Heterogeneous dissociation process of truncated RNAs by oligomerized Vasa helicase
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may con...
Saved in:
Published in | Communications biology Vol. 4; no. 1; pp. 1386 - 7 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
10.12.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on
Bombyx mori
Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.
Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency. |
---|---|
AbstractList | RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on
Bombyx mori
Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.
Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency. Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency. RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa's oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa's oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa's oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency. |
ArticleNumber | 1386 |
Author | Uemura, Sotaro Muto, Nao Murakami, Ryo Iizuka, Ryo Kubo, Shintaroh Kinoshita, Yoshimi |
Author_xml | – sequence: 1 givenname: Yoshimi surname: Kinoshita fullname: Kinoshita, Yoshimi organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 2 givenname: Ryo surname: Murakami fullname: Murakami, Ryo organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 3 givenname: Nao surname: Muto fullname: Muto, Nao organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 4 givenname: Shintaroh surname: Kubo fullname: Kubo, Shintaroh organization: Department of Biophysics, Graduate School of Science, Kyoto University – sequence: 5 givenname: Ryo orcidid: 0000-0002-9328-5628 surname: Iizuka fullname: Iizuka, Ryo organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo – sequence: 6 givenname: Sotaro orcidid: 0000-0001-9701-1803 surname: Uemura fullname: Uemura, Sotaro email: uemura@bs.s.u-tokyo.ac.jp organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34893756$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN-xL0hVBbRSBVIFXK0X52XrVTZe7ASp_Hq8mxbaHnqwbD3PjMfvzUtyMMYRCXnN6HtGhfmQJadU1JSzsiwzNX1GjriwthZa8oN750NykvOaUsqstVrIF-RQSGNFo_QRuTrHCVNc4YhxzlUXco4-wBTiWG1T9JhzFftqSvPoYcKuuvp6mqv2popDWMUNpvCnFH9Chuoah-Ah4yvyvIch48ntfkx-fP70_ey8vvz25eLs9LL2muqpbqjqlfAcKO1VCz2TXoIC7C1VrPcWfaMMQsvbzqCUXpnyTcu07XkrsJPimFwsul2EtdumsIF04yIEty_EtHKQpuAHdJ2VRnNjvG-ZbCwF0WgEUx7XLaMNFK2Pi9Z2bjfYeRynBMMD0Yc3Y7h2q_jbGa2lkboIvLsVSPHXjHlym5A9DgPsG-u4plYqZcUO-vYRdB3nNJZW7VDFJy1WC-rNfUf_rNyNrgDMAvAp5pywdz5M-8EVg2FwjLpdUNwSFFeC4vZBcbRQ-SPqnfqTJLGQcgGPK0z_bT_B-gvaNNAp |
CitedBy_id | crossref_primary_10_1038_s41467_024_54955_y |
Cites_doi | 10.1016/j.molcel.2015.06.030 10.1016/j.cell.2014.05.018 10.1016/j.cell.2007.01.043 10.1146/annurev-biochem-060713-035546 10.1038/s41467-019-11083-2 10.15252/embr.202051313 10.1261/rna.070268.118 10.1016/S0022-2836(02)01277-9 10.1016/j.molcel.2015.04.027 10.1016/S1097-2765(01)00329-X 10.1073/pnas.0705488105 10.1016/j.celrep.2014.12.013 10.1038/s41598-018-34549-7 10.1016/j.molcel.2015.05.015 10.1038/nature14254 10.1016/j.bpj.2013.01.014 10.1016/j.cell.2006.01.054 10.15252/embj.201796941 10.1016/j.molcel.2015.01.013 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7XB 88I 8FE 8FH 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s42003-021-02918-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central (New) Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Biological Sciences Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2399-3642 |
EndPage | 7 |
ExternalDocumentID | oai_doaj_org_article_d9486288ccb14790a376ea8c2a6b107a PMC8664846 34893756 10_1038_s42003_021_02918_0 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: JPMJCR14W1 funderid: https://doi.org/10.13039/501100002241 – fundername: ; grantid: JPMJCR14W1 |
GroupedDBID | 0R~ 53G 88I AAJSJ ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BBNVY BCNDV BENPR BHPHI C6C CCPQU DWQXO EBLON EBS GNUQQ GROUPED_DOAJ HCIFZ HYE M2P M7P M~E NAO O9- OK1 PGMZT PIMPY RNT RPM SNYQT AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 3V. 7XB 8FE 8FH 8FK AARCD LK8 PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-705f53c2a00f5baf14c4a5aef9051fc9ec758eab2bd8e44c582919169f2b3ed43 |
IEDL.DBID | BENPR |
ISSN | 2399-3642 |
IngestDate | Wed Aug 27 01:22:13 EDT 2025 Thu Aug 21 18:29:04 EDT 2025 Tue Aug 05 10:09:34 EDT 2025 Wed Aug 13 10:01:24 EDT 2025 Thu Jan 02 22:57:05 EST 2025 Tue Jul 01 03:01:36 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Fri Feb 21 02:40:09 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-705f53c2a00f5baf14c4a5aef9051fc9ec758eab2bd8e44c582919169f2b3ed43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9701-1803 0000-0002-9328-5628 |
OpenAccessLink | https://www.proquest.com/docview/2608620628?pq-origsite=%requestingapplication% |
PMID | 34893756 |
PQID | 2608620628 |
PQPubID | 4669726 |
PageCount | 7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d9486288ccb14790a376ea8c2a6b107a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8664846 proquest_miscellaneous_2609455936 proquest_journals_2608620628 pubmed_primary_34893756 crossref_citationtrail_10_1038_s42003_021_02918_0 crossref_primary_10_1038_s42003_021_02918_0 springer_journals_10_1038_s42003_021_02918_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-10 |
PublicationDateYYYYMMDD | 2021-12-10 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-10 day: 10 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Communications biology |
PublicationTitleAbbrev | Commun Biol |
PublicationTitleAlternate | Commun Biol |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Theissen, Karow, Kohler, Gubaev, Klostermeier (CR5) 2008; 105 Nott (CR6) 2015; 57 Putnam (CR11) 2015; 59 Xiol (CR7) 2014; 157 Tanner, Linder (CR2) 2001; 8 Sengoku, Nureki, Nakamura, Kobayashi, Yokoyama (CR4) 2006; 125 Nishida (CR8) 2015; 10 Murakami, Sumiyoshi, Negishi, Siomi (CR10) 2021; 22 Yao, Sasaki, Ueda, Tomari, Tadakuma (CR17) 2015; 59 Linder, Jankowsky (CR1) 2011; 12 Jarmoskaite, Russell (CR3) 2014; 83 Brennecke (CR9) 2007; 128 Yokota, Chujo, Harada (CR14) 2013; 104 Maluf, Fischer, Lohman (CR15) 2003; 325 Kinoshita (CR20) 2018; 8 Jo (CR18) 2015; 59 Iwasaki (CR16) 2015; 521 Osuka (CR19) 2018; 37 Song, Ji (CR12) 2019; 10 Liao, Kandasamy, Zhu, Fukunaga (CR13) 2019; 25 K Osuka (2918_CR19) 2018; 37 J Xiol (2918_CR7) 2014; 157 NK Tanner (2918_CR2) 2001; 8 T Sengoku (2918_CR4) 2006; 125 TJ Nott (2918_CR6) 2015; 57 H Yokota (2918_CR14) 2013; 104 NK Maluf (2918_CR15) 2003; 325 AA Putnam (2918_CR11) 2015; 59 P Linder (2918_CR1) 2011; 12 I Jarmoskaite (2918_CR3) 2014; 83 C Yao (2918_CR17) 2015; 59 Iwasaki (2918_CR16) 2015; 521 MH Jo (2918_CR18) 2015; 59 J Brennecke (2918_CR9) 2007; 128 Kinoshita (2918_CR20) 2018; 8 S Liao (2918_CR13) 2019; 25 B Theissen (2918_CR5) 2008; 105 H Song (2918_CR12) 2019; 10 KM Nishida (2918_CR8) 2015; 10 R Murakami (2918_CR10) 2021; 22 |
References_xml | – volume: 59 start-page: 541 year: 2015 end-page: 552 ident: CR11 article-title: Division of labor in an oligomer of the DEAD-box RNA helicase Ded1p publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.06.030 – volume: 157 start-page: 1698 year: 2014 end-page: 1711 ident: CR7 article-title: RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts publication-title: Cell doi: 10.1016/j.cell.2014.05.018 – volume: 128 start-page: 1089 year: 2007 end-page: 1103 ident: CR9 article-title: Discrete small RNA-generating loci as master regulators of transposon activity in publication-title: Drosophila. Cell doi: 10.1016/j.cell.2007.01.043 – volume: 83 start-page: 697 year: 2014 end-page: 725 ident: CR3 article-title: RNA helicase proteins as chaperones and remodelers publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035546 – volume: 10 year: 2019 ident: CR12 article-title: The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X publication-title: Nat. Commun. doi: 10.1038/s41467-019-11083-2 – volume: 22 start-page: e51313 year: 2021 ident: CR10 article-title: DEAD-box polypeptide 43 facilitates piRNA amplification by actively liberating RNA from Ago3-piRISC publication-title: EMBO Rep. doi: 10.15252/embr.202051313 – volume: 25 start-page: 825 year: 2019 end-page: 839 ident: CR13 article-title: DEAD-box RNA helicase Belle posttranscriptionally promotes gene expression in and ATPase activity-dependent manner publication-title: RNA doi: 10.1261/rna.070268.118 – volume: 12 start-page: 505 year: 2011 end-page: 516 ident: CR1 article-title: From unwinding to clamping – the DEAD box RNA helicase family publication-title: Mol. Cell Biol. – volume: 325 start-page: 913 year: 2003 end-page: 935 ident: CR15 article-title: A dimer of UvrD is the active form of the helicase in vitro publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01277-9 – volume: 59 start-page: 117 year: 2015 end-page: 124 ident: CR18 article-title: Human argonaute 2 has diverse reaction pathways on target RNAs publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.04.027 – volume: 8 start-page: 251 year: 2001 end-page: 262 ident: CR2 article-title: DExD/H box RNA helicases: from generic motors to specific dissociation functions publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00329-X – volume: 105 start-page: 548 year: 2008 end-page: 5536 ident: CR5 article-title: Cooporative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.0705488105 – volume: 10 start-page: 193 year: 2015 end-page: 203 ident: CR8 article-title: Respective functions of two distinct siwi complexes assembled during PIWI-interacting RNA biogenesis in germ cells publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.013 – volume: 8 year: 2018 ident: CR20 article-title: Step sizes and rate constants of single-headed cytoplasmic dynein measured with optical tweezers publication-title: Sci. Rep. doi: 10.1038/s41598-018-34549-7 – volume: 59 start-page: 125 year: 2015 end-page: 132 ident: CR17 article-title: Single-molecule analysis of the target cleavage reaction by the RNAi enzyme complex publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.015 – volume: 521 start-page: 533 year: 2015 end-page: 549 ident: CR16 article-title: Defining fundamental steps in the assembly of the RNAi enzyme complex publication-title: Nature doi: 10.1038/nature14254 – volume: 104 start-page: 924 year: 2013 end-page: 933 ident: CR14 article-title: Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.01.014 – volume: 125 start-page: 287 year: 2006 end-page: 300 ident: CR4 article-title: Structural basis for RNA unwinding by DEAD-box protein Vasa publication-title: Cell doi: 10.1016/j.cell.2006.01.054 – volume: 37 start-page: e96941 year: 2018 ident: CR19 article-title: Real-time observation of flexible domain movements in CRISPR-Cas9 publication-title: EMBO J. doi: 10.15252/embj.201796941 – volume: 57 start-page: 936 year: 2015 end-page: 947 ident: CR6 article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 8 year: 2018 ident: 2918_CR20 publication-title: Sci. Rep. doi: 10.1038/s41598-018-34549-7 – volume: 37 start-page: e96941 year: 2018 ident: 2918_CR19 publication-title: EMBO J. doi: 10.15252/embj.201796941 – volume: 22 start-page: e51313 year: 2021 ident: 2918_CR10 publication-title: EMBO Rep. doi: 10.15252/embr.202051313 – volume: 521 start-page: 533 year: 2015 ident: 2918_CR16 publication-title: Nature doi: 10.1038/nature14254 – volume: 12 start-page: 505 year: 2011 ident: 2918_CR1 publication-title: Mol. Cell Biol. – volume: 57 start-page: 936 year: 2015 ident: 2918_CR6 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.01.013 – volume: 325 start-page: 913 year: 2003 ident: 2918_CR15 publication-title: J. Mol. Biol. doi: 10.1016/S0022-2836(02)01277-9 – volume: 128 start-page: 1089 year: 2007 ident: 2918_CR9 publication-title: Drosophila. Cell doi: 10.1016/j.cell.2007.01.043 – volume: 8 start-page: 251 year: 2001 ident: 2918_CR2 publication-title: Mol. Cell doi: 10.1016/S1097-2765(01)00329-X – volume: 104 start-page: 924 year: 2013 ident: 2918_CR14 publication-title: Biophys. J. doi: 10.1016/j.bpj.2013.01.014 – volume: 83 start-page: 697 year: 2014 ident: 2918_CR3 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev-biochem-060713-035546 – volume: 157 start-page: 1698 year: 2014 ident: 2918_CR7 publication-title: Cell doi: 10.1016/j.cell.2014.05.018 – volume: 59 start-page: 541 year: 2015 ident: 2918_CR11 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.06.030 – volume: 10 year: 2019 ident: 2918_CR12 publication-title: Nat. Commun. doi: 10.1038/s41467-019-11083-2 – volume: 59 start-page: 117 year: 2015 ident: 2918_CR18 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.04.027 – volume: 105 start-page: 548 year: 2008 ident: 2918_CR5 publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.0705488105 – volume: 25 start-page: 825 year: 2019 ident: 2918_CR13 publication-title: RNA doi: 10.1261/rna.070268.118 – volume: 59 start-page: 125 year: 2015 ident: 2918_CR17 publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.05.015 – volume: 10 start-page: 193 year: 2015 ident: 2918_CR8 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.013 – volume: 125 start-page: 287 year: 2006 ident: 2918_CR4 publication-title: Cell doi: 10.1016/j.cell.2006.01.054 |
SSID | ssj0001999634 |
Score | 2.1889896 |
Snippet | RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation,... Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1386 |
SubjectTerms | 101/1 631/337/2265 631/57/2265 82/83 Animals Biology Biomedical and Life Sciences Bombyx - enzymology Bombyx - genetics Cytoplasm DEAD-box RNA Helicases - genetics DEAD-box RNA Helicases - metabolism DNA helicase Double-stranded RNA Electrostatic properties Enzymes Glass substrates Insect Proteins - genetics Insect Proteins - metabolism Life Sciences Metabolism Oligomerization RNA helicase RNA Interference RNA, Small Interfering - genetics Single Molecule Imaging Transcription Unwinding |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KUOhF1FZdP0qE3nQxu5vsZo9aKg9BD1LFW0iyiQry9uG-Huxf70x239NX23rxmg8YfpkhM5nJbwC-WduUUgSZ-oyebnJuU2OkSrnNFA_cBekoo3t2Xo4uxem1vH7R6otqwnp64B64w6YWilriOmczUdXcoEV4o1xuSouhS3SN8M57EUzF1xXy4wsx_JLhhTrsRCzDoooEntcZSrNwE0XC_r95ma-LJf_ImMaL6GQFlgcPkh31kq_CBz9eg499T8nHz3AxogKXFvXCY1DPKN8-w59N-l8BrA1s-vCL6GB9wy7OjzpmH1l7f3fTUv7mNw5emc6wW08vep3_ApcnP35-H6VD44TUYTwyTSsugywQIs6DtCZkwgkjjQ9ExhVc7R1GCd7Y3DbKC-GkQkTQT6xDbgvfiGIdlsbt2G8CK71yTWNrERQXQUiLDmYV0IiDdYWVWQLZDETtBlZxam5xr2N2u1C6B14j8DoCr3kC-_M9k55T47-rj-ls5iuJDzsOoJboQUv0W1qSwM7sZPVgpJ3GUA430SfSBPbm02helDMx8ZRoTS0ktT1MYKNXhLkkBRH3VBJnqgUVWRB1cWZ8dxspvFVZCvT8EjiYKdOzWP-GYus9oNiGTzlZQZbjFbwDS6hvfhcdq6n9Gm3oCbK2HeQ priority: 102 providerName: Directory of Open Access Journals – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcYCGmXaR_AusEUpN22ammbtOnxgUBPTxoHGBO3KEkTQEKviD4O8NfPTtuH3sYm7dokleXYiR3bPwN8trYppQgy9Rk93eTcpsZIlXKbKR64C9JRRPf7STk9F7MLebEG-VgLE5P2I6RlPKbH7LBvnYhZVJRQwPM6w5-9gA2CakfZ3phMZmezp5cVsuELMVTI8EI9s3jlFopg_c9ZmH8mSv4WLY2X0PFreDVYj2zS0_sG1vz8LWz2_SQf3sHplJJbWpQJjw49o1j7yHt221cEsDawxd09QcH6hp2eTDpmH1h7c33ZUuzmET_-NJ1hV55e8zq_BefHRz8Op-nQNCF16Iss0orLIAuXG86DtCZkwgkjjQ8ExBVc7R16CN7Y3DbKC-GkQo6gjViH3Ba-EcU2rM_buX8PrPTKNY2tRVBcBCEtGpdVQAUO1hVWZglkIxO1GxDFqbHFjY6R7ULpnvEaGa8j4zVP4MtyzW2Pp_HP2Qe0N8uZhIUdP7R3l3qQDd3UQlHTZOdsJqqaGzwzvVHIgtKic2sS2B13Vg8K2ml043ARFZAmsL8cRtWieImJu0RzaiGp5WECO70gLCkpCLSnkjhSrYjICqmrI_PrqwjfrcpSoNWXwNdRmJ7I-jsrPvzf9I_wMid5z3K8aHdhHSXL76H5tLCfBn35Bc_VFKc priority: 102 providerName: Springer Nature |
Title | Heterogeneous dissociation process of truncated RNAs by oligomerized Vasa helicase |
URI | https://link.springer.com/article/10.1038/s42003-021-02918-0 https://www.ncbi.nlm.nih.gov/pubmed/34893756 https://www.proquest.com/docview/2608620628 https://www.proquest.com/docview/2609455936 https://pubmed.ncbi.nlm.nih.gov/PMC8664846 https://doaj.org/article/d9486288ccb14790a376ea8c2a6b107a |
Volume | 4 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WhMFexr7rrQse7G0zlW3JkZ9GGlpCYGFk6-ibkWSpLZQ4q7OH7q_fnSwnZB99lWSQ70s_3Z3uAN5rXReCO5HYlFw3GdOJUkImTKeSOWacMBTR_bwoZud8fiEugsOtDWmVvU30hrpuDPnIjxF3I_imF3-f1j8S6hpF0dXQQuMAhmiCpRzA8OR08WW587IQns95eC3Dcnnccp-ORZkJLCtT3NXeieQL9_8Lbf6dNPlH5NQfSGdP4HFAkvGkY_1TeGBXz-Bh11vy7jksZ5To0qB8WLzcxxR37_kQr7vXAXHj4s3tTyoLa-t4uZi0sb6Lm5vry4biOL9w8LtqVXxlybPX2hdwfnb6bTpLQgOFxOC9ZJOMmXAiN5lizAmtXMoNV0JZR0W5nCmtwduCVTrTtbScGyGRIogXS5fp3NY8fwmDVbOyhxAXVpq61iV3knHHhUagOXaozE6bXIs0grQnYmVCdXFqcnFT-Sh3LquO8BUSvvKEr1gEH7bfrLvaGveuPiHebFdSXWw_0NxeVkHNqrrkkhooG6NTPi6ZQvtplUQSFBovuiqCo56zVVDWttqJVgTvttOoZhQ7UZ5LtKbkgtofRvCqE4TtTnIq4DMWODPeE5G9re7PrK6vfClvWRQcEWAEH3th2m3r_6R4ff9fvIFHGcl3muEhewQDlCT7FqHTRo9gOJnMv85HQU9GcDAtpiPviPgNufQaaA |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJThDVSexsckCohVZb2q7QqkW9Gdux20rVZttshZYfxW9kJo9dLY_eeo2dyJn5PP7sGc8AvDGmSKXwMnQRHd3E3IRayyzkJsq459ZLSx7dg2E6OBJfjuXxCvzq7sJQWGVnE2tDXZSWzsg3kHcj-aYbfx8nFyFVjSLvaldCo4HFnpv9wC1b9WH3M-r3bRzvbB9-GoRtVYHQIlmfhn0uvUxsrDn30mgfCSu01M5Tpipvc2eRQjttYlNkTggrszjHTU2a-9gkrhAJfvcWrIok5XEPVre2h19Hi1Md2j8kor2dw5NsoxJ1-BdFQnD8EEphaQWsCwX8i93-HaT5h6e2XgB37sO9lrmyzQZqD2DFjR_C7aaW5ewRjAYUWFMiHl15VTHy83d6Z5PmNgIrPZteXlEaWlew0XCzYmbGyvOzk5L8Rj_x4TddaXbq6CSxco_h6EZE-wR643LsngFLXWaLwuTCZ1x4IQ0S275H4-GNTYyMAog6ISrbZjOnohrnqvaqJ5lqBK9Q8KoWvOIBvJu_M2lyeVzbe4t0M-9JebjrB-XliWqntSpykVHBZmtNJPo512ivnc5QBKnBjbUOYL3TrGqNQ6UWUA7g9bwZpzX5anStJeqTC0nlFgN42gBhPpKEEgb1Jbb0lyCyNNTllvHZaZ06PEtTgYwzgPcdmBbD-r8o1q7_i1dwZ3B4sK_2d4d7z-FuTFiPYlzg16GHqHIvkLZNzct2rjD4ftPT8zexnFTJ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTqC9IP6TMcBI8AQZTmKnzgMPhVF1HVRoMLQ3Yzv2NmlqqqUTKh-Iz8nZSToVBhIPe43PjnV3tn_nO98BPNe6zDlzPLaJv7pJqY6V4iKmOhHUUeO48R7dj5N8dMDGh_xwDX52b2FC0H5IaRm26S467HXNQhSVDyigaZHgYNuz0rXBlHt28R1NtfrN7g7K9UWaDt9_eTeK22oCsUGQPo_7lDuemVRR6rhWLmGGKa6s8xmqnCmsQehslU51KSxjhgv8D4KnwqU6syXLcNxrsI74PmE9WB8Mxp_HF7c53m7IWPsqh2bikgmvnHyhQMBlqPbP4MzfPLTh4BvegpstYiWDhke3Yc1O78D1pobl4i7sj3xATYV6aKvzmnj_fidvMmteIZDKkfnZuU8_a0uyPxnURC9IdXpyVHl_0Q_8-FXVihxbf4NY23twcCWsvQ-9aTW1D4HkVpiy1AVzgjLHuEZA23e4aThtMs2TCJKOidK0Wcx9MY1TGbzpmZAN4yUyXgbGSxrBy2WfWZPD45_Ub71slpQ-_3b4UJ0dyVYfZVkw4Qs1G6MT1i-own3aKoEsyDUa1CqCrU6yst0UaommI3byj1YjeLZsxuXsfTQqSMnTFIz7MosRPGgUYTmTzCcK6nNs6a-oyMpUV1umJ8chZbjIc4ZIM4JXnTJdTOvvrNj8P_KncOPTzlB-2J3sPYKN1Kt-kuI5vwU9VDL7GNHbXD9plw6Bb1e9Wn8BQq9Tkw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+dissociation+process+of+truncated+RNAs+by+oligomerized+Vasa+helicase&rft.jtitle=Communications+biology&rft.au=Kinoshita%2C+Yoshimi&rft.au=Murakami%2C+Ryo&rft.au=Muto%2C+Nao&rft.au=Kubo%2C+Shintaroh&rft.date=2021-12-10&rft.issn=2399-3642&rft.eissn=2399-3642&rft.volume=4&rft.issue=1&rft.spage=1386&rft_id=info:doi/10.1038%2Fs42003-021-02918-0&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon |