Heterogeneous dissociation process of truncated RNAs by oligomerized Vasa helicase

RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may con...

Full description

Saved in:
Bibliographic Details
Published inCommunications biology Vol. 4; no. 1; pp. 1386 - 7
Main Authors Kinoshita, Yoshimi, Murakami, Ryo, Muto, Nao, Kubo, Shintaroh, Iizuka, Ryo, Uemura, Sotaro
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency.
AbstractList RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency. Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency.
Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency.
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa's oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa's oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa's oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.
RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation, and mRNA splicing. While the helicase core is crucial for RNA unwinding activity, N- and C-terminal extensions of specific helicases may contain an intrinsically disordered region for electrostatic interaction, resulting in the formation of droplets in the cytoplasm. However, how the disordered region of the RNA helicase contributes to RNA unwinding and dissociation remains unclear. Here, we focused on Bombyx mori Vasa, which unwinds truncated target transposon RNAs from the piRNA-induced silencing complex piRISC. In this study, we used single-molecule techniques to visualise how Vasa dynamically interacts with piRISC and investigate how Vasa oligomerization is involved in the process of piRNA amplification, named the ping-pong pathway. We found that Vasa’s oligomerization is required during these processes in vitro and in vivo, and that Vasa triggers the dissociation of truncated RNA in heterogeneous pathways. Our single-molecule results suggest that oligomerized Vasa guides the timing of the process regulating overall dissociation efficiency.Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein oligomerization and the dissociation of target RNA from the Siwi-piRISC complex. The authors conclude that oligomerized Vasa guides the timing of the regulation of overall dissociation efficiency.
ArticleNumber 1386
Author Uemura, Sotaro
Muto, Nao
Murakami, Ryo
Iizuka, Ryo
Kubo, Shintaroh
Kinoshita, Yoshimi
Author_xml – sequence: 1
  givenname: Yoshimi
  surname: Kinoshita
  fullname: Kinoshita, Yoshimi
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 2
  givenname: Ryo
  surname: Murakami
  fullname: Murakami, Ryo
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 3
  givenname: Nao
  surname: Muto
  fullname: Muto, Nao
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 4
  givenname: Shintaroh
  surname: Kubo
  fullname: Kubo, Shintaroh
  organization: Department of Biophysics, Graduate School of Science, Kyoto University
– sequence: 5
  givenname: Ryo
  orcidid: 0000-0002-9328-5628
  surname: Iizuka
  fullname: Iizuka, Ryo
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
– sequence: 6
  givenname: Sotaro
  orcidid: 0000-0001-9701-1803
  surname: Uemura
  fullname: Uemura, Sotaro
  email: uemura@bs.s.u-tokyo.ac.jp
  organization: Department of Biological Sciences, Graduate School of Science, The University of Tokyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34893756$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAUtFARLaV_gAOKxIVLwN-xL0hVBbRSBVIFXK0X52XrVTZe7ASp_Hq8mxbaHnqwbD3PjMfvzUtyMMYRCXnN6HtGhfmQJadU1JSzsiwzNX1GjriwthZa8oN750NykvOaUsqstVrIF-RQSGNFo_QRuTrHCVNc4YhxzlUXco4-wBTiWG1T9JhzFftqSvPoYcKuuvp6mqv2popDWMUNpvCnFH9Chuoah-Ah4yvyvIch48ntfkx-fP70_ey8vvz25eLs9LL2muqpbqjqlfAcKO1VCz2TXoIC7C1VrPcWfaMMQsvbzqCUXpnyTcu07XkrsJPimFwsul2EtdumsIF04yIEty_EtHKQpuAHdJ2VRnNjvG-ZbCwF0WgEUx7XLaMNFK2Pi9Z2bjfYeRynBMMD0Yc3Y7h2q_jbGa2lkboIvLsVSPHXjHlym5A9DgPsG-u4plYqZcUO-vYRdB3nNJZW7VDFJy1WC-rNfUf_rNyNrgDMAvAp5pywdz5M-8EVg2FwjLpdUNwSFFeC4vZBcbRQ-SPqnfqTJLGQcgGPK0z_bT_B-gvaNNAp
CitedBy_id crossref_primary_10_1038_s41467_024_54955_y
Cites_doi 10.1016/j.molcel.2015.06.030
10.1016/j.cell.2014.05.018
10.1016/j.cell.2007.01.043
10.1146/annurev-biochem-060713-035546
10.1038/s41467-019-11083-2
10.15252/embr.202051313
10.1261/rna.070268.118
10.1016/S0022-2836(02)01277-9
10.1016/j.molcel.2015.04.027
10.1016/S1097-2765(01)00329-X
10.1073/pnas.0705488105
10.1016/j.celrep.2014.12.013
10.1038/s41598-018-34549-7
10.1016/j.molcel.2015.05.015
10.1038/nature14254
10.1016/j.bpj.2013.01.014
10.1016/j.cell.2006.01.054
10.15252/embj.201796941
10.1016/j.molcel.2015.01.013
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
88I
8FE
8FH
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s42003-021-02918-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central (New)
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Biological Sciences
Science Database
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
CrossRef
MEDLINE

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2399-3642
EndPage 7
ExternalDocumentID oai_doaj_org_article_d9486288ccb14790a376ea8c2a6b107a
PMC8664846
34893756
10_1038_s42003_021_02918_0
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: JPMJCR14W1
  funderid: https://doi.org/10.13039/501100002241
– fundername: ;
  grantid: JPMJCR14W1
GroupedDBID 0R~
53G
88I
AAJSJ
ABDBF
ABUWG
ACGFS
ACSMW
ACUHS
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AZQEC
BBNVY
BCNDV
BENPR
BHPHI
C6C
CCPQU
DWQXO
EBLON
EBS
GNUQQ
GROUPED_DOAJ
HCIFZ
HYE
M2P
M7P
M~E
NAO
O9-
OK1
PGMZT
PIMPY
RNT
RPM
SNYQT
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7XB
8FE
8FH
8FK
AARCD
LK8
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-705f53c2a00f5baf14c4a5aef9051fc9ec758eab2bd8e44c582919169f2b3ed43
IEDL.DBID BENPR
ISSN 2399-3642
IngestDate Wed Aug 27 01:22:13 EDT 2025
Thu Aug 21 18:29:04 EDT 2025
Tue Aug 05 10:09:34 EDT 2025
Wed Aug 13 10:01:24 EDT 2025
Thu Jan 02 22:57:05 EST 2025
Tue Jul 01 03:01:36 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Fri Feb 21 02:40:09 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-705f53c2a00f5baf14c4a5aef9051fc9ec758eab2bd8e44c582919169f2b3ed43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9701-1803
0000-0002-9328-5628
OpenAccessLink https://www.proquest.com/docview/2608620628?pq-origsite=%requestingapplication%
PMID 34893756
PQID 2608620628
PQPubID 4669726
PageCount 7
ParticipantIDs doaj_primary_oai_doaj_org_article_d9486288ccb14790a376ea8c2a6b107a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8664846
proquest_miscellaneous_2609455936
proquest_journals_2608620628
pubmed_primary_34893756
crossref_citationtrail_10_1038_s42003_021_02918_0
crossref_primary_10_1038_s42003_021_02918_0
springer_journals_10_1038_s42003_021_02918_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-10
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Communications biology
PublicationTitleAbbrev Commun Biol
PublicationTitleAlternate Commun Biol
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Theissen, Karow, Kohler, Gubaev, Klostermeier (CR5) 2008; 105
Nott (CR6) 2015; 57
Putnam (CR11) 2015; 59
Xiol (CR7) 2014; 157
Tanner, Linder (CR2) 2001; 8
Sengoku, Nureki, Nakamura, Kobayashi, Yokoyama (CR4) 2006; 125
Nishida (CR8) 2015; 10
Murakami, Sumiyoshi, Negishi, Siomi (CR10) 2021; 22
Yao, Sasaki, Ueda, Tomari, Tadakuma (CR17) 2015; 59
Linder, Jankowsky (CR1) 2011; 12
Jarmoskaite, Russell (CR3) 2014; 83
Brennecke (CR9) 2007; 128
Yokota, Chujo, Harada (CR14) 2013; 104
Maluf, Fischer, Lohman (CR15) 2003; 325
Kinoshita (CR20) 2018; 8
Jo (CR18) 2015; 59
Iwasaki (CR16) 2015; 521
Osuka (CR19) 2018; 37
Song, Ji (CR12) 2019; 10
Liao, Kandasamy, Zhu, Fukunaga (CR13) 2019; 25
K Osuka (2918_CR19) 2018; 37
J Xiol (2918_CR7) 2014; 157
NK Tanner (2918_CR2) 2001; 8
T Sengoku (2918_CR4) 2006; 125
TJ Nott (2918_CR6) 2015; 57
H Yokota (2918_CR14) 2013; 104
NK Maluf (2918_CR15) 2003; 325
AA Putnam (2918_CR11) 2015; 59
P Linder (2918_CR1) 2011; 12
I Jarmoskaite (2918_CR3) 2014; 83
C Yao (2918_CR17) 2015; 59
Iwasaki (2918_CR16) 2015; 521
MH Jo (2918_CR18) 2015; 59
J Brennecke (2918_CR9) 2007; 128
Kinoshita (2918_CR20) 2018; 8
S Liao (2918_CR13) 2019; 25
B Theissen (2918_CR5) 2008; 105
H Song (2918_CR12) 2019; 10
KM Nishida (2918_CR8) 2015; 10
R Murakami (2918_CR10) 2021; 22
References_xml – volume: 59
  start-page: 541
  year: 2015
  end-page: 552
  ident: CR11
  article-title: Division of labor in an oligomer of the DEAD-box RNA helicase Ded1p
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.06.030
– volume: 157
  start-page: 1698
  year: 2014
  end-page: 1711
  ident: CR7
  article-title: RNA clamping by Vasa assembles a piRNA amplifier complex on transposon transcripts
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.018
– volume: 128
  start-page: 1089
  year: 2007
  end-page: 1103
  ident: CR9
  article-title: Discrete small RNA-generating loci as master regulators of transposon activity in
  publication-title: Drosophila. Cell
  doi: 10.1016/j.cell.2007.01.043
– volume: 83
  start-page: 697
  year: 2014
  end-page: 725
  ident: CR3
  article-title: RNA helicase proteins as chaperones and remodelers
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060713-035546
– volume: 10
  year: 2019
  ident: CR12
  article-title: The mechanism of RNA duplex recognition and unwinding by DEAD-box helicase DDX3X
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11083-2
– volume: 22
  start-page: e51313
  year: 2021
  ident: CR10
  article-title: DEAD-box polypeptide 43 facilitates piRNA amplification by actively liberating RNA from Ago3-piRISC
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051313
– volume: 25
  start-page: 825
  year: 2019
  end-page: 839
  ident: CR13
  article-title: DEAD-box RNA helicase Belle posttranscriptionally promotes gene expression in and ATPase activity-dependent manner
  publication-title: RNA
  doi: 10.1261/rna.070268.118
– volume: 12
  start-page: 505
  year: 2011
  end-page: 516
  ident: CR1
  article-title: From unwinding to clamping – the DEAD box RNA helicase family
  publication-title: Mol. Cell Biol.
– volume: 325
  start-page: 913
  year: 2003
  end-page: 935
  ident: CR15
  article-title: A dimer of UvrD is the active form of the helicase in vitro
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01277-9
– volume: 59
  start-page: 117
  year: 2015
  end-page: 124
  ident: CR18
  article-title: Human argonaute 2 has diverse reaction pathways on target RNAs
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.04.027
– volume: 8
  start-page: 251
  year: 2001
  end-page: 262
  ident: CR2
  article-title: DExD/H box RNA helicases: from generic motors to specific dissociation functions
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00329-X
– volume: 105
  start-page: 548
  year: 2008
  end-page: 5536
  ident: CR5
  article-title: Cooporative binding of ATP and RNA induces a closed conformation in a DEAD box RNA helicase
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.0705488105
– volume: 10
  start-page: 193
  year: 2015
  end-page: 203
  ident: CR8
  article-title: Respective functions of two distinct siwi complexes assembled during PIWI-interacting RNA biogenesis in germ cells
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.013
– volume: 8
  year: 2018
  ident: CR20
  article-title: Step sizes and rate constants of single-headed cytoplasmic dynein measured with optical tweezers
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34549-7
– volume: 59
  start-page: 125
  year: 2015
  end-page: 132
  ident: CR17
  article-title: Single-molecule analysis of the target cleavage reaction by the RNAi enzyme complex
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.015
– volume: 521
  start-page: 533
  year: 2015
  end-page: 549
  ident: CR16
  article-title: Defining fundamental steps in the assembly of the RNAi enzyme complex
  publication-title: Nature
  doi: 10.1038/nature14254
– volume: 104
  start-page: 924
  year: 2013
  end-page: 933
  ident: CR14
  article-title: Single-molecule imaging of the oligomer formation of the nonhexameric Escherichia coli UvrD helicase
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.01.014
– volume: 125
  start-page: 287
  year: 2006
  end-page: 300
  ident: CR4
  article-title: Structural basis for RNA unwinding by DEAD-box protein Vasa
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.054
– volume: 37
  start-page: e96941
  year: 2018
  ident: CR19
  article-title: Real-time observation of flexible domain movements in CRISPR-Cas9
  publication-title: EMBO J.
  doi: 10.15252/embj.201796941
– volume: 57
  start-page: 936
  year: 2015
  end-page: 947
  ident: CR6
  article-title: Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 8
  year: 2018
  ident: 2918_CR20
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-34549-7
– volume: 37
  start-page: e96941
  year: 2018
  ident: 2918_CR19
  publication-title: EMBO J.
  doi: 10.15252/embj.201796941
– volume: 22
  start-page: e51313
  year: 2021
  ident: 2918_CR10
  publication-title: EMBO Rep.
  doi: 10.15252/embr.202051313
– volume: 521
  start-page: 533
  year: 2015
  ident: 2918_CR16
  publication-title: Nature
  doi: 10.1038/nature14254
– volume: 12
  start-page: 505
  year: 2011
  ident: 2918_CR1
  publication-title: Mol. Cell Biol.
– volume: 57
  start-page: 936
  year: 2015
  ident: 2918_CR6
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.01.013
– volume: 325
  start-page: 913
  year: 2003
  ident: 2918_CR15
  publication-title: J. Mol. Biol.
  doi: 10.1016/S0022-2836(02)01277-9
– volume: 128
  start-page: 1089
  year: 2007
  ident: 2918_CR9
  publication-title: Drosophila. Cell
  doi: 10.1016/j.cell.2007.01.043
– volume: 8
  start-page: 251
  year: 2001
  ident: 2918_CR2
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(01)00329-X
– volume: 104
  start-page: 924
  year: 2013
  ident: 2918_CR14
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2013.01.014
– volume: 83
  start-page: 697
  year: 2014
  ident: 2918_CR3
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev-biochem-060713-035546
– volume: 157
  start-page: 1698
  year: 2014
  ident: 2918_CR7
  publication-title: Cell
  doi: 10.1016/j.cell.2014.05.018
– volume: 59
  start-page: 541
  year: 2015
  ident: 2918_CR11
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.06.030
– volume: 10
  year: 2019
  ident: 2918_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-11083-2
– volume: 59
  start-page: 117
  year: 2015
  ident: 2918_CR18
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.04.027
– volume: 105
  start-page: 548
  year: 2008
  ident: 2918_CR5
  publication-title: Proc. Nat. Acad. Sci. USA
  doi: 10.1073/pnas.0705488105
– volume: 25
  start-page: 825
  year: 2019
  ident: 2918_CR13
  publication-title: RNA
  doi: 10.1261/rna.070268.118
– volume: 59
  start-page: 125
  year: 2015
  ident: 2918_CR17
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.05.015
– volume: 10
  start-page: 193
  year: 2015
  ident: 2918_CR8
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.013
– volume: 125
  start-page: 287
  year: 2006
  ident: 2918_CR4
  publication-title: Cell
  doi: 10.1016/j.cell.2006.01.054
SSID ssj0001999634
Score 2.1889896
Snippet RNA helicases are enzymes that generally unwind double-stranded RNA using ATP hydrolysis energy, mainly involved in RNA metabolism, transcription, translation,...
Kinoshita et al. use single molecule imaging to show that the N-terminal extension of BmVasa, a germ-specific DEAD box RNA helicase, is necessary for protein...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1386
SubjectTerms 101/1
631/337/2265
631/57/2265
82/83
Animals
Biology
Biomedical and Life Sciences
Bombyx - enzymology
Bombyx - genetics
Cytoplasm
DEAD-box RNA Helicases - genetics
DEAD-box RNA Helicases - metabolism
DNA helicase
Double-stranded RNA
Electrostatic properties
Enzymes
Glass substrates
Insect Proteins - genetics
Insect Proteins - metabolism
Life Sciences
Metabolism
Oligomerization
RNA helicase
RNA Interference
RNA, Small Interfering - genetics
Single Molecule Imaging
Transcription
Unwinding
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSx0xEB-KUOhF1FZdP0qE3nQxu5vsZo9aKg9BD1LFW0iyiQry9uG-Huxf70x239NX23rxmg8YfpkhM5nJbwC-WduUUgSZ-oyebnJuU2OkSrnNFA_cBekoo3t2Xo4uxem1vH7R6otqwnp64B64w6YWilriOmczUdXcoEV4o1xuSouhS3SN8M57EUzF1xXy4wsx_JLhhTrsRCzDoooEntcZSrNwE0XC_r95ma-LJf_ImMaL6GQFlgcPkh31kq_CBz9eg499T8nHz3AxogKXFvXCY1DPKN8-w59N-l8BrA1s-vCL6GB9wy7OjzpmH1l7f3fTUv7mNw5emc6wW08vep3_ApcnP35-H6VD44TUYTwyTSsugywQIs6DtCZkwgkjjQ9ExhVc7R1GCd7Y3DbKC-GkQkTQT6xDbgvfiGIdlsbt2G8CK71yTWNrERQXQUiLDmYV0IiDdYWVWQLZDETtBlZxam5xr2N2u1C6B14j8DoCr3kC-_M9k55T47-rj-ls5iuJDzsOoJboQUv0W1qSwM7sZPVgpJ3GUA430SfSBPbm02helDMx8ZRoTS0ktT1MYKNXhLkkBRH3VBJnqgUVWRB1cWZ8dxspvFVZCvT8EjiYKdOzWP-GYus9oNiGTzlZQZbjFbwDS6hvfhcdq6n9Gm3oCbK2HeQ
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT90wDLcYCGmXaR_AusEUpN22ammbtOnxgUBPTxoHGBO3KEkTQEKviD4O8NfPTtuH3sYm7dokleXYiR3bPwN8trYppQgy9Rk93eTcpsZIlXKbKR64C9JRRPf7STk9F7MLebEG-VgLE5P2I6RlPKbH7LBvnYhZVJRQwPM6w5-9gA2CakfZ3phMZmezp5cVsuELMVTI8EI9s3jlFopg_c9ZmH8mSv4WLY2X0PFreDVYj2zS0_sG1vz8LWz2_SQf3sHplJJbWpQJjw49o1j7yHt221cEsDawxd09QcH6hp2eTDpmH1h7c33ZUuzmET_-NJ1hV55e8zq_BefHRz8Op-nQNCF16Iss0orLIAuXG86DtCZkwgkjjQ8ExBVc7R16CN7Y3DbKC-GkQo6gjViH3Ba-EcU2rM_buX8PrPTKNY2tRVBcBCEtGpdVQAUO1hVWZglkIxO1GxDFqbHFjY6R7ULpnvEaGa8j4zVP4MtyzW2Pp_HP2Qe0N8uZhIUdP7R3l3qQDd3UQlHTZOdsJqqaGzwzvVHIgtKic2sS2B13Vg8K2ml043ARFZAmsL8cRtWieImJu0RzaiGp5WECO70gLCkpCLSnkjhSrYjICqmrI_PrqwjfrcpSoNWXwNdRmJ7I-jsrPvzf9I_wMid5z3K8aHdhHSXL76H5tLCfBn35Bc_VFKc
  priority: 102
  providerName: Springer Nature
Title Heterogeneous dissociation process of truncated RNAs by oligomerized Vasa helicase
URI https://link.springer.com/article/10.1038/s42003-021-02918-0
https://www.ncbi.nlm.nih.gov/pubmed/34893756
https://www.proquest.com/docview/2608620628
https://www.proquest.com/docview/2609455936
https://pubmed.ncbi.nlm.nih.gov/PMC8664846
https://doaj.org/article/d9486288ccb14790a376ea8c2a6b107a
Volume 4
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_WhMFexr7rrQse7G0zlW3JkZ9GGlpCYGFk6-ibkWSpLZQ4q7OH7q_fnSwnZB99lWSQ70s_3Z3uAN5rXReCO5HYlFw3GdOJUkImTKeSOWacMBTR_bwoZud8fiEugsOtDWmVvU30hrpuDPnIjxF3I_imF3-f1j8S6hpF0dXQQuMAhmiCpRzA8OR08WW587IQns95eC3Dcnnccp-ORZkJLCtT3NXeieQL9_8Lbf6dNPlH5NQfSGdP4HFAkvGkY_1TeGBXz-Bh11vy7jksZ5To0qB8WLzcxxR37_kQr7vXAXHj4s3tTyoLa-t4uZi0sb6Lm5vry4biOL9w8LtqVXxlybPX2hdwfnb6bTpLQgOFxOC9ZJOMmXAiN5lizAmtXMoNV0JZR0W5nCmtwduCVTrTtbScGyGRIogXS5fp3NY8fwmDVbOyhxAXVpq61iV3knHHhUagOXaozE6bXIs0grQnYmVCdXFqcnFT-Sh3LquO8BUSvvKEr1gEH7bfrLvaGveuPiHebFdSXWw_0NxeVkHNqrrkkhooG6NTPi6ZQvtplUQSFBovuiqCo56zVVDWttqJVgTvttOoZhQ7UZ5LtKbkgtofRvCqE4TtTnIq4DMWODPeE5G9re7PrK6vfClvWRQcEWAEH3th2m3r_6R4ff9fvIFHGcl3muEhewQDlCT7FqHTRo9gOJnMv85HQU9GcDAtpiPviPgNufQaaA
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrRBcEG9SChgJThDVSexsckCohVZb2q7QqkW9Gdux20rVZttshZYfxW9kJo9dLY_eeo2dyJn5PP7sGc8AvDGmSKXwMnQRHd3E3IRayyzkJsq459ZLSx7dg2E6OBJfjuXxCvzq7sJQWGVnE2tDXZSWzsg3kHcj-aYbfx8nFyFVjSLvaldCo4HFnpv9wC1b9WH3M-r3bRzvbB9-GoRtVYHQIlmfhn0uvUxsrDn30mgfCSu01M5Tpipvc2eRQjttYlNkTggrszjHTU2a-9gkrhAJfvcWrIok5XEPVre2h19Hi1Md2j8kor2dw5NsoxJ1-BdFQnD8EEphaQWsCwX8i93-HaT5h6e2XgB37sO9lrmyzQZqD2DFjR_C7aaW5ewRjAYUWFMiHl15VTHy83d6Z5PmNgIrPZteXlEaWlew0XCzYmbGyvOzk5L8Rj_x4TddaXbq6CSxco_h6EZE-wR643LsngFLXWaLwuTCZ1x4IQ0S275H4-GNTYyMAog6ISrbZjOnohrnqvaqJ5lqBK9Q8KoWvOIBvJu_M2lyeVzbe4t0M-9JebjrB-XliWqntSpykVHBZmtNJPo512ivnc5QBKnBjbUOYL3TrGqNQ6UWUA7g9bwZpzX5anStJeqTC0nlFgN42gBhPpKEEgb1Jbb0lyCyNNTllvHZaZ06PEtTgYwzgPcdmBbD-r8o1q7_i1dwZ3B4sK_2d4d7z-FuTFiPYlzg16GHqHIvkLZNzct2rjD4ftPT8zexnFTJ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1fb9MwED-NTqC9IP6TMcBI8AQZTmKnzgMPhVF1HVRoMLQ3Yzv2NmlqqqUTKh-Iz8nZSToVBhIPe43PjnV3tn_nO98BPNe6zDlzPLaJv7pJqY6V4iKmOhHUUeO48R7dj5N8dMDGh_xwDX52b2FC0H5IaRm26S467HXNQhSVDyigaZHgYNuz0rXBlHt28R1NtfrN7g7K9UWaDt9_eTeK22oCsUGQPo_7lDuemVRR6rhWLmGGKa6s8xmqnCmsQehslU51KSxjhgv8D4KnwqU6syXLcNxrsI74PmE9WB8Mxp_HF7c53m7IWPsqh2bikgmvnHyhQMBlqPbP4MzfPLTh4BvegpstYiWDhke3Yc1O78D1pobl4i7sj3xATYV6aKvzmnj_fidvMmteIZDKkfnZuU8_a0uyPxnURC9IdXpyVHl_0Q_8-FXVihxbf4NY23twcCWsvQ-9aTW1D4HkVpiy1AVzgjLHuEZA23e4aThtMs2TCJKOidK0Wcx9MY1TGbzpmZAN4yUyXgbGSxrBy2WfWZPD45_Ub71slpQ-_3b4UJ0dyVYfZVkw4Qs1G6MT1i-own3aKoEsyDUa1CqCrU6yst0UaommI3byj1YjeLZsxuXsfTQqSMnTFIz7MosRPGgUYTmTzCcK6nNs6a-oyMpUV1umJ8chZbjIc4ZIM4JXnTJdTOvvrNj8P_KncOPTzlB-2J3sPYKN1Kt-kuI5vwU9VDL7GNHbXD9plw6Bb1e9Wn8BQq9Tkw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heterogeneous+dissociation+process+of+truncated+RNAs+by+oligomerized+Vasa+helicase&rft.jtitle=Communications+biology&rft.au=Kinoshita%2C+Yoshimi&rft.au=Murakami%2C+Ryo&rft.au=Muto%2C+Nao&rft.au=Kubo%2C+Shintaroh&rft.date=2021-12-10&rft.issn=2399-3642&rft.eissn=2399-3642&rft.volume=4&rft.issue=1&rft.spage=1386&rft_id=info:doi/10.1038%2Fs42003-021-02918-0&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2399-3642&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2399-3642&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2399-3642&client=summon