Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials

Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve d...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 2229 - 8
Main Authors Yuan, Peng, Zhang, Ruihua, Selenius, Elli, Ruan, Pengpeng, Yao, Yangrong, Zhou, Yang, Malola, Sami, Häkkinen, Hannu, Teo, Boon K., Cao, Yang, Zheng, Nanfeng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.05.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p -type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm 2 V −1 s −1 , and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic p -type semiconducting characteristics.
AbstractList Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p -type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm 2 V −1 s −1 , and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic p -type semiconducting characteristics.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p -type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm 2 V −1 s −1 , and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm V s , and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic p-type semiconducting characteristics.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V−1 s−1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic p-type semiconducting characteristics.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V-1 s-1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V-1 s-1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.
ArticleNumber 2229
Author Häkkinen, Hannu
Zheng, Nanfeng
Malola, Sami
Zhou, Yang
Ruan, Pengpeng
Cao, Yang
Yuan, Peng
Selenius, Elli
Zhang, Ruihua
Yao, Yangrong
Teo, Boon K.
Author_xml – sequence: 1
  givenname: Peng
  surname: Yuan
  fullname: Yuan, Peng
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 2
  givenname: Ruihua
  surname: Zhang
  fullname: Zhang, Ruihua
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 3
  givenname: Elli
  orcidid: 0000-0003-4286-0861
  surname: Selenius
  fullname: Selenius, Elli
  organization: Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä
– sequence: 4
  givenname: Pengpeng
  surname: Ruan
  fullname: Ruan, Pengpeng
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 5
  givenname: Yangrong
  surname: Yao
  fullname: Yao, Yangrong
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 6
  givenname: Yang
  surname: Zhou
  fullname: Zhou, Yang
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 7
  givenname: Sami
  surname: Malola
  fullname: Malola, Sami
  organization: Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä
– sequence: 8
  givenname: Hannu
  orcidid: 0000-0002-8558-5436
  surname: Häkkinen
  fullname: Häkkinen, Hannu
  email: hannu.j.hakkinen@jyu.fi
  organization: Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä
– sequence: 9
  givenname: Boon K.
  surname: Teo
  fullname: Teo, Boon K.
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 10
  givenname: Yang
  surname: Cao
  fullname: Cao, Yang
  email: yangcao@xmu.edu.cn
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 11
  givenname: Nanfeng
  orcidid: 0000-0001-9879-4790
  surname: Zheng
  fullname: Zheng, Nanfeng
  email: nfzheng@xmu.edu.cn
  organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32376829$$D View this record in MEDLINE/PubMed
BookMark eNp9Us1OFjEUnRiMIPICLswkbtyM9mf-ujExRJSExIW6bu507nz2S6f9bDsk7HgH39An4cKAAgu66G3ac05PT-_LYs8Hj0XxmrP3nMn-Q6p53XYVE6ziLWtF1T4rDgSrecU7IffurfeLo5S2jIZUvK_rF8W-FLJre6EOit334M7R52rG0ULGsYSUcB7cRRmmEnKYq11EYxOWm-DGv5d_kiVCLD34YNySMsZU5lASyZrgx8Vk6zclma1GO6NPNnhw5Uza0YJLr4rnExU8uq2Hxc-Tzz-Ov1Zn376cHn86qwy9Jld9IxGlAtkAG3uamGkVsAGGjk2ApoaW1X2DBGtADNMozNQNQg5iVLLtenlYnK66Y4Ct3kU7Q7zQAay-2QhxoyFmaxzqDrueKQqkbtp6wBGUgmGi29upaRoYSOvjqrVbBsrJUF4R3APRhyfe_tKbcK47wSTnnATe3QrE8HvBlPVsk0HnwGNYkhZSqV4yyVqCvn0E3YYlUoQrSnDeSEWoN_cd_bNy97EE6FeAiSGliJM2NkOmzyCD1mnO9HUb6bWNNLWRvmkjfe1APKLeqT9JkispEdhvMP63_QTrCmaa3YQ
CitedBy_id crossref_primary_10_1021_jacs_3c05336
crossref_primary_10_1063_5_0057005
crossref_primary_10_1002_asia_202400633
crossref_primary_10_1021_jacs_3c01259
crossref_primary_10_1039_D2CC00778A
crossref_primary_10_1021_acs_inorgchem_0c03790
crossref_primary_10_1021_acs_jpcc_1c03591
crossref_primary_10_1038_s41467_021_24510_0
crossref_primary_10_1021_acs_jpcc_3c01316
crossref_primary_10_1021_jacs_2c03948
crossref_primary_10_1039_D1SC07178E
crossref_primary_10_1002_ange_202318030
crossref_primary_10_1039_D4NR01691B
crossref_primary_10_1021_acs_langmuir_3c03018
crossref_primary_10_1039_D2NR06613K
crossref_primary_10_1002_ange_202317341
crossref_primary_10_1021_acsami_2c14487
crossref_primary_10_1039_D0NR07499C
crossref_primary_10_1021_prechem_4c00044
crossref_primary_10_1021_acs_jpclett_2c00007
crossref_primary_10_1039_D2CC00987K
crossref_primary_10_1038_s41467_022_33651_9
crossref_primary_10_1021_acscentsci_0c01045
crossref_primary_10_1021_jacs_0c11465
crossref_primary_10_1002_agt2_304
crossref_primary_10_1021_acs_jpclett_2c02420
crossref_primary_10_1021_acsphotonics_1c01065
crossref_primary_10_1021_jacs_3c02215
crossref_primary_10_1002_ange_202217483
crossref_primary_10_3390_nano11102655
crossref_primary_10_1021_acs_inorgchem_1c01829
crossref_primary_10_1002_smll_202409118
crossref_primary_10_1039_D1CC01849C
crossref_primary_10_3390_nano10061105
crossref_primary_10_1021_acssensors_0c02322
crossref_primary_10_1039_D2DT00634K
crossref_primary_10_1021_acs_nanolett_3c02269
crossref_primary_10_1016_j_cej_2021_134169
crossref_primary_10_1021_acs_chemmater_4c03265
crossref_primary_10_1007_s12274_023_5774_z
crossref_primary_10_1021_acs_chemrev_2c00733
crossref_primary_10_1016_j_nantod_2020_101053
crossref_primary_10_1002_agt2_475
crossref_primary_10_1039_D1DT01111A
crossref_primary_10_1039_D2SC02886G
crossref_primary_10_1039_D3QI01334K
crossref_primary_10_1038_s41557_022_01079_9
crossref_primary_10_1021_jacs_2c10338
crossref_primary_10_1021_jacs_4c05804
crossref_primary_10_1002_adma_202306689
crossref_primary_10_1002_anie_202217483
crossref_primary_10_1038_s41467_022_29276_7
crossref_primary_10_1039_D1CP03596G
crossref_primary_10_1039_D3NR05128E
crossref_primary_10_1016_j_ccr_2022_214713
crossref_primary_10_1039_D0SC04100A
crossref_primary_10_1021_jacs_2c11341
crossref_primary_10_1002_chem_202004055
crossref_primary_10_1039_D4NR02016B
crossref_primary_10_1021_acs_langmuir_4c01737
crossref_primary_10_1002_smll_202005718
crossref_primary_10_1039_D2RA01080A
crossref_primary_10_1039_D4NR01411A
crossref_primary_10_1039_D1SC03679C
crossref_primary_10_1016_j_ijhydene_2023_12_015
crossref_primary_10_1021_acsnano_1c02602
crossref_primary_10_1021_jacsau_1c00339
crossref_primary_10_34133_research_0018
crossref_primary_10_1002_hlca_202100186
crossref_primary_10_1002_asia_202300685
crossref_primary_10_1021_acs_chemrev_3c00896
crossref_primary_10_1021_jacs_3c07007
crossref_primary_10_1002_adma_202006459
crossref_primary_10_1038_s41467_021_22545_x
crossref_primary_10_1016_j_mtsust_2023_100515
crossref_primary_10_1021_acs_inorgchem_2c01602
crossref_primary_10_1039_D1CC00577D
crossref_primary_10_1016_j_cclet_2023_109345
crossref_primary_10_1002_chem_202003155
crossref_primary_10_1002_smll_202005328
crossref_primary_10_1038_s41467_020_19461_x
crossref_primary_10_1039_D3QI02672H
crossref_primary_10_1002_anie_202317341
crossref_primary_10_1002_smll_202406551
crossref_primary_10_1039_D1CC04934H
crossref_primary_10_1002_adfm_202007277
crossref_primary_10_1002_anie_202318030
crossref_primary_10_1016_j_cej_2022_140002
crossref_primary_10_1021_jacs_3c13514
crossref_primary_10_1039_D3SC02753H
crossref_primary_10_1039_D2CC00574C
crossref_primary_10_1039_D2SC04390D
crossref_primary_10_1002_smsc_202300024
crossref_primary_10_1002_agt2_132
crossref_primary_10_1021_acs_jpclett_3c01770
Cites_doi 10.1021/jacs.9b02486
10.1103/PhysRevB.13.5188
10.1055/s-2007-984501
10.1038/nmat4823
10.1021/acs.jpcc.7b05074
10.1002/advs.201801304
10.1063/1.2943138
10.1126/science.1148624
10.1021/ja0043441
10.1002/anie.201812236
10.1038/nchem.2718
10.1039/C9CC05924E
10.1107/S0021889808042726
10.1002/anie.201804059
10.1073/pnas.0801001105
10.1002/anie.201406761
10.1002/anie.201909980
10.1002/anie.201609036
10.1021/acs.chemrev.5b00703
10.1021/acs.jpcc.6b10948
10.1039/c2nr11781a
10.1021/ja801173r
10.1039/C6NR05267C
10.1021/jacs.5b06550
10.1038/382609a0
10.1039/C39940000801
10.1088/0953-8984/22/25/253202
10.1107/S0108767307043930
10.1021/jacs.7b11338
10.1021/nn5031143
10.1021/acs.accounts.8b00065
10.1021/acs.accounts.8b00371
10.1038/s41467-019-11988-y
10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
10.1021/nl0497474
10.1021/acs.jpclett.5b00270
10.1246/bcsj.20110227
10.1021/jacs.7b00568
10.1002/adma.19950070907
10.1016/j.ccr.2019.05.015
10.1021/nl203368v
10.1021/ja800594p
10.1039/C6CC04469G
10.1021/acsami.7b13940
10.1021/ja306923a
10.1021/ja800561b
10.1021/jp408926n
10.1146/annurev-physchem-052516-050932
10.1021/acs.chemrev.6b00769
10.1021/jp206526s
10.1038/nchem.1352
10.1016/j.ccr.2016.02.013
10.1038/382607a0
10.1021/nn901709a
10.1002/adma.201900684
10.1103/PhysRevLett.77.3865
10.1002/anie.201814439
10.1021/jacs.7b00773
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-16062-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
ProQuest SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
PubMed


Publicly Available Content Database
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_7e78097684564beda99abfe396f555ab
PMC7203111
32376829
10_1038_s41467_020_16062_6
Genre Journal Article
GrantInformation_xml – fundername: Academy of Finland (Suomen Akatemia)
  grantid: 294217, 319208
  funderid: https://doi.org/10.13039/501100002341
– fundername: National Natural Science Foundation of China (21890752, 21731005, 21721001 and 21872114)
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21890752, 21731005, 21420102001, 21721001, 21872114
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 21890752, 21731005, 21420102001, 21721001, 21872114
– fundername: Academy of Finland (Suomen Akatemia)
  grantid: 294217, 319208
– fundername: ;
– fundername: ;
  grantid: 21890752, 21731005, 21420102001, 21721001, 21872114
– fundername: ;
  grantid: 294217, 319208
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-853ee39a35a0d85a00c69a0bab70faec4a60485e53e5a2bfd2cf7b23b2d936783
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:01 EDT 2025
Thu Aug 21 14:35:36 EDT 2025
Fri Jul 11 15:06:21 EDT 2025
Wed Aug 13 04:44:25 EDT 2025
Mon Jul 21 05:55:53 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Tue Jul 01 04:08:55 EDT 2025
Fri Feb 21 02:40:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-853ee39a35a0d85a00c69a0bab70faec4a60485e53e5a2bfd2cf7b23b2d936783
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8558-5436
0000-0003-4286-0861
0000-0001-9879-4790
OpenAccessLink https://doaj.org/article/7e78097684564beda99abfe396f555ab
PMID 32376829
PQID 2399211539
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_7e78097684564beda99abfe396f555ab
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203111
proquest_miscellaneous_2399830306
proquest_journals_2399211539
pubmed_primary_32376829
crossref_citationtrail_10_1038_s41467_020_16062_6
crossref_primary_10_1038_s41467_020_16062_6
springer_journals_10_1038_s41467_020_16062_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-06
PublicationDateYYYYMMDD 2020-05-06
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References WuZAssembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic propertyJ. Am. Chem. Soc.201513712906129131:CAS:528:DC%2BC2MXhsFersr3L26397821
LeiZPeiX-LJiangZ-GWangQ-MCluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with Gold(I) clustersAngew. Chem. Int. Ed.20145312771127751:CAS:528:DC%2BC2cXhsVWqtb3N
BlumASCowpea mosaic virus as a scaffold for 3D patterning of gold nanoparticlesNano Lett.200448678702004NanoL...4..867B1:CAS:528:DC%2BD2cXitFSjt78%3D
AkolaJOn the structure of thiolate-protected Au25J. Am. Chem. Soc.2008130375637571:CAS:528:DC%2BD1cXivVSktLo%3D18321117
Zhu.MCorrelating the crystal structure of a thiol-protected Au25 cluster and optical propertiesJ. Am. Chem. Soc.2008130588358851:CAS:528:DC%2BD1cXksFyksrg%3D18407639
ZahrOKBlumASSolution phase gold nanorings on a viral protein templateNano Lett.2012126296332012NanoL..12..629Z1:CAS:528:DC%2BC3MXhs1OjtLbF22200347
Brust, M. et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. 801–802 (1994).
ChaiJX-ray crystal structure and optical properties of Au38–xCux(2,4-(CH3)2C6H3S)24 (x=0–6) alloy nanoclusterJ. Phys. Chem. C.201712121665216691:CAS:528:DC%2BC2sXhsVelur7L
KurashigeWNiihoriYSharmaSNegishiYPrecise synthesis, functionalization and application of thiolate-protected gold clustersCoord. Chem. Rev.2016320-3212382501:CAS:528:DC%2BC28XksVWrtLo%3D
Yuan, S. -F., Guan, Z. -J., Liu, W. -D. & Wang, Q. -M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 10, 4032 (2019).
SheldrickGMA short history of SHELXActa Cryst. A2008641121221:CAS:528:DC%2BD2sXhsVGhurzO1370.52003
Nonappa, Lahtinen, T., Haataja, J. S., Tero, T. R., Häkkinen, H. & Ikkala, O. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: From 2D colloidal crystals to spherical capsids, Angew. Chem. Int. Ed. 55, 16035–16038 (2017).
KumaraCGagnonKJDassAX-ray crystal structure of Au38-xAgx(SCH2CH2Ph)24 alloy nanomoleculesJ. Phys. Chem. Lett.20156122312281:CAS:528:DC%2BC2MXkvF2hsr4%3D26262976
YuanPEther-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applicationsAngew. Chem. Int. Ed.2019588358391:CAS:528:DC%2BC1cXisVKqsLnP
TalgornESupercrystals of cdse quantum dots with high charge mobility and efficient electron transfer to TiO2ACS Nano20104172317311:CAS:528:DC%2BC3cXisVaitro%3D20184385
YanHHybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assemblyNat. Mater.2017163493552017JMMM..421..349Y1:CAS:528:DC%2BC28XitFGitLvP28024157
JinRZengCZhouMChenYAtomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunitiesChem. Rev.201611610346104131:CAS:528:DC%2BC28XhsVeksLnJ27585252
AlivisatosAPOrganization of “nanocrystal molecules” using DNANature19963826096111996Natur.382..609A1:CAS:528:DyaK28XltVWqsrY%3D8757130
WuZContribution of metal defects in the assembly induced emission of Cu nanoclustersJ. Am. Chem. Soc.2017139431843211:CAS:528:DC%2BC2sXksFamurY%3D28318238
ZhangBSalassaGBurgiTSilver migration between Au38(SC2H4Ph)24 and doped AgxAu38-x(SC2H4Ph)24 nanoclustersChem. Commun.201652920592071:CAS:528:DC%2BC28XhtVSksLzP
YanJTeoBKZhengNSurface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysisAcc. Chem. Res.201851308430931:CAS:528:DC%2BC1cXitFyqtbfO30433756
KangXZhuMIntra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclustersCoord. Chem. Rev.201939413840324621:CAS:528:DC%2BC1MXhtVKnsLbO
JiangYSolvent influence on the role of thiols in growth of thiols-capped au nanocrystalsJ. Phys. Chem. C.20141187147191:CAS:528:DC%2BC3sXhvFCjurzP
JadzinskyPDCaleroGAckersonCJBushnellDAKornbergRDStructure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolutionScience20073184304332007Sci...318..430J1:CAS:528:DC%2BD2sXhtFOjtb%2FP17947577
WalterMTime-dependent density-functional theory in the projector augmented-wave methodJ. Chem. Phys.20081282441012008JChPh.128x4101W18601311
WangZYAtomically precise site-specific tailoring and directional assembly of superatomic silver nanoclustersJ. Am. Chem. Soc.2018140106910761:CAS:528:DC%2BC1cXit1Whug%3D%3D29297682
MonkhorstHJPackJDSpecial points for Brillouin-zone integrationsPhys. Rev. B19761351881976PhRvB..13.5188M418801
De NardiMGold nanowired: a linear (Au25)n polymer from Au25 molecular clustersACS Nano201488505851225088331
WuX-HGuest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworksAdv. Sci.201961801304
LiuYYaoDZhangHSelf-assembly driven aggregation-induced emission of copper nanoclusters: a novel technology for lightingACS Appl. Mater. Interfaces20181012071120801:CAS:528:DC%2BC2sXhvVSrtb7M29144119
YamamotoYNishinaNGold-catalyzed intermolecular hydroamination of allenes: first example of the use of an aliphatic amine in hydroaminationSynlett20071117671770
WangQMMakTCWArgentophilicity and solvent-induced structural diversity in double salts of silver acetylide with silver perfluoroalkyl carboxylatesJ. Am. Chem. Soc.2001123759476001:CAS:528:DC%2BD3MXltFCmsrw%3D11480980
ThanthirigeVDSinnEWiederrechtGPRamakrishnaGUnusual solvent effects on optical properties of bi-icosahedral Au25 clustersJ. Phys. Chem. C.2017121353035391:CAS:528:DC%2BC2sXhtlajt7k%3D
YaoQRevealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approachNat. Commun.201892018NatCo...9.1979Y297737855958061
Alhilaly, M. J. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 141, 9585–9592 (2019).
TsukudaTToward an atomic-level understanding of size-specific properties of protected and stabilized gold clustersBull. Chem. Soc. Jpn.2012851511681:CAS:528:DC%2BC38XjvVejtb4%3D
WalterMA unified view of ligand-protected gold clusters as superatom complexesProc. Natl Acad. Sci. U.S.A2008105915791622008PNAS..105.9157W1:CAS:528:DC%2BD1cXosFaksLY%3D185994432442568
PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10062328
WeerawardeneKLDMHäkkinenHAikensCMConnections between theory and experiment for gold and silver nanoclustersAnnu. Rev. Phys. Chem.2018692052292018ARPC...69..205W1:CAS:528:DC%2BC1cXjslOhs7w%3D29490202
HuangRWHypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic frameworkNat. Chem.201796896971:CAS:528:DC%2BC2sXitlGitro%3D28644463
EnkovaaraJElectronic structure calculations using GPAW: a real-space implementation of the projector-augmented wave methodJ. Phys. Condens. Matter2010222532022010JPCM...22y3202E1:STN:280:DC%2BC3M3lvVansg%3D%3D21393795
LiYHexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclustersJ. Am. Chem. Soc.201213417997180031:CAS:528:DC%2BC38XhsV2rs7vF23051636
HuangRWTandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembledMater. Angew. Chem. Int. Ed.201857856085661:CAS:528:DC%2BC1cXhtFemur%2FN
GalchenkoMBlackAHeymannLKlinkeCField effect and photoconduction in Au25 nanoclusters filmsAdv. Mater.201931e190068430908709
ChuI-HCharge transport in a quantum dot supercrystalJ. Phys. Chem. C.201111521409214151:CAS:528:DC%2BC3MXhtlSlurzF
BrustMSchriffinDJBethellDKielyCJNovel gold-dithiol nano-networks with non-metallic electronic propertiesAdv. Mater.199577957971:CAS:528:DyaK2MXotlaqtLw%3D
TsukudaTHäkkinenHProtected Metal Clusters: From Fundamentals to Applications2015AmsterdamElsevier
AntonelloSDaineseTPanFRissanenKMaranFElectrocrystallization of monolayer-protected gold clusters: opening the door to quality, quantity, and new structuresJ. Am. Chem. Soc.2017139416841741:CAS:528:DC%2BC2sXktVSisbg%3D28281762
ChakrabortyIPradeepTAtomically precise clusters of noble metals: emerging link between atoms and nanoparticlesChem. Rev.2017117820882711:CAS:528:DC%2BC2sXpt1Cnu70%3D28586213
LiQModulating the hierarchical fibrous assembly of Au nanoparticles with atomic precisionNat. Commun.201892018NatCo...9.3871L302501606155310
HäkkinenHThe gold-sulfur interface at the nanoscaleNat. Chem.2012444322614378
DolomanovOVBourhisLJGildeaRJHowardJAKPuschmannHOLEX2: a complete structure solution, refinement and analysis programJ. Appl. Cryst.2009423393411:CAS:528:DC%2BD1MXjsFSnsbg%3D
KumaraCDassAAuAg alloy nanomolecules with 38 metal atomsNanoscale20124408440862012Nanos...4.4084K1:CAS:528:DC%2BC38XptlWnur8%3D22370910
JiangHHuWThe emergence of organic single-crystal electronicsAngew. Chem. Int. Ed.202059140814281:CAS:528:DC%2BC1MXitFantbbL
YaoQToward total synthesis of thiolate-protected metal nanoclustersAcc. Chem. Res.20185113381:CAS:528:DC%2BC1cXpvFKkur0%3D29792422
WenZR[Au7Ag9(dppf)3(CF3CO2)7BF4]n: a linear nanocluster polymer from molecular Au7Ag8 clusters covalently linked by silver atomsChem. Comm.20195512992129951:CAS:528:DC%2BC1MXhvFWkur3P31608354
HeavenMWDassAWhitePSHoltKMMurrayRWCrystal structure of the gold nanoparticle N(C8H17)4 Au25(SCH2CH2Ph)18J. Am. Chem. Soc.2008130375437551:CAS:528:DC%2BD1cXivVSktLY%3D18321116
DimitrakopoulosCDMalenfantPROrganic thin film transistors for large area electronicsAdv. Mater.200214991171:CAS:528:DC%2BD38XhtVartbY%3D
LahtinenTCovalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au~250(p-MBA)nNanoscale2016818665186741:CAS:528:DC%2BC28XhsFeqsrbE27714130
MirkinCAA DNA-based method for rationally assembling nanoparticles into macroscopic materialsNature19963826076091996Natur.382..607M1:CAS:528:DyaK28XltVWqsrk%3D8757129
Xu, G. T. et al. Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates: between catenane and ring-in-ring structures. Angew. Chem. Int. Ed. 58, 16297–16306 (2019).
M Galchenko (16062_CR36) 2019; 31
R Jin (16062_CR4) 2016; 116
M Zhu. (16062_CR20) 2008; 130
OV Dolomanov (16062_CR61) 2009; 42
C Kumara (16062_CR50) 2012; 4
W Kurashige (16062_CR5) 2016; 320-321
Z Wu (16062_CR30) 2015; 137
H Yan (16062_CR37) 2017; 16
CD Dimitrakopoulos (16062_CR55) 2002; 14
I-H Chu (16062_CR57) 2011; 115
J Akola (16062_CR19) 2008; 130
M Walter (16062_CR21) 2008; 105
T Lahtinen (16062_CR22) 2016; 8
X Kang (16062_CR7) 2019; 394
S Antonello (16062_CR25) 2017; 139
16062_CR15
J Yan (16062_CR6) 2018; 51
Y Yamamoto (16062_CR59) 2007; 11
JP Perdew (16062_CR53) 1996; 77
HJ Monkhorst (16062_CR54) 1976; 13
KLDM Weerawardene (16062_CR9) 2018; 69
P Yuan (16062_CR29) 2019; 58
PD Jadzinsky (16062_CR17) 2007; 318
J Chai (16062_CR47) 2017; 121
Y Li (16062_CR41) 2012; 134
16062_CR44
AS Blum (16062_CR13) 2004; 4
M Walter (16062_CR52) 2008; 128
X-H Wu (16062_CR35) 2019; 6
16062_CR45
E Talgorn (16062_CR58) 2010; 4
T Tsukuda (16062_CR2) 2012; 85
Q Yao (16062_CR8) 2018; 51
MW Heaven (16062_CR18) 2008; 130
C Kumara (16062_CR49) 2015; 6
B Zhang (16062_CR48) 2016; 52
VD Thanthirige (16062_CR40) 2017; 121
M De Nardi (16062_CR24) 2014; 8
AP Alivisatos (16062_CR12) 1996; 382
Z Wu (16062_CR32) 2017; 139
CA Mirkin (16062_CR11) 1996; 382
Q Li (16062_CR26) 2018; 9
OK Zahr (16062_CR14) 2012; 12
RW Huang (16062_CR33) 2017; 9
H Jiang (16062_CR56) 2020; 59
GM Sheldrick (16062_CR60) 2008; 64
T Tsukuda (16062_CR1) 2015
J Enkovaara (16062_CR51) 2010; 22
M Brust (16062_CR10) 1995; 7
Y Liu (16062_CR31) 2018; 10
ZY Wang (16062_CR27) 2018; 140
QM Wang (16062_CR39) 2001; 123
RW Huang (16062_CR42) 2018; 57
Q Yao (16062_CR46) 2018; 9
Y Jiang (16062_CR43) 2014; 118
Z Lei (16062_CR34) 2014; 53
ZR Wen (16062_CR38) 2019; 55
I Chakraborty (16062_CR3) 2017; 117
H Häkkinen (16062_CR16) 2012; 4
16062_CR23
16062_CR28
References_xml – reference: LiQModulating the hierarchical fibrous assembly of Au nanoparticles with atomic precisionNat. Commun.201892018NatCo...9.3871L302501606155310
– reference: TalgornESupercrystals of cdse quantum dots with high charge mobility and efficient electron transfer to TiO2ACS Nano20104172317311:CAS:528:DC%2BC3cXisVaitro%3D20184385
– reference: GalchenkoMBlackAHeymannLKlinkeCField effect and photoconduction in Au25 nanoclusters filmsAdv. Mater.201931e190068430908709
– reference: YamamotoYNishinaNGold-catalyzed intermolecular hydroamination of allenes: first example of the use of an aliphatic amine in hydroaminationSynlett20071117671770
– reference: WangZYAtomically precise site-specific tailoring and directional assembly of superatomic silver nanoclustersJ. Am. Chem. Soc.2018140106910761:CAS:528:DC%2BC1cXit1Whug%3D%3D29297682
– reference: ZhangBSalassaGBurgiTSilver migration between Au38(SC2H4Ph)24 and doped AgxAu38-x(SC2H4Ph)24 nanoclustersChem. Commun.201652920592071:CAS:528:DC%2BC28XhtVSksLzP
– reference: TsukudaTToward an atomic-level understanding of size-specific properties of protected and stabilized gold clustersBull. Chem. Soc. Jpn.2012851511681:CAS:528:DC%2BC38XjvVejtb4%3D
– reference: WenZR[Au7Ag9(dppf)3(CF3CO2)7BF4]n: a linear nanocluster polymer from molecular Au7Ag8 clusters covalently linked by silver atomsChem. Comm.20195512992129951:CAS:528:DC%2BC1MXhvFWkur3P31608354
– reference: LiYHexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclustersJ. Am. Chem. Soc.201213417997180031:CAS:528:DC%2BC38XhsV2rs7vF23051636
– reference: YaoQRevealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approachNat. Commun.201892018NatCo...9.1979Y297737855958061
– reference: Zhu.MCorrelating the crystal structure of a thiol-protected Au25 cluster and optical propertiesJ. Am. Chem. Soc.2008130588358851:CAS:528:DC%2BD1cXksFyksrg%3D18407639
– reference: MonkhorstHJPackJDSpecial points for Brillouin-zone integrationsPhys. Rev. B19761351881976PhRvB..13.5188M418801
– reference: HäkkinenHThe gold-sulfur interface at the nanoscaleNat. Chem.2012444322614378
– reference: KumaraCGagnonKJDassAX-ray crystal structure of Au38-xAgx(SCH2CH2Ph)24 alloy nanomoleculesJ. Phys. Chem. Lett.20156122312281:CAS:528:DC%2BC2MXkvF2hsr4%3D26262976
– reference: AntonelloSDaineseTPanFRissanenKMaranFElectrocrystallization of monolayer-protected gold clusters: opening the door to quality, quantity, and new structuresJ. Am. Chem. Soc.2017139416841741:CAS:528:DC%2BC2sXktVSisbg%3D28281762
– reference: WalterMA unified view of ligand-protected gold clusters as superatom complexesProc. Natl Acad. Sci. U.S.A2008105915791622008PNAS..105.9157W1:CAS:528:DC%2BD1cXosFaksLY%3D185994432442568
– reference: Xu, G. T. et al. Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates: between catenane and ring-in-ring structures. Angew. Chem. Int. Ed. 58, 16297–16306 (2019).
– reference: Nonappa, Lahtinen, T., Haataja, J. S., Tero, T. R., Häkkinen, H. & Ikkala, O. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: From 2D colloidal crystals to spherical capsids, Angew. Chem. Int. Ed. 55, 16035–16038 (2017).
– reference: WuX-HGuest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworksAdv. Sci.201961801304
– reference: EnkovaaraJElectronic structure calculations using GPAW: a real-space implementation of the projector-augmented wave methodJ. Phys. Condens. Matter2010222532022010JPCM...22y3202E1:STN:280:DC%2BC3M3lvVansg%3D%3D21393795
– reference: WuZContribution of metal defects in the assembly induced emission of Cu nanoclustersJ. Am. Chem. Soc.2017139431843211:CAS:528:DC%2BC2sXksFamurY%3D28318238
– reference: ZahrOKBlumASSolution phase gold nanorings on a viral protein templateNano Lett.2012126296332012NanoL..12..629Z1:CAS:528:DC%2BC3MXhs1OjtLbF22200347
– reference: DolomanovOVBourhisLJGildeaRJHowardJAKPuschmannHOLEX2: a complete structure solution, refinement and analysis programJ. Appl. Cryst.2009423393411:CAS:528:DC%2BD1MXjsFSnsbg%3D
– reference: ChuI-HCharge transport in a quantum dot supercrystalJ. Phys. Chem. C.201111521409214151:CAS:528:DC%2BC3MXhtlSlurzF
– reference: KangXZhuMIntra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclustersCoord. Chem. Rev.201939413840324621:CAS:528:DC%2BC1MXhtVKnsLbO
– reference: WeerawardeneKLDMHäkkinenHAikensCMConnections between theory and experiment for gold and silver nanoclustersAnnu. Rev. Phys. Chem.2018692052292018ARPC...69..205W1:CAS:528:DC%2BC1cXjslOhs7w%3D29490202
– reference: HuangRWHypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic frameworkNat. Chem.201796896971:CAS:528:DC%2BC2sXitlGitro%3D28644463
– reference: LeiZPeiX-LJiangZ-GWangQ-MCluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with Gold(I) clustersAngew. Chem. Int. Ed.20145312771127751:CAS:528:DC%2BC2cXhsVWqtb3N
– reference: SheldrickGMA short history of SHELXActa Cryst. A2008641121221:CAS:528:DC%2BD2sXhsVGhurzO1370.52003
– reference: JiangHHuWThe emergence of organic single-crystal electronicsAngew. Chem. Int. Ed.202059140814281:CAS:528:DC%2BC1MXitFantbbL
– reference: WuZAssembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic propertyJ. Am. Chem. Soc.201513712906129131:CAS:528:DC%2BC2MXhsFersr3L26397821
– reference: De NardiMGold nanowired: a linear (Au25)n polymer from Au25 molecular clustersACS Nano201488505851225088331
– reference: YanJTeoBKZhengNSurface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysisAcc. Chem. Res.201851308430931:CAS:528:DC%2BC1cXitFyqtbfO30433756
– reference: ThanthirigeVDSinnEWiederrechtGPRamakrishnaGUnusual solvent effects on optical properties of bi-icosahedral Au25 clustersJ. Phys. Chem. C.2017121353035391:CAS:528:DC%2BC2sXhtlajt7k%3D
– reference: AlivisatosAPOrganization of “nanocrystal molecules” using DNANature19963826096111996Natur.382..609A1:CAS:528:DyaK28XltVWqsrY%3D8757130
– reference: Brust, M. et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. 801–802 (1994).
– reference: HeavenMWDassAWhitePSHoltKMMurrayRWCrystal structure of the gold nanoparticle N(C8H17)4 Au25(SCH2CH2Ph)18J. Am. Chem. Soc.2008130375437551:CAS:528:DC%2BD1cXivVSktLY%3D18321116
– reference: BlumASCowpea mosaic virus as a scaffold for 3D patterning of gold nanoparticlesNano Lett.200448678702004NanoL...4..867B1:CAS:528:DC%2BD2cXitFSjt78%3D
– reference: MirkinCAA DNA-based method for rationally assembling nanoparticles into macroscopic materialsNature19963826076091996Natur.382..607M1:CAS:528:DyaK28XltVWqsrk%3D8757129
– reference: ChakrabortyIPradeepTAtomically precise clusters of noble metals: emerging link between atoms and nanoparticlesChem. Rev.2017117820882711:CAS:528:DC%2BC2sXpt1Cnu70%3D28586213
– reference: YanHHybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assemblyNat. Mater.2017163493552017JMMM..421..349Y1:CAS:528:DC%2BC28XitFGitLvP28024157
– reference: WangQMMakTCWArgentophilicity and solvent-induced structural diversity in double salts of silver acetylide with silver perfluoroalkyl carboxylatesJ. Am. Chem. Soc.2001123759476001:CAS:528:DC%2BD3MXltFCmsrw%3D11480980
– reference: AkolaJOn the structure of thiolate-protected Au25J. Am. Chem. Soc.2008130375637571:CAS:528:DC%2BD1cXivVSktLo%3D18321117
– reference: DimitrakopoulosCDMalenfantPROrganic thin film transistors for large area electronicsAdv. Mater.200214991171:CAS:528:DC%2BD38XhtVartbY%3D
– reference: JadzinskyPDCaleroGAckersonCJBushnellDAKornbergRDStructure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolutionScience20073184304332007Sci...318..430J1:CAS:528:DC%2BD2sXhtFOjtb%2FP17947577
– reference: TsukudaTHäkkinenHProtected Metal Clusters: From Fundamentals to Applications2015AmsterdamElsevier
– reference: LiuYYaoDZhangHSelf-assembly driven aggregation-induced emission of copper nanoclusters: a novel technology for lightingACS Appl. Mater. Interfaces20181012071120801:CAS:528:DC%2BC2sXhvVSrtb7M29144119
– reference: HuangRWTandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembledMater. Angew. Chem. Int. Ed.201857856085661:CAS:528:DC%2BC1cXhtFemur%2FN
– reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10062328
– reference: WalterMTime-dependent density-functional theory in the projector augmented-wave methodJ. Chem. Phys.20081282441012008JChPh.128x4101W18601311
– reference: KumaraCDassAAuAg alloy nanomolecules with 38 metal atomsNanoscale20124408440862012Nanos...4.4084K1:CAS:528:DC%2BC38XptlWnur8%3D22370910
– reference: JinRZengCZhouMChenYAtomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunitiesChem. Rev.201611610346104131:CAS:528:DC%2BC28XhsVeksLnJ27585252
– reference: Yuan, S. -F., Guan, Z. -J., Liu, W. -D. & Wang, Q. -M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 10, 4032 (2019).
– reference: KurashigeWNiihoriYSharmaSNegishiYPrecise synthesis, functionalization and application of thiolate-protected gold clustersCoord. Chem. Rev.2016320-3212382501:CAS:528:DC%2BC28XksVWrtLo%3D
– reference: LahtinenTCovalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au~250(p-MBA)nNanoscale2016818665186741:CAS:528:DC%2BC28XhsFeqsrbE27714130
– reference: ChaiJX-ray crystal structure and optical properties of Au38–xCux(2,4-(CH3)2C6H3S)24 (x=0–6) alloy nanoclusterJ. Phys. Chem. C.201712121665216691:CAS:528:DC%2BC2sXhsVelur7L
– reference: YuanPEther-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applicationsAngew. Chem. Int. Ed.2019588358391:CAS:528:DC%2BC1cXisVKqsLnP
– reference: YaoQToward total synthesis of thiolate-protected metal nanoclustersAcc. Chem. Res.20185113381:CAS:528:DC%2BC1cXpvFKkur0%3D29792422
– reference: JiangYSolvent influence on the role of thiols in growth of thiols-capped au nanocrystalsJ. Phys. Chem. C.20141187147191:CAS:528:DC%2BC3sXhvFCjurzP
– reference: Alhilaly, M. J. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 141, 9585–9592 (2019).
– reference: BrustMSchriffinDJBethellDKielyCJNovel gold-dithiol nano-networks with non-metallic electronic propertiesAdv. Mater.199577957971:CAS:528:DyaK2MXotlaqtLw%3D
– ident: 16062_CR28
  doi: 10.1021/jacs.9b02486
– volume: 13
  start-page: 5188
  year: 1976
  ident: 16062_CR54
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 11
  start-page: 1767
  year: 2007
  ident: 16062_CR59
  publication-title: Synlett
  doi: 10.1055/s-2007-984501
– volume: 16
  start-page: 349
  year: 2017
  ident: 16062_CR37
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4823
– volume: 121
  start-page: 21665
  year: 2017
  ident: 16062_CR47
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.7b05074
– volume: 6
  start-page: 1801304
  year: 2019
  ident: 16062_CR35
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201801304
– volume: 128
  start-page: 244101
  year: 2008
  ident: 16062_CR52
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.2943138
– volume: 318
  start-page: 430
  year: 2007
  ident: 16062_CR17
  publication-title: Science
  doi: 10.1126/science.1148624
– volume: 9
  year: 2018
  ident: 16062_CR46
  publication-title: Nat. Commun.
– volume: 123
  start-page: 7594
  year: 2001
  ident: 16062_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0043441
– volume: 58
  start-page: 835
  year: 2019
  ident: 16062_CR29
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201812236
– volume: 9
  start-page: 689
  year: 2017
  ident: 16062_CR33
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2718
– volume: 55
  start-page: 12992
  year: 2019
  ident: 16062_CR38
  publication-title: Chem. Comm.
  doi: 10.1039/C9CC05924E
– volume: 42
  start-page: 339
  year: 2009
  ident: 16062_CR61
  publication-title: J. Appl. Cryst.
  doi: 10.1107/S0021889808042726
– volume: 57
  start-page: 8560
  year: 2018
  ident: 16062_CR42
  publication-title: Mater. Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804059
– volume: 105
  start-page: 9157
  year: 2008
  ident: 16062_CR21
  publication-title: Proc. Natl Acad. Sci. U.S.A
  doi: 10.1073/pnas.0801001105
– volume: 53
  start-page: 12771
  year: 2014
  ident: 16062_CR34
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201406761
– ident: 16062_CR45
  doi: 10.1002/anie.201909980
– ident: 16062_CR23
  doi: 10.1002/anie.201609036
– volume: 116
  start-page: 10346
  year: 2016
  ident: 16062_CR4
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00703
– volume: 121
  start-page: 3530
  year: 2017
  ident: 16062_CR40
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.6b10948
– volume: 4
  start-page: 4084
  year: 2012
  ident: 16062_CR50
  publication-title: Nanoscale
  doi: 10.1039/c2nr11781a
– volume: 130
  start-page: 5883
  year: 2008
  ident: 16062_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801173r
– volume: 8
  start-page: 18665
  year: 2016
  ident: 16062_CR22
  publication-title: Nanoscale
  doi: 10.1039/C6NR05267C
– volume: 137
  start-page: 12906
  year: 2015
  ident: 16062_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06550
– volume: 382
  start-page: 609
  year: 1996
  ident: 16062_CR12
  publication-title: Nature
  doi: 10.1038/382609a0
– ident: 16062_CR15
  doi: 10.1039/C39940000801
– volume: 22
  start-page: 253202
  year: 2010
  ident: 16062_CR51
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/25/253202
– volume: 64
  start-page: 112
  year: 2008
  ident: 16062_CR60
  publication-title: Acta Cryst. A
  doi: 10.1107/S0108767307043930
– volume: 140
  start-page: 1069
  year: 2018
  ident: 16062_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11338
– volume: 8
  start-page: 8505
  year: 2014
  ident: 16062_CR24
  publication-title: ACS Nano
  doi: 10.1021/nn5031143
– volume: 51
  start-page: 1338
  year: 2018
  ident: 16062_CR8
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00065
– volume: 51
  start-page: 3084
  year: 2018
  ident: 16062_CR6
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.8b00371
– ident: 16062_CR44
  doi: 10.1038/s41467-019-11988-y
– volume: 14
  start-page: 99
  year: 2002
  ident: 16062_CR55
  publication-title: Adv. Mater.
  doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
– volume: 4
  start-page: 867
  year: 2004
  ident: 16062_CR13
  publication-title: Nano Lett.
  doi: 10.1021/nl0497474
– volume: 6
  start-page: 1223
  year: 2015
  ident: 16062_CR49
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b00270
– volume: 85
  start-page: 151
  year: 2012
  ident: 16062_CR2
  publication-title: Bull. Chem. Soc. Jpn.
  doi: 10.1246/bcsj.20110227
– volume: 139
  start-page: 4168
  year: 2017
  ident: 16062_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00568
– volume: 7
  start-page: 795
  year: 1995
  ident: 16062_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.19950070907
– volume: 394
  start-page: 1
  year: 2019
  ident: 16062_CR7
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2019.05.015
– volume: 12
  start-page: 629
  year: 2012
  ident: 16062_CR14
  publication-title: Nano Lett.
  doi: 10.1021/nl203368v
– volume: 130
  start-page: 3756
  year: 2008
  ident: 16062_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800594p
– volume: 52
  start-page: 9205
  year: 2016
  ident: 16062_CR48
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC04469G
– volume: 10
  start-page: 12071
  year: 2018
  ident: 16062_CR31
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b13940
– volume: 134
  start-page: 17997
  year: 2012
  ident: 16062_CR41
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja306923a
– volume: 9
  year: 2018
  ident: 16062_CR26
  publication-title: Nat. Commun.
– volume-title: Protected Metal Clusters: From Fundamentals to Applications
  year: 2015
  ident: 16062_CR1
– volume: 130
  start-page: 3754
  year: 2008
  ident: 16062_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja800561b
– volume: 118
  start-page: 714
  year: 2014
  ident: 16062_CR43
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp408926n
– volume: 69
  start-page: 205
  year: 2018
  ident: 16062_CR9
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-052516-050932
– volume: 117
  start-page: 8208
  year: 2017
  ident: 16062_CR3
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00769
– volume: 115
  start-page: 21409
  year: 2011
  ident: 16062_CR57
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp206526s
– volume: 4
  start-page: 443
  year: 2012
  ident: 16062_CR16
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1352
– volume: 320-321
  start-page: 238
  year: 2016
  ident: 16062_CR5
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2016.02.013
– volume: 382
  start-page: 607
  year: 1996
  ident: 16062_CR11
  publication-title: Nature
  doi: 10.1038/382607a0
– volume: 4
  start-page: 1723
  year: 2010
  ident: 16062_CR58
  publication-title: ACS Nano
  doi: 10.1021/nn901709a
– volume: 31
  start-page: e1900684
  year: 2019
  ident: 16062_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201900684
– volume: 77
  start-page: 3865
  year: 1996
  ident: 16062_CR53
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 59
  start-page: 1408
  year: 2020
  ident: 16062_CR56
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201814439
– volume: 139
  start-page: 4318
  year: 2017
  ident: 16062_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00773
SSID ssj0000391844
Score 2.5984454
Snippet Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior....
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2229
SubjectTerms 119/118
639/925/357/1016
639/925/357/354
639/925/357/995
Anisotropy
Atomic structure
Clusters
Crystal structure
Crystals
Density functional theory
Design
Field effect transistors
Gold
Hole mobility
Humanities and Social Sciences
multidisciplinary
Nanoclusters
Nanomaterials
Nanotechnology
P-type semiconductors
Polymerization
Polymers
Properties (attributes)
Science
Science (multidisciplinary)
Self-assembly
Semiconductor devices
Silver
Single crystals
Solvents
X-ray diffraction
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEOUZKMhI3MBq1q_ER0BUFRJcoFJvlp04UClNVmT30Bv_of-QX8KMnV26PC9cVqu1o53MwzOjGX8D8KypCHN9IXi0beDKa8N9UxseI36PmDeL1E347r05PlFvT_XplVFf1BOW4YEz4w6rWNWlpXKRNirE1lvrQxelNZ3W2gc6fdHnXUmm0hksLaYuar4lU8r6cFLpTKBsaYFBu-BmxxMlwP7fRZm_Nkv-VDFNjujoFtycI0j2MlO-D9ficBuu55mSF3dg-WHsqYeRpzshGE8yDI_jeegv2NgxTLHP-ZIQLabIPo19--3r5XRG3dFs8MPY9GsCTpjYamQTtc2PA-HBIh1sHCJvaRRAhvFgGOlm5b0LJ0dvPr4-5vNYBd7gi684OuiI_PNS-7Kt8aNsjPVl8KEqOx8b5Q2atY64TXsRulY0XRWEDKK1En2bvAd7A_7pA2AekzeFi6ZSSvkSFaIT0lPOqQWG7aGAxYbFrpkxx2n0Re9S7VvWLovFoVhcEoszBTzfPrPMiBt_3f2KJLfdSWjZ6QfUITfrkPuXDhVwsJG7m014cnTpF7NjLW0BT7fLaHxUUfFDHNd5Ty0p7SrgflaTLSWS-o1qgU9XOwq0Q-ruynD2OQF8U2kcfVABLzaq9oOsP7Pi4f9gxSO4IchGqKXTHMDe6ss6PsawaxWeJAv7DsLoKx4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6tZv5KcECCqCgkuUGlvlu04pVIaL83uoTf-A_-QX8KM4021PHpZrdaOduKZ8cx4xt8Q8tJXiLm-4Cw0rWPSKs2srzULAb4HiJt5qib89FkfHcuPS7XMB25jLqvc7olpo26jxzPyA7yDCcGKEs2b1XeGXaMwu5pbaFwnNxC6DEu6qmU1n7Eg-nktZb4rU4r6YJRpZ8CYaQGuO2d6xx4l2P5_-Zp_l0z-kTdN5ujwDrmd_Uj6dmL8XXItDPfIzamz5MV9svoSe6xkZOlmCHiVFJzkcOb6Cxo7CoH2GVshrsUY6Ens218_fo6nWCNNBztE328QPmGk60hHLJ6PA6LCAh00DoG12BBgAvOg4O9OIvyAHB9--Pr-iOXmCszDi68ZmOkQRGOFsmVbw0fpdWNLZ11VdjZ4aTUotwowTVnuupb7rnJcON42AiyceEj2BvjTx4RaCOEkDOpKSmlLEIuOC4uRp-LgvLuCLLZLbHxGHscGGL1JGXBRm4ktBthiEluMLsir-ZnVhLtx5ex3yLl5JmJmpx_i-YnJKmiqUNVlg4lHpaULrW0a6zpYA90ppSyQub_lu8mKPJpLsSvIi3kYVBDzKnYIcTPNqQUGXwV5NInJTInAqqOaw9PVjgDtkLo7Mpx-SzDfmCAHS1SQ11tRuyTr_0vx5Oq3eEpucZR-LNnU-2Rvfb4Jz8CtWrvnSXd-A-LhIk0
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VIiQuiP-mFGQkbmCRtWMnObYrqgoJLlCpN8tOnFIpjVfN7qE33oE35Ek64_yghYLEZRWtx8rEM5OZyYw_A7ypcsJcXwjuy9rxzCrNbVVo7j1ee8ybRewm_PRZn5xmH8_U2Q6IaS9MbNqPkJbxNT11h73vs2jSlOwsMOYWXN-BuwTdTlq91Mv5uwohnhdZNu6PSWVxy9QtHxSh-m-LL_9sk_ytVhpd0PFDeDDGjuxw4PYR7PjuMdwbTpO8fgKrL6Gl7kUed4NgJMkwMPaXrr1moWGYXF_yFWFZ9J6dh7b--f1Hf0F90ayzXajaDUEm9GwdWE8N86EjJFjkg4XO85oOARgAPBjGuIPaPoXT4w9flyd8PFCBV_jga46u2XtZWqlsWhf4k1a6tKmzLk8b66vMajRo5ZFMWeGaWlRN7oR0oi4lejX5DHY7vOkeMItpW4aDGkWQ2RRVoRHSUrapBAbsLoHFtMSmGtHG6dCL1sSqtyzMIBaDYjFRLEYn8HaesxqwNv5JfUSSmykJJzv-Ea7Ozag3Jvd5kZZUbFQ6c762ZWldg2ugG6WURTYPJrmb0Xh7Q9t9MS9Wskzg9TyMZke1FNv5sBloCkkJVwLPBzWZOZHUaVQInJ1vKdAWq9sj3cW3CO1NRXH0Pgm8m1TtF1t_X4r9_yN_AfcFWQO1beoD2F1fbfxLDK3W7lW0pRsh8CAD
  priority: 102
  providerName: Springer Nature
Title Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials
URI https://link.springer.com/article/10.1038/s41467-020-16062-6
https://www.ncbi.nlm.nih.gov/pubmed/32376829
https://www.proquest.com/docview/2399211539
https://www.proquest.com/docview/2399830306
https://pubmed.ncbi.nlm.nih.gov/PMC7203111
https://doaj.org/article/7e78097684564beda99abfe396f555ab
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjMpIvIEhtWM7eUCoq1amSpsQo1LfIjtxxqQsGU0rrf89d05SVCiIl7SKnfbiu8vd5c6_I-RNphFzfciZS3LLIiMVM1msmHPw3UHczH014fmFOptF07mc75G-3VG3gM3O0A77Sc0W5fu7H-tPoPAf2y3j8Ycm8uqOgdAQ_HHO1D45BMukUVHPO3ffP5lFAgENJpp5GA0Z2G7R7aPZ_TNbtspD-u_yQ_8sp_wtp-pN1eQhedD5mHTUCsUjsueqx-Re23Vy_YRUl3WJVY7M7xoBj5OCA-1ubLmmdUEhCL9ht4h50Th6VZc5a66xeppWpqqzcoXACg1d1rTBsvq6QrxYoILWlWM5tgpoYT4oeMKtcD8ls8npt_EZ69ousAxue8nAgDsnEiOkCfMYDmGmEhNaY3VYGJdFRoHaSwfTpOG2yHlWaMuF5XkiwPaJZ-Sggj99QaiB4C6CQaWjKDIhCEzBhcGYVHJw621Ahv0Cp1mHSY6tMcrU58ZFnLZMSYEpqWdKqgLydnPNbYvI8c_ZJ8i3zUxE0_Yn6sVV2ilnqp2OwwRTklJF1uUmSYwtYA1UIaU0QOZxz_W0l9AUNwVD9CxFEpDXm2FQTsy4mMrVq3ZOLDAsC8jzVkg2lAisR4o5XK23xGeL1O2R6vq7BwDH1DnYqIC86wXtF1l_X4qj_yDzJbnPUQGwolMdk4PlYuVegde1tAOyr-cajvHk84AcjkbTyyl8npxefPkKZ8dqPPDvMwZe5X4CIUIuQw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFazfiU5IMSr2tLHhVbam7ETp1RKk6XZFdob_4H_wY_ilzDjJFstj956Wa3WzmbimfHMZMbfEPIsTxBzfcSZzwrHpFWa2TzVzHv47iFu5qGacG9fjw_lx4marJGfw1kYLKsc9sSwURdNju_IN_EMJgQrSmSvp18Zdo3C7OrQQqMTix2_-AYhW_tq-z3w9znnWx8O3o1Z31WA5eCszxjYJ-9FZoWycZHCR5zrzMbOuiQurc-l1SDVysM0ZbkrC56XiePC8SITsLUL-N9L5DIY3hg1Kpkky3c6iLaeStmfzYlFutnKsBNhjDaCu3OmV-xfaBPwL9_27xLNP_K0wfxt3SDXe7-VvukE7SZZ8_UtcqXrZLm4TaafmgorJ1k4iQJeLAWn3J-4akGbkkJgf8KmiKPRenrUVMWv7z_aY6zJprWtm7yaI1xDS2cNbbFYv6kRhRbooE3tWYENCDrwEAr-dacyd8jhhSz7XbJew03vE2ohZJQwqBMppY1BDEsuLEa6ikOw4CIyGpbY5D3SOTbcqEzIuIvUdGwxwBYT2GJ0RF4sr5l2OB_nzn6LnFvORIzu8ENzemR6lTeJT9I4w0Sn0tL5wmaZdSWsgS6VUhbI3Bj4bvqNozVnYh6Rp8thUHnM49jaN_NuTiow2IvIvU5MlpQIrHJKOVydrAjQCqmrI_XxlwArjgl5sHwReTmI2hlZ_1-KB-c_xRNydXywt2t2t_d3HpJrHDUBy0X1Blmfnc79I3DpZu5x0CNKPl-04v4GiQZf6g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxJuUAosEJ1jF2ZftA0JAiVoKFRJUym27a69LJddO60QoN_4D_4afwy9hZm2nCo_eeomi7Doe7zx2xjP7DSFPsxgx10ec-TR3TFqlmc0SzbyH7x7iZh6qCT_u6e19-X6iJmvkZ38WBssqe5sYDHVeZ_iOfIhnMCFYUSIdFl1ZxKet8avpCcMOUphp7dtptCKy6xffIHxrXu5sAa-fcT5-9-XtNus6DLAMHPcZg73Ke5FaoWyUJ_ARZTq1kbMujgrrM2k1SLjyME1Z7oqcZ0XsuHA8TwWYeQH_e4lcjoUaoY7Fk3j5fgeR1xMpu3M6kUiGjQxWCeO1EdydM72yF4aWAf_yc_8u1_wjZxu2wvENcr3zYenrVuhukjVf3SJX2q6Wi9tk-rkusYqShVMp4NFScND9sSsXtC4oBPnHbIqYGo2nh3WZ__r-oznC-mxa2arOyjlCNzR0VtMGC_frChFpgQ5aV57l2IygBRKh4Gu36nOH7F_Ist8l6xXc9D6hFsJHCYM6llLaCESy4MJi1Ks4BA5uQEb9EpusQz3H5hulCdl3kZiWLQbYYgJbjB6Q58trpi3mx7mz3yDnljMRrzv8UJ8emk79TezjJEox6am0dD63aWpdAWugC6WUBTI3e76bzog05kzkB-TJchjUH3M6tvL1vJ2TCAz8BuReKyZLSgRWPCUcro5XBGiF1NWR6uhrgBjH5DzsggPyohe1M7L-vxQb5z_FY3IVVNZ82NnbfUCucVQErBzVm2R9djr3D8G7m7lHQY0oObhovf0N2nVkIA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvent-mediated+assembly+of+atom-precise+gold-silver+nanoclusters+to+semiconducting+one-dimensional+materials&rft.jtitle=Nature+communications&rft.au=Yuan%2C+Peng&rft.au=Zhang%2C+Ruihua&rft.au=Selenius%2C+Elli&rft.au=Ruan%2C+Pengpeng&rft.date=2020-05-06&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=2229&rft_id=info:doi/10.1038%2Fs41467-020-16062-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon