Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains
Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 3824 - 11 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
02.07.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.
SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro. |
---|---|
AbstractList | Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo. SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro. Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo. SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro. Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro. Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo. |
ArticleNumber | 3824 |
Author | Errico, John M. Snell, Gyorgy Jung, Ana Whitener, Bradley Diamond, Michael S. Loo, Yueh-Ming Ren, Kuishu Rosenthal, Kim Virgin, Herbert W. Dang, Ha V. Droit, Lindsay Guarino, Barbara Crowe, James E. Mackin, Samantha Handley, Scott A. Chong, Zhenlu Esser, Mark T. Halfmann, Peter J. Kawaoka, Yoshihiro Corti, Davide Schmid, Michael A. Purcell, Lisa A. Case, James Brett Madden, Emily A. Fremont, Daved H. |
Author_xml | – sequence: 1 givenname: James Brett orcidid: 0000-0001-7331-5511 surname: Case fullname: Case, James Brett organization: Department of Medicine, Washington University School of Medicine – sequence: 2 givenname: Samantha surname: Mackin fullname: Mackin, Samantha organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine – sequence: 3 givenname: John M. orcidid: 0000-0002-4452-8152 surname: Errico fullname: Errico, John M. organization: Department of Pathology & Immunology, Washington University School of Medicine – sequence: 4 givenname: Zhenlu surname: Chong fullname: Chong, Zhenlu organization: Department of Medicine, Washington University School of Medicine – sequence: 5 givenname: Emily A. orcidid: 0000-0003-0209-914X surname: Madden fullname: Madden, Emily A. organization: Department of Medicine, Washington University School of Medicine – sequence: 6 givenname: Bradley surname: Whitener fullname: Whitener, Bradley organization: Department of Medicine, Washington University School of Medicine – sequence: 7 givenname: Barbara surname: Guarino fullname: Guarino, Barbara organization: Humabs BioMed SA, a subsidiary of Vir Biotechnology – sequence: 8 givenname: Michael A. orcidid: 0000-0002-1137-9322 surname: Schmid fullname: Schmid, Michael A. organization: Humabs BioMed SA, a subsidiary of Vir Biotechnology – sequence: 9 givenname: Kim surname: Rosenthal fullname: Rosenthal, Kim organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca – sequence: 10 givenname: Kuishu surname: Ren fullname: Ren, Kuishu organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca – sequence: 11 givenname: Ha V. orcidid: 0000-0003-1173-9241 surname: Dang fullname: Dang, Ha V. organization: Vir Biotechnology – sequence: 12 givenname: Gyorgy surname: Snell fullname: Snell, Gyorgy organization: Vir Biotechnology – sequence: 13 givenname: Ana surname: Jung fullname: Jung, Ana organization: Department of Pathology & Immunology, Washington University School of Medicine – sequence: 14 givenname: Lindsay surname: Droit fullname: Droit, Lindsay organization: Department of Pathology & Immunology, Washington University School of Medicine – sequence: 15 givenname: Scott A. orcidid: 0000-0002-2143-6570 surname: Handley fullname: Handley, Scott A. organization: Department of Pathology & Immunology, Washington University School of Medicine – sequence: 16 givenname: Peter J. orcidid: 0000-0002-1648-1625 surname: Halfmann fullname: Halfmann, Peter J. organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison – sequence: 17 givenname: Yoshihiro orcidid: 0000-0001-5061-8296 surname: Kawaoka fullname: Kawaoka, Yoshihiro organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute – sequence: 18 givenname: James E. orcidid: 0000-0002-0049-1079 surname: Crowe fullname: Crowe, James E. organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Department of Pediatrics, Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center – sequence: 19 givenname: Daved H. orcidid: 0000-0002-8544-2689 surname: Fremont fullname: Fremont, Daved H. organization: Department of Pathology & Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine – sequence: 20 givenname: Herbert W. orcidid: 0000-0001-8580-7628 surname: Virgin fullname: Virgin, Herbert W. organization: Department of Pathology & Immunology, Washington University School of Medicine, Vir Biotechnology, University of Texas Southwestern Medical Center – sequence: 21 givenname: Yueh-Ming orcidid: 0000-0001-6294-7273 surname: Loo fullname: Loo, Yueh-Ming organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca – sequence: 22 givenname: Mark T. orcidid: 0000-0003-1689-3475 surname: Esser fullname: Esser, Mark T. organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca – sequence: 23 givenname: Lisa A. surname: Purcell fullname: Purcell, Lisa A. organization: Vir Biotechnology – sequence: 24 givenname: Davide orcidid: 0000-0002-5797-1364 surname: Corti fullname: Corti, Davide organization: Humabs BioMed SA, a subsidiary of Vir Biotechnology – sequence: 25 givenname: Michael S. orcidid: 0000-0002-8791-3165 surname: Diamond fullname: Diamond, Michael S. email: mdiamond@wustl.edu organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35780162$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOyxIVLwJ-xfUFabfmoVKlSFzhwsRznZfEqsYudIO2_x7vbQttDfbE1nhm9p5mX1VGIAarqNcHvCWbqQ-aEN7LGlNaMNETU8ll1QjEnNZGUHd17H1dnOW9wOUwTxfmL6pgJqTBp6Ek1X0P2g4fgAMUerRjWyIYOLX6eS84pGmOIbojBDgWefBu7LZoS2GmEMGVk19aHPCEfenCTjwG1W7RaXK_qZfxRU3Q1epcKOvgAdg0oT2kneFU97-2Q4ez2Pq2-f_70bfm1vrz6crFcXNauwc1UK6IIZarV3FrXWaFcw5iwFCQoUKJpqVOAsSJApOtEJ7l2nbayBQ1CUsdOq4uDbxftxtwkP9q0NdF6swdiWhubJu8GMMoqwa0GJjTwrus1WE0aKHAPLRa8eH08eN3M7QidK_snOzwwffgT_C-zjn-MpgILrIrBu1uDFH_PkCcz-uxgGGyAOGdDG8WxlqppCvXtI-omzqmEsGcxgUkJt7De3J_o3yh36RaCOhBKBjkn6I3zk93FtIthMASbXZfMoUumdMnsu2RkkdJH0jv3J0XsIMqFHNaQ_o_9hOovLbvaqQ |
CitedBy_id | crossref_primary_10_1016_j_cmi_2024_04_012 crossref_primary_10_1016_j_jiac_2023_07_014 crossref_primary_10_1002_jmv_70235 crossref_primary_10_1080_14787210_2022_2134118 crossref_primary_10_3390_ijms251910820 crossref_primary_10_1126_sciimmunol_adf1421 crossref_primary_10_1007_s40261_024_01344_4 crossref_primary_10_3390_v15061300 crossref_primary_10_1080_17843286_2024_2381272 crossref_primary_10_1128_jvi_01011_23 crossref_primary_10_1021_acs_molpharmaceut_4c00297 crossref_primary_10_1016_j_clim_2024_109902 crossref_primary_10_1093_bfgp_elad051 crossref_primary_10_3390_ijms24010481 crossref_primary_10_3389_fmed_2022_1005589 crossref_primary_10_1080_03007995_2024_2376144 crossref_primary_10_2217_fvl_2023_0146 crossref_primary_10_3390_v14091999 crossref_primary_10_1371_journal_ppat_1011788 crossref_primary_10_1016_j_clinthera_2025_01_003 crossref_primary_10_11150_kansenshogakuzasshi_e24008 crossref_primary_10_1126_science_adc9127 crossref_primary_10_1111_imr_13393 crossref_primary_10_1093_ckj_sfac177 crossref_primary_10_1111_sji_13345 crossref_primary_10_1007_s40121_022_00755_0 crossref_primary_10_1128_jvi_00038_24 crossref_primary_10_1016_j_medj_2023_08_001 crossref_primary_10_1038_s41586_024_07385_1 crossref_primary_10_1007_s00277_024_05769_x crossref_primary_10_1128_jvi_00628_23 crossref_primary_10_3389_fimmu_2022_966236 crossref_primary_10_1016_j_bbrc_2022_08_050 crossref_primary_10_3389_fimmu_2024_1295029 crossref_primary_10_1172_jci_insight_179726 crossref_primary_10_3390_jcm11133838 crossref_primary_10_1128_spectrum_00333_23 crossref_primary_10_3390_bioengineering9110714 crossref_primary_10_1016_j_molcel_2024_06_028 crossref_primary_10_1038_s41590_024_01787_z crossref_primary_10_1098_rsob_230252 crossref_primary_10_3390_biomedicines13030637 crossref_primary_10_1016_j_arabjc_2023_104842 crossref_primary_10_1016_j_xcrm_2022_100910 crossref_primary_10_1007_s15010_025_02505_z crossref_primary_10_3390_v15071449 crossref_primary_10_1073_pnas_2417544121 crossref_primary_10_1016_j_xcrm_2023_101305 crossref_primary_10_1038_s41586_023_06487_6 crossref_primary_10_1016_j_it_2024_06_003 crossref_primary_10_3389_fimmu_2022_1033770 crossref_primary_10_1016_j_medj_2023_07_007 crossref_primary_10_1111_imr_13383 crossref_primary_10_1007_s10875_023_01540_5 crossref_primary_10_1073_pnas_2315354120 crossref_primary_10_1186_s12879_024_09311_2 crossref_primary_10_1016_S1473_3099_24_00559_0 crossref_primary_10_1016_j_nefro_2022_11_001 crossref_primary_10_3390_v15010139 crossref_primary_10_1126_sciimmunol_add5446 crossref_primary_10_1371_journal_ppat_1012383 crossref_primary_10_3390_vaccines12060675 crossref_primary_10_1039_D3CP01167D crossref_primary_10_3390_v14092061 crossref_primary_10_1007_s40121_023_00861_7 crossref_primary_10_1038_s41579_022_00809_7 crossref_primary_10_1136_bmjresp_2023_002238 crossref_primary_10_4285_ctr_24_0015 crossref_primary_10_3390_v15020346 crossref_primary_10_1016_j_bj_2023_100666 crossref_primary_10_7554_eLife_83442 crossref_primary_10_2807_1560_7917_ES_2025_30_10_2400252 crossref_primary_10_3390_hematolrep15040059 crossref_primary_10_1016_j_chom_2024_10_016 crossref_primary_10_1016_j_immuni_2024_10_001 crossref_primary_10_1038_s41467_023_42408_x crossref_primary_10_1016_j_ebiom_2023_104545 crossref_primary_10_1016_j_snb_2024_135575 crossref_primary_10_1038_s41589_022_01193_2 crossref_primary_10_12998_wjcc_v11_i10_2140 crossref_primary_10_1371_journal_ppat_1012650 crossref_primary_10_1016_j_heliyon_2025_e41980 crossref_primary_10_1007_s11427_022_2215_6 crossref_primary_10_3390_vaccines11091451 crossref_primary_10_1007_s40265_022_01731_1 crossref_primary_10_1016_j_toxrep_2024_101825 crossref_primary_10_1038_s41564_023_01359_1 crossref_primary_10_47360_1995_4484_2023_158_164 crossref_primary_10_1016_j_nefroe_2023_10_007 crossref_primary_10_1056_NEJMc2216611 crossref_primary_10_1080_17460794_2024_2350923 crossref_primary_10_1002_jmv_28932 crossref_primary_10_1111_imr_13401 crossref_primary_10_1016_j_chembiol_2024_03_008 crossref_primary_10_2147_CIA_S393732 |
Cites_doi | 10.1038/s41586-020-2349-y 10.1073/pnas.1203954109 10.1038/s41586-021-04017-w 10.1101/2022.05.03.490409 10.1016/j.cell.2021.12.046 10.1016/j.cell.2021.03.029 10.1038/s41591-021-01678-y 10.1101/2021.04.30.442182 10.1038/s41586-021-04386-2 10.3389/fimmu.2019.01296 10.1107/S0907444908007877 10.1002/pro.3235 10.1038/s41467-020-15562-9 10.1038/s41586-021-04388-0 10.1016/j.medj.2022.01.004 10.1101/2022.04.30.489997 10.1016/j.immuni.2021.08.016 10.1016/j.chom.2021.01.014 10.1016/bs.pmbts.2014.10.005 10.1038/s41586-020-2180-5 10.4049/jimmunol.169.9.5171 10.1016/j.celrep.2022.110368 10.1101/2022.01.23.477397 10.1016/j.chom.2018.07.009 10.1038/nm.3443 10.1038/s41586-021-03925-1 10.1016/j.cell.2018.07.033 10.1038/s41586-020-2548-6 10.1172/JCI84428 10.1016/j.xcrm.2022.100510 10.1038/s41591-021-01294-w 10.1016/j.xcrm.2022.100540 10.1038/s41564-021-00972-2 10.1016/j.virol.2020.05.015 10.1101/2021.12.26.474085 10.21203/rs.3.rs-1375091/v1 10.1126/scitranslmed.abl8124 10.1038/s41586-021-03720-y 10.1038/s41586-022-04441-6 10.1084/jem.20201993 10.1016/j.immuni.2021.08.015 10.1126/sciimmunol.abc3582 10.1016/j.antiviral.2022.105253 10.1101/2022.02.07.479306 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-31615-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Coronavirus Research Database ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database CrossRef MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 11 |
ExternalDocumentID | oai_doaj_org_article_8a854a9e359e4ddf9ea916e8a8feb054 PMC9250508 35780162 10_1038_s41467_022_31615_7 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) – fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA) grantid: HR0011-18-2-0001 funderid: https://doi.org/10.13039/100000185 – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID) grantid: R01 AI157155; U01 AI151810; 75N93019C00051 funderid: https://doi.org/10.13039/100000060 – fundername: NIAID NIH HHS grantid: R01 AI157155 – fundername: NIAID NIH HHS grantid: 75N93019C00051 – fundername: NIAID NIH HHS grantid: U01 AI151810 – fundername: ; – fundername: ; grantid: HR0011-18-2-0001 – fundername: ; grantid: R01 AI157155; U01 AI151810; 75N93019C00051 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-8181238b94aacda58c6335a2e7e8e856b2c8e0081e17cd5d749cd9a7be9e572c3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:27:33 EDT 2025 Thu Aug 21 18:36:18 EDT 2025 Fri Jul 11 08:35:13 EDT 2025 Wed Aug 13 01:49:14 EDT 2025 Tue Apr 29 09:22:39 EDT 2025 Tue Jul 01 00:58:17 EDT 2025 Thu Apr 24 23:03:37 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-8181238b94aacda58c6335a2e7e8e856b2c8e0081e17cd5d749cd9a7be9e572c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1173-9241 0000-0002-1648-1625 0000-0002-1137-9322 0000-0001-8580-7628 0000-0001-5061-8296 0000-0003-0209-914X 0000-0002-5797-1364 0000-0002-0049-1079 0000-0002-2143-6570 0000-0002-8544-2689 0000-0001-7331-5511 0000-0002-8791-3165 0000-0002-4452-8152 0000-0001-6294-7273 0000-0003-1689-3475 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-31615-7 |
PMID | 35780162 |
PQID | 2683501041 |
PQPubID | 546298 |
PageCount | 11 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a854a9e359e4ddf9ea916e8a8feb054 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9250508 proquest_miscellaneous_2684097866 proquest_journals_2683501041 pubmed_primary_35780162 crossref_citationtrail_10_1038_s41467_022_31615_7 crossref_primary_10_1038_s41467_022_31615_7 springer_journals_10_1038_s41467_022_31615_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-02 |
PublicationDateYYYYMMDD | 2022-07-02 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-02 day: 02 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | CameroniEBroadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shiftNature20226026646702022Natur.602..664C1:CAS:528:DC%2BB38XjvFOktLY%3D10.1038/s41586-021-04386-2 Liu, L. et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature, https://doi.org/10.1038/s41586-021-04388-0 (2021). CaseJBBaileyALKimASChenREDiamondMSGrowth, detection, quantification, and inactivation of SARS-CoV-2Virology202054839481:CAS:528:DC%2BB3cXht1CjsLbO10.1016/j.virol.2020.05.015 Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature,https://doi.org/10.1038/s41586-022-04441-6 (2022). AcquaWFDIncreasing the Affinity of a Human IgG1 for the Neonatal Fc Receptor: Biological ConsequencesJ. Immunol.2002169517110.4049/jimmunol.169.9.5171 RichardsonSISARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivityCell Rep. Med.2022310051010.1016/j.xcrm.2022.100510 Saunders, K. O. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Fron. Immunol.10, https://doi.org/10.3389/fimmu.2019.01296 (2019). VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01678-y (2022). LemppFALectins enhance SARS-CoV-2 infection and influence neutralizing antibodiesNature20215983423472021Natur.598..342L1:CAS:528:DC%2BB3MXit1Whs7vP10.1038/s41586-021-03925-1 PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902952020Natur.583..290P1:CAS:528:DC%2BB3cXht1Cmu7bI10.1038/s41586-020-2349-y GunnBMA Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola VirusCell Host Microbe.201824221233.e2251:CAS:528:DC%2BC1cXhsVyns7bO10.1016/j.chom.2018.07.009 LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe.202129477488.e4741:CAS:528:DC%2BB3MXjtVWqtb4%3D10.1016/j.chom.2021.01.014 Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol.5, https://doi.org/10.1126/sciimmunol.abc3582 (2020). SaphireEOSystematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to ProtectionCell2018174938952.e9131:CAS:528:DC%2BC1cXhsVyltrvJ10.1016/j.cell.2018.07.033 UllahILive imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacyImmunity20215421432158.e21151:CAS:528:DC%2BB3MXhvV2rtLrN10.1016/j.immuni.2021.08.015 Iketani, S. et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. bioRxiv. https://doi.org/10.1101/2022.02.07.479306 (2022). Tatham, L. et al. Lack of Ronapreve (REGN-CoV; casirivimab and imdevimab) virological efficacy against the SARS-CoV-2 Omicron variant (B.1.1.529) in K18-hACE2 mice. bioRxiv, https://doi.org/10.1101/2022.01.23.477397 (2022). Schäfer, A. et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med.218, https://doi.org/10.1084/jem.20201993 (2021). DejnirattisaiWSARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responsesCell2022185467484.e4151:CAS:528:DC%2BB38XhvFGrsbk%3D10.1016/j.cell.2021.12.046 OuXCharacterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoVNat. Commun.2020112020NatCo..11.1620O1:CAS:528:DC%2BB3cXlvFyjt78%3D10.1038/s41467-020-15562-9 LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152202020Natur.581..215L1:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-5 PiersonTCDiamondMSA game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infectionProg. Mol. Biol. Transl. Sci.201512914116610.1016/bs.pmbts.2014.10.005 DiLilloDJPalesePWilsonPCRavetchJVBroadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protectionJ. Clin. Invest201612660561010.1172/JCI84428 VanBlarganLAA potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitopeImmunity20215423992416.e23961:CAS:528:DC%2BB3MXhvFCrtbfF10.1016/j.immuni.2021.08.016 ZostSJPotently neutralizing and protective human antibodies against SARS-CoV-2Nature20205844434491:CAS:528:DC%2BB3cXhsF2ntLrM10.1038/s41586-020-2548-6 Loo, Y. M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abl8124 (2022). SuryadevaraNNeutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike proteinCell202118423162331.e23151:CAS:528:DC%2BB3MXns1ersL0%3D10.1016/j.cell.2021.03.029 DongJGenetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktailNat. Microbiol.20216123312441:CAS:528:DC%2BB3MXitV2it77F10.1038/s41564-021-00972-2 GoddardTDUCSF ChimeraX: Meeting modern challenges in visualization and analysisProtein Sci.20182714251:CAS:528:DC%2BC2sXhsVertLjN10.1002/pro.3235 Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. bioRxiv, https://doi.org/10.1101/2021.04.30.442182 (2021). Kawaoka, Y. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. Res. Sq. https://doi.org/10.21203/rs.3.rs-1375091/v1 (2022). Bentley, E. G. et al. SARS-CoV-2 Omicron-B. 1.1. 529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. bioRxiv (2021). OganesyanVGaoCShirinianLWuHDall’AcquaWFStructural characterization of a human Fc fragment engineered for lack of effector functionsActa Crystallogr D. Biol. Crystallogr.2008647007041:CAS:528:DC%2BD1cXntFOrtr4%3D10.1107/S0907444908007877 Yamasoba, D. et al. Sensitivity of novel SARS-CoV-2 Omicron subvariants, BA.2.11, BA.2.12.1, BA.4 and BA.5 to therapeutic monoclonal antibodies. bioRxiv, https://doi.org/10.1101/2022.05.03.490409 (2022). Cobb, R. R. et al. A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med (N Y), https://doi.org/10.1016/j.medj.2022.01.004 (2022). AbdelnabiRThe omicron (B. 1.1. 529) SARS-CoV-2 variant of concern does not readily infect Syrian hamstersAntiviral Res.20221981052531:CAS:528:DC%2BB38Xit1CjtLY%3D10.1016/j.antiviral.2022.105253 DiLilloDJTanGSPalesePRavetchJVBroadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivoNat. Med2014201431511:CAS:528:DC%2BC2cXmtVWjsA%3D%3D10.1038/nm.3443 SmithPDiLilloDJBournazosSLiFRavetchJVMouse model recapitulating human Fcγ receptor structural and functional diversityProc. Natl Acad. Sci.2012109618161862012PNAS..109.6181S1:CAS:528:DC%2BC38Xmt12muro%3D10.1073/pnas.1203954109 ChenREIn vivo monoclonal antibody efficacy against SARS-CoV-2 variant strainsNature20215961031082021Natur.596..103C1:CAS:528:DC%2BB3MXhsFGqtr%2FL10.1038/s41586-021-03720-y YaminRFc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacyNature20215994654702021Natur.599..465Y1:CAS:528:DC%2BB3MXisVSntL%2FF10.1038/s41586-021-04017-w GrunstMWUchilPDFc effector cross-reactivity: A hidden arsenal against SARS-CoV-2’s evasive maneuveringCell Rep. Med.2022310054010.1016/j.xcrm.2022.100540 Beaudoin-BussièresGA Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infectionCell Rep.20223811036810.1016/j.celrep.2022.110368 Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01294-w (2021). Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. bioRxiv, https://doi.org/10.1101/2022.04.30.489997 (2022). WFD Acqua (31615_CR12) 2002; 169 31615_CR25 X Ou (31615_CR27) 2020; 11 JB Case (31615_CR42) 2020; 548 31615_CR22 I Ullah (31615_CR29) 2021; 54 31615_CR23 DJ DiLillo (31615_CR6) 2014; 20 R Abdelnabi (31615_CR14) 2022; 198 P Smith (31615_CR21) 2012; 109 31615_CR28 J Dong (31615_CR17) 2021; 6 FA Lempp (31615_CR34) 2021; 598 TD Goddard (31615_CR44) 2018; 27 E Cameroni (31615_CR20) 2022; 602 N Suryadevara (31615_CR35) 2021; 184 V Oganesyan (31615_CR19) 2008; 64 BM Gunn (31615_CR7) 2018; 24 J Lan (31615_CR43) 2020; 581 DJ DiLillo (31615_CR5) 2016; 126 G Beaudoin-Bussières (31615_CR26) 2022; 38 31615_CR1 31615_CR2 31615_CR15 31615_CR37 31615_CR3 31615_CR16 31615_CR38 D Pinto (31615_CR9) 2020; 583 31615_CR13 31615_CR36 31615_CR11 R Yamin (31615_CR30) 2021; 599 TC Pierson (31615_CR33) 2015; 129 Z Liu (31615_CR40) 2021; 29 31615_CR39 31615_CR18 RE Chen (31615_CR24) 2021; 596 SJ Zost (31615_CR10) 2020; 584 SI Richardson (31615_CR32) 2022; 3 W Dejnirattisai (31615_CR4) 2022; 185 MW Grunst (31615_CR31) 2022; 3 EO Saphire (31615_CR8) 2018; 174 LA VanBlargan (31615_CR41) 2021; 54 |
References_xml | – reference: Cobb, R. R. et al. A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med (N Y), https://doi.org/10.1016/j.medj.2022.01.004 (2022). – reference: UllahILive imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacyImmunity20215421432158.e21151:CAS:528:DC%2BB3MXhvV2rtLrN10.1016/j.immuni.2021.08.015 – reference: Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol.5, https://doi.org/10.1126/sciimmunol.abc3582 (2020). – reference: Liu, L. et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature, https://doi.org/10.1038/s41586-021-04388-0 (2021). – reference: Saunders, K. O. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Fron. Immunol.10, https://doi.org/10.3389/fimmu.2019.01296 (2019). – reference: Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature,https://doi.org/10.1038/s41586-022-04441-6 (2022). – reference: CameroniEBroadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shiftNature20226026646702022Natur.602..664C1:CAS:528:DC%2BB38XjvFOktLY%3D10.1038/s41586-021-04386-2 – reference: VanBlarganLAA potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitopeImmunity20215423992416.e23961:CAS:528:DC%2BB3MXhvFCrtbfF10.1016/j.immuni.2021.08.016 – reference: LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152202020Natur.581..215L1:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-5 – reference: OganesyanVGaoCShirinianLWuHDall’AcquaWFStructural characterization of a human Fc fragment engineered for lack of effector functionsActa Crystallogr D. Biol. Crystallogr.2008647007041:CAS:528:DC%2BD1cXntFOrtr4%3D10.1107/S0907444908007877 – reference: Bentley, E. G. et al. SARS-CoV-2 Omicron-B. 1.1. 529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. bioRxiv (2021). – reference: Schäfer, A. et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med.218, https://doi.org/10.1084/jem.20201993 (2021). – reference: AbdelnabiRThe omicron (B. 1.1. 529) SARS-CoV-2 variant of concern does not readily infect Syrian hamstersAntiviral Res.20221981052531:CAS:528:DC%2BB38Xit1CjtLY%3D10.1016/j.antiviral.2022.105253 – reference: Tatham, L. et al. Lack of Ronapreve (REGN-CoV; casirivimab and imdevimab) virological efficacy against the SARS-CoV-2 Omicron variant (B.1.1.529) in K18-hACE2 mice. bioRxiv, https://doi.org/10.1101/2022.01.23.477397 (2022). – reference: PiersonTCDiamondMSA game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infectionProg. Mol. Biol. Transl. Sci.201512914116610.1016/bs.pmbts.2014.10.005 – reference: AcquaWFDIncreasing the Affinity of a Human IgG1 for the Neonatal Fc Receptor: Biological ConsequencesJ. Immunol.2002169517110.4049/jimmunol.169.9.5171 – reference: DiLilloDJTanGSPalesePRavetchJVBroadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivoNat. Med2014201431511:CAS:528:DC%2BC2cXmtVWjsA%3D%3D10.1038/nm.3443 – reference: ChenREIn vivo monoclonal antibody efficacy against SARS-CoV-2 variant strainsNature20215961031082021Natur.596..103C1:CAS:528:DC%2BB3MXhsFGqtr%2FL10.1038/s41586-021-03720-y – reference: GrunstMWUchilPDFc effector cross-reactivity: A hidden arsenal against SARS-CoV-2’s evasive maneuveringCell Rep. Med.2022310054010.1016/j.xcrm.2022.100540 – reference: VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01678-y (2022). – reference: Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. bioRxiv, https://doi.org/10.1101/2021.04.30.442182 (2021). – reference: LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe.202129477488.e4741:CAS:528:DC%2BB3MXjtVWqtb4%3D10.1016/j.chom.2021.01.014 – reference: SaphireEOSystematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to ProtectionCell2018174938952.e9131:CAS:528:DC%2BC1cXhsVyltrvJ10.1016/j.cell.2018.07.033 – reference: LemppFALectins enhance SARS-CoV-2 infection and influence neutralizing antibodiesNature20215983423472021Natur.598..342L1:CAS:528:DC%2BB3MXit1Whs7vP10.1038/s41586-021-03925-1 – reference: Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01294-w (2021). – reference: PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902952020Natur.583..290P1:CAS:528:DC%2BB3cXht1Cmu7bI10.1038/s41586-020-2349-y – reference: DongJGenetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktailNat. Microbiol.20216123312441:CAS:528:DC%2BB3MXitV2it77F10.1038/s41564-021-00972-2 – reference: SmithPDiLilloDJBournazosSLiFRavetchJVMouse model recapitulating human Fcγ receptor structural and functional diversityProc. Natl Acad. Sci.2012109618161862012PNAS..109.6181S1:CAS:528:DC%2BC38Xmt12muro%3D10.1073/pnas.1203954109 – reference: CaseJBBaileyALKimASChenREDiamondMSGrowth, detection, quantification, and inactivation of SARS-CoV-2Virology202054839481:CAS:528:DC%2BB3cXht1CjsLbO10.1016/j.virol.2020.05.015 – reference: Kawaoka, Y. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. Res. Sq. https://doi.org/10.21203/rs.3.rs-1375091/v1 (2022). – reference: GoddardTDUCSF ChimeraX: Meeting modern challenges in visualization and analysisProtein Sci.20182714251:CAS:528:DC%2BC2sXhsVertLjN10.1002/pro.3235 – reference: DiLilloDJPalesePWilsonPCRavetchJVBroadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protectionJ. Clin. Invest201612660561010.1172/JCI84428 – reference: GunnBMA Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola VirusCell Host Microbe.201824221233.e2251:CAS:528:DC%2BC1cXhsVyns7bO10.1016/j.chom.2018.07.009 – reference: Iketani, S. et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. bioRxiv. https://doi.org/10.1101/2022.02.07.479306 (2022). – reference: Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. bioRxiv, https://doi.org/10.1101/2022.04.30.489997 (2022). – reference: OuXCharacterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoVNat. Commun.2020112020NatCo..11.1620O1:CAS:528:DC%2BB3cXlvFyjt78%3D10.1038/s41467-020-15562-9 – reference: DejnirattisaiWSARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responsesCell2022185467484.e4151:CAS:528:DC%2BB38XhvFGrsbk%3D10.1016/j.cell.2021.12.046 – reference: ZostSJPotently neutralizing and protective human antibodies against SARS-CoV-2Nature20205844434491:CAS:528:DC%2BB3cXhsF2ntLrM10.1038/s41586-020-2548-6 – reference: Beaudoin-BussièresGA Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infectionCell Rep.20223811036810.1016/j.celrep.2022.110368 – reference: YaminRFc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacyNature20215994654702021Natur.599..465Y1:CAS:528:DC%2BB3MXisVSntL%2FF10.1038/s41586-021-04017-w – reference: Loo, Y. M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abl8124 (2022). – reference: RichardsonSISARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivityCell Rep. Med.2022310051010.1016/j.xcrm.2022.100510 – reference: SuryadevaraNNeutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike proteinCell202118423162331.e23151:CAS:528:DC%2BB3MXns1ersL0%3D10.1016/j.cell.2021.03.029 – reference: Yamasoba, D. et al. Sensitivity of novel SARS-CoV-2 Omicron subvariants, BA.2.11, BA.2.12.1, BA.4 and BA.5 to therapeutic monoclonal antibodies. bioRxiv, https://doi.org/10.1101/2022.05.03.490409 (2022). – volume: 583 start-page: 290 year: 2020 ident: 31615_CR9 publication-title: Nature doi: 10.1038/s41586-020-2349-y – volume: 109 start-page: 6181 year: 2012 ident: 31615_CR21 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1203954109 – volume: 599 start-page: 465 year: 2021 ident: 31615_CR30 publication-title: Nature doi: 10.1038/s41586-021-04017-w – ident: 31615_CR37 doi: 10.1101/2022.05.03.490409 – volume: 185 start-page: 467 year: 2022 ident: 31615_CR4 publication-title: Cell doi: 10.1016/j.cell.2021.12.046 – volume: 184 start-page: 2316 year: 2021 ident: 31615_CR35 publication-title: Cell doi: 10.1016/j.cell.2021.03.029 – ident: 31615_CR2 doi: 10.1038/s41591-021-01678-y – ident: 31615_CR23 doi: 10.1101/2021.04.30.442182 – volume: 602 start-page: 664 year: 2022 ident: 31615_CR20 publication-title: Nature doi: 10.1038/s41586-021-04386-2 – ident: 31615_CR11 doi: 10.3389/fimmu.2019.01296 – volume: 64 start-page: 700 year: 2008 ident: 31615_CR19 publication-title: Acta Crystallogr D. Biol. Crystallogr. doi: 10.1107/S0907444908007877 – volume: 27 start-page: 14 year: 2018 ident: 31615_CR44 publication-title: Protein Sci. doi: 10.1002/pro.3235 – volume: 11 year: 2020 ident: 31615_CR27 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15562-9 – ident: 31615_CR3 doi: 10.1038/s41586-021-04388-0 – ident: 31615_CR25 doi: 10.1016/j.medj.2022.01.004 – ident: 31615_CR36 doi: 10.1101/2022.04.30.489997 – volume: 54 start-page: 2399 year: 2021 ident: 31615_CR41 publication-title: Immunity doi: 10.1016/j.immuni.2021.08.016 – volume: 29 start-page: 477 year: 2021 ident: 31615_CR40 publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2021.01.014 – volume: 129 start-page: 141 year: 2015 ident: 31615_CR33 publication-title: Prog. Mol. Biol. Transl. Sci. doi: 10.1016/bs.pmbts.2014.10.005 – volume: 581 start-page: 215 year: 2020 ident: 31615_CR43 publication-title: Nature doi: 10.1038/s41586-020-2180-5 – volume: 169 start-page: 5171 year: 2002 ident: 31615_CR12 publication-title: J. Immunol. doi: 10.4049/jimmunol.169.9.5171 – volume: 38 start-page: 110368 year: 2022 ident: 31615_CR26 publication-title: Cell Rep. doi: 10.1016/j.celrep.2022.110368 – ident: 31615_CR22 doi: 10.1101/2022.01.23.477397 – volume: 24 start-page: 221 year: 2018 ident: 31615_CR7 publication-title: Cell Host Microbe. doi: 10.1016/j.chom.2018.07.009 – volume: 20 start-page: 143 year: 2014 ident: 31615_CR6 publication-title: Nat. Med doi: 10.1038/nm.3443 – volume: 598 start-page: 342 year: 2021 ident: 31615_CR34 publication-title: Nature doi: 10.1038/s41586-021-03925-1 – volume: 174 start-page: 938 year: 2018 ident: 31615_CR8 publication-title: Cell doi: 10.1016/j.cell.2018.07.033 – volume: 584 start-page: 443 year: 2020 ident: 31615_CR10 publication-title: Nature doi: 10.1038/s41586-020-2548-6 – volume: 126 start-page: 605 year: 2016 ident: 31615_CR5 publication-title: J. Clin. Invest doi: 10.1172/JCI84428 – volume: 3 start-page: 100510 year: 2022 ident: 31615_CR32 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100510 – ident: 31615_CR39 doi: 10.1038/s41591-021-01294-w – volume: 3 start-page: 100540 year: 2022 ident: 31615_CR31 publication-title: Cell Rep. Med. doi: 10.1016/j.xcrm.2022.100540 – volume: 6 start-page: 1233 year: 2021 ident: 31615_CR17 publication-title: Nat. Microbiol. doi: 10.1038/s41564-021-00972-2 – volume: 548 start-page: 39 year: 2020 ident: 31615_CR42 publication-title: Virology doi: 10.1016/j.virol.2020.05.015 – ident: 31615_CR15 doi: 10.1101/2021.12.26.474085 – ident: 31615_CR16 doi: 10.21203/rs.3.rs-1375091/v1 – ident: 31615_CR18 doi: 10.1126/scitranslmed.abl8124 – volume: 596 start-page: 103 year: 2021 ident: 31615_CR24 publication-title: Nature doi: 10.1038/s41586-021-03720-y – ident: 31615_CR13 doi: 10.1038/s41586-022-04441-6 – ident: 31615_CR28 doi: 10.1084/jem.20201993 – volume: 54 start-page: 2143 year: 2021 ident: 31615_CR29 publication-title: Immunity doi: 10.1016/j.immuni.2021.08.015 – ident: 31615_CR38 doi: 10.1126/sciimmunol.abc3582 – volume: 198 start-page: 105253 year: 2022 ident: 31615_CR14 publication-title: Antiviral Res. doi: 10.1016/j.antiviral.2022.105253 – ident: 31615_CR1 doi: 10.1101/2022.02.07.479306 |
SSID | ssj0000391844 |
Score | 2.6390977 |
Snippet | Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have... SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 3824 |
SubjectTerms | 13 13/1 13/106 13/31 631/250/2152/2153/1291 631/326/596/4130 64 64/60 82/1 82/103 ACE2 Angiotensin-converting enzyme 2 Animals Antibodies, Monoclonal - pharmacology Antibodies, Monoclonal - therapeutic use Antibodies, Neutralizing Antibodies, Viral - therapeutic use Biotechnology Bronchopulmonary infection Cell culture Correlation analysis COVID-19 COVID-19 Drug Treatment Drug Combinations Glycoprotein S Glycoproteins Humanities and Social Sciences Humans Immunotherapy Infections Lungs Membrane Glycoproteins Mice Monoclonal antibodies multidisciplinary Mutation Neutralization Neutralization Tests Neutralizing Resilience SARS-CoV-2 Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Spike Glycoprotein, Coronavirus Spike protein Transgenic mice Viral diseases Viral Envelope Proteins |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kIHgR306MoQVvOmS2H9PdxzUxBEGFrJHgpelHrS6sM8HZPey_t6tndsz6vHjtBxT1_HqqpoqQ51BHr0IlyyCiKxP-D6XzzGHZXwiVDlrlDP7bd_XZhXhzKS-vjfrCmrC-PXDPuCPttBTOAJcGRIxzAy4hGkjLc_AJb6D3TTHv2mMq-2Bu0tNFDH_JVFwfdSL7hFy8jiinVDuRKDfs_x3K_LVY8qeMaQ5Ep3fI7QFB0mlP-V1yA5p75GY_U3Jzn6zPoVsss8HSdk5nvDLUNZFOP50oIRhNateGJeLvtLxa-DZu6Fht3lH32S0SYqTbIq2G-g2dTc9n5XH7sWT0_Ves4GsootPkimiXZ0x0D8jF6esPx2flMFuhDOnJsio1RnauvRHOheikDjXn0jFQoEHL2rOgAfECTFSIMiphQjROeTAgFQv8Idlr2gYeE8qrKJnAjeiFBudrnzQjxgQeOTCjCjLZ8tmGofE40ra0OQHOte1lY5NsbJaNTXdejHeu-rYbfz39CsU3nsSW2XkhKZIdFMn-S5EKcrAVvh3suLOs1ph5rcSkIM_G7WSBmFZxDbTrfAabhum6LsijXldGSrCXUALVrCBqR4t2SN3daRZfcpdvg-C00gV5udW3H2T9mRX7_4MVT8gthoaCX7HZAdlbfVvD04S9Vv4wm9l3JgsqoA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZbxMxELagCIkXxM1CQUbiDaxufKztJxQKoUICpIaiihfLV0qksFu6yUP-PR7vUYWjrz6ksef61jM7g9DLWAUnfSmI58GShP89sY5aSPvzvlReyRzB__S5OjrhH0_Faf_g1vZplYNNzIY6NB7eyA9opSAGVvLJm_NfBLpGQXS1b6FxHd2YJE8DKV1q9mF8Y4Hq54rz_l-ZkqmDlmfLkFPYAesQueOPctn-f2HNv1Mm_4ibZnc0u4Nu9zgSTzvG30XXYn0P3ew6S27vo81xbJerrLa4WeA5KzW2dcDT7-8k5xSn0zR-BSg8Da-XrglbPOact9ie2WXCjXhI1aqx2-L59HhODptvhOIvPyGPr8aAUZNBwm3uNNE-QCez918Pj0jfYYH49OGyJgr8O1NOc2t9sEL5ijFhaZRRRSUqR72KgBriRPogguTaB22lizoKST17iPbqpo6PEWZlEJTDRHBcResql-QjhAQhWaRaFmgy3LPxfflxoG1lchicKdPxxiTemMwbk_a8Gvecd8U3rlz9Ftg3roTC2XmguTgzvR4aZZXgVkcmdOQhLHS0CSDHNLyILsHXAu0PzDe9NrfmUvYK9GKcTnoIwRVbx2aT10DpMFVVBXrUycpICVQUStCaFkjuSNEOqbsz9fJHrvWtAaKWqkCvB3m7JOv_V_Hk6lM8RbcoqAC8UtN9tLe-2MRnCVut3fOsQL8B-7wg_A priority: 102 providerName: ProQuest – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDcpBRmJG0RkHTu2j6FQVSsBUpeiiovlx2xZaUmqZvew_x6PNwlaKEhc_ZBGnhn7S-bzZ0JeQRWc9IXIPQ82j_jf59Yxi7Q_7wvllUwV_I-fqtNzPr0QF3uEDXdhEmk_SVqmbXpgh73teErpxD1HkJLLW-QApdpjbB_U9XQ2Hf-soOa54ry_IVOU6obJO6dQEuu_CWH-SZT8rVqaDqGTe-Rujx5pvbX3PtmD5gG5vX1PcvOQrM-gWyxTstJ2TmdloaltAq2_vZecMxpDrvVLxN6xebVwbdjQkWneUXtpFxEt0oGg1VC3obP6bJYft19zRj__QPZeQxGZxm2Idul9ie4ROT_58OX4NO_fVch9_FxZ5QpP9VI5za31wQrlq7IUloEEBUpUjnkFiBVgIn0QQXLtg7bSgQYhmS8fk_2mbeApoWURBOPYERxXYF3lYlSEEIFjCUzLjEyGdTa-Fx1H25YmFb9LZba-MdE3JvnGxDmvxzlXW8mNf45-h-4bR6Jcdmpory9NHz5GWSW41VAKDTyEuQYbYTHE5jm4CFozcjQ43_Q53BlWKay6FnySkZdjd8w-LKnYBtp1GoOCYaqqMvJkGyujJagjFAE1y4jciaIdU3d7msX3pPCtEZgWKiNvhnj7Zdbfl-Lw_4Y_I3cYpgT-q2ZHZH91vYbnEWGt3Is-pX4CBDAgNQ priority: 102 providerName: Springer Nature |
Title | Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains |
URI | https://link.springer.com/article/10.1038/s41467-022-31615-7 https://www.ncbi.nlm.nih.gov/pubmed/35780162 https://www.proquest.com/docview/2683501041 https://www.proquest.com/docview/2684097866 https://pubmed.ncbi.nlm.nih.gov/PMC9250508 https://doaj.org/article/8a854a9e359e4ddf9ea916e8a8feb054 |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiPcGlspI3CCQOk5sHxDKli2rSruglqKKS-RXl0olgaaV6L9n7DxQoXDikkhjW7LmYX_2jGcQemZTo5iOklBTI0PA_zqUikgX9qd1xDVn3oN_eZVeTOlolswOUFvuqGFgtfdo5-pJTVfLlz--b9-Awb-un4zzVxX15u7j0h2ACdkhOoadibmKBpcN3PcrcyzgQEObtzP7h-7sTz6N_z7s-WcI5W9-VL89DW-jWw2uxFmtCHfQgS3uoht1pcntPbQZ22qx9GaMyzmexJHAsjA4-_yWUUowKGOplw6VA3m9UKXZ4i4GvcLyWi4AR-I2dKvAaosn2XgSDspPIcHvv7q4vgI7zAoLFK585YnqPpoOzz8OLsKm4kKo4SCzDrnb72OuBJVSG5lwncZxIolllluepIpobh2KsH2mTWIYFdoIyZQVNmFExw_QUVEW9gThODIJoa7BKMqtVKkCfTEGIGVsiWAB6rd8znWTjtzNbZl7t3jM81o2Ocgm97LJYczzbsy3OhnHP3ufOfF1PV0ibU8oV9d5Y5c5lzyhUtg4EZYaMxdWAmC2QJ5bBXA2QKet8PNWOXOScuePjWg_QE-7ZrBL52yRhS03vo9LJcbTNEAPa13pZuIyDAHUJgFiO1q0M9XdlmLxxef-Fg6yRjxAL1p9-zWtv7Pi0f9gxWN0kzhDcXfb5BQdrVcb-wQQ2Vr10CGbMfjy4bseOs6y0WQE_7Pzqw9joA7SQc_fdfS8Of4E_to4jA |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEaIXxN5AASPBCaJmbCd2DggNLcOULkidFlVcjLcpIw1JaWaE5k_xG_FzlmpYeuvVdiLnrV_8nt9D6IXLrOYmSWPDrIo9_jex0kRB2p8xiTCChwj-_kE2PGYfT9KTFfSrvQsDaZWtTQyG2pYGzsg3SSYgBpaw3tuzHzF0jYLoattCoxaLXbf46X_Zqjc7256_LwkZvD_aGsZNV4HYeLA-iwX4NCp0zpQyVqXCZJSmijjuhBNppokRDjyl63FjU8tZbmyuuHa5Szkx1L_3GrrOqPfkcDN98KE704Fq64Kx5m5OQsVmxYIlCinzgK1ivuT_QpuAf2Hbv1M0_4jTBvc3uI1uNbgV92tBu4NWXHEX3ag7WS7uofmhqybTYCZwOcYjmuRYFRb3v2xzxgj21CvNFFC_H55NdGkXuMtxr7A6VROPU3GbGlZgvcCj_uEo3io_xwR_-g55gwUGTOwNIK5CZ4vqPjq-Eto_QKtFWbh1hGliU8JgwmomnNKZ9vJorYes1JGcR6jX0lmaptw57G0qQ9idClnzRnreyMAb6Z951T1zVhf7uHT1O2BftxIKdYeB8vxUNnovhRIpU7mjae6YtePcKQ_InR8eO-3hcoQ2WubLxnpU8kLWI_S8m_Z6D8EcVbhyHtZAqTKRZRF6WMtKtxOoYOShPIkQX5Kipa0uzxSTb6G2eA6QOBERet3K28W2_k-KR5d_xTN0c3i0vyf3dg52H6M1AuoAJ-RkA63Ozufuicd1M_00KBNGX69ae38DDEFeMA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxJuFAkaCE6yy8XrX3gNCadOopRCqhFYVF-NXSqSwW7qJUP4avw6P91GFR2-9-rGa9YxnPnvGMwi9tKlRTEdJqKmRocP_OpSKSAj70zrimjPvwf84SveO6PuT5GQD_WrewkBYZaMTvaI2hYY78i5JOfjAItrrTuuwiMPB8N3ZjxAqSIGntSmnUYnIgV39dMe38u3-wPH6FSHD3c87e2FdYSDUDrgvQg72LeYqo1JqIxOu0zhOJLHMcsuTVBHNLVhN22PaJIbRTJtMMmUzmzCiY_fda2iTwamogza3d0eH4_aGB3Kvc0rrlzpRzLsl9XrJB9AD0grZmjX0RQP-hXT_Dtj8w2vrjeHwNrpVo1jcr8TuDtqw-V10vaprubqHlmNbzuZeaeBiiidxlGGZG9z_MmCUEuzWr9BzOAO45sVMFWaF24j3EstTOXOoFTeBYjlWKzzpjyfhTnEcEvzpO0QR5hgQslOHuPR1Lsr76OhKVv8B6uRFbh8hHEcmIRQ6jKLcSpUqJ53GOAAbW5KxAPWadRa6Tn4OtM2Fd8LHXFS8EY43wvNGuDmv2zlnVeqPS0dvA_vakZC22zcU56ei1gKCS55Qmdk4ySw1ZppZ6eC5dc1Tqxx4DtBWw3xR65JSXEh-gF603U4LgGtH5rZY-jGQuIynaYAeVrLSUgL5jBywJwFia1K0Rup6Tz775jONZwCQIx6gN428XZD1_6V4fPlfPEc33M4VH_ZHB0_QTQK7Aa7LyRbqLM6X9qkDeQv1rN5NGH296g38G1PYY8I |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+of+S309+and+AZD7442+monoclonal+antibody+treatments+against+infection+by+SARS-CoV-2+Omicron+lineage+strains&rft.jtitle=Nature+communications&rft.au=James+Brett+Case&rft.au=Samantha+Mackin&rft.au=John+M.+Errico&rft.au=Zhenlu+Chong&rft.date=2022-07-02&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-022-31615-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a854a9e359e4ddf9ea916e8a8feb054 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |