Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature
The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-...
Saved in:
Published in | Nature communications Vol. 13; no. 1; pp. 7899 - 13 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.12.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The development of electrocatalysts capable of efficient reduction of nitrate (NO
3
−
) to ammonia (NH
3
) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO
2
−
via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO
x
−
adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm
−2
at −0.2 V
vs
. Reversible Hydrogen Electrode. The NH
3
production rate reaches a high activity of 4.8 mmol cm
−2
h
−1
(960 mmol g
cat
−1
h
−1
). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO
3
−
to NH
3
via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO
3
led simultaneously to high NH
3
selectivity and yield.
Electroreduction of NO
3
−
to NH
3
is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH
3
formation. |
---|---|
AbstractList | The development of electrocatalysts capable of efficient reduction of nitrate (NO
3
−
) to ammonia (NH
3
) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO
2
−
via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO
x
−
adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm
−2
at −0.2 V
vs
. Reversible Hydrogen Electrode. The NH
3
production rate reaches a high activity of 4.8 mmol cm
−2
h
−1
(960 mmol g
cat
−1
h
−1
). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO
3
−
to NH
3
via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO
3
led simultaneously to high NH
3
selectivity and yield.
Electroreduction of NO
3
−
to NH
3
is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH
3
formation. The development of electrocatalysts capable of efficient reduction of nitrate (NO ) to ammonia (NH ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm at -0.2 V vs. Reversible Hydrogen Electrode. The NH production rate reaches a high activity of 4.8 mmol cm h (960 mmol g h ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO to NH via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO led simultaneously to high NH selectivity and yield. Electroreduction of NO3 − to NH3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH3 formation. The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO 2 − via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO x − adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm −2 at −0.2 V vs . Reversible Hydrogen Electrode. The NH 3 production rate reaches a high activity of 4.8 mmol cm −2 h −1 (960 mmol g cat −1 h −1 ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO 3 − to NH 3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO 3 led simultaneously to high NH 3 selectivity and yield. The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2- via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx- adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm-2 at -0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm-2 h-1 (960 mmol gcat-1 h-1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3- to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield.The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2- via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx- adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm-2 at -0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm-2 h-1 (960 mmol gcat-1 h-1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3- to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield. The development of electrocatalysts capable of efficient reduction of nitrate (NO3−) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2− via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx− adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm−2 at −0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm−2 h−1 (960 mmol gcat−1 h−1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3− to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield.Electroreduction of NO3− to NH3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH3 formation. |
ArticleNumber | 7899 |
Author | Lou, Yao-Yin Akdim, Ouardia Li, Guang Huang, Xiao-Yang Fang, Jia-Yi Zhao, Kuang-Min Hu, Sheng-Nan Sun, Shi-Gang Zheng, Qi-Zheng |
Author_xml | – sequence: 1 givenname: Jia-Yi orcidid: 0000-0001-5403-5872 surname: Fang fullname: Fang, Jia-Yi organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 2 givenname: Qi-Zheng orcidid: 0000-0002-9508-5822 surname: Zheng fullname: Zheng, Qi-Zheng organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 3 givenname: Yao-Yin orcidid: 0000-0002-2782-2130 surname: Lou fullname: Lou, Yao-Yin email: yylou@suda.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University – sequence: 4 givenname: Kuang-Min orcidid: 0000-0002-5533-6199 surname: Zhao fullname: Zhao, Kuang-Min organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 5 givenname: Sheng-Nan orcidid: 0000-0002-3754-8075 surname: Hu fullname: Hu, Sheng-Nan organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 6 givenname: Guang surname: Li fullname: Li, Guang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University – sequence: 7 givenname: Ouardia surname: Akdim fullname: Akdim, Ouardia organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University – sequence: 8 givenname: Xiao-Yang surname: Huang fullname: Huang, Xiao-Yang organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Cardiff Catalysis Institute, School of Chemistry, Cardiff University – sequence: 9 givenname: Shi-Gang orcidid: 0000-0003-2327-4090 surname: Sun fullname: Sun, Shi-Gang email: sgsun@xmu.edu.cn organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36550156$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kstq3DAUhk1JadI0L9BFMXTTjVtdrIs3hTD0Egh0067FsXw8o8GWUkkOzAP0vauZSdoki2gjofP_Hz_nnNfViQ8eq-otJR8p4fpTamkrVUMYa7gQnDfyRXXGSEsbqhg_efA-rS5S2pJyeEd1276qTrkUglAhz6o_l_MNRmwmvMWptkuM6HM9oE8u72qY5-Ad1DihzTHYDc7OwlSnnc8bTC7VS3J-Xa-WVag9-JA2iDnVyc3LBHlf8i5Hl7GOOCw2Q8K6d-PibXbBF5KHvER8U70cYUp4cXefV7--fvm5-t5c__h2tbq8bqwkMjeKKmFHrgc2CiZ0R3AQox6BEDr2tu8BLQ6jEIA9MhTDACBU1wLVqrM94_y8ujpyhwBbcxPdDHFnAjhz-AhxbSBmZyc0spNglSxW1rVMdT2zPXYKCON01LwvrM9H1s3SzzjY0rcI0yPo44p3G7MOt6ZTmnDSFsCHO0AMvxdM2cwuWZwm8BiWZJgSmnRaMlKk759It2GJpX8HldSSl2kW1buHif5FuZ92EeijwMaQUsTRWJdhP4kS0E2GErPfLXPcLVN2yxx2y-yt7In1nv6siR9NqYj9GuP_2M-4_gJhsOVN |
CitedBy_id | crossref_primary_10_1016_j_jece_2024_113785 crossref_primary_10_1002_adsu_202400507 crossref_primary_10_1016_j_cej_2023_143889 crossref_primary_10_1002_adfm_202403838 crossref_primary_10_1039_D3QI00732D crossref_primary_10_1039_D3QM00114H crossref_primary_10_1021_acsenergylett_5c00553 crossref_primary_10_1016_j_apcatb_2024_124729 crossref_primary_10_1002_chem_202404378 crossref_primary_10_59717_j_xinn_mater_2024_100058 crossref_primary_10_1021_acscatal_4c03336 crossref_primary_10_1039_D4EE03987D crossref_primary_10_1039_D4CC04109G crossref_primary_10_1021_acscatal_3c02951 crossref_primary_10_1016_j_jhazmat_2024_136036 crossref_primary_10_1002_ange_202316910 crossref_primary_10_1039_D4CC04897K crossref_primary_10_20517_energymater_2023_134 crossref_primary_10_1021_jacs_4c14498 crossref_primary_10_1016_j_apcatb_2024_124837 crossref_primary_10_1039_D4EE00561A crossref_primary_10_1016_j_jechem_2023_08_009 crossref_primary_10_1002_adfm_202411325 crossref_primary_10_1002_ange_202420903 crossref_primary_10_1016_j_apcatb_2024_123862 crossref_primary_10_1016_j_esci_2024_100350 crossref_primary_10_1002_adfm_202420153 crossref_primary_10_1002_anie_202420945 crossref_primary_10_1007_s12274_024_6628_z crossref_primary_10_1021_acscatal_4c01249 crossref_primary_10_1016_j_ijhydene_2024_05_299 crossref_primary_10_1038_s41467_024_47765_9 crossref_primary_10_1002_ange_202400289 crossref_primary_10_1007_s11244_024_01949_1 crossref_primary_10_1021_acs_iecr_4c04465 crossref_primary_10_1021_jacs_4c06657 crossref_primary_10_1039_D4TA04511D crossref_primary_10_1016_j_apcatb_2023_123577 crossref_primary_10_1016_j_mcat_2023_113692 crossref_primary_10_1016_j_apcatb_2024_124741 crossref_primary_10_1002_aenm_202303027 crossref_primary_10_1002_adfm_202420282 crossref_primary_10_1016_j_watres_2024_121700 crossref_primary_10_1021_acscatal_4c06705 crossref_primary_10_1016_j_isci_2024_109313 crossref_primary_10_1016_j_jece_2024_112348 crossref_primary_10_1002_advs_202407301 crossref_primary_10_1016_j_apcatb_2024_124609 crossref_primary_10_1016_j_jechem_2024_10_023 crossref_primary_10_1002_smll_202402430 crossref_primary_10_1002_ange_202422072 crossref_primary_10_1016_j_jcis_2024_07_125 crossref_primary_10_1002_celc_202300419 crossref_primary_10_1021_acsnano_5c00544 crossref_primary_10_1038_s41467_024_50670_w crossref_primary_10_1021_jacs_3c13517 crossref_primary_10_1016_j_cej_2025_159874 crossref_primary_10_1016_j_jcis_2024_08_177 crossref_primary_10_1021_jacs_3c06904 crossref_primary_10_1016_j_est_2024_114934 crossref_primary_10_1016_j_jechem_2024_04_040 crossref_primary_10_1002_smll_202310467 crossref_primary_10_1021_acs_nanolett_4c01904 crossref_primary_10_1016_j_jechem_2025_03_009 crossref_primary_10_1016_j_cej_2025_160985 crossref_primary_10_1039_D4EE00784K crossref_primary_10_1002_adma_202407889 crossref_primary_10_1016_j_jcis_2024_07_251 crossref_primary_10_3390_app14198986 crossref_primary_10_1002_ange_202320027 crossref_primary_10_1039_D4EE04382K crossref_primary_10_1002_anie_202307952 crossref_primary_10_1007_s40820_023_01217_z crossref_primary_10_1002_ange_202420945 crossref_primary_10_1021_jacs_4c04023 crossref_primary_10_1021_acs_inorgchem_4c04780 crossref_primary_10_1021_acssuschemeng_3c01084 crossref_primary_10_1002_adfm_202409696 crossref_primary_10_1002_adma_202417696 crossref_primary_10_1002_aenm_202303054 crossref_primary_10_1021_acsanm_4c01849 crossref_primary_10_1002_anie_202420903 crossref_primary_10_1016_j_susc_2024_122668 crossref_primary_10_1016_j_susc_2025_122702 crossref_primary_10_1016_j_cej_2024_149769 crossref_primary_10_1016_j_jcis_2025_02_210 crossref_primary_10_3390_molecules29102261 crossref_primary_10_1039_D5MH00130G crossref_primary_10_1039_D4TA02299H crossref_primary_10_1002_adma_202304021 crossref_primary_10_1002_ange_202417631 crossref_primary_10_1002_aenm_202403295 crossref_primary_10_1002_adsu_202400934 crossref_primary_10_1002_anie_202315238 crossref_primary_10_1002_anie_202317414 crossref_primary_10_1039_D4TA07397E crossref_primary_10_1021_acscatal_4c03245 crossref_primary_10_1021_acscatal_4c03006 crossref_primary_10_1002_anie_202417631 crossref_primary_10_1002_adfm_202502073 crossref_primary_10_1002_adma_202405660 crossref_primary_10_1002_aenm_202303515 crossref_primary_10_1016_j_cej_2023_145546 crossref_primary_10_1016_j_cej_2024_150178 crossref_primary_10_1002_anie_202422072 crossref_primary_10_1016_j_envres_2025_121123 crossref_primary_10_1002_anie_202401005 crossref_primary_10_1021_acs_chemmater_4c03111 crossref_primary_10_1021_acssuschemeng_4c00394 crossref_primary_10_1021_acs_nanolett_4c03451 crossref_primary_10_1073_pnas_2306461120 crossref_primary_10_1002_cctc_202401690 crossref_primary_10_1021_acs_nanolett_4c03218 crossref_primary_10_1007_s12274_024_6535_3 crossref_primary_10_1002_smll_202404792 crossref_primary_10_1016_j_jcis_2024_06_020 crossref_primary_10_1002_ange_202408758 crossref_primary_10_1016_j_apcata_2024_119650 crossref_primary_10_1016_j_apcatb_2025_125027 crossref_primary_10_1016_j_jhazmat_2023_132813 crossref_primary_10_1016_j_apmt_2024_102536 crossref_primary_10_1016_j_apcatb_2025_125268 crossref_primary_10_1016_j_mattod_2024_05_007 crossref_primary_10_1002_anie_202411396 crossref_primary_10_1002_advs_202406843 crossref_primary_10_1039_D4QI00110A crossref_primary_10_1002_adfm_202425687 crossref_primary_10_1021_jacs_5c00688 crossref_primary_10_1002_aenm_202400790 crossref_primary_10_1002_aenm_202402970 crossref_primary_10_1002_smll_202311336 crossref_primary_10_1039_D4TA02433H crossref_primary_10_1039_D3CC04775J crossref_primary_10_1039_D4EE02747G crossref_primary_10_26599_NR_2025_94907048 crossref_primary_10_1016_j_jece_2023_110927 crossref_primary_10_1002_adfm_202303803 crossref_primary_10_1007_s40843_024_3017_4 crossref_primary_10_1038_s41467_024_55230_w crossref_primary_10_1021_acscatal_3c04398 crossref_primary_10_1039_D4QI01234H crossref_primary_10_1016_j_apcatb_2024_123919 crossref_primary_10_1039_D4GC06030J crossref_primary_10_3390_catal14110817 crossref_primary_10_1021_jacs_4c08564 crossref_primary_10_1002_anie_202318792 crossref_primary_10_1002_anie_202400289 crossref_primary_10_1016_j_nanoen_2023_108901 crossref_primary_10_1016_j_jechem_2024_08_008 crossref_primary_10_1016_j_mtener_2024_101610 crossref_primary_10_1021_acscatal_4c05465 crossref_primary_10_1002_ange_202307952 crossref_primary_10_1021_acs_nanolett_4c02030 crossref_primary_10_1002_ange_202423706 crossref_primary_10_1002_anie_202415975 crossref_primary_10_1021_acsestengg_4c00943 crossref_primary_10_5772_geet_32 crossref_primary_10_1002_cssc_202402460 crossref_primary_10_1021_acsaem_3c00617 crossref_primary_10_1002_ange_202409515 crossref_primary_10_1039_D3CY01232H crossref_primary_10_1002_ange_202401924 crossref_primary_10_1039_D3QI00915G crossref_primary_10_1016_j_jechem_2023_07_006 crossref_primary_10_1039_D4MH00593G crossref_primary_10_1002_adfm_202411491 crossref_primary_10_1002_anie_202403980 crossref_primary_10_1016_j_nanoen_2025_110683 crossref_primary_10_1016_j_checat_2023_100656 crossref_primary_10_1016_j_apcata_2024_119695 crossref_primary_10_1002_ange_202407589 crossref_primary_10_1021_acsenergylett_3c01139 crossref_primary_10_1002_anie_202308775 crossref_primary_10_1021_jacs_4c01961 crossref_primary_10_3390_ma16114000 crossref_primary_10_1002_ange_202408771 crossref_primary_10_1016_j_checat_2023_100786 crossref_primary_10_1002_aenm_202402805 crossref_primary_10_1002_aenm_202401834 crossref_primary_10_1021_acscatal_4c06348 crossref_primary_10_1039_D4NJ04790G crossref_primary_10_1016_j_cej_2025_160681 crossref_primary_10_1039_D3QI01113E crossref_primary_10_1039_D4TA08066A crossref_primary_10_1002_anie_202415729 crossref_primary_10_1016_j_surfin_2024_104286 crossref_primary_10_1039_D4GC01630K crossref_primary_10_1002_cssc_202401607 crossref_primary_10_1016_j_mtphys_2024_101416 crossref_primary_10_1016_j_jechem_2025_01_036 crossref_primary_10_1002_anie_202422585 crossref_primary_10_1016_j_surfin_2024_105308 crossref_primary_10_1039_D2EE04095F crossref_primary_10_1021_jacs_4c08256 crossref_primary_10_1002_ange_202318792 crossref_primary_10_1039_D3EE03836J crossref_primary_10_1002_ange_202420346 crossref_primary_10_1002_anie_202410251 crossref_primary_10_1038_s41467_024_45534_2 crossref_primary_10_1002_cssc_202500017 crossref_primary_10_1002_anie_202416910 crossref_primary_10_1016_j_apcatb_2024_124150 crossref_primary_10_1002_adma_202415632 crossref_primary_10_1002_ange_202409693 crossref_primary_10_1021_jacs_4c00429 crossref_primary_10_1038_s41467_024_54204_2 crossref_primary_10_1016_j_seppur_2024_127050 crossref_primary_10_1002_anie_202400428 crossref_primary_10_1016_j_jelechem_2024_118633 crossref_primary_10_1016_j_nanoen_2023_108840 crossref_primary_10_1038_s41467_023_43303_1 crossref_primary_10_1016_j_ccr_2024_215723 crossref_primary_10_1021_acsanm_4c03049 crossref_primary_10_1002_cctc_202402050 crossref_primary_10_1021_acsnano_4c09247 crossref_primary_10_1002_idm2_12152 crossref_primary_10_1038_s41467_025_55889_9 crossref_primary_10_1007_s12274_023_6379_2 crossref_primary_10_1016_j_jhazmat_2023_132183 crossref_primary_10_1002_adma_202309470 crossref_primary_10_1021_acscatal_4c05292 crossref_primary_10_1021_acs_est_3c09811 crossref_primary_10_1021_jacs_4c06098 crossref_primary_10_1039_D4QI01632G crossref_primary_10_1016_j_jece_2024_115182 crossref_primary_10_1016_j_cej_2024_157518 crossref_primary_10_1002_adfm_202410941 crossref_primary_10_1016_j_cej_2025_160088 crossref_primary_10_1021_jacs_4c07061 crossref_primary_10_1002_anie_202404819 crossref_primary_10_1039_D3GC03092J crossref_primary_10_1002_ange_202305246 crossref_primary_10_1038_s41467_023_44587_z crossref_primary_10_1038_s41467_024_53427_7 crossref_primary_10_1016_j_apcatb_2024_124294 crossref_primary_10_1002_adfm_202408732 crossref_primary_10_1016_j_jcis_2024_12_201 crossref_primary_10_1002_ange_202406046 crossref_primary_10_1002_adma_202415739 crossref_primary_10_1002_smll_202407554 crossref_primary_10_1021_acs_nanolett_4c05932 crossref_primary_10_1021_acsnano_3c06798 crossref_primary_10_1002_anie_202400206 crossref_primary_10_1007_s11426_024_2039_0 crossref_primary_10_1002_ange_202412830 crossref_primary_10_1039_D4SC00558A crossref_primary_10_1002_anie_202305246 crossref_primary_10_1002_ange_202400428 crossref_primary_10_1016_j_jechem_2025_01_075 crossref_primary_10_1002_ange_202315238 crossref_primary_10_1002_ange_202317414 crossref_primary_10_1002_anie_202409693 crossref_primary_10_26599_NR_2025_94907265 crossref_primary_10_1038_s43246_024_00535_y crossref_primary_10_1021_acscatal_4c01510 crossref_primary_10_1007_s12274_024_6478_8 crossref_primary_10_1007_s10853_024_10246_x crossref_primary_10_1021_acs_nanolett_3c05064 crossref_primary_10_1016_j_cej_2023_144488 crossref_primary_10_1016_j_nxener_2024_100125 crossref_primary_10_1038_s44221_023_00169_3 crossref_primary_10_1002_smll_202408546 crossref_primary_10_26599_NR_2025_94907135 crossref_primary_10_1016_j_cej_2024_158814 crossref_primary_10_12677_japc_2024_134062 crossref_primary_10_1021_acssuschemeng_3c03820 crossref_primary_10_1039_D3EE01301D crossref_primary_10_1016_j_jechem_2023_11_019 crossref_primary_10_1016_j_apcatb_2024_124355 crossref_primary_10_1016_j_jechem_2023_12_024 crossref_primary_10_1021_acscatal_4c00879 crossref_primary_10_1002_anie_202408382 crossref_primary_10_1002_anie_202420346 crossref_primary_10_1007_s40843_023_2620_4 crossref_primary_10_1016_j_jcis_2023_10_125 crossref_primary_10_1002_aesr_202300173 crossref_primary_10_1016_j_apcatb_2024_124387 crossref_primary_10_1016_j_colsurfa_2024_133557 crossref_primary_10_1016_j_cej_2025_161014 crossref_primary_10_1016_j_ijhydene_2025_01_323 crossref_primary_10_1002_aenm_202303863 crossref_primary_10_1039_D4TA05443A crossref_primary_10_1002_ange_202408382 crossref_primary_10_1021_acs_nanolett_4c03319 crossref_primary_10_1007_s12274_024_6530_8 crossref_primary_10_1039_D5CC00632E crossref_primary_10_1016_j_chempr_2024_07_006 crossref_primary_10_1002_smll_202408566 crossref_primary_10_1002_adma_202403958 crossref_primary_10_1002_anie_202320027 crossref_primary_10_1021_acsnano_4c03995 crossref_primary_10_1039_D4GC04120H crossref_primary_10_1002_aesr_202300284 crossref_primary_10_1038_s41467_024_51112_3 crossref_primary_10_1002_adfm_202401194 crossref_primary_10_1039_D3NR05254K crossref_primary_10_1039_D4EY00002A crossref_primary_10_1016_j_apcatb_2024_124137 crossref_primary_10_1016_j_jpowsour_2025_236748 crossref_primary_10_1021_jacs_4c09052 crossref_primary_10_1002_smll_202400505 crossref_primary_10_1016_j_surfin_2024_104730 crossref_primary_10_1021_acs_inorgchem_4c00766 crossref_primary_10_1002_adfm_202405179 crossref_primary_10_1016_j_electacta_2024_145429 crossref_primary_10_1021_acs_est_4c06263 crossref_primary_10_1002_adfm_202418492 crossref_primary_10_1007_s12274_024_6661_y crossref_primary_10_1002_anie_202407589 crossref_primary_10_1021_jacs_4c12240 crossref_primary_10_1021_acsami_4c07339 crossref_primary_10_1002_anie_202401924 crossref_primary_10_1021_jacs_4c13219 crossref_primary_10_1039_D3EE03399F crossref_primary_10_1039_D4EE04438J crossref_primary_10_1002_anie_202412830 crossref_primary_10_1016_j_cej_2024_149876 crossref_primary_10_1016_j_envres_2024_120422 crossref_primary_10_1016_j_seppur_2024_129074 crossref_primary_10_1002_aenm_202405534 crossref_primary_10_1039_D4QI00614C crossref_primary_10_1002_ange_202403980 crossref_primary_10_1002_ange_202415729 crossref_primary_10_1002_advs_202410763 crossref_primary_10_1002_anie_202409515 crossref_primary_10_1007_s11426_024_2286_7 crossref_primary_10_1002_aenm_202402294 crossref_primary_10_1021_acsami_4c16144 crossref_primary_10_1002_ange_202400206 crossref_primary_10_1002_anie_202406046 crossref_primary_10_1002_anie_202316910 crossref_primary_10_1039_D3TA03160H crossref_primary_10_1016_j_jhazmat_2023_132106 crossref_primary_10_1016_j_apcatb_2024_124224 crossref_primary_10_1016_j_cej_2023_146176 crossref_primary_10_1016_j_jcis_2024_09_120 crossref_primary_10_1021_jacs_3c01142 crossref_primary_10_1002_anie_202423706 crossref_primary_10_1002_adfm_202401941 crossref_primary_10_1016_j_jechem_2024_12_011 crossref_primary_10_1016_j_apsusc_2024_159397 crossref_primary_10_1016_j_jece_2024_112627 crossref_primary_10_1002_ange_202422585 crossref_primary_10_1016_j_chempr_2023_05_037 crossref_primary_10_1016_j_checat_2024_101182 crossref_primary_10_1002_ange_202416910 crossref_primary_10_1016_j_apcatb_2024_124693 crossref_primary_10_1016_j_checat_2024_101060 crossref_primary_10_1016_j_mattod_2024_01_009 crossref_primary_10_1002_ange_202410251 crossref_primary_10_1002_ange_202404819 crossref_primary_10_1002_adma_202307913 crossref_primary_10_1021_acsenergylett_4c00707 crossref_primary_10_1021_acsanm_4c03622 crossref_primary_10_1021_acscatal_4c02317 crossref_primary_10_1016_j_inoche_2024_112134 crossref_primary_10_1039_D3CC02073H crossref_primary_10_1002_adfm_202417486 crossref_primary_10_1039_D4QI02278E crossref_primary_10_1021_acsami_4c11747 crossref_primary_10_1002_smll_202408279 crossref_primary_10_1021_acssuschemeng_3c07455 crossref_primary_10_1021_jacs_3c13288 crossref_primary_10_1039_D4CC04024D crossref_primary_10_1002_anie_202408758 crossref_primary_10_1016_j_apcatb_2024_124528 crossref_primary_10_1002_adfm_202315324 crossref_primary_10_1016_j_ese_2024_100492 crossref_primary_10_1002_ange_202308775 crossref_primary_10_1002_ange_202411396 crossref_primary_10_1038_s41467_024_48035_4 crossref_primary_10_1016_j_fuel_2024_133159 crossref_primary_10_1002_ange_202401005 crossref_primary_10_1002_celc_202400499 crossref_primary_10_1002_smtd_202401208 crossref_primary_10_1039_D4QI02058H crossref_primary_10_1002_adfm_202415046 crossref_primary_10_1002_aenm_202300669 crossref_primary_10_1016_j_ese_2023_100383 crossref_primary_10_1002_adfm_202314461 crossref_primary_10_1021_acscatal_4c00479 crossref_primary_10_1039_D4CC06455K crossref_primary_10_1002_adma_202314351 crossref_primary_10_1039_D4CC04046E crossref_primary_10_1002_adma_202418233 crossref_primary_10_1021_acsnano_3c07734 crossref_primary_10_1002_ange_202415975 crossref_primary_10_1007_s11426_024_2040_8 crossref_primary_10_1021_acs_inorgchem_5c00444 crossref_primary_10_1021_acs_inorgchem_3c02886 crossref_primary_10_1039_D3EE00371J crossref_primary_10_1002_adma_202303107 crossref_primary_10_1021_acsnano_4c05772 crossref_primary_10_1002_adma_202408680 crossref_primary_10_1039_D4CC05135A crossref_primary_10_1002_anie_202408771 crossref_primary_10_1039_D5CY00055F crossref_primary_10_1016_j_apcatb_2024_124659 crossref_primary_10_1016_j_cclet_2024_110506 crossref_primary_10_1039_D4EE03970J crossref_primary_10_1016_j_checat_2024_101024 crossref_primary_10_1016_j_cej_2024_157426 crossref_primary_10_1021_acsnano_4c02020 crossref_primary_10_1016_j_cej_2023_147574 |
Cites_doi | 10.1021/jacs.2c01274 10.1038/s41560-020-0654-1 10.1007/s11274-020-02921-3 10.1021/jacs.7b12101 10.1021/acsami.8b00919 10.1021/acsenergylett.9b02812 10.1021/acssuschemeng.0c01475 10.1103/PhysRevB.57.15204 10.1002/jrs.2927 10.1038/srep35916 10.1002/advs.201802109 10.1021/acs.est.8b02740 10.1038/nrmicro.2018.9 10.1021/jacs.9b04638 10.1021/ja907342s 10.1016/0039-6028(91)90530-6 10.1021/acs.est.1c08442 10.1103/PhysRevB.72.014122 10.1103/PhysRevB.54.11169 10.1002/anie.201402680 10.1016/j.electacta.2018.08.154 10.1021/acs.nanolett.5b05292 10.1103/PhysRevLett.78.1396 10.1103/PhysRevB.50.17953 10.1016/j.nanoen.2016.06.024 10.1021/acscatal.1c03666 10.1016/j.electacta.2010.08.105 10.1038/s41586-019-1260-x 10.1016/j.joule.2020.12.025 10.1021/jp066852o 10.1021/ic50027a027 10.1038/s41467-022-28728-4 10.1021/jacs.0c00418 10.1021/j100001a054 10.1002/anie.202002647 10.3866/PKU.WHXB20101002 10.1039/D1EE03097C 10.1021/ja071330n 10.1016/j.cattod.2011.07.026 10.1002/aesr.202000043 10.1016/j.watres.2021.116881 10.1038/s41929-021-00663-5 10.1016/j.jelechem.2017.12.062 10.1146/annurev-physchem-032511-143757 10.1021/acs.est.7b04626 10.1016/j.elecom.2009.07.010 10.1021/acscatal.6b00205 10.1038/s41467-020-20619-w 10.1021/jacs.9b13347 10.1016/j.electacta.2010.02.071 10.1021/jp953636z 10.1039/D0GC02301A 10.1007/s10800-008-9630-3 10.1016/j.electacta.2003.07.020 10.4028/www.scientific.net/MSF.278-281.559 10.1016/j.electacta.2016.12.147 10.1038/s41467-021-23115-x 10.1016/j.jelechem.2003.11.011 10.1002/anie.202202556 10.1039/c2ee22572g 10.1088/1748-9326/ac4b74 10.1039/c2ee21745g 10.1002/9780470405888 10.1039/c3ee00045a 10.1002/anie.202202604 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-022-35533-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals - May need to register for free articles |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE CrossRef MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_696ac76187294279b2cbe97a0231f83b PMC9780304 36550156 10_1038_s41467_022_35533_6 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation of China | Young Scientists Fund grantid: 22002131 funderid: https://doi.org/10.13039/501100010909 – fundername: China Postdoctoral Science Foundation grantid: 2020M671963 funderid: https://doi.org/10.13039/501100002858 – fundername: ; grantid: 2020M671963 – fundername: ; grantid: 22002131 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-7175cf38d2f525890ed5f8fa001fbcbbaecedf55aebe2e5ddaa5794a1879cb233 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:24:03 EDT 2025 Thu Aug 21 18:40:38 EDT 2025 Thu Jul 10 17:44:24 EDT 2025 Sat Aug 23 12:54:50 EDT 2025 Thu Apr 03 07:10:59 EDT 2025 Tue Jul 01 00:58:36 EDT 2025 Thu Apr 24 22:50:53 EDT 2025 Fri Feb 21 02:38:20 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-7175cf38d2f525890ed5f8fa001fbcbbaecedf55aebe2e5ddaa5794a1879cb233 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9508-5822 0000-0002-3754-8075 0000-0003-2327-4090 0000-0002-5533-6199 0000-0002-2782-2130 0000-0001-5403-5872 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35533-6 |
PMID | 36550156 |
PQID | 2756863015 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_696ac76187294279b2cbe97a0231f83b pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780304 proquest_miscellaneous_2758098620 proquest_journals_2756863015 pubmed_primary_36550156 crossref_citationtrail_10_1038_s41467_022_35533_6 crossref_primary_10_1038_s41467_022_35533_6 springer_journals_10_1038_s41467_022_35533_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-12-22 |
PublicationDateYYYYMMDD | 2022-12-22 |
PublicationDate_xml | – month: 12 year: 2022 text: 2022-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Yao (CR1) 2021; 193 Ma (CR24) 2016; 16 Hodgetts (CR31) 2020; 5 Zhao (CR28) 2019; 6 Zhang (CR19) 2018; 291 CR34 Liu, Elgowainy, Wang (CR5) 2020; 22 Pérez-Gallent, Figueiredo, Katsounaros, Koper (CR39) 2017; 227 Orlovskaya (CR52) 2005; 72 Butcher, Gewirth (CR57) 2016; 29 Bae, Stewart, Gewirth (CR26) 2007; 129 Kresse, Furthmüller (CR65) 1996; 54 He (CR14) 2022; 13 Wang (CR64) 2022; 61 GOODGAME, HITCHMAN (CR54) 1964; 4 Hu, Wang, Wang, Li, Guo (CR59) 2021; 11 Zhao (CR51) 2020; 142 de Vooys, Beltramo, van Riet, van Veen, Koper (CR42) 2004; 49 Ataka, Yotsuyanagi, Osawa (CR41) 1996; 100 Zhou, Huang, Kato, Ozaki (CR53) 2011; 42 CR4 Xiang (CR35) 2020; 36 Liu (CR13) 2022; 144 Baricco, Rizzi, Enzo (CR20) 1998; 278-281 Bodappa (CR50) 2019; 141 Zhou, Wang, Lin, Tian, Sun (CR36) 2010; 55 Sundararajan, Hillier, Burton (CR11) 2007; 111 Agrawal, Trenary (CR45) 1991; 259 Su, Dong, Li (CR63) 2020; 26 Min (CR8) 2021; 12 Zhang (CR18) 2018; 52 Ye (CR37) 2018; 819 Ye (CR3) 2022; 15 Li (CR12) 2020; 142 Zhou, Tian, Chen, Chen, Sun (CR44) 2004; 573 Wu, Yang, Luo, Tian, Zhou (CR62) 2010; 26 Molodkina (CR27) 2010; 56 CR17 CR16 Smith, Campos, Spivey (CR23) 2012; 182 CR55 Bhattacharjee, Waghmare, Lee (CR25) 2016; 6 Kuypers, Marchant, Kartal (CR10) 2018; 16 Silva (CR61) 2008; 38 Rosca, Beltramo, Koper (CR40) 2004; 566 Li (CR9) 2020; 59 Shen (CR30) 2018; 10 Wen, Brooker (CR58) 1995; 99 van Langevelde, Katsounaros, Koper (CR33) 2021; 5 Ling, Mills, Weber, Yang, Zhang (CR56) 2010; 132 Andersen (CR29) 2019; 570 Chen (CR68) 2020; 5 Deng, Handoko, Du, Xi, Yeo (CR49) 2016; 6 Liu (CR48) 2018; 52 Yao, Zhu, Wang, Li, Shao (CR46) 2018; 140 Gao (CR2) 2022; 56 Figueiredo, Souza-Garcia, Climent, Feliu (CR38) 2009; 11 Wang (CR22) 2020; 8 Zhu (CR47) 2021; 4 Liu (CR6) 2022; 61 Hsieh (CR21) 1998; 57 Prieto (CR69) 2014; 53 Blöchl (CR66) 1994; 50 Le, Etchegoin (CR43) 2012; 63 Humphreys, Lan, Tao (CR32) 2020; 2 CR60 Wu (CR7) 2021; 12 Perdew, Burke, Ernzerhof (CR67) 1997; 78 Wang (CR15) 2020; 142 M Su (35533_CR63) 2020; 26 Ru,EC Le (35533_CR43) 2012; 63 G-F Chen (35533_CR68) 2020; 5 F Ma (35533_CR24) 2016; 16 G Prieto (35533_CR69) 2014; 53 W He (35533_CR14) 2022; 13 MMM Kuypers (35533_CR10) 2018; 16 Y Li (35533_CR9) 2020; 59 MJ Liu (35533_CR13) 2022; 144 S Xiang (35533_CR35) 2020; 36 HH Hsieh (35533_CR21) 1998; 57 W Wu (35533_CR62) 2010; 26 PE Blöchl (35533_CR66) 1994; 50 Y Zhang (35533_CR18) 2018; 52 R Liu (35533_CR48) 2018; 52 Z-Y Zhou (35533_CR36) 2010; 55 J Li (35533_CR12) 2020; 142 MC Figueiredo (35533_CR38) 2009; 11 S Shen (35533_CR30) 2018; 10 JP Perdew (35533_CR67) 1997; 78 Y Wang (35533_CR15) 2020; 142 V Rosca (35533_CR40) 2004; 566 Z Zhou (35533_CR53) 2011; 42 X Liu (35533_CR5) 2020; 22 M Sundararajan (35533_CR11) 2007; 111 J Humphreys (35533_CR32) 2020; 2 35533_CR34 Y Zhao (35533_CR28) 2019; 6 N Bodappa (35533_CR50) 2019; 141 ZY Wu (35533_CR7) 2021; 12 Y Yao (35533_CR46) 2018; 140 S Bhattacharjee (35533_CR25) 2016; 6 Y Zhang (35533_CR19) 2018; 291 RY Hodgetts (35533_CR31) 2020; 5 E Pérez-Gallent (35533_CR39) 2017; 227 S Zhu (35533_CR47) 2021; 4 C Wang (35533_CR22) 2020; 8 35533_CR16 ML Smith (35533_CR23) 2012; 182 35533_CR17 S-E Bae (35533_CR26) 2007; 129 J-Y Ye (35533_CR37) 2018; 819 Z-Y Zhou (35533_CR44) 2004; 573 Y Deng (35533_CR49) 2016; 6 DP Butcher (35533_CR57) 2016; 29 J Gao (35533_CR2) 2022; 56 S Ye (35533_CR3) 2022; 15 K Ataka (35533_CR41) 1996; 100 F Yao (35533_CR1) 2021; 193 PH van Langevelde (35533_CR33) 2021; 5 ACA de Vooys (35533_CR42) 2004; 49 35533_CR60 M Baricco (35533_CR20) 1998; 278-281 VK Agrawal (35533_CR45) 1991; 259 EB Molodkina (35533_CR27) 2010; 56 DML GOODGAME (35533_CR54) 1964; 4 Y Ling (35533_CR56) 2010; 132 N Orlovskaya (35533_CR52) 2005; 72 Y Zhao (35533_CR51) 2020; 142 SZ Andersen (35533_CR29) 2019; 570 35533_CR55 G Kresse (35533_CR65) 1996; 54 N Wen (35533_CR58) 1995; 99 T Hu (35533_CR59) 2021; 11 Y Wang (35533_CR64) 2022; 61 35533_CR4 FLG Silva (35533_CR61) 2008; 38 Y Min (35533_CR8) 2021; 12 H Liu (35533_CR6) 2022; 61 |
References_xml | – volume: 144 start-page: 5739 year: 2022 end-page: 5744 ident: CR13 article-title: Catalytic performance and near-surface X-ray characterization of titanium hydride electrodes for the electrochemical nitrate reduction reaction publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01274 – volume: 5 start-page: 605 year: 2020 end-page: 613 ident: CR68 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 36 start-page: 144 year: 2020 ident: CR35 article-title: New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-020-02921-3 – volume: 140 start-page: 1496 year: 2018 end-page: 1501 ident: CR46 article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – ident: CR4 – ident: CR16 – volume: 10 start-page: 12666 year: 2018 end-page: 12677 ident: CR30 article-title: Tuning electrochemical properties of Li-rich layered oxide cathodes by adjusting Co/Ni ratios and mechanism investigation using in situ X-ray diffraction and online continuous flow differential electrochemical mass spectrometry publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00919 – volume: 5 start-page: 736 year: 2020 end-page: 741 ident: CR31 article-title: Refining universal procedures for ammonium quantification via rapid H NMR analysis for dinitrogen reduction studies publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02812 – volume: 8 start-page: 8256 year: 2020 end-page: 8266 ident: CR22 article-title: Regulation of d-band electrons to enhance the activity of Co-based non-noble bimetal catalysts for hydrolysis of ammonia borane publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01475 – volume: 57 start-page: 15204 year: 1998 end-page: 15210 ident: CR21 article-title: Electronic structure of Ni-Cu alloys: the d-electron charge distribution publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.15204 – volume: 42 start-page: 1713 year: 2011 end-page: 1721 ident: CR53 article-title: Experimental parameters for the SERS of nitrate ion for label-free semi-quantitative detection of proteins and mechanism for proteins to form SERS hot sites: a SERS study publication-title: J. Raman. Spectrosc. doi: 10.1002/jrs.2927 – volume: 6 year: 2016 ident: CR25 article-title: An improved d-band model of the catalytic activity of magnetic transition metal surfaces publication-title: Sci. Rep. doi: 10.1038/srep35916 – volume: 6 start-page: 1802109 year: 2019 ident: CR28 article-title: Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH production rates? publication-title: Adv. Sci. doi: 10.1002/advs.201802109 – volume: 61 start-page: e202202556 year: 2022 ident: CR6 article-title: Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts publication-title: Angew. Chem. Int. Ed. – volume: 52 start-page: 9992 year: 2018 end-page: 10002 ident: CR48 article-title: Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02740 – volume: 16 start-page: 263 year: 2018 end-page: 276 ident: CR10 article-title: The microbial nitrogen-cycling network publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2018.9 – volume: 141 start-page: 12192 year: 2019 end-page: 12196 ident: CR50 article-title: Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04638 – volume: 132 start-page: 1583 year: 2010 end-page: 1591 ident: CR56 article-title: NMR, IR/Raman, and structural properties in HNO and RNO (R = alkyl and aryl) metalloporphyrins with implication for the HNO-myoglobin complex publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907342s – volume: 259 start-page: 116 year: 1991 end-page: 128 ident: CR45 article-title: An infrared study of NO adsorption at defect sites on Pt(111) publication-title: Surf. Sci. doi: 10.1016/0039-6028(91)90530-6 – volume: 56 start-page: 11602 year: 2022 end-page: 11613 ident: CR2 article-title: Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08442 – volume: 72 start-page: 014122 year: 2005 ident: CR52 article-title: Detection of temperature- and stress-induced modifications of LaCoO by micro-Raman spectroscopy publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.014122 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR65 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 53 start-page: 6397 year: 2014 end-page: 6401 ident: CR69 article-title: Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402680 – volume: 291 start-page: 151 year: 2018 end-page: 160 ident: CR19 article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N selectivity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.154 – volume: 16 start-page: 3022 year: 2016 end-page: 3028 ident: CR24 article-title: Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05292 – volume: 78 start-page: 1396 year: 1997 end-page: 1396 ident: CR67 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 142 start-page: 9735 year: 2020 end-page: 9743 ident: CR51 article-title: Speciation of Cu surfaces during the electrochemical CO reduction reaction publication-title: J. Am. Chem. Soc. – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR66 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 29 start-page: 457 year: 2016 end-page: 465 ident: CR57 article-title: Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.024 – volume: 11 start-page: 14417 year: 2021 end-page: 14427 ident: CR59 article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.1c03666 – volume: 56 start-page: 154 year: 2010 end-page: 165 ident: CR27 article-title: Electroreduction of nitrate ions on Pt(111) electrodes modified by copper adatoms publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.08.105 – volume: 570 start-page: 504 year: 2019 end-page: 508 ident: CR29 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 5 start-page: 290 year: 2021 end-page: 294 ident: CR33 article-title: Electrocatalytic nitrate reduction for sustainable ammonia production publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 111 start-page: 5511 year: 2007 end-page: 5517 ident: CR11 article-title: Mechanism of nitrite reduction at T Cu centers: electronic structure calculations of catalysis by copper nitrite reductase and by synthetic model compounds publication-title: J. Chem. Phys. B doi: 10.1021/jp066852o – volume: 4 start-page: 721 year: 1964 end-page: 725 ident: CR54 article-title: Studies of nitro and nitrito complexes. II. Complexes containing chelating NO groups publication-title: Inorg. Chem. doi: 10.1021/ic50027a027 – ident: CR60 – volume: 13 year: 2022 ident: CR14 article-title: Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia publication-title: Nat. Commun. doi: 10.1038/s41467-022-28728-4 – volume: 142 start-page: 7036 year: 2020 end-page: 7046 ident: CR12 article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 99 start-page: 359 year: 1995 end-page: 368 ident: CR58 article-title: Ammonium carbonate, ammonium bicarbonate, and ammonium carbamate equilibria: a Raman study publication-title: J. Chem. Phys. doi: 10.1021/j100001a054 – volume: 61 start-page: e202202604 year: 2022 ident: CR64 article-title: Structurally disordered RuO nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia publication-title: Angew. Chem. Int. Ed. – volume: 59 start-page: 9744 year: 2020 end-page: 9750 ident: CR9 article-title: Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002647 – volume: 26 start-page: 2625 year: 2010 end-page: 2632 ident: CR62 article-title: Electrodeposition of copper in a citrate bath and its application to a micro-electro-mechanical system publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB20101002 – volume: 15 start-page: 760 year: 2022 end-page: 770 ident: CR3 article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03097C – volume: 129 start-page: 10171 year: 2007 end-page: 10180 ident: CR26 article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071330n – volume: 182 start-page: 60 year: 2012 end-page: 66 ident: CR23 article-title: Reduction processes in Cu/SiO , Co/SiO , and CuCo/SiO catalysts publication-title: Catal. Today doi: 10.1016/j.cattod.2011.07.026 – volume: 2 start-page: 2000043 year: 2020 ident: CR32 article-title: Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process publication-title: Adv. Energy Sustain. Res. doi: 10.1002/aesr.202000043 – volume: 193 start-page: 116881 year: 2021 ident: CR1 article-title: Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application publication-title: Water Res doi: 10.1016/j.watres.2021.116881 – volume: 4 start-page: 711 year: 2021 end-page: 718 ident: CR47 article-title: The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum publication-title: Nat. Catal. doi: 10.1038/s41929-021-00663-5 – volume: 26 start-page: 54 year: 2020 end-page: 60 ident: CR63 article-title: In-situ Raman spectroscopic study of electrochemical reactions at single crystal surfaces publication-title: Electrochemistry – volume: 819 start-page: 495 year: 2018 end-page: 501 ident: CR37 article-title: Ammonia electrooxidation on dendritic Pt nanostructures in alkaline solutions investigated by in-situ FTIR spectroscopy and online electrochemical mass spectroscopy publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.12.062 – volume: 63 start-page: 65 year: 2012 end-page: 87 ident: CR43 article-title: Single-molecule surface-enhanced Raman spectroscopy publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143757 – volume: 52 start-page: 1413 year: 2018 end-page: 1420 ident: CR18 article-title: Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04626 – volume: 11 start-page: 1760 year: 2009 end-page: 1763 ident: CR38 article-title: Nitrate reduction on Pt(111) surfaces modified by Bi adatoms publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.07.010 – volume: 6 start-page: 2473 year: 2016 end-page: 2481 ident: CR49 article-title: In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species publication-title: ACS Catal. doi: 10.1021/acscatal.6b00205 – volume: 12 year: 2021 ident: CR8 article-title: Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design publication-title: Nat. Commun. doi: 10.1038/s41467-020-20619-w – volume: 142 start-page: 5702 year: 2020 end-page: 5708 ident: CR15 article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 55 start-page: 7995 year: 2010 end-page: 7999 ident: CR36 article-title: In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.02.071 – ident: CR17 – volume: 100 start-page: 10664 year: 1996 end-page: 10672 ident: CR41 article-title: Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy publication-title: J. Chem. Phys. doi: 10.1021/jp953636z – volume: 22 start-page: 5751 year: 2020 end-page: 5761 ident: CR5 article-title: Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products publication-title: Green. Chem. doi: 10.1039/D0GC02301A – volume: 38 start-page: 1763 year: 2008 end-page: 1769 ident: CR61 article-title: Response surface analysis to evaluate the influence of deposition parameters on the electrodeposition of Cu–Co alloys in citrate medium publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-008-9630-3 – ident: CR34 – volume: 49 start-page: 1307 year: 2004 end-page: 1314 ident: CR42 article-title: Mechanisms of electrochemical reduction and oxidation of nitric oxide publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2003.07.020 – volume: 278-281 start-page: 559 year: 1998 end-page: 564 ident: CR20 article-title: X-ray diffraction study of nanocrystalline phases formation in metallic systems publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.278-281.559 – volume: 227 start-page: 77 year: 2017 end-page: 84 ident: CR39 article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.147 – volume: 573 start-page: 111 year: 2004 end-page: 119 ident: CR44 article-title: In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode publication-title: J. Electroanal. Chem. – ident: CR55 – volume: 12 year: 2021 ident: CR7 article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 566 start-page: 53 year: 2004 end-page: 62 ident: CR40 article-title: Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.11.011 – volume: 144 start-page: 5739 year: 2022 ident: 35533_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.2c01274 – volume: 819 start-page: 495 year: 2018 ident: 35533_CR37 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2017.12.062 – volume: 36 start-page: 144 year: 2020 ident: 35533_CR35 publication-title: World J. Microbiol. Biotechnol. doi: 10.1007/s11274-020-02921-3 – volume: 12 year: 2021 ident: 35533_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-020-20619-w – volume: 566 start-page: 53 year: 2004 ident: 35533_CR40 publication-title: J. Electroanal. Chem. doi: 10.1016/j.jelechem.2003.11.011 – volume: 111 start-page: 5511 year: 2007 ident: 35533_CR11 publication-title: J. Chem. Phys. B doi: 10.1021/jp066852o – volume: 61 start-page: e202202556 year: 2022 ident: 35533_CR6 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202556 – volume: 50 start-page: 17953 year: 1994 ident: 35533_CR66 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 4 start-page: 721 year: 1964 ident: 35533_CR54 publication-title: Inorg. Chem. doi: 10.1021/ic50027a027 – volume: 54 start-page: 11169 year: 1996 ident: 35533_CR65 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 13 year: 2022 ident: 35533_CR14 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28728-4 – ident: 35533_CR17 doi: 10.1039/c2ee22572g – volume: 78 start-page: 1396 year: 1997 ident: 35533_CR67 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.78.1396 – volume: 15 start-page: 760 year: 2022 ident: 35533_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/D1EE03097C – volume: 72 start-page: 014122 year: 2005 ident: 35533_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.014122 – volume: 11 start-page: 1760 year: 2009 ident: 35533_CR38 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2009.07.010 – volume: 6 start-page: 2473 year: 2016 ident: 35533_CR49 publication-title: ACS Catal. doi: 10.1021/acscatal.6b00205 – volume: 6 year: 2016 ident: 35533_CR25 publication-title: Sci. Rep. doi: 10.1038/srep35916 – volume: 227 start-page: 77 year: 2017 ident: 35533_CR39 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2016.12.147 – volume: 10 start-page: 12666 year: 2018 ident: 35533_CR30 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b00919 – volume: 38 start-page: 1763 year: 2008 ident: 35533_CR61 publication-title: J. Appl. Electrochem. doi: 10.1007/s10800-008-9630-3 – volume: 142 start-page: 7036 year: 2020 ident: 35533_CR12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c00418 – volume: 5 start-page: 736 year: 2020 ident: 35533_CR31 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.9b02812 – volume: 291 start-page: 151 year: 2018 ident: 35533_CR19 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.154 – volume: 5 start-page: 290 year: 2021 ident: 35533_CR33 publication-title: Joule doi: 10.1016/j.joule.2020.12.025 – volume: 193 start-page: 116881 year: 2021 ident: 35533_CR1 publication-title: Water Res doi: 10.1016/j.watres.2021.116881 – ident: 35533_CR4 doi: 10.1088/1748-9326/ac4b74 – volume: 142 start-page: 5702 year: 2020 ident: 35533_CR15 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13347 – volume: 16 start-page: 3022 year: 2016 ident: 35533_CR24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b05292 – volume: 56 start-page: 154 year: 2010 ident: 35533_CR27 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.08.105 – volume: 5 start-page: 605 year: 2020 ident: 35533_CR68 publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – ident: 35533_CR16 doi: 10.1039/c2ee21745g – volume: 182 start-page: 60 year: 2012 ident: 35533_CR23 publication-title: Catal. Today doi: 10.1016/j.cattod.2011.07.026 – volume: 42 start-page: 1713 year: 2011 ident: 35533_CR53 publication-title: J. Raman. Spectrosc. doi: 10.1002/jrs.2927 – volume: 26 start-page: 2625 year: 2010 ident: 35533_CR62 publication-title: Acta Phys. Chim. Sin. doi: 10.3866/PKU.WHXB20101002 – volume: 57 start-page: 15204 year: 1998 ident: 35533_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.57.15204 – volume: 278-281 start-page: 559 year: 1998 ident: 35533_CR20 publication-title: Mater. Sci. Forum doi: 10.4028/www.scientific.net/MSF.278-281.559 – volume: 55 start-page: 7995 year: 2010 ident: 35533_CR36 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2010.02.071 – volume: 140 start-page: 1496 year: 2018 ident: 35533_CR46 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – ident: 35533_CR55 doi: 10.1002/9780470405888 – volume: 16 start-page: 263 year: 2018 ident: 35533_CR10 publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2018.9 – volume: 142 start-page: 9735 year: 2020 ident: 35533_CR51 publication-title: J. Am. Chem. Soc. – volume: 8 start-page: 8256 year: 2020 ident: 35533_CR22 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.0c01475 – volume: 129 start-page: 10171 year: 2007 ident: 35533_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja071330n – volume: 573 start-page: 111 year: 2004 ident: 35533_CR44 publication-title: J. Electroanal. Chem. – volume: 6 start-page: 1802109 year: 2019 ident: 35533_CR28 publication-title: Adv. Sci. doi: 10.1002/advs.201802109 – ident: 35533_CR60 doi: 10.1039/c3ee00045a – volume: 2 start-page: 2000043 year: 2020 ident: 35533_CR32 publication-title: Adv. Energy Sustain. Res. doi: 10.1002/aesr.202000043 – volume: 100 start-page: 10664 year: 1996 ident: 35533_CR41 publication-title: J. Chem. Phys. doi: 10.1021/jp953636z – ident: 35533_CR34 – volume: 141 start-page: 12192 year: 2019 ident: 35533_CR50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04638 – volume: 259 start-page: 116 year: 1991 ident: 35533_CR45 publication-title: Surf. Sci. doi: 10.1016/0039-6028(91)90530-6 – volume: 4 start-page: 711 year: 2021 ident: 35533_CR47 publication-title: Nat. Catal. doi: 10.1038/s41929-021-00663-5 – volume: 99 start-page: 359 year: 1995 ident: 35533_CR58 publication-title: J. Chem. Phys. doi: 10.1021/j100001a054 – volume: 26 start-page: 54 year: 2020 ident: 35533_CR63 publication-title: Electrochemistry – volume: 63 start-page: 65 year: 2012 ident: 35533_CR43 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-032511-143757 – volume: 61 start-page: e202202604 year: 2022 ident: 35533_CR64 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202202604 – volume: 22 start-page: 5751 year: 2020 ident: 35533_CR5 publication-title: Green. Chem. doi: 10.1039/D0GC02301A – volume: 52 start-page: 9992 year: 2018 ident: 35533_CR48 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.8b02740 – volume: 132 start-page: 1583 year: 2010 ident: 35533_CR56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja907342s – volume: 12 year: 2021 ident: 35533_CR7 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23115-x – volume: 59 start-page: 9744 year: 2020 ident: 35533_CR9 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002647 – volume: 49 start-page: 1307 year: 2004 ident: 35533_CR42 publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2003.07.020 – volume: 11 start-page: 14417 year: 2021 ident: 35533_CR59 publication-title: ACS Catal. doi: 10.1021/acscatal.1c03666 – volume: 570 start-page: 504 year: 2019 ident: 35533_CR29 publication-title: Nature doi: 10.1038/s41586-019-1260-x – volume: 29 start-page: 457 year: 2016 ident: 35533_CR57 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.06.024 – volume: 56 start-page: 11602 year: 2022 ident: 35533_CR2 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.1c08442 – volume: 52 start-page: 1413 year: 2018 ident: 35533_CR18 publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.7b04626 – volume: 53 start-page: 6397 year: 2014 ident: 35533_CR69 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201402680 |
SSID | ssj0000391844 |
Score | 2.73332 |
Snippet | The development of electrocatalysts capable of efficient reduction of nitrate (NO
3
−
) to ammonia (NH
3
) is drawing increasing interest for the sake of low... The development of electrocatalysts capable of efficient reduction of nitrate (NO ) to ammonia (NH ) is drawing increasing interest for the sake of low carbon... The development of electrocatalysts capable of efficient reduction of nitrate (NO3−) to ammonia (NH3) is drawing increasing interest for the sake of low carbon... The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon... Electroreduction of NO3 − to NH3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7899 |
SubjectTerms | 119/118 140/131 140/133 140/146 140/58 147/135 147/28 147/3 639/301/299/886 639/638/161/886 704/172/169/896 Adsorption Ammonia Bimetals Carbon Catalysts Chemical synthesis Copper Current density Electrocatalysts Electrochemistry Environmental protection Fourier transforms Humanities and Social Sciences Hydrogenation Infrared spectroscopy multidisciplinary Nanoparticles Nanosheets Nitrates Nitrite reductase Nitrite Reductases Nitrites Nitrogen dioxide Raman spectroscopy Reductases Science Science (multidisciplinary) Selectivity Spectrum analysis |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals - May need to register for free articles dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiFKWQEFG4gZWU291ju2IqqoEJyr1ZnkLjVQy1SRzmB_A_-Y9OzN0WNoL19iJLL_1i5-_R8j7FGLu4MAgGXZMggExXwfDXPQe0IGMwuNt5M9f9NmFPL9Ul7dafWFNWKEHLht3oBvtAmBtA1kgfLTxPPjUHDnkLWuN8Oh9IebdAlPZB4sGoIucbsnUwhwMMvuEUrwOOQ7TW5EoE_b_Lcv8s1jytxPTHIhOn5DHUwZJj8vKd8mD1D8lD0tPydUe-XEMifAisWusBqKh0C_RiHXq44o6VLvO0an7TZjoAuiw6iETHLqBYiH8Nzpbzua0d_18uEppHOjQfc99vmAIfMAC8lS6QNLXEYIg9R1Gx_JTkRam0Gfk4vTT19kZm3otsAAQZmSA6lRohYm8VVyZpk5RtaZ1EMVaH7x3KaTYKuVA6DypGJ1TYMoOm5UHz4V4Tnb6eZ9eEqp0GyWPSrYIv2TtTNAhhAbExxVvYkUO1_tuw0REjv0wrm0-EBfGFllZkJXNsrK6Ih8279wUGo47Z5-gODczkUI7PwDFspNi2fsUqyL7a2Wwk10PFsnyjQanqCrybjMMFonHLK5P82WeY-oGkGJdkRdFdzYrERoQIUDmihxtadXWUrdH-u4qs34jVZSoZUU-rvXv17L-vRWv_sdWvCaPOBrOIWec75OdcbFMbyAXG_3bbHY_AR-ZMpc priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgCIkN4k2gICOxA6sZx844K1RGDBUSrKjUneVX2kglKUlmMR_Af3Ov40k1PLodeyTb923fnEPI2-B8ZHBgkAwbJsCAmM2dYsZbC9WB8IXFr5G_fitPTsWXM3mWLtyG1Fa584nRUfvO4R35EcKUqxLUUX64-smQNQpfVxOFxm1yZwGRBlu61PrzfMeC6OdKiPStTF6oo0FEzzC1sEOmw8q9eBRh-_-Va_7dMvnHu2kMR-sH5H7KI-nxJPiH5FZoH5G7E7Pk9jH5dQzpcB_YJfYEUTeBMFGP3erjlhrcTWNo4sBxCTSADtsW8sGhGSi2w5_T1WbV0da03XARwjjQofkR2b5gCDxBDydDe4R-HSEUUttgjJyuFumEF_qEnK4_fV-dsMS4wBwUMiOD2k66ulCe15JLVeXBy1rVBmJZbZ21JrjgaykNiJ4H6b0xEgzaIGW5s7wonpKDtmvDc0JlWXvBvRQ1FmEiN8qVzrmqEuBBeOUzstidu3YJjhxZMS51fBYvlJ5kpUFWOspKlxl5N__nagLjuHH2RxTnPBOBtOMPXX-uk13qsiqNW5awAQ4rW1aWOxuqpUFYvFoVNiOHO2XQyboHfa2LGXkzD4Nd4mOLaUO3iXNUXkG9mGfk2aQ780qKEupCKJwzstzTqr2l7o-0zUXE_kbAqCIXGXm_07_rZf3_KF7cvIuX5B5Hk1hwxvkhORj7TXgFudZoX0eD-g2pySsH priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CBRmJG1ikju11jsuKqloJLlCpN8uvtCu1CUqyh_0B_G_GzgMtFCSu8ViaeGY8M_b4G4C3wfnUwYFiMGwoRwOiNneKGm8tZgfcFza-Rv78RZ6d8_WFuDgANr2FSUX7CdIybdNTddiHjieTHmrPMUSh8g4cRah21O2j5XL9dT2frETMc8X5-EImL9Qtk_e8UALrvy3C_LNQ8rfb0uSETh_A_TF6JMuB34dwEOpHcHfoJ7l7DD-WGAS3gV7HSiDiBugl4mONer8jJqrcxpCx840boQJIt6sxCuw2HYlF8JdktV01pDZ1012F0Hek29ykHl84hPbfYoxK2gj42qMDJHYTPeNwoEiGJX0C56efvq3O6NhngTpMX3qKGZ1wVaE8qwQTqsyDF5WqDHqwyjprTXDBV0IYFDgLwntjBJqxiY3KnWVF8RQO66YOz4EIWXnOvOBVTL14bpSTzrmy5LhvsNJncDKtu3YjCHnshXGt02V4ofQgK42y0klWWmbwbp7zfYDg-Cf1xyjOmTLCZ6cPTXupR3XSspTGLST-AEPOFqVlzoZyYSIYXqUKm8HxpAx6tOlOR6B8JXFDFBm8mYfRGuMVi6lDs000Ki8xS8wzeDbozsxJITEbxHQ5g8WeVu2xuj9Sb64S4neEiSpynsH7Sf9-sfX3pXjxf-Qv4R6LJnLCKGPHcNi32_AKI67evh5N7CfelCoq priority: 102 providerName: Springer Nature |
Title | Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature |
URI | https://link.springer.com/article/10.1038/s41467-022-35533-6 https://www.ncbi.nlm.nih.gov/pubmed/36550156 https://www.proquest.com/docview/2756863015 https://www.proquest.com/docview/2758098620 https://pubmed.ncbi.nlm.nih.gov/PMC9780304 https://doaj.org/article/696ac76187294279b2cbe97a0231f83b |
Volume | 13 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8fuq5xLBN4120yZtH0T2lluPhTtEXdi3kq_eLayttl1w_wD_bydpd2V1FXxpoUlLmsxkZpLJ7wfwwmrjGRwoOsOSxqhAVIU6pdIohdFBbCLlTiNfXomLWTyd8_kBbOiO-g5s9oZ2jk9qVi9ff_-2focK_7Y7Mp6-aWKv7l1eOrovVBzCMVqmxDEaXPbuvp-ZowwDGrfRzMJ4SLFC1J-j2f-ZHVvlIf33-aF_plP-tqfqTdXkLtzpfUwy6oTiHhzY8j7c6lgn1w_gxwhd5drSpcsXIroDaCLGZbK3ayKdYC4k6flxdA8oQJp1ib5is2iIS5W_JuPVuCKlLKvmxtq2Ic3ii2cCwyKcJWr0ZEntYGFbNJNELZz97JYdSYcl-hBmk_PP4wvaszFQjUFOSzHu47qIUsMKzniahdbwIi0k2rlCaaWk1dYUnEsUC2a5MVJyVHbp6My1YlH0CI7KqrQnQLgoTMwMjwsXoMWhTLXQWmdZjLMLy0wAw02_57qHKneMGcvcb5lHad6NVY5jlfuxykUAL7fvfO2AOv5Z-8wN57amA9n2D6r6Ou91NheZkDoR-AMMW5Zkimlls0Q6yLwijVQApxthyDeCmzs4_VTgtMkDeL4tRp11GzGytNXK10nDDGPJMIDHnexsWxIJjBkxqA4g2ZGqnabulpSLG48L7sCkojAO4NVG_n416-9d8eS_Ou4p3GZOQ4aMMnYKR229ss_QLWvVAA6TeYLXdPJ-AMej0fTTFO9n51cfPuLTsRgP_ILHwOvkT7maOpQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuBAkaCE0RNHTvrHBAqC8uWPk6t1JvxK22kkpRNVmh_AH-H38iMk2y1PHrrNXYk2zOehz3-PkJeeesCg0MMwbCOOWyg2CRWxtoZA9kBd6nB18gHh9n0mH85ESdr5NfwFgbLKgebGAy1qy2ekW8hTLnMQB3F-4vvMbJG4e3qQKHRqcWeX_yAlK15t_sR5Puascmno_E07lkFYgvBehtD_iJskUrHCsGEzBPvRCELDfa6MNYY7a13hRAapse8cE5rAUqrkZbbGoYHoGDyb_AUPDm-TJ98Xp7pINq65Lx_m5OkcqvhwRJ1JfMQWcXZiv8LNAH_im3_LtH84542uL_JXXKnj1vpTqdo98iar-6Tmx2T5eIB-bkD4ffMx-dYg0RtB_pEHVbHtwuqcfVKTXvOHduDFNBmUUH82ZQNxfL7Uzqej2ta6apuzrxvG9qU3wK7GDSB5ZmBJOgMoWZbcL3UlOiTu6NM2uGTPiTH1yKLR2S9qiu_QajICseZE7zApI8nWtrMWpvnHCwWy11Etod1V7aHP0cWjnMVruFTqTpZKZCVCrJSWUTeLP-56MA_ruz9AcW57InA3eFDPTtVvR1QWZ5pO8pgAgxGNsoNs8bnI40wfIVMTUQ2B2VQvTVp1KXuR-TlshnsAF7u6MrX89BHJjnkp0lEHne6sxxJmkEeCol6REYrWrUy1NWWqjwLWOMIUJUmPCJvB_27HNb_l-LJ1bN4QW5Njw721f7u4d5Tcpvh9thmMWObZL2dzf0ziPNa8zxsLkq-Xvdu_g1mNGq1 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiDeBAkaCE1ibOnY2OSDUbrtqKawqRKXejF9pVypJ2WSF9gfwp_h1zDjJVsujt15jR7I9D8_Y4-8j5JW3LjA4MAiGNRNgQMzENmPaGQPZgXCJwdfInybp_rH4cCJP1siv_i0MllX2PjE4aldZPCMfIEx5loI6ykHRlUUc7Y7fX3xnyCCFN609nUarIod-8QPSt_rdwS7I-jXn470vo33WMQwwC4F7wyCXkbZIMscLyWWWx97JIis0-O7CWGO0t94VUmqYKvfSOa0lKLBGim5rOB6GgvvfGGJWtE42dvYmR5-XJzyIvZ4J0b3UiZNsUIvgl9oCeoizWLqyGwbSgH9Fun8XbP5xaxs2w_EdcruLYul2q3Z3yZov75EbLa_l4j75uQ3B-Myzc6xIoraFgKIOa-WbBdW4flNNOwYe20EW0HpRQjRaT2uKxfindDQfVbTUZVWfed_UtJ5-C1xj0AR-aAayoDMEnm1gI6Zmijt0e7BJW7TSB-T4WqTxkKyXVekfEyrTwgnupCgwBRSxzmxqrc1zAf6L5y4iW_26K9uBoSMnx7kKl_JJplpZKZCVCrJSaUTeLP-5aKFAruy9g-Jc9kQY7_Chmp2qziuoNE-1HaYwAQ4jG-aGW-PzoUZQviJLTEQ2e2VQnW-p1aUlROTlshm8Al716NJX89Ani3PIVuOIPGp1ZzmSJIWsFNL2iAxXtGplqKst5fQsII8jXFUSi4i87fXvclj_X4onV8_iBbkJlqw-HkwOn5JbHK1jizPON8l6M5v7ZxD0NeZ5Z12UfL1ug_4NFYRwRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ampere-level+current+density+ammonia+electrochemical+synthesis+using+CuCo+nanosheets+simulating+nitrite+reductase+bifunctional+nature&rft.jtitle=Nature+communications&rft.au=Fang%2C+Jia-Yi&rft.au=Zheng%2C+Qi-Zheng&rft.au=Lou%2C+Yao-Yin&rft.au=Zhao%2C+Kuang-Min&rft.date=2022-12-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-35533-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_35533_6 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |