Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators

Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-effici...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 2920 - 9
Main Authors Zhang, Zhen, Yang, Sheng, Zhang, Panpan, Zhang, Jian, Chen, Guangbo, Feng, Xinliang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.07.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m −2 ). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m −2 , outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients. Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the authors report high-strength nanosheet/nanofiber composite membranes for harvesting osmotic energy from natural water with high output power.
AbstractList Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m −2 ). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m −2 , outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients. Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the authors report high-strength nanosheet/nanofiber composite membranes for harvesting osmotic energy from natural water with high output power.
Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m−2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m−2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m-2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m-2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m-2). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m-2, outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m −2 ). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m −2 , outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the authors report high-strength nanosheet/nanofiber composite membranes for harvesting osmotic energy from natural water with high output power.
Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic architectures are generally constructed by simple stacking of pristine nanosheets with insufficient charge densities, and exhibit low-efficiency transport dynamics, consequently resulting in undesirable power densities (<1 W m ). Here we demonstrate MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators. By mixing river water and sea water, the power density can achieve a value of approximately 4.1 W m , outperforming the state-of-art membranes to the best of our knowledge. Experiments and theoretical calculations reveal that the correlation between surface charge of MXene and space charge brought by nanofibers plays a key role in modulating ion diffusion and can synergistically contribute to such a considerable energy conversion performance. This work highlights the promise in the coupling of surface charge and space charge in nanoconfinement for energy conversion driven by chemical potential gradients.
ArticleNumber 2920
Author Yang, Sheng
Zhang, Panpan
Chen, Guangbo
Zhang, Jian
Feng, Xinliang
Zhang, Zhen
Author_xml – sequence: 1
  givenname: Zhen
  surname: Zhang
  fullname: Zhang, Zhen
  organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 2
  givenname: Sheng
  surname: Yang
  fullname: Yang, Sheng
  organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 3
  givenname: Panpan
  orcidid: 0000-0002-3967-6548
  surname: Zhang
  fullname: Zhang, Panpan
  organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 4
  givenname: Jian
  orcidid: 0000-0002-0912-1197
  surname: Zhang
  fullname: Zhang, Jian
  organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 5
  givenname: Guangbo
  surname: Chen
  fullname: Chen, Guangbo
  organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden
– sequence: 6
  givenname: Xinliang
  surname: Feng
  fullname: Feng, Xinliang
  email: xinliang.feng@tu-dresden.de
  organization: Center for Advancing Electronics Dresden (Cfaed) and Department of Chemistry and Food Chemistry, Technische Universität Dresden
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31266937$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOKxIVLqD-ydnxBQlWBilZcQOJmjZ1J1qvEXuykVf893k0pbQ_1ZUb2e2_mjed1ceCDx6J4S8lHSnhzmmpaC1kRqipKmmZVNS-KI0ZqWlHJ-MGD_LA4SWlD8uGKNnX9qjjklAmhuDwqbq7QrsE7C8NwW6YpBt-XV7_R4-l3vB4glh586JzBWNowbkNyE5YjjiaCx1RCKteuX1dbjF2II3iLC2OYXetsGdIYphy34SYr9Fk3whRielO87GBIeHIXj4tfX85_nn2rLn98vTj7fFlZQcRUNQxo09HsdefRcKKsYFZJyVquFKHGGgWyazm0VCkjcsZ5x1dESEFqYPy4uFh02wAbvY1uhHirAzi9vwix1xBzgwNqI6SyUINBwmvTEiUtdKhqQaVpOFNZ69OitZ3NiK1FP0UYHok-fvFurftwrUX2IlckC3y4E4jhz4xp0qNLFochjzLMSTO2okIRyXe13j-BbsIcfR7VHkVELdUqo9497Oi-lX__mwFsAdgYUorY3UMo0bs90sse6bxHer9Husmk5gnJugkmF3au3PA8lS_UlOv4HuP_tp9h_QU6D93V
CitedBy_id crossref_primary_10_1021_acs_nanolett_0c00526
crossref_primary_10_1021_acsami_0c19909
crossref_primary_10_1002_adma_201906697
crossref_primary_10_1016_j_seppur_2025_132017
crossref_primary_10_1039_D3CS00367A
crossref_primary_10_3390_nano14151302
crossref_primary_10_1021_acsami_4c13973
crossref_primary_10_3389_fchem_2022_1090905
crossref_primary_10_1016_j_memsci_2021_120073
crossref_primary_10_1016_j_ensm_2021_04_047
crossref_primary_10_1002_adma_202307849
crossref_primary_10_1002_ange_202315947
crossref_primary_10_1021_acs_energyfuels_3c00589
crossref_primary_10_1021_acsnano_1c04423
crossref_primary_10_1021_acs_iecr_3c00307
crossref_primary_10_1016_j_jmst_2024_03_007
crossref_primary_10_1002_anie_202108549
crossref_primary_10_1002_adma_202417498
crossref_primary_10_1016_j_giant_2022_100094
crossref_primary_10_1002_ange_202206152
crossref_primary_10_1016_j_jelechem_2023_117967
crossref_primary_10_1002_aenm_202100519
crossref_primary_10_1039_D4TA08491H
crossref_primary_10_1002_aenm_202405045
crossref_primary_10_1002_ange_202311138
crossref_primary_10_1016_j_mtcomm_2020_101689
crossref_primary_10_1002_smll_202205003
crossref_primary_10_1002_adfm_202101378
crossref_primary_10_1002_advs_202202869
crossref_primary_10_1021_acs_jpcb_4c06142
crossref_primary_10_1016_j_apsusc_2021_149004
crossref_primary_10_1002_adma_202001093
crossref_primary_10_1021_acsami_3c05207
crossref_primary_10_1021_acs_analchem_0c04976
crossref_primary_10_1039_D2TA08991B
crossref_primary_10_1002_ange_202314638
crossref_primary_10_1021_acsami_0c13130
crossref_primary_10_1007_s40820_024_01365_w
crossref_primary_10_2478_pjct_2021_0021
crossref_primary_10_1021_acscentsci_0c01054
crossref_primary_10_1021_acs_energyfuels_4c03154
crossref_primary_10_1016_j_pmatsci_2025_101457
crossref_primary_10_1002_adfm_202208959
crossref_primary_10_1016_j_mtsust_2024_100939
crossref_primary_10_1016_j_nantod_2022_101593
crossref_primary_10_1063_5_0037873
crossref_primary_10_1093_nsr_nwaa057
crossref_primary_10_1002_smll_202206878
crossref_primary_10_1016_j_jallcom_2020_158480
crossref_primary_10_1021_acsmacrolett_2c00138
crossref_primary_10_1002_admi_202000670
crossref_primary_10_1021_jacs_2c12936
crossref_primary_10_1063_5_0026984
crossref_primary_10_1002_smll_202301512
crossref_primary_10_1126_sciadv_ads5591
crossref_primary_10_1021_acsanm_2c01304
crossref_primary_10_1002_smll_202107600
crossref_primary_10_1021_acsaelm_3c00076
crossref_primary_10_1149_2162_8777_ac9336
crossref_primary_10_1039_D1TA08560C
crossref_primary_10_1002_cssc_202200933
crossref_primary_10_1002_adfm_202000869
crossref_primary_10_1039_D1SE01729B
crossref_primary_10_1103_PhysRevApplied_14_014075
crossref_primary_10_1002_ange_202015627
crossref_primary_10_1073_pnas_2005937117
crossref_primary_10_1016_j_memsci_2023_121403
crossref_primary_10_1039_D2TA06805B
crossref_primary_10_1002_ange_202218321
crossref_primary_10_1002_smtd_202301558
crossref_primary_10_1021_acsnano_2c07555
crossref_primary_10_1038_s41467_020_20296_9
crossref_primary_10_1021_acsami_1c03192
crossref_primary_10_1021_acsnano_4c16136
crossref_primary_10_1016_j_cclet_2023_109193
crossref_primary_10_1002_ange_201912570
crossref_primary_10_1021_acs_est_1c00264
crossref_primary_10_1016_j_cej_2024_151600
crossref_primary_10_1021_acsnano_4c04152
crossref_primary_10_1016_j_nanoen_2021_106709
crossref_primary_10_1021_acsami_1c22707
crossref_primary_10_1016_j_eng_2021_02_016
crossref_primary_10_1039_D2EE00851C
crossref_primary_10_1038_s41467_022_31183_w
crossref_primary_10_14579_MEMBRANE_JOURNAL_2023_33_4_181
crossref_primary_10_1021_acsapm_3c01364
crossref_primary_10_1021_acsnano_9b06774
crossref_primary_10_1002_ange_202108549
crossref_primary_10_1016_j_compositesa_2020_105927
crossref_primary_10_1007_s12274_023_5705_z
crossref_primary_10_1016_j_mattod_2022_12_001
crossref_primary_10_1002_adma_202108560
crossref_primary_10_1016_j_compositesb_2023_111168
crossref_primary_10_1038_s41699_024_00486_5
crossref_primary_10_1016_j_apsusc_2025_162527
crossref_primary_10_1039_D3GC01996A
crossref_primary_10_1002_adfm_202307996
crossref_primary_10_1002_asia_202300876
crossref_primary_10_1002_adfm_202409356
crossref_primary_10_1039_D4TA00073K
crossref_primary_10_1016_j_cej_2025_159868
crossref_primary_10_1021_accountsmr_2c00210
crossref_primary_10_1080_25740881_2021_1906901
crossref_primary_10_1021_acsami_4c02755
crossref_primary_10_1007_s40964_023_00424_9
crossref_primary_10_1016_j_renene_2023_04_056
crossref_primary_10_1039_D4SE01366B
crossref_primary_10_1002_EXP_20220049
crossref_primary_10_1021_acsami_9b19962
crossref_primary_10_1016_j_eurpolymj_2021_110445
crossref_primary_10_1021_acsami_4c17932
crossref_primary_10_1016_j_nanoen_2020_104906
crossref_primary_10_1039_D1TA02400K
crossref_primary_10_1002_adfm_202004181
crossref_primary_10_1016_j_procbio_2023_06_022
crossref_primary_10_1021_acsnano_3c11646
crossref_primary_10_1021_acsami_3c13008
crossref_primary_10_1002_adfm_202312654
crossref_primary_10_1021_acs_nanolett_3c03343
crossref_primary_10_1021_jacs_1c00547
crossref_primary_10_1039_D4MA00894D
crossref_primary_10_1007_s13391_022_00337_9
crossref_primary_10_1016_j_nanoen_2022_107981
crossref_primary_10_1002_adfm_202425595
crossref_primary_10_1016_j_jpowsour_2021_229637
crossref_primary_10_1021_acsami_0c16344
crossref_primary_10_1021_acsnano_1c01551
crossref_primary_10_1021_acsami_2c04307
crossref_primary_10_1016_j_cej_2022_139395
crossref_primary_10_1002_apxr_202300016
crossref_primary_10_1002_ente_202301458
crossref_primary_10_3390_membranes11060443
crossref_primary_10_1002_smll_202300338
crossref_primary_10_1021_acsnano_2c08163
crossref_primary_10_1039_D4SC04639K
crossref_primary_10_1016_j_cplett_2022_139871
crossref_primary_10_1002_anie_201915993
crossref_primary_10_1016_j_memsci_2020_118668
crossref_primary_10_26599_NRE_2022_9120008
crossref_primary_10_3390_ijms252313226
crossref_primary_10_1021_jacs_1c07392
crossref_primary_10_1021_acsami_3c05831
crossref_primary_10_1039_D0TA01654C
crossref_primary_10_1002_admt_202001189
crossref_primary_10_1016_j_adna_2024_03_001
crossref_primary_10_1002_smtd_202300077
crossref_primary_10_1016_j_enconman_2023_116898
crossref_primary_10_1021_acsanm_4c07360
crossref_primary_10_1002_smll_202403593
crossref_primary_10_1002_adfm_202313968
crossref_primary_10_1002_adfm_202414342
crossref_primary_10_1002_adma_202208903
crossref_primary_10_1016_j_cclet_2019_08_045
crossref_primary_10_1002_adfm_202206705
crossref_primary_10_1016_j_mattod_2024_06_011
crossref_primary_10_1021_acsabm_0c00007
crossref_primary_10_1002_ange_202303582
crossref_primary_10_1021_jacs_0c11251
crossref_primary_10_1007_s40820_024_01444_y
crossref_primary_10_1016_j_nanoen_2024_109450
crossref_primary_10_1016_j_mtla_2024_102089
crossref_primary_10_1002_adfm_202404410
crossref_primary_10_1021_acsenergylett_2c01681
crossref_primary_10_1002_eom2_12247
crossref_primary_10_1002_anie_202302938
crossref_primary_10_1002_admi_202101960
crossref_primary_10_1016_j_seppur_2024_127663
crossref_primary_10_1021_acs_nanolett_3c04343
crossref_primary_10_1002_smll_202006013
crossref_primary_10_1016_j_mattod_2021_01_026
crossref_primary_10_1021_acsnano_2c00866
crossref_primary_10_1063_5_0170905
crossref_primary_10_1002_advs_202103696
crossref_primary_10_1016_j_jcis_2024_11_071
crossref_primary_10_1016_j_jechem_2020_02_032
crossref_primary_10_1016_j_memsci_2024_122962
crossref_primary_10_1002_adma_201904351
crossref_primary_10_1016_j_cej_2024_153891
crossref_primary_10_1016_j_msec_2020_111833
crossref_primary_10_1002_smll_202402284
crossref_primary_10_1002_adfm_202005223
crossref_primary_10_1016_j_colsurfa_2025_136721
crossref_primary_10_1016_j_jpowsour_2021_230899
crossref_primary_10_1039_D0QM00569J
crossref_primary_10_1002_adma_202404418
crossref_primary_10_1002_smll_202207559
crossref_primary_10_1126_sciadv_adt8262
crossref_primary_10_1126_science_abf1581
crossref_primary_10_1016_j_memsci_2024_122718
crossref_primary_10_1016_j_cej_2020_126898
crossref_primary_10_1016_j_xcrp_2021_100449
crossref_primary_10_1021_acsenergylett_9b02296
crossref_primary_10_1002_aenm_201902986
crossref_primary_10_1039_D1EE00908G
crossref_primary_10_1016_j_cej_2021_134201
crossref_primary_10_1039_D1TA09547A
crossref_primary_10_1016_j_apsusc_2021_150894
crossref_primary_10_1002_adfm_202109210
crossref_primary_10_1063_5_0028628
crossref_primary_10_1039_D0CS01160F
crossref_primary_10_1007_s00339_021_04295_1
crossref_primary_10_1063_5_0066194
crossref_primary_10_1016_j_clay_2024_107577
crossref_primary_10_1002_anie_202414984
crossref_primary_10_1016_j_ceramint_2022_05_281
crossref_primary_10_1016_j_mtadv_2022_100303
crossref_primary_10_1038_s41467_022_32699_x
crossref_primary_10_1016_j_diamond_2023_109971
crossref_primary_10_1021_acsnano_0c02401
crossref_primary_10_1002_adma_202310791
crossref_primary_10_1002_admt_202201433
crossref_primary_10_1002_smll_202304603
crossref_primary_10_1016_j_cej_2025_160447
crossref_primary_10_1016_j_cej_2022_141167
crossref_primary_10_1021_acsami_3c13387
crossref_primary_10_1002_adma_202403791
crossref_primary_10_1016_j_cej_2020_126438
crossref_primary_10_1002_smll_202207454
crossref_primary_10_1021_jacs_5c01960
crossref_primary_10_1021_acsami_3c03464
crossref_primary_10_1021_acsapm_1c00471
crossref_primary_10_1016_j_cej_2022_135610
crossref_primary_10_1088_2058_6272_ac1e77
crossref_primary_10_1002_adfm_202313914
crossref_primary_10_1016_j_cej_2022_136945
crossref_primary_10_1021_acsapm_2c00570
crossref_primary_10_1002_adfm_202412477
crossref_primary_10_1021_acsnano_0c01779
crossref_primary_10_1016_j_ceramint_2022_05_143
crossref_primary_10_1016_j_enconman_2021_115032
crossref_primary_10_1021_acsmaterialslett_2c00276
crossref_primary_10_1021_acsnano_4c14912
crossref_primary_10_1016_j_mtchem_2024_101989
crossref_primary_10_1016_j_matt_2024_07_006
crossref_primary_10_1016_j_matdes_2021_110124
crossref_primary_10_1016_j_msea_2021_142142
crossref_primary_10_1021_acsami_2c05247
crossref_primary_10_1039_C9NR09272B
crossref_primary_10_1063_5_0243056
crossref_primary_10_1002_ange_202116910
crossref_primary_10_1002_adma_202208640
crossref_primary_10_1002_ange_202500116
crossref_primary_10_1016_j_jcis_2024_06_094
crossref_primary_10_1021_acsaem_4c02138
crossref_primary_10_1039_D4EE01381F
crossref_primary_10_1002_aenm_202402304
crossref_primary_10_1002_adfm_202105043
crossref_primary_10_1088_2053_1583_ac9ceb
crossref_primary_10_1016_j_matt_2020_07_011
crossref_primary_10_1016_j_inoche_2024_112457
crossref_primary_10_1002_wcms_1661
crossref_primary_10_1016_j_matlet_2024_136185
crossref_primary_10_1021_acs_iecr_3c02048
crossref_primary_10_1021_acsnano_1c08347
crossref_primary_10_1016_j_enconman_2021_114957
crossref_primary_10_1021_acsanm_4c03394
crossref_primary_10_1039_D3MH00600J
crossref_primary_10_1039_D0MH00979B
crossref_primary_10_1002_adma_202310683
crossref_primary_10_1002_sus2_206
crossref_primary_10_1007_s12221_021_0441_z
crossref_primary_10_1038_s41467_024_48613_6
crossref_primary_10_1002_admi_202201634
crossref_primary_10_1142_S1793292020501489
crossref_primary_10_1021_acs_jpcc_1c03118
crossref_primary_10_1016_j_progpolymsci_2024_101830
crossref_primary_10_1039_D1CS00582K
crossref_primary_10_1016_j_compositesa_2024_108682
crossref_primary_10_1016_j_giant_2021_100049
crossref_primary_10_1103_PhysRevFluids_7_013702
crossref_primary_10_1360_SSPMA_2023_0443
crossref_primary_10_1016_j_nantod_2024_102468
crossref_primary_10_1021_acs_langmuir_4c01546
crossref_primary_10_1007_s11705_020_1997_7
crossref_primary_10_1016_j_ensm_2024_103829
crossref_primary_10_1016_j_mattod_2024_12_001
crossref_primary_10_1021_jacs_1c02090
crossref_primary_10_3390_nano11010090
crossref_primary_10_1016_j_carbon_2023_118600
crossref_primary_10_1002_admi_202002043
crossref_primary_10_1002_adfm_202211316
crossref_primary_10_1073_pnas_2009432117
crossref_primary_10_1002_ange_202407491
crossref_primary_10_1016_j_enchem_2023_100110
crossref_primary_10_1073_pnas_2003898117
crossref_primary_10_1016_j_joule_2019_11_010
crossref_primary_10_1016_j_est_2024_115179
crossref_primary_10_1021_acsami_0c21661
crossref_primary_10_1002_adfm_202311258
crossref_primary_10_1016_j_cej_2023_147890
crossref_primary_10_1021_acsnano_2c07813
crossref_primary_10_1002_anie_202005084
crossref_primary_10_1002_smtd_202101255
crossref_primary_10_1039_D2TA06557F
crossref_primary_10_1016_j_electacta_2022_140575
crossref_primary_10_1002_adfm_202502946
crossref_primary_10_1016_j_memsci_2023_122054
crossref_primary_10_1016_j_compscitech_2020_108545
crossref_primary_10_1002_adfm_202414365
crossref_primary_10_1016_j_nanoen_2020_104954
crossref_primary_10_1016_j_nanoen_2022_107548
crossref_primary_10_1016_j_carbpol_2021_118938
crossref_primary_10_1016_j_nanoen_2022_107786
crossref_primary_10_1002_anie_201912570
crossref_primary_10_1016_j_compscitech_2020_108543
crossref_primary_10_1002_adma_202302511
crossref_primary_10_1002_ange_202005084
crossref_primary_10_1002_anie_202116910
crossref_primary_10_1002_anie_202218321
crossref_primary_10_1039_D1SC03581A
crossref_primary_10_1021_acsomega_2c02266
crossref_primary_10_1021_acs_nanolett_0c01087
crossref_primary_10_1016_j_advmem_2022_100046
crossref_primary_10_1016_j_memsci_2024_123645
crossref_primary_10_1002_adfm_202000186
crossref_primary_10_1016_j_seppur_2023_125640
crossref_primary_10_1002_adfm_202401295
crossref_primary_10_1038_s41467_024_54216_y
crossref_primary_10_1021_acs_jpcc_1c03010
crossref_primary_10_1016_j_enconman_2022_116373
crossref_primary_10_1007_s12274_023_6123_y
crossref_primary_10_1038_s41467_022_31523_w
crossref_primary_10_1002_adfm_202105013
crossref_primary_10_1002_adma_202205154
crossref_primary_10_1016_j_cej_2022_139482
crossref_primary_10_1016_j_memsci_2024_123678
crossref_primary_10_1021_acsnano_9b07192
crossref_primary_10_1088_2515_7655_aca829
crossref_primary_10_1002_chem_202301400
crossref_primary_10_1038_s41467_023_39791_w
crossref_primary_10_1016_j_memsci_2023_122156
crossref_primary_10_1002_anie_202409349
crossref_primary_10_1007_s12274_024_6783_2
crossref_primary_10_1007_s40843_024_2963_6
crossref_primary_10_1016_j_nanoen_2021_106275
crossref_primary_10_1016_j_mattod_2023_03_002
crossref_primary_10_1021_acsnano_1c00820
crossref_primary_10_1007_s40820_024_01577_0
crossref_primary_10_1016_j_cej_2023_146522
crossref_primary_10_1016_j_desal_2025_118597
crossref_primary_10_1002_admi_202200513
crossref_primary_10_1016_j_compscitech_2024_110665
crossref_primary_10_1002_adfm_202308176
crossref_primary_10_1016_j_xcrp_2023_101717
crossref_primary_10_26599_NRE_2025_9120156
crossref_primary_10_1007_s40820_021_00603_9
crossref_primary_10_1016_j_cclet_2021_10_011
crossref_primary_10_1016_j_electacta_2022_140581
crossref_primary_10_1002_adma_202206354
crossref_primary_10_1016_j_memsci_2024_122456
crossref_primary_10_1002_ange_202409349
crossref_primary_10_1021_acsestengg_1c00309
crossref_primary_10_1016_j_cej_2024_152375
crossref_primary_10_1016_j_rser_2021_110878
crossref_primary_10_1016_j_jmst_2022_05_014
crossref_primary_10_1039_D2TA04359A
crossref_primary_10_1002_adma_202401772
crossref_primary_10_1016_j_memsci_2021_119752
crossref_primary_10_1016_j_carbon_2022_10_079
crossref_primary_10_1021_jacs_2c04862
crossref_primary_10_1002_cey2_509
crossref_primary_10_1007_s12274_022_4634_6
crossref_primary_10_1016_j_desal_2023_117131
crossref_primary_10_1002_anie_202015627
crossref_primary_10_1002_smll_202306562
crossref_primary_10_1021_acsami_4c19678
crossref_primary_10_1016_j_xcrp_2022_101065
crossref_primary_10_1039_D4TA00842A
crossref_primary_10_1016_j_jcis_2022_08_092
crossref_primary_10_1021_acs_accounts_4c00356
crossref_primary_10_1002_adma_202311141
crossref_primary_10_1007_s42765_024_00411_x
crossref_primary_10_1063_5_0241150
crossref_primary_10_1016_j_cej_2022_136675
crossref_primary_10_1088_1361_6528_ad5728
crossref_primary_10_1016_j_mtener_2021_100690
crossref_primary_10_1038_s41467_023_44156_4
crossref_primary_10_1016_j_cej_2022_139823
crossref_primary_10_1016_j_nanoen_2024_109924
crossref_primary_10_1002_ange_202414984
crossref_primary_10_1016_j_nanoen_2022_108155
crossref_primary_10_1039_C9TA10028H
crossref_primary_10_1038_s41467_024_54755_4
crossref_primary_10_1007_s00339_022_06222_4
crossref_primary_10_1038_s41467_024_54622_2
crossref_primary_10_1016_j_nanoen_2022_107291
crossref_primary_10_1016_j_apenergy_2022_120005
crossref_primary_10_1002_adfm_202401922
crossref_primary_10_1016_j_cej_2024_157000
crossref_primary_10_3390_membranes13020164
crossref_primary_10_1021_acsaem_2c03308
crossref_primary_10_1002_cben_202000026
crossref_primary_10_1002_cnl2_90
crossref_primary_10_1021_acsnano_2c02062
crossref_primary_10_1021_acs_chemrev_1c00069
crossref_primary_10_1039_D1MH00968K
crossref_primary_10_1002_adma_202108410
crossref_primary_10_1002_anie_202407491
crossref_primary_10_1016_j_mtphys_2022_100744
crossref_primary_10_1016_j_nanoen_2023_108693
crossref_primary_10_1021_acs_chemrev_3c00168
crossref_primary_10_1002_anie_202315947
crossref_primary_10_1002_ange_202302938
crossref_primary_10_1016_j_joule_2019_09_005
crossref_primary_10_1016_j_apsusc_2020_147974
crossref_primary_10_1021_acsnano_0c09513
crossref_primary_10_1021_acsmaterialslett_2c00914
crossref_primary_10_1016_j_carbpol_2022_119406
crossref_primary_10_1016_j_cej_2025_160922
crossref_primary_10_1021_acsami_1c03832
crossref_primary_10_1016_j_optmat_2023_113902
crossref_primary_10_1021_acs_jpclett_2c01351
crossref_primary_10_1038_s41467_024_46439_w
crossref_primary_10_1002_adma_202107554
crossref_primary_10_1021_acs_accounts_1c00431
crossref_primary_10_1039_D3CS00382E
crossref_primary_10_1039_D3TA01306E
crossref_primary_10_1016_j_jsamd_2024_100731
crossref_primary_10_1016_j_carbon_2022_03_004
crossref_primary_10_1016_j_jpowsour_2023_232701
crossref_primary_10_1021_jacs_2c04663
crossref_primary_10_1002_adfm_202102080
crossref_primary_10_1021_acsami_2c11567
crossref_primary_10_1007_s10570_024_06351_4
crossref_primary_10_1021_acsami_2c12777
crossref_primary_10_1021_acs_jpclett_2c03522
crossref_primary_10_1002_anie_202303582
crossref_primary_10_1016_j_xcrp_2024_101824
crossref_primary_10_1002_adma_202106410
crossref_primary_10_1002_anie_202314638
crossref_primary_10_1039_D1AN02232F
crossref_primary_10_3389_fbioe_2022_901507
crossref_primary_10_1080_15583724_2020_1729179
crossref_primary_10_1016_j_cej_2021_131980
crossref_primary_10_1002_adem_201901521
crossref_primary_10_1002_ange_201915993
crossref_primary_10_1039_D4CS00272E
crossref_primary_10_1039_D3CC00777D
crossref_primary_10_1002_anie_202500116
crossref_primary_10_1002_adfm_202211532
crossref_primary_10_1002_adfm_202404039
crossref_primary_10_1002_anie_202311138
crossref_primary_10_1021_acs_chemmater_9b04408
crossref_primary_10_1002_smsc_202100013
crossref_primary_10_1039_D1TA03125B
crossref_primary_10_1016_j_nanoen_2020_105509
crossref_primary_10_1021_acsanm_3c05821
crossref_primary_10_3389_fchem_2024_1401854
crossref_primary_10_1002_adfm_202422725
crossref_primary_10_1016_j_memsci_2024_123378
crossref_primary_10_1016_j_nanoen_2021_105930
crossref_primary_10_1007_s12274_023_5794_8
crossref_primary_10_1007_s40843_022_2057_5
crossref_primary_10_1038_s41467_023_40742_8
crossref_primary_10_1021_acs_est_2c01765
crossref_primary_10_1021_acsami_3c19120
crossref_primary_10_1016_j_mtchem_2024_102041
crossref_primary_10_1038_s41565_021_00903_6
crossref_primary_10_1002_anie_202206152
crossref_primary_10_1016_j_desal_2022_115802
crossref_primary_10_1002_cssc_202001799
crossref_primary_10_1002_adfm_202306834
crossref_primary_10_1103_PhysRevE_101_043113
crossref_primary_10_1002_marc_202200114
crossref_primary_10_1002_advs_202000286
crossref_primary_10_1038_s41467_020_14674_6
crossref_primary_10_1016_j_rser_2023_114078
crossref_primary_10_1002_adma_202002890
crossref_primary_10_2139_ssrn_3806067
crossref_primary_10_1021_acs_langmuir_2c02060
crossref_primary_10_1016_j_cej_2022_139531
crossref_primary_10_1021_acsami_2c19485
crossref_primary_10_1002_aesr_202400090
crossref_primary_10_1016_j_nanoen_2022_108007
crossref_primary_10_1016_j_nanoen_2022_108128
crossref_primary_10_1021_jacs_2c04223
crossref_primary_10_1002_cey2_626
Cites_doi 10.1038/s41586-018-0109-z
10.1038/ncomms8602
10.1038/nnano.2017.21
10.1126/sciadv.aaq0066
10.1016/j.rser.2013.11.049
10.1021/jacs.6b11100
10.1021/acs.chemmater.7b02847
10.1038/nature14253
10.1038/nnano.2017.72
10.1038/ncomms11408
10.1021/nn2014003
10.1038/nature18593
10.1126/science.1113666
10.1038/s41565-018-0181-4
10.1007/s10404-010-0641-0
10.1038/nnano.2015.219
10.1038/nature11876
10.1021/ja101014y
10.1038/nnano.2010.233
10.1021/acsnano.7b06657
10.1021/acsnano.6b07041
10.1021/ja308167f
10.1126/science.aaf5289
10.1002/anie.201809662
10.1038/nnano.2015.279
10.1126/science.1246501
10.1002/adma.201801934
10.1073/pnas.1414215111
10.1002/anie.201804299
10.1038/nenergy.2017.105
10.1038/nature24044
10.1016/j.desal.2017.10.021
10.1126/sciadv.1501272
10.1016/j.nanoen.2019.02.056
10.1038/nature24670
10.1038/s41586-018-0292-y
10.1002/adma.201603809
10.1021/jacs.6b11696
10.1126/sciadv.aau1665
10.1021/nl9020123
10.1038/s41565-018-0228-6
10.1038/s41467-018-06873-z
10.1039/C3CP51712H
10.1002/anie.201409911
10.1021/acsnano.5b02902
10.1002/adma.201700177
10.1002/adma.201506237
10.1002/aenm.201601847
10.1038/s41570-017-0091
10.1021/acs.jpclett.5b01895
10.1038/nnano.2009.332
10.1103/RevModPhys.80.839
10.1021/ja503692z
10.1038/nenergy.2016.90
10.1002/adma.200903161
10.1002/adma.201600797
10.1126/science.aan5275
10.1103/PhysRevLett.93.035901
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-10885-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
MEDLINE - Academic
CrossRef


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_b679ca4abe034bd097cafe94617b8329
PMC6606750
31266937
10_1038_s41467_019_10885_8
Genre Journal Article
GrantInformation_xml – fundername: European Union's Horizon 2020 research and innovation programme under grant number 785219
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-82a18f14140885b309c62c9772d39901bcb9a7fd3ad199b6fd333f35067604a23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:29:45 EDT 2025
Thu Aug 21 18:43:09 EDT 2025
Fri Jul 11 01:54:48 EDT 2025
Wed Aug 13 02:50:52 EDT 2025
Mon Jul 21 05:52:50 EDT 2025
Tue Jul 01 04:08:39 EDT 2025
Thu Apr 24 22:59:31 EDT 2025
Fri Feb 21 02:38:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-82a18f14140885b309c62c9772d39901bcb9a7fd3ad199b6fd333f35067604a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0912-1197
0000-0002-3967-6548
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-10885-8
PMID 31266937
PQID 2251064795
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b679ca4abe034bd097cafe94617b8329
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606750
proquest_miscellaneous_2251690739
proquest_journals_2251064795
pubmed_primary_31266937
crossref_primary_10_1038_s41467_019_10885_8
crossref_citationtrail_10_1038_s41467_019_10885_8
springer_journals_10_1038_s41467_019_10885_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-07-02
PublicationDateYYYYMMDD 2019-07-02
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-02
  day: 02
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Cheng (CR19) 2016; 2
Schoch, Han, Renaud (CR48) 2008; 80
Zhu (CR11) 2018; 4
Rollings, Kuan, Golovchenko (CR45) 2016; 7
Mei, Tang (CR46) 2018; 425
Zhang (CR47) 2018; 4
Li (CR32) 2017; 7
Straub, Yip, Lin, Lee, Elimelech (CR57) 2016; 1
Stein, Kruithof, Dekker (CR37) 2004; 93
Wan (CR53) 2015; 9
Hou, Hu, Grinthal, Khan, Aizenberg (CR4) 2015; 519
Ren (CR43) 2015; 6
Zhang (CR56) 2018; 13
Feng (CR30) 2016; 536
Lu, Guo, Xiang, Jiang (CR8) 2016; 28
Bonaccorso (CR24) 2015; 347
Ling (CR54) 2014; 111
Alhabeb (CR38) 2017; 29
Wang (CR29) 2017; 12
Shao, Raidongia, Koltonow, Huang (CR16) 2015; 6
Lukatskaya (CR34) 2017; 2
Kim, Duan, Chen, Majumdar (CR44) 2010; 9
Gao (CR55) 2014; 136
Kong (CR41) 2018; 30
Esfandiar (CR20) 2017; 358
Raidongia, Huang (CR18) 2012; 134
Hou (CR2) 2016; 28
Yang (CR33) 2018; 57
Cheng (CR28) 2017; 29
Huang (CR40) 2019; 59
Cheng, Jiang, Simon, Liu, Li (CR27) 2018; 13
Siria (CR12) 2013; 494
Chen (CR21) 2017; 550
Abraham (CR17) 2017; 12
Wen (CR58) 2010; 22
Siria, Bocquet, Bocquet (CR22) 2017; 1
Zheng, Grunker, Feng (CR10) 2016; 28
Schroeder (CR3) 2017; 552
Ali (CR49) 2010; 132
Aliprandi, Pakulski, Ciesielski, Samori (CR23) 2017; 11
Xiao, Giusto, Wen, Jiang, Antonietti (CR26) 2018; 57
Wang, Zhang, Zhai, Jiang (CR50) 2014; 16
Yan, Liang, Fan, Yang (CR51) 2009; 9
Qin (CR25) 2017; 139
Yang (CR36) 2011; 5
Sparreboom, van den Berg, Eijkel (CR42) 2009; 4
Duan, Majumdar (CR39) 2010; 5
He (CR52) 2017; 139
Gao (CR6) 2018; 9
Xia (CR35) 2018; 557
Gouaux, Mackinnon (CR1) 2005; 310
Zhou (CR15) 2018; 559
Burns, Seifert, Fertig, Howorka (CR5) 2016; 11
Howorka, Siwy (CR7) 2016; 10
Feng (CR9) 2015; 10
Jia, Wang, Song, Fan (CR31) 2014; 31
Wen, Tian, Jiang (CR13) 2015; 54
Koltonow, Huang (CR14) 2016; 351
S Wan (10885_CR53) 2015; 9
P Gao (10885_CR6) 2018; 9
S Howorka (10885_CR7) 2016; 10
CE Ren (10885_CR43) 2015; 6
A Aliprandi (10885_CR23) 2017; 11
JJ Shao (10885_CR16) 2015; 6
M Ali (10885_CR49) 2010; 132
J Gao (10885_CR55) 2014; 136
K Raidongia (10885_CR18) 2012; 134
RC Rollings (10885_CR45) 2016; 7
TBH Schroeder (10885_CR3) 2017; 552
E Gouaux (10885_CR1) 2005; 310
HC Zhang (10885_CR47) 2018; 4
X He (10885_CR52) 2017; 139
J Feng (10885_CR9) 2015; 10
LP Wen (10885_CR58) 2010; 22
X Hou (10885_CR4) 2015; 519
W Sparreboom (10885_CR42) 2009; 4
D Stein (10885_CR37) 2004; 93
H Cheng (10885_CR28) 2017; 29
HY Li (10885_CR32) 2017; 7
S Lu (10885_CR8) 2016; 28
C Cheng (10885_CR19) 2016; 2
L Chen (10885_CR21) 2017; 550
ZJ Jia (10885_CR31) 2014; 31
M Yang (10885_CR36) 2011; 5
S Qin (10885_CR25) 2017; 139
AR Koltonow (10885_CR14) 2016; 351
K Xiao (10885_CR26) 2018; 57
LP Wen (10885_CR13) 2015; 54
RX Yan (10885_CR51) 2009; 9
X Hou (10885_CR2) 2016; 28
DK Kim (10885_CR44) 2010; 9
JR Burns (10885_CR5) 2016; 11
F Bonaccorso (10885_CR24) 2015; 347
MR Lukatskaya (10885_CR34) 2017; 2
Z Ling (10885_CR54) 2014; 111
KG Zhou (10885_CR15) 2018; 559
ZK Zheng (10885_CR10) 2016; 28
J Wang (10885_CR50) 2014; 16
A Siria (10885_CR12) 2013; 494
C Duan (10885_CR39) 2010; 5
Y Xia (10885_CR35) 2018; 557
M Alhabeb (10885_CR38) 2017; 29
A Esfandiar (10885_CR20) 2017; 358
W Kong (10885_CR41) 2018; 30
X Huang (10885_CR40) 2019; 59
A Siria (10885_CR22) 2017; 1
S Yang (10885_CR33) 2018; 57
J Feng (10885_CR30) 2016; 536
AP Straub (10885_CR57) 2016; 1
LD Wang (10885_CR29) 2017; 12
ZH Zhang (10885_CR56) 2018; 13
C Cheng (10885_CR27) 2018; 13
Y Mei (10885_CR46) 2018; 425
J Abraham (10885_CR17) 2017; 12
R Schoch (10885_CR48) 2008; 80
XB Zhu (10885_CR11) 2018; 4
References_xml – volume: 557
  start-page: 409
  year: 2018
  end-page: 412
  ident: CR35
  article-title: Thickness-independent capacitance of vertically aligned liquid-crystalline MXenes
  publication-title: Nature
  doi: 10.1038/s41586-018-0109-z
– volume: 6
  year: 2015
  ident: CR16
  article-title: Self-assembled two-dimensional nanofluidic proton channels with high thermal stability
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8602
– volume: 12
  start-page: 546
  year: 2017
  end-page: 550
  ident: CR17
  article-title: Tunable sieving of ions using graphene oxide membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.21
– volume: 4
  start-page: eaaq0066
  year: 2018
  ident: CR47
  article-title: Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaq0066
– volume: 31
  start-page: 91
  year: 2014
  end-page: 100
  ident: CR31
  article-title: Blue energy: current technologies for sustainable power generation from water salinity gradient
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.049
– volume: 139
  start-page: 6314
  year: 2017
  end-page: 6320
  ident: CR25
  article-title: High and stable ionic conductivity in 2D nanofluidic ion channels between boron nitride layers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11100
– volume: 29
  start-page: 7633
  year: 2017
  end-page: 7644
  ident: CR38
  article-title: Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti C T MXene)
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 519
  start-page: 70
  year: 2015
  end-page: 73
  ident: CR4
  article-title: Liquid-based gating mechanism with tunable multiphase selectivity and antifouling behaviour
  publication-title: Nature
  doi: 10.1038/nature14253
– volume: 12
  start-page: 509
  year: 2017
  end-page: 522
  ident: CR29
  article-title: Fundamental transport mechanisms, fabrication and potential applications of nanoporous atomically thin membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.72
– volume: 7
  year: 2016
  ident: CR45
  article-title: Ion selectivity of graphene nanopores
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11408
– volume: 5
  start-page: 6945
  year: 2011
  end-page: 6954
  ident: CR36
  article-title: Dispersions of aramid nanofibers: a new nanoscale building block
  publication-title: ACS Nano
  doi: 10.1021/nn2014003
– volume: 536
  start-page: 197
  year: 2016
  end-page: 200
  ident: CR30
  article-title: Single-layer MoS nanopores as nanopower generators
  publication-title: Nature
  doi: 10.1038/nature18593
– volume: 310
  start-page: 1461
  year: 2005
  end-page: 1465
  ident: CR1
  article-title: Principles of selective ion transport in channels and pumps
  publication-title: Science
  doi: 10.1126/science.1113666
– volume: 13
  start-page: 685
  year: 2018
  end-page: 690
  ident: CR27
  article-title: Low-voltage electrostatic modulation of ion diffusion through layered graphene-based nanoporous membranes
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0181-4
– volume: 9
  start-page: 1215
  year: 2010
  end-page: 1224
  ident: CR44
  article-title: Power generation from concentration gradient by reverse electrodialysis in ion-selective nanochannels
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-010-0641-0
– volume: 10
  start-page: 1070
  year: 2015
  end-page: 1076
  ident: CR9
  article-title: Identification of single nucleotides in MoS nanopores
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.219
– volume: 494
  start-page: 455
  year: 2013
  end-page: 458
  ident: CR12
  article-title: Giant osmotic energy conversion measured in a single transmembrane boron nitride nanotube
  publication-title: Nature
  doi: 10.1038/nature11876
– volume: 132
  start-page: 8338
  year: 2010
  end-page: 8348
  ident: CR49
  article-title: Layer-by-layer assembly of polyelectrolytes into ionic
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101014y
– volume: 5
  start-page: 848
  year: 2010
  end-page: 852
  ident: CR39
  article-title: Anomalous ion transport in 2-nm hydrophilic nanochannels
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.233
– volume: 11
  start-page: 10654
  year: 2017
  end-page: 10658
  ident: CR23
  article-title: Punctured two-dimensional sheets for harvesting blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06657
– volume: 10
  start-page: 9768
  year: 2016
  end-page: 9771
  ident: CR7
  article-title: Nanopores and nanochannels: from gene sequencing to genome mapping
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07041
– volume: 134
  start-page: 16528
  year: 2012
  end-page: 16531
  ident: CR18
  article-title: Nanofluidic ion transport through reconstructed layered materials
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308167f
– volume: 351
  start-page: 1395
  year: 2016
  end-page: 1396
  ident: CR14
  article-title: Two-dimensional nanofluidics
  publication-title: Science
  doi: 10.1126/science.aaf5289
– volume: 57
  start-page: 15491
  year: 2018
  end-page: 15495
  ident: CR33
  article-title: Fluoride-free synthesis of two-dimensional titanium carbide (MXene) using a binary aqueous system
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809662
– volume: 11
  start-page: 152
  year: 2016
  end-page: 156
  ident: CR5
  article-title: A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.279
– volume: 347
  start-page: 1246501
  year: 2015
  ident: CR24
  article-title: Graphene, related two-dimensional crystals, and hybrid systems for energy conversion and storage
  publication-title: Science
  doi: 10.1126/science.1246501
– volume: 30
  start-page: e1801934
  year: 2018
  ident: CR41
  article-title: Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801934
– volume: 111
  start-page: 16676
  year: 2014
  end-page: 16681
  ident: CR54
  article-title: Flexible and conductive MXene films and nanocomposites with high capacitance
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1414215111
– volume: 57
  start-page: 10123
  year: 2018
  end-page: 10126
  ident: CR26
  article-title: Nanofluidic ion transport and energy conversion through ultrathin free-standing polymeric carbon nitride membranes
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804299
– volume: 2
  start-page: 17105
  year: 2017
  ident: CR34
  article-title: Ultra-high-rate pseudocapacitive energy storage in two-dimensional transition metal carbides
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.105
– volume: 550
  start-page: 380
  year: 2017
  end-page: 383
  ident: CR21
  article-title: Ion sieving in graphene oxide membranes via cationic control of interlayer spacing
  publication-title: Nature
  doi: 10.1038/nature24044
– volume: 425
  start-page: 156
  year: 2018
  end-page: 174
  ident: CR46
  article-title: Recent developments and future perspectives of reverse electrodialysis technology: a review
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.10.021
– volume: 2
  start-page: e1501272
  year: 2016
  ident: CR19
  article-title: Ion transport in complex layered graphene-based membranes with tuneable interlayer spacing
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501272
– volume: 59
  start-page: 354
  year: 2019
  end-page: 362
  ident: CR40
  article-title: Engineered PES/SPES nanochannel membrane for salinity gradient power generation
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.056
– volume: 552
  start-page: 214
  year: 2017
  end-page: 218
  ident: CR3
  article-title: An electric-eel-inspired soft power source from stacked hydrogels
  publication-title: Nature
  doi: 10.1038/nature24670
– volume: 559
  start-page: 236
  year: 2018
  end-page: 240
  ident: CR15
  article-title: Electrically controlled water permeation through graphene oxide membranes
  publication-title: Nature
  doi: 10.1038/s41586-018-0292-y
– volume: 28
  start-page: 9851
  year: 2016
  end-page: 9856
  ident: CR8
  article-title: Photoelectric frequency response in a bioinspired bacteriorhodopsin/alumina nanochannel hybrid nanosystem
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603809
– volume: 139
  start-page: 1396
  year: 2017
  end-page: 1399
  ident: CR52
  article-title: Micrometer-scale ion current rectification at polyelectrolyte brush-modified micropipets
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11696
– volume: 4
  start-page: eaau1665
  year: 2018
  ident: CR11
  article-title: Unique ion rectification in hypersaline environment: a high-performance and sustainable power generator system
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau1665
– volume: 9
  start-page: 3820
  year: 2009
  end-page: 3825
  ident: CR51
  article-title: Nanofluidic diodes based on nanotube heterojunctions
  publication-title: Nano Lett.
  doi: 10.1021/nl9020123
– volume: 13
  start-page: 1109
  year: 2018
  end-page: 1119
  ident: CR56
  article-title: Emerging hydrovoltaic technology
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0228-6
– volume: 9
  year: 2018
  ident: CR6
  article-title: Distinct functional elements for outer-surface anti-interference and inner-wall ion gating of nanochannels
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06873-z
– volume: 16
  start-page: 23
  year: 2014
  end-page: 32
  ident: CR50
  article-title: Theoretical simulation of the ion current rectification (ICR) in nano-pores based on the Poisson–Nernst–Planck (PNP) model
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP51712H
– volume: 54
  start-page: 3387
  year: 2015
  end-page: 3399
  ident: CR13
  article-title: Bioinspired super-wettability from fundamental research to practical applications
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409911
– volume: 9
  start-page: 9830
  year: 2015
  end-page: 9836
  ident: CR53
  article-title: Use of synergistic interactions to fabricate strong, tough, and conductive artificial nacre based on graphene oxide and chitosan
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02902
– volume: 29
  start-page: 1700177
  year: 2017
  ident: CR28
  article-title: Electrokinetic energy conversion in self-assembled 2D nanofluidic channels with Janus nanobuilding blocks
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700177
– volume: 28
  start-page: 6529
  year: 2016
  end-page: 6545
  ident: CR10
  article-title: Synthetic two-dimensional materials: a new paradigm of membranes for ultimate separation
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506237
– volume: 7
  start-page: 1601847
  year: 2017
  ident: CR32
  article-title: Flexible all-solid-state supercapacitors with high volumetric capacitances boosted by solution processable MXene and electrochemically exfoliated graphene
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601847
– volume: 1
  start-page: 0091
  year: 2017
  ident: CR22
  article-title: New avenues for the large-scale harvesting of blue energy
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0091
– volume: 6
  start-page: 4026
  year: 2015
  end-page: 4031
  ident: CR43
  article-title: Charge- and size-selective ion sieving through Ti C T MXene membranes
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01895
– volume: 4
  start-page: 713
  year: 2009
  end-page: 720
  ident: CR42
  article-title: Principles and applications of nanofluidic transport
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.332
– volume: 80
  start-page: 839
  year: 2008
  end-page: 883
  ident: CR48
  article-title: Transport phenomena in nanofluidics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.839
– volume: 136
  start-page: 12265
  year: 2014
  end-page: 12272
  ident: CR55
  article-title: High-performance ionic diode membrane for salinity gradient power generation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503692z
– volume: 1
  start-page: 16090
  year: 2016
  ident: CR57
  article-title: Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.90
– volume: 22
  start-page: 1021
  year: 2010
  end-page: 1024
  ident: CR58
  article-title: Bioinspired smart gating of nanochannels toward photoelectric-conversion systems
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903161
– volume: 28
  start-page: 7049
  year: 2016
  end-page: 7064
  ident: CR2
  article-title: Smart gating multi-scale pore/channel-based membranes
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600797
– volume: 358
  start-page: 511
  year: 2017
  end-page: 513
  ident: CR20
  article-title: Size effect in ion transport through angstrom-scale slits
  publication-title: Science
  doi: 10.1126/science.aan5275
– volume: 93
  start-page: 035901
  year: 2004
  ident: CR37
  article-title: Surface-charge-governed ion transport in nanofluidic channels
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.035901
– volume: 519
  start-page: 70
  year: 2015
  ident: 10885_CR4
  publication-title: Nature
  doi: 10.1038/nature14253
– volume: 9
  start-page: 1215
  year: 2010
  ident: 10885_CR44
  publication-title: Microfluid. Nanofluid.
  doi: 10.1007/s10404-010-0641-0
– volume: 550
  start-page: 380
  year: 2017
  ident: 10885_CR21
  publication-title: Nature
  doi: 10.1038/nature24044
– volume: 1
  start-page: 16090
  year: 2016
  ident: 10885_CR57
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2016.90
– volume: 347
  start-page: 1246501
  year: 2015
  ident: 10885_CR24
  publication-title: Science
  doi: 10.1126/science.1246501
– volume: 10
  start-page: 9768
  year: 2016
  ident: 10885_CR7
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07041
– volume: 2
  start-page: e1501272
  year: 2016
  ident: 10885_CR19
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501272
– volume: 139
  start-page: 6314
  year: 2017
  ident: 10885_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11100
– volume: 54
  start-page: 3387
  year: 2015
  ident: 10885_CR13
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201409911
– volume: 134
  start-page: 16528
  year: 2012
  ident: 10885_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308167f
– volume: 5
  start-page: 6945
  year: 2011
  ident: 10885_CR36
  publication-title: ACS Nano
  doi: 10.1021/nn2014003
– volume: 351
  start-page: 1395
  year: 2016
  ident: 10885_CR14
  publication-title: Science
  doi: 10.1126/science.aaf5289
– volume: 111
  start-page: 16676
  year: 2014
  ident: 10885_CR54
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1414215111
– volume: 28
  start-page: 7049
  year: 2016
  ident: 10885_CR2
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600797
– volume: 9
  start-page: 9830
  year: 2015
  ident: 10885_CR53
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b02902
– volume: 22
  start-page: 1021
  year: 2010
  ident: 10885_CR58
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200903161
– volume: 28
  start-page: 6529
  year: 2016
  ident: 10885_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506237
– volume: 7
  start-page: 1601847
  year: 2017
  ident: 10885_CR32
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201601847
– volume: 59
  start-page: 354
  year: 2019
  ident: 10885_CR40
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2019.02.056
– volume: 12
  start-page: 546
  year: 2017
  ident: 10885_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.21
– volume: 9
  start-page: 3820
  year: 2009
  ident: 10885_CR51
  publication-title: Nano Lett.
  doi: 10.1021/nl9020123
– volume: 9
  year: 2018
  ident: 10885_CR6
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06873-z
– volume: 29
  start-page: 1700177
  year: 2017
  ident: 10885_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700177
– volume: 93
  start-page: 035901
  year: 2004
  ident: 10885_CR37
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.035901
– volume: 11
  start-page: 10654
  year: 2017
  ident: 10885_CR23
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06657
– volume: 4
  start-page: 713
  year: 2009
  ident: 10885_CR42
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.332
– volume: 494
  start-page: 455
  year: 2013
  ident: 10885_CR12
  publication-title: Nature
  doi: 10.1038/nature11876
– volume: 29
  start-page: 7633
  year: 2017
  ident: 10885_CR38
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.7b02847
– volume: 57
  start-page: 10123
  year: 2018
  ident: 10885_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201804299
– volume: 11
  start-page: 152
  year: 2016
  ident: 10885_CR5
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.279
– volume: 6
  start-page: 4026
  year: 2015
  ident: 10885_CR43
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01895
– volume: 536
  start-page: 197
  year: 2016
  ident: 10885_CR30
  publication-title: Nature
  doi: 10.1038/nature18593
– volume: 80
  start-page: 839
  year: 2008
  ident: 10885_CR48
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.80.839
– volume: 10
  start-page: 1070
  year: 2015
  ident: 10885_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.219
– volume: 552
  start-page: 214
  year: 2017
  ident: 10885_CR3
  publication-title: Nature
  doi: 10.1038/nature24670
– volume: 12
  start-page: 509
  year: 2017
  ident: 10885_CR29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.72
– volume: 136
  start-page: 12265
  year: 2014
  ident: 10885_CR55
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja503692z
– volume: 5
  start-page: 848
  year: 2010
  ident: 10885_CR39
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.233
– volume: 1
  start-page: 0091
  year: 2017
  ident: 10885_CR22
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0091
– volume: 28
  start-page: 9851
  year: 2016
  ident: 10885_CR8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201603809
– volume: 6
  year: 2015
  ident: 10885_CR16
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8602
– volume: 13
  start-page: 1109
  year: 2018
  ident: 10885_CR56
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0228-6
– volume: 7
  year: 2016
  ident: 10885_CR45
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms11408
– volume: 4
  start-page: eaau1665
  year: 2018
  ident: 10885_CR11
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau1665
– volume: 13
  start-page: 685
  year: 2018
  ident: 10885_CR27
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0181-4
– volume: 139
  start-page: 1396
  year: 2017
  ident: 10885_CR52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11696
– volume: 30
  start-page: e1801934
  year: 2018
  ident: 10885_CR41
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801934
– volume: 132
  start-page: 8338
  year: 2010
  ident: 10885_CR49
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja101014y
– volume: 310
  start-page: 1461
  year: 2005
  ident: 10885_CR1
  publication-title: Science
  doi: 10.1126/science.1113666
– volume: 31
  start-page: 91
  year: 2014
  ident: 10885_CR31
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.11.049
– volume: 16
  start-page: 23
  year: 2014
  ident: 10885_CR50
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C3CP51712H
– volume: 559
  start-page: 236
  year: 2018
  ident: 10885_CR15
  publication-title: Nature
  doi: 10.1038/s41586-018-0292-y
– volume: 2
  start-page: 17105
  year: 2017
  ident: 10885_CR34
  publication-title: Nat. Energy
  doi: 10.1038/nenergy.2017.105
– volume: 4
  start-page: eaaq0066
  year: 2018
  ident: 10885_CR47
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaq0066
– volume: 425
  start-page: 156
  year: 2018
  ident: 10885_CR46
  publication-title: Desalination
  doi: 10.1016/j.desal.2017.10.021
– volume: 358
  start-page: 511
  year: 2017
  ident: 10885_CR20
  publication-title: Science
  doi: 10.1126/science.aan5275
– volume: 557
  start-page: 409
  year: 2018
  ident: 10885_CR35
  publication-title: Nature
  doi: 10.1038/s41586-018-0109-z
– volume: 57
  start-page: 15491
  year: 2018
  ident: 10885_CR33
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201809662
SSID ssj0000391844
Score 2.699178
Snippet Two-dimensional nanofluidic channels are emerging candidates for capturing osmotic energy from salinity gradients. However, present two-dimensional nanofluidic...
Nanofluidic channels can capture osmotic energy from salinity gradients, but output power densities should be improved for practical applications. Here the...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2920
SubjectTerms 639/4077/4072/4062
639/638/455/303
Aramid fiber reinforced plastics
Charge density
Chemical potential
Contact angle
Energy
Energy charge
Energy conversion
Energy conversion efficiency
Etching
Fluidics
Generators
Graphene
Humanities and Social Sciences
Investigations
Ion diffusion
Kevlar (trademark)
Membranes
multidisciplinary
MXenes
Nanofibers
Nanofluids
Organic chemistry
Potential gradient
Rivers
Salinity
Science
Science (multidisciplinary)
Seawater
Space charge
Surface charge
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxsxEBYhUMilNG3abpIWFXJLF-uxq10d29IQWpxTAr4JvZwanLWJ7Zb8-85IaydOX5feFkm7iJnRzHw7mhlCTkTAcBrAVMWjQ4AiSxt9LMF7cCqKqBqBycnDC3V-VX0Z1aMHrb7wTlguD5wJN3Cq0d5W1kUmKxeYbrwdR12B5XUgjSl1D2zeAzCVdLDUAF2qPkuGyXawqJJOAI8GNE_b1mW7ZYlSwf7feZm_XpZ8FDFNhujsGXnae5D0Q975PtmJ3XPyJPeUvHtBfgwjJvMi7ad3dIF_uq_pcAQqbfA1fgccSzvbgUS5eEvxPjle2or0Jt4AbAa1R-2CYgnjcn6fUZDfmK4mYeLpLDX-8XSO7dXodapajR17DsjV2efLT-dl312h9ABalmUrLG_HHMiC5HCSaa-EB3dQBInBMuedts04SBu41k7Bk5RjWYN5U6yyQr4ku92si68JhZEAQFKIwGMVLNOisXXjgfsu1jrwgvA1pY3vS49jB4ypSSFw2ZrMHQPcMYk7pi3I6eadeS688dfVH5GBm5VYNDsNgCiZXpTMv0SpIMdr9pv-JC8M6DuOCbm6Lsi7zTScQQysAF9mq7wG_zJI-MSrLC2bnUgOLhD4gAVptuRoa6vbM93kW6rzrRTCOVaQ92uJu9_Wn0lx-D9IcUT2BEvpbSUTx2R3ebuKb8D7Wrq36aD9BPARK9w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR1db9Mw0IIhJF4Q42uBbTISbxA1sRPHfkKA6CZQeWJS3yx_tVTqktK0oP177pw0VfnYW-TYkXN3Pt_3EfKaeXSngZoq8mBRQeGpCS6kID1YEVgQFcPk5MlXcXlVfJ6W097g1vZhlTueGBm1bxzayEdAdzkmRqry3epHil2j0Lvat9C4S-7lcNNgSJccXww2Fqx-Louiz5XJuBy1ReQMINcA_5GyTOXBfRTL9v9L1vw7ZPIPv2m8jsaPyMNejqTvO8Qfkzuhfkzud50lb56QX5OAKb2IgeUNbdHePaeTKTC20ZfwE7RZWpsa6MqGNcWocgzdCvQ6XIPyDMyPmpZiIeN0tc8r6FYstwu_cLSJ7X8cXWGTNTqPtauxb89TcjX-9O3jZdr3WEgdqC6bVDKTy1kOYEFwWJ4pJ5gDoZB5ji4z66wy1cxz43OlrIAnzme8hEtOZIVh_Bk5qps6nBAKIx7UScZ8HgpvMsUqU1YOaMCGUvk8IfkO0tr1BcixD8ZSR0c4l7rDjgbs6IgdLRPyZliz6spv3Dr7AyJwmImls-NAs57r_iRqKyrlTGFsyHhhfaYqZ2ZBFSDKWWBvKiGnO_Tr_jy3ek99CXk1vIaTiO4VwEuz7eagrYHDJ5531DLshCN5giSYkOqAjg62evimXnyP1b6FQKUuS8jbHcXtt_V_ULy4_S9ekgcsi-lracZOydFmvQ1nIF1t7Hk8Qr8Bnpoi2A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_OOwRfxG-rp0TwTcu1SZs2j6t4HCvrix7sW8jXrgt73WU_lPvvnUk_jtVT8K20SQkzk8lMZuY3AG-5p3AauqkyD5YcFJGa4EKK1oOVgQdZcSpOnnyRF5fFeFpOj4D3tTAxaT9CWkY13WeHnW2LuKXRIEHFUddlWt-BE4JqR9k-GY3GX8fDzQphntdF0VXIZKK-ZfLBKRTB-m-zMP9MlPwtWhoPofMHcL-zHtmoXe9DOArNI7jb9pO8fgw_J4EKeYnuy2u2pVvuOZtMUZ2dfQ4_0IdljWlQmmzYMMolp4StwK7CFbrMqPKY2TKCL07XN9UE7YzlfuEXjq1i0x_H1tRajc0jYjV163kCl-efvn28SLvOCqlDh2WX1tzk9SxHshA5rMiUk9yhKci9oECZdVaZauaF8blSVuKTEDNR4tEms8Jw8RSOm1UTngPDNx6dSM59HgpvMsUrU1YOOW9DqXyeQN5TWrsOdpy6Xyx1DH-LWrfc0cgdHbmj6wTeDXPWLejGP0d_IAYOIwkwO75Ybea6EyBtZaWcKYwNmSisz1TlzCyoAg04i0pNJXDas193u3irUdflVIyrygTeDJ9x_1FQBfmy2rdj6IZB4C-etdIyrETkaP6g_ZdAdSBHB0s9_NIsvkeMbynJlcsSeN9L3M2y_k6KF_83_CXc41ksYkszfgrHu80-vEIba2dfd5vqF8k0IhU
  priority: 102
  providerName: Springer Nature
Title Mechanically strong MXene/Kevlar nanofiber composite membranes as high-performance nanofluidic osmotic power generators
URI https://link.springer.com/article/10.1038/s41467-019-10885-8
https://www.ncbi.nlm.nih.gov/pubmed/31266937
https://www.proquest.com/docview/2251064795
https://www.proquest.com/docview/2251690739
https://pubmed.ncbi.nlm.nih.gov/PMC6606750
https://doaj.org/article/b679ca4abe034bd097cafe94617b8329
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1db9Mw8LQPgfaC-ByBURmJNwhL7MSJHxDqqpWpqBMCKvUtshO3VOrS0g-g_547J-koDB54aSvHTq37Pp_vDuAFLyichm6qDK0hB0X42ubWR-vBSMutTDglJ_cv5cUg6g3j4R407Y5qAC5vdO2on9RgMX394-vmLTL8myplPD1dRo7d0VhBoZKmsZ_uwyFqpoQ6GvRrc99JZqHQoYnq3Jmblx7BbRGi1lLUGf0XVeUq-t9khv55m_K3kKrTVN27cKc2MVm7ool7sGfL-3Crajq5eQDf-5ayfQk50w1b0lH4mPWHKPNO39tvCA1W6hJJztgFowvndKvLsit7hX41ykWml4xqHPvz65SDasV0PSkmOZu5zkA5m1P_NTZ2Za2ppc9DGHTPP3cu_Lr9gp-jV7PyU67DdBQihAgyRgQqlzxHe5EXgqJpJjdKJ6NC6CJUykj8JcRIxKj_ZBBpLh7BQTkr7WNgOFKgp8l5Edqo0IHiiY6THMnD2FgVoQdhA-ksr2uTU4uMaeZi5CLNKkRliKjMISpLPXi5XTOvKnP8c_YZIXA7k6pqu4HZYpzVTJoZmahcR9rYQESmCFSS65FVEVp5BiWf8uCkQX_WUGqGAjGkjF0Ve_B8-xiZlCIviJfZuppDxxACX3FcUct2Jw21eZDs0NHOVneflJMvrhC4lOTvBR68aijuelt_B8WT__6jp3DEA5f05gf8BA5Wi7V9hjbZyrRgPxkm-Jl237XgsN3uferh99n55YePONqRnZY77Wg5hvwJvec6LA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELZWixBcEG8CCxgJThBtYjsPHxDiVbp0u6ddqTfjV0ulblr6YNU_xW9kxklalcfe9hYlTuN6xp-_8XhmCHnJHLrTwEzNU2_QQOGx9tbHwB5M7pnPC4bByf2TvHsmvg6ywR751cbC4LHKFhMDULupxT3yQ9C7FAMjZfZu9iPGqlHoXW1LaNRq0fPrCzDZFm-PPoF8XzHW-Xz6sRs3VQViC2R9GZdMp-UwFWBZlGVmeCJtzizQIOY4OomMNVIXQ8e1S6U0OVxxPuQZwHqeCI2JDgDyrwkOKzlGpne-bPZ0MNt6KUQTm5Pw8nAhAhIBjwK8g8_F5c76F8oE_Ivb_n1E8w8_bVj-OrfJrYa30ve1ot0he766S67XlSzX98hF32MIMUp8sqYL3F8f0f4AgPSw53-C9UwrXYEeGz-neIodj4p5eu7PwVgHsKV6QTFxcjzbxjHUb0xWYze2dBrKDVk6w6JudBRyZWOdoPvk7EpG_wHZr6aVf0Qo3HFgvjLmUi-cTiQrdFZY0DnjM-nSiKTtSCvbJDzHuhsTFRzvvFS1dBRIRwXpqDIirzfvzOp0H5e2_oAC3LTEVN3hxnQ-Us3MVyYvpNVCG59wYVwiC6uHXgqgjgbgVEbkoBW_avBjobbaHpEXm8cw89GdA3KZruo2uLfB4Sce1tqy6QlPgXgB84xIsaNHO13dfVKNv4fs4nmORmQSkTetxm279f-heHz5v3hObnRP-8fq-Oik94TcZEkInYsTdkD2l_OVfwrMbmmehelEybernr-_Aby4Xao
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTiBeEHcCA4wETxA1sXPzA0KMrdoorSbEpL4Z31oqdWnphal_jV_HOU7Sqlz2trcqcVrX5_jLd3xuhLxiFt1pYKZmsdNooPBQOeNCYA86c8xlOcPk5F4_OzlPPg3SwR751eTCYFhlg4keqO3U4Bl5G_QuxsRIkbaHdVjE2VHn_exHiB2k0NPatNOoVKTr1pdgvi3enR6BrF8z1jn--vEkrDsMhAaI-zIsmIqLYZyAlVEUqeaRMBkzQImY5egw0kYLlQ8tVzYWQmfwifMhTwHisyhRWPQA4H8_R6uoRfYPj_tnXzYnPFh7vUiSOlMn4kV7kXhcAlYF6Ac_GBY7b0PfNOBfTPfvgM0_vLb-Zdi5Q27XLJZ-qNTuLtlz5T1yo-prub5PLnsOE4pR_pM1XeBp-4j2BgCr7a77CbY0LVUJWq3dnGJMOwaOOXrhLsB0B-ilakGxjHI422Y1VE9MVmM7NnTqmw8ZOsMWb3TkK2dj16AH5Pxa1v8haZXT0j0mFK5YMGYZs7FLrIoEy1WaG9BA7VJh44DEzUpLU5c_xy4cE-nd8LyQlXQkSEd66cgiIG82z8yq4h9Xjj5EAW5GYuFuf2E6H8kaB6TOcmFUorSLeKJtJHKjhk4kQCQ1gKsIyEEjflmjyUJudT8gLze3AQfQuQNyma6qMXjSweErHlXaspkJj4GGAQ8NSL6jRztT3b1Tjr_7WuNZhiZlFJC3jcZtp_X_pXhy9b94QW7C3pWfT_vdp-QWi3weXRixA9JazlfuGdC8pX5e7ydKvl33Fv4NBTNjPA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanically+strong+MXene%2FKevlar+nanofiber+composite+membranes+as+high-performance+nanofluidic+osmotic+power+generators&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Zhen&rft.au=Yang%2C+Sheng&rft.au=Zhang%2C+Panpan&rft.au=Zhang%2C+Jian&rft.date=2019-07-02&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=10&rft_id=info:doi/10.1038%2Fs41467-019-10885-8&rft_id=info%3Apmid%2F31266937&rft.externalDocID=PMC6606750
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon