Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators
Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-effici...
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 2920 - 9 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.07.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m
−2
). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m
−2
, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the authors report high-strength nanosheet/nanofiber composite membranes for harvesting osmotic energy from natural water with high output power. |
---|---|
AbstractList | Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m
−2
). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m
−2
, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the authors report high-strength nanosheet/nanofiber composite membranes for harvesting osmotic energy from natural water with high output power. Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m−2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m−2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients. Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m-2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m-2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m-2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m-2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients. Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m −2 ). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m −2 , outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients. Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the authors report high-strength nanosheet/nanofiber composite membranes for harvesting osmotic energy from natural water with high output power. Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m ). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m , outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients. |
ArticleNumber | 2920 |
Author | Yang, Sheng Zhang, Panpan Chen, Guangbo Zhang, Jian Feng, Xinliang Zhang, Zhen |
Author_xml | – sequence: 1 givenname: Zhen surname: Zhang fullname: Zhang, Zhen organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 2 givenname: Sheng surname: Yang fullname: Yang, Sheng organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 3 givenname: Panpan orcidid: 0000-0002-3967-6548 surname: Zhang fullname: Zhang, Panpan organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 4 givenname: Jian orcidid: 0000-0002-0912-1197 surname: Zhang fullname: Zhang, Jian organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 5 givenname: Guangbo surname: Chen fullname: Chen, Guangbo organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden – sequence: 6 givenname: Xinliang surname: Feng fullname: Feng, Xinliang email: xinliang.feng@tu-dresden.de organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31266937$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOKxIVLqD-ydnxBQlWBilZcQOJmjZ1J1qvEXuykVf893k0pbQ_1ZUb2e2_mjed1ceCDx6J4S8lHSnhzmmpaC1kRqipKmmZVNS-KI0ZqWlHJ-MGD_LA4SWlD8uGKNnX9qjjklAmhuDwqbq7QrsE7C8NwW6YpBt-XV7_R4-l3vB4glh586JzBWNowbkNyE5YjjiaCx1RCKteuX1dbjF2II3iLC2OYXetsGdIYphy34SYr9Fk3whRielO87GBIeHIXj4tfX85_nn2rLn98vTj7fFlZQcRUNQxo09HsdefRcKKsYFZJyVquFKHGGgWyazm0VCkjcsZ5x1dESEFqYPy4uFh02wAbvY1uhHirAzi9vwix1xBzgwNqI6SyUINBwmvTEiUtdKhqQaVpOFNZ69OitZ3NiK1FP0UYHok-fvFurftwrUX2IlckC3y4E4jhz4xp0qNLFochjzLMSTO2okIRyXe13j-BbsIcfR7VHkVELdUqo9497Oi-lX__mwFsAdgYUorY3UMo0bs90sse6bxHer9Husmk5gnJugkmF3au3PA8lS_UlOv4HuP_tp9h_QU6D93V |
CitedBy_id | crossref_primary_10_1021_acs_nanolett_0c00526 crossref_primary_10_1021_acsami_0c19909 crossref_primary_10_1002_adma_201906697 crossref_primary_10_1016_j_seppur_2025_132017 crossref_primary_10_1039_D3CS00367A crossref_primary_10_3390_nano14151302 crossref_primary_10_1021_acsami_4c13973 crossref_primary_10_3389_fchem_2022_1090905 crossref_primary_10_1016_j_memsci_2021_120073 crossref_primary_10_1016_j_ensm_2021_04_047 crossref_primary_10_1002_adma_202307849 crossref_primary_10_1002_ange_202315947 crossref_primary_10_1021_acs_energyfuels_3c00589 crossref_primary_10_1021_acsnano_1c04423 crossref_primary_10_1021_acs_iecr_3c00307 crossref_primary_10_1016_j_jmst_2024_03_007 crossref_primary_10_1002_anie_202108549 crossref_primary_10_1002_adma_202417498 crossref_primary_10_1016_j_giant_2022_100094 crossref_primary_10_1002_ange_202206152 crossref_primary_10_1016_j_jelechem_2023_117967 crossref_primary_10_1002_aenm_202100519 crossref_primary_10_1039_D4TA08491H crossref_primary_10_1002_aenm_202405045 crossref_primary_10_1002_ange_202311138 crossref_primary_10_1016_j_mtcomm_2020_101689 crossref_primary_10_1002_smll_202205003 crossref_primary_10_1002_adfm_202101378 crossref_primary_10_1002_advs_202202869 crossref_primary_10_1021_acs_jpcb_4c06142 crossref_primary_10_1016_j_apsusc_2021_149004 crossref_primary_10_1002_adma_202001093 crossref_primary_10_1021_acsami_3c05207 crossref_primary_10_1021_acs_analchem_0c04976 crossref_primary_10_1039_D2TA08991B crossref_primary_10_1002_ange_202314638 crossref_primary_10_1021_acsami_0c13130 crossref_primary_10_1007_s40820_024_01365_w crossref_primary_10_2478_pjct_2021_0021 crossref_primary_10_1021_acscentsci_0c01054 crossref_primary_10_1021_acs_energyfuels_4c03154 crossref_primary_10_1016_j_pmatsci_2025_101457 crossref_primary_10_1002_adfm_202208959 crossref_primary_10_1016_j_mtsust_2024_100939 crossref_primary_10_1016_j_nantod_2022_101593 crossref_primary_10_1063_5_0037873 crossref_primary_10_1093_nsr_nwaa057 crossref_primary_10_1002_smll_202206878 crossref_primary_10_1016_j_jallcom_2020_158480 crossref_primary_10_1021_acsmacrolett_2c00138 crossref_primary_10_1002_admi_202000670 crossref_primary_10_1021_jacs_2c12936 crossref_primary_10_1063_5_0026984 crossref_primary_10_1002_smll_202301512 crossref_primary_10_1126_sciadv_ads5591 crossref_primary_10_1021_acsanm_2c01304 crossref_primary_10_1002_smll_202107600 crossref_primary_10_1021_acsaelm_3c00076 crossref_primary_10_1149_2162_8777_ac9336 crossref_primary_10_1039_D1TA08560C crossref_primary_10_1002_cssc_202200933 crossref_primary_10_1002_adfm_202000869 crossref_primary_10_1039_D1SE01729B crossref_primary_10_1103_PhysRevApplied_14_014075 crossref_primary_10_1002_ange_202015627 crossref_primary_10_1073_pnas_2005937117 crossref_primary_10_1016_j_memsci_2023_121403 crossref_primary_10_1039_D2TA06805B crossref_primary_10_1002_ange_202218321 crossref_primary_10_1002_smtd_202301558 crossref_primary_10_1021_acsnano_2c07555 crossref_primary_10_1038_s41467_020_20296_9 crossref_primary_10_1021_acsami_1c03192 crossref_primary_10_1021_acsnano_4c16136 crossref_primary_10_1016_j_cclet_2023_109193 crossref_primary_10_1002_ange_201912570 crossref_primary_10_1021_acs_est_1c00264 crossref_primary_10_1016_j_cej_2024_151600 crossref_primary_10_1021_acsnano_4c04152 crossref_primary_10_1016_j_nanoen_2021_106709 crossref_primary_10_1021_acsami_1c22707 crossref_primary_10_1016_j_eng_2021_02_016 crossref_primary_10_1039_D2EE00851C crossref_primary_10_1038_s41467_022_31183_w crossref_primary_10_14579_MEMBRANE_JOURNAL_2023_33_4_181 crossref_primary_10_1021_acsapm_3c01364 crossref_primary_10_1021_acsnano_9b06774 crossref_primary_10_1002_ange_202108549 crossref_primary_10_1016_j_compositesa_2020_105927 crossref_primary_10_1007_s12274_023_5705_z crossref_primary_10_1016_j_mattod_2022_12_001 crossref_primary_10_1002_adma_202108560 crossref_primary_10_1016_j_compositesb_2023_111168 crossref_primary_10_1038_s41699_024_00486_5 crossref_primary_10_1016_j_apsusc_2025_162527 crossref_primary_10_1039_D3GC01996A crossref_primary_10_1002_adfm_202307996 crossref_primary_10_1002_asia_202300876 crossref_primary_10_1002_adfm_202409356 crossref_primary_10_1039_D4TA00073K crossref_primary_10_1016_j_cej_2025_159868 crossref_primary_10_1021_accountsmr_2c00210 crossref_primary_10_1080_25740881_2021_1906901 crossref_primary_10_1021_acsami_4c02755 crossref_primary_10_1007_s40964_023_00424_9 crossref_primary_10_1016_j_renene_2023_04_056 crossref_primary_10_1039_D4SE01366B crossref_primary_10_1002_EXP_20220049 crossref_primary_10_1021_acsami_9b19962 crossref_primary_10_1016_j_eurpolymj_2021_110445 crossref_primary_10_1021_acsami_4c17932 crossref_primary_10_1016_j_nanoen_2020_104906 crossref_primary_10_1039_D1TA02400K crossref_primary_10_1002_adfm_202004181 crossref_primary_10_1016_j_procbio_2023_06_022 crossref_primary_10_1021_acsnano_3c11646 crossref_primary_10_1021_acsami_3c13008 crossref_primary_10_1002_adfm_202312654 crossref_primary_10_1021_acs_nanolett_3c03343 crossref_primary_10_1021_jacs_1c00547 crossref_primary_10_1039_D4MA00894D crossref_primary_10_1007_s13391_022_00337_9 crossref_primary_10_1016_j_nanoen_2022_107981 crossref_primary_10_1002_adfm_202425595 crossref_primary_10_1016_j_jpowsour_2021_229637 crossref_primary_10_1021_acsami_0c16344 crossref_primary_10_1021_acsnano_1c01551 crossref_primary_10_1021_acsami_2c04307 crossref_primary_10_1016_j_cej_2022_139395 crossref_primary_10_1002_apxr_202300016 crossref_primary_10_1002_ente_202301458 crossref_primary_10_3390_membranes11060443 crossref_primary_10_1002_smll_202300338 crossref_primary_10_1021_acsnano_2c08163 crossref_primary_10_1039_D4SC04639K crossref_primary_10_1016_j_cplett_2022_139871 crossref_primary_10_1002_anie_201915993 crossref_primary_10_1016_j_memsci_2020_118668 crossref_primary_10_26599_NRE_2022_9120008 crossref_primary_10_3390_ijms252313226 crossref_primary_10_1021_jacs_1c07392 crossref_primary_10_1021_acsami_3c05831 crossref_primary_10_1039_D0TA01654C crossref_primary_10_1002_admt_202001189 crossref_primary_10_1016_j_adna_2024_03_001 crossref_primary_10_1002_smtd_202300077 crossref_primary_10_1016_j_enconman_2023_116898 crossref_primary_10_1021_acsanm_4c07360 crossref_primary_10_1002_smll_202403593 crossref_primary_10_1002_adfm_202313968 crossref_primary_10_1002_adfm_202414342 crossref_primary_10_1002_adma_202208903 crossref_primary_10_1016_j_cclet_2019_08_045 crossref_primary_10_1002_adfm_202206705 crossref_primary_10_1016_j_mattod_2024_06_011 crossref_primary_10_1021_acsabm_0c00007 crossref_primary_10_1002_ange_202303582 crossref_primary_10_1021_jacs_0c11251 crossref_primary_10_1007_s40820_024_01444_y crossref_primary_10_1016_j_nanoen_2024_109450 crossref_primary_10_1016_j_mtla_2024_102089 crossref_primary_10_1002_adfm_202404410 crossref_primary_10_1021_acsenergylett_2c01681 crossref_primary_10_1002_eom2_12247 crossref_primary_10_1002_anie_202302938 crossref_primary_10_1002_admi_202101960 crossref_primary_10_1016_j_seppur_2024_127663 crossref_primary_10_1021_acs_nanolett_3c04343 crossref_primary_10_1002_smll_202006013 crossref_primary_10_1016_j_mattod_2021_01_026 crossref_primary_10_1021_acsnano_2c00866 crossref_primary_10_1063_5_0170905 crossref_primary_10_1002_advs_202103696 crossref_primary_10_1016_j_jcis_2024_11_071 crossref_primary_10_1016_j_jechem_2020_02_032 crossref_primary_10_1016_j_memsci_2024_122962 crossref_primary_10_1002_adma_201904351 crossref_primary_10_1016_j_cej_2024_153891 crossref_primary_10_1016_j_msec_2020_111833 crossref_primary_10_1002_smll_202402284 crossref_primary_10_1002_adfm_202005223 crossref_primary_10_1016_j_colsurfa_2025_136721 crossref_primary_10_1016_j_jpowsour_2021_230899 crossref_primary_10_1039_D0QM00569J crossref_primary_10_1002_adma_202404418 crossref_primary_10_1002_smll_202207559 crossref_primary_10_1126_sciadv_adt8262 crossref_primary_10_1126_science_abf1581 crossref_primary_10_1016_j_memsci_2024_122718 crossref_primary_10_1016_j_cej_2020_126898 crossref_primary_10_1016_j_xcrp_2021_100449 crossref_primary_10_1021_acsenergylett_9b02296 crossref_primary_10_1002_aenm_201902986 crossref_primary_10_1039_D1EE00908G crossref_primary_10_1016_j_cej_2021_134201 crossref_primary_10_1039_D1TA09547A crossref_primary_10_1016_j_apsusc_2021_150894 crossref_primary_10_1002_adfm_202109210 crossref_primary_10_1063_5_0028628 crossref_primary_10_1039_D0CS01160F crossref_primary_10_1007_s00339_021_04295_1 crossref_primary_10_1063_5_0066194 crossref_primary_10_1016_j_clay_2024_107577 crossref_primary_10_1002_anie_202414984 crossref_primary_10_1016_j_ceramint_2022_05_281 crossref_primary_10_1016_j_mtadv_2022_100303 crossref_primary_10_1038_s41467_022_32699_x crossref_primary_10_1016_j_diamond_2023_109971 crossref_primary_10_1021_acsnano_0c02401 crossref_primary_10_1002_adma_202310791 crossref_primary_10_1002_admt_202201433 crossref_primary_10_1002_smll_202304603 crossref_primary_10_1016_j_cej_2025_160447 crossref_primary_10_1016_j_cej_2022_141167 crossref_primary_10_1021_acsami_3c13387 crossref_primary_10_1002_adma_202403791 crossref_primary_10_1016_j_cej_2020_126438 crossref_primary_10_1002_smll_202207454 crossref_primary_10_1021_jacs_5c01960 crossref_primary_10_1021_acsami_3c03464 crossref_primary_10_1021_acsapm_1c00471 crossref_primary_10_1016_j_cej_2022_135610 crossref_primary_10_1088_2058_6272_ac1e77 crossref_primary_10_1002_adfm_202313914 crossref_primary_10_1016_j_cej_2022_136945 crossref_primary_10_1021_acsapm_2c00570 crossref_primary_10_1002_adfm_202412477 crossref_primary_10_1021_acsnano_0c01779 crossref_primary_10_1016_j_ceramint_2022_05_143 crossref_primary_10_1016_j_enconman_2021_115032 crossref_primary_10_1021_acsmaterialslett_2c00276 crossref_primary_10_1021_acsnano_4c14912 crossref_primary_10_1016_j_mtchem_2024_101989 crossref_primary_10_1016_j_matt_2024_07_006 crossref_primary_10_1016_j_matdes_2021_110124 crossref_primary_10_1016_j_msea_2021_142142 crossref_primary_10_1021_acsami_2c05247 crossref_primary_10_1039_C9NR09272B crossref_primary_10_1063_5_0243056 crossref_primary_10_1002_ange_202116910 crossref_primary_10_1002_adma_202208640 crossref_primary_10_1002_ange_202500116 crossref_primary_10_1016_j_jcis_2024_06_094 crossref_primary_10_1021_acsaem_4c02138 crossref_primary_10_1039_D4EE01381F crossref_primary_10_1002_aenm_202402304 crossref_primary_10_1002_adfm_202105043 crossref_primary_10_1088_2053_1583_ac9ceb crossref_primary_10_1016_j_matt_2020_07_011 crossref_primary_10_1016_j_inoche_2024_112457 crossref_primary_10_1002_wcms_1661 crossref_primary_10_1016_j_matlet_2024_136185 crossref_primary_10_1021_acs_iecr_3c02048 crossref_primary_10_1021_acsnano_1c08347 crossref_primary_10_1016_j_enconman_2021_114957 crossref_primary_10_1021_acsanm_4c03394 crossref_primary_10_1039_D3MH00600J crossref_primary_10_1039_D0MH00979B crossref_primary_10_1002_adma_202310683 crossref_primary_10_1002_sus2_206 crossref_primary_10_1007_s12221_021_0441_z crossref_primary_10_1038_s41467_024_48613_6 crossref_primary_10_1002_admi_202201634 crossref_primary_10_1142_S1793292020501489 crossref_primary_10_1021_acs_jpcc_1c03118 crossref_primary_10_1016_j_progpolymsci_2024_101830 crossref_primary_10_1039_D1CS00582K crossref_primary_10_1016_j_compositesa_2024_108682 crossref_primary_10_1016_j_giant_2021_100049 crossref_primary_10_1103_PhysRevFluids_7_013702 crossref_primary_10_1360_SSPMA_2023_0443 crossref_primary_10_1016_j_nantod_2024_102468 crossref_primary_10_1021_acs_langmuir_4c01546 crossref_primary_10_1007_s11705_020_1997_7 crossref_primary_10_1016_j_ensm_2024_103829 crossref_primary_10_1016_j_mattod_2024_12_001 crossref_primary_10_1021_jacs_1c02090 crossref_primary_10_3390_nano11010090 crossref_primary_10_1016_j_carbon_2023_118600 crossref_primary_10_1002_admi_202002043 crossref_primary_10_1002_adfm_202211316 crossref_primary_10_1073_pnas_2009432117 crossref_primary_10_1002_ange_202407491 crossref_primary_10_1016_j_enchem_2023_100110 crossref_primary_10_1073_pnas_2003898117 crossref_primary_10_1016_j_joule_2019_11_010 crossref_primary_10_1016_j_est_2024_115179 crossref_primary_10_1021_acsami_0c21661 crossref_primary_10_1002_adfm_202311258 crossref_primary_10_1016_j_cej_2023_147890 crossref_primary_10_1021_acsnano_2c07813 crossref_primary_10_1002_anie_202005084 crossref_primary_10_1002_smtd_202101255 crossref_primary_10_1039_D2TA06557F crossref_primary_10_1016_j_electacta_2022_140575 crossref_primary_10_1002_adfm_202502946 crossref_primary_10_1016_j_memsci_2023_122054 crossref_primary_10_1016_j_compscitech_2020_108545 crossref_primary_10_1002_adfm_202414365 crossref_primary_10_1016_j_nanoen_2020_104954 crossref_primary_10_1016_j_nanoen_2022_107548 crossref_primary_10_1016_j_carbpol_2021_118938 crossref_primary_10_1016_j_nanoen_2022_107786 crossref_primary_10_1002_anie_201912570 crossref_primary_10_1016_j_compscitech_2020_108543 crossref_primary_10_1002_adma_202302511 crossref_primary_10_1002_ange_202005084 crossref_primary_10_1002_anie_202116910 crossref_primary_10_1002_anie_202218321 crossref_primary_10_1039_D1SC03581A crossref_primary_10_1021_acsomega_2c02266 crossref_primary_10_1021_acs_nanolett_0c01087 crossref_primary_10_1016_j_advmem_2022_100046 crossref_primary_10_1016_j_memsci_2024_123645 crossref_primary_10_1002_adfm_202000186 crossref_primary_10_1016_j_seppur_2023_125640 crossref_primary_10_1002_adfm_202401295 crossref_primary_10_1038_s41467_024_54216_y crossref_primary_10_1021_acs_jpcc_1c03010 crossref_primary_10_1016_j_enconman_2022_116373 crossref_primary_10_1007_s12274_023_6123_y crossref_primary_10_1038_s41467_022_31523_w crossref_primary_10_1002_adfm_202105013 crossref_primary_10_1002_adma_202205154 crossref_primary_10_1016_j_cej_2022_139482 crossref_primary_10_1016_j_memsci_2024_123678 crossref_primary_10_1021_acsnano_9b07192 crossref_primary_10_1088_2515_7655_aca829 crossref_primary_10_1002_chem_202301400 crossref_primary_10_1038_s41467_023_39791_w crossref_primary_10_1016_j_memsci_2023_122156 crossref_primary_10_1002_anie_202409349 crossref_primary_10_1007_s12274_024_6783_2 crossref_primary_10_1007_s40843_024_2963_6 crossref_primary_10_1016_j_nanoen_2021_106275 crossref_primary_10_1016_j_mattod_2023_03_002 crossref_primary_10_1021_acsnano_1c00820 crossref_primary_10_1007_s40820_024_01577_0 crossref_primary_10_1016_j_cej_2023_146522 crossref_primary_10_1016_j_desal_2025_118597 crossref_primary_10_1002_admi_202200513 crossref_primary_10_1016_j_compscitech_2024_110665 crossref_primary_10_1002_adfm_202308176 crossref_primary_10_1016_j_xcrp_2023_101717 crossref_primary_10_26599_NRE_2025_9120156 crossref_primary_10_1007_s40820_021_00603_9 crossref_primary_10_1016_j_cclet_2021_10_011 crossref_primary_10_1016_j_electacta_2022_140581 crossref_primary_10_1002_adma_202206354 crossref_primary_10_1016_j_memsci_2024_122456 crossref_primary_10_1002_ange_202409349 crossref_primary_10_1021_acsestengg_1c00309 crossref_primary_10_1016_j_cej_2024_152375 crossref_primary_10_1016_j_rser_2021_110878 crossref_primary_10_1016_j_jmst_2022_05_014 crossref_primary_10_1039_D2TA04359A crossref_primary_10_1002_adma_202401772 crossref_primary_10_1016_j_memsci_2021_119752 crossref_primary_10_1016_j_carbon_2022_10_079 crossref_primary_10_1021_jacs_2c04862 crossref_primary_10_1002_cey2_509 crossref_primary_10_1007_s12274_022_4634_6 crossref_primary_10_1016_j_desal_2023_117131 crossref_primary_10_1002_anie_202015627 crossref_primary_10_1002_smll_202306562 crossref_primary_10_1021_acsami_4c19678 crossref_primary_10_1016_j_xcrp_2022_101065 crossref_primary_10_1039_D4TA00842A crossref_primary_10_1016_j_jcis_2022_08_092 crossref_primary_10_1021_acs_accounts_4c00356 crossref_primary_10_1002_adma_202311141 crossref_primary_10_1007_s42765_024_00411_x crossref_primary_10_1063_5_0241150 crossref_primary_10_1016_j_cej_2022_136675 crossref_primary_10_1088_1361_6528_ad5728 crossref_primary_10_1016_j_mtener_2021_100690 crossref_primary_10_1038_s41467_023_44156_4 crossref_primary_10_1016_j_cej_2022_139823 crossref_primary_10_1016_j_nanoen_2024_109924 crossref_primary_10_1002_ange_202414984 crossref_primary_10_1016_j_nanoen_2022_108155 crossref_primary_10_1039_C9TA10028H crossref_primary_10_1038_s41467_024_54755_4 crossref_primary_10_1007_s00339_022_06222_4 crossref_primary_10_1038_s41467_024_54622_2 crossref_primary_10_1016_j_nanoen_2022_107291 crossref_primary_10_1016_j_apenergy_2022_120005 crossref_primary_10_1002_adfm_202401922 crossref_primary_10_1016_j_cej_2024_157000 crossref_primary_10_3390_membranes13020164 crossref_primary_10_1021_acsaem_2c03308 crossref_primary_10_1002_cben_202000026 crossref_primary_10_1002_cnl2_90 crossref_primary_10_1021_acsnano_2c02062 crossref_primary_10_1021_acs_chemrev_1c00069 crossref_primary_10_1039_D1MH00968K crossref_primary_10_1002_adma_202108410 crossref_primary_10_1002_anie_202407491 crossref_primary_10_1016_j_mtphys_2022_100744 crossref_primary_10_1016_j_nanoen_2023_108693 crossref_primary_10_1021_acs_chemrev_3c00168 crossref_primary_10_1002_anie_202315947 crossref_primary_10_1002_ange_202302938 crossref_primary_10_1016_j_joule_2019_09_005 crossref_primary_10_1016_j_apsusc_2020_147974 crossref_primary_10_1021_acsnano_0c09513 crossref_primary_10_1021_acsmaterialslett_2c00914 crossref_primary_10_1016_j_carbpol_2022_119406 crossref_primary_10_1016_j_cej_2025_160922 crossref_primary_10_1021_acsami_1c03832 crossref_primary_10_1016_j_optmat_2023_113902 crossref_primary_10_1021_acs_jpclett_2c01351 crossref_primary_10_1038_s41467_024_46439_w crossref_primary_10_1002_adma_202107554 crossref_primary_10_1021_acs_accounts_1c00431 crossref_primary_10_1039_D3CS00382E crossref_primary_10_1039_D3TA01306E crossref_primary_10_1016_j_jsamd_2024_100731 crossref_primary_10_1016_j_carbon_2022_03_004 crossref_primary_10_1016_j_jpowsour_2023_232701 crossref_primary_10_1021_jacs_2c04663 crossref_primary_10_1002_adfm_202102080 crossref_primary_10_1021_acsami_2c11567 crossref_primary_10_1007_s10570_024_06351_4 crossref_primary_10_1021_acsami_2c12777 crossref_primary_10_1021_acs_jpclett_2c03522 crossref_primary_10_1002_anie_202303582 crossref_primary_10_1016_j_xcrp_2024_101824 crossref_primary_10_1002_adma_202106410 crossref_primary_10_1002_anie_202314638 crossref_primary_10_1039_D1AN02232F crossref_primary_10_3389_fbioe_2022_901507 crossref_primary_10_1080_15583724_2020_1729179 crossref_primary_10_1016_j_cej_2021_131980 crossref_primary_10_1002_adem_201901521 crossref_primary_10_1002_ange_201915993 crossref_primary_10_1039_D4CS00272E crossref_primary_10_1039_D3CC00777D crossref_primary_10_1002_anie_202500116 crossref_primary_10_1002_adfm_202211532 crossref_primary_10_1002_adfm_202404039 crossref_primary_10_1002_anie_202311138 crossref_primary_10_1021_acs_chemmater_9b04408 crossref_primary_10_1002_smsc_202100013 crossref_primary_10_1039_D1TA03125B crossref_primary_10_1016_j_nanoen_2020_105509 crossref_primary_10_1021_acsanm_3c05821 crossref_primary_10_3389_fchem_2024_1401854 crossref_primary_10_1002_adfm_202422725 crossref_primary_10_1016_j_memsci_2024_123378 crossref_primary_10_1016_j_nanoen_2021_105930 crossref_primary_10_1007_s12274_023_5794_8 crossref_primary_10_1007_s40843_022_2057_5 crossref_primary_10_1038_s41467_023_40742_8 crossref_primary_10_1021_acs_est_2c01765 crossref_primary_10_1021_acsami_3c19120 crossref_primary_10_1016_j_mtchem_2024_102041 crossref_primary_10_1038_s41565_021_00903_6 crossref_primary_10_1002_anie_202206152 crossref_primary_10_1016_j_desal_2022_115802 crossref_primary_10_1002_cssc_202001799 crossref_primary_10_1002_adfm_202306834 crossref_primary_10_1103_PhysRevE_101_043113 crossref_primary_10_1002_marc_202200114 crossref_primary_10_1002_advs_202000286 crossref_primary_10_1038_s41467_020_14674_6 crossref_primary_10_1016_j_rser_2023_114078 crossref_primary_10_1002_adma_202002890 crossref_primary_10_2139_ssrn_3806067 crossref_primary_10_1021_acs_langmuir_2c02060 crossref_primary_10_1016_j_cej_2022_139531 crossref_primary_10_1021_acsami_2c19485 crossref_primary_10_1002_aesr_202400090 crossref_primary_10_1016_j_nanoen_2022_108007 crossref_primary_10_1016_j_nanoen_2022_108128 crossref_primary_10_1021_jacs_2c04223 crossref_primary_10_1002_cey2_626 |
Cites_doi | 10.1038/s41586-018-0109-z 10.1038/ncomms8602 10.1038/nnano.2017.21 10.1126/sciadv.aaq0066 10.1016/j.rser.2013.11.049 10.1021/jacs.6b11100 10.1021/acs.chemmater.7b02847 10.1038/nature14253 10.1038/nnano.2017.72 10.1038/ncomms11408 10.1021/nn2014003 10.1038/nature18593 10.1126/science.1113666 10.1038/s41565-018-0181-4 10.1007/s10404-010-0641-0 10.1038/nnano.2015.219 10.1038/nature11876 10.1021/ja101014y 10.1038/nnano.2010.233 10.1021/acsnano.7b06657 10.1021/acsnano.6b07041 10.1021/ja308167f 10.1126/science.aaf5289 10.1002/anie.201809662 10.1038/nnano.2015.279 10.1126/science.1246501 10.1002/adma.201801934 10.1073/pnas.1414215111 10.1002/anie.201804299 10.1038/nenergy.2017.105 10.1038/nature24044 10.1016/j.desal.2017.10.021 10.1126/sciadv.1501272 10.1016/j.nanoen.2019.02.056 10.1038/nature24670 10.1038/s41586-018-0292-y 10.1002/adma.201603809 10.1021/jacs.6b11696 10.1126/sciadv.aau1665 10.1021/nl9020123 10.1038/s41565-018-0228-6 10.1038/s41467-018-06873-z 10.1039/C3CP51712H 10.1002/anie.201409911 10.1021/acsnano.5b02902 10.1002/adma.201700177 10.1002/adma.201506237 10.1002/aenm.201601847 10.1038/s41570-017-0091 10.1021/acs.jpclett.5b01895 10.1038/nnano.2009.332 10.1103/RevModPhys.80.839 10.1021/ja503692z 10.1038/nenergy.2016.90 10.1002/adma.200903161 10.1002/adma.201600797 10.1126/science.aan5275 10.1103/PhysRevLett.93.035901 |
ContentType | Journal Article |
Copyright | The Author(s) 2019 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-10885-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_b679ca4abe034bd097cafe94617b8329 PMC6606750 31266937 10_1038_s41467_019_10885_8 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Union's Horizon 2020 research and innovation programme under grant number 785219 – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-82a18f14140885b309c62c9772d39901bcb9a7fd3ad199b6fd333f35067604a23 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:29:45 EDT 2025 Thu Aug 21 18:43:09 EDT 2025 Fri Jul 11 01:54:48 EDT 2025 Wed Aug 13 02:50:52 EDT 2025 Mon Jul 21 05:52:50 EDT 2025 Tue Jul 01 04:08:39 EDT 2025 Thu Apr 24 22:59:31 EDT 2025 Fri Feb 21 02:38:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-82a18f14140885b309c62c9772d39901bcb9a7fd3ad199b6fd333f35067604a23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0912-1197 0000-0002-3967-6548 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-10885-8 |
PMID | 31266937 |
PQID | 2251064795 |
PQPubID | 546298 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_b679ca4abe034bd097cafe94617b8329 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606750 proquest_miscellaneous_2251690739 proquest_journals_2251064795 pubmed_primary_31266937 crossref_primary_10_1038_s41467_019_10885_8 crossref_citationtrail_10_1038_s41467_019_10885_8 springer_journals_10_1038_s41467_019_10885_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-07-02 |
PublicationDateYYYYMMDD | 2019-07-02 |
PublicationDate_xml | – month: 07 year: 2019 text: 2019-07-02 day: 02 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Cheng (CR19) 2016; 2 Schoch, Han, Renaud (CR48) 2008; 80 Zhu (CR11) 2018; 4 Rollings, Kuan, Golovchenko (CR45) 2016; 7 Mei, Tang (CR46) 2018; 425 Zhang (CR47) 2018; 4 Li (CR32) 2017; 7 Straub, Yip, Lin, Lee, Elimelech (CR57) 2016; 1 Stein, Kruithof, Dekker (CR37) 2004; 93 Wan (CR53) 2015; 9 Hou, Hu, Grinthal, Khan, Aizenberg (CR4) 2015; 519 Ren (CR43) 2015; 6 Zhang (CR56) 2018; 13 Feng (CR30) 2016; 536 Lu, Guo, Xiang, Jiang (CR8) 2016; 28 Bonaccorso (CR24) 2015; 347 Ling (CR54) 2014; 111 Alhabeb (CR38) 2017; 29 Wang (CR29) 2017; 12 Shao, Raidongia, Koltonow, Huang (CR16) 2015; 6 Lukatskaya (CR34) 2017; 2 Kim, Duan, Chen, Majumdar (CR44) 2010; 9 Gao (CR55) 2014; 136 Kong (CR41) 2018; 30 Esfandiar (CR20) 2017; 358 Raidongia, Huang (CR18) 2012; 134 Hou (CR2) 2016; 28 Yang (CR33) 2018; 57 Cheng (CR28) 2017; 29 Huang (CR40) 2019; 59 Cheng, Jiang, Simon, Liu, Li (CR27) 2018; 13 Siria (CR12) 2013; 494 Chen (CR21) 2017; 550 Abraham (CR17) 2017; 12 Wen (CR58) 2010; 22 Siria, Bocquet, Bocquet (CR22) 2017; 1 Zheng, Grunker, Feng (CR10) 2016; 28 Schroeder (CR3) 2017; 552 Ali (CR49) 2010; 132 Aliprandi, Pakulski, Ciesielski, Samori (CR23) 2017; 11 Xiao, Giusto, Wen, Jiang, Antonietti (CR26) 2018; 57 Wang, Zhang, Zhai, Jiang (CR50) 2014; 16 Yan, Liang, Fan, Yang (CR51) 2009; 9 Qin (CR25) 2017; 139 Yang (CR36) 2011; 5 Sparreboom, van den Berg, Eijkel (CR42) 2009; 4 Duan, Majumdar (CR39) 2010; 5 He (CR52) 2017; 139 Gao (CR6) 2018; 9 Xia (CR35) 2018; 557 Gouaux, Mackinnon (CR1) 2005; 310 Zhou (CR15) 2018; 559 Burns, Seifert, Fertig, Howorka (CR5) 2016; 11 Howorka, Siwy (CR7) 2016; 10 Feng (CR9) 2015; 10 Jia, Wang, Song, Fan (CR31) 2014; 31 Wen, Tian, Jiang (CR13) 2015; 54 Koltonow, Huang (CR14) 2016; 351 S Wan (10885_CR53) 2015; 9 P Gao (10885_CR6) 2018; 9 S Howorka (10885_CR7) 2016; 10 CE Ren (10885_CR43) 2015; 6 A Aliprandi (10885_CR23) 2017; 11 JJ Shao (10885_CR16) 2015; 6 M Ali (10885_CR49) 2010; 132 J Gao (10885_CR55) 2014; 136 K Raidongia (10885_CR18) 2012; 134 RC Rollings (10885_CR45) 2016; 7 TBH Schroeder (10885_CR3) 2017; 552 E Gouaux (10885_CR1) 2005; 310 HC Zhang (10885_CR47) 2018; 4 X He (10885_CR52) 2017; 139 J Feng (10885_CR9) 2015; 10 LP Wen (10885_CR58) 2010; 22 X Hou (10885_CR4) 2015; 519 W Sparreboom (10885_CR42) 2009; 4 D Stein (10885_CR37) 2004; 93 H Cheng (10885_CR28) 2017; 29 HY Li (10885_CR32) 2017; 7 S Lu (10885_CR8) 2016; 28 C Cheng (10885_CR19) 2016; 2 L Chen (10885_CR21) 2017; 550 ZJ Jia (10885_CR31) 2014; 31 M Yang (10885_CR36) 2011; 5 S Qin (10885_CR25) 2017; 139 AR Koltonow (10885_CR14) 2016; 351 K Xiao (10885_CR26) 2018; 57 LP Wen (10885_CR13) 2015; 54 RX Yan (10885_CR51) 2009; 9 X Hou (10885_CR2) 2016; 28 DK Kim (10885_CR44) 2010; 9 JR Burns (10885_CR5) 2016; 11 F Bonaccorso (10885_CR24) 2015; 347 MR Lukatskaya (10885_CR34) 2017; 2 Z Ling (10885_CR54) 2014; 111 KG Zhou (10885_CR15) 2018; 559 ZK Zheng (10885_CR10) 2016; 28 J Wang (10885_CR50) 2014; 16 A Siria (10885_CR12) 2013; 494 C Duan (10885_CR39) 2010; 5 Y Xia (10885_CR35) 2018; 557 M Alhabeb (10885_CR38) 2017; 29 A Esfandiar (10885_CR20) 2017; 358 W Kong (10885_CR41) 2018; 30 X Huang (10885_CR40) 2019; 59 A Siria (10885_CR22) 2017; 1 S Yang (10885_CR33) 2018; 57 J Feng (10885_CR30) 2016; 536 AP Straub (10885_CR57) 2016; 1 LD Wang (10885_CR29) 2017; 12 ZH Zhang (10885_CR56) 2018; 13 C Cheng (10885_CR27) 2018; 13 Y Mei (10885_CR46) 2018; 425 J Abraham (10885_CR17) 2017; 12 R Schoch (10885_CR48) 2008; 80 XB Zhu (10885_CR11) 2018; 4 |
References_xml | – volume: 557 start-page: 409 year: 2018 end-page: 412 ident: CR35 article-title: Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes publication-title: Nature doi: 10.1038/s41586-018-0109-z – volume: 6 year: 2015 ident: CR16 article-title: Self-assembled two-dimensional nanofluidic proton channels with high thermal stability publication-title: Nat. Commun. doi: 10.1038/ncomms8602 – volume: 12 start-page: 546 year: 2017 end-page: 550 ident: CR17 article-title: Tunable sieving of ions using graphene oxide membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.21 – volume: 4 start-page: eaaq0066 year: 2018 ident: CR47 article-title: Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq0066 – volume: 31 start-page: 91 year: 2014 end-page: 100 ident: CR31 article-title: Blue energy: current technologies for sustainable power generation from water salinity gradient publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.049 – volume: 139 start-page: 6314 year: 2017 end-page: 6320 ident: CR25 article-title: High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11100 – volume: 29 start-page: 7633 year: 2017 end-page: 7644 ident: CR38 article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti C T MXene) publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 519 start-page: 70 year: 2015 end-page: 73 ident: CR4 article-title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour publication-title: Nature doi: 10.1038/nature14253 – volume: 12 start-page: 509 year: 2017 end-page: 522 ident: CR29 article-title: Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.72 – volume: 7 year: 2016 ident: CR45 article-title: Ion selectivity of graphene nanopores publication-title: Nat. Commun. doi: 10.1038/ncomms11408 – volume: 5 start-page: 6945 year: 2011 end-page: 6954 ident: CR36 article-title: Dispersions of aramid nanofibers: a new nanoscale building block publication-title: ACS Nano doi: 10.1021/nn2014003 – volume: 536 start-page: 197 year: 2016 end-page: 200 ident: CR30 article-title: Single-layer MoS nanopores as nanopower generators publication-title: Nature doi: 10.1038/nature18593 – volume: 310 start-page: 1461 year: 2005 end-page: 1465 ident: CR1 article-title: Principles of selective ion transport in channels and pumps publication-title: Science doi: 10.1126/science.1113666 – volume: 13 start-page: 685 year: 2018 end-page: 690 ident: CR27 article-title: Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0181-4 – volume: 9 start-page: 1215 year: 2010 end-page: 1224 ident: CR44 article-title: Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-010-0641-0 – volume: 10 start-page: 1070 year: 2015 end-page: 1076 ident: CR9 article-title: Identification of single nucleotides in MoS nanopores publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.219 – volume: 494 start-page: 455 year: 2013 end-page: 458 ident: CR12 article-title: Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube publication-title: Nature doi: 10.1038/nature11876 – volume: 132 start-page: 8338 year: 2010 end-page: 8348 ident: CR49 article-title: Layer-by-layer assembly of polyelectrolytes into ionic publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101014y – volume: 5 start-page: 848 year: 2010 end-page: 852 ident: CR39 article-title: Anomalous ion transport in 2-nm hydrophilic nanochannels publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.233 – volume: 11 start-page: 10654 year: 2017 end-page: 10658 ident: CR23 article-title: Punctured two-dimensional sheets for harvesting blue energy publication-title: ACS Nano doi: 10.1021/acsnano.7b06657 – volume: 10 start-page: 9768 year: 2016 end-page: 9771 ident: CR7 article-title: Nanopores and nanochannels: from gene sequencing to genome mapping publication-title: ACS Nano doi: 10.1021/acsnano.6b07041 – volume: 134 start-page: 16528 year: 2012 end-page: 16531 ident: CR18 article-title: Nanofluidic ion transport through reconstructed layered materials publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308167f – volume: 351 start-page: 1395 year: 2016 end-page: 1396 ident: CR14 article-title: Two-dimensional nanofluidics publication-title: Science doi: 10.1126/science.aaf5289 – volume: 57 start-page: 15491 year: 2018 end-page: 15495 ident: CR33 article-title: Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809662 – volume: 11 start-page: 152 year: 2016 end-page: 156 ident: CR5 article-title: A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.279 – volume: 347 start-page: 1246501 year: 2015 ident: CR24 article-title: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage publication-title: Science doi: 10.1126/science.1246501 – volume: 30 start-page: e1801934 year: 2018 ident: CR41 article-title: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels publication-title: Adv. Mater. doi: 10.1002/adma.201801934 – volume: 111 start-page: 16676 year: 2014 end-page: 16681 ident: CR54 article-title: Flexible and conductive MXene films and nanocomposites with high capacitance publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1414215111 – volume: 57 start-page: 10123 year: 2018 end-page: 10126 ident: CR26 article-title: Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804299 – volume: 2 start-page: 17105 year: 2017 ident: CR34 article-title: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides publication-title: Nat. Energy doi: 10.1038/nenergy.2017.105 – volume: 550 start-page: 380 year: 2017 end-page: 383 ident: CR21 article-title: Ion sieving in graphene oxide membranes via cationic control of interlayer spacing publication-title: Nature doi: 10.1038/nature24044 – volume: 425 start-page: 156 year: 2018 end-page: 174 ident: CR46 article-title: Recent developments and future perspectives of reverse electrodialysis technology: a review publication-title: Desalination doi: 10.1016/j.desal.2017.10.021 – volume: 2 start-page: e1501272 year: 2016 ident: CR19 article-title: Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing publication-title: Sci. Adv. doi: 10.1126/sciadv.1501272 – volume: 59 start-page: 354 year: 2019 end-page: 362 ident: CR40 article-title: Engineered PES/SPES nanochannel membrane for salinity gradient power generation publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.056 – volume: 552 start-page: 214 year: 2017 end-page: 218 ident: CR3 article-title: An electric-eel-inspired soft power source from stacked hydrogels publication-title: Nature doi: 10.1038/nature24670 – volume: 559 start-page: 236 year: 2018 end-page: 240 ident: CR15 article-title: Electrically controlled water permeation through graphene oxide membranes publication-title: Nature doi: 10.1038/s41586-018-0292-y – volume: 28 start-page: 9851 year: 2016 end-page: 9856 ident: CR8 article-title: Photoelectric frequency response in a bioinspired bacteriorhodopsin/alumina nanochannel hybrid nanosystem publication-title: Adv. Mater. doi: 10.1002/adma.201603809 – volume: 139 start-page: 1396 year: 2017 end-page: 1399 ident: CR52 article-title: Micrometer-scale ion current rectification at polyelectrolyte brush-modified micropipets publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11696 – volume: 4 start-page: eaau1665 year: 2018 ident: CR11 article-title: Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system publication-title: Sci. Adv. doi: 10.1126/sciadv.aau1665 – volume: 9 start-page: 3820 year: 2009 end-page: 3825 ident: CR51 article-title: Nanofluidic diodes based on nanotube heterojunctions publication-title: Nano Lett. doi: 10.1021/nl9020123 – volume: 13 start-page: 1109 year: 2018 end-page: 1119 ident: CR56 article-title: Emerging hydrovoltaic technology publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0228-6 – volume: 9 year: 2018 ident: CR6 article-title: Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels publication-title: Nat. Commun. doi: 10.1038/s41467-018-06873-z – volume: 16 start-page: 23 year: 2014 end-page: 32 ident: CR50 article-title: Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson–Nernst–Planck (PNP) model publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP51712H – volume: 54 start-page: 3387 year: 2015 end-page: 3399 ident: CR13 article-title: Bioinspired super-wettability from fundamental research to practical applications publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409911 – volume: 9 start-page: 9830 year: 2015 end-page: 9836 ident: CR53 article-title: Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan publication-title: ACS Nano doi: 10.1021/acsnano.5b02902 – volume: 29 start-page: 1700177 year: 2017 ident: CR28 article-title: Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks publication-title: Adv. Mater. doi: 10.1002/adma.201700177 – volume: 28 start-page: 6529 year: 2016 end-page: 6545 ident: CR10 article-title: Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation publication-title: Adv. Mater. doi: 10.1002/adma.201506237 – volume: 7 start-page: 1601847 year: 2017 ident: CR32 article-title: Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601847 – volume: 1 start-page: 0091 year: 2017 ident: CR22 article-title: New avenues for the large-scale harvesting of blue energy publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0091 – volume: 6 start-page: 4026 year: 2015 end-page: 4031 ident: CR43 article-title: Charge- and size-selective ion sieving through Ti C T MXene membranes publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01895 – volume: 4 start-page: 713 year: 2009 end-page: 720 ident: CR42 article-title: Principles and applications of nanofluidic transport publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.332 – volume: 80 start-page: 839 year: 2008 end-page: 883 ident: CR48 article-title: Transport phenomena in nanofluidics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.839 – volume: 136 start-page: 12265 year: 2014 end-page: 12272 ident: CR55 article-title: High-performance ionic diode membrane for salinity gradient power generation publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503692z – volume: 1 start-page: 16090 year: 2016 ident: CR57 article-title: Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes publication-title: Nat. Energy doi: 10.1038/nenergy.2016.90 – volume: 22 start-page: 1021 year: 2010 end-page: 1024 ident: CR58 article-title: Bioinspired smart gating of nanochannels toward photoelectric-conversion systems publication-title: Adv. Mater. doi: 10.1002/adma.200903161 – volume: 28 start-page: 7049 year: 2016 end-page: 7064 ident: CR2 article-title: Smart gating multi-scale pore/channel-based membranes publication-title: Adv. Mater. doi: 10.1002/adma.201600797 – volume: 358 start-page: 511 year: 2017 end-page: 513 ident: CR20 article-title: Size effect in ion transport through angstrom-scale slits publication-title: Science doi: 10.1126/science.aan5275 – volume: 93 start-page: 035901 year: 2004 ident: CR37 article-title: Surface-charge-governed ion transport in nanofluidic channels publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.035901 – volume: 519 start-page: 70 year: 2015 ident: 10885_CR4 publication-title: Nature doi: 10.1038/nature14253 – volume: 9 start-page: 1215 year: 2010 ident: 10885_CR44 publication-title: Microfluid. Nanofluid. doi: 10.1007/s10404-010-0641-0 – volume: 550 start-page: 380 year: 2017 ident: 10885_CR21 publication-title: Nature doi: 10.1038/nature24044 – volume: 1 start-page: 16090 year: 2016 ident: 10885_CR57 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.90 – volume: 347 start-page: 1246501 year: 2015 ident: 10885_CR24 publication-title: Science doi: 10.1126/science.1246501 – volume: 10 start-page: 9768 year: 2016 ident: 10885_CR7 publication-title: ACS Nano doi: 10.1021/acsnano.6b07041 – volume: 2 start-page: e1501272 year: 2016 ident: 10885_CR19 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501272 – volume: 139 start-page: 6314 year: 2017 ident: 10885_CR25 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11100 – volume: 54 start-page: 3387 year: 2015 ident: 10885_CR13 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201409911 – volume: 134 start-page: 16528 year: 2012 ident: 10885_CR18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308167f – volume: 5 start-page: 6945 year: 2011 ident: 10885_CR36 publication-title: ACS Nano doi: 10.1021/nn2014003 – volume: 351 start-page: 1395 year: 2016 ident: 10885_CR14 publication-title: Science doi: 10.1126/science.aaf5289 – volume: 111 start-page: 16676 year: 2014 ident: 10885_CR54 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1414215111 – volume: 28 start-page: 7049 year: 2016 ident: 10885_CR2 publication-title: Adv. Mater. doi: 10.1002/adma.201600797 – volume: 9 start-page: 9830 year: 2015 ident: 10885_CR53 publication-title: ACS Nano doi: 10.1021/acsnano.5b02902 – volume: 22 start-page: 1021 year: 2010 ident: 10885_CR58 publication-title: Adv. Mater. doi: 10.1002/adma.200903161 – volume: 28 start-page: 6529 year: 2016 ident: 10885_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201506237 – volume: 7 start-page: 1601847 year: 2017 ident: 10885_CR32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201601847 – volume: 59 start-page: 354 year: 2019 ident: 10885_CR40 publication-title: Nano Energy doi: 10.1016/j.nanoen.2019.02.056 – volume: 12 start-page: 546 year: 2017 ident: 10885_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.21 – volume: 9 start-page: 3820 year: 2009 ident: 10885_CR51 publication-title: Nano Lett. doi: 10.1021/nl9020123 – volume: 9 year: 2018 ident: 10885_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06873-z – volume: 29 start-page: 1700177 year: 2017 ident: 10885_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201700177 – volume: 93 start-page: 035901 year: 2004 ident: 10885_CR37 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.035901 – volume: 11 start-page: 10654 year: 2017 ident: 10885_CR23 publication-title: ACS Nano doi: 10.1021/acsnano.7b06657 – volume: 4 start-page: 713 year: 2009 ident: 10885_CR42 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.332 – volume: 494 start-page: 455 year: 2013 ident: 10885_CR12 publication-title: Nature doi: 10.1038/nature11876 – volume: 29 start-page: 7633 year: 2017 ident: 10885_CR38 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.7b02847 – volume: 57 start-page: 10123 year: 2018 ident: 10885_CR26 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201804299 – volume: 11 start-page: 152 year: 2016 ident: 10885_CR5 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.279 – volume: 6 start-page: 4026 year: 2015 ident: 10885_CR43 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01895 – volume: 536 start-page: 197 year: 2016 ident: 10885_CR30 publication-title: Nature doi: 10.1038/nature18593 – volume: 80 start-page: 839 year: 2008 ident: 10885_CR48 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.80.839 – volume: 10 start-page: 1070 year: 2015 ident: 10885_CR9 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.219 – volume: 552 start-page: 214 year: 2017 ident: 10885_CR3 publication-title: Nature doi: 10.1038/nature24670 – volume: 12 start-page: 509 year: 2017 ident: 10885_CR29 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.72 – volume: 136 start-page: 12265 year: 2014 ident: 10885_CR55 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja503692z – volume: 5 start-page: 848 year: 2010 ident: 10885_CR39 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.233 – volume: 1 start-page: 0091 year: 2017 ident: 10885_CR22 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-017-0091 – volume: 28 start-page: 9851 year: 2016 ident: 10885_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201603809 – volume: 6 year: 2015 ident: 10885_CR16 publication-title: Nat. Commun. doi: 10.1038/ncomms8602 – volume: 13 start-page: 1109 year: 2018 ident: 10885_CR56 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0228-6 – volume: 7 year: 2016 ident: 10885_CR45 publication-title: Nat. Commun. doi: 10.1038/ncomms11408 – volume: 4 start-page: eaau1665 year: 2018 ident: 10885_CR11 publication-title: Sci. Adv. doi: 10.1126/sciadv.aau1665 – volume: 13 start-page: 685 year: 2018 ident: 10885_CR27 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0181-4 – volume: 139 start-page: 1396 year: 2017 ident: 10885_CR52 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11696 – volume: 30 start-page: e1801934 year: 2018 ident: 10885_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.201801934 – volume: 132 start-page: 8338 year: 2010 ident: 10885_CR49 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja101014y – volume: 310 start-page: 1461 year: 2005 ident: 10885_CR1 publication-title: Science doi: 10.1126/science.1113666 – volume: 31 start-page: 91 year: 2014 ident: 10885_CR31 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.11.049 – volume: 16 start-page: 23 year: 2014 ident: 10885_CR50 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C3CP51712H – volume: 559 start-page: 236 year: 2018 ident: 10885_CR15 publication-title: Nature doi: 10.1038/s41586-018-0292-y – volume: 2 start-page: 17105 year: 2017 ident: 10885_CR34 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.105 – volume: 4 start-page: eaaq0066 year: 2018 ident: 10885_CR47 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaq0066 – volume: 425 start-page: 156 year: 2018 ident: 10885_CR46 publication-title: Desalination doi: 10.1016/j.desal.2017.10.021 – volume: 358 start-page: 511 year: 2017 ident: 10885_CR20 publication-title: Science doi: 10.1126/science.aan5275 – volume: 557 start-page: 409 year: 2018 ident: 10885_CR35 publication-title: Nature doi: 10.1038/s41586-018-0109-z – volume: 57 start-page: 15491 year: 2018 ident: 10885_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201809662 |
SSID | ssj0000391844 |
Score | 2.699178 |
Snippet | Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic... Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2920 |
SubjectTerms | 639/4077/4072/4062 639/638/455/303 Aramid fiber reinforced plastics Charge density Chemical potential Contact angle Energy Energy charge Energy conversion Energy conversion efficiency Etching Fluidics Generators Graphene Humanities and Social Sciences Investigations Ion diffusion Kevlar (trademark) Membranes multidisciplinary MXenes Nanofibers Nanofluids Organic chemistry Potential gradient Rivers Salinity Science Science (multidisciplinary) Seawater Space charge Surface charge |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYhUMilNG3abpIWFXJLF-uxq10d29IQWpxTAr4JvZwanLWJ7Zb8-85IaydOX5feFkm7iJnRzHw7mhlCTkTAcBrAVMWjQ4AiSxt9LMF7cCqKqBqBycnDC3V-VX0Z1aMHrb7wTlguD5wJN3Cq0d5W1kUmKxeYbrwdR12B5XUgjSl1D2zeAzCVdLDUAF2qPkuGyXawqJJOAI8GNE_b1mW7ZYlSwf7feZm_XpZ8FDFNhujsGXnae5D0Q975PtmJ3XPyJPeUvHtBfgwjJvMi7ad3dIF_uq_pcAQqbfA1fgccSzvbgUS5eEvxPjle2or0Jt4AbAa1R-2CYgnjcn6fUZDfmK4mYeLpLDX-8XSO7dXodapajR17DsjV2efLT-dl312h9ABalmUrLG_HHMiC5HCSaa-EB3dQBInBMuedts04SBu41k7Bk5RjWYN5U6yyQr4ku92si68JhZEAQFKIwGMVLNOisXXjgfsu1jrwgvA1pY3vS49jB4ypSSFw2ZrMHQPcMYk7pi3I6eadeS688dfVH5GBm5VYNDsNgCiZXpTMv0SpIMdr9pv-JC8M6DuOCbm6Lsi7zTScQQysAF9mq7wG_zJI-MSrLC2bnUgOLhD4gAVptuRoa6vbM93kW6rzrRTCOVaQ92uJu9_Wn0lx-D9IcUT2BEvpbSUTx2R3ebuKb8D7Wrq36aD9BPARK9w priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0IIhJF4Q42uBbTISbxA1sRPHfkKA6CZQeWJS3yx_tVTqktK0oP177pw0VfnYW-TYkXN3Pt_3EfKaeXSngZoq8mBRQeGpCS6kID1YEVgQFcPk5MlXcXlVfJ6W097g1vZhlTueGBm1bxzayEdAdzkmRqry3epHil2j0Lvat9C4S-7lcNNgSJccXww2Fqx-Louiz5XJuBy1ReQMINcA_5GyTOXBfRTL9v9L1vw7ZPIPv2m8jsaPyMNejqTvO8Qfkzuhfkzud50lb56QX5OAKb2IgeUNbdHePaeTKTC20ZfwE7RZWpsa6MqGNcWocgzdCvQ6XIPyDMyPmpZiIeN0tc8r6FYstwu_cLSJ7X8cXWGTNTqPtauxb89TcjX-9O3jZdr3WEgdqC6bVDKTy1kOYEFwWJ4pJ5gDoZB5ji4z66wy1cxz43OlrIAnzme8hEtOZIVh_Bk5qps6nBAKIx7UScZ8HgpvMsUqU1YOaMCGUvk8IfkO0tr1BcixD8ZSR0c4l7rDjgbs6IgdLRPyZliz6spv3Dr7AyJwmImls-NAs57r_iRqKyrlTGFsyHhhfaYqZ2ZBFSDKWWBvKiGnO_Tr_jy3ek99CXk1vIaTiO4VwEuz7eagrYHDJ5531DLshCN5giSYkOqAjg62evimXnyP1b6FQKUuS8jbHcXtt_V_ULy4_S9ekgcsi-lracZOydFmvQ1nIF1t7Hk8Qr8Bnpoi2A priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxG-rp0TwTcu1SZs2j6t4HCvrix7sW8jXrgt73WU_lPvvnUk_jtVT8K20SQkzk8lMZuY3AG-5p3AauqkyD5YcFJGa4EKK1oOVgQdZcSpOnnyRF5fFeFpOj4D3tTAxaT9CWkY13WeHnW2LuKXRIEHFUddlWt-BE4JqR9k-GY3GX8fDzQphntdF0VXIZKK-ZfLBKRTB-m-zMP9MlPwtWhoPofMHcL-zHtmoXe9DOArNI7jb9pO8fgw_J4EKeYnuy2u2pVvuOZtMUZ2dfQ4_0IdljWlQmmzYMMolp4StwK7CFbrMqPKY2TKCL07XN9UE7YzlfuEXjq1i0x_H1tRajc0jYjV163kCl-efvn28SLvOCqlDh2WX1tzk9SxHshA5rMiUk9yhKci9oECZdVaZauaF8blSVuKTEDNR4tEms8Jw8RSOm1UTngPDNx6dSM59HgpvMsUrU1YOOW9DqXyeQN5TWrsOdpy6Xyx1DH-LWrfc0cgdHbmj6wTeDXPWLejGP0d_IAYOIwkwO75Ybea6EyBtZaWcKYwNmSisz1TlzCyoAg04i0pNJXDas193u3irUdflVIyrygTeDJ9x_1FQBfmy2rdj6IZB4C-etdIyrETkaP6g_ZdAdSBHB0s9_NIsvkeMbynJlcsSeN9L3M2y_k6KF_83_CXc41ksYkszfgrHu80-vEIba2dfd5vqF8k0IhU priority: 102 providerName: Springer Nature |
Title | Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators |
URI | https://link.springer.com/article/10.1038/s41467-019-10885-8 https://www.ncbi.nlm.nih.gov/pubmed/31266937 https://www.proquest.com/docview/2251064795 https://www.proquest.com/docview/2251690739 https://pubmed.ncbi.nlm.nih.gov/PMC6606750 https://doaj.org/article/b679ca4abe034bd097cafe94617b8329 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQPgfaC-ByBURmJNwhL7MSJHxDqqpWpqBMCKvUtshO3VOrS0g-g_547J-koDB54aSvHTq37Pp_vDuAFLyichm6qDK0hB0X42ubWR-vBSMutTDglJ_cv5cUg6g3j4R407Y5qAC5vdO2on9RgMX394-vmLTL8myplPD1dRo7d0VhBoZKmsZ_uwyFqpoQ6GvRrc99JZqHQoYnq3Jmblx7BbRGi1lLUGf0XVeUq-t9khv55m_K3kKrTVN27cKc2MVm7ool7sGfL-3Crajq5eQDf-5ayfQk50w1b0lH4mPWHKPNO39tvCA1W6hJJztgFowvndKvLsit7hX41ykWml4xqHPvz65SDasV0PSkmOZu5zkA5m1P_NTZ2Za2ppc9DGHTPP3cu_Lr9gp-jV7PyU67DdBQihAgyRgQqlzxHe5EXgqJpJjdKJ6NC6CJUykj8JcRIxKj_ZBBpLh7BQTkr7WNgOFKgp8l5Edqo0IHiiY6THMnD2FgVoQdhA-ksr2uTU4uMaeZi5CLNKkRliKjMISpLPXi5XTOvKnP8c_YZIXA7k6pqu4HZYpzVTJoZmahcR9rYQESmCFSS65FVEVp5BiWf8uCkQX_WUGqGAjGkjF0Ve_B8-xiZlCIviJfZuppDxxACX3FcUct2Jw21eZDs0NHOVneflJMvrhC4lOTvBR68aijuelt_B8WT__6jp3DEA5f05gf8BA5Wi7V9hjbZyrRgPxkm-Jl237XgsN3uferh99n55YePONqRnZY77Wg5hvwJvec6LA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWixBcEG8CCxgJThBtYjsPHxDiVbp0u6ddqTfjV0ulblr6YNU_xW9kxklalcfe9hYlTuN6xp-_8XhmCHnJHLrTwEzNU2_QQOGx9tbHwB5M7pnPC4bByf2TvHsmvg6ywR751cbC4LHKFhMDULupxT3yQ9C7FAMjZfZu9iPGqlHoXW1LaNRq0fPrCzDZFm-PPoF8XzHW-Xz6sRs3VQViC2R9GZdMp-UwFWBZlGVmeCJtzizQIOY4OomMNVIXQ8e1S6U0OVxxPuQZwHqeCI2JDgDyrwkOKzlGpne-bPZ0MNt6KUQTm5Pw8nAhAhIBjwK8g8_F5c76F8oE_Ivb_n1E8w8_bVj-OrfJrYa30ve1ot0he766S67XlSzX98hF32MIMUp8sqYL3F8f0f4AgPSw53-C9UwrXYEeGz-neIodj4p5eu7PwVgHsKV6QTFxcjzbxjHUb0xWYze2dBrKDVk6w6JudBRyZWOdoPvk7EpG_wHZr6aVf0Qo3HFgvjLmUi-cTiQrdFZY0DnjM-nSiKTtSCvbJDzHuhsTFRzvvFS1dBRIRwXpqDIirzfvzOp0H5e2_oAC3LTEVN3hxnQ-Us3MVyYvpNVCG59wYVwiC6uHXgqgjgbgVEbkoBW_avBjobbaHpEXm8cw89GdA3KZruo2uLfB4Sce1tqy6QlPgXgB84xIsaNHO13dfVKNv4fs4nmORmQSkTetxm279f-heHz5v3hObnRP-8fq-Oik94TcZEkInYsTdkD2l_OVfwrMbmmehelEybernr-_Aby4Xao |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTiBeEHcCA4wETxA1sXPzA0KMrdoorSbEpL4Z31oqdWnphal_jV_HOU7Sqlz2trcqcVrX5_jLd3xuhLxiFt1pYKZmsdNooPBQOeNCYA86c8xlOcPk5F4_OzlPPg3SwR751eTCYFhlg4keqO3U4Bl5G_QuxsRIkbaHdVjE2VHn_exHiB2k0NPatNOoVKTr1pdgvi3enR6BrF8z1jn--vEkrDsMhAaI-zIsmIqLYZyAlVEUqeaRMBkzQImY5egw0kYLlQ8tVzYWQmfwifMhTwHisyhRWPQA4H8_R6uoRfYPj_tnXzYnPFh7vUiSOlMn4kV7kXhcAlYF6Ac_GBY7b0PfNOBfTPfvgM0_vLb-Zdi5Q27XLJZ-qNTuLtlz5T1yo-prub5PLnsOE4pR_pM1XeBp-4j2BgCr7a77CbY0LVUJWq3dnGJMOwaOOXrhLsB0B-ilakGxjHI422Y1VE9MVmM7NnTqmw8ZOsMWb3TkK2dj16AH5Pxa1v8haZXT0j0mFK5YMGYZs7FLrIoEy1WaG9BA7VJh44DEzUpLU5c_xy4cE-nd8LyQlXQkSEd66cgiIG82z8yq4h9Xjj5EAW5GYuFuf2E6H8kaB6TOcmFUorSLeKJtJHKjhk4kQCQ1gKsIyEEjflmjyUJudT8gLze3AQfQuQNyma6qMXjSweErHlXaspkJj4GGAQ8NSL6jRztT3b1Tjr_7WuNZhiZlFJC3jcZtp_X_pXhy9b94QW7C3pWfT_vdp-QWi3weXRixA9JazlfuGdC8pX5e7ydKvl33Fv4NBTNjPA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+strong+MXene%2FKevlar+nanofiber+composite+membranes+as+high-performance+nanofluidic+osmotic+power+generators&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Zhen&rft.au=Yang%2C+Sheng&rft.au=Zhang%2C+Panpan&rft.au=Zhang%2C+Jian&rft.date=2019-07-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft_id=info:doi/10.1038%2Fs41467-019-10885-8&rft_id=info%3Apmid%2F31266937&rft.externalDocID=PMC6606750 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |