Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature

The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 13; no. 1; pp. 7899 - 13
Main Authors Fang, Jia-Yi, Zheng, Qi-Zheng, Lou, Yao-Yin, Zhao, Kuang-Min, Hu, Sheng-Nan, Li, Guang, Akdim, Ouardia, Huang, Xiao-Yang, Sun, Shi-Gang
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 22.12.2022
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO 2 − via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO x − adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm −2 at −0.2 V vs . Reversible Hydrogen Electrode. The NH 3 production rate reaches a high activity of 4.8 mmol cm −2 h −1 (960 mmol g cat −1 h −1 ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO 3 − to NH 3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO 3 led simultaneously to high NH 3 selectivity and yield. Electroreduction of NO 3 − to NH 3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH 3 formation.
AbstractList The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO 2 − via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO x − adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm −2 at −0.2 V vs . Reversible Hydrogen Electrode. The NH 3 production rate reaches a high activity of 4.8 mmol cm −2 h −1 (960 mmol g cat −1 h −1 ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO 3 − to NH 3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO 3 led simultaneously to high NH 3 selectivity and yield. Electroreduction of NO 3 − to NH 3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH 3 formation.
The development of electrocatalysts capable of efficient reduction of nitrate (NO ) to ammonia (NH ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm at -0.2 V vs. Reversible Hydrogen Electrode. The NH production rate reaches a high activity of 4.8 mmol cm h (960 mmol g h ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO to NH via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO led simultaneously to high NH selectivity and yield.
Electroreduction of NO3 − to NH3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH3 formation.
The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO 2 − via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NO x − adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm −2 at −0.2 V vs . Reversible Hydrogen Electrode. The NH 3 production rate reaches a high activity of 4.8 mmol cm −2 h −1 (960 mmol g cat −1 h −1 ). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO 3 − to NH 3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO 3 led simultaneously to high NH 3 selectivity and yield.
The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2- via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx- adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm-2 at -0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm-2 h-1 (960 mmol gcat-1 h-1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3- to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield.The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2- via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx- adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm-2 at -0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm-2 h-1 (960 mmol gcat-1 h-1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3- to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield.
The development of electrocatalysts capable of efficient reduction of nitrate (NO3−) to ammonia (NH3) is drawing increasing interest for the sake of low carbon emission and environmental protection. Herein, we present a CuCo bimetallic catalyst able to imitate the bifunctional nature of copper-type nitrite reductase, which could easily remove NO2− via the collaboration of two active centers. Indeed, Co acts as an electron/proton donating center, while Cu facilitates NOx− adsorption/association. The bio-inspired CuCo nanosheet electrocatalyst delivers a 100 ± 1% Faradaic efficiency at an ampere-level current density of 1035 mA cm−2 at −0.2 V vs. Reversible Hydrogen Electrode. The NH3 production rate reaches a high activity of 4.8 mmol cm−2 h−1 (960 mmol gcat−1 h−1). A mechanistic study, using electrochemical in situ Fourier transform infrared spectroscopy and shell-isolated nanoparticle enhanced Raman spectroscopy, reveals a strong synergy between Cu and Co, with Co sites promoting the hydrogenation of NO3− to NH3 via adsorbed *H species. The well-modulated coverage of adsorbed *H and *NO3 led simultaneously to high NH3 selectivity and yield.Electroreduction of NO3− to NH3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type nitrite reductase to deliver an ampere-level current density for NH3 formation.
ArticleNumber 7899
Author Lou, Yao-Yin
Akdim, Ouardia
Li, Guang
Huang, Xiao-Yang
Fang, Jia-Yi
Zhao, Kuang-Min
Hu, Sheng-Nan
Sun, Shi-Gang
Zheng, Qi-Zheng
Author_xml – sequence: 1
  givenname: Jia-Yi
  orcidid: 0000-0001-5403-5872
  surname: Fang
  fullname: Fang, Jia-Yi
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 2
  givenname: Qi-Zheng
  orcidid: 0000-0002-9508-5822
  surname: Zheng
  fullname: Zheng, Qi-Zheng
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 3
  givenname: Yao-Yin
  orcidid: 0000-0002-2782-2130
  surname: Lou
  fullname: Lou, Yao-Yin
  email: yylou@suda.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, School of Chemical and Environmental Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University
– sequence: 4
  givenname: Kuang-Min
  orcidid: 0000-0002-5533-6199
  surname: Zhao
  fullname: Zhao, Kuang-Min
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 5
  givenname: Sheng-Nan
  orcidid: 0000-0002-3754-8075
  surname: Hu
  fullname: Hu, Sheng-Nan
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 6
  givenname: Guang
  surname: Li
  fullname: Li, Guang
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
– sequence: 7
  givenname: Ouardia
  surname: Akdim
  fullname: Akdim, Ouardia
  organization: Cardiff Catalysis Institute, School of Chemistry, Cardiff University
– sequence: 8
  givenname: Xiao-Yang
  surname: Huang
  fullname: Huang, Xiao-Yang
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Cardiff Catalysis Institute, School of Chemistry, Cardiff University
– sequence: 9
  givenname: Shi-Gang
  orcidid: 0000-0003-2327-4090
  surname: Sun
  fullname: Sun, Shi-Gang
  email: sgsun@xmu.edu.cn
  organization: State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36550156$$D View this record in MEDLINE/PubMed
BookMark eNp9kstq3DAUhk1JadI0L9BFMXTTjVtdrIs3hTD0Egh0067FsXw8o8GWUkkOzAP0vauZSdoki2gjofP_Hz_nnNfViQ8eq-otJR8p4fpTamkrVUMYa7gQnDfyRXXGSEsbqhg_efA-rS5S2pJyeEd1276qTrkUglAhz6o_l_MNRmwmvMWptkuM6HM9oE8u72qY5-Ad1DihzTHYDc7OwlSnnc8bTC7VS3J-Xa-WVag9-JA2iDnVyc3LBHlf8i5Hl7GOOCw2Q8K6d-PibXbBF5KHvER8U70cYUp4cXefV7--fvm5-t5c__h2tbq8bqwkMjeKKmFHrgc2CiZ0R3AQox6BEDr2tu8BLQ6jEIA9MhTDACBU1wLVqrM94_y8ujpyhwBbcxPdDHFnAjhz-AhxbSBmZyc0spNglSxW1rVMdT2zPXYKCON01LwvrM9H1s3SzzjY0rcI0yPo44p3G7MOt6ZTmnDSFsCHO0AMvxdM2cwuWZwm8BiWZJgSmnRaMlKk759It2GJpX8HldSSl2kW1buHif5FuZ92EeijwMaQUsTRWJdhP4kS0E2GErPfLXPcLVN2yxx2y-yt7In1nv6siR9NqYj9GuP_2M-4_gJhsOVN
CitedBy_id crossref_primary_10_1016_j_jece_2024_113785
crossref_primary_10_1002_adsu_202400507
crossref_primary_10_1016_j_cej_2023_143889
crossref_primary_10_1002_adfm_202403838
crossref_primary_10_1039_D3QI00732D
crossref_primary_10_1039_D3QM00114H
crossref_primary_10_1021_acsenergylett_5c00553
crossref_primary_10_1016_j_apcatb_2024_124729
crossref_primary_10_1002_chem_202404378
crossref_primary_10_59717_j_xinn_mater_2024_100058
crossref_primary_10_1021_acscatal_4c03336
crossref_primary_10_1039_D4EE03987D
crossref_primary_10_1039_D4CC04109G
crossref_primary_10_1021_acscatal_3c02951
crossref_primary_10_1016_j_jhazmat_2024_136036
crossref_primary_10_1002_ange_202316910
crossref_primary_10_1039_D4CC04897K
crossref_primary_10_20517_energymater_2023_134
crossref_primary_10_1021_jacs_4c14498
crossref_primary_10_1016_j_apcatb_2024_124837
crossref_primary_10_1039_D4EE00561A
crossref_primary_10_1016_j_jechem_2023_08_009
crossref_primary_10_1002_adfm_202411325
crossref_primary_10_1002_ange_202420903
crossref_primary_10_1016_j_apcatb_2024_123862
crossref_primary_10_1016_j_esci_2024_100350
crossref_primary_10_1002_adfm_202420153
crossref_primary_10_1002_anie_202420945
crossref_primary_10_1007_s12274_024_6628_z
crossref_primary_10_1021_acscatal_4c01249
crossref_primary_10_1016_j_ijhydene_2024_05_299
crossref_primary_10_1038_s41467_024_47765_9
crossref_primary_10_1002_ange_202400289
crossref_primary_10_1007_s11244_024_01949_1
crossref_primary_10_1021_acs_iecr_4c04465
crossref_primary_10_1021_jacs_4c06657
crossref_primary_10_1039_D4TA04511D
crossref_primary_10_1016_j_apcatb_2023_123577
crossref_primary_10_1016_j_mcat_2023_113692
crossref_primary_10_1016_j_apcatb_2024_124741
crossref_primary_10_1002_aenm_202303027
crossref_primary_10_1002_adfm_202420282
crossref_primary_10_1016_j_watres_2024_121700
crossref_primary_10_1021_acscatal_4c06705
crossref_primary_10_1016_j_isci_2024_109313
crossref_primary_10_1016_j_jece_2024_112348
crossref_primary_10_1002_advs_202407301
crossref_primary_10_1016_j_apcatb_2024_124609
crossref_primary_10_1016_j_jechem_2024_10_023
crossref_primary_10_1002_smll_202402430
crossref_primary_10_1002_ange_202422072
crossref_primary_10_1016_j_jcis_2024_07_125
crossref_primary_10_1002_celc_202300419
crossref_primary_10_1021_acsnano_5c00544
crossref_primary_10_1038_s41467_024_50670_w
crossref_primary_10_1021_jacs_3c13517
crossref_primary_10_1016_j_cej_2025_159874
crossref_primary_10_1016_j_jcis_2024_08_177
crossref_primary_10_1021_jacs_3c06904
crossref_primary_10_1016_j_est_2024_114934
crossref_primary_10_1016_j_jechem_2024_04_040
crossref_primary_10_1002_smll_202310467
crossref_primary_10_1021_acs_nanolett_4c01904
crossref_primary_10_1016_j_jechem_2025_03_009
crossref_primary_10_1016_j_cej_2025_160985
crossref_primary_10_1039_D4EE00784K
crossref_primary_10_1002_adma_202407889
crossref_primary_10_1016_j_jcis_2024_07_251
crossref_primary_10_3390_app14198986
crossref_primary_10_1002_ange_202320027
crossref_primary_10_1039_D4EE04382K
crossref_primary_10_1002_anie_202307952
crossref_primary_10_1007_s40820_023_01217_z
crossref_primary_10_1002_ange_202420945
crossref_primary_10_1021_jacs_4c04023
crossref_primary_10_1021_acs_inorgchem_4c04780
crossref_primary_10_1021_acssuschemeng_3c01084
crossref_primary_10_1002_adfm_202409696
crossref_primary_10_1002_adma_202417696
crossref_primary_10_1002_aenm_202303054
crossref_primary_10_1021_acsanm_4c01849
crossref_primary_10_1002_anie_202420903
crossref_primary_10_1016_j_susc_2024_122668
crossref_primary_10_1016_j_susc_2025_122702
crossref_primary_10_1016_j_cej_2024_149769
crossref_primary_10_1016_j_jcis_2025_02_210
crossref_primary_10_3390_molecules29102261
crossref_primary_10_1039_D5MH00130G
crossref_primary_10_1039_D4TA02299H
crossref_primary_10_1002_adma_202304021
crossref_primary_10_1002_ange_202417631
crossref_primary_10_1002_aenm_202403295
crossref_primary_10_1002_adsu_202400934
crossref_primary_10_1002_anie_202315238
crossref_primary_10_1002_anie_202317414
crossref_primary_10_1039_D4TA07397E
crossref_primary_10_1021_acscatal_4c03245
crossref_primary_10_1021_acscatal_4c03006
crossref_primary_10_1002_anie_202417631
crossref_primary_10_1002_adfm_202502073
crossref_primary_10_1002_adma_202405660
crossref_primary_10_1002_aenm_202303515
crossref_primary_10_1016_j_cej_2023_145546
crossref_primary_10_1016_j_cej_2024_150178
crossref_primary_10_1002_anie_202422072
crossref_primary_10_1016_j_envres_2025_121123
crossref_primary_10_1002_anie_202401005
crossref_primary_10_1021_acs_chemmater_4c03111
crossref_primary_10_1021_acssuschemeng_4c00394
crossref_primary_10_1021_acs_nanolett_4c03451
crossref_primary_10_1073_pnas_2306461120
crossref_primary_10_1002_cctc_202401690
crossref_primary_10_1021_acs_nanolett_4c03218
crossref_primary_10_1007_s12274_024_6535_3
crossref_primary_10_1002_smll_202404792
crossref_primary_10_1016_j_jcis_2024_06_020
crossref_primary_10_1002_ange_202408758
crossref_primary_10_1016_j_apcata_2024_119650
crossref_primary_10_1016_j_apcatb_2025_125027
crossref_primary_10_1016_j_jhazmat_2023_132813
crossref_primary_10_1016_j_apmt_2024_102536
crossref_primary_10_1016_j_apcatb_2025_125268
crossref_primary_10_1016_j_mattod_2024_05_007
crossref_primary_10_1002_anie_202411396
crossref_primary_10_1002_advs_202406843
crossref_primary_10_1039_D4QI00110A
crossref_primary_10_1002_adfm_202425687
crossref_primary_10_1021_jacs_5c00688
crossref_primary_10_1002_aenm_202400790
crossref_primary_10_1002_aenm_202402970
crossref_primary_10_1002_smll_202311336
crossref_primary_10_1039_D4TA02433H
crossref_primary_10_1039_D3CC04775J
crossref_primary_10_1039_D4EE02747G
crossref_primary_10_26599_NR_2025_94907048
crossref_primary_10_1016_j_jece_2023_110927
crossref_primary_10_1002_adfm_202303803
crossref_primary_10_1007_s40843_024_3017_4
crossref_primary_10_1038_s41467_024_55230_w
crossref_primary_10_1021_acscatal_3c04398
crossref_primary_10_1039_D4QI01234H
crossref_primary_10_1016_j_apcatb_2024_123919
crossref_primary_10_1039_D4GC06030J
crossref_primary_10_3390_catal14110817
crossref_primary_10_1021_jacs_4c08564
crossref_primary_10_1002_anie_202318792
crossref_primary_10_1002_anie_202400289
crossref_primary_10_1016_j_nanoen_2023_108901
crossref_primary_10_1016_j_jechem_2024_08_008
crossref_primary_10_1016_j_mtener_2024_101610
crossref_primary_10_1021_acscatal_4c05465
crossref_primary_10_1002_ange_202307952
crossref_primary_10_1021_acs_nanolett_4c02030
crossref_primary_10_1002_ange_202423706
crossref_primary_10_1002_anie_202415975
crossref_primary_10_1021_acsestengg_4c00943
crossref_primary_10_5772_geet_32
crossref_primary_10_1002_cssc_202402460
crossref_primary_10_1021_acsaem_3c00617
crossref_primary_10_1002_ange_202409515
crossref_primary_10_1039_D3CY01232H
crossref_primary_10_1002_ange_202401924
crossref_primary_10_1039_D3QI00915G
crossref_primary_10_1016_j_jechem_2023_07_006
crossref_primary_10_1039_D4MH00593G
crossref_primary_10_1002_adfm_202411491
crossref_primary_10_1002_anie_202403980
crossref_primary_10_1016_j_nanoen_2025_110683
crossref_primary_10_1016_j_checat_2023_100656
crossref_primary_10_1016_j_apcata_2024_119695
crossref_primary_10_1002_ange_202407589
crossref_primary_10_1021_acsenergylett_3c01139
crossref_primary_10_1002_anie_202308775
crossref_primary_10_1021_jacs_4c01961
crossref_primary_10_3390_ma16114000
crossref_primary_10_1002_ange_202408771
crossref_primary_10_1016_j_checat_2023_100786
crossref_primary_10_1002_aenm_202402805
crossref_primary_10_1002_aenm_202401834
crossref_primary_10_1021_acscatal_4c06348
crossref_primary_10_1039_D4NJ04790G
crossref_primary_10_1016_j_cej_2025_160681
crossref_primary_10_1039_D3QI01113E
crossref_primary_10_1039_D4TA08066A
crossref_primary_10_1002_anie_202415729
crossref_primary_10_1016_j_surfin_2024_104286
crossref_primary_10_1039_D4GC01630K
crossref_primary_10_1002_cssc_202401607
crossref_primary_10_1016_j_mtphys_2024_101416
crossref_primary_10_1016_j_jechem_2025_01_036
crossref_primary_10_1002_anie_202422585
crossref_primary_10_1016_j_surfin_2024_105308
crossref_primary_10_1039_D2EE04095F
crossref_primary_10_1021_jacs_4c08256
crossref_primary_10_1002_ange_202318792
crossref_primary_10_1039_D3EE03836J
crossref_primary_10_1002_ange_202420346
crossref_primary_10_1002_anie_202410251
crossref_primary_10_1038_s41467_024_45534_2
crossref_primary_10_1002_cssc_202500017
crossref_primary_10_1002_anie_202416910
crossref_primary_10_1016_j_apcatb_2024_124150
crossref_primary_10_1002_adma_202415632
crossref_primary_10_1002_ange_202409693
crossref_primary_10_1021_jacs_4c00429
crossref_primary_10_1038_s41467_024_54204_2
crossref_primary_10_1016_j_seppur_2024_127050
crossref_primary_10_1002_anie_202400428
crossref_primary_10_1016_j_jelechem_2024_118633
crossref_primary_10_1016_j_nanoen_2023_108840
crossref_primary_10_1038_s41467_023_43303_1
crossref_primary_10_1016_j_ccr_2024_215723
crossref_primary_10_1021_acsanm_4c03049
crossref_primary_10_1002_cctc_202402050
crossref_primary_10_1021_acsnano_4c09247
crossref_primary_10_1002_idm2_12152
crossref_primary_10_1038_s41467_025_55889_9
crossref_primary_10_1007_s12274_023_6379_2
crossref_primary_10_1016_j_jhazmat_2023_132183
crossref_primary_10_1002_adma_202309470
crossref_primary_10_1021_acscatal_4c05292
crossref_primary_10_1021_acs_est_3c09811
crossref_primary_10_1021_jacs_4c06098
crossref_primary_10_1039_D4QI01632G
crossref_primary_10_1016_j_jece_2024_115182
crossref_primary_10_1016_j_cej_2024_157518
crossref_primary_10_1002_adfm_202410941
crossref_primary_10_1016_j_cej_2025_160088
crossref_primary_10_1021_jacs_4c07061
crossref_primary_10_1002_anie_202404819
crossref_primary_10_1039_D3GC03092J
crossref_primary_10_1002_ange_202305246
crossref_primary_10_1038_s41467_023_44587_z
crossref_primary_10_1038_s41467_024_53427_7
crossref_primary_10_1016_j_apcatb_2024_124294
crossref_primary_10_1002_adfm_202408732
crossref_primary_10_1016_j_jcis_2024_12_201
crossref_primary_10_1002_ange_202406046
crossref_primary_10_1002_adma_202415739
crossref_primary_10_1002_smll_202407554
crossref_primary_10_1021_acs_nanolett_4c05932
crossref_primary_10_1021_acsnano_3c06798
crossref_primary_10_1002_anie_202400206
crossref_primary_10_1007_s11426_024_2039_0
crossref_primary_10_1002_ange_202412830
crossref_primary_10_1039_D4SC00558A
crossref_primary_10_1002_anie_202305246
crossref_primary_10_1002_ange_202400428
crossref_primary_10_1016_j_jechem_2025_01_075
crossref_primary_10_1002_ange_202315238
crossref_primary_10_1002_ange_202317414
crossref_primary_10_1002_anie_202409693
crossref_primary_10_26599_NR_2025_94907265
crossref_primary_10_1038_s43246_024_00535_y
crossref_primary_10_1021_acscatal_4c01510
crossref_primary_10_1007_s12274_024_6478_8
crossref_primary_10_1007_s10853_024_10246_x
crossref_primary_10_1021_acs_nanolett_3c05064
crossref_primary_10_1016_j_cej_2023_144488
crossref_primary_10_1016_j_nxener_2024_100125
crossref_primary_10_1038_s44221_023_00169_3
crossref_primary_10_1002_smll_202408546
crossref_primary_10_26599_NR_2025_94907135
crossref_primary_10_1016_j_cej_2024_158814
crossref_primary_10_12677_japc_2024_134062
crossref_primary_10_1021_acssuschemeng_3c03820
crossref_primary_10_1039_D3EE01301D
crossref_primary_10_1016_j_jechem_2023_11_019
crossref_primary_10_1016_j_apcatb_2024_124355
crossref_primary_10_1016_j_jechem_2023_12_024
crossref_primary_10_1021_acscatal_4c00879
crossref_primary_10_1002_anie_202408382
crossref_primary_10_1002_anie_202420346
crossref_primary_10_1007_s40843_023_2620_4
crossref_primary_10_1016_j_jcis_2023_10_125
crossref_primary_10_1002_aesr_202300173
crossref_primary_10_1016_j_apcatb_2024_124387
crossref_primary_10_1016_j_colsurfa_2024_133557
crossref_primary_10_1016_j_cej_2025_161014
crossref_primary_10_1016_j_ijhydene_2025_01_323
crossref_primary_10_1002_aenm_202303863
crossref_primary_10_1039_D4TA05443A
crossref_primary_10_1002_ange_202408382
crossref_primary_10_1021_acs_nanolett_4c03319
crossref_primary_10_1007_s12274_024_6530_8
crossref_primary_10_1039_D5CC00632E
crossref_primary_10_1016_j_chempr_2024_07_006
crossref_primary_10_1002_smll_202408566
crossref_primary_10_1002_adma_202403958
crossref_primary_10_1002_anie_202320027
crossref_primary_10_1021_acsnano_4c03995
crossref_primary_10_1039_D4GC04120H
crossref_primary_10_1002_aesr_202300284
crossref_primary_10_1038_s41467_024_51112_3
crossref_primary_10_1002_adfm_202401194
crossref_primary_10_1039_D3NR05254K
crossref_primary_10_1039_D4EY00002A
crossref_primary_10_1016_j_apcatb_2024_124137
crossref_primary_10_1016_j_jpowsour_2025_236748
crossref_primary_10_1021_jacs_4c09052
crossref_primary_10_1002_smll_202400505
crossref_primary_10_1016_j_surfin_2024_104730
crossref_primary_10_1021_acs_inorgchem_4c00766
crossref_primary_10_1002_adfm_202405179
crossref_primary_10_1016_j_electacta_2024_145429
crossref_primary_10_1021_acs_est_4c06263
crossref_primary_10_1002_adfm_202418492
crossref_primary_10_1007_s12274_024_6661_y
crossref_primary_10_1002_anie_202407589
crossref_primary_10_1021_jacs_4c12240
crossref_primary_10_1021_acsami_4c07339
crossref_primary_10_1002_anie_202401924
crossref_primary_10_1021_jacs_4c13219
crossref_primary_10_1039_D3EE03399F
crossref_primary_10_1039_D4EE04438J
crossref_primary_10_1002_anie_202412830
crossref_primary_10_1016_j_cej_2024_149876
crossref_primary_10_1016_j_envres_2024_120422
crossref_primary_10_1016_j_seppur_2024_129074
crossref_primary_10_1002_aenm_202405534
crossref_primary_10_1039_D4QI00614C
crossref_primary_10_1002_ange_202403980
crossref_primary_10_1002_ange_202415729
crossref_primary_10_1002_advs_202410763
crossref_primary_10_1002_anie_202409515
crossref_primary_10_1007_s11426_024_2286_7
crossref_primary_10_1002_aenm_202402294
crossref_primary_10_1021_acsami_4c16144
crossref_primary_10_1002_ange_202400206
crossref_primary_10_1002_anie_202406046
crossref_primary_10_1002_anie_202316910
crossref_primary_10_1039_D3TA03160H
crossref_primary_10_1016_j_jhazmat_2023_132106
crossref_primary_10_1016_j_apcatb_2024_124224
crossref_primary_10_1016_j_cej_2023_146176
crossref_primary_10_1016_j_jcis_2024_09_120
crossref_primary_10_1021_jacs_3c01142
crossref_primary_10_1002_anie_202423706
crossref_primary_10_1002_adfm_202401941
crossref_primary_10_1016_j_jechem_2024_12_011
crossref_primary_10_1016_j_apsusc_2024_159397
crossref_primary_10_1016_j_jece_2024_112627
crossref_primary_10_1002_ange_202422585
crossref_primary_10_1016_j_chempr_2023_05_037
crossref_primary_10_1016_j_checat_2024_101182
crossref_primary_10_1002_ange_202416910
crossref_primary_10_1016_j_apcatb_2024_124693
crossref_primary_10_1016_j_checat_2024_101060
crossref_primary_10_1016_j_mattod_2024_01_009
crossref_primary_10_1002_ange_202410251
crossref_primary_10_1002_ange_202404819
crossref_primary_10_1002_adma_202307913
crossref_primary_10_1021_acsenergylett_4c00707
crossref_primary_10_1021_acsanm_4c03622
crossref_primary_10_1021_acscatal_4c02317
crossref_primary_10_1016_j_inoche_2024_112134
crossref_primary_10_1039_D3CC02073H
crossref_primary_10_1002_adfm_202417486
crossref_primary_10_1039_D4QI02278E
crossref_primary_10_1021_acsami_4c11747
crossref_primary_10_1002_smll_202408279
crossref_primary_10_1021_acssuschemeng_3c07455
crossref_primary_10_1021_jacs_3c13288
crossref_primary_10_1039_D4CC04024D
crossref_primary_10_1002_anie_202408758
crossref_primary_10_1016_j_apcatb_2024_124528
crossref_primary_10_1002_adfm_202315324
crossref_primary_10_1016_j_ese_2024_100492
crossref_primary_10_1002_ange_202308775
crossref_primary_10_1002_ange_202411396
crossref_primary_10_1038_s41467_024_48035_4
crossref_primary_10_1016_j_fuel_2024_133159
crossref_primary_10_1002_ange_202401005
crossref_primary_10_1002_celc_202400499
crossref_primary_10_1002_smtd_202401208
crossref_primary_10_1039_D4QI02058H
crossref_primary_10_1002_adfm_202415046
crossref_primary_10_1002_aenm_202300669
crossref_primary_10_1016_j_ese_2023_100383
crossref_primary_10_1002_adfm_202314461
crossref_primary_10_1021_acscatal_4c00479
crossref_primary_10_1039_D4CC06455K
crossref_primary_10_1002_adma_202314351
crossref_primary_10_1039_D4CC04046E
crossref_primary_10_1002_adma_202418233
crossref_primary_10_1021_acsnano_3c07734
crossref_primary_10_1002_ange_202415975
crossref_primary_10_1007_s11426_024_2040_8
crossref_primary_10_1021_acs_inorgchem_5c00444
crossref_primary_10_1021_acs_inorgchem_3c02886
crossref_primary_10_1039_D3EE00371J
crossref_primary_10_1002_adma_202303107
crossref_primary_10_1021_acsnano_4c05772
crossref_primary_10_1002_adma_202408680
crossref_primary_10_1039_D4CC05135A
crossref_primary_10_1002_anie_202408771
crossref_primary_10_1039_D5CY00055F
crossref_primary_10_1016_j_apcatb_2024_124659
crossref_primary_10_1016_j_cclet_2024_110506
crossref_primary_10_1039_D4EE03970J
crossref_primary_10_1016_j_checat_2024_101024
crossref_primary_10_1016_j_cej_2024_157426
crossref_primary_10_1021_acsnano_4c02020
crossref_primary_10_1016_j_cej_2023_147574
Cites_doi 10.1021/jacs.2c01274
10.1038/s41560-020-0654-1
10.1007/s11274-020-02921-3
10.1021/jacs.7b12101
10.1021/acsami.8b00919
10.1021/acsenergylett.9b02812
10.1021/acssuschemeng.0c01475
10.1103/PhysRevB.57.15204
10.1002/jrs.2927
10.1038/srep35916
10.1002/advs.201802109
10.1021/acs.est.8b02740
10.1038/nrmicro.2018.9
10.1021/jacs.9b04638
10.1021/ja907342s
10.1016/0039-6028(91)90530-6
10.1021/acs.est.1c08442
10.1103/PhysRevB.72.014122
10.1103/PhysRevB.54.11169
10.1002/anie.201402680
10.1016/j.electacta.2018.08.154
10.1021/acs.nanolett.5b05292
10.1103/PhysRevLett.78.1396
10.1103/PhysRevB.50.17953
10.1016/j.nanoen.2016.06.024
10.1021/acscatal.1c03666
10.1016/j.electacta.2010.08.105
10.1038/s41586-019-1260-x
10.1016/j.joule.2020.12.025
10.1021/jp066852o
10.1021/ic50027a027
10.1038/s41467-022-28728-4
10.1021/jacs.0c00418
10.1021/j100001a054
10.1002/anie.202002647
10.3866/PKU.WHXB20101002
10.1039/D1EE03097C
10.1021/ja071330n
10.1016/j.cattod.2011.07.026
10.1002/aesr.202000043
10.1016/j.watres.2021.116881
10.1038/s41929-021-00663-5
10.1016/j.jelechem.2017.12.062
10.1146/annurev-physchem-032511-143757
10.1021/acs.est.7b04626
10.1016/j.elecom.2009.07.010
10.1021/acscatal.6b00205
10.1038/s41467-020-20619-w
10.1021/jacs.9b13347
10.1016/j.electacta.2010.02.071
10.1021/jp953636z
10.1039/D0GC02301A
10.1007/s10800-008-9630-3
10.1016/j.electacta.2003.07.020
10.4028/www.scientific.net/MSF.278-281.559
10.1016/j.electacta.2016.12.147
10.1038/s41467-021-23115-x
10.1016/j.jelechem.2003.11.011
10.1002/anie.202202556
10.1039/c2ee22572g
10.1088/1748-9326/ac4b74
10.1039/c2ee21745g
10.1002/9780470405888
10.1039/c3ee00045a
10.1002/anie.202202604
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-022-35533-6
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals - May need to register for free articles
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE

CrossRef
MEDLINE - Academic
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 13
ExternalDocumentID oai_doaj_org_article_696ac76187294279b2cbe97a0231f83b
PMC9780304
36550156
10_1038_s41467_022_35533_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation of China | Young Scientists Fund
  grantid: 22002131
  funderid: https://doi.org/10.13039/501100010909
– fundername: China Postdoctoral Science Foundation
  grantid: 2020M671963
  funderid: https://doi.org/10.13039/501100002858
– fundername: ;
  grantid: 2020M671963
– fundername: ;
  grantid: 22002131
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-7175cf38d2f525890ed5f8fa001fbcbbaecedf55aebe2e5ddaa5794a1879cb233
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:24:03 EDT 2025
Thu Aug 21 18:40:38 EDT 2025
Thu Jul 10 17:44:24 EDT 2025
Sat Aug 23 12:54:50 EDT 2025
Thu Apr 03 07:10:59 EDT 2025
Tue Jul 01 00:58:36 EDT 2025
Thu Apr 24 22:50:53 EDT 2025
Fri Feb 21 02:38:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-7175cf38d2f525890ed5f8fa001fbcbbaecedf55aebe2e5ddaa5794a1879cb233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9508-5822
0000-0002-3754-8075
0000-0003-2327-4090
0000-0002-5533-6199
0000-0002-2782-2130
0000-0001-5403-5872
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-022-35533-6
PMID 36550156
PQID 2756863015
PQPubID 546298
PageCount 13
ParticipantIDs doaj_primary_oai_doaj_org_article_696ac76187294279b2cbe97a0231f83b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9780304
proquest_miscellaneous_2758098620
proquest_journals_2756863015
pubmed_primary_36550156
crossref_citationtrail_10_1038_s41467_022_35533_6
crossref_primary_10_1038_s41467_022_35533_6
springer_journals_10_1038_s41467_022_35533_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-12-22
PublicationDateYYYYMMDD 2022-12-22
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-22
  day: 22
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2022
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Yao (CR1) 2021; 193
Ma (CR24) 2016; 16
Hodgetts (CR31) 2020; 5
Zhao (CR28) 2019; 6
Zhang (CR19) 2018; 291
CR34
Liu, Elgowainy, Wang (CR5) 2020; 22
Pérez-Gallent, Figueiredo, Katsounaros, Koper (CR39) 2017; 227
Orlovskaya (CR52) 2005; 72
Butcher, Gewirth (CR57) 2016; 29
Bae, Stewart, Gewirth (CR26) 2007; 129
Kresse, Furthmüller (CR65) 1996; 54
He (CR14) 2022; 13
Wang (CR64) 2022; 61
GOODGAME, HITCHMAN (CR54) 1964; 4
Hu, Wang, Wang, Li, Guo (CR59) 2021; 11
Zhao (CR51) 2020; 142
de Vooys, Beltramo, van Riet, van Veen, Koper (CR42) 2004; 49
Ataka, Yotsuyanagi, Osawa (CR41) 1996; 100
Zhou, Huang, Kato, Ozaki (CR53) 2011; 42
CR4
Xiang (CR35) 2020; 36
Liu (CR13) 2022; 144
Baricco, Rizzi, Enzo (CR20) 1998; 278-281
Bodappa (CR50) 2019; 141
Zhou, Wang, Lin, Tian, Sun (CR36) 2010; 55
Sundararajan, Hillier, Burton (CR11) 2007; 111
Agrawal, Trenary (CR45) 1991; 259
Su, Dong, Li (CR63) 2020; 26
Min (CR8) 2021; 12
Zhang (CR18) 2018; 52
Ye (CR37) 2018; 819
Ye (CR3) 2022; 15
Li (CR12) 2020; 142
Zhou, Tian, Chen, Chen, Sun (CR44) 2004; 573
Wu, Yang, Luo, Tian, Zhou (CR62) 2010; 26
Molodkina (CR27) 2010; 56
CR17
CR16
Smith, Campos, Spivey (CR23) 2012; 182
CR55
Bhattacharjee, Waghmare, Lee (CR25) 2016; 6
Kuypers, Marchant, Kartal (CR10) 2018; 16
Silva (CR61) 2008; 38
Rosca, Beltramo, Koper (CR40) 2004; 566
Li (CR9) 2020; 59
Shen (CR30) 2018; 10
Wen, Brooker (CR58) 1995; 99
van Langevelde, Katsounaros, Koper (CR33) 2021; 5
Ling, Mills, Weber, Yang, Zhang (CR56) 2010; 132
Andersen (CR29) 2019; 570
Chen (CR68) 2020; 5
Deng, Handoko, Du, Xi, Yeo (CR49) 2016; 6
Liu (CR48) 2018; 52
Yao, Zhu, Wang, Li, Shao (CR46) 2018; 140
Gao (CR2) 2022; 56
Figueiredo, Souza-Garcia, Climent, Feliu (CR38) 2009; 11
Wang (CR22) 2020; 8
Zhu (CR47) 2021; 4
Liu (CR6) 2022; 61
Hsieh (CR21) 1998; 57
Prieto (CR69) 2014; 53
Blöchl (CR66) 1994; 50
Le, Etchegoin (CR43) 2012; 63
Humphreys, Lan, Tao (CR32) 2020; 2
CR60
Wu (CR7) 2021; 12
Perdew, Burke, Ernzerhof (CR67) 1997; 78
Wang (CR15) 2020; 142
M Su (35533_CR63) 2020; 26
Ru,EC Le (35533_CR43) 2012; 63
G-F Chen (35533_CR68) 2020; 5
F Ma (35533_CR24) 2016; 16
G Prieto (35533_CR69) 2014; 53
W He (35533_CR14) 2022; 13
MMM Kuypers (35533_CR10) 2018; 16
Y Li (35533_CR9) 2020; 59
MJ Liu (35533_CR13) 2022; 144
S Xiang (35533_CR35) 2020; 36
HH Hsieh (35533_CR21) 1998; 57
W Wu (35533_CR62) 2010; 26
PE Blöchl (35533_CR66) 1994; 50
Y Zhang (35533_CR18) 2018; 52
R Liu (35533_CR48) 2018; 52
Z-Y Zhou (35533_CR36) 2010; 55
J Li (35533_CR12) 2020; 142
MC Figueiredo (35533_CR38) 2009; 11
S Shen (35533_CR30) 2018; 10
JP Perdew (35533_CR67) 1997; 78
Y Wang (35533_CR15) 2020; 142
V Rosca (35533_CR40) 2004; 566
Z Zhou (35533_CR53) 2011; 42
X Liu (35533_CR5) 2020; 22
M Sundararajan (35533_CR11) 2007; 111
J Humphreys (35533_CR32) 2020; 2
35533_CR34
Y Zhao (35533_CR28) 2019; 6
N Bodappa (35533_CR50) 2019; 141
ZY Wu (35533_CR7) 2021; 12
Y Yao (35533_CR46) 2018; 140
S Bhattacharjee (35533_CR25) 2016; 6
Y Zhang (35533_CR19) 2018; 291
RY Hodgetts (35533_CR31) 2020; 5
E Pérez-Gallent (35533_CR39) 2017; 227
S Zhu (35533_CR47) 2021; 4
C Wang (35533_CR22) 2020; 8
35533_CR16
ML Smith (35533_CR23) 2012; 182
35533_CR17
S-E Bae (35533_CR26) 2007; 129
J-Y Ye (35533_CR37) 2018; 819
Z-Y Zhou (35533_CR44) 2004; 573
Y Deng (35533_CR49) 2016; 6
DP Butcher (35533_CR57) 2016; 29
J Gao (35533_CR2) 2022; 56
S Ye (35533_CR3) 2022; 15
K Ataka (35533_CR41) 1996; 100
F Yao (35533_CR1) 2021; 193
PH van Langevelde (35533_CR33) 2021; 5
ACA de Vooys (35533_CR42) 2004; 49
35533_CR60
M Baricco (35533_CR20) 1998; 278-281
VK Agrawal (35533_CR45) 1991; 259
EB Molodkina (35533_CR27) 2010; 56
DML GOODGAME (35533_CR54) 1964; 4
Y Ling (35533_CR56) 2010; 132
N Orlovskaya (35533_CR52) 2005; 72
Y Zhao (35533_CR51) 2020; 142
SZ Andersen (35533_CR29) 2019; 570
35533_CR55
G Kresse (35533_CR65) 1996; 54
N Wen (35533_CR58) 1995; 99
T Hu (35533_CR59) 2021; 11
Y Wang (35533_CR64) 2022; 61
35533_CR4
FLG Silva (35533_CR61) 2008; 38
Y Min (35533_CR8) 2021; 12
H Liu (35533_CR6) 2022; 61
References_xml – volume: 144
  start-page: 5739
  year: 2022
  end-page: 5744
  ident: CR13
  article-title: Catalytic performance and near-surface X-ray characterization of titanium hydride electrodes for the electrochemical nitrate reduction reaction
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01274
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  ident: CR68
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 36
  start-page: 144
  year: 2020
  ident: CR35
  article-title: New progress of ammonia recovery during ammonia nitrogen removal from various wastewaters
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-020-02921-3
– volume: 140
  start-page: 1496
  year: 2018
  end-page: 1501
  ident: CR46
  article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– ident: CR4
– ident: CR16
– volume: 10
  start-page: 12666
  year: 2018
  end-page: 12677
  ident: CR30
  article-title: Tuning electrochemical properties of Li-rich layered oxide cathodes by adjusting Co/Ni ratios and mechanism investigation using in situ X-ray diffraction and online continuous flow differential electrochemical mass spectrometry
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00919
– volume: 5
  start-page: 736
  year: 2020
  end-page: 741
  ident: CR31
  article-title: Refining universal procedures for ammonium quantification via rapid H NMR analysis for dinitrogen reduction studies
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02812
– volume: 8
  start-page: 8256
  year: 2020
  end-page: 8266
  ident: CR22
  article-title: Regulation of d-band electrons to enhance the activity of Co-based non-noble bimetal catalysts for hydrolysis of ammonia borane
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01475
– volume: 57
  start-page: 15204
  year: 1998
  end-page: 15210
  ident: CR21
  article-title: Electronic structure of Ni-Cu alloys: the d-electron charge distribution
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.15204
– volume: 42
  start-page: 1713
  year: 2011
  end-page: 1721
  ident: CR53
  article-title: Experimental parameters for the SERS of nitrate ion for label-free semi-quantitative detection of proteins and mechanism for proteins to form SERS hot sites: a SERS study
  publication-title: J. Raman. Spectrosc.
  doi: 10.1002/jrs.2927
– volume: 6
  year: 2016
  ident: CR25
  article-title: An improved d-band model of the catalytic activity of magnetic transition metal surfaces
  publication-title: Sci. Rep.
  doi: 10.1038/srep35916
– volume: 6
  start-page: 1802109
  year: 2019
  ident: CR28
  article-title: Ammonia detection methods in photocatalytic and electrocatalytic experiments: how to improve the reliability of NH production rates?
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802109
– volume: 61
  start-page: e202202556
  year: 2022
  ident: CR6
  article-title: Efficient electrochemical nitrate reduction to ammonia with copper-supported rhodium cluster and single-atom catalysts
  publication-title: Angew. Chem. Int. Ed.
– volume: 52
  start-page: 9992
  year: 2018
  end-page: 10002
  ident: CR48
  article-title: Defect sites in ultrathin Pd nanowires facilitate the highly efficient electrochemical hydrodechlorination of pollutants by H*ads
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02740
– volume: 16
  start-page: 263
  year: 2018
  end-page: 276
  ident: CR10
  article-title: The microbial nitrogen-cycling network
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2018.9
– volume: 141
  start-page: 12192
  year: 2019
  end-page: 12196
  ident: CR50
  article-title: Early stages of electrochemical oxidation of Cu(111) and polycrystalline Cu surfaces revealed by in situ Raman spectroscopy
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04638
– volume: 132
  start-page: 1583
  year: 2010
  end-page: 1591
  ident: CR56
  article-title: NMR, IR/Raman, and structural properties in HNO and RNO (R = alkyl and aryl) metalloporphyrins with implication for the HNO-myoglobin complex
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907342s
– volume: 259
  start-page: 116
  year: 1991
  end-page: 128
  ident: CR45
  article-title: An infrared study of NO adsorption at defect sites on Pt(111)
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(91)90530-6
– volume: 56
  start-page: 11602
  year: 2022
  end-page: 11613
  ident: CR2
  article-title: Electrocatalytic upcycling of nitrate wastewater into an ammonia fertilizer via an electrified membrane
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08442
– volume: 72
  start-page: 014122
  year: 2005
  ident: CR52
  article-title: Detection of temperature- and stress-induced modifications of LaCoO by micro-Raman spectroscopy
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.014122
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR65
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 53
  start-page: 6397
  year: 2014
  end-page: 6401
  ident: CR69
  article-title: Design and synthesis of copper-cobalt catalysts for the selective conversion of synthesis gas to ethanol and higher alcohols
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402680
– volume: 291
  start-page: 151
  year: 2018
  end-page: 160
  ident: CR19
  article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: High efficiency and N selectivity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.154
– volume: 16
  start-page: 3022
  year: 2016
  end-page: 3028
  ident: CR24
  article-title: Graphene-like two-dimensional ionic boron with double dirac cones at ambient condition
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05292
– volume: 78
  start-page: 1396
  year: 1997
  end-page: 1396
  ident: CR67
  article-title: Generalized gradient approximation made simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 142
  start-page: 9735
  year: 2020
  end-page: 9743
  ident: CR51
  article-title: Speciation of Cu surfaces during the electrochemical CO reduction reaction
  publication-title: J. Am. Chem. Soc.
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR66
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 29
  start-page: 457
  year: 2016
  end-page: 465
  ident: CR57
  article-title: Nitrate reduction pathways on Cu single crystal surfaces: Effect of oxide and Cl
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.024
– volume: 11
  start-page: 14417
  year: 2021
  end-page: 14427
  ident: CR59
  article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03666
– volume: 56
  start-page: 154
  year: 2010
  end-page: 165
  ident: CR27
  article-title: Electroreduction of nitrate ions on Pt(111) electrodes modified by copper adatoms
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.08.105
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  ident: CR29
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 5
  start-page: 290
  year: 2021
  end-page: 294
  ident: CR33
  article-title: Electrocatalytic nitrate reduction for sustainable ammonia production
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 111
  start-page: 5511
  year: 2007
  end-page: 5517
  ident: CR11
  article-title: Mechanism of nitrite reduction at T Cu centers: electronic structure calculations of catalysis by copper nitrite reductase and by synthetic model compounds
  publication-title: J. Chem. Phys. B
  doi: 10.1021/jp066852o
– volume: 4
  start-page: 721
  year: 1964
  end-page: 725
  ident: CR54
  article-title: Studies of nitro and nitrito complexes. II. Complexes containing chelating NO groups
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50027a027
– ident: CR60
– volume: 13
  year: 2022
  ident: CR14
  article-title: Splicing the active phases of copper/cobalt-based catalysts achieves high-rate tandem electroreduction of nitrate to ammonia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28728-4
– volume: 142
  start-page: 7036
  year: 2020
  end-page: 7046
  ident: CR12
  article-title: Efficient ammonia electrosynthesis from nitrate on strained ruthenium nanoclusters
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 99
  start-page: 359
  year: 1995
  end-page: 368
  ident: CR58
  article-title: Ammonium carbonate, ammonium bicarbonate, and ammonium carbamate equilibria: a Raman study
  publication-title: J. Chem. Phys.
  doi: 10.1021/j100001a054
– volume: 61
  start-page: e202202604
  year: 2022
  ident: CR64
  article-title: Structurally disordered RuO nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia
  publication-title: Angew. Chem. Int. Ed.
– volume: 59
  start-page: 9744
  year: 2020
  end-page: 9750
  ident: CR9
  article-title: Enzyme mimetic active intermediates for nitrate reduction in neutral aqueous media
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002647
– volume: 26
  start-page: 2625
  year: 2010
  end-page: 2632
  ident: CR62
  article-title: Electrodeposition of copper in a citrate bath and its application to a micro-electro-mechanical system
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB20101002
– volume: 15
  start-page: 760
  year: 2022
  end-page: 770
  ident: CR3
  article-title: Elucidating the activity, mechanism and application of selective electrosynthesis of ammonia from nitrate on cobalt phosphide
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03097C
– volume: 129
  start-page: 10171
  year: 2007
  end-page: 10180
  ident: CR26
  article-title: Nitrate adsorption and reduction on Cu(100) in acidic solution
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071330n
– volume: 182
  start-page: 60
  year: 2012
  end-page: 66
  ident: CR23
  article-title: Reduction processes in Cu/SiO , Co/SiO , and CuCo/SiO catalysts
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.07.026
– volume: 2
  start-page: 2000043
  year: 2020
  ident: CR32
  article-title: Development and recent progress on ammonia synthesis catalysts for Haber–Bosch process
  publication-title: Adv. Energy Sustain. Res.
  doi: 10.1002/aesr.202000043
– volume: 193
  start-page: 116881
  year: 2021
  ident: CR1
  article-title: Highly selective electrochemical nitrate reduction using copper phosphide self-supported copper foam electrode: performance, mechanism, and application
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.116881
– volume: 4
  start-page: 711
  year: 2021
  end-page: 718
  ident: CR47
  article-title: The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00663-5
– volume: 26
  start-page: 54
  year: 2020
  end-page: 60
  ident: CR63
  article-title: In-situ Raman spectroscopic study of electrochemical reactions at single crystal surfaces
  publication-title: Electrochemistry
– volume: 819
  start-page: 495
  year: 2018
  end-page: 501
  ident: CR37
  article-title: Ammonia electrooxidation on dendritic Pt nanostructures in alkaline solutions investigated by in-situ FTIR spectroscopy and online electrochemical mass spectroscopy
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.12.062
– volume: 63
  start-page: 65
  year: 2012
  end-page: 87
  ident: CR43
  article-title: Single-molecule surface-enhanced Raman spectroscopy
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032511-143757
– volume: 52
  start-page: 1413
  year: 2018
  end-page: 1420
  ident: CR18
  article-title: Exhaustive conversion of inorganic nitrogen to nitrogen gas based on a photoelectro-chlorine cycle reaction and a highly selective nitrogen gas generation cathode
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04626
– volume: 11
  start-page: 1760
  year: 2009
  end-page: 1763
  ident: CR38
  article-title: Nitrate reduction on Pt(111) surfaces modified by Bi adatoms
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.07.010
– volume: 6
  start-page: 2473
  year: 2016
  end-page: 2481
  ident: CR49
  article-title: In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00205
– volume: 12
  year: 2021
  ident: CR8
  article-title: Integrating single-cobalt-site and electric field of boron nitride in dechlorination electrocatalysts by bioinspired design
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20619-w
– volume: 142
  start-page: 5702
  year: 2020
  end-page: 5708
  ident: CR15
  article-title: Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 55
  start-page: 7995
  year: 2010
  end-page: 7999
  ident: CR36
  article-title: In situ FTIR spectroscopic studies of electrooxidation of ethanol on Pd electrode in alkaline media
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.02.071
– ident: CR17
– volume: 100
  start-page: 10664
  year: 1996
  end-page: 10672
  ident: CR41
  article-title: Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy
  publication-title: J. Chem. Phys.
  doi: 10.1021/jp953636z
– volume: 22
  start-page: 5751
  year: 2020
  end-page: 5761
  ident: CR5
  article-title: Life cycle energy use and greenhouse gas emissions of ammonia production from renewable resources and industrial by-products
  publication-title: Green. Chem.
  doi: 10.1039/D0GC02301A
– volume: 38
  start-page: 1763
  year: 2008
  end-page: 1769
  ident: CR61
  article-title: Response surface analysis to evaluate the influence of deposition parameters on the electrodeposition of Cu–Co alloys in citrate medium
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-008-9630-3
– ident: CR34
– volume: 49
  start-page: 1307
  year: 2004
  end-page: 1314
  ident: CR42
  article-title: Mechanisms of electrochemical reduction and oxidation of nitric oxide
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2003.07.020
– volume: 278-281
  start-page: 559
  year: 1998
  end-page: 564
  ident: CR20
  article-title: X-ray diffraction study of nanocrystalline phases formation in metallic systems
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.278-281.559
– volume: 227
  start-page: 77
  year: 2017
  end-page: 84
  ident: CR39
  article-title: Electrocatalytic reduction of nitrate on copper single crystals in acidic and alkaline solutions
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.147
– volume: 573
  start-page: 111
  year: 2004
  end-page: 119
  ident: CR44
  article-title: In situ rapid-scan time-resolved microscope FTIR spectroelectrochemistry: study of the dynamic processes of methanol oxidation on a nanostructured Pt electrode
  publication-title: J. Electroanal. Chem.
– ident: CR55
– volume: 12
  year: 2021
  ident: CR7
  article-title: Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 566
  start-page: 53
  year: 2004
  end-page: 62
  ident: CR40
  article-title: Hydroxylamine electrochemistry at polycrystalline platinum in acidic media: a voltammetric, DEMS and FTIR study
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.11.011
– volume: 144
  start-page: 5739
  year: 2022
  ident: 35533_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.2c01274
– volume: 819
  start-page: 495
  year: 2018
  ident: 35533_CR37
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2017.12.062
– volume: 36
  start-page: 144
  year: 2020
  ident: 35533_CR35
  publication-title: World J. Microbiol. Biotechnol.
  doi: 10.1007/s11274-020-02921-3
– volume: 12
  year: 2021
  ident: 35533_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-20619-w
– volume: 566
  start-page: 53
  year: 2004
  ident: 35533_CR40
  publication-title: J. Electroanal. Chem.
  doi: 10.1016/j.jelechem.2003.11.011
– volume: 111
  start-page: 5511
  year: 2007
  ident: 35533_CR11
  publication-title: J. Chem. Phys. B
  doi: 10.1021/jp066852o
– volume: 61
  start-page: e202202556
  year: 2022
  ident: 35533_CR6
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202556
– volume: 50
  start-page: 17953
  year: 1994
  ident: 35533_CR66
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 4
  start-page: 721
  year: 1964
  ident: 35533_CR54
  publication-title: Inorg. Chem.
  doi: 10.1021/ic50027a027
– volume: 54
  start-page: 11169
  year: 1996
  ident: 35533_CR65
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 13
  year: 2022
  ident: 35533_CR14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-28728-4
– ident: 35533_CR17
  doi: 10.1039/c2ee22572g
– volume: 78
  start-page: 1396
  year: 1997
  ident: 35533_CR67
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.78.1396
– volume: 15
  start-page: 760
  year: 2022
  ident: 35533_CR3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D1EE03097C
– volume: 72
  start-page: 014122
  year: 2005
  ident: 35533_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.014122
– volume: 11
  start-page: 1760
  year: 2009
  ident: 35533_CR38
  publication-title: Electrochem. Commun.
  doi: 10.1016/j.elecom.2009.07.010
– volume: 6
  start-page: 2473
  year: 2016
  ident: 35533_CR49
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b00205
– volume: 6
  year: 2016
  ident: 35533_CR25
  publication-title: Sci. Rep.
  doi: 10.1038/srep35916
– volume: 227
  start-page: 77
  year: 2017
  ident: 35533_CR39
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2016.12.147
– volume: 10
  start-page: 12666
  year: 2018
  ident: 35533_CR30
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b00919
– volume: 38
  start-page: 1763
  year: 2008
  ident: 35533_CR61
  publication-title: J. Appl. Electrochem.
  doi: 10.1007/s10800-008-9630-3
– volume: 142
  start-page: 7036
  year: 2020
  ident: 35533_CR12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c00418
– volume: 5
  start-page: 736
  year: 2020
  ident: 35533_CR31
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.9b02812
– volume: 291
  start-page: 151
  year: 2018
  ident: 35533_CR19
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.154
– volume: 5
  start-page: 290
  year: 2021
  ident: 35533_CR33
  publication-title: Joule
  doi: 10.1016/j.joule.2020.12.025
– volume: 193
  start-page: 116881
  year: 2021
  ident: 35533_CR1
  publication-title: Water Res
  doi: 10.1016/j.watres.2021.116881
– ident: 35533_CR4
  doi: 10.1088/1748-9326/ac4b74
– volume: 142
  start-page: 5702
  year: 2020
  ident: 35533_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13347
– volume: 16
  start-page: 3022
  year: 2016
  ident: 35533_CR24
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b05292
– volume: 56
  start-page: 154
  year: 2010
  ident: 35533_CR27
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.08.105
– volume: 5
  start-page: 605
  year: 2020
  ident: 35533_CR68
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– ident: 35533_CR16
  doi: 10.1039/c2ee21745g
– volume: 182
  start-page: 60
  year: 2012
  ident: 35533_CR23
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2011.07.026
– volume: 42
  start-page: 1713
  year: 2011
  ident: 35533_CR53
  publication-title: J. Raman. Spectrosc.
  doi: 10.1002/jrs.2927
– volume: 26
  start-page: 2625
  year: 2010
  ident: 35533_CR62
  publication-title: Acta Phys. Chim. Sin.
  doi: 10.3866/PKU.WHXB20101002
– volume: 57
  start-page: 15204
  year: 1998
  ident: 35533_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.57.15204
– volume: 278-281
  start-page: 559
  year: 1998
  ident: 35533_CR20
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.278-281.559
– volume: 55
  start-page: 7995
  year: 2010
  ident: 35533_CR36
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2010.02.071
– volume: 140
  start-page: 1496
  year: 2018
  ident: 35533_CR46
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– ident: 35533_CR55
  doi: 10.1002/9780470405888
– volume: 16
  start-page: 263
  year: 2018
  ident: 35533_CR10
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2018.9
– volume: 142
  start-page: 9735
  year: 2020
  ident: 35533_CR51
  publication-title: J. Am. Chem. Soc.
– volume: 8
  start-page: 8256
  year: 2020
  ident: 35533_CR22
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.0c01475
– volume: 129
  start-page: 10171
  year: 2007
  ident: 35533_CR26
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja071330n
– volume: 573
  start-page: 111
  year: 2004
  ident: 35533_CR44
  publication-title: J. Electroanal. Chem.
– volume: 6
  start-page: 1802109
  year: 2019
  ident: 35533_CR28
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201802109
– ident: 35533_CR60
  doi: 10.1039/c3ee00045a
– volume: 2
  start-page: 2000043
  year: 2020
  ident: 35533_CR32
  publication-title: Adv. Energy Sustain. Res.
  doi: 10.1002/aesr.202000043
– volume: 100
  start-page: 10664
  year: 1996
  ident: 35533_CR41
  publication-title: J. Chem. Phys.
  doi: 10.1021/jp953636z
– ident: 35533_CR34
– volume: 141
  start-page: 12192
  year: 2019
  ident: 35533_CR50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04638
– volume: 259
  start-page: 116
  year: 1991
  ident: 35533_CR45
  publication-title: Surf. Sci.
  doi: 10.1016/0039-6028(91)90530-6
– volume: 4
  start-page: 711
  year: 2021
  ident: 35533_CR47
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00663-5
– volume: 99
  start-page: 359
  year: 1995
  ident: 35533_CR58
  publication-title: J. Chem. Phys.
  doi: 10.1021/j100001a054
– volume: 26
  start-page: 54
  year: 2020
  ident: 35533_CR63
  publication-title: Electrochemistry
– volume: 63
  start-page: 65
  year: 2012
  ident: 35533_CR43
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-032511-143757
– volume: 61
  start-page: e202202604
  year: 2022
  ident: 35533_CR64
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202202604
– volume: 22
  start-page: 5751
  year: 2020
  ident: 35533_CR5
  publication-title: Green. Chem.
  doi: 10.1039/D0GC02301A
– volume: 52
  start-page: 9992
  year: 2018
  ident: 35533_CR48
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.8b02740
– volume: 132
  start-page: 1583
  year: 2010
  ident: 35533_CR56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja907342s
– volume: 12
  year: 2021
  ident: 35533_CR7
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-23115-x
– volume: 59
  start-page: 9744
  year: 2020
  ident: 35533_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202002647
– volume: 49
  start-page: 1307
  year: 2004
  ident: 35533_CR42
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2003.07.020
– volume: 11
  start-page: 14417
  year: 2021
  ident: 35533_CR59
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03666
– volume: 570
  start-page: 504
  year: 2019
  ident: 35533_CR29
  publication-title: Nature
  doi: 10.1038/s41586-019-1260-x
– volume: 29
  start-page: 457
  year: 2016
  ident: 35533_CR57
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.06.024
– volume: 56
  start-page: 11602
  year: 2022
  ident: 35533_CR2
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.1c08442
– volume: 52
  start-page: 1413
  year: 2018
  ident: 35533_CR18
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.7b04626
– volume: 53
  start-page: 6397
  year: 2014
  ident: 35533_CR69
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201402680
SSID ssj0000391844
Score 2.73332
Snippet The development of electrocatalysts capable of efficient reduction of nitrate (NO 3 − ) to ammonia (NH 3 ) is drawing increasing interest for the sake of low...
The development of electrocatalysts capable of efficient reduction of nitrate (NO ) to ammonia (NH ) is drawing increasing interest for the sake of low carbon...
The development of electrocatalysts capable of efficient reduction of nitrate (NO3−) to ammonia (NH3) is drawing increasing interest for the sake of low carbon...
The development of electrocatalysts capable of efficient reduction of nitrate (NO3-) to ammonia (NH3) is drawing increasing interest for the sake of low carbon...
Electroreduction of NO3 − to NH3 is drawing increasing interest. Here, the authors designed a CuCo catalyst imitating the bifunctional nature of Cu-type...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7899
SubjectTerms 119/118
140/131
140/133
140/146
140/58
147/135
147/28
147/3
639/301/299/886
639/638/161/886
704/172/169/896
Adsorption
Ammonia
Bimetals
Carbon
Catalysts
Chemical synthesis
Copper
Current density
Electrocatalysts
Electrochemistry
Environmental protection
Fourier transforms
Humanities and Social Sciences
Hydrogenation
Infrared spectroscopy
multidisciplinary
Nanoparticles
Nanosheets
Nitrates
Nitrite reductase
Nitrite Reductases
Nitrites
Nitrogen dioxide
Raman spectroscopy
Reductases
Science
Science (multidisciplinary)
Selectivity
Spectrum analysis
SummonAdditionalLinks – databaseName: Directory of Open Access Journals - May need to register for free articles
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Jb9QwFLZQJSQuiFKWQEFG4gZWU291ju2IqqoEJyr1ZnkLjVQy1SRzmB_A_-Y9OzN0WNoL19iJLL_1i5-_R8j7FGLu4MAgGXZMggExXwfDXPQe0IGMwuNt5M9f9NmFPL9Ul7dafWFNWKEHLht3oBvtAmBtA1kgfLTxPPjUHDnkLWuN8Oh9IebdAlPZB4sGoIucbsnUwhwMMvuEUrwOOQ7TW5EoE_b_Lcv8s1jytxPTHIhOn5DHUwZJj8vKd8mD1D8lD0tPydUe-XEMifAisWusBqKh0C_RiHXq44o6VLvO0an7TZjoAuiw6iETHLqBYiH8Nzpbzua0d_18uEppHOjQfc99vmAIfMAC8lS6QNLXEYIg9R1Gx_JTkRam0Gfk4vTT19kZm3otsAAQZmSA6lRohYm8VVyZpk5RtaZ1EMVaH7x3KaTYKuVA6DypGJ1TYMoOm5UHz4V4Tnb6eZ9eEqp0GyWPSrYIv2TtTNAhhAbExxVvYkUO1_tuw0REjv0wrm0-EBfGFllZkJXNsrK6Ih8279wUGo47Z5-gODczkUI7PwDFspNi2fsUqyL7a2Wwk10PFsnyjQanqCrybjMMFonHLK5P82WeY-oGkGJdkRdFdzYrERoQIUDmihxtadXWUrdH-u4qs34jVZSoZUU-rvXv17L-vRWv_sdWvCaPOBrOIWec75OdcbFMbyAXG_3bbHY_AR-ZMpc
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3LbtQwFLWgCIkN4k2gICOxA6sZx844K1RGDBUSrKjUneVX2kglKUlmMR_Af3Ov40k1PLodeyTb923fnEPI2-B8ZHBgkAwbJsCAmM2dYsZbC9WB8IXFr5G_fitPTsWXM3mWLtyG1Fa584nRUfvO4R35EcKUqxLUUX64-smQNQpfVxOFxm1yZwGRBlu61PrzfMeC6OdKiPStTF6oo0FEzzC1sEOmw8q9eBRh-_-Va_7dMvnHu2kMR-sH5H7KI-nxJPiH5FZoH5G7E7Pk9jH5dQzpcB_YJfYEUTeBMFGP3erjlhrcTWNo4sBxCTSADtsW8sGhGSi2w5_T1WbV0da03XARwjjQofkR2b5gCDxBDydDe4R-HSEUUttgjJyuFumEF_qEnK4_fV-dsMS4wBwUMiOD2k66ulCe15JLVeXBy1rVBmJZbZ21JrjgaykNiJ4H6b0xEgzaIGW5s7wonpKDtmvDc0JlWXvBvRQ1FmEiN8qVzrmqEuBBeOUzstidu3YJjhxZMS51fBYvlJ5kpUFWOspKlxl5N__nagLjuHH2RxTnPBOBtOMPXX-uk13qsiqNW5awAQ4rW1aWOxuqpUFYvFoVNiOHO2XQyboHfa2LGXkzD4Nd4mOLaUO3iXNUXkG9mGfk2aQ780qKEupCKJwzstzTqr2l7o-0zUXE_kbAqCIXGXm_07_rZf3_KF7cvIuX5B5Hk1hwxvkhORj7TXgFudZoX0eD-g2pySsH
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VVkhcEG8CBRmJG1ikju11jsuKqloJLlCpN8uvtCu1CUqyh_0B_G_GzgMtFCSu8ViaeGY8M_b4G4C3wfnUwYFiMGwoRwOiNneKGm8tZgfcFza-Rv78RZ6d8_WFuDgANr2FSUX7CdIybdNTddiHjieTHmrPMUSh8g4cRah21O2j5XL9dT2frETMc8X5-EImL9Qtk_e8UALrvy3C_LNQ8rfb0uSETh_A_TF6JMuB34dwEOpHcHfoJ7l7DD-WGAS3gV7HSiDiBugl4mONer8jJqrcxpCx840boQJIt6sxCuw2HYlF8JdktV01pDZ1012F0Hek29ykHl84hPbfYoxK2gj42qMDJHYTPeNwoEiGJX0C56efvq3O6NhngTpMX3qKGZ1wVaE8qwQTqsyDF5WqDHqwyjprTXDBV0IYFDgLwntjBJqxiY3KnWVF8RQO66YOz4EIWXnOvOBVTL14bpSTzrmy5LhvsNJncDKtu3YjCHnshXGt02V4ofQgK42y0klWWmbwbp7zfYDg-Cf1xyjOmTLCZ6cPTXupR3XSspTGLST-AEPOFqVlzoZyYSIYXqUKm8HxpAx6tOlOR6B8JXFDFBm8mYfRGuMVi6lDs000Ki8xS8wzeDbozsxJITEbxHQ5g8WeVu2xuj9Sb64S4neEiSpynsH7Sf9-sfX3pXjxf-Qv4R6LJnLCKGPHcNi32_AKI67evh5N7CfelCoq
  priority: 102
  providerName: Springer Nature
Title Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature
URI https://link.springer.com/article/10.1038/s41467-022-35533-6
https://www.ncbi.nlm.nih.gov/pubmed/36550156
https://www.proquest.com/docview/2756863015
https://www.proquest.com/docview/2758098620
https://pubmed.ncbi.nlm.nih.gov/PMC9780304
https://doaj.org/article/696ac76187294279b2cbe97a0231f83b
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9QwEB_uA8EX8fuq5xLBN4120yZtH0T2lluPhTtEXdi3kq_eLayttl1w_wD_bydpd2V1FXxpoUlLmsxkZpLJ7wfwwmrjGRwoOsOSxqhAVIU6pdIohdFBbCLlTiNfXomLWTyd8_kBbOiO-g5s9oZ2jk9qVi9ff_-2focK_7Y7Mp6-aWKv7l1eOrovVBzCMVqmxDEaXPbuvp-ZowwDGrfRzMJ4SLFC1J-j2f-ZHVvlIf33-aF_plP-tqfqTdXkLtzpfUwy6oTiHhzY8j7c6lgn1w_gxwhd5drSpcsXIroDaCLGZbK3ayKdYC4k6flxdA8oQJp1ib5is2iIS5W_JuPVuCKlLKvmxtq2Ic3ii2cCwyKcJWr0ZEntYGFbNJNELZz97JYdSYcl-hBmk_PP4wvaszFQjUFOSzHu47qIUsMKzniahdbwIi0k2rlCaaWk1dYUnEsUC2a5MVJyVHbp6My1YlH0CI7KqrQnQLgoTMwMjwsXoMWhTLXQWmdZjLMLy0wAw02_57qHKneMGcvcb5lHad6NVY5jlfuxykUAL7fvfO2AOv5Z-8wN57amA9n2D6r6Ou91NheZkDoR-AMMW5Zkimlls0Q6yLwijVQApxthyDeCmzs4_VTgtMkDeL4tRp11GzGytNXK10nDDGPJMIDHnexsWxIJjBkxqA4g2ZGqnabulpSLG48L7sCkojAO4NVG_n416-9d8eS_Ou4p3GZOQ4aMMnYKR229ss_QLWvVAA6TeYLXdPJ-AMej0fTTFO9n51cfPuLTsRgP_ILHwOvkT7maOpQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqIgQXxLuBAkaCE0RNHTvrHBAqC8uWPk6t1JvxK22kkpRNVmh_AH-H38iMk2y1PHrrNXYk2zOehz3-PkJeeesCg0MMwbCOOWyg2CRWxtoZA9kBd6nB18gHh9n0mH85ESdr5NfwFgbLKgebGAy1qy2ekW8hTLnMQB3F-4vvMbJG4e3qQKHRqcWeX_yAlK15t_sR5Puascmno_E07lkFYgvBehtD_iJskUrHCsGEzBPvRCELDfa6MNYY7a13hRAapse8cE5rAUqrkZbbGoYHoGDyb_AUPDm-TJ98Xp7pINq65Lx_m5OkcqvhwRJ1JfMQWcXZiv8LNAH_im3_LtH84542uL_JXXKnj1vpTqdo98iar-6Tmx2T5eIB-bkD4ffMx-dYg0RtB_pEHVbHtwuqcfVKTXvOHduDFNBmUUH82ZQNxfL7Uzqej2ta6apuzrxvG9qU3wK7GDSB5ZmBJOgMoWZbcL3UlOiTu6NM2uGTPiTH1yKLR2S9qiu_QajICseZE7zApI8nWtrMWpvnHCwWy11Etod1V7aHP0cWjnMVruFTqTpZKZCVCrJSWUTeLP-56MA_ruz9AcW57InA3eFDPTtVvR1QWZ5pO8pgAgxGNsoNs8bnI40wfIVMTUQ2B2VQvTVp1KXuR-TlshnsAF7u6MrX89BHJjnkp0lEHne6sxxJmkEeCol6REYrWrUy1NWWqjwLWOMIUJUmPCJvB_27HNb_l-LJ1bN4QW5Njw721f7u4d5Tcpvh9thmMWObZL2dzf0ziPNa8zxsLkq-Xvdu_g1mNGq1
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuiDeBAkaCE1ibOnY2OSDUbrtqKawqRKXejF9pVypJ2WSF9gfwp_h1zDjJVsujt15jR7I9D8_Y4-8j5JW3LjA4MAiGNRNgQMzENmPaGQPZgXCJwdfInybp_rH4cCJP1siv_i0MllX2PjE4aldZPCMfIEx5loI6ykHRlUUc7Y7fX3xnyCCFN609nUarIod-8QPSt_rdwS7I-jXn470vo33WMQwwC4F7wyCXkbZIMscLyWWWx97JIis0-O7CWGO0t94VUmqYKvfSOa0lKLBGim5rOB6GgvvfGGJWtE42dvYmR5-XJzyIvZ4J0b3UiZNsUIvgl9oCeoizWLqyGwbSgH9Fun8XbP5xaxs2w_EdcruLYul2q3Z3yZov75EbLa_l4j75uQ3B-Myzc6xIoraFgKIOa-WbBdW4flNNOwYe20EW0HpRQjRaT2uKxfindDQfVbTUZVWfed_UtJ5-C1xj0AR-aAayoDMEnm1gI6Zmijt0e7BJW7TSB-T4WqTxkKyXVekfEyrTwgnupCgwBRSxzmxqrc1zAf6L5y4iW_26K9uBoSMnx7kKl_JJplpZKZCVCrJSaUTeLP-5aKFAruy9g-Jc9kQY7_Chmp2qziuoNE-1HaYwAQ4jG-aGW-PzoUZQviJLTEQ2e2VQnW-p1aUlROTlshm8Al716NJX89Ani3PIVuOIPGp1ZzmSJIWsFNL2iAxXtGplqKst5fQsII8jXFUSi4i87fXvclj_X4onV8_iBbkJlqw-HkwOn5JbHK1jizPON8l6M5v7ZxD0NeZ5Z12UfL1ug_4NFYRwRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ampere-level+current+density+ammonia+electrochemical+synthesis+using+CuCo+nanosheets+simulating+nitrite+reductase+bifunctional+nature&rft.jtitle=Nature+communications&rft.au=Fang%2C+Jia-Yi&rft.au=Zheng%2C+Qi-Zheng&rft.au=Lou%2C+Yao-Yin&rft.au=Zhao%2C+Kuang-Min&rft.date=2022-12-22&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=13&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-022-35533-6&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_022_35533_6
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon