Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve d...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 2229 - 8 |
---|---|
Main Authors | , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.05.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic
p
-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm
2
V
−1
s
−1
, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic
p
-type semiconducting characteristics. |
---|---|
AbstractList | Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic
p
-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm
2
V
−1
s
−1
, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.
Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic
p
-type semiconducting characteristics. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p -type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm 2 V −1 s −1 , and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm V s , and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic p-type semiconducting characteristics. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold–silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag–Au–Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V−1 s−1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the authors demonstrate a solvent-mediated polymerization of atom-precise gold–silver nanoclusters into macroscopic single crystals with highly anisotropic p-type semiconducting characteristics. Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V-1 s-1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties.Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Atom-precise metal nanoclusters are well-characterizable building blocks for designing tunable nanomaterials, but it has been challenging to achieve directed assembly to macroscopic functional cluster-based materials with highly anisotropic properties. Here, we discover a solvent-mediated assembly of 34-atom intermetallic gold-silver clusters protected by 20 1-ethynyladamantanes into 1D polymers with Ag-Au-Ag bonds between neighboring clusters as shown directly by the atomic structure from single-crystal X-ray diffraction analysis. Density functional theory calculations predict that the single crystals of cluster polymers have a band gap of about 1.3 eV. Field-effect transistors fabricated with single crystals of cluster polymers feature highly anisotropic p-type semiconductor properties with ≈1800-fold conductivity in the direction of the polymer as compared to cross directions, hole mobility of ≈0.02 cm2 V-1 s-1, and an ON/OFF ratio up to ≈4000. This performance holds promise for further design of functional cluster-based materials with highly anisotropic semiconducting properties. |
ArticleNumber | 2229 |
Author | Häkkinen, Hannu Zheng, Nanfeng Malola, Sami Zhou, Yang Ruan, Pengpeng Cao, Yang Yuan, Peng Selenius, Elli Zhang, Ruihua Yao, Yangrong Teo, Boon K. |
Author_xml | – sequence: 1 givenname: Peng surname: Yuan fullname: Yuan, Peng organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 2 givenname: Ruihua surname: Zhang fullname: Zhang, Ruihua organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 3 givenname: Elli orcidid: 0000-0003-4286-0861 surname: Selenius fullname: Selenius, Elli organization: Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä – sequence: 4 givenname: Pengpeng surname: Ruan fullname: Ruan, Pengpeng organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 5 givenname: Yangrong surname: Yao fullname: Yao, Yangrong organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 6 givenname: Yang surname: Zhou fullname: Zhou, Yang organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 7 givenname: Sami surname: Malola fullname: Malola, Sami organization: Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä – sequence: 8 givenname: Hannu orcidid: 0000-0002-8558-5436 surname: Häkkinen fullname: Häkkinen, Hannu email: hannu.j.hakkinen@jyu.fi organization: Departments of Physics and Chemistry, Nanoscience Center, University of Jyväskylä – sequence: 9 givenname: Boon K. surname: Teo fullname: Teo, Boon K. organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 10 givenname: Yang surname: Cao fullname: Cao, Yang email: yangcao@xmu.edu.cn organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 11 givenname: Nanfeng orcidid: 0000-0001-9879-4790 surname: Zheng fullname: Zheng, Nanfeng email: nfzheng@xmu.edu.cn organization: State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, National & Local Joint Engineering Research Center of Preparation Technology of Nanomaterials, College of Chemistry and Chemical Engineering, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32376829$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Us1OFjEUnRiMIPICLswkbtyM9mf-ujExRJSExIW6bu507nz2S6f9bDsk7HgH39An4cKAAgu66G3ac05PT-_LYs8Hj0XxmrP3nMn-Q6p53XYVE6ziLWtF1T4rDgSrecU7IffurfeLo5S2jIZUvK_rF8W-FLJre6EOit334M7R52rG0ULGsYSUcB7cRRmmEnKYq11EYxOWm-DGv5d_kiVCLD34YNySMsZU5lASyZrgx8Vk6zclma1GO6NPNnhw5Uza0YJLr4rnExU8uq2Hxc-Tzz-Ov1Zn376cHn86qwy9Jld9IxGlAtkAG3uamGkVsAGGjk2ApoaW1X2DBGtADNMozNQNQg5iVLLtenlYnK66Y4Ct3kU7Q7zQAay-2QhxoyFmaxzqDrueKQqkbtp6wBGUgmGi29upaRoYSOvjqrVbBsrJUF4R3APRhyfe_tKbcK47wSTnnATe3QrE8HvBlPVsk0HnwGNYkhZSqV4yyVqCvn0E3YYlUoQrSnDeSEWoN_cd_bNy97EE6FeAiSGliJM2NkOmzyCD1mnO9HUb6bWNNLWRvmkjfe1APKLeqT9JkispEdhvMP63_QTrCmaa3YQ |
CitedBy_id | crossref_primary_10_1021_jacs_3c05336 crossref_primary_10_1063_5_0057005 crossref_primary_10_1002_asia_202400633 crossref_primary_10_1021_jacs_3c01259 crossref_primary_10_1039_D2CC00778A crossref_primary_10_1021_acs_inorgchem_0c03790 crossref_primary_10_1021_acs_jpcc_1c03591 crossref_primary_10_1038_s41467_021_24510_0 crossref_primary_10_1021_acs_jpcc_3c01316 crossref_primary_10_1021_jacs_2c03948 crossref_primary_10_1039_D1SC07178E crossref_primary_10_1002_ange_202318030 crossref_primary_10_1039_D4NR01691B crossref_primary_10_1021_acs_langmuir_3c03018 crossref_primary_10_1039_D2NR06613K crossref_primary_10_1002_ange_202317341 crossref_primary_10_1021_acsami_2c14487 crossref_primary_10_1039_D0NR07499C crossref_primary_10_1021_prechem_4c00044 crossref_primary_10_1021_acs_jpclett_2c00007 crossref_primary_10_1039_D2CC00987K crossref_primary_10_1038_s41467_022_33651_9 crossref_primary_10_1021_acscentsci_0c01045 crossref_primary_10_1021_jacs_0c11465 crossref_primary_10_1002_agt2_304 crossref_primary_10_1021_acs_jpclett_2c02420 crossref_primary_10_1021_acsphotonics_1c01065 crossref_primary_10_1021_jacs_3c02215 crossref_primary_10_1002_ange_202217483 crossref_primary_10_3390_nano11102655 crossref_primary_10_1021_acs_inorgchem_1c01829 crossref_primary_10_1002_smll_202409118 crossref_primary_10_1039_D1CC01849C crossref_primary_10_3390_nano10061105 crossref_primary_10_1021_acssensors_0c02322 crossref_primary_10_1039_D2DT00634K crossref_primary_10_1021_acs_nanolett_3c02269 crossref_primary_10_1016_j_cej_2021_134169 crossref_primary_10_1021_acs_chemmater_4c03265 crossref_primary_10_1007_s12274_023_5774_z crossref_primary_10_1021_acs_chemrev_2c00733 crossref_primary_10_1016_j_nantod_2020_101053 crossref_primary_10_1002_agt2_475 crossref_primary_10_1039_D1DT01111A crossref_primary_10_1039_D2SC02886G crossref_primary_10_1039_D3QI01334K crossref_primary_10_1038_s41557_022_01079_9 crossref_primary_10_1021_jacs_2c10338 crossref_primary_10_1021_jacs_4c05804 crossref_primary_10_1002_adma_202306689 crossref_primary_10_1002_anie_202217483 crossref_primary_10_1038_s41467_022_29276_7 crossref_primary_10_1039_D1CP03596G crossref_primary_10_1039_D3NR05128E crossref_primary_10_1016_j_ccr_2022_214713 crossref_primary_10_1039_D0SC04100A crossref_primary_10_1021_jacs_2c11341 crossref_primary_10_1002_chem_202004055 crossref_primary_10_1039_D4NR02016B crossref_primary_10_1021_acs_langmuir_4c01737 crossref_primary_10_1002_smll_202005718 crossref_primary_10_1039_D2RA01080A crossref_primary_10_1039_D4NR01411A crossref_primary_10_1039_D1SC03679C crossref_primary_10_1016_j_ijhydene_2023_12_015 crossref_primary_10_1021_acsnano_1c02602 crossref_primary_10_1021_jacsau_1c00339 crossref_primary_10_34133_research_0018 crossref_primary_10_1002_hlca_202100186 crossref_primary_10_1002_asia_202300685 crossref_primary_10_1021_acs_chemrev_3c00896 crossref_primary_10_1021_jacs_3c07007 crossref_primary_10_1002_adma_202006459 crossref_primary_10_1038_s41467_021_22545_x crossref_primary_10_1016_j_mtsust_2023_100515 crossref_primary_10_1021_acs_inorgchem_2c01602 crossref_primary_10_1039_D1CC00577D crossref_primary_10_1016_j_cclet_2023_109345 crossref_primary_10_1002_chem_202003155 crossref_primary_10_1002_smll_202005328 crossref_primary_10_1038_s41467_020_19461_x crossref_primary_10_1039_D3QI02672H crossref_primary_10_1002_anie_202317341 crossref_primary_10_1002_smll_202406551 crossref_primary_10_1039_D1CC04934H crossref_primary_10_1002_adfm_202007277 crossref_primary_10_1002_anie_202318030 crossref_primary_10_1016_j_cej_2022_140002 crossref_primary_10_1021_jacs_3c13514 crossref_primary_10_1039_D3SC02753H crossref_primary_10_1039_D2CC00574C crossref_primary_10_1039_D2SC04390D crossref_primary_10_1002_smsc_202300024 crossref_primary_10_1002_agt2_132 crossref_primary_10_1021_acs_jpclett_3c01770 |
Cites_doi | 10.1021/jacs.9b02486 10.1103/PhysRevB.13.5188 10.1055/s-2007-984501 10.1038/nmat4823 10.1021/acs.jpcc.7b05074 10.1002/advs.201801304 10.1063/1.2943138 10.1126/science.1148624 10.1021/ja0043441 10.1002/anie.201812236 10.1038/nchem.2718 10.1039/C9CC05924E 10.1107/S0021889808042726 10.1002/anie.201804059 10.1073/pnas.0801001105 10.1002/anie.201406761 10.1002/anie.201909980 10.1002/anie.201609036 10.1021/acs.chemrev.5b00703 10.1021/acs.jpcc.6b10948 10.1039/c2nr11781a 10.1021/ja801173r 10.1039/C6NR05267C 10.1021/jacs.5b06550 10.1038/382609a0 10.1039/C39940000801 10.1088/0953-8984/22/25/253202 10.1107/S0108767307043930 10.1021/jacs.7b11338 10.1021/nn5031143 10.1021/acs.accounts.8b00065 10.1021/acs.accounts.8b00371 10.1038/s41467-019-11988-y 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 10.1021/nl0497474 10.1021/acs.jpclett.5b00270 10.1246/bcsj.20110227 10.1021/jacs.7b00568 10.1002/adma.19950070907 10.1016/j.ccr.2019.05.015 10.1021/nl203368v 10.1021/ja800594p 10.1039/C6CC04469G 10.1021/acsami.7b13940 10.1021/ja306923a 10.1021/ja800561b 10.1021/jp408926n 10.1146/annurev-physchem-052516-050932 10.1021/acs.chemrev.6b00769 10.1021/jp206526s 10.1038/nchem.1352 10.1016/j.ccr.2016.02.013 10.1038/382607a0 10.1021/nn901709a 10.1002/adma.201900684 10.1103/PhysRevLett.77.3865 10.1002/anie.201814439 10.1021/jacs.7b00773 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-16062-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed Publicly Available Content Database MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_7e78097684564beda99abfe396f555ab PMC7203111 32376829 10_1038_s41467_020_16062_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Academy of Finland (Suomen Akatemia) grantid: 294217, 319208 funderid: https://doi.org/10.13039/501100002341 – fundername: National Natural Science Foundation of China (21890752, 21731005, 21721001 and 21872114) – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21890752, 21731005, 21420102001, 21721001, 21872114 funderid: https://doi.org/10.13039/501100001809 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 21890752, 21731005, 21420102001, 21721001, 21872114 – fundername: Academy of Finland (Suomen Akatemia) grantid: 294217, 319208 – fundername: ; – fundername: ; grantid: 21890752, 21731005, 21420102001, 21721001, 21872114 – fundername: ; grantid: 294217, 319208 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-853ee39a35a0d85a00c69a0bab70faec4a60485e53e5a2bfd2cf7b23b2d936783 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:01 EDT 2025 Thu Aug 21 14:35:36 EDT 2025 Fri Jul 11 15:06:21 EDT 2025 Wed Aug 13 04:44:25 EDT 2025 Mon Jul 21 05:55:53 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Tue Jul 01 04:08:55 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-853ee39a35a0d85a00c69a0bab70faec4a60485e53e5a2bfd2cf7b23b2d936783 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-8558-5436 0000-0003-4286-0861 0000-0001-9879-4790 |
OpenAccessLink | https://doaj.org/article/7e78097684564beda99abfe396f555ab |
PMID | 32376829 |
PQID | 2399211539 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7e78097684564beda99abfe396f555ab pubmedcentral_primary_oai_pubmedcentral_nih_gov_7203111 proquest_miscellaneous_2399830306 proquest_journals_2399211539 pubmed_primary_32376829 crossref_citationtrail_10_1038_s41467_020_16062_6 crossref_primary_10_1038_s41467_020_16062_6 springer_journals_10_1038_s41467_020_16062_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-06 |
PublicationDateYYYYMMDD | 2020-05-06 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | WuZAssembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic propertyJ. Am. Chem. Soc.201513712906129131:CAS:528:DC%2BC2MXhsFersr3L26397821 LeiZPeiX-LJiangZ-GWangQ-MCluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with Gold(I) clustersAngew. Chem. Int. Ed.20145312771127751:CAS:528:DC%2BC2cXhsVWqtb3N BlumASCowpea mosaic virus as a scaffold for 3D patterning of gold nanoparticlesNano Lett.200448678702004NanoL...4..867B1:CAS:528:DC%2BD2cXitFSjt78%3D AkolaJOn the structure of thiolate-protected Au25J. Am. Chem. Soc.2008130375637571:CAS:528:DC%2BD1cXivVSktLo%3D18321117 Zhu.MCorrelating the crystal structure of a thiol-protected Au25 cluster and optical propertiesJ. Am. Chem. Soc.2008130588358851:CAS:528:DC%2BD1cXksFyksrg%3D18407639 ZahrOKBlumASSolution phase gold nanorings on a viral protein templateNano Lett.2012126296332012NanoL..12..629Z1:CAS:528:DC%2BC3MXhs1OjtLbF22200347 Brust, M. et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. 801–802 (1994). ChaiJX-ray crystal structure and optical properties of Au38–xCux(2,4-(CH3)2C6H3S)24 (x=0–6) alloy nanoclusterJ. Phys. Chem. C.201712121665216691:CAS:528:DC%2BC2sXhsVelur7L KurashigeWNiihoriYSharmaSNegishiYPrecise synthesis, functionalization and application of thiolate-protected gold clustersCoord. Chem. Rev.2016320-3212382501:CAS:528:DC%2BC28XksVWrtLo%3D Yuan, S. -F., Guan, Z. -J., Liu, W. -D. & Wang, Q. -M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 10, 4032 (2019). SheldrickGMA short history of SHELXActa Cryst. A2008641121221:CAS:528:DC%2BD2sXhsVGhurzO1370.52003 Nonappa, Lahtinen, T., Haataja, J. S., Tero, T. R., Häkkinen, H. & Ikkala, O. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: From 2D colloidal crystals to spherical capsids, Angew. Chem. Int. Ed. 55, 16035–16038 (2017). KumaraCGagnonKJDassAX-ray crystal structure of Au38-xAgx(SCH2CH2Ph)24 alloy nanomoleculesJ. Phys. Chem. Lett.20156122312281:CAS:528:DC%2BC2MXkvF2hsr4%3D26262976 YuanPEther-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applicationsAngew. Chem. Int. Ed.2019588358391:CAS:528:DC%2BC1cXisVKqsLnP TalgornESupercrystals of cdse quantum dots with high charge mobility and efficient electron transfer to TiO2ACS Nano20104172317311:CAS:528:DC%2BC3cXisVaitro%3D20184385 YanHHybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assemblyNat. Mater.2017163493552017JMMM..421..349Y1:CAS:528:DC%2BC28XitFGitLvP28024157 JinRZengCZhouMChenYAtomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunitiesChem. Rev.201611610346104131:CAS:528:DC%2BC28XhsVeksLnJ27585252 AlivisatosAPOrganization of “nanocrystal molecules” using DNANature19963826096111996Natur.382..609A1:CAS:528:DyaK28XltVWqsrY%3D8757130 WuZContribution of metal defects in the assembly induced emission of Cu nanoclustersJ. Am. Chem. Soc.2017139431843211:CAS:528:DC%2BC2sXksFamurY%3D28318238 ZhangBSalassaGBurgiTSilver migration between Au38(SC2H4Ph)24 and doped AgxAu38-x(SC2H4Ph)24 nanoclustersChem. Commun.201652920592071:CAS:528:DC%2BC28XhtVSksLzP YanJTeoBKZhengNSurface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysisAcc. Chem. Res.201851308430931:CAS:528:DC%2BC1cXitFyqtbfO30433756 KangXZhuMIntra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclustersCoord. Chem. Rev.201939413840324621:CAS:528:DC%2BC1MXhtVKnsLbO JiangYSolvent influence on the role of thiols in growth of thiols-capped au nanocrystalsJ. Phys. Chem. C.20141187147191:CAS:528:DC%2BC3sXhvFCjurzP JadzinskyPDCaleroGAckersonCJBushnellDAKornbergRDStructure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolutionScience20073184304332007Sci...318..430J1:CAS:528:DC%2BD2sXhtFOjtb%2FP17947577 WalterMTime-dependent density-functional theory in the projector augmented-wave methodJ. Chem. Phys.20081282441012008JChPh.128x4101W18601311 WangZYAtomically precise site-specific tailoring and directional assembly of superatomic silver nanoclustersJ. Am. Chem. Soc.2018140106910761:CAS:528:DC%2BC1cXit1Whug%3D%3D29297682 MonkhorstHJPackJDSpecial points for Brillouin-zone integrationsPhys. Rev. B19761351881976PhRvB..13.5188M418801 De NardiMGold nanowired: a linear (Au25)n polymer from Au25 molecular clustersACS Nano201488505851225088331 WuX-HGuest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworksAdv. Sci.201961801304 LiuYYaoDZhangHSelf-assembly driven aggregation-induced emission of copper nanoclusters: a novel technology for lightingACS Appl. Mater. Interfaces20181012071120801:CAS:528:DC%2BC2sXhvVSrtb7M29144119 YamamotoYNishinaNGold-catalyzed intermolecular hydroamination of allenes: first example of the use of an aliphatic amine in hydroaminationSynlett20071117671770 WangQMMakTCWArgentophilicity and solvent-induced structural diversity in double salts of silver acetylide with silver perfluoroalkyl carboxylatesJ. Am. Chem. Soc.2001123759476001:CAS:528:DC%2BD3MXltFCmsrw%3D11480980 ThanthirigeVDSinnEWiederrechtGPRamakrishnaGUnusual solvent effects on optical properties of bi-icosahedral Au25 clustersJ. Phys. Chem. C.2017121353035391:CAS:528:DC%2BC2sXhtlajt7k%3D YaoQRevealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approachNat. Commun.201892018NatCo...9.1979Y297737855958061 Alhilaly, M. J. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 141, 9585–9592 (2019). TsukudaTToward an atomic-level understanding of size-specific properties of protected and stabilized gold clustersBull. Chem. Soc. Jpn.2012851511681:CAS:528:DC%2BC38XjvVejtb4%3D WalterMA unified view of ligand-protected gold clusters as superatom complexesProc. Natl Acad. Sci. U.S.A2008105915791622008PNAS..105.9157W1:CAS:528:DC%2BD1cXosFaksLY%3D185994432442568 PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10062328 WeerawardeneKLDMHäkkinenHAikensCMConnections between theory and experiment for gold and silver nanoclustersAnnu. Rev. Phys. Chem.2018692052292018ARPC...69..205W1:CAS:528:DC%2BC1cXjslOhs7w%3D29490202 HuangRWHypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic frameworkNat. Chem.201796896971:CAS:528:DC%2BC2sXitlGitro%3D28644463 EnkovaaraJElectronic structure calculations using GPAW: a real-space implementation of the projector-augmented wave methodJ. Phys. Condens. Matter2010222532022010JPCM...22y3202E1:STN:280:DC%2BC3M3lvVansg%3D%3D21393795 LiYHexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclustersJ. Am. Chem. Soc.201213417997180031:CAS:528:DC%2BC38XhsV2rs7vF23051636 HuangRWTandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembledMater. Angew. Chem. Int. Ed.201857856085661:CAS:528:DC%2BC1cXhtFemur%2FN GalchenkoMBlackAHeymannLKlinkeCField effect and photoconduction in Au25 nanoclusters filmsAdv. Mater.201931e190068430908709 ChuI-HCharge transport in a quantum dot supercrystalJ. Phys. Chem. C.201111521409214151:CAS:528:DC%2BC3MXhtlSlurzF BrustMSchriffinDJBethellDKielyCJNovel gold-dithiol nano-networks with non-metallic electronic propertiesAdv. Mater.199577957971:CAS:528:DyaK2MXotlaqtLw%3D TsukudaTHäkkinenHProtected Metal Clusters: From Fundamentals to Applications2015AmsterdamElsevier AntonelloSDaineseTPanFRissanenKMaranFElectrocrystallization of monolayer-protected gold clusters: opening the door to quality, quantity, and new structuresJ. Am. Chem. Soc.2017139416841741:CAS:528:DC%2BC2sXktVSisbg%3D28281762 ChakrabortyIPradeepTAtomically precise clusters of noble metals: emerging link between atoms and nanoparticlesChem. Rev.2017117820882711:CAS:528:DC%2BC2sXpt1Cnu70%3D28586213 LiQModulating the hierarchical fibrous assembly of Au nanoparticles with atomic precisionNat. Commun.201892018NatCo...9.3871L302501606155310 HäkkinenHThe gold-sulfur interface at the nanoscaleNat. Chem.2012444322614378 DolomanovOVBourhisLJGildeaRJHowardJAKPuschmannHOLEX2: a complete structure solution, refinement and analysis programJ. Appl. Cryst.2009423393411:CAS:528:DC%2BD1MXjsFSnsbg%3D KumaraCDassAAuAg alloy nanomolecules with 38 metal atomsNanoscale20124408440862012Nanos...4.4084K1:CAS:528:DC%2BC38XptlWnur8%3D22370910 JiangHHuWThe emergence of organic single-crystal electronicsAngew. Chem. Int. Ed.202059140814281:CAS:528:DC%2BC1MXitFantbbL YaoQToward total synthesis of thiolate-protected metal nanoclustersAcc. Chem. Res.20185113381:CAS:528:DC%2BC1cXpvFKkur0%3D29792422 WenZR[Au7Ag9(dppf)3(CF3CO2)7BF4]n: a linear nanocluster polymer from molecular Au7Ag8 clusters covalently linked by silver atomsChem. Comm.20195512992129951:CAS:528:DC%2BC1MXhvFWkur3P31608354 HeavenMWDassAWhitePSHoltKMMurrayRWCrystal structure of the gold nanoparticle N(C8H17)4 Au25(SCH2CH2Ph)18J. Am. Chem. Soc.2008130375437551:CAS:528:DC%2BD1cXivVSktLY%3D18321116 DimitrakopoulosCDMalenfantPROrganic thin film transistors for large area electronicsAdv. Mater.200214991171:CAS:528:DC%2BD38XhtVartbY%3D LahtinenTCovalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au~250(p-MBA)nNanoscale2016818665186741:CAS:528:DC%2BC28XhsFeqsrbE27714130 MirkinCAA DNA-based method for rationally assembling nanoparticles into macroscopic materialsNature19963826076091996Natur.382..607M1:CAS:528:DyaK28XltVWqsrk%3D8757129 Xu, G. T. et al. Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates: between catenane and ring-in-ring structures. Angew. Chem. Int. Ed. 58, 16297–16306 (2019). M Galchenko (16062_CR36) 2019; 31 R Jin (16062_CR4) 2016; 116 M Zhu. (16062_CR20) 2008; 130 OV Dolomanov (16062_CR61) 2009; 42 C Kumara (16062_CR50) 2012; 4 W Kurashige (16062_CR5) 2016; 320-321 Z Wu (16062_CR30) 2015; 137 H Yan (16062_CR37) 2017; 16 CD Dimitrakopoulos (16062_CR55) 2002; 14 I-H Chu (16062_CR57) 2011; 115 J Akola (16062_CR19) 2008; 130 M Walter (16062_CR21) 2008; 105 T Lahtinen (16062_CR22) 2016; 8 X Kang (16062_CR7) 2019; 394 S Antonello (16062_CR25) 2017; 139 16062_CR15 J Yan (16062_CR6) 2018; 51 Y Yamamoto (16062_CR59) 2007; 11 JP Perdew (16062_CR53) 1996; 77 HJ Monkhorst (16062_CR54) 1976; 13 KLDM Weerawardene (16062_CR9) 2018; 69 P Yuan (16062_CR29) 2019; 58 PD Jadzinsky (16062_CR17) 2007; 318 J Chai (16062_CR47) 2017; 121 Y Li (16062_CR41) 2012; 134 16062_CR44 AS Blum (16062_CR13) 2004; 4 M Walter (16062_CR52) 2008; 128 X-H Wu (16062_CR35) 2019; 6 16062_CR45 E Talgorn (16062_CR58) 2010; 4 T Tsukuda (16062_CR2) 2012; 85 Q Yao (16062_CR8) 2018; 51 MW Heaven (16062_CR18) 2008; 130 C Kumara (16062_CR49) 2015; 6 B Zhang (16062_CR48) 2016; 52 VD Thanthirige (16062_CR40) 2017; 121 M De Nardi (16062_CR24) 2014; 8 AP Alivisatos (16062_CR12) 1996; 382 Z Wu (16062_CR32) 2017; 139 CA Mirkin (16062_CR11) 1996; 382 Q Li (16062_CR26) 2018; 9 OK Zahr (16062_CR14) 2012; 12 RW Huang (16062_CR33) 2017; 9 H Jiang (16062_CR56) 2020; 59 GM Sheldrick (16062_CR60) 2008; 64 T Tsukuda (16062_CR1) 2015 J Enkovaara (16062_CR51) 2010; 22 M Brust (16062_CR10) 1995; 7 Y Liu (16062_CR31) 2018; 10 ZY Wang (16062_CR27) 2018; 140 QM Wang (16062_CR39) 2001; 123 RW Huang (16062_CR42) 2018; 57 Q Yao (16062_CR46) 2018; 9 Y Jiang (16062_CR43) 2014; 118 Z Lei (16062_CR34) 2014; 53 ZR Wen (16062_CR38) 2019; 55 I Chakraborty (16062_CR3) 2017; 117 H Häkkinen (16062_CR16) 2012; 4 16062_CR23 16062_CR28 |
References_xml | – reference: LiQModulating the hierarchical fibrous assembly of Au nanoparticles with atomic precisionNat. Commun.201892018NatCo...9.3871L302501606155310 – reference: TalgornESupercrystals of cdse quantum dots with high charge mobility and efficient electron transfer to TiO2ACS Nano20104172317311:CAS:528:DC%2BC3cXisVaitro%3D20184385 – reference: GalchenkoMBlackAHeymannLKlinkeCField effect and photoconduction in Au25 nanoclusters filmsAdv. Mater.201931e190068430908709 – reference: YamamotoYNishinaNGold-catalyzed intermolecular hydroamination of allenes: first example of the use of an aliphatic amine in hydroaminationSynlett20071117671770 – reference: WangZYAtomically precise site-specific tailoring and directional assembly of superatomic silver nanoclustersJ. Am. Chem. Soc.2018140106910761:CAS:528:DC%2BC1cXit1Whug%3D%3D29297682 – reference: ZhangBSalassaGBurgiTSilver migration between Au38(SC2H4Ph)24 and doped AgxAu38-x(SC2H4Ph)24 nanoclustersChem. Commun.201652920592071:CAS:528:DC%2BC28XhtVSksLzP – reference: TsukudaTToward an atomic-level understanding of size-specific properties of protected and stabilized gold clustersBull. Chem. Soc. Jpn.2012851511681:CAS:528:DC%2BC38XjvVejtb4%3D – reference: WenZR[Au7Ag9(dppf)3(CF3CO2)7BF4]n: a linear nanocluster polymer from molecular Au7Ag8 clusters covalently linked by silver atomsChem. Comm.20195512992129951:CAS:528:DC%2BC1MXhvFWkur3P31608354 – reference: LiYHexane-driven icosahedral to cuboctahedral structure transformation of gold nanoclustersJ. Am. Chem. Soc.201213417997180031:CAS:528:DC%2BC38XhsV2rs7vF23051636 – reference: YaoQRevealing isoelectronic size conversion dynamics of metal nanoclusters by a noncrystallization approachNat. Commun.201892018NatCo...9.1979Y297737855958061 – reference: Zhu.MCorrelating the crystal structure of a thiol-protected Au25 cluster and optical propertiesJ. Am. Chem. Soc.2008130588358851:CAS:528:DC%2BD1cXksFyksrg%3D18407639 – reference: MonkhorstHJPackJDSpecial points for Brillouin-zone integrationsPhys. Rev. B19761351881976PhRvB..13.5188M418801 – reference: HäkkinenHThe gold-sulfur interface at the nanoscaleNat. Chem.2012444322614378 – reference: KumaraCGagnonKJDassAX-ray crystal structure of Au38-xAgx(SCH2CH2Ph)24 alloy nanomoleculesJ. Phys. Chem. Lett.20156122312281:CAS:528:DC%2BC2MXkvF2hsr4%3D26262976 – reference: AntonelloSDaineseTPanFRissanenKMaranFElectrocrystallization of monolayer-protected gold clusters: opening the door to quality, quantity, and new structuresJ. Am. Chem. Soc.2017139416841741:CAS:528:DC%2BC2sXktVSisbg%3D28281762 – reference: WalterMA unified view of ligand-protected gold clusters as superatom complexesProc. Natl Acad. Sci. U.S.A2008105915791622008PNAS..105.9157W1:CAS:528:DC%2BD1cXosFaksLY%3D185994432442568 – reference: Xu, G. T. et al. Solvent-induced cluster-to-cluster transformation of homoleptic gold(I) thiolates: between catenane and ring-in-ring structures. Angew. Chem. Int. Ed. 58, 16297–16306 (2019). – reference: Nonappa, Lahtinen, T., Haataja, J. S., Tero, T. R., Häkkinen, H. & Ikkala, O. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: From 2D colloidal crystals to spherical capsids, Angew. Chem. Int. Ed. 55, 16035–16038 (2017). – reference: WuX-HGuest-triggered aggregation-induced emission in silver chalcogenolate cluster metal-organic frameworksAdv. Sci.201961801304 – reference: EnkovaaraJElectronic structure calculations using GPAW: a real-space implementation of the projector-augmented wave methodJ. Phys. Condens. Matter2010222532022010JPCM...22y3202E1:STN:280:DC%2BC3M3lvVansg%3D%3D21393795 – reference: WuZContribution of metal defects in the assembly induced emission of Cu nanoclustersJ. Am. Chem. Soc.2017139431843211:CAS:528:DC%2BC2sXksFamurY%3D28318238 – reference: ZahrOKBlumASSolution phase gold nanorings on a viral protein templateNano Lett.2012126296332012NanoL..12..629Z1:CAS:528:DC%2BC3MXhs1OjtLbF22200347 – reference: DolomanovOVBourhisLJGildeaRJHowardJAKPuschmannHOLEX2: a complete structure solution, refinement and analysis programJ. Appl. Cryst.2009423393411:CAS:528:DC%2BD1MXjsFSnsbg%3D – reference: ChuI-HCharge transport in a quantum dot supercrystalJ. Phys. Chem. C.201111521409214151:CAS:528:DC%2BC3MXhtlSlurzF – reference: KangXZhuMIntra-cluster growth meets inter-cluster assembly: The molecular and supramolecular chemistry of atomically precise nanoclustersCoord. Chem. Rev.201939413840324621:CAS:528:DC%2BC1MXhtVKnsLbO – reference: WeerawardeneKLDMHäkkinenHAikensCMConnections between theory and experiment for gold and silver nanoclustersAnnu. Rev. Phys. Chem.2018692052292018ARPC...69..205W1:CAS:528:DC%2BC1cXjslOhs7w%3D29490202 – reference: HuangRWHypersensitive dual-function luminescence switching of a silver-chalcogenolate cluster-based metal-organic frameworkNat. Chem.201796896971:CAS:528:DC%2BC2sXitlGitro%3D28644463 – reference: LeiZPeiX-LJiangZ-GWangQ-MCluster linker approach: preparation of a luminescent porous framework with NbO topology by linking silver ions with Gold(I) clustersAngew. Chem. Int. Ed.20145312771127751:CAS:528:DC%2BC2cXhsVWqtb3N – reference: SheldrickGMA short history of SHELXActa Cryst. A2008641121221:CAS:528:DC%2BD2sXhsVGhurzO1370.52003 – reference: JiangHHuWThe emergence of organic single-crystal electronicsAngew. Chem. Int. Ed.202059140814281:CAS:528:DC%2BC1MXitFantbbL – reference: WuZAssembly-induced enhancement of Cu nanoclusters luminescence with mechanochromic propertyJ. Am. Chem. Soc.201513712906129131:CAS:528:DC%2BC2MXhsFersr3L26397821 – reference: De NardiMGold nanowired: a linear (Au25)n polymer from Au25 molecular clustersACS Nano201488505851225088331 – reference: YanJTeoBKZhengNSurface chemistry of atomically precise coinage-metal nanoclusters: from structural control to surface reactivity and catalysisAcc. Chem. Res.201851308430931:CAS:528:DC%2BC1cXitFyqtbfO30433756 – reference: ThanthirigeVDSinnEWiederrechtGPRamakrishnaGUnusual solvent effects on optical properties of bi-icosahedral Au25 clustersJ. Phys. Chem. C.2017121353035391:CAS:528:DC%2BC2sXhtlajt7k%3D – reference: AlivisatosAPOrganization of “nanocrystal molecules” using DNANature19963826096111996Natur.382..609A1:CAS:528:DyaK28XltVWqsrY%3D8757130 – reference: Brust, M. et al. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chem. Commun. 801–802 (1994). – reference: HeavenMWDassAWhitePSHoltKMMurrayRWCrystal structure of the gold nanoparticle N(C8H17)4 Au25(SCH2CH2Ph)18J. Am. Chem. Soc.2008130375437551:CAS:528:DC%2BD1cXivVSktLY%3D18321116 – reference: BlumASCowpea mosaic virus as a scaffold for 3D patterning of gold nanoparticlesNano Lett.200448678702004NanoL...4..867B1:CAS:528:DC%2BD2cXitFSjt78%3D – reference: MirkinCAA DNA-based method for rationally assembling nanoparticles into macroscopic materialsNature19963826076091996Natur.382..607M1:CAS:528:DyaK28XltVWqsrk%3D8757129 – reference: ChakrabortyIPradeepTAtomically precise clusters of noble metals: emerging link between atoms and nanoparticlesChem. Rev.2017117820882711:CAS:528:DC%2BC2sXpt1Cnu70%3D28586213 – reference: YanHHybrid metal-organic chalcogenide nanowires with electrically conductive inorganic core through diamondoid-directed assemblyNat. Mater.2017163493552017JMMM..421..349Y1:CAS:528:DC%2BC28XitFGitLvP28024157 – reference: WangQMMakTCWArgentophilicity and solvent-induced structural diversity in double salts of silver acetylide with silver perfluoroalkyl carboxylatesJ. Am. Chem. Soc.2001123759476001:CAS:528:DC%2BD3MXltFCmsrw%3D11480980 – reference: AkolaJOn the structure of thiolate-protected Au25J. Am. Chem. Soc.2008130375637571:CAS:528:DC%2BD1cXivVSktLo%3D18321117 – reference: DimitrakopoulosCDMalenfantPROrganic thin film transistors for large area electronicsAdv. Mater.200214991171:CAS:528:DC%2BD38XhtVartbY%3D – reference: JadzinskyPDCaleroGAckersonCJBushnellDAKornbergRDStructure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolutionScience20073184304332007Sci...318..430J1:CAS:528:DC%2BD2sXhtFOjtb%2FP17947577 – reference: TsukudaTHäkkinenHProtected Metal Clusters: From Fundamentals to Applications2015AmsterdamElsevier – reference: LiuYYaoDZhangHSelf-assembly driven aggregation-induced emission of copper nanoclusters: a novel technology for lightingACS Appl. Mater. Interfaces20181012071120801:CAS:528:DC%2BC2sXhvVSrtb7M29144119 – reference: HuangRWTandem silver cluster isomerism and mixed linkers to modulate the photoluminescence of cluster-assembledMater. Angew. Chem. Int. Ed.201857856085661:CAS:528:DC%2BC1cXhtFemur%2FN – reference: PerdewJPBurkeKErnzerhofMGeneralized gradient approximation made simplePhys. Rev. Lett.199677386538681996PhRvL..77.3865P1:CAS:528:DyaK28XmsVCgsbs%3D10062328 – reference: WalterMTime-dependent density-functional theory in the projector augmented-wave methodJ. Chem. Phys.20081282441012008JChPh.128x4101W18601311 – reference: KumaraCDassAAuAg alloy nanomolecules with 38 metal atomsNanoscale20124408440862012Nanos...4.4084K1:CAS:528:DC%2BC38XptlWnur8%3D22370910 – reference: JinRZengCZhouMChenYAtomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunitiesChem. Rev.201611610346104131:CAS:528:DC%2BC28XhsVeksLnJ27585252 – reference: Yuan, S. -F., Guan, Z. -J., Liu, W. -D. & Wang, Q. -M. Solvent-triggered reversible interconversion of all-nitrogen-donor-protected silver nanoclusters and their responsive optical properties. Nat. Commun. 10, 4032 (2019). – reference: KurashigeWNiihoriYSharmaSNegishiYPrecise synthesis, functionalization and application of thiolate-protected gold clustersCoord. Chem. Rev.2016320-3212382501:CAS:528:DC%2BC28XksVWrtLo%3D – reference: LahtinenTCovalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au~250(p-MBA)nNanoscale2016818665186741:CAS:528:DC%2BC28XhsFeqsrbE27714130 – reference: ChaiJX-ray crystal structure and optical properties of Au38–xCux(2,4-(CH3)2C6H3S)24 (x=0–6) alloy nanoclusterJ. Phys. Chem. C.201712121665216691:CAS:528:DC%2BC2sXhsVelur7L – reference: YuanPEther-soluble Cu53 nanoclusters as an effective precursor of high-quality CuI films for optoelectronic applicationsAngew. Chem. Int. Ed.2019588358391:CAS:528:DC%2BC1cXisVKqsLnP – reference: YaoQToward total synthesis of thiolate-protected metal nanoclustersAcc. Chem. Res.20185113381:CAS:528:DC%2BC1cXpvFKkur0%3D29792422 – reference: JiangYSolvent influence on the role of thiols in growth of thiols-capped au nanocrystalsJ. Phys. Chem. C.20141187147191:CAS:528:DC%2BC3sXhvFCjurzP – reference: Alhilaly, M. J. et al. Assembly of atomically precise silver nanoclusters into nanocluster-based frameworks. J. Am. Chem. Soc. 141, 9585–9592 (2019). – reference: BrustMSchriffinDJBethellDKielyCJNovel gold-dithiol nano-networks with non-metallic electronic propertiesAdv. Mater.199577957971:CAS:528:DyaK2MXotlaqtLw%3D – ident: 16062_CR28 doi: 10.1021/jacs.9b02486 – volume: 13 start-page: 5188 year: 1976 ident: 16062_CR54 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 11 start-page: 1767 year: 2007 ident: 16062_CR59 publication-title: Synlett doi: 10.1055/s-2007-984501 – volume: 16 start-page: 349 year: 2017 ident: 16062_CR37 publication-title: Nat. Mater. doi: 10.1038/nmat4823 – volume: 121 start-page: 21665 year: 2017 ident: 16062_CR47 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b05074 – volume: 6 start-page: 1801304 year: 2019 ident: 16062_CR35 publication-title: Adv. Sci. doi: 10.1002/advs.201801304 – volume: 128 start-page: 244101 year: 2008 ident: 16062_CR52 publication-title: J. Chem. Phys. doi: 10.1063/1.2943138 – volume: 318 start-page: 430 year: 2007 ident: 16062_CR17 publication-title: Science doi: 10.1126/science.1148624 – volume: 9 year: 2018 ident: 16062_CR46 publication-title: Nat. Commun. – volume: 123 start-page: 7594 year: 2001 ident: 16062_CR39 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0043441 – volume: 58 start-page: 835 year: 2019 ident: 16062_CR29 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201812236 – volume: 9 start-page: 689 year: 2017 ident: 16062_CR33 publication-title: Nat. Chem. doi: 10.1038/nchem.2718 – volume: 55 start-page: 12992 year: 2019 ident: 16062_CR38 publication-title: Chem. Comm. doi: 10.1039/C9CC05924E – volume: 42 start-page: 339 year: 2009 ident: 16062_CR61 publication-title: J. Appl. Cryst. doi: 10.1107/S0021889808042726 – volume: 57 start-page: 8560 year: 2018 ident: 16062_CR42 publication-title: Mater. Angew. Chem. Int. Ed. doi: 10.1002/anie.201804059 – volume: 105 start-page: 9157 year: 2008 ident: 16062_CR21 publication-title: Proc. Natl Acad. Sci. U.S.A doi: 10.1073/pnas.0801001105 – volume: 53 start-page: 12771 year: 2014 ident: 16062_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201406761 – ident: 16062_CR45 doi: 10.1002/anie.201909980 – ident: 16062_CR23 doi: 10.1002/anie.201609036 – volume: 116 start-page: 10346 year: 2016 ident: 16062_CR4 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00703 – volume: 121 start-page: 3530 year: 2017 ident: 16062_CR40 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.6b10948 – volume: 4 start-page: 4084 year: 2012 ident: 16062_CR50 publication-title: Nanoscale doi: 10.1039/c2nr11781a – volume: 130 start-page: 5883 year: 2008 ident: 16062_CR20 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801173r – volume: 8 start-page: 18665 year: 2016 ident: 16062_CR22 publication-title: Nanoscale doi: 10.1039/C6NR05267C – volume: 137 start-page: 12906 year: 2015 ident: 16062_CR30 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06550 – volume: 382 start-page: 609 year: 1996 ident: 16062_CR12 publication-title: Nature doi: 10.1038/382609a0 – ident: 16062_CR15 doi: 10.1039/C39940000801 – volume: 22 start-page: 253202 year: 2010 ident: 16062_CR51 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/22/25/253202 – volume: 64 start-page: 112 year: 2008 ident: 16062_CR60 publication-title: Acta Cryst. A doi: 10.1107/S0108767307043930 – volume: 140 start-page: 1069 year: 2018 ident: 16062_CR27 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11338 – volume: 8 start-page: 8505 year: 2014 ident: 16062_CR24 publication-title: ACS Nano doi: 10.1021/nn5031143 – volume: 51 start-page: 1338 year: 2018 ident: 16062_CR8 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00065 – volume: 51 start-page: 3084 year: 2018 ident: 16062_CR6 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.8b00371 – ident: 16062_CR44 doi: 10.1038/s41467-019-11988-y – volume: 14 start-page: 99 year: 2002 ident: 16062_CR55 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9 – volume: 4 start-page: 867 year: 2004 ident: 16062_CR13 publication-title: Nano Lett. doi: 10.1021/nl0497474 – volume: 6 start-page: 1223 year: 2015 ident: 16062_CR49 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b00270 – volume: 85 start-page: 151 year: 2012 ident: 16062_CR2 publication-title: Bull. Chem. Soc. Jpn. doi: 10.1246/bcsj.20110227 – volume: 139 start-page: 4168 year: 2017 ident: 16062_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00568 – volume: 7 start-page: 795 year: 1995 ident: 16062_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.19950070907 – volume: 394 start-page: 1 year: 2019 ident: 16062_CR7 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2019.05.015 – volume: 12 start-page: 629 year: 2012 ident: 16062_CR14 publication-title: Nano Lett. doi: 10.1021/nl203368v – volume: 130 start-page: 3756 year: 2008 ident: 16062_CR19 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800594p – volume: 52 start-page: 9205 year: 2016 ident: 16062_CR48 publication-title: Chem. Commun. doi: 10.1039/C6CC04469G – volume: 10 start-page: 12071 year: 2018 ident: 16062_CR31 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b13940 – volume: 134 start-page: 17997 year: 2012 ident: 16062_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja306923a – volume: 9 year: 2018 ident: 16062_CR26 publication-title: Nat. Commun. – volume-title: Protected Metal Clusters: From Fundamentals to Applications year: 2015 ident: 16062_CR1 – volume: 130 start-page: 3754 year: 2008 ident: 16062_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800561b – volume: 118 start-page: 714 year: 2014 ident: 16062_CR43 publication-title: J. Phys. Chem. C. doi: 10.1021/jp408926n – volume: 69 start-page: 205 year: 2018 ident: 16062_CR9 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-052516-050932 – volume: 117 start-page: 8208 year: 2017 ident: 16062_CR3 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00769 – volume: 115 start-page: 21409 year: 2011 ident: 16062_CR57 publication-title: J. Phys. Chem. C. doi: 10.1021/jp206526s – volume: 4 start-page: 443 year: 2012 ident: 16062_CR16 publication-title: Nat. Chem. doi: 10.1038/nchem.1352 – volume: 320-321 start-page: 238 year: 2016 ident: 16062_CR5 publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2016.02.013 – volume: 382 start-page: 607 year: 1996 ident: 16062_CR11 publication-title: Nature doi: 10.1038/382607a0 – volume: 4 start-page: 1723 year: 2010 ident: 16062_CR58 publication-title: ACS Nano doi: 10.1021/nn901709a – volume: 31 start-page: e1900684 year: 2019 ident: 16062_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201900684 – volume: 77 start-page: 3865 year: 1996 ident: 16062_CR53 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 59 start-page: 1408 year: 2020 ident: 16062_CR56 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201814439 – volume: 139 start-page: 4318 year: 2017 ident: 16062_CR32 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00773 |
SSID | ssj0000391844 |
Score | 2.5984454 |
Snippet | Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior.... Bottom-up design of functional device components based on nanometer-sized building blocks relies on accurate control of their self-assembly behavior. Here, the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2229 |
SubjectTerms | 119/118 639/925/357/1016 639/925/357/354 639/925/357/995 Anisotropy Atomic structure Clusters Crystal structure Crystals Density functional theory Design Field effect transistors Gold Hole mobility Humanities and Social Sciences multidisciplinary Nanoclusters Nanomaterials Nanotechnology P-type semiconductors Polymerization Polymers Properties (attributes) Science Science (multidisciplinary) Self-assembly Semiconductor devices Silver Single crystals Solvents X-ray diffraction |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcEOUZKMhI3MBq1q_ER0BUFRJcoFJvlp04UClNVmT30Bv_of-QX8KMnV26PC9cVqu1o53MwzOjGX8D8KypCHN9IXi0beDKa8N9UxseI36PmDeL1E347r05PlFvT_XplVFf1BOW4YEz4w6rWNWlpXKRNirE1lvrQxelNZ3W2gc6fdHnXUmm0hksLaYuar4lU8r6cFLpTKBsaYFBu-BmxxMlwP7fRZm_Nkv-VDFNjujoFtycI0j2MlO-D9ficBuu55mSF3dg-WHsqYeRpzshGE8yDI_jeegv2NgxTLHP-ZIQLabIPo19--3r5XRG3dFs8MPY9GsCTpjYamQTtc2PA-HBIh1sHCJvaRRAhvFgGOlm5b0LJ0dvPr4-5vNYBd7gi684OuiI_PNS-7Kt8aNsjPVl8KEqOx8b5Q2atY64TXsRulY0XRWEDKK1En2bvAd7A_7pA2AekzeFi6ZSSvkSFaIT0lPOqQWG7aGAxYbFrpkxx2n0Re9S7VvWLovFoVhcEoszBTzfPrPMiBt_3f2KJLfdSWjZ6QfUITfrkPuXDhVwsJG7m014cnTpF7NjLW0BT7fLaHxUUfFDHNd5Ty0p7SrgflaTLSWS-o1qgU9XOwq0Q-ruynD2OQF8U2kcfVABLzaq9oOsP7Pi4f9gxSO4IchGqKXTHMDe6ss6PsawaxWeJAv7DsLoKx4 priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6tZv5KcECCqCgkuUGlvlu04pVIaL83uoTf-A_-QX8KM4021PHpZrdaOduKZ8cx4xt8Q8tJXiLm-4Cw0rWPSKs2srzULAb4HiJt5qib89FkfHcuPS7XMB25jLqvc7olpo26jxzPyA7yDCcGKEs2b1XeGXaMwu5pbaFwnNxC6DEu6qmU1n7Eg-nktZb4rU4r6YJRpZ8CYaQGuO2d6xx4l2P5_-Zp_l0z-kTdN5ujwDrmd_Uj6dmL8XXItDPfIzamz5MV9svoSe6xkZOlmCHiVFJzkcOb6Cxo7CoH2GVshrsUY6Ens218_fo6nWCNNBztE328QPmGk60hHLJ6PA6LCAh00DoG12BBgAvOg4O9OIvyAHB9--Pr-iOXmCszDi68ZmOkQRGOFsmVbw0fpdWNLZ11VdjZ4aTUotwowTVnuupb7rnJcON42AiyceEj2BvjTx4RaCOEkDOpKSmlLEIuOC4uRp-LgvLuCLLZLbHxGHscGGL1JGXBRm4ktBthiEluMLsir-ZnVhLtx5ex3yLl5JmJmpx_i-YnJKmiqUNVlg4lHpaULrW0a6zpYA90ppSyQub_lu8mKPJpLsSvIi3kYVBDzKnYIcTPNqQUGXwV5NInJTInAqqOaw9PVjgDtkLo7Mpx-SzDfmCAHS1SQ11tRuyTr_0vx5Oq3eEpucZR-LNnU-2Rvfb4Jz8CtWrvnSXd-A-LhIk0 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6VIiQuiP-mFGQkbmCRtWMnObYrqgoJLlCpN8tOnFIpjVfN7qE33oE35Ek64_yghYLEZRWtx8rEM5OZyYw_A7ypcsJcXwjuy9rxzCrNbVVo7j1ee8ybRewm_PRZn5xmH8_U2Q6IaS9MbNqPkJbxNT11h73vs2jSlOwsMOYWXN-BuwTdTlq91Mv5uwohnhdZNu6PSWVxy9QtHxSh-m-LL_9sk_ytVhpd0PFDeDDGjuxw4PYR7PjuMdwbTpO8fgKrL6Gl7kUed4NgJMkwMPaXrr1moWGYXF_yFWFZ9J6dh7b--f1Hf0F90ayzXajaDUEm9GwdWE8N86EjJFjkg4XO85oOARgAPBjGuIPaPoXT4w9flyd8PFCBV_jga46u2XtZWqlsWhf4k1a6tKmzLk8b66vMajRo5ZFMWeGaWlRN7oR0oi4lejX5DHY7vOkeMItpW4aDGkWQ2RRVoRHSUrapBAbsLoHFtMSmGtHG6dCL1sSqtyzMIBaDYjFRLEYn8HaesxqwNv5JfUSSmykJJzv-Ea7Ozag3Jvd5kZZUbFQ6c762ZWldg2ugG6WURTYPJrmb0Xh7Q9t9MS9Wskzg9TyMZke1FNv5sBloCkkJVwLPBzWZOZHUaVQInJ1vKdAWq9sj3cW3CO1NRXH0Pgm8m1TtF1t_X4r9_yN_AfcFWQO1beoD2F1fbfxLDK3W7lW0pRsh8CAD priority: 102 providerName: Springer Nature |
Title | Solvent-mediated assembly of atom-precise gold–silver nanoclusters to semiconducting one-dimensional materials |
URI | https://link.springer.com/article/10.1038/s41467-020-16062-6 https://www.ncbi.nlm.nih.gov/pubmed/32376829 https://www.proquest.com/docview/2399211539 https://www.proquest.com/docview/2399830306 https://pubmed.ncbi.nlm.nih.gov/PMC7203111 https://doaj.org/article/7e78097684564beda99abfe396f555ab |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kjMpIvIEhtWM7eUCoq1amSpsQo1LfIjtxxqQsGU0rrf89d05SVCiIl7SKnfbiu8vd5c6_I-RNphFzfciZS3LLIiMVM1msmHPw3UHczH014fmFOptF07mc75G-3VG3gM3O0A77Sc0W5fu7H-tPoPAf2y3j8Ycm8uqOgdAQ_HHO1D45BMukUVHPO3ffP5lFAgENJpp5GA0Z2G7R7aPZ_TNbtspD-u_yQ_8sp_wtp-pN1eQhedD5mHTUCsUjsueqx-Re23Vy_YRUl3WJVY7M7xoBj5OCA-1ubLmmdUEhCL9ht4h50Th6VZc5a66xeppWpqqzcoXACg1d1rTBsvq6QrxYoILWlWM5tgpoYT4oeMKtcD8ls8npt_EZ69ousAxue8nAgDsnEiOkCfMYDmGmEhNaY3VYGJdFRoHaSwfTpOG2yHlWaMuF5XkiwPaJZ-Sggj99QaiB4C6CQaWjKDIhCEzBhcGYVHJw621Ahv0Cp1mHSY6tMcrU58ZFnLZMSYEpqWdKqgLydnPNbYvI8c_ZJ8i3zUxE0_Yn6sVV2ilnqp2OwwRTklJF1uUmSYwtYA1UIaU0QOZxz_W0l9AUNwVD9CxFEpDXm2FQTsy4mMrVq3ZOLDAsC8jzVkg2lAisR4o5XK23xGeL1O2R6vq7BwDH1DnYqIC86wXtF1l_X4qj_yDzJbnPUQGwolMdk4PlYuVegde1tAOyr-cajvHk84AcjkbTyyl8npxefPkKZ8dqPPDvMwZe5X4CIUIuQw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFazfiU5IMSr2tLHhVbam7ETp1RKk6XZFdob_4H_wY_ilzDjJFstj956Wa3WzmbimfHMZMbfEPIsTxBzfcSZzwrHpFWa2TzVzHv47iFu5qGacG9fjw_lx4marJGfw1kYLKsc9sSwURdNju_IN_EMJgQrSmSvp18Zdo3C7OrQQqMTix2_-AYhW_tq-z3w9znnWx8O3o1Z31WA5eCszxjYJ-9FZoWycZHCR5zrzMbOuiQurc-l1SDVysM0ZbkrC56XiePC8SITsLUL-N9L5DIY3hg1Kpkky3c6iLaeStmfzYlFutnKsBNhjDaCu3OmV-xfaBPwL9_27xLNP_K0wfxt3SDXe7-VvukE7SZZ8_UtcqXrZLm4TaafmgorJ1k4iQJeLAWn3J-4akGbkkJgf8KmiKPRenrUVMWv7z_aY6zJprWtm7yaI1xDS2cNbbFYv6kRhRbooE3tWYENCDrwEAr-dacyd8jhhSz7XbJew03vE2ohZJQwqBMppY1BDEsuLEa6ikOw4CIyGpbY5D3SOTbcqEzIuIvUdGwxwBYT2GJ0RF4sr5l2OB_nzn6LnFvORIzu8ENzemR6lTeJT9I4w0Sn0tL5wmaZdSWsgS6VUhbI3Bj4bvqNozVnYh6Rp8thUHnM49jaN_NuTiow2IvIvU5MlpQIrHJKOVydrAjQCqmrI_XxlwArjgl5sHwReTmI2hlZ_1-KB-c_xRNydXywt2t2t_d3HpJrHDUBy0X1Blmfnc79I3DpZu5x0CNKPl-04v4GiQZf6g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIhAXxJuUAosEJ1jF2ZftA0JAiVoKFRJUym27a69LJddO60QoN_4D_4afwy9hZm2nCo_eeomi7Doe7zx2xjP7DSFPsxgx10ec-TR3TFqlmc0SzbyH7x7iZh6qCT_u6e19-X6iJmvkZ38WBssqe5sYDHVeZ_iOfIhnMCFYUSIdFl1ZxKet8avpCcMOUphp7dtptCKy6xffIHxrXu5sAa-fcT5-9-XtNus6DLAMHPcZg73Ke5FaoWyUJ_ARZTq1kbMujgrrM2k1SLjyME1Z7oqcZ0XsuHA8TwWYeQH_e4lcjoUaoY7Fk3j5fgeR1xMpu3M6kUiGjQxWCeO1EdydM72yF4aWAf_yc_8u1_wjZxu2wvENcr3zYenrVuhukjVf3SJX2q6Wi9tk-rkusYqShVMp4NFScND9sSsXtC4oBPnHbIqYGo2nh3WZ__r-oznC-mxa2arOyjlCNzR0VtMGC_frChFpgQ5aV57l2IygBRKh4Gu36nOH7F_Ist8l6xXc9D6hFsJHCYM6llLaCESy4MJi1Ks4BA5uQEb9EpusQz3H5hulCdl3kZiWLQbYYgJbjB6Q58trpi3mx7mz3yDnljMRrzv8UJ8emk79TezjJEox6am0dD63aWpdAWugC6WUBTI3e76bzog05kzkB-TJchjUH3M6tvL1vJ2TCAz8BuReKyZLSgRWPCUcro5XBGiF1NWR6uhrgBjH5DzsggPyohe1M7L-vxQb5z_FY3IVVNZ82NnbfUCucVQErBzVm2R9djr3D8G7m7lHQY0oObhovf0N2nVkIA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solvent-mediated+assembly+of+atom-precise+gold-silver+nanoclusters+to+semiconducting+one-dimensional+materials&rft.jtitle=Nature+communications&rft.au=Yuan%2C+Peng&rft.au=Zhang%2C+Ruihua&rft.au=Selenius%2C+Elli&rft.au=Ruan%2C+Pengpeng&rft.date=2020-05-06&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft.spage=2229&rft_id=info:doi/10.1038%2Fs41467-020-16062-6&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |