Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains

Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 3824 - 11
Main Authors Case, James Brett, Mackin, Samantha, Errico, John M., Chong, Zhenlu, Madden, Emily A., Whitener, Bradley, Guarino, Barbara, Schmid, Michael A., Rosenthal, Kim, Ren, Kuishu, Dang, Ha V., Snell, Gyorgy, Jung, Ana, Droit, Lindsay, Handley, Scott A., Halfmann, Peter J., Kawaoka, Yoshihiro, Crowe, James E., Fremont, Daved H., Virgin, Herbert W., Loo, Yueh-Ming, Esser, Mark T., Purcell, Lisa A., Corti, Davide, Diamond, Michael S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 02.07.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo. SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro.
AbstractList Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.
SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro.
Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo. SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro.
Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al. show that therapeutic antibodies S309 and AZD7442 reduce lung infection with SARSCoV-2 Omicron lineages in humanized mouse model despite the loss of neutralizing potency in vitro.
Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have suggested that several monoclonal antibody therapies lose neutralizing activity against Omicron variants, the effects in vivo remain largely unknown. Here, we report on the protective efficacy against three SARS-CoV-2 Omicron lineage strains (BA.1, BA.1.1, and BA.2) of two monoclonal antibody therapeutics (S309 [Vir Biotechnology] monotherapy and AZD7442 [AstraZeneca] combination), which correspond to ones used to treat or prevent SARS-CoV-2 infections in humans. Despite losses in neutralization potency in cell culture, S309 or AZD7442 treatments reduced BA.1, BA.1.1, and BA.2 lung infection in susceptible mice that express human ACE2 (K18-hACE2) in prophylactic and therapeutic settings. Correlation analyses between in vitro neutralizing activity and reductions in viral burden in K18-hACE2 or human FcγR transgenic mice suggest that S309 and AZD7442 have different mechanisms of protection against Omicron variants, with S309 utilizing Fc effector function interactions and AZD7442 acting principally by direct neutralization. Our data in mice demonstrate the resilience of S309 and AZD7442 mAbs against emerging SARS-CoV-2 variant strains and provide insight into the relationship between loss of antibody neutralization potency and retained protection in vivo.
ArticleNumber 3824
Author Errico, John M.
Snell, Gyorgy
Jung, Ana
Whitener, Bradley
Diamond, Michael S.
Loo, Yueh-Ming
Ren, Kuishu
Rosenthal, Kim
Virgin, Herbert W.
Dang, Ha V.
Droit, Lindsay
Guarino, Barbara
Crowe, James E.
Mackin, Samantha
Handley, Scott A.
Chong, Zhenlu
Esser, Mark T.
Halfmann, Peter J.
Kawaoka, Yoshihiro
Corti, Davide
Schmid, Michael A.
Purcell, Lisa A.
Case, James Brett
Madden, Emily A.
Fremont, Daved H.
Author_xml – sequence: 1
  givenname: James Brett
  orcidid: 0000-0001-7331-5511
  surname: Case
  fullname: Case, James Brett
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 2
  givenname: Samantha
  surname: Mackin
  fullname: Mackin, Samantha
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine
– sequence: 3
  givenname: John M.
  orcidid: 0000-0002-4452-8152
  surname: Errico
  fullname: Errico, John M.
  organization: Department of Pathology & Immunology, Washington University School of Medicine
– sequence: 4
  givenname: Zhenlu
  surname: Chong
  fullname: Chong, Zhenlu
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 5
  givenname: Emily A.
  orcidid: 0000-0003-0209-914X
  surname: Madden
  fullname: Madden, Emily A.
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 6
  givenname: Bradley
  surname: Whitener
  fullname: Whitener, Bradley
  organization: Department of Medicine, Washington University School of Medicine
– sequence: 7
  givenname: Barbara
  surname: Guarino
  fullname: Guarino, Barbara
  organization: Humabs BioMed SA, a subsidiary of Vir Biotechnology
– sequence: 8
  givenname: Michael A.
  orcidid: 0000-0002-1137-9322
  surname: Schmid
  fullname: Schmid, Michael A.
  organization: Humabs BioMed SA, a subsidiary of Vir Biotechnology
– sequence: 9
  givenname: Kim
  surname: Rosenthal
  fullname: Rosenthal, Kim
  organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca
– sequence: 10
  givenname: Kuishu
  surname: Ren
  fullname: Ren, Kuishu
  organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca
– sequence: 11
  givenname: Ha V.
  orcidid: 0000-0003-1173-9241
  surname: Dang
  fullname: Dang, Ha V.
  organization: Vir Biotechnology
– sequence: 12
  givenname: Gyorgy
  surname: Snell
  fullname: Snell, Gyorgy
  organization: Vir Biotechnology
– sequence: 13
  givenname: Ana
  surname: Jung
  fullname: Jung, Ana
  organization: Department of Pathology & Immunology, Washington University School of Medicine
– sequence: 14
  givenname: Lindsay
  surname: Droit
  fullname: Droit, Lindsay
  organization: Department of Pathology & Immunology, Washington University School of Medicine
– sequence: 15
  givenname: Scott A.
  orcidid: 0000-0002-2143-6570
  surname: Handley
  fullname: Handley, Scott A.
  organization: Department of Pathology & Immunology, Washington University School of Medicine
– sequence: 16
  givenname: Peter J.
  orcidid: 0000-0002-1648-1625
  surname: Halfmann
  fullname: Halfmann, Peter J.
  organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
– sequence: 17
  givenname: Yoshihiro
  orcidid: 0000-0001-5061-8296
  surname: Kawaoka
  fullname: Kawaoka, Yoshihiro
  organization: Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Division of Virology, Institute of Medical Science, University of Tokyo, The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute
– sequence: 18
  givenname: James E.
  orcidid: 0000-0002-0049-1079
  surname: Crowe
  fullname: Crowe, James E.
  organization: Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Department of Pediatrics, Vanderbilt University Medical Center, Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
– sequence: 19
  givenname: Daved H.
  orcidid: 0000-0002-8544-2689
  surname: Fremont
  fullname: Fremont, Daved H.
  organization: Department of Pathology & Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, Department of Biochemistry & Molecular Biophysics, Washington University School of Medicine
– sequence: 20
  givenname: Herbert W.
  orcidid: 0000-0001-8580-7628
  surname: Virgin
  fullname: Virgin, Herbert W.
  organization: Department of Pathology & Immunology, Washington University School of Medicine, Vir Biotechnology, University of Texas Southwestern Medical Center
– sequence: 21
  givenname: Yueh-Ming
  orcidid: 0000-0001-6294-7273
  surname: Loo
  fullname: Loo, Yueh-Ming
  organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca
– sequence: 22
  givenname: Mark T.
  orcidid: 0000-0003-1689-3475
  surname: Esser
  fullname: Esser, Mark T.
  organization: Vaccines and Immune Therapies, BioPharmaceuticals R&D, AstraZeneca
– sequence: 23
  givenname: Lisa A.
  surname: Purcell
  fullname: Purcell, Lisa A.
  organization: Vir Biotechnology
– sequence: 24
  givenname: Davide
  orcidid: 0000-0002-5797-1364
  surname: Corti
  fullname: Corti, Davide
  organization: Humabs BioMed SA, a subsidiary of Vir Biotechnology
– sequence: 25
  givenname: Michael S.
  orcidid: 0000-0002-8791-3165
  surname: Diamond
  fullname: Diamond, Michael S.
  email: mdiamond@wustl.edu
  organization: Department of Medicine, Washington University School of Medicine, Department of Pathology & Immunology, Washington University School of Medicine, Department of Molecular Microbiology, Washington University School of Medicine, Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Center for Vaccines and Immunity to Microbial Pathogens, Washington University School of Medicine
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35780162$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUjFARLaV_gAOyxIVLwJ-xfUFabfmoVKlSFzhwsRznZfEqsYudIO2_x7vbQttDfbE1nhm9p5mX1VGIAarqNcHvCWbqQ-aEN7LGlNaMNETU8ll1QjEnNZGUHd17H1dnOW9wOUwTxfmL6pgJqTBp6Ek1X0P2g4fgAMUerRjWyIYOLX6eS84pGmOIbojBDgWefBu7LZoS2GmEMGVk19aHPCEfenCTjwG1W7RaXK_qZfxRU3Q1epcKOvgAdg0oT2kneFU97-2Q4ez2Pq2-f_70bfm1vrz6crFcXNauwc1UK6IIZarV3FrXWaFcw5iwFCQoUKJpqVOAsSJApOtEJ7l2nbayBQ1CUsdOq4uDbxftxtwkP9q0NdF6swdiWhubJu8GMMoqwa0GJjTwrus1WE0aKHAPLRa8eH08eN3M7QidK_snOzwwffgT_C-zjn-MpgILrIrBu1uDFH_PkCcz-uxgGGyAOGdDG8WxlqppCvXtI-omzqmEsGcxgUkJt7De3J_o3yh36RaCOhBKBjkn6I3zk93FtIthMASbXZfMoUumdMnsu2RkkdJH0jv3J0XsIMqFHNaQ_o_9hOovLbvaqQ
CitedBy_id crossref_primary_10_1016_j_cmi_2024_04_012
crossref_primary_10_1016_j_jiac_2023_07_014
crossref_primary_10_1002_jmv_70235
crossref_primary_10_1080_14787210_2022_2134118
crossref_primary_10_3390_ijms251910820
crossref_primary_10_1126_sciimmunol_adf1421
crossref_primary_10_1007_s40261_024_01344_4
crossref_primary_10_3390_v15061300
crossref_primary_10_1080_17843286_2024_2381272
crossref_primary_10_1128_jvi_01011_23
crossref_primary_10_1021_acs_molpharmaceut_4c00297
crossref_primary_10_1016_j_clim_2024_109902
crossref_primary_10_1093_bfgp_elad051
crossref_primary_10_3390_ijms24010481
crossref_primary_10_3389_fmed_2022_1005589
crossref_primary_10_1080_03007995_2024_2376144
crossref_primary_10_2217_fvl_2023_0146
crossref_primary_10_3390_v14091999
crossref_primary_10_1371_journal_ppat_1011788
crossref_primary_10_1016_j_clinthera_2025_01_003
crossref_primary_10_11150_kansenshogakuzasshi_e24008
crossref_primary_10_1126_science_adc9127
crossref_primary_10_1111_imr_13393
crossref_primary_10_1093_ckj_sfac177
crossref_primary_10_1111_sji_13345
crossref_primary_10_1007_s40121_022_00755_0
crossref_primary_10_1128_jvi_00038_24
crossref_primary_10_1016_j_medj_2023_08_001
crossref_primary_10_1038_s41586_024_07385_1
crossref_primary_10_1007_s00277_024_05769_x
crossref_primary_10_1128_jvi_00628_23
crossref_primary_10_3389_fimmu_2022_966236
crossref_primary_10_1016_j_bbrc_2022_08_050
crossref_primary_10_3389_fimmu_2024_1295029
crossref_primary_10_1172_jci_insight_179726
crossref_primary_10_3390_jcm11133838
crossref_primary_10_1128_spectrum_00333_23
crossref_primary_10_3390_bioengineering9110714
crossref_primary_10_1016_j_molcel_2024_06_028
crossref_primary_10_1038_s41590_024_01787_z
crossref_primary_10_1098_rsob_230252
crossref_primary_10_3390_biomedicines13030637
crossref_primary_10_1016_j_arabjc_2023_104842
crossref_primary_10_1016_j_xcrm_2022_100910
crossref_primary_10_1007_s15010_025_02505_z
crossref_primary_10_3390_v15071449
crossref_primary_10_1073_pnas_2417544121
crossref_primary_10_1016_j_xcrm_2023_101305
crossref_primary_10_1038_s41586_023_06487_6
crossref_primary_10_1016_j_it_2024_06_003
crossref_primary_10_3389_fimmu_2022_1033770
crossref_primary_10_1016_j_medj_2023_07_007
crossref_primary_10_1111_imr_13383
crossref_primary_10_1007_s10875_023_01540_5
crossref_primary_10_1073_pnas_2315354120
crossref_primary_10_1186_s12879_024_09311_2
crossref_primary_10_1016_S1473_3099_24_00559_0
crossref_primary_10_1016_j_nefro_2022_11_001
crossref_primary_10_3390_v15010139
crossref_primary_10_1126_sciimmunol_add5446
crossref_primary_10_1371_journal_ppat_1012383
crossref_primary_10_3390_vaccines12060675
crossref_primary_10_1039_D3CP01167D
crossref_primary_10_3390_v14092061
crossref_primary_10_1007_s40121_023_00861_7
crossref_primary_10_1038_s41579_022_00809_7
crossref_primary_10_1136_bmjresp_2023_002238
crossref_primary_10_4285_ctr_24_0015
crossref_primary_10_3390_v15020346
crossref_primary_10_1016_j_bj_2023_100666
crossref_primary_10_7554_eLife_83442
crossref_primary_10_2807_1560_7917_ES_2025_30_10_2400252
crossref_primary_10_3390_hematolrep15040059
crossref_primary_10_1016_j_chom_2024_10_016
crossref_primary_10_1016_j_immuni_2024_10_001
crossref_primary_10_1038_s41467_023_42408_x
crossref_primary_10_1016_j_ebiom_2023_104545
crossref_primary_10_1016_j_snb_2024_135575
crossref_primary_10_1038_s41589_022_01193_2
crossref_primary_10_12998_wjcc_v11_i10_2140
crossref_primary_10_1371_journal_ppat_1012650
crossref_primary_10_1016_j_heliyon_2025_e41980
crossref_primary_10_1007_s11427_022_2215_6
crossref_primary_10_3390_vaccines11091451
crossref_primary_10_1007_s40265_022_01731_1
crossref_primary_10_1016_j_toxrep_2024_101825
crossref_primary_10_1038_s41564_023_01359_1
crossref_primary_10_47360_1995_4484_2023_158_164
crossref_primary_10_1016_j_nefroe_2023_10_007
crossref_primary_10_1056_NEJMc2216611
crossref_primary_10_1080_17460794_2024_2350923
crossref_primary_10_1002_jmv_28932
crossref_primary_10_1111_imr_13401
crossref_primary_10_1016_j_chembiol_2024_03_008
crossref_primary_10_2147_CIA_S393732
Cites_doi 10.1038/s41586-020-2349-y
10.1073/pnas.1203954109
10.1038/s41586-021-04017-w
10.1101/2022.05.03.490409
10.1016/j.cell.2021.12.046
10.1016/j.cell.2021.03.029
10.1038/s41591-021-01678-y
10.1101/2021.04.30.442182
10.1038/s41586-021-04386-2
10.3389/fimmu.2019.01296
10.1107/S0907444908007877
10.1002/pro.3235
10.1038/s41467-020-15562-9
10.1038/s41586-021-04388-0
10.1016/j.medj.2022.01.004
10.1101/2022.04.30.489997
10.1016/j.immuni.2021.08.016
10.1016/j.chom.2021.01.014
10.1016/bs.pmbts.2014.10.005
10.1038/s41586-020-2180-5
10.4049/jimmunol.169.9.5171
10.1016/j.celrep.2022.110368
10.1101/2022.01.23.477397
10.1016/j.chom.2018.07.009
10.1038/nm.3443
10.1038/s41586-021-03925-1
10.1016/j.cell.2018.07.033
10.1038/s41586-020-2548-6
10.1172/JCI84428
10.1016/j.xcrm.2022.100510
10.1038/s41591-021-01294-w
10.1016/j.xcrm.2022.100540
10.1038/s41564-021-00972-2
10.1016/j.virol.2020.05.015
10.1101/2021.12.26.474085
10.21203/rs.3.rs-1375091/v1
10.1126/scitranslmed.abl8124
10.1038/s41586-021-03720-y
10.1038/s41586-022-04441-6
10.1084/jem.20201993
10.1016/j.immuni.2021.08.015
10.1126/sciimmunol.abc3582
10.1016/j.antiviral.2022.105253
10.1101/2022.02.07.479306
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-31615-7
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
Coronavirus Research Database
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


Publicly Available Content Database

CrossRef
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_8a854a9e359e4ddf9ea916e8a8feb054
PMC9250508
35780162
10_1038_s41467_022_31615_7
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
– fundername: United States Department of Defense | Defense Advanced Research Projects Agency (DARPA)
  grantid: HR0011-18-2-0001
  funderid: https://doi.org/10.13039/100000185
– fundername: U.S. Department of Health & Human Services | NIH | National Institute of Allergy and Infectious Diseases (NIAID)
  grantid: R01 AI157155; U01 AI151810; 75N93019C00051
  funderid: https://doi.org/10.13039/100000060
– fundername: NIAID NIH HHS
  grantid: R01 AI157155
– fundername: NIAID NIH HHS
  grantid: 75N93019C00051
– fundername: NIAID NIH HHS
  grantid: U01 AI151810
– fundername: ;
– fundername: ;
  grantid: HR0011-18-2-0001
– fundername: ;
  grantid: R01 AI157155; U01 AI151810; 75N93019C00051
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-8181238b94aacda58c6335a2e7e8e856b2c8e0081e17cd5d749cd9a7be9e572c3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:33 EDT 2025
Thu Aug 21 18:36:18 EDT 2025
Fri Jul 11 08:35:13 EDT 2025
Wed Aug 13 01:49:14 EDT 2025
Tue Apr 29 09:22:39 EDT 2025
Tue Jul 01 00:58:17 EDT 2025
Thu Apr 24 23:03:37 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-8181238b94aacda58c6335a2e7e8e856b2c8e0081e17cd5d749cd9a7be9e572c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-1173-9241
0000-0002-1648-1625
0000-0002-1137-9322
0000-0001-8580-7628
0000-0001-5061-8296
0000-0003-0209-914X
0000-0002-5797-1364
0000-0002-0049-1079
0000-0002-2143-6570
0000-0002-8544-2689
0000-0001-7331-5511
0000-0002-8791-3165
0000-0002-4452-8152
0000-0001-6294-7273
0000-0003-1689-3475
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-31615-7
PMID 35780162
PQID 2683501041
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8a854a9e359e4ddf9ea916e8a8feb054
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9250508
proquest_miscellaneous_2684097866
proquest_journals_2683501041
pubmed_primary_35780162
crossref_citationtrail_10_1038_s41467_022_31615_7
crossref_primary_10_1038_s41467_022_31615_7
springer_journals_10_1038_s41467_022_31615_7
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-02
PublicationDateYYYYMMDD 2022-07-02
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-02
  day: 02
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References CameroniEBroadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shiftNature20226026646702022Natur.602..664C1:CAS:528:DC%2BB38XjvFOktLY%3D10.1038/s41586-021-04386-2
Liu, L. et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature, https://doi.org/10.1038/s41586-021-04388-0 (2021).
CaseJBBaileyALKimASChenREDiamondMSGrowth, detection, quantification, and inactivation of SARS-CoV-2Virology202054839481:CAS:528:DC%2BB3cXht1CjsLbO10.1016/j.virol.2020.05.015
Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature,https://doi.org/10.1038/s41586-022-04441-6 (2022).
AcquaWFDIncreasing the Affinity of a Human IgG1 for the Neonatal Fc Receptor: Biological ConsequencesJ. Immunol.2002169517110.4049/jimmunol.169.9.5171
RichardsonSISARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivityCell Rep. Med.2022310051010.1016/j.xcrm.2022.100510
Saunders, K. O. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Fron. Immunol.10, https://doi.org/10.3389/fimmu.2019.01296 (2019).
VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01678-y (2022).
LemppFALectins enhance SARS-CoV-2 infection and influence neutralizing antibodiesNature20215983423472021Natur.598..342L1:CAS:528:DC%2BB3MXit1Whs7vP10.1038/s41586-021-03925-1
PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902952020Natur.583..290P1:CAS:528:DC%2BB3cXht1Cmu7bI10.1038/s41586-020-2349-y
GunnBMA Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola VirusCell Host Microbe.201824221233.e2251:CAS:528:DC%2BC1cXhsVyns7bO10.1016/j.chom.2018.07.009
LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe.202129477488.e4741:CAS:528:DC%2BB3MXjtVWqtb4%3D10.1016/j.chom.2021.01.014
Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol.5, https://doi.org/10.1126/sciimmunol.abc3582 (2020).
SaphireEOSystematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to ProtectionCell2018174938952.e9131:CAS:528:DC%2BC1cXhsVyltrvJ10.1016/j.cell.2018.07.033
UllahILive imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacyImmunity20215421432158.e21151:CAS:528:DC%2BB3MXhvV2rtLrN10.1016/j.immuni.2021.08.015
Iketani, S. et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. bioRxiv. https://doi.org/10.1101/2022.02.07.479306 (2022).
Tatham, L. et al. Lack of Ronapreve (REGN-CoV; casirivimab and imdevimab) virological efficacy against the SARS-CoV-2 Omicron variant (B.1.1.529) in K18-hACE2 mice. bioRxiv, https://doi.org/10.1101/2022.01.23.477397 (2022).
Schäfer, A. et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med.218, https://doi.org/10.1084/jem.20201993 (2021).
DejnirattisaiWSARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responsesCell2022185467484.e4151:CAS:528:DC%2BB38XhvFGrsbk%3D10.1016/j.cell.2021.12.046
OuXCharacterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoVNat. Commun.2020112020NatCo..11.1620O1:CAS:528:DC%2BB3cXlvFyjt78%3D10.1038/s41467-020-15562-9
LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152202020Natur.581..215L1:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-5
PiersonTCDiamondMSA game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infectionProg. Mol. Biol. Transl. Sci.201512914116610.1016/bs.pmbts.2014.10.005
DiLilloDJPalesePWilsonPCRavetchJVBroadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protectionJ. Clin. Invest201612660561010.1172/JCI84428
VanBlarganLAA potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitopeImmunity20215423992416.e23961:CAS:528:DC%2BB3MXhvFCrtbfF10.1016/j.immuni.2021.08.016
ZostSJPotently neutralizing and protective human antibodies against SARS-CoV-2Nature20205844434491:CAS:528:DC%2BB3cXhsF2ntLrM10.1038/s41586-020-2548-6
Loo, Y. M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abl8124 (2022).
SuryadevaraNNeutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike proteinCell202118423162331.e23151:CAS:528:DC%2BB3MXns1ersL0%3D10.1016/j.cell.2021.03.029
DongJGenetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktailNat. Microbiol.20216123312441:CAS:528:DC%2BB3MXitV2it77F10.1038/s41564-021-00972-2
GoddardTDUCSF ChimeraX: Meeting modern challenges in visualization and analysisProtein Sci.20182714251:CAS:528:DC%2BC2sXhsVertLjN10.1002/pro.3235
Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. bioRxiv, https://doi.org/10.1101/2021.04.30.442182 (2021).
Kawaoka, Y. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. Res. Sq. https://doi.org/10.21203/rs.3.rs-1375091/v1 (2022).
Bentley, E. G. et al. SARS-CoV-2 Omicron-B. 1.1. 529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. bioRxiv (2021).
OganesyanVGaoCShirinianLWuHDall’AcquaWFStructural characterization of a human Fc fragment engineered for lack of effector functionsActa Crystallogr D. Biol. Crystallogr.2008647007041:CAS:528:DC%2BD1cXntFOrtr4%3D10.1107/S0907444908007877
Yamasoba, D. et al. Sensitivity of novel SARS-CoV-2 Omicron subvariants, BA.2.11, BA.2.12.1, BA.4 and BA.5 to therapeutic monoclonal antibodies. bioRxiv, https://doi.org/10.1101/2022.05.03.490409 (2022).
Cobb, R. R. et al. A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med (N Y), https://doi.org/10.1016/j.medj.2022.01.004 (2022).
AbdelnabiRThe omicron (B. 1.1. 529) SARS-CoV-2 variant of concern does not readily infect Syrian hamstersAntiviral Res.20221981052531:CAS:528:DC%2BB38Xit1CjtLY%3D10.1016/j.antiviral.2022.105253
DiLilloDJTanGSPalesePRavetchJVBroadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivoNat. Med2014201431511:CAS:528:DC%2BC2cXmtVWjsA%3D%3D10.1038/nm.3443
SmithPDiLilloDJBournazosSLiFRavetchJVMouse model recapitulating human Fcγ receptor structural and functional diversityProc. Natl Acad. Sci.2012109618161862012PNAS..109.6181S1:CAS:528:DC%2BC38Xmt12muro%3D10.1073/pnas.1203954109
ChenREIn vivo monoclonal antibody efficacy against SARS-CoV-2 variant strainsNature20215961031082021Natur.596..103C1:CAS:528:DC%2BB3MXhsFGqtr%2FL10.1038/s41586-021-03720-y
YaminRFc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacyNature20215994654702021Natur.599..465Y1:CAS:528:DC%2BB3MXisVSntL%2FF10.1038/s41586-021-04017-w
GrunstMWUchilPDFc effector cross-reactivity: A hidden arsenal against SARS-CoV-2’s evasive maneuveringCell Rep. Med.2022310054010.1016/j.xcrm.2022.100540
Beaudoin-BussièresGA Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infectionCell Rep.20223811036810.1016/j.celrep.2022.110368
Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01294-w (2021).
Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. bioRxiv, https://doi.org/10.1101/2022.04.30.489997 (2022).
WFD Acqua (31615_CR12) 2002; 169
31615_CR25
X Ou (31615_CR27) 2020; 11
JB Case (31615_CR42) 2020; 548
31615_CR22
I Ullah (31615_CR29) 2021; 54
31615_CR23
DJ DiLillo (31615_CR6) 2014; 20
R Abdelnabi (31615_CR14) 2022; 198
P Smith (31615_CR21) 2012; 109
31615_CR28
J Dong (31615_CR17) 2021; 6
FA Lempp (31615_CR34) 2021; 598
TD Goddard (31615_CR44) 2018; 27
E Cameroni (31615_CR20) 2022; 602
N Suryadevara (31615_CR35) 2021; 184
V Oganesyan (31615_CR19) 2008; 64
BM Gunn (31615_CR7) 2018; 24
J Lan (31615_CR43) 2020; 581
DJ DiLillo (31615_CR5) 2016; 126
G Beaudoin-Bussières (31615_CR26) 2022; 38
31615_CR1
31615_CR2
31615_CR15
31615_CR37
31615_CR3
31615_CR16
31615_CR38
D Pinto (31615_CR9) 2020; 583
31615_CR13
31615_CR36
31615_CR11
R Yamin (31615_CR30) 2021; 599
TC Pierson (31615_CR33) 2015; 129
Z Liu (31615_CR40) 2021; 29
31615_CR39
31615_CR18
RE Chen (31615_CR24) 2021; 596
SJ Zost (31615_CR10) 2020; 584
SI Richardson (31615_CR32) 2022; 3
W Dejnirattisai (31615_CR4) 2022; 185
MW Grunst (31615_CR31) 2022; 3
EO Saphire (31615_CR8) 2018; 174
LA VanBlargan (31615_CR41) 2021; 54
References_xml – reference: Cobb, R. R. et al. A combination of two human neutralizing antibodies prevents SARS-CoV-2 infection in cynomolgus macaques. Med (N Y), https://doi.org/10.1016/j.medj.2022.01.004 (2022).
– reference: UllahILive imaging of SARS-CoV-2 infection in mice reveals that neutralizing antibodies require Fc function for optimal efficacyImmunity20215421432158.e21151:CAS:528:DC%2BB3MXhvV2rtLrN10.1016/j.immuni.2021.08.015
– reference: Zang, R. et al. TMPRSS2 and TMPRSS4 promote SARS-CoV-2 infection of human small intestinal enterocytes. Sci. Immunol.5, https://doi.org/10.1126/sciimmunol.abc3582 (2020).
– reference: Liu, L. et al. Striking Antibody Evasion Manifested by the Omicron Variant of SARS-CoV-2. Nature, https://doi.org/10.1038/s41586-021-04388-0 (2021).
– reference: Saunders, K. O. Conceptual Approaches to Modulating Antibody Effector Functions and Circulation Half-Life. Fron. Immunol.10, https://doi.org/10.3389/fimmu.2019.01296 (2019).
– reference: Halfmann, P. J. et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters. Nature,https://doi.org/10.1038/s41586-022-04441-6 (2022).
– reference: CameroniEBroadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shiftNature20226026646702022Natur.602..664C1:CAS:528:DC%2BB38XjvFOktLY%3D10.1038/s41586-021-04386-2
– reference: VanBlarganLAA potently neutralizing SARS-CoV-2 antibody inhibits variants of concern by utilizing unique binding residues in a highly conserved epitopeImmunity20215423992416.e23961:CAS:528:DC%2BB3MXhvFCrtbfF10.1016/j.immuni.2021.08.016
– reference: LanJStructure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptorNature20205812152202020Natur.581..215L1:CAS:528:DC%2BB3cXoslOqtL8%3D10.1038/s41586-020-2180-5
– reference: OganesyanVGaoCShirinianLWuHDall’AcquaWFStructural characterization of a human Fc fragment engineered for lack of effector functionsActa Crystallogr D. Biol. Crystallogr.2008647007041:CAS:528:DC%2BD1cXntFOrtr4%3D10.1107/S0907444908007877
– reference: Bentley, E. G. et al. SARS-CoV-2 Omicron-B. 1.1. 529 Variant leads to less severe disease than Pango B and Delta variants strains in a mouse model of severe COVID-19. bioRxiv (2021).
– reference: Schäfer, A. et al. Antibody potency, effector function, and combinations in protection and therapy for SARS-CoV-2 infection in vivo. J. Exp. Med.218, https://doi.org/10.1084/jem.20201993 (2021).
– reference: AbdelnabiRThe omicron (B. 1.1. 529) SARS-CoV-2 variant of concern does not readily infect Syrian hamstersAntiviral Res.20221981052531:CAS:528:DC%2BB38Xit1CjtLY%3D10.1016/j.antiviral.2022.105253
– reference: Tatham, L. et al. Lack of Ronapreve (REGN-CoV; casirivimab and imdevimab) virological efficacy against the SARS-CoV-2 Omicron variant (B.1.1.529) in K18-hACE2 mice. bioRxiv, https://doi.org/10.1101/2022.01.23.477397 (2022).
– reference: PiersonTCDiamondMSA game of numbers: the stoichiometry of antibody-mediated neutralization of flavivirus infectionProg. Mol. Biol. Transl. Sci.201512914116610.1016/bs.pmbts.2014.10.005
– reference: AcquaWFDIncreasing the Affinity of a Human IgG1 for the Neonatal Fc Receptor: Biological ConsequencesJ. Immunol.2002169517110.4049/jimmunol.169.9.5171
– reference: DiLilloDJTanGSPalesePRavetchJVBroadly neutralizing hemagglutinin stalk-specific antibodies require FcγR interactions for protection against influenza virus in vivoNat. Med2014201431511:CAS:528:DC%2BC2cXmtVWjsA%3D%3D10.1038/nm.3443
– reference: ChenREIn vivo monoclonal antibody efficacy against SARS-CoV-2 variant strainsNature20215961031082021Natur.596..103C1:CAS:528:DC%2BB3MXhsFGqtr%2FL10.1038/s41586-021-03720-y
– reference: GrunstMWUchilPDFc effector cross-reactivity: A hidden arsenal against SARS-CoV-2’s evasive maneuveringCell Rep. Med.2022310054010.1016/j.xcrm.2022.100540
– reference: VanBlargan, L. A. et al. An infectious SARS-CoV-2 B.1.1.529 Omicron virus escapes neutralization by therapeutic monoclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01678-y (2022).
– reference: Westendorf, K. et al. LY-CoV1404 (bebtelovimab) potently neutralizes SARS-CoV-2 variants. bioRxiv, https://doi.org/10.1101/2021.04.30.442182 (2021).
– reference: LiuZIdentification of SARS-CoV-2 spike mutations that attenuate monoclonal and serum antibody neutralizationCell Host Microbe.202129477488.e4741:CAS:528:DC%2BB3MXjtVWqtb4%3D10.1016/j.chom.2021.01.014
– reference: SaphireEOSystematic Analysis of Monoclonal Antibodies against Ebola Virus GP Defines Features that Contribute to ProtectionCell2018174938952.e9131:CAS:528:DC%2BC1cXhsVyltrvJ10.1016/j.cell.2018.07.033
– reference: LemppFALectins enhance SARS-CoV-2 infection and influence neutralizing antibodiesNature20215983423472021Natur.598..342L1:CAS:528:DC%2BB3MXit1Whs7vP10.1038/s41586-021-03925-1
– reference: Chen, R. E. et al. Resistance of SARS-CoV-2 variants to neutralization by monoclonal and serum-derived polyclonal antibodies. Nat. Med. https://doi.org/10.1038/s41591-021-01294-w (2021).
– reference: PintoDCross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibodyNature20205832902952020Natur.583..290P1:CAS:528:DC%2BB3cXht1Cmu7bI10.1038/s41586-020-2349-y
– reference: DongJGenetic and structural basis for SARS-CoV-2 variant neutralization by a two-antibody cocktailNat. Microbiol.20216123312441:CAS:528:DC%2BB3MXitV2it77F10.1038/s41564-021-00972-2
– reference: SmithPDiLilloDJBournazosSLiFRavetchJVMouse model recapitulating human Fcγ receptor structural and functional diversityProc. Natl Acad. Sci.2012109618161862012PNAS..109.6181S1:CAS:528:DC%2BC38Xmt12muro%3D10.1073/pnas.1203954109
– reference: CaseJBBaileyALKimASChenREDiamondMSGrowth, detection, quantification, and inactivation of SARS-CoV-2Virology202054839481:CAS:528:DC%2BB3cXht1CjsLbO10.1016/j.virol.2020.05.015
– reference: Kawaoka, Y. et al. Characterization and antiviral susceptibility of SARS-CoV-2 Omicron/BA.2. Res. Sq. https://doi.org/10.21203/rs.3.rs-1375091/v1 (2022).
– reference: GoddardTDUCSF ChimeraX: Meeting modern challenges in visualization and analysisProtein Sci.20182714251:CAS:528:DC%2BC2sXhsVertLjN10.1002/pro.3235
– reference: DiLilloDJPalesePWilsonPCRavetchJVBroadly neutralizing anti-influenza antibodies require Fc receptor engagement for in vivo protectionJ. Clin. Invest201612660561010.1172/JCI84428
– reference: GunnBMA Role for Fc Function in Therapeutic Monoclonal Antibody-Mediated Protection against Ebola VirusCell Host Microbe.201824221233.e2251:CAS:528:DC%2BC1cXhsVyns7bO10.1016/j.chom.2018.07.009
– reference: Iketani, S. et al. Antibody Evasion Properties of SARS-CoV-2 Omicron Sublineages. bioRxiv. https://doi.org/10.1101/2022.02.07.479306 (2022).
– reference: Cao, Y. et al. BA.2.12.1, BA.4 and BA.5 escape antibodies elicited by Omicron infection. bioRxiv, https://doi.org/10.1101/2022.04.30.489997 (2022).
– reference: OuXCharacterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoVNat. Commun.2020112020NatCo..11.1620O1:CAS:528:DC%2BB3cXlvFyjt78%3D10.1038/s41467-020-15562-9
– reference: DejnirattisaiWSARS-CoV-2 Omicron-B.1.1.529 leads to widespread escape from neutralizing antibody responsesCell2022185467484.e4151:CAS:528:DC%2BB38XhvFGrsbk%3D10.1016/j.cell.2021.12.046
– reference: ZostSJPotently neutralizing and protective human antibodies against SARS-CoV-2Nature20205844434491:CAS:528:DC%2BB3cXhsF2ntLrM10.1038/s41586-020-2548-6
– reference: Beaudoin-BussièresGA Fc-enhanced NTD-binding non-neutralizing antibody delays virus spread and synergizes with a nAb to protect mice from lethal SARS-CoV-2 infectionCell Rep.20223811036810.1016/j.celrep.2022.110368
– reference: YaminRFc-engineered antibody therapeutics with improved anti-SARS-CoV-2 efficacyNature20215994654702021Natur.599..465Y1:CAS:528:DC%2BB3MXisVSntL%2FF10.1038/s41586-021-04017-w
– reference: Loo, Y. M. et al. The SARS-CoV-2 monoclonal antibody combination, AZD7442, is protective in non-human primates and has an extended half-life in humans. Sci. Transl. Med. https://doi.org/10.1126/scitranslmed.abl8124 (2022).
– reference: RichardsonSISARS-CoV-2 Beta and Delta variants trigger Fc effector function with increased cross-reactivityCell Rep. Med.2022310051010.1016/j.xcrm.2022.100510
– reference: SuryadevaraNNeutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike proteinCell202118423162331.e23151:CAS:528:DC%2BB3MXns1ersL0%3D10.1016/j.cell.2021.03.029
– reference: Yamasoba, D. et al. Sensitivity of novel SARS-CoV-2 Omicron subvariants, BA.2.11, BA.2.12.1, BA.4 and BA.5 to therapeutic monoclonal antibodies. bioRxiv, https://doi.org/10.1101/2022.05.03.490409 (2022).
– volume: 583
  start-page: 290
  year: 2020
  ident: 31615_CR9
  publication-title: Nature
  doi: 10.1038/s41586-020-2349-y
– volume: 109
  start-page: 6181
  year: 2012
  ident: 31615_CR21
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1203954109
– volume: 599
  start-page: 465
  year: 2021
  ident: 31615_CR30
  publication-title: Nature
  doi: 10.1038/s41586-021-04017-w
– ident: 31615_CR37
  doi: 10.1101/2022.05.03.490409
– volume: 185
  start-page: 467
  year: 2022
  ident: 31615_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.046
– volume: 184
  start-page: 2316
  year: 2021
  ident: 31615_CR35
  publication-title: Cell
  doi: 10.1016/j.cell.2021.03.029
– ident: 31615_CR2
  doi: 10.1038/s41591-021-01678-y
– ident: 31615_CR23
  doi: 10.1101/2021.04.30.442182
– volume: 602
  start-page: 664
  year: 2022
  ident: 31615_CR20
  publication-title: Nature
  doi: 10.1038/s41586-021-04386-2
– ident: 31615_CR11
  doi: 10.3389/fimmu.2019.01296
– volume: 64
  start-page: 700
  year: 2008
  ident: 31615_CR19
  publication-title: Acta Crystallogr D. Biol. Crystallogr.
  doi: 10.1107/S0907444908007877
– volume: 27
  start-page: 14
  year: 2018
  ident: 31615_CR44
  publication-title: Protein Sci.
  doi: 10.1002/pro.3235
– volume: 11
  year: 2020
  ident: 31615_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15562-9
– ident: 31615_CR3
  doi: 10.1038/s41586-021-04388-0
– ident: 31615_CR25
  doi: 10.1016/j.medj.2022.01.004
– ident: 31615_CR36
  doi: 10.1101/2022.04.30.489997
– volume: 54
  start-page: 2399
  year: 2021
  ident: 31615_CR41
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.016
– volume: 29
  start-page: 477
  year: 2021
  ident: 31615_CR40
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2021.01.014
– volume: 129
  start-page: 141
  year: 2015
  ident: 31615_CR33
  publication-title: Prog. Mol. Biol. Transl. Sci.
  doi: 10.1016/bs.pmbts.2014.10.005
– volume: 581
  start-page: 215
  year: 2020
  ident: 31615_CR43
  publication-title: Nature
  doi: 10.1038/s41586-020-2180-5
– volume: 169
  start-page: 5171
  year: 2002
  ident: 31615_CR12
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.169.9.5171
– volume: 38
  start-page: 110368
  year: 2022
  ident: 31615_CR26
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2022.110368
– ident: 31615_CR22
  doi: 10.1101/2022.01.23.477397
– volume: 24
  start-page: 221
  year: 2018
  ident: 31615_CR7
  publication-title: Cell Host Microbe.
  doi: 10.1016/j.chom.2018.07.009
– volume: 20
  start-page: 143
  year: 2014
  ident: 31615_CR6
  publication-title: Nat. Med
  doi: 10.1038/nm.3443
– volume: 598
  start-page: 342
  year: 2021
  ident: 31615_CR34
  publication-title: Nature
  doi: 10.1038/s41586-021-03925-1
– volume: 174
  start-page: 938
  year: 2018
  ident: 31615_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2018.07.033
– volume: 584
  start-page: 443
  year: 2020
  ident: 31615_CR10
  publication-title: Nature
  doi: 10.1038/s41586-020-2548-6
– volume: 126
  start-page: 605
  year: 2016
  ident: 31615_CR5
  publication-title: J. Clin. Invest
  doi: 10.1172/JCI84428
– volume: 3
  start-page: 100510
  year: 2022
  ident: 31615_CR32
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100510
– ident: 31615_CR39
  doi: 10.1038/s41591-021-01294-w
– volume: 3
  start-page: 100540
  year: 2022
  ident: 31615_CR31
  publication-title: Cell Rep. Med.
  doi: 10.1016/j.xcrm.2022.100540
– volume: 6
  start-page: 1233
  year: 2021
  ident: 31615_CR17
  publication-title: Nat. Microbiol.
  doi: 10.1038/s41564-021-00972-2
– volume: 548
  start-page: 39
  year: 2020
  ident: 31615_CR42
  publication-title: Virology
  doi: 10.1016/j.virol.2020.05.015
– ident: 31615_CR15
  doi: 10.1101/2021.12.26.474085
– ident: 31615_CR16
  doi: 10.21203/rs.3.rs-1375091/v1
– ident: 31615_CR18
  doi: 10.1126/scitranslmed.abl8124
– volume: 596
  start-page: 103
  year: 2021
  ident: 31615_CR24
  publication-title: Nature
  doi: 10.1038/s41586-021-03720-y
– ident: 31615_CR13
  doi: 10.1038/s41586-022-04441-6
– ident: 31615_CR28
  doi: 10.1084/jem.20201993
– volume: 54
  start-page: 2143
  year: 2021
  ident: 31615_CR29
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.08.015
– ident: 31615_CR38
  doi: 10.1126/sciimmunol.abc3582
– volume: 198
  start-page: 105253
  year: 2022
  ident: 31615_CR14
  publication-title: Antiviral Res.
  doi: 10.1016/j.antiviral.2022.105253
– ident: 31615_CR1
  doi: 10.1101/2022.02.07.479306
SSID ssj0000391844
Score 2.6390977
Snippet Omicron variant strains encode large numbers of changes in the spike protein compared to historical SARS-CoV-2 isolates. Although in vitro studies have...
SARS-CoV-2 variants of concern are less susceptible to therapeutic neutralizing antibodies, given mutations in the surface glycoprotein S. Here, Case et al....
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 3824
SubjectTerms 13
13/1
13/106
13/31
631/250/2152/2153/1291
631/326/596/4130
64
64/60
82/1
82/103
ACE2
Angiotensin-converting enzyme 2
Animals
Antibodies, Monoclonal - pharmacology
Antibodies, Monoclonal - therapeutic use
Antibodies, Neutralizing
Antibodies, Viral - therapeutic use
Biotechnology
Bronchopulmonary infection
Cell culture
Correlation analysis
COVID-19
COVID-19 Drug Treatment
Drug Combinations
Glycoprotein S
Glycoproteins
Humanities and Social Sciences
Humans
Immunotherapy
Infections
Lungs
Membrane Glycoproteins
Mice
Monoclonal antibodies
multidisciplinary
Mutation
Neutralization
Neutralization Tests
Neutralizing
Resilience
SARS-CoV-2
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
Spike Glycoprotein, Coronavirus
Spike protein
Transgenic mice
Viral diseases
Viral Envelope Proteins
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LaxRBEG4kIHgR306MoQVvOmS2H9PdxzUxBEGFrJHgpelHrS6sM8HZPey_t6tndsz6vHjtBxT1_HqqpoqQ51BHr0IlyyCiKxP-D6XzzGHZXwiVDlrlDP7bd_XZhXhzKS-vjfrCmrC-PXDPuCPttBTOAJcGRIxzAy4hGkjLc_AJb6D3TTHv2mMq-2Bu0tNFDH_JVFwfdSL7hFy8jiinVDuRKDfs_x3K_LVY8qeMaQ5Ep3fI7QFB0mlP-V1yA5p75GY_U3Jzn6zPoVsss8HSdk5nvDLUNZFOP50oIRhNateGJeLvtLxa-DZu6Fht3lH32S0SYqTbIq2G-g2dTc9n5XH7sWT0_Ves4GsootPkimiXZ0x0D8jF6esPx2flMFuhDOnJsio1RnauvRHOheikDjXn0jFQoEHL2rOgAfECTFSIMiphQjROeTAgFQv8Idlr2gYeE8qrKJnAjeiFBudrnzQjxgQeOTCjCjLZ8tmGofE40ra0OQHOte1lY5NsbJaNTXdejHeu-rYbfz39CsU3nsSW2XkhKZIdFMn-S5EKcrAVvh3suLOs1ph5rcSkIM_G7WSBmFZxDbTrfAabhum6LsijXldGSrCXUALVrCBqR4t2SN3daRZfcpdvg-C00gV5udW3H2T9mRX7_4MVT8gthoaCX7HZAdlbfVvD04S9Vv4wm9l3JgsqoA
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ZbxMxELagCIkXxM1CQUbiDaxufKztJxQKoUICpIaiihfLV0qksFu6yUP-PR7vUYWjrz6ksef61jM7g9DLWAUnfSmI58GShP89sY5aSPvzvlReyRzB__S5OjrhH0_Faf_g1vZplYNNzIY6NB7eyA9opSAGVvLJm_NfBLpGQXS1b6FxHd2YJE8DKV1q9mF8Y4Hq54rz_l-ZkqmDlmfLkFPYAesQueOPctn-f2HNv1Mm_4ibZnc0u4Nu9zgSTzvG30XXYn0P3ew6S27vo81xbJerrLa4WeA5KzW2dcDT7-8k5xSn0zR-BSg8Da-XrglbPOact9ie2WXCjXhI1aqx2-L59HhODptvhOIvPyGPr8aAUZNBwm3uNNE-QCez918Pj0jfYYH49OGyJgr8O1NOc2t9sEL5ijFhaZRRRSUqR72KgBriRPogguTaB22lizoKST17iPbqpo6PEWZlEJTDRHBcResql-QjhAQhWaRaFmgy3LPxfflxoG1lchicKdPxxiTemMwbk_a8Gvecd8U3rlz9Ftg3roTC2XmguTgzvR4aZZXgVkcmdOQhLHS0CSDHNLyILsHXAu0PzDe9NrfmUvYK9GKcTnoIwRVbx2aT10DpMFVVBXrUycpICVQUStCaFkjuSNEOqbsz9fJHrvWtAaKWqkCvB3m7JOv_V_Hk6lM8RbcoqAC8UtN9tLe-2MRnCVut3fOsQL8B-7wg_A
  priority: 102
  providerName: ProQuest
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKKyQuiDcpBRmJG0RkHTu2j6FQVSsBUpeiiovlx2xZaUmqZvew_x6PNwlaKEhc_ZBGnhn7S-bzZ0JeQRWc9IXIPQ82j_jf59Yxi7Q_7wvllUwV_I-fqtNzPr0QF3uEDXdhEmk_SVqmbXpgh73teErpxD1HkJLLW-QApdpjbB_U9XQ2Hf-soOa54ry_IVOU6obJO6dQEuu_CWH-SZT8rVqaDqGTe-Rujx5pvbX3PtmD5gG5vX1PcvOQrM-gWyxTstJ2TmdloaltAq2_vZecMxpDrvVLxN6xebVwbdjQkWneUXtpFxEt0oGg1VC3obP6bJYft19zRj__QPZeQxGZxm2Idul9ie4ROT_58OX4NO_fVch9_FxZ5QpP9VI5za31wQrlq7IUloEEBUpUjnkFiBVgIn0QQXLtg7bSgQYhmS8fk_2mbeApoWURBOPYERxXYF3lYlSEEIFjCUzLjEyGdTa-Fx1H25YmFb9LZba-MdE3JvnGxDmvxzlXW8mNf45-h-4bR6Jcdmpory9NHz5GWSW41VAKDTyEuQYbYTHE5jm4CFozcjQ43_Q53BlWKay6FnySkZdjd8w-LKnYBtp1GoOCYaqqMvJkGyujJagjFAE1y4jciaIdU3d7msX3pPCtEZgWKiNvhnj7Zdbfl-Lw_4Y_I3cYpgT-q2ZHZH91vYbnEWGt3Is-pX4CBDAgNQ
  priority: 102
  providerName: Springer Nature
Title Resilience of S309 and AZD7442 monoclonal antibody treatments against infection by SARS-CoV-2 Omicron lineage strains
URI https://link.springer.com/article/10.1038/s41467-022-31615-7
https://www.ncbi.nlm.nih.gov/pubmed/35780162
https://www.proquest.com/docview/2683501041
https://www.proquest.com/docview/2684097866
https://pubmed.ncbi.nlm.nih.gov/PMC9250508
https://doaj.org/article/8a854a9e359e4ddf9ea916e8a8feb054
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9MwELb2ISQuiPcGlspI3CCQOk5sHxDKli2rSruglqKKS-RXl0olgaaV6L9n7DxQoXDikkhjW7LmYX_2jGcQemZTo5iOklBTI0PA_zqUikgX9qd1xDVn3oN_eZVeTOlolswOUFvuqGFgtfdo5-pJTVfLlz--b9-Awb-un4zzVxX15u7j0h2ACdkhOoadibmKBpcN3PcrcyzgQEObtzP7h-7sTz6N_z7s-WcI5W9-VL89DW-jWw2uxFmtCHfQgS3uoht1pcntPbQZ22qx9GaMyzmexJHAsjA4-_yWUUowKGOplw6VA3m9UKXZ4i4GvcLyWi4AR-I2dKvAaosn2XgSDspPIcHvv7q4vgI7zAoLFK585YnqPpoOzz8OLsKm4kKo4SCzDrnb72OuBJVSG5lwncZxIolllluepIpobh2KsH2mTWIYFdoIyZQVNmFExw_QUVEW9gThODIJoa7BKMqtVKkCfTEGIGVsiWAB6rd8znWTjtzNbZl7t3jM81o2Ocgm97LJYczzbsy3OhnHP3ufOfF1PV0ibU8oV9d5Y5c5lzyhUtg4EZYaMxdWAmC2QJ5bBXA2QKet8PNWOXOScuePjWg_QE-7ZrBL52yRhS03vo9LJcbTNEAPa13pZuIyDAHUJgFiO1q0M9XdlmLxxef-Fg6yRjxAL1p9-zWtv7Pi0f9gxWN0kzhDcXfb5BQdrVcb-wQQ2Vr10CGbMfjy4bseOs6y0WQE_7Pzqw9joA7SQc_fdfS8Of4E_to4jA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEaIXxN5AASPBCaJmbCd2DggNLcOULkidFlVcjLcpIw1JaWaE5k_xG_FzlmpYeuvVdiLnrV_8nt9D6IXLrOYmSWPDrIo9_jex0kRB2p8xiTCChwj-_kE2PGYfT9KTFfSrvQsDaZWtTQyG2pYGzsg3SSYgBpaw3tuzHzF0jYLoattCoxaLXbf46X_Zqjc7256_LwkZvD_aGsZNV4HYeLA-iwX4NCp0zpQyVqXCZJSmijjuhBNppokRDjyl63FjU8tZbmyuuHa5Szkx1L_3GrrOqPfkcDN98KE704Fq64Kx5m5OQsVmxYIlCinzgK1ivuT_QpuAf2Hbv1M0_4jTBvc3uI1uNbgV92tBu4NWXHEX3ag7WS7uofmhqybTYCZwOcYjmuRYFRb3v2xzxgj21CvNFFC_H55NdGkXuMtxr7A6VROPU3GbGlZgvcCj_uEo3io_xwR_-g55gwUGTOwNIK5CZ4vqPjq-Eto_QKtFWbh1hGliU8JgwmomnNKZ9vJorYes1JGcR6jX0lmaptw57G0qQ9idClnzRnreyMAb6Z951T1zVhf7uHT1O2BftxIKdYeB8vxUNnovhRIpU7mjae6YtePcKQ_InR8eO-3hcoQ2WubLxnpU8kLWI_S8m_Z6D8EcVbhyHtZAqTKRZRF6WMtKtxOoYOShPIkQX5Kipa0uzxSTb6G2eA6QOBERet3K28W2_k-KR5d_xTN0c3i0vyf3dg52H6M1AuoAJ-RkA63Ozufuicd1M_00KBNGX69ae38DDEFeMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKKhAXxJuFAkaCE6yy8XrX3gNCadOopRCqhFYVF-NXSqSwW7qJUP4avw6P91GFR2-9-rGa9YxnPnvGMwi9tKlRTEdJqKmRocP_OpSKSAj70zrimjPvwf84SveO6PuT5GQD_WrewkBYZaMTvaI2hYY78i5JOfjAItrrTuuwiMPB8N3ZjxAqSIGntSmnUYnIgV39dMe38u3-wPH6FSHD3c87e2FdYSDUDrgvQg72LeYqo1JqIxOu0zhOJLHMcsuTVBHNLVhN22PaJIbRTJtMMmUzmzCiY_fda2iTwamogza3d0eH4_aGB3Kvc0rrlzpRzLsl9XrJB9AD0grZmjX0RQP-hXT_Dtj8w2vrjeHwNrpVo1jcr8TuDtqw-V10vaprubqHlmNbzuZeaeBiiidxlGGZG9z_MmCUEuzWr9BzOAO45sVMFWaF24j3EstTOXOoFTeBYjlWKzzpjyfhTnEcEvzpO0QR5hgQslOHuPR1Lsr76OhKVv8B6uRFbh8hHEcmIRQ6jKLcSpUqJ53GOAAbW5KxAPWadRa6Tn4OtM2Fd8LHXFS8EY43wvNGuDmv2zlnVeqPS0dvA_vakZC22zcU56ei1gKCS55Qmdk4ySw1ZppZ6eC5dc1Tqxx4DtBWw3xR65JSXEh-gF603U4LgGtH5rZY-jGQuIynaYAeVrLSUgL5jBywJwFia1K0Rup6Tz775jONZwCQIx6gN428XZD1_6V4fPlfPEc33M4VH_ZHB0_QTQK7Aa7LyRbqLM6X9qkDeQv1rN5NGH296g38G1PYY8I
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resilience+of+S309+and+AZD7442+monoclonal+antibody+treatments+against+infection+by+SARS-CoV-2+Omicron+lineage+strains&rft.jtitle=Nature+communications&rft.au=James+Brett+Case&rft.au=Samantha+Mackin&rft.au=John+M.+Errico&rft.au=Zhenlu+Chong&rft.date=2022-07-02&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-022-31615-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a854a9e359e4ddf9ea916e8a8feb054
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon