_j_jcis_2021_05_061 crossref_primary_10_1016_j_jcis_2020_03_062 crossref_primary_10_1016_j_xcrp_2024_101977 crossref_primary_10_1039_C8TA11025E crossref_primary_10_1002_smll_202205959 crossref_primary_10_1039_D0NR01359E crossref_primary_10_1039_D1TA00262G crossref_primary_10_1016_j_chempr_2020_07_006 crossref_primary_10_1016_j_coelec_2021_100723 crossref_primary_10_1002_cssc_202000487 crossref_primary_10_1039_C8TA09840A crossref_primary_10_1016_j_cej_2024_158995 crossref_primary_10_1002_adma_202407239 crossref_primary_10_1002_ange_201913122 crossref_primary_10_1002_adma_201902709 crossref_primary_10_1093_nsr_nwaa136 crossref_primary_10_1039_C8CC09867K crossref_primary_10_1039_D1QI00258A |
Cites_doi | 10.1126/science.aaf2091 10.1021/cr950055x 10.1126/science.1238663 10.1039/c0ee00071j 10.1021/jacs.7b04393 10.1021/acsenergylett.7b01133 10.1039/C7EE02716H 10.1007/978-1-4757-9592-9 10.1002/anie.201511189 10.1039/C1CP22271F 10.1039/C4CS00085D 10.1016/j.carbon.2016.03.044 10.1039/c2jm30538k 10.1002/anie.200301553 10.1021/acscatal.7b02165 10.1038/nchem.1620 10.1038/scientificamerican0797-76 10.1039/C7TA06139K 10.1103/PhysRevLett.77.3865 10.1021/acs.accounts.6b00033 10.1021/cr8003696 10.1021/cr020610c 10.1126/science.aad4998 10.1002/aenm.201500658 10.1021/ac60072a044 10.1016/j.cattod.2016.06.014 10.1038/nature15246 10.1126/science.aaq1684 10.1002/anie.201801538 10.1039/C4CP05501B 10.1039/C8TA03974G 10.1002/anie.201609533 10.1002/adma.201604799 10.1039/P29930000799 10.1016/j.nanoen.2017.01.042 10.1016/j.chemphys.2005.05.038 10.1039/C7TA10866D 10.1038/ncomms3483 10.1063/1.1316015 10.1038/22672 10.1021/jp047349j 10.1002/adma.201800191 10.1016/j.matchemphys.2010.05.041 10.1038/ncomms14874 10.1063/1.458452 10.1002/adma.201606550 10.1038/nmat3696 10.1016/j.cattod.2016.05.008 10.1126/science.8484118 10.1002/jcc.20495 10.1038/nchem.1476 10.1039/C7EE02220D 10.1039/C8CC03627F 10.1039/C8NR04524K 10.1007/978-1-4020-3611-8_2 10.1533/9781845694944.4.533 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-05758-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Open Access资源_DOAJ |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_bf3795a931764adf9eee65d7cc6796e5 PMC6113289 30154483 10_1038_s41467_018_05758_5 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-8b64e386f0ff280ad8d0fffc54a4db82e1ffb32496407b0e4c2e9195e8c0ac683 |
IEDL.DBID | 7X7 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:26:06 EDT 2025 Thu Aug 21 18:40:28 EDT 2025 Fri Jul 11 16:33:12 EDT 2025 Wed Aug 13 04:44:23 EDT 2025 Thu Apr 03 07:02:10 EDT 2025 Thu Apr 24 22:55:23 EDT 2025 Tue Jul 01 02:21:16 EDT 2025 Fri Feb 21 02:39:54 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-8b64e386f0ff280ad8d0fffc54a4db82e1ffb32496407b0e4c2e9195e8c0ac683 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-5326-3838 0000-0002-2648-4221 0000-0001-7905-3209 0000-0002-6793-9499 |
OpenAccessLink | https://www.proquest.com/docview/2094557988?pq-origsite=%requestingapplication% |
PMID | 30154483 |
PQID | 2094557988 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_bf3795a931764adf9eee65d7cc6796e5 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6113289 proquest_miscellaneous_2096556189 proquest_journals_2094557988 pubmed_primary_30154483 crossref_citationtrail_10_1038_s41467_018_05758_5 crossref_primary_10_1038_s41467_018_05758_5 springer_journals_10_1038_s41467_018_05758_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-08-28 |
PublicationDateYYYYMMDD | 2018-08-28 |
PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Liu (CR30) 2018; 6 Schlögl (CR2) 2003; 42 Zhang (CR34) 2018; 30 Oshikiri, Ueno, Misawa (CR49) 2016; 55 Skúlason (CR54) 2012; 14 Han (CR36) 2018; 6 van der Ham, Koper, Hetterscheid (CR24) 2014; 43 CR37 Vineesh (CR45) 2015; 5 Song (CR43) 2017; 33 CR32 Minakshi, Blackford (CR40) 2010; 123 Seh (CR25) 2017; 355 Jennings (CR15) 1991 Grimme (CR53) 2006; 27 Shi (CR27) 2017; 29 Mu (CR42) 2016; 103 CR4 Bao (CR28) 2017; 29 Zhu, Zhang, Ruther, Hamers (CR7) 2013; 12 Rosca, Duca, DeGroot, Koper (CR3) 2009; 109 Čorić, Mercado, Bill, Vinyard, Holland (CR10) 2015; 256 Eizawa (CR12) 2017; 8 Shima (CR8) 2013; 340 Lv (CR38) 2018; 57 Liu (CR39) 2018; 8 Yang, Chen, Wang (CR35) 2017; 5 Nørskov, Rossmeisl, Logadottir, Lindqvist (CR56) 2004; 108 Brown (CR11) 2016; 352 CR18 Guo, Ran, Vasileff, Qiao (CR26) 2018; 11 CR17 CR16 Kitano (CR6) 2012; 4 Kou, Guo, He, Zhang, Mu (CR44) 2017; 3 Kyriakou, Garagounis, Vasileiou, Vourros, Stoukides (CR23) 2017; 286 Klamt, Schüürmann (CR55) 1993; 0 Smil (CR14) 1997; 277 Tanaka, Nishibayashi, Yoshizawa (CR19) 2016; 49 Perdew, Burke, Ernzerhof (CR52) 1996; 77 Delley (CR50) 1990; 92 Delley (CR51) 2000; 113 MacKay, Fryzuk (CR5) 2004; 104 Burgess, Lowe (CR21) 1996; 96 Rossmeisl, Logadottir, Nørskov (CR57) 2005; 319 MacLeod, Holland (CR9) 2013; 5 Chen (CR31) 2017; 56 Lv, Peng, Wu, Pan, Mu (CR41) 2012; 22 Watt, Chrisp (CR48) 1952; 24 Légaré (CR13) 2018; 359 Shipman, Symes (CR22) 2017; 286 Chen (CR33) 2017; 139 Peterson, Abild-Pedersen, Studt, Rossmeisl, Nørskov (CR58) 2010; 3 Zhou (CR47) 2017; 10 Reddy, Liu, Hirata, Fujita, Chen (CR46) 2013; 4 Chan, Kim, Rees (CR20) 1993; 260 Smil (CR1) 1999; 400 Kugler, Luhn, Schramm, Rahimi, Wessling (CR29) 2015; 17 S Mu (5758_CR42) 2016; 103 KM Reddy (5758_CR46) 2013; 4 MK Chan (5758_CR20) 1993; 260 MM Shi (5758_CR27) 2017; 29 MA Shipman (5758_CR22) 2017; 286 K Kugler (5758_CR29) 2015; 17 Y Liu (5758_CR39) 2018; 8 GW Watt (5758_CR48) 1952; 24 I Čorić (5758_CR10) 2015; 256 5758_CR18 5758_CR17 V Smil (5758_CR14) 1997; 277 5758_CR16 CJM van der Ham (5758_CR24) 2014; 43 BK Burgess (5758_CR21) 1996; 96 J Rossmeisl (5758_CR57) 2005; 319 A Klamt (5758_CR55) 1993; 0 JK Nørskov (5758_CR56) 2004; 108 Hm Liu (5758_CR30) 2018; 6 H Lv (5758_CR41) 2012; 22 MA Légaré (5758_CR13) 2018; 359 H Tanaka (5758_CR19) 2016; 49 B Delley (5758_CR51) 2000; 113 E Skúlason (5758_CR54) 2012; 14 BA MacKay (5758_CR5) 2004; 104 L Zhang (5758_CR34) 2018; 30 V Smil (5758_CR1) 1999; 400 M Minakshi (5758_CR40) 2010; 123 M Kitano (5758_CR6) 2012; 4 S Grimme (5758_CR53) 2006; 27 KA Brown (5758_CR11) 2016; 352 V Kyriakou (5758_CR23) 2017; 286 A Eizawa (5758_CR12) 2017; 8 S Chen (5758_CR31) 2017; 56 D Zhu (5758_CR7) 2013; 12 ZW Seh (5758_CR25) 2017; 355 C Lv (5758_CR38) 2018; 57 T Oshikiri (5758_CR49) 2016; 55 5758_CR37 S Song (5758_CR43) 2017; 33 5758_CR32 KC MacLeod (5758_CR9) 2013; 5 AA Peterson (5758_CR58) 2010; 3 R Schlögl (5758_CR2) 2003; 42 Z Kou (5758_CR44) 2017; 3 J Han (5758_CR36) 2018; 6 JR Jennings (5758_CR15) 1991 GF Chen (5758_CR33) 2017; 139 D Yang (5758_CR35) 2017; 5 5758_CR4 T Shima (5758_CR8) 2013; 340 B Delley (5758_CR50) 1990; 92 D Bao (5758_CR28) 2017; 29 TV Vineesh (5758_CR45) 2015; 5 C Guo (5758_CR26) 2018; 11 JP Perdew (5758_CR52) 1996; 77 V Rosca (5758_CR3) 2009; 109 F Zhou (5758_CR47) 2017; 10 8484118 - Science. 1993 May 7;260(5109):792-4 23812710 - Science. 2013 Jun 28;340(6140):1549-52 11848849 - Chem Rev. 1996 Nov 7;96(7):2983-3012 28693318 - J Am Chem Soc. 2017 Jul 26;139(29):9771-9774 29473991 - Angew Chem Int Ed Engl. 2018 May 22;57(21):6073-6076 23089869 - Nat Chem. 2012 Nov;4(11):934-40 14871129 - Chem Rev. 2004 Feb;104(2):385-401 27105472 - Acc Chem Res. 2016 May 17;49(5):987-95 29808517 - Adv Mater. 2018 Jul;30(28):e1800191 28082532 - Science. 2017 Jan 13;355(6321) 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 25556769 - Phys Chem Chem Phys. 2015 Feb 7;17(5):3768-82 30003198 - Chem Commun (Camb). 2018 Jul 26;54(61):8474-8477 24052052 - Nat Commun. 2013;4:2483 19438198 - Chem Rev. 2009 Jun;109(6):2209-44 28128489 - Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2699-2703 27859722 - Adv Mater. 2017 Jan;29(3) 24802308 - Chem Soc Rev. 2014 Aug 7;43(15):5183-91 23787744 - Nat Chem. 2013 Jul;5(7):559-65 26890286 - Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3942-6 23812128 - Nat Mater. 2013 Sep;12(9):836-41 29472479 - Science. 2018 Feb 23;359(6378):896-900 22146855 - Phys Chem Chem Phys. 2012 Jan 21;14(3):1235-45 27102481 - Science. 2016 Apr 22;352(6284):448-50 30027985 - Nanoscale. 2018 Aug 2;10(30):14386-14389 28374835 - Nat Commun. 2017 Apr 04;8:14874 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 26416755 - Nature. 2015 Oct 1;526(7571):96-9 12746811 - Angew Chem Int Ed Engl. 2003 May 9;42(18):2004-8 28240391 - Adv Mater. 2017 May;29(17) |
References_xml | – volume: 352 start-page: 448 year: 2016 end-page: 450 ident: CR11 article-title: Light-driven dinitrogen reduction catalyzed by a CdS: nitrogenase MoFe protein biohybrid publication-title: Science doi: 10.1126/science.aaf2091 – volume: 96 start-page: 2983 year: 1996 end-page: 3012 ident: CR21 article-title: Mechanism of molybdenum nitrogenase publication-title: Chem. Rev. doi: 10.1021/cr950055x – volume: 340 start-page: 1549 year: 2013 end-page: 1552 ident: CR8 article-title: Dinitrogen cleavage and hydrogenation by a trinuclear titanium polyhydride complex publication-title: Science doi: 10.1126/science.1238663 – volume: 3 start-page: 1311 year: 2010 end-page: 1315 ident: CR58 article-title: How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 139 start-page: 9771 year: 2017 end-page: 9774 ident: CR33 article-title: Ammonia electrosynthesis with high selectivity under ambient conditions via a Li incorporation strategy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04393 – volume: 3 start-page: 184 year: 2017 end-page: 190 ident: CR44 article-title: Transforming two-dimensional boron carbide into boron and chlorine dual-doped carbon nanotubes by chlorination for efficient oxygen reduction publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01133 – volume: 10 start-page: 2516 year: 2017 end-page: 2520 ident: CR47 article-title: Electro-synthesis of ammonia from nitrogen at ambient temperature and pressure in ionic liquids publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02716H – year: 1991 ident: CR15 publication-title: Catalytic ammonia synthesis: fundamentals and practice. doi: 10.1007/978-1-4757-9592-9 – ident: CR4 – volume: 55 start-page: 3942 year: 2016 end-page: 3946 ident: CR49 article-title: Selective dinitrogen conversion to ammonia using water and visible light through plasmon-induced charge separation publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511189 – volume: 14 start-page: 1235 year: 2012 end-page: 1245 ident: CR54 article-title: A theoretical evaluation of possible transition metal electro-catalysts for N reduction publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – ident: CR16 – volume: 43 start-page: 5183 year: 2014 end-page: 5191 ident: CR24 article-title: Challenges in reduction of dinitrogen by proton and electron transfer publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – volume: 103 start-page: 449 year: 2016 end-page: 456 ident: CR42 article-title: Nano-size boron carbide intercalated graphene as high performance catalyst supports and electrodes for PEM fuel cells publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2016.03.044 – volume: 22 start-page: 9155 year: 2012 end-page: 9160 ident: CR41 article-title: Nano-boron carbide supported platinum catalysts with much enhanced methanol oxidation activity and CO tolerance publication-title: J. Mater. Chem. doi: 10.1039/c2jm30538k – volume: 42 start-page: 2004 year: 2003 end-page: 2008 ident: CR2 article-title: Catalytic synthesis of ammonia—a “never-ending story”? publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200301553 – volume: 8 start-page: 1186 year: 2018 end-page: 1191 ident: CR39 article-title: Facile ammonia synthesis from electrocatalytic N reduction under ambient conditions on N-doped porous carbon publication-title: ACS Catal. doi: 10.1021/acscatal.7b02165 – volume: 5 start-page: 559 year: 2013 end-page: 565 ident: CR9 article-title: Recent developments in the homogeneous reduction of dinitrogen by molybdenum and iron publication-title: Nat. Chem. doi: 10.1038/nchem.1620 – volume: 277 start-page: 76 year: 1997 end-page: 81 ident: CR14 article-title: Global population and the nitrogen cycle publication-title: Sci. Am. doi: 10.1038/scientificamerican0797-76 – volume: 5 start-page: 18967 year: 2017 end-page: 18971 ident: CR35 article-title: Electrochemical reduction of aqueous nitrogen (N ) at a low overpotential on (110)-oriented Mo nanofilm publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06139K – volume: 77 start-page: 3865 year: 1996 ident: CR52 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 49 start-page: 987 year: 2016 end-page: 995 ident: CR19 article-title: Interplay between theory and experiment for ammonia synthesis catalyzed by transition metal complexes publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00033 – volume: 109 start-page: 2209 year: 2009 end-page: 2244 ident: CR3 article-title: Nitrogen cycle electrocatalysis publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 104 start-page: 385 year: 2004 end-page: 401 ident: CR5 article-title: Dinitrogen coordination chemistry: on the biomimetic borderlands publication-title: Chem. Rev. doi: 10.1021/cr020610c – volume: 355 start-page: eaad4998 year: 2017 ident: CR25 article-title: Combining theory and experiment in electrocatalysis: insights into materials design publication-title: Science doi: 10.1126/science.aad4998 – volume: 5 start-page: 1500658 year: 2015 ident: CR45 article-title: Bifunctional electrocatalytic activity of boron-doped graphene derived from boron carbide publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500658 – volume: 24 start-page: 2006 year: 1952 end-page: 2008 ident: CR48 article-title: Spectrophotometric method for determination of hydrazine publication-title: Anal. Chem. doi: 10.1021/ac60072a044 – volume: 286 start-page: 2 year: 2017 end-page: 13 ident: CR23 article-title: Progress in the electrochemical synthesis of ammonia publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 256 start-page: 96 year: 2015 end-page: 99 ident: CR10 article-title: Binding of dinitrogen to an iron-sulfur-carbon site publication-title: Nature doi: 10.1038/nature15246 – volume: 359 start-page: 896 year: 2018 end-page: 900 ident: CR13 article-title: Nitrogen fixation andreduction at boron publication-title: Science doi: 10.1126/science.aaq1684 – ident: CR32 – volume: 57 start-page: 6073 year: 2018 end-page: 6076 ident: CR38 article-title: An amorphous noble-metal-free electrocatalyst enables N fixation under ambient conditions publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801538 – volume: 17 start-page: 3768 year: 2015 end-page: 3782 ident: CR29 article-title: Galvanic deposition of Rh and Ru on randomly structured Ti felts for the electrochemical NH synthesis publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05501B – volume: 6 start-page: 12974 year: 2018 end-page: 12977 ident: CR36 article-title: MoO nanosheets for efficient electrocatalytic N fixation to NH publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03974G – volume: 56 start-page: 2699 year: 2017 end-page: 2703 ident: CR31 article-title: Electrocatalytic synthesis of ammonia at room temperature and atmospheric pressure from water and nitrogen on a carbon-nanotube-based electrocatalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609533 – volume: 29 start-page: 1604799 year: 2017 ident: CR28 article-title: Electrochemical reduction of N under ambient conditions for artificial N fixation and renewable energy storage using N /NH cycle publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – volume: 0 start-page: 799 year: 1993 end-page: 805 ident: CR55 article-title: COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/P29930000799 – volume: 33 start-page: 195 year: 2017 end-page: 204 ident: CR43 article-title: B C as a stable non-carbon-based oxygen electrode material for lithiumoxygen batteries publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.042 – volume: 319 start-page: 178 year: 2005 end-page: 184 ident: CR57 article-title: Electrolysis of water on (oxidized) metal surfaces publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.05.038 – ident: CR18 – volume: 6 start-page: 3211 year: 2018 end-page: 3217 ident: CR30 article-title: Surfactant-free atomically ultrathin rhodium nanosheets nanoassemblies for efficient nitrogen electroreduction publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10866D – volume: 4 year: 2013 ident: CR46 article-title: Atomic structure of amorphous shear bands in boron carbide publication-title: Nat. Commun. doi: 10.1038/ncomms3483 – ident: CR37 – volume: 113 start-page: 7756 year: 2000 end-page: 7764 ident: CR51 article-title: From molecules to solids with the DMol approach publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 400 start-page: 415 year: 1999 ident: CR1 article-title: Detonator of the population explosion publication-title: Nature doi: 10.1038/22672 – volume: 108 start-page: 17886 year: 2004 end-page: 17892 ident: CR56 article-title: Origin of the overpotential for oxygen reduction at a fuel-cell cathode publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 30 start-page: 1800191 year: 2018 ident: CR34 article-title: Electrochemical ammonia synthesis via nitrogen reduction reaction on MoS catalyst: theoretical and experimental studies publication-title: Adv. Mater. doi: 10.1002/adma.201800191 – volume: 123 start-page: 700 year: 2010 end-page: 705 ident: CR40 article-title: Electrochemical characteristics of B C or BN added MnO cathode material for alkaline batteries publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.05.041 – volume: 8 year: 2017 ident: CR12 article-title: Remarkable catalytic activity of dinitrogen-bridged dimolybdenum complexes bearing NHC-based PCP-pincer ligands toward nitrogen fixation publication-title: Nat. Commun. doi: 10.1038/ncomms14874 – volume: 92 start-page: 508 year: 1990 end-page: 517 ident: CR50 article-title: An all-electron numerical method for solving the local density functional for polyatomic molecules publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 29 start-page: 1606550 year: 2017 ident: CR27 article-title: Au sub-nanoclusters on TiO toward highly efficient and selective electrocatalyst for N conversion to NH at ambient conditions publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 12 start-page: 836 year: 2013 end-page: 841 ident: CR7 article-title: Photo-illuminated diamond as a solid-state source of solvated electrons in water for nitrogen reduction publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 286 start-page: 57 year: 2017 end-page: 68 ident: CR22 article-title: Recent progress towards the electrosynthesis of ammonia from sustainable resources publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – ident: CR17 – volume: 260 start-page: 792 year: 1993 end-page: 794 ident: CR20 article-title: The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures publication-title: Science doi: 10.1126/science.8484118 – volume: 27 start-page: 1787 year: 2006 end-page: 1799 ident: CR53 article-title: Semiempirical GGA-type density functional constructed with a long-range dispersion correction publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 4 start-page: 934 year: 2012 end-page: 940 ident: CR6 article-title: Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store publication-title: Nat. Chem. doi: 10.1038/nchem.1476 – volume: 11 start-page: 45 year: 2018 end-page: 56 ident: CR26 article-title: Rational design of electrocatalysts and photo(electro)catalysts for nitrogen reduction to ammonia (NH ) under ambient conditions publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02220D – volume: 29 start-page: 1606550 year: 2017 ident: 5758_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201606550 – volume: 42 start-page: 2004 year: 2003 ident: 5758_CR2 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200301553 – volume: 104 start-page: 385 year: 2004 ident: 5758_CR5 publication-title: Chem. Rev. doi: 10.1021/cr020610c – ident: 5758_CR16 – volume: 24 start-page: 2006 year: 1952 ident: 5758_CR48 publication-title: Anal. Chem. doi: 10.1021/ac60072a044 – volume: 12 start-page: 836 year: 2013 ident: 5758_CR7 publication-title: Nat. Mater. doi: 10.1038/nmat3696 – volume: 5 start-page: 18967 year: 2017 ident: 5758_CR35 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA06139K – volume: 6 start-page: 12974 year: 2018 ident: 5758_CR36 publication-title: J. Mater. Chem. A doi: 10.1039/C8TA03974G – volume: 139 start-page: 9771 year: 2017 ident: 5758_CR33 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04393 – volume: 6 start-page: 3211 year: 2018 ident: 5758_CR30 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA10866D – volume: 3 start-page: 184 year: 2017 ident: 5758_CR44 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b01133 – volume: 3 start-page: 1311 year: 2010 ident: 5758_CR58 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00071j – volume: 340 start-page: 1549 year: 2013 ident: 5758_CR8 publication-title: Science doi: 10.1126/science.1238663 – volume: 11 start-page: 45 year: 2018 ident: 5758_CR26 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02220D – volume: 109 start-page: 2209 year: 2009 ident: 5758_CR3 publication-title: Chem. Rev. doi: 10.1021/cr8003696 – volume: 8 start-page: 1186 year: 2018 ident: 5758_CR39 publication-title: ACS Catal. doi: 10.1021/acscatal.7b02165 – volume: 56 start-page: 2699 year: 2017 ident: 5758_CR31 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201609533 – volume: 14 start-page: 1235 year: 2012 ident: 5758_CR54 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C1CP22271F – volume: 359 start-page: 896 year: 2018 ident: 5758_CR13 publication-title: Science doi: 10.1126/science.aaq1684 – ident: 5758_CR37 doi: 10.1039/C8CC03627F – volume: 277 start-page: 76 year: 1997 ident: 5758_CR14 publication-title: Sci. Am. doi: 10.1038/scientificamerican0797-76 – volume: 108 start-page: 17886 year: 2004 ident: 5758_CR56 publication-title: J. Phys. Chem. B doi: 10.1021/jp047349j – volume: 10 start-page: 2516 year: 2017 ident: 5758_CR47 publication-title: Energy Environ. Sci. doi: 10.1039/C7EE02716H – volume: 355 start-page: eaad4998 year: 2017 ident: 5758_CR25 publication-title: Science doi: 10.1126/science.aad4998 – volume: 260 start-page: 792 year: 1993 ident: 5758_CR20 publication-title: Science doi: 10.1126/science.8484118 – ident: 5758_CR32 doi: 10.1039/C8NR04524K – volume-title: Catalytic ammonia synthesis: fundamentals and practice. year: 1991 ident: 5758_CR15 doi: 10.1007/978-1-4757-9592-9 – volume: 96 start-page: 2983 year: 1996 ident: 5758_CR21 publication-title: Chem. Rev. doi: 10.1021/cr950055x – volume: 5 start-page: 1500658 year: 2015 ident: 5758_CR45 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201500658 – volume: 55 start-page: 3942 year: 2016 ident: 5758_CR49 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201511189 – volume: 319 start-page: 178 year: 2005 ident: 5758_CR57 publication-title: Chem. Phys. doi: 10.1016/j.chemphys.2005.05.038 – volume: 30 start-page: 1800191 year: 2018 ident: 5758_CR34 publication-title: Adv. Mater. doi: 10.1002/adma.201800191 – ident: 5758_CR18 – volume: 77 start-page: 3865 year: 1996 ident: 5758_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 4 start-page: 934 year: 2012 ident: 5758_CR6 publication-title: Nat. Chem. doi: 10.1038/nchem.1476 – volume: 27 start-page: 1787 year: 2006 ident: 5758_CR53 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20495 – volume: 49 start-page: 987 year: 2016 ident: 5758_CR19 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00033 – volume: 286 start-page: 2 year: 2017 ident: 5758_CR23 publication-title: Catal. Today doi: 10.1016/j.cattod.2016.06.014 – volume: 113 start-page: 7756 year: 2000 ident: 5758_CR51 publication-title: J. Chem. Phys. doi: 10.1063/1.1316015 – volume: 5 start-page: 559 year: 2013 ident: 5758_CR9 publication-title: Nat. Chem. doi: 10.1038/nchem.1620 – volume: 286 start-page: 57 year: 2017 ident: 5758_CR22 publication-title: Catal. Today doi: 10.1016/j.cattod.2016.05.008 – volume: 43 start-page: 5183 year: 2014 ident: 5758_CR24 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00085D – volume: 17 start-page: 3768 year: 2015 ident: 5758_CR29 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP05501B – volume: 57 start-page: 6073 year: 2018 ident: 5758_CR38 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201801538 – ident: 5758_CR17 doi: 10.1007/978-1-4020-3611-8_2 – volume: 103 start-page: 449 year: 2016 ident: 5758_CR42 publication-title: Carbon N. Y. doi: 10.1016/j.carbon.2016.03.044 – volume: 123 start-page: 700 year: 2010 ident: 5758_CR40 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2010.05.041 – volume: 33 start-page: 195 year: 2017 ident: 5758_CR43 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.01.042 – volume: 400 start-page: 415 year: 1999 ident: 5758_CR1 publication-title: Nature doi: 10.1038/22672 – volume: 8 year: 2017 ident: 5758_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms14874 – volume: 29 start-page: 1604799 year: 2017 ident: 5758_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201604799 – ident: 5758_CR4 doi: 10.1533/9781845694944.4.533 – volume: 352 start-page: 448 year: 2016 ident: 5758_CR11 publication-title: Science doi: 10.1126/science.aaf2091 – volume: 22 start-page: 9155 year: 2012 ident: 5758_CR41 publication-title: J. Mater. Chem. doi: 10.1039/c2jm30538k – volume: 92 start-page: 508 year: 1990 ident: 5758_CR50 publication-title: J. Chem. Phys. doi: 10.1063/1.458452 – volume: 0 start-page: 799 year: 1993 ident: 5758_CR55 publication-title: J. Chem. Soc., Perkin Trans. 2 doi: 10.1039/P29930000799 – volume: 256 start-page: 96 year: 2015 ident: 5758_CR10 publication-title: Nature doi: 10.1038/nature15246 – volume: 4 year: 2013 ident: 5758_CR46 publication-title: Nat. Commun. doi: 10.1038/ncomms3483 – reference: 24052052 - Nat Commun. 2013;4:2483 – reference: 29808517 - Adv Mater. 2018 Jul;30(28):e1800191 – reference: 22146855 - Phys Chem Chem Phys. 2012 Jan 21;14(3):1235-45 – reference: 23787744 - Nat Chem. 2013 Jul;5(7):559-65 – reference: 16955487 - J Comput Chem. 2006 Nov 30;27(15):1787-99 – reference: 28374835 - Nat Commun. 2017 Apr 04;8:14874 – reference: 10062328 - Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 – reference: 27102481 - Science. 2016 Apr 22;352(6284):448-50 – reference: 11848849 - Chem Rev. 1996 Nov 7;96(7):2983-3012 – reference: 28128489 - Angew Chem Int Ed Engl. 2017 Mar 1;56(10):2699-2703 – reference: 29473991 - Angew Chem Int Ed Engl. 2018 May 22;57(21):6073-6076 – reference: 26890286 - Angew Chem Int Ed Engl. 2016 Mar 14;55(12):3942-6 – reference: 29472479 - Science. 2018 Feb 23;359(6378):896-900 – reference: 27859722 - Adv Mater. 2017 Jan;29(3): – reference: 8484118 - Science. 1993 May 7;260(5109):792-4 – reference: 26416755 - Nature. 2015 Oct 1;526(7571):96-9 – reference: 30003198 - Chem Commun (Camb). 2018 Jul 26;54(61):8474-8477 – reference: 23089869 - Nat Chem. 2012 Nov;4(11):934-40 – reference: 27105472 - Acc Chem Res. 2016 May 17;49(5):987-95 – reference: 23812128 - Nat Mater. 2013 Sep;12(9):836-41 – reference: 30027985 - Nanoscale. 2018 Aug 2;10(30):14386-14389 – reference: 23812710 - Science. 2013 Jun 28;340(6140):1549-52 – reference: 28082532 - Science. 2017 Jan 13;355(6321): – reference: 24802308 - Chem Soc Rev. 2014 Aug 7;43(15):5183-91 – reference: 25556769 - Phys Chem Chem Phys. 2015 Feb 7;17(5):3768-82 – reference: 12746811 - Angew Chem Int Ed Engl. 2003 May 9;42(18):2004-8 – reference: 19438198 - Chem Rev. 2009 Jun;109(6):2209-44 – reference: 14871129 - Chem Rev. 2004 Feb;104(2):385-401 – reference: 28693318 - J Am Chem Soc. 2017 Jul 26;139(29):9771-9774 – reference: 28240391 - Adv Mater. 2017 May;29(17): |
SSID | ssj0000391844 |
Score | 2.6915433 |
Snippet | Conversion of naturally abundant nitrogen to ammonia is a key (bio)chemical process to sustain life and represents a major challenge in chemistry and biology.... Electrochemical reduction of nitrogen is a promising route to industrial-scale nitrogen fixation at ambient conditions, but is challenged by activation of... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3485 |
SubjectTerms | 140/131 140/133 140/146 147/135 147/143 639/301/299/161 639/638/77/886 Ammonia Boron Boron carbide Catalysis Catalysts Chemical reduction Density functional theory Electrocatalysts Electrochemistry Humanities and Social Sciences Hydrogen-based energy multidisciplinary Nitrogen Nitrogen fixation Organic chemistry Science Science (multidisciplinary) Stability analysis |
SummonAdditionalLinks | – databaseName: Open Access资源_DOAJ dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NaxUxEA9SELyI365WieBNl-7m602OKpYi6MlCbyHJTrRg95X3tmD_eyfJvtc-Py_ewia7ZDMzmZlk5jeMvRQJg04kaRE8lBJmrbVBUsvAIBIEJXLu8MdP5uhYfTjRJ9dKfeWYsAoPXBfuICS5sNpb0nNG-SFZRDR6WMSYT0CwoJeSzrvmTJU9WFpyXdScJdNJOFirsid0PbTZRIFW72iiAtj_Oyvz12DJn25MiyI6vMNuzxYkf1NnfpfdwPEeu1lrSl7eZylHbrTnV_kAPP9jxYngJL-rJbEMT6ffC0m4n7g_CzkpkpNnPNQALp6j4b9wz8-QbPM2rRD5XC-nHPdcrqcH7Pjw_ed3R-1cTKGN5KNMLQSjUIJJXUoCOj_AQK0UtfJqCCCwTymQdWXzzV7oUEWBtrcaIXY-GpAP2d64HPEx41EYiKDjMJigLBjoNQay5ILRQYsYGtZvFtbFGWk8F7z45sqNtwRXieGIGK4Qw-mGvdq-c15xNv46-m2m13ZkxsguD4hz3Mw57l-c07D9DbXdLLhrR7yktM4gbg17se0mkcv3KH7E5UUZY3JVUbANe1SZYzsTWaq6gWzYYodtdqa62zOefi2w3qbvpcjffL1hsKtp_XkpnvyPpXjKbokiGbRrwj7bm1YX-IyMrSk8L3L1A6djJ3U priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZKERIXxJvQgozEDQKJXzs-IASIqkIqJ1bqzbIdu1RqsyWbSt1_37GTbLWw9GbFDznzsGdsz3yEvGUxOBlR0zxYyBBmpdaOY0lBwyI4wVLs8NFPdTgXP47l8Q6Z4I5GAi63unYJT2renX24-rP6jAr_aQgZh49LkdW9qqFM1geU8g65izvTLCnq0Wju55WZa3RoxBg7s73rxv6U0_hvsz3_fUL51z1q3p4OHpIHo11JvwyC8IjshPYxuTcgTa6ekJjec5QXN1ECNInMkD2ColZ3CxQkGk-vMqOo7ak9dylUkqK_3AzPumh6I39CLT0PSKwydiHQEUUnHwKtlv1TMj_4_uvbYTlCLJQePZe-BKdE4KBiFSODyjbQYCl6KaxoHLBQx-jQ5tLpvs9VQXgWdK1lAF9Zr4A_I7vtog0vCPVMgQfpm0Y5oUFBLYND-84p6STzriD1RFjjx_zjCQbjzOR7cA5mYIZBZpjMDCML8m7d52LIvnFr66-JX-uWKXN2_rDoTsyoiMZFPtPSarSblLBN1CEEJZuZ9-lELeAg-xO3zSSNhqETLGVK7VaQN-tqVMR0u2LbsLjMbVTCGgVdkOeDcKxnwjPWG_CCzDbEZmOqmzXt6e-c7FvVNWdpzPeTgN1M6_-keHn7X-yR-yzLPK6SsE92--4yvELjqnevs8ZcA3p5IX4 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEA61Ivgi1utqKxF808Xd3M7kUQ-WUqhPFvoWcq0Fu6ecswX7781kL-VoFXwLm0nIZmaSSTLzDSHvWIpOpqxpHiyUFGa11o7nkoLAEjjBMHb45Ks6OhXHZ_Jsh7ApFqY47RdIy7JMT95hHzeiqHTTQo0WBtTyHrmP0O0o1Uu1nO9VEPEchBjjYxoOdzTd2oMKVP9d9uWfbpK_vZWWLejwMXk02o700zDaPbITuyfkwZBN8uYpSeizUV_dRgJQ_K8BIYJmzV2vsrDQdPGzMIPantpLh-GQNJ-Jw-C6RdEP_pxaehmzVV6ndYx0zJRTLnpuNv0zcnr45dvyqB7TKNQ-n076GpwSkYNKTUoMGhsg5FLyUlgRHLDYpuSyXaXxTc81UXgWdatlBN9Yr4A_J7vdqosvCfVMgQfpQ1BOaFDQyuiyDeeUdJJ5V5F2mljjR4xxTHXxw5S3bg5mYIbJzDCFGUZW5P3c5mpA2Pgn9Wfk10yJ6Njlw2p9bkZpMS7xhZZWZ9tICRuSjjEqGRbe461ZzJ3sT9w2o8puDMsHXSkRvq0ib-fqrGz4gmK7uLouNArziYKuyItBOOaR8JLPDXhFFltiszXU7Zru4nsB9FZtyxn2-WESsNth_X0qXv0f-WvykBUdyCsj7JPdfn0dD7JB1bs3RYN-AeliHBY priority: 102 providerName: Springer Nature |
Title | High-performance artificial nitrogen fixation at ambient conditions using a metal-free electrocatalyst |
URI | https://link.springer.com/article/10.1038/s41467-018-05758-5 https://www.ncbi.nlm.nih.gov/pubmed/30154483 https://www.proquest.com/docview/2094557988 https://www.proquest.com/docview/2096556189 https://pubmed.ncbi.nlm.nih.gov/PMC6113289 https://doaj.org/article/bf3795a931764adf9eee65d7cc6796e5 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swEBdby2AvY9_z1gUN9raZ-UOSz08jDc1KoGVsK-TNWF9dYbWzxIX2v--d7CRkH31xjK0YWXcnn-5Ovx9j7zPvtPRoaQZqCBRmcVnqHM8U2MyDFhntHT45VcdnYjaX8yHgthrKKtdzYpiobWsoRo6L9FJISehanxe_Y2KNouzqQKFxn-0TdBmVdBXzYhNjIfRzEGLYK5Pk8GklwsyQpBCTowKx3PkeBdj-f_maf5dM_pE3DZ-j6WP2aPAj-bgX_BN2zzVP2YOeWfLmGfNUvxEvtrsCOKlIjxbB0YqXLSoO9xfXQTC87nh9qWlrJMf1se3LuDjVxJ_zml869NBjv3SOD6w5Iehzs-qes7Pp0Y_JcTxQKsQGVypdDFoJl4PyifcZJLUFi2feSFELqyFzqfcafayS8ns6ccJkrsSRdWCS2ijIX7C9pm3cK8ZNpsCANNYqLUpQkEqn0Z_TSmqZGR2xdD2wlRnwxon24lcV8t45VL0wKhRGFYRRyYh92Pxn0aNt3Nn6kOS1aUlI2eFCuzyvBsOrtM-LUtYl-klK1NaXzjklbWEMRdAcPuRgLe1qMN9VtVW2iL3b3EbDo2xK3bj2KrRRxC0KZcRe9sqx6UkeuN0gj1ixozY7Xd2901z8DODeKk3zjJ75ca1g2279fyhe3_0Wb9jDLOg8zopwwPa65ZV7i85Up0fBYvAI0y8jtj8ez77P8Pfw6PTrN7w6UZNRCFPg8UTALeeGJRI |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKEYIL4k2ggJHgBKvuem1nfECIV5XSx6mVcjNrr10q0SQkqSB_it_IjHc3UXj01tsq61hezzfjsWc8H2MvRAxORdQ0DxUkCrPMGFfik4ZaRHBS0N3hg0M9OJafh2q4wX51d2EorbKziclQ12NPZ-S4STdSKaqu9XbyPSPWKIqudhQaDSz2wuIHbtlmb3Y_onxfCrHz6ejDIGtZBTKPzvo8A6dlKEHHPEYBeVVDjU_RK1nJ2oEIRYwO3QxDIS6XB-lFMIVRAXxeeQ0l9nuFXcWFNyeN6g_7yzMdqrYOUrZ3c_IStmcyWaK8gIwcI8jU2vqXaAL-5dv-naL5R5w2LX87t9jN1m_l7xqg3WYbYXSHXWuYLBd3WaR8kWyyuoXACZJNdQqOVmM6RqDyePozAYFXc16dObqKyXE_XjdpY5xy8E94xc8C7giyOA2Btyw96ZBpMZvfY8eXMtn32eZoPAoPGfdCgwfl61o7aUBDoYJD_9Fp5ZTwrseKbmKtb-ubE83GN5vi7CXYRhgWhWGTMKzqsVfL_0ya6h4Xtn5P8lq2pMrc6Yfx9MS2im5dLPtGVQb9Mi2rOpoQglZ133s6sQvYyVYnbduai5ldgbvHni9fo6JT9KYahfF5aqOJyxRMjz1owLEcSZm45KDssf4abNaGuv5mdPo1FRPXRVEK6vN1B7DVsP4_FY8u_opn7Prg6GDf7u8e7j1mN0TCP1pk2GKb8-l5eIKO3Nw9TdrD2ZfLVtff2nhcLw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4lkWChgJThA1cWxnfEAIKKuWQsWBSnszsWOXSnSz7KaC_Wv8OsbOY7U8eustShzL8XwzGXvG8xHylHlnhEdNs1BCpDBLlDI5XkmomAfDWTg7_PFQ7h3x9xMx2SC_-rMwIa2yt4nRUFe1DXvkuEhXXIhQXWvHd2kRn3bHr2bfk8AgFSKtPZ1GC5EDt_yBy7fFy_1dlPUzxsbvPr_dSzqGgcSi494kYCR3OUifes8gLSuo8MpbwUteGWAu896gy6FCuMukjlvmVKaEA5uWVkKO_V4il4tcZEHHikkx7O-EyuvAeXdOJ81hZ8GjVUozSIKTBIlY-xdGyoB_-bl_p2v-EbONv8LxDXK982Hp6xZ0N8mGm94iV1pWy-Vt4kPuSDJbnUigAZ5tpQqKFmReI2ipP_kZQUHLhpanJhzLpLg2r9oUMhry8Y9pSU8drg4SP3eOdow9ccNpuWjukKMLmey7ZHNaT909Qi2TYEHYqpKGK5CQCWfQlzRSGMGsGZGsn1htu1rngXLjm44x9xx0KwyNwtBRGFqMyPPhnVlb6ePc1m-CvIaWoUp3vFHPj3Wn9Nr4vFCiVOijSV5WXjnnpKgKa8PuncNOtntp6850LPQK6CPyZHiMSh8iOeXU1WexjQy8pqBGZKsFxzCSPPLKQT4ixRps1oa6_mR68jUWFpdZlrPQ54seYKth_X8q7p__FY_JVVRU_WH_8OABucYi_NE4wzbZbOZn7iH6dI15FJWHki8Xra2_AQPXYGU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-performance+artificial+nitrogen+fixation+at+ambient+conditions+using+a+metal-free+electrocatalyst&rft.jtitle=Nature+communications&rft.au=Qiu%2C+Weibin&rft.au=Xiao-Ying%2C+Xie&rft.au=Qiu%2C+Jianding&rft.au=Wei-Hai%2C+Fang&rft.date=2018-08-28&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=9&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-018-05758-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |