Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages

Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 7654 - 8
Main Authors Zeng, Wei-Jie, Wang, Chang, Yan, Qiang-Qiang, Yin, Peng, Tong, Lei, Liang, Hai-Wei
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature ( T PT )-dependent evolution process that involve concurrent (for alloys with high T PT ) or separate (for alloys with low T PT ) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mg Pt –1 at 0.9 V in H 2 –O 2 fuel cells and a remarkable durability. The synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. Here the authors identify phase-transition-temperature-dependent evolution process in the synthesis of intermetallic Pt catalysts and propose a separate alloying/ordering annealing synthetic protocol.
AbstractList Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt–1 at 0.9 V in H2–O2 fuel cells and a remarkable durability.The synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. Here the authors identify phase-transition-temperature-dependent evolution process in the synthesis of intermetallic Pt catalysts and propose a separate alloying/ordering annealing synthetic protocol.
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature ( T PT )-dependent evolution process that involve concurrent (for alloys with high T PT ) or separate (for alloys with low T PT ) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mg Pt –1 at 0.9 V in H 2 –O 2 fuel cells and a remarkable durability.
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature ( T PT )-dependent evolution process that involve concurrent (for alloys with high T PT ) or separate (for alloys with low T PT ) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mg Pt –1 at 0.9 V in H 2 –O 2 fuel cells and a remarkable durability. The synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. Here the authors identify phase-transition-temperature-dependent evolution process in the synthesis of intermetallic Pt catalysts and propose a separate alloying/ordering annealing synthetic protocol.
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a remarkable durability.Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (TPT)-dependent evolution process that involve concurrent (for alloys with high TPT) or separate (for alloys with low TPT) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mgPt-1 at 0.9 V in H2-O2 fuel cells and a remarkable durability.
The synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. Here the authors identify phase-transition-temperature-dependent evolution process in the synthesis of intermetallic Pt catalysts and propose a separate alloying/ordering annealing synthetic protocol.
Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen reduction reaction in proton-exchange membrane fuel cells. However, the synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under high-temperature conditions. In this study, we perform in-situ high-temperature X-ray diffraction studies to investigate the structural evolution in the impregnation synthesis of carbon-supported intermetallic catalysts. We identify the phase-transition-temperature (T )-dependent evolution process that involve concurrent (for alloys with high T ) or separate (for alloys with low T ) alloying/ordering stages. Accordingly, we realize the synthesis of highly ordered intermetallic catalysts by adopting a separate annealing protocol with a high-temperature alloying stage and a low-temperature ordering stage, which display a high mass activity of 0.96 A mg at 0.9 V in H -O fuel cells and a remarkable durability.
ArticleNumber 7654
Author Yan, Qiang-Qiang
Yin, Peng
Zeng, Wei-Jie
Tong, Lei
Wang, Chang
Liang, Hai-Wei
Author_xml – sequence: 1
  givenname: Wei-Jie
  surname: Zeng
  fullname: Zeng, Wei-Jie
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China
– sequence: 2
  givenname: Chang
  surname: Wang
  fullname: Wang, Chang
  organization: Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 3
  givenname: Qiang-Qiang
  orcidid: 0000-0002-2325-9192
  surname: Yan
  fullname: Yan, Qiang-Qiang
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China
– sequence: 4
  givenname: Peng
  surname: Yin
  fullname: Yin, Peng
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China
– sequence: 5
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China
– sequence: 6
  givenname: Hai-Wei
  orcidid: 0000-0002-0128-0222
  surname: Liang
  fullname: Liang, Hai-Wei
  email: hwliang@ustc.edu.cn
  organization: Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36496497$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1TAQjFARLaV_gAOKxIVLwI6d2OGAhCo-KlWCA5wt21knfnLih-2HyL_HeWmh7aGWJe_aM6Nd7zwvTmY_Q1G8xOgtRoS_ixTTllWorivS0IZV-ElxViOKK8xqcnInPi0uYtyhvEiHOaXPilPS0i5vdlb8-T7KCGVv5RDkFMvhYHso4zKnEaKNpTflaIfRLaUPPQToSzsnCBMk6ZzVJTjQKXgtc77EFN-XEfYyyGTnocwQvxyDud_4axKTHCC-KJ4a6SJc3Jznxc_Pn35cfq2uv325uvx4XekWtaliQDWn3HRIM0QUkbzlpNHSkJ6ZjhLcMq6YadZ2Om4aTjEohhWmulNKcnJeXG26vZc7sQ92kmERXlpxvPBhEDIkqx0IjRFFnSKN6iVVbaeMaagyWtOaaKNZ1vqwae0PaoJew5yCdPdE77_MdhSD_y06RnFLURZ4cyMQ_K8DxCQmGzU4J2fwhyhq1hCCGGtX6OsH0J0_hDl_VUZR3mGE6Nrdq7sV_SvldsAZwDeADj7GAEZom_J0_FqgdQIjsdpJbHYS2U7iaCeBM7V-QL1Vf5RENlLcr8OG8L_sR1h_AVwH30w
CitedBy_id crossref_primary_10_1002_cey2_508
crossref_primary_10_1002_ange_202419369
crossref_primary_10_1039_D4NR01939C
crossref_primary_10_3390_nano14201614
crossref_primary_10_6023_A23050221
crossref_primary_10_1021_acscatal_4c04779
crossref_primary_10_1016_j_scib_2024_02_004
crossref_primary_10_1021_acsmaterialslett_3c01475
crossref_primary_10_1016_j_renene_2024_122263
crossref_primary_10_1021_acsmaterialslett_3c00392
crossref_primary_10_1016_j_cclet_2023_108515
crossref_primary_10_1002_adma_202413560
crossref_primary_10_1039_D4CP00979G
crossref_primary_10_1016_j_ijhydene_2024_01_307
crossref_primary_10_1039_D3NR06647A
crossref_primary_10_1039_D4NR03397C
crossref_primary_10_1038_s41467_024_51541_0
crossref_primary_10_1002_smll_202305062
crossref_primary_10_1016_j_jcis_2025_02_061
crossref_primary_10_1021_acs_inorgchem_4c01844
crossref_primary_10_1002_adfm_202403023
crossref_primary_10_1021_jacs_4c09514
crossref_primary_10_1002_anie_202403260
crossref_primary_10_1016_j_jcis_2024_10_063
crossref_primary_10_1021_acs_langmuir_4c01656
crossref_primary_10_1038_s41467_023_41590_2
crossref_primary_10_1149_1945_7111_aceb90
crossref_primary_10_1016_j_jallcom_2023_172401
crossref_primary_10_1016_j_mtnano_2023_100377
crossref_primary_10_1038_s43246_025_00735_0
crossref_primary_10_1021_acscatal_3c06223
crossref_primary_10_1002_anie_202400549
crossref_primary_10_1016_j_jallcom_2024_177754
crossref_primary_10_1021_acsanm_4c00570
crossref_primary_10_1021_acsanm_4c02753
crossref_primary_10_1021_acs_nanolett_4c01442
crossref_primary_10_1002_smll_202407167
crossref_primary_10_1021_acsnano_4c08835
crossref_primary_10_1016_j_apcatb_2023_122766
crossref_primary_10_1021_acsnano_4c12528
crossref_primary_10_1021_acsnano_4c16468
crossref_primary_10_1021_acs_chemrev_3c00331
crossref_primary_10_1021_acs_chemmater_4c02151
crossref_primary_10_1557_s43578_024_01329_1
crossref_primary_10_1039_D3CY01293J
crossref_primary_10_1002_adfm_202310683
crossref_primary_10_1016_j_corsci_2023_111638
crossref_primary_10_1016_j_jechem_2024_09_028
crossref_primary_10_1016_j_jmst_2024_06_009
crossref_primary_10_1021_jacs_4c01542
crossref_primary_10_1002_ange_202315119
crossref_primary_10_1002_ange_202400549
crossref_primary_10_1002_idm2_12172
crossref_primary_10_1016_j_actamat_2024_119958
crossref_primary_10_1002_ange_202403260
crossref_primary_10_1021_acs_nanolett_4c00898
crossref_primary_10_1016_j_jcis_2024_01_108
crossref_primary_10_1002_smll_202400381
crossref_primary_10_1002_adma_202416111
crossref_primary_10_1016_j_cej_2024_158666
crossref_primary_10_1016_j_jallcom_2024_178416
crossref_primary_10_1021_acscatal_4c00143
crossref_primary_10_1002_adma_202303030
crossref_primary_10_1002_adma_202308326
crossref_primary_10_1038_s41467_023_44674_1
crossref_primary_10_1016_j_coelec_2023_101281
crossref_primary_10_1021_jacs_4c14988
crossref_primary_10_1039_D3TA01376F
crossref_primary_10_1016_j_gee_2025_01_005
crossref_primary_10_1021_acsnano_4c13291
crossref_primary_10_1021_acsnano_4c01113
crossref_primary_10_1039_D3QM00312D
crossref_primary_10_1039_D4SC07905A
crossref_primary_10_1039_D4DT00553H
crossref_primary_10_1039_D3CC00590A
crossref_primary_10_1016_j_jpowsour_2024_235652
crossref_primary_10_1002_adma_202300624
crossref_primary_10_1149_1945_7111_adae3b
crossref_primary_10_1039_D4MA01262C
crossref_primary_10_1002_smll_202401134
crossref_primary_10_1021_acs_inorgchem_3c00331
crossref_primary_10_1038_s41467_024_54104_5
crossref_primary_10_1016_j_apcatb_2025_125116
crossref_primary_10_1002_anie_202419369
crossref_primary_10_1021_jacs_4c17756
crossref_primary_10_1016_j_cej_2023_146010
crossref_primary_10_3390_catal14090569
crossref_primary_10_1002_anie_202315119
crossref_primary_10_1021_acs_chemmater_4c02470
crossref_primary_10_1016_j_jechem_2024_06_061
crossref_primary_10_1016_j_jcis_2024_08_084
crossref_primary_10_1021_acs_inorgchem_4c02592
crossref_primary_10_1039_D3EE04503J
crossref_primary_10_1002_adfm_202408383
crossref_primary_10_1021_acs_chemrev_3c00382
crossref_primary_10_1016_j_cej_2024_157309
crossref_primary_10_1039_D4SC02824D
crossref_primary_10_3390_catal14080538
crossref_primary_10_1002_cplu_202400561
Cites_doi 10.1007/s11669-004-0164-z
10.1021/acs.accounts.9b00172
10.1002/ange.201908824
10.1021/acs.nanolett.5b00320
10.1038/nature11115
10.1021/jacs.5b09653
10.1038/nchem.2001
10.1073/pnas.1815643116
10.1038/s41929-019-0304-9
10.1126/science.1135941
10.1126/science.aad8892
10.1007/s11669-019-00760-w
10.1103/PhysRevLett.81.2819
10.1038/nmat3458
10.1007/s11669-010-9701-0
10.1002/anie.201903568
10.1039/C4CP00585F
10.1021/acscatal.6b02603
10.1039/D1CS00981H
10.1021/jacs.0c05140
10.1016/j.apcatb.2017.05.081
10.1063/1.1737365
10.1002/anie.201916260
10.1126/science.abj9980
10.1039/C4EE02144D
10.1039/c2ee03590a
10.1002/adma.201600469
10.1016/j.joule.2018.09.016
10.1021/jacs.6b12780
10.1021/acscatal.8b04566
10.1073/pnas.2104026118
10.1126/science.aah6133
10.1002/adma.201605997
10.1038/s41565-020-00824-w
10.1021/ja2047655
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-35457-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Health Research Premium Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

MEDLINE - Academic


PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_c10409b35bda4b69bff54bfcc423cfc7
PMC9741640
36496497
10_1038_s41467_022_35457_1
Genre Journal Article
GrantInformation_xml – fundername: National Key Research and Development Program of China (Grant 2018YFA0702001) National Natural Science Foundation of China (Grants 22071225 and 22221003) Plan for Anhui Major Provincial Science & Technology Project (Grant 202203a0520013 and 202103a05020015) Fundamental Research Funds for the Central Universities (Grant WK2060190103) Joint Funds from Hefei National Synchrotron Radiation Laboratory (Grant KY2060000175) Collaborative Innovation Program of Hefei Science Center of CAS (Grant 2021HSC-CIP015)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-7e4c848f90c703b3a86835caf3d7f9431678b7f5964998f5841eb71b14c9bba83
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:34 EDT 2025
Thu Aug 21 18:39:41 EDT 2025
Wed Jul 30 10:45:04 EDT 2025
Wed Aug 13 05:28:17 EDT 2025
Wed Feb 19 02:06:57 EST 2025
Tue Jul 01 00:58:35 EDT 2025
Thu Apr 24 22:50:29 EDT 2025
Fri Feb 21 02:38:37 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-7e4c848f90c703b3a86835caf3d7f9431678b7f5964998f5841eb71b14c9bba83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2325-9192
0000-0002-0128-0222
OpenAccessLink https://doaj.org/article/c10409b35bda4b69bff54bfcc423cfc7
PMID 36496497
PQID 2748910048
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_c10409b35bda4b69bff54bfcc423cfc7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9741640
proquest_miscellaneous_2753307760
proquest_journals_2748910048
pubmed_primary_36496497
crossref_citationtrail_10_1038_s41467_022_35457_1
crossref_primary_10_1038_s41467_022_35457_1
springer_journals_10_1038_s41467_022_35457_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-10
PublicationDateYYYYMMDD 2022-12-10
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Choi, Robertson, Warner, Kim, Kim (CR22) 2016; 28
Stamenkovic (CR15) 2007; 315
Stephens, Bondarenko, Gronbjerg, Rossmeisl, Chorkendorff (CR8) 2012; 5
Debe (CR7) 2012; 486
Qi (CR20) 2017; 139
Li (CR27) 2015; 15
Li (CR5) 2019; 3
Xiong (CR29) 2019; 116
Rößner, Armbrüster (CR12) 2019; 9
Yoo (CR25) 2020; 142
Mavrikakis, Hammer, Norskov (CR14) 1998; 81
Tang, Zhang, Chen (CR32) 2022; 51
Yang (CR6) 2021; 374
Zhang (CR26) 2020; 59
Yan (CR11) 2017; 29
Hernandez-Fernandez (CR16) 2014; 6
Wang (CR4) 2013; 12
Han (CR30) 2015; 8
Hodnik (CR19) 2014; 16
Furukawa, Komatsu (CR10) 2017; 7
Escudero-Escribano (CR17) 2016; 352
Gatalo (CR24) 2019; 58
Wang (CR31) 2011; 133
Kitchin, Norskov, Barteau, Chen (CR13) 2004; 120
Bu (CR18) 2016; 354
Wang, Swihart, Wu (CR3) 2019; 2
Antolini (CR1) 2017; 217
Li, Sun (CR2) 2019; 52
Liang (CR23) 2019; 131
Chung (CR21) 2015; 137
Cheng (CR28) 2021; 118
Okamoto (CR35) 2010; 31
Okamoto (CR33) 2004; 25
Kodama, Nagai, Kuwaki, Jinnouchi, Morimoto (CR9) 2021; 16
Okamoto (CR34) 2019; 40
XX Wang (35457_CR3) 2019; 2
J Li (35457_CR2) 2019; 52
JR Kitchin (35457_CR13) 2004; 120
H Okamoto (35457_CR35) 2010; 31
J Li (35457_CR5) 2019; 3
L Rößner (35457_CR12) 2019; 9
J Liang (35457_CR23) 2019; 131
B Zhang (35457_CR26) 2020; 59
VR Stamenkovic (35457_CR15) 2007; 315
DS Choi (35457_CR22) 2016; 28
M Tang (35457_CR32) 2022; 51
MK Debe (35457_CR7) 2012; 486
L Bu (35457_CR18) 2016; 354
M Gatalo (35457_CR24) 2019; 58
C-L Yang (35457_CR6) 2021; 374
IEL Stephens (35457_CR8) 2012; 5
M Escudero-Escribano (35457_CR17) 2016; 352
E Antolini (35457_CR1) 2017; 217
K Kodama (35457_CR9) 2021; 16
DY Chung (35457_CR21) 2015; 137
BH Han (35457_CR30) 2015; 8
S Furukawa (35457_CR10) 2017; 7
TY Yoo (35457_CR25) 2020; 142
N Hodnik (35457_CR19) 2014; 16
Q Li (35457_CR27) 2015; 15
DL Wang (35457_CR4) 2013; 12
Z Qi (35457_CR20) 2017; 139
C Wang (35457_CR31) 2011; 133
H Okamoto (35457_CR34) 2019; 40
H Cheng (35457_CR28) 2021; 118
Y Yan (35457_CR11) 2017; 29
H Okamoto (35457_CR33) 2004; 25
Y Xiong (35457_CR29) 2019; 116
M Mavrikakis (35457_CR14) 1998; 81
P Hernandez-Fernandez (35457_CR16) 2014; 6
References_xml – volume: 25
  start-page: 395
  year: 2004
  end-page: 395
  ident: CR33
  article-title: Fe–Pt (iron–platinum)
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-004-0164-z
– volume: 52
  start-page: 2015
  year: 2019
  end-page: 2025
  ident: CR2
  article-title: Intermetallic nanoparticles: synthetic control and their enhanced electrocatalysis
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00172
– volume: 131
  start-page: 15617
  year: 2019
  end-page: 15623
  ident: CR23
  article-title: Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201908824
– volume: 15
  start-page: 2468
  year: 2015
  end-page: 2473
  ident: CR27
  article-title: New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00320
– volume: 486
  start-page: 43
  year: 2012
  end-page: 51
  ident: CR7
  article-title: Electrocatalyst approaches and challenges for automotive fuel cells
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 137
  start-page: 15478
  year: 2015
  end-page: 15485
  ident: CR21
  article-title: Highly durable and active PtFe nanocatalyst for electrochemical oxygen reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09653
– volume: 6
  start-page: 732
  year: 2014
  end-page: 738
  ident: CR16
  article-title: Mass-selected nanoparticles of PtxY as model catalysts for oxygen electroreduction
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2001
– volume: 116
  start-page: 1974
  year: 2019
  end-page: 1983
  ident: CR29
  article-title: Revealing the atomic ordering of binary intermetallics using in situ heating techniques at multilength scales
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1815643116
– volume: 2
  start-page: 578
  year: 2019
  end-page: 589
  ident: CR3
  article-title: Achievements, challenges and perspectives on cathode catalysts in proton exchange membrane fuel cells for transportation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0304-9
– volume: 315
  start-page: 493
  year: 2007
  end-page: 497
  ident: CR15
  article-title: Improved oxygen reduction activity on Pt Ni(111) via increased surface site availability
  publication-title: Science
  doi: 10.1126/science.1135941
– volume: 352
  start-page: 73
  year: 2016
  end-page: 76
  ident: CR17
  article-title: Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction
  publication-title: Science
  doi: 10.1126/science.aad8892
– volume: 40
  start-page: 743
  year: 2019
  end-page: 756
  ident: CR34
  article-title: Supplemental literature review of binary phase diagrams: Au–La, Ce–Pt, Co–Pt, Cr–S, Cu–Sb, Fe–Ni, Lu–Pd, Ni–S, Pd–Ti, Si–Te, Ta–V, and V–Zn
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-019-00760-w
– volume: 81
  start-page: 2819
  year: 1998
  end-page: 2822
  ident: CR14
  article-title: Effect of strain on the reactivity of metal surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 12
  start-page: 81
  year: 2013
  end-page: 87
  ident: CR4
  article-title: Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3458
– volume: 31
  start-page: 322
  year: 2010
  end-page: 322
  ident: CR35
  article-title: Ni–Pt (nickel–platinum)
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-010-9701-0
– volume: 58
  start-page: 13266
  year: 2019
  end-page: 13270
  ident: CR24
  article-title: A double-passivation water-based galvanic displacement method for reproducible gram-scale production of high-performance platinum-alloy electrocatalysts
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903568
– volume: 16
  start-page: 13610
  year: 2014
  end-page: 13615
  ident: CR19
  article-title: Effect of ordering of PtCu nanoparticle structure on the activity and stability for the oxygen reduction reaction
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00585F
– volume: 7
  start-page: 735
  year: 2017
  end-page: 765
  ident: CR10
  article-title: Intermetallic compounds: promising inorganic materials for well-structured and electronically modified reaction environments for efficient catalysis
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.6b02603
– volume: 51
  start-page: 1529
  year: 2022
  end-page: 1546
  ident: CR32
  article-title: Pt utilization in proton exchange membrane fuel cells: structure impacting factors and mechanistic insights
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00981H
– volume: 142
  start-page: 14190
  year: 2020
  end-page: 14200
  ident: CR25
  article-title: Direct synthesis of intermetallic platinum-alloy nanoparticles highly loaded on carbon supports for efficient electrocatalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05140
– volume: 217
  start-page: 201
  year: 2017
  end-page: 213
  ident: CR1
  article-title: Alloy vs. intermetallic compounds: effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.081
– volume: 120
  start-page: 10240
  year: 2004
  end-page: 10246
  ident: CR13
  article-title: Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1737365
– volume: 59
  start-page: 7857
  year: 2020
  end-page: 7863
  ident: CR26
  article-title: General strategy for synthesis of ordered Pt3M intermetallics with ultrasmall particle size
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916260
– volume: 374
  start-page: 459
  year: 2021
  end-page: 464
  ident: CR6
  article-title: Sulfur-anchoring synthesis of platinum intermetallic nanoparticle catalysts for fuel cells
  publication-title: Science
  doi: 10.1126/science.abj9980
– volume: 8
  start-page: 258
  year: 2015
  end-page: 266
  ident: CR30
  article-title: Record activity and stability of dealloyed bimetallic catalysts for proton exchange membrane fuel cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02144D
– volume: 5
  start-page: 6744
  year: 2012
  end-page: 6762
  ident: CR8
  article-title: Understanding the electrocatalysis of oxygen reduction on platinum and its alloys
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03590a
– volume: 28
  start-page: 7115
  year: 2016
  end-page: 7122
  ident: CR22
  article-title: Low-temperature chemical vapor deposition synthesis of Pt–Co alloyed nanoparticles with enhanced oxygen reduction reaction catalysis
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600469
– volume: 3
  start-page: 124
  year: 2019
  end-page: 135
  ident: CR5
  article-title: Hard-magnet L10-CoPt nanoparticles advance fuel cell
  publication-title: Catal. Joule
  doi: 10.1016/j.joule.2018.09.016
– volume: 139
  start-page: 4762
  year: 2017
  end-page: 4768
  ident: CR20
  article-title: Sub-4 nm PtZn intermetallic nanoparticles for enhanced mass and specific activities in catalytic electrooxidation reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12780
– volume: 9
  start-page: 2018
  year: 2019
  end-page: 2062
  ident: CR12
  article-title: Electrochemical energy conversion on intermetallic compounds: a review
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.8b04566
– volume: 118
  start-page: e2104026118
  year: 2021
  ident: CR28
  article-title: Subsize Pt-based intermetallic compound enables long-term cyclic mass activity for fuel-cell oxygen reduction
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2104026118
– volume: 354
  start-page: 1410
  year: 2016
  end-page: 1414
  ident: CR18
  article-title: Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 29
  start-page: 1605997
  year: 2017
  ident: CR11
  article-title: Intermetallic nanocrystals: syntheses and catalytic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605997
– volume: 16
  start-page: 140
  year: 2021
  end-page: 147
  ident: CR9
  article-title: Challenges in applying highly active Pt-based nanostructured catalysts for oxygen reduction reactions to fuel cell vehicles
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00824-w
– volume: 133
  start-page: 14396
  year: 2011
  end-page: 14403
  ident: CR31
  article-title: Design and synthesis of bimetallic electrocatalyst with multilayered Pt-skin surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2047655
– volume: 12
  start-page: 81
  year: 2013
  ident: 35457_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3458
– volume: 15
  start-page: 2468
  year: 2015
  ident: 35457_CR27
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b00320
– volume: 315
  start-page: 493
  year: 2007
  ident: 35457_CR15
  publication-title: Science
  doi: 10.1126/science.1135941
– volume: 9
  start-page: 2018
  year: 2019
  ident: 35457_CR12
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.8b04566
– volume: 118
  start-page: e2104026118
  year: 2021
  ident: 35457_CR28
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2104026118
– volume: 52
  start-page: 2015
  year: 2019
  ident: 35457_CR2
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.9b00172
– volume: 7
  start-page: 735
  year: 2017
  ident: 35457_CR10
  publication-title: Acs. Catal.
  doi: 10.1021/acscatal.6b02603
– volume: 120
  start-page: 10240
  year: 2004
  ident: 35457_CR13
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1737365
– volume: 374
  start-page: 459
  year: 2021
  ident: 35457_CR6
  publication-title: Science
  doi: 10.1126/science.abj9980
– volume: 217
  start-page: 201
  year: 2017
  ident: 35457_CR1
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.05.081
– volume: 352
  start-page: 73
  year: 2016
  ident: 35457_CR17
  publication-title: Science
  doi: 10.1126/science.aad8892
– volume: 5
  start-page: 6744
  year: 2012
  ident: 35457_CR8
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c2ee03590a
– volume: 29
  start-page: 1605997
  year: 2017
  ident: 35457_CR11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605997
– volume: 16
  start-page: 13610
  year: 2014
  ident: 35457_CR19
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP00585F
– volume: 133
  start-page: 14396
  year: 2011
  ident: 35457_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2047655
– volume: 40
  start-page: 743
  year: 2019
  ident: 35457_CR34
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-019-00760-w
– volume: 131
  start-page: 15617
  year: 2019
  ident: 35457_CR23
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/ange.201908824
– volume: 354
  start-page: 1410
  year: 2016
  ident: 35457_CR18
  publication-title: Science
  doi: 10.1126/science.aah6133
– volume: 486
  start-page: 43
  year: 2012
  ident: 35457_CR7
  publication-title: Nature
  doi: 10.1038/nature11115
– volume: 137
  start-page: 15478
  year: 2015
  ident: 35457_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09653
– volume: 28
  start-page: 7115
  year: 2016
  ident: 35457_CR22
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201600469
– volume: 139
  start-page: 4762
  year: 2017
  ident: 35457_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12780
– volume: 51
  start-page: 1529
  year: 2022
  ident: 35457_CR32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00981H
– volume: 31
  start-page: 322
  year: 2010
  ident: 35457_CR35
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-010-9701-0
– volume: 16
  start-page: 140
  year: 2021
  ident: 35457_CR9
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-00824-w
– volume: 25
  start-page: 395
  year: 2004
  ident: 35457_CR33
  publication-title: J. Phase Equilib. Diffus.
  doi: 10.1007/s11669-004-0164-z
– volume: 3
  start-page: 124
  year: 2019
  ident: 35457_CR5
  publication-title: Catal. Joule
  doi: 10.1016/j.joule.2018.09.016
– volume: 8
  start-page: 258
  year: 2015
  ident: 35457_CR30
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02144D
– volume: 59
  start-page: 7857
  year: 2020
  ident: 35457_CR26
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201916260
– volume: 6
  start-page: 732
  year: 2014
  ident: 35457_CR16
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2001
– volume: 142
  start-page: 14190
  year: 2020
  ident: 35457_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c05140
– volume: 116
  start-page: 1974
  year: 2019
  ident: 35457_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1815643116
– volume: 2
  start-page: 578
  year: 2019
  ident: 35457_CR3
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0304-9
– volume: 81
  start-page: 2819
  year: 1998
  ident: 35457_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.2819
– volume: 58
  start-page: 13266
  year: 2019
  ident: 35457_CR24
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903568
SSID ssj0000391844
Score 2.6645832
Snippet Supported platinum intermetallic compound catalysts have attracted considerable attention owing to their remarkable activities and durability for the oxygen...
The synthesis of highly ordered intermetallic compound catalysts remains a challenge owing to the limited understanding of their formation mechanism under...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7654
SubjectTerms 639/301/299/893
639/301/357/354
639/638/77/886
Alloying
Alloys
Annealing
Catalysts
Chemical reduction
Chemical synthesis
Durability
Electrocatalysts
Evolution
Fuel cells
Fuel technology
High temperature
Humanities and Social Sciences
Intermetallic compounds
Low temperature
multidisciplinary
Oxygen reduction reactions
Phase diagrams
Proton exchange membrane fuel cells
Science
Science (multidisciplinary)
Temperature dependence
Transition temperature
X-ray diffraction
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3di9QwEA96IvgifrvnKRF803JtkzSpL6LicQiKDx7sW0nSZG9hrz03u2D_-5tJsz3Wj4M-tNukZDOZyS-ZyW8IeaN8yQXTPCuU8hnXvsh0ruvMt2AvBWuFF3g4-dv36vSMf52LedpwCymscmcTo6Fue4t75Mcl0qQgvZn6cPkrw6xR6F1NKTRukztIXYYhXXIupz0WZD9XnKezMjlTx4FHyzCGsHMhs2JvPoq0_f_Cmn-HTP7hN43T0ckDcj_hSPpxFPxDcst1j8jdMbPk8Jj8_nEO0xMF4WP0VaCL7bJ1NAwd4L2wDLT3FImKVwON3Juupcgbsb5wgMVXS0tTdpy4uTOETXhPgxtZwrsFRV_9EG-6dqyPDwAzFy48IWcnX35-Ps1SkoXMwtplk0nHreLK17kF5TdMqwpAmdWetdLX8aC8MtKLuoK1kfKAVwpnZGEKbmtjtGJPyUHXd-45odKWwsB6uxWq5BWTpi6LNtc5c2AUlCtmpNh1dWMTAzkmwlg10RPOVDOKpwHxNFE8DdR5O9W5HPk3biz9CSU4lUTu7PhDv140SRUbCyvQvDZMmFZzU9XGe8GNtxaQpfVWzsjRTv5NUujQXA-_GXk9vQZVRP-K7ly_xTIYqitllc_Is3G4TC1h0H1wwcfl3kDaa-r-m255Hum-awTNHL75bjfkrpv1_644vPlfvCD3StSCAq78iBxs1lv3EuDVxryKOnQFbLEjyg
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwFA7LiuCLrPdZV4ngm1bbJmkSQUTFZRFWfHBg30KSJrMDsx2dzMD233uStCOjo09CH3pJQjiX5DtN8h2EngtfU0Y0LSohfEG1rwpdaln4FsZLRlrmWTycfP6lOZvSzxfs4gCN6Y4GAYa9oV3MJzVdLV5d_-jfgcO_zUfGxetAk7vnfemU8QKioRswM_HoqOcD3E8jM5EQ0NDh7Mz-qjvzU6Lx34c9_9xC-ds6apqeTo_Q7QFX4vfZEO6gA9fdRTdzpsn-Hrr-egnTFQZjiLuxAp5t5q3Doe8A_4V5wEuPI3HxoseJi9O1OPJIrK4ciGUxt3jIlpN-9vRhHd7g4DJreDfDce2-Tzddm-vHB4CdMxfuo-npp28fz4oh6UJhIZZZF9xRK6jwsrQwGBiiRQMgzWpPWu5lOjgvDPdMNhArCQ_4pXKGV6aiVhqjBXmADrtl5x4hzG3NDMTfLRM1bQg3sq7aUpfEwSAhXDVB1ShqZQdG8pgYY6HSyjgRKqtHgXpUUo-COi-2db5nPo5_lv4QNbgtGbm004vlaqYG11QWItJSGsJMq6lppPGeUeOtBaRpveUTdDLqX432qerI2hPZ9sQEPdt-BteM6y26c8tNLBO37nLelBP0MJvLticExAcXNM53DGmnq7tfuvllov-WEURTaPPlaHK_uvV3URz_D1E8Rrfq6CsVXOUJOlyvNu4JgLK1eZo87Sdf9jS1
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEA-lRfBFWj-vVongmy7ubpJN1jc9LEVQfLDQt5Bkk-vBuSeXO-j-953JfshpFYR92N18EDIzyW-SyS-EvFah5IIZnhVKhYybUGQmN3UWGhgvBWtEEHg4-cvX6uKSf74SVwekHM_CpKD9RGmZhukxOuxd5Mmk-9hzLmQGHs8RUrejVs-r-bSugoznivPhfEzO1B1F9-agRNV_F778M0zyt73SNAWdH5MHA3akH_rWnpAD3z4k9_rbJLtH5ObbNUxJFASOEVeRLnbLxtPYtYDx4jLSdaBITrzqaOLb9A1FrojNDw_4e7V0dLgRJy3odHEb39Poe2bwdkFxf75LL23Tl8cPgJYLHx-Ty_NP3-cX2XCxQubAX9lm0nOnuAp17sDgLTOqAiDmTGCNDHU6HK-sDKKuwB9SATBK4a0sbMFdba1R7Ak5bNetf0aodKWw4GM3QpW8YtLWZdHkJmceBgLlixkpxq7WbmAdx8svVjrtfjOle_FoEI9O4tFQ5s1U5mfPufHP3B9RglNO5MtOP9abhR70RzvwOvPaMmEbw21V2xAEt8E5QJMuODkjZ6P89WDEUZfIzIOMempGXk3JYH64p2Jav95hHgzPlbLKZ-Rpry5TSxh0HzxQudxTpL2m7qe0y-tE8V0jUOZQ59tR5X416-9dcfp_2Z-T-yVaRQFPfkYOt5udfwEQa2tfJpu6BadAIY4
  priority: 102
  providerName: Springer Nature
Title Phase diagrams guide synthesis of highly ordered intermetallic electrocatalysts: separating alloying and ordering stages
URI https://link.springer.com/article/10.1038/s41467-022-35457-1
https://www.ncbi.nlm.nih.gov/pubmed/36496497
https://www.proquest.com/docview/2748910048
https://www.proquest.com/docview/2753307760
https://pubmed.ncbi.nlm.nih.gov/PMC9741640
https://doaj.org/article/c10409b35bda4b69bff54bfcc423cfc7
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY9_L1gUN9raZ2pZkyXtLQ7MSaCnbCnkTkiylgcwZVQLzf7-T5GTNPl8Gxo5tyYi7k_S76PQ7hN4IV1JGFM0KIVxGlSsylas6cw2Ml4w0zLGwOfnsvDq9pNMZm91I9RViwhI9cBLckQF_Ia81YbpRVFe1do5R7YwBHGCcifvIYc674UzFMZjU4LrQfpdMTsSRp3FMSMHrlPGs2JuJImH_71Dmr8GSP62Yxolo8gDd7xEkHqWWP0S3bPsI3U05JbvH6NvFFUxMGNQe4q48nm8WjcW-awHp-YXHK4cDRfGyw5F10zY4MEZcf7GAwpcLg_u8OPFvnc6v_XvsbeIHb-c4rNJ38UfbpPrhBgDm3Pon6HJy8nl8mvXpFTIDXss645YaQYWrcwPdXhMlKoBjRjnScFfHLfJCc8fqCrwi4QCpFFbzQhfU1ForQZ6ig3bV2ucIc1MyDZ52w0RJK8J1XRZNrnJiYTgQthigYitqaXru8ZACYynjGjgRMqlHgnpkVI-EOm93db4m5o2_lj4OGtyVDKzZ8QHYkuxtSf7LlgbocKt_2XdlL8vAzxN49cQAvd69hk4YVlZUa1ebUCYE6XJe5QP0LJnLriUExAcHfJzvGdJeU_fftIurSPRdB7hM4Zvvtib3o1l_FsWL_yGKl-heGfpKAUd-iA7W1xv7CuDXWg_RbT7jcBaTD0N0ZzSafprC9fjk_OIjPB1X42Hsi3A-o-I7Qlg0cw
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIIXxJ3CACPBE0RLYjt2kBDiNnXsIh42qW9e7NhdpZKOphXkT_EbOcdJOpXL3ibloW1sy_W5-LN9_B1CXiifcsEKHiVK-YgXPomKuMgjX4K_FKwUXuDl5IPDbHjMv4zEaIP86u_CYFhl7xODoy5nFvfIt1OkSUF6M_Xu7HuEWaPwdLVPodGqxZ5rfsCSrX67-wnk-zJNdz4ffRxGXVaByAJYX0TScau48nlsQdsNK1QGKMQWnpXS5-FmuDLSizyDxYDyMEEnzsjEJNzmxhSKQbtXyFUoGKNFyZFc7ekg27rivLubEzO1XfPgidqQeS5klKzNfyFNwL-w7d8hmn-c04bpb-cWudnhVvq-VbTbZMNVd8i1NpNlc5f8_HoK0yEFZcNor5qOl5PS0bqpAF_Wk5rOPEVi5GlDA9enKynyVMy_OcD-04mlXTaesJnU1Iv6Da1dy0pejSnGBjThQ1W29fELwNqxq--R40sZ_vtks5pV7iGh0qbCwPq-FCrlGZMmT5MyLmLmwAkplwxI0g-1th3jOSbemOpw8s6UbsWjQTw6iEdDnVerOmct38eFpT-gBFclkas7_DCbj3Vn-trCijfODROmLLjJcuO94MZbC0jWeisHZKuXv-4cSK3P1X1Anq9eg-njeU5RudkSy2BosJRZPCAPWnVZ9YTB8MEDjcs1RVrr6vqbanIa6MVzBOkc2nzdq9x5t_4_FI8u_hfPyPXh0cG-3t893HtMbqRoEQk88RbZXMyX7glAu4V5GuyJkpPLNuDfNpRfpQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3CACPBE0SNYzt2kBACRrUxmPbApL6Z2LG7SiUddSvIX-PXcewkncplb5PykIttOT4Xn2MffwehZ9JljNOSJURKl7DSkaRMyyJxFehLTivueDic_Pkw3ztmH8d8vIV-9WdhQlhlrxOjoq7mJqyRD7MAkxLgzeTQdWERR7ujN6ffk5BBKuy09uk0WhY5sM0PcN_86_1doPXzLBt9-PJ-L-kyDCQGDPdlIiwzkklXpAY4X9NS5mCRmNLRSrginhKXWjhe5OAYSAeTNbFaEE2YKbQuJYV2L6HLgnISZEyMxXp9JyCvS8a6czoplUPPolZqw-cZFwnZmAtjyoB_2bl_h2v-sWcbp8LRDXS9s2Hx25bpbqItW99CV9qsls1t9PPoBKZGDIwXIr88nqymlcW-qcHW9FOP5w4HkORZgyPup61wwKxYfLPgB8ymBneZeeLCUuOX_hX2tkUoryc4xAk08aau2vrhAUzcifV30PGFDP9dtF3Pa3sfYWEyrsHXr7jMWE6FLjJSpWVKLSgkackAkX6olenQz0MSjpmKu_BUqpY8CsijInkU1HmxrnPaYn-cW_pdoOC6ZMDtji_mi4nq1IAy4P2mhaZcVyXTeaGd40w7Y8CqNc6IAdrp6a86ZeLVGesP0NP1Z1ADYW-nrO18FcqEMGEh8nSA7rXssu4JheGDCxoXG4y00dXNL_X0JEKNF8FgZ9Dmy57lzrr1_6F4cP5fPEFXQXTVp_3Dg4foWhYEgsCV7qDt5WJlH4GVt9SPozhh9PWi5fc3rd5j2w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase+diagrams+guide+synthesis+of+highly+ordered+intermetallic+electrocatalysts%3A+separating+alloying+and+ordering+stages&rft.jtitle=Nature+communications&rft.au=Wei-Jie+Zeng&rft.au=Chang+Wang&rft.au=Qiang-Qiang+Yan&rft.au=Peng+Yin&rft.date=2022-12-10&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft.spage=1&rft.epage=8&rft_id=info:doi/10.1038%2Fs41467-022-35457-1&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c10409b35bda4b69bff54bfcc423cfc7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon