Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors

Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleyt...

Full description

Saved in:
Bibliographic Details
Published inLight, science & applications Vol. 9; no. 1; pp. 192 - 16
Main Authors Wang, Yuhan, Nie, Zhonghui, Wang, Fengqiu
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 23.11.2020
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors. Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices.
AbstractList Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors. Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices.
Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.
Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.Semiconductor photocarriers: Exploring excitons in two dimensionsElectrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices.
Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices.
Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.
Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors. Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices.
ArticleNumber 192
Author Wang, Yuhan
Nie, Zhonghui
Wang, Fengqiu
Author_xml – sequence: 1
  givenname: Yuhan
  surname: Wang
  fullname: Wang, Yuhan
  organization: School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University
– sequence: 2
  givenname: Zhonghui
  surname: Nie
  fullname: Nie, Zhonghui
  organization: MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology
– sequence: 3
  givenname: Fengqiu
  orcidid: 0000-0001-9823-5788
  surname: Wang
  fullname: Wang, Fengqiu
  email: fwang@nju.edu.cn
  organization: School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33298847$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVArWob-AAsUiQ2b0OtH_NggoYpHpaJ2AWvLcZypR4k92Emhf49n0kLbRb2x5fPQ0b3nFToIMTiE3mD4gIHK08wwFaIGAjUAo1CzF-iYABO1aKg8ePA-Qic5b6AcxTBI8RIdUUqUlEwco6vvsZsHM_kYqthX2-s4RWtS8i5VyQ3mzwJ1t8GM3ubKh2r6HevOjy7kgpihyq4gMXSznWLKr9Fhb4bsTu7uFfr55fOPs2_1xeXX87NPF7XlwKeag20sbaGEACd4J6FTSlAJpqEUY2JBSCxM0_YKaGsZbgjuG-Iob510jNMVOl98u2g2epv8aNKtjsbr_UdMa23S5O3gdKMwdti2tseY9bRVfceNUr0wnBtbprlCHxev7dyOrrMuTMkMj0wfI8Ff63W80YJLEAoXg_d3Bin-ml2e9OizdcNggotz1oRxBYoQygr13RPqJs6pzHHHEhQrQdjO8O3DRP-i3C-uEORCsCnmnFyvrZ_2uyoB_aAx6F1N9FITXWqi9zXRuwTkifTe_VkRXUS5kMPapf-xn1H9BWi5zxs
CitedBy_id crossref_primary_10_1016_j_optlastec_2023_109635
crossref_primary_10_1002_smll_202309595
crossref_primary_10_1039_D4TC04975F
crossref_primary_10_1021_acsnano_1c10577
crossref_primary_10_1088_1361_648X_ac9d7e
crossref_primary_10_1021_acs_jpcc_4c04201
crossref_primary_10_1021_acs_nanolett_3c02536
crossref_primary_10_1038_s41699_024_00512_6
crossref_primary_10_1039_D1NR03639D
crossref_primary_10_1021_acsami_1c00786
crossref_primary_10_1016_j_nanoen_2025_110902
crossref_primary_10_1002_smll_202302760
crossref_primary_10_1021_acsanm_4c02205
crossref_primary_10_1038_s41377_024_01380_x
crossref_primary_10_1063_5_0180501
crossref_primary_10_1063_5_0149950
crossref_primary_10_1039_D3NR02116E
crossref_primary_10_1103_PhysRevB_111_054310
crossref_primary_10_1515_nanoph_2021_0582
crossref_primary_10_1002_admt_202301079
crossref_primary_10_1038_s41467_024_50196_1
crossref_primary_10_1039_D3NR04878K
crossref_primary_10_1007_s12274_021_3979_6
crossref_primary_10_1021_acsnano_2c10479
crossref_primary_10_1002_admi_202101343
crossref_primary_10_3390_catal14050298
crossref_primary_10_1021_acs_jpclett_2c00315
crossref_primary_10_1002_admi_202202003
crossref_primary_10_1007_s11432_022_3719_4
crossref_primary_10_1039_D4TC00660G
crossref_primary_10_1016_j_mtphys_2022_100903
crossref_primary_10_1016_j_mtsust_2022_100264
crossref_primary_10_1007_s00604_023_05668_4
crossref_primary_10_1016_j_micrna_2022_207417
crossref_primary_10_1039_D3NH00194F
crossref_primary_10_1039_D1NR04224F
crossref_primary_10_1038_s41467_024_54776_z
crossref_primary_10_1039_D2CP00670G
crossref_primary_10_1088_1361_6528_ac715d
crossref_primary_10_1002_adom_202403137
crossref_primary_10_1063_5_0240071
crossref_primary_10_1021_acsnano_1c06822
crossref_primary_10_1002_advs_202400633
crossref_primary_10_1063_5_0060587
crossref_primary_10_1039_D3EE01165H
crossref_primary_10_1002_admt_202200032
crossref_primary_10_1007_s11467_023_1355_6
crossref_primary_10_1002_adfm_202311730
crossref_primary_10_1021_acsphotonics_4c00112
crossref_primary_10_1002_smll_202307346
crossref_primary_10_1063_5_0185604
crossref_primary_10_1021_acsami_4c05901
crossref_primary_10_1021_acs_jpcc_2c06310
crossref_primary_10_1080_21663831_2022_2111233
Cites_doi 10.1063/1.119192
10.1103/PhysRevLett.119.137401
10.1021/nl403742j
10.1088/2053-1583/aa56f1
10.1021/nl503636c
10.1021/acs.nanolett.9b00985
10.1103/PhysRevB.50.1746
10.1063/1.4982738
10.1021/acs.jpcc.5b09904
10.1038/s41565-019-0520-0
10.1103/PhysRevLett.117.257402
10.1038/nphoton.2016.15
10.1021/acsanm.9b02170
10.1021/acs.nanolett.6b04944
10.1002/adfm.201604509
10.1126/science.aad2114
10.1038/nnano.2017.105
10.1039/C6NR02516A
10.1103/PhysRevB.89.205303
10.1016/j.trechm.2019.07.007
10.1103/PhysRevB.95.241406
10.1039/C9NH00045C
10.1126/science.aaw4194
10.1038/ncomms9831
10.1126/science.aao3503
10.1039/C7NR01834G
10.1038/nnano.2014.150
10.1038/s41586-019-1402-1
10.1126/sciadv.aaw2347
10.1126/science.aaw8053
10.1021/nl501962c
10.1103/PhysRevLett.113.076802
10.1002/lpor.201800270
10.1002/smll.201802091
10.1038/nnano.2012.95
10.1103/PhysRevB.93.125423
10.1063/1.123724
10.1038/nphoton.2015.104
10.1038/nphys3928
10.1021/acs.nanolett.6b00251
10.1063/1.4963123
10.1021/acsnano.7b06885
10.1038/s41566-018-0204-6
10.1103/PhysRevB.95.241403
10.1103/PhysRevLett.109.035503
10.1038/natrevmats.2016.55
10.1002/adfm.201103118
10.1038/nphys2942
10.1039/C8NR04568B
10.1364/OL.44.004103
10.1038/ncomms2498
10.1021/acs.jpcc.8b06845
10.1021/jp2047272
10.1109/3.159553
10.1103/PhysRevLett.119.087401
10.1021/acs.nanolett.6b04422
10.1088/2399-1984/aace6c
10.1021/acs.nanolett.5b03708
10.1038/ncomms15251
10.1038/ncomms14111
10.1126/science.aac7820
10.1103/PhysRevB.94.165301
10.1126/sciadv.1700518
10.1038/s41467-018-03174-3
10.1038/s41565-018-0193-0
10.1038/ncomms1740
10.1038/ncomms13906
10.1103/PhysRevLett.121.057403
10.1039/C7NR07227A
10.1016/j.susc.2010.12.009
10.1126/sciadv.1701696
10.1063/1.367411
10.1126/sciadv.aax0145
10.1021/acs.nanolett.7b00748
10.1021/acs.nanolett.6b01727
10.1038/nnano.2014.167
10.1364/OE.23.033370
10.1021/acs.jpcc.0c04000
10.1021/nl903868w
10.1038/ncomms13747
10.1002/adma.201503033
10.1038/s41566-018-0325-y
10.1039/C9NH00462A
10.1021/acsami.7b15478
10.1088/1674-1056/ab99ba
10.1038/nnano.2012.96
10.1021/acsnano.5b06488
10.1103/PhysRevB.89.201302
10.1038/s41565-018-0298-5
10.1021/jacs.9b04663
10.1103/PhysRevB.90.205422
10.1103/PhysRevLett.115.126802
10.1038/ncomms5543
10.1021/acs.nanolett.8b02932
10.1103/PhysRevLett.118.266401
10.1088/2053-1583/aa5b21
10.1021/acsnano.8b05029
10.1093/nsr/nwu078
10.1002/admi.201901307
10.1039/C8TC06343E
10.1103/PhysRevB.95.235408
10.1063/1.101229
10.1063/1.123521
10.1038/s42005-019-0202-0
10.1021/acsnano.8b06503
10.1021/nl501988y
10.1103/PhysRevMaterials.1.044001
10.1103/PhysRevLett.112.047401
10.1038/s41699-017-0019-1
10.1364/CLEO_SI.2020.SM1Q.7
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
88A
88I
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M2P
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
7X8
5PM
DOA
DOI 10.1038/s41377-020-00430-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Biology Database (Alumni Edition)
Science Database (Alumni Edition)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection (via ProQuest)
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Science Database (via ProQuest SciTech Premium Collection)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Biology Journals (Alumni Edition)
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
Publicly Available Content Database

PubMed

CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (subscription)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2047-7538
EndPage 16
ExternalDocumentID oai_doaj_org_article_5911e1cbcf114f3b9fd6a99f7a66ac10
PMC7680791
33298847
10_1038_s41377_020_00430_4
Genre Journal Article
Review
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61427812; 61804074
  funderid: https://doi.org/10.13039/501100001809
– fundername: the State Key Project of Research and Development of China (2018YFB2200500, 2017YFA0206304); National Youth 1000-Talent Plan; A ‘Jiangsu Shuangchuang Team’ Program; Natural Science Foundation of Jiangsu Province (BK20170012).
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61804074
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 61427812
– fundername: ;
– fundername: ;
  grantid: 61427812; 61804074
GroupedDBID 0R~
3V.
5VS
7X7
88A
88I
8FE
8FH
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AZQEC
BBNVY
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DWQXO
EBLON
EBS
FYUFA
GNUQQ
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
KQ8
LK8
M0L
M2P
M7P
M~E
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RNTTT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-60c5c3b08470e76d80d997380a533112c07817a5bf903bc41521f52e36be8e463
IEDL.DBID AAJSJ
ISSN 2047-7538
2095-5545
IngestDate Wed Aug 27 01:29:07 EDT 2025
Thu Aug 21 14:15:56 EDT 2025
Tue Aug 05 11:22:52 EDT 2025
Wed Aug 13 05:28:49 EDT 2025
Thu Jan 02 22:57:33 EST 2025
Thu Apr 24 23:00:11 EDT 2025
Tue Jul 01 03:45:14 EDT 2025
Fri Feb 21 02:38:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-60c5c3b08470e76d80d997380a533112c07817a5bf903bc41521f52e36be8e463
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
ORCID 0000-0001-9823-5788
OpenAccessLink https://www.nature.com/articles/s41377-020-00430-4
PMID 33298847
PQID 2473197241
PQPubID 2041947
PageCount 16
ParticipantIDs doaj_primary_oai_doaj_org_article_5911e1cbcf114f3b9fd6a99f7a66ac10
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680791
proquest_miscellaneous_2469092234
proquest_journals_2473197241
pubmed_primary_33298847
crossref_citationtrail_10_1038_s41377_020_00430_4
crossref_primary_10_1038_s41377_020_00430_4
springer_journals_10_1038_s41377_020_00430_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201123
PublicationDateYYYYMMDD 2020-11-23
PublicationDate_xml – month: 11
  year: 2020
  text: 20201123
  day: 23
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Light, science & applications
PublicationTitleAbbrev Light Sci Appl
PublicationTitleAlternate Light Sci Appl
PublicationYear 2020
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Gupta, Whitaker, Mourou (CR17) 1992; 28
Imaeda (CR83) 2018; 122
L (CR91) 2020; 3
Wang (CR58) 2019; 5
Jauregui (CR84) 2019; 366
Mak, Xiao, Shan (CR36) 2018; 12
Kim (CR106) 2017; 3
Chakraborty (CR55) 2018; 18
Amani (CR9) 2015; 350
Yu, Wu (CR95) 2014; 89
Hao (CR50) 2020; 5
Jiang (CR1) 2017; 118
Rauh, Deibel, Dyakonov (CR32) 2012; 22
Jiang (CR104) 2018; 9
Lien (CR89) 2019; 364
Lin (CR45) 2014; 14
Lederer (CR19) 1999; 74
Rivera (CR98) 2016; 351
Lederer (CR20) 1997; 70
Chernikov (CR24) 2014; 113
Moody (CR69) 2018; 121
Chow (CR79) 2017; 17
Yu (CR35) 2015; 2
Steinleitner (CR60) 2017; 17
Huang (CR82) 2011; 605
Nie (CR47) 2019; 2
Dal Conte (CR21) 2020; 2
Hao (CR75) 2020; 29
He (CR109) 2015; 23
Song (CR102) 2016; 16
Haiml (CR12) 1999; 74
Kaminska (CR18) 1989; 54
CR59
Liu (CR70) 2018; 12
Hong (CR29) 2014; 9
Qiu (CR54) 2019; 5
Zhu (CR77) 2017; 8
Yan (CR103) 2017; 95
Rivera (CR38) 2018; 13
Nie (CR87) 2019; 4
Li (CR23) 2019; 7
Singh (CR99) 2016; 117
Lane, Zhao (CR86) 2018; 2
Fu (CR42) 2019; 6
Kidd, Zhang, Varga (CR2) 2016; 93
CR67
CR64
Volmer (CR100) 2017; 95
Maiti (CR15) 2016; 120
Tedeschi (CR14) 2016; 16
Yu (CR5) 2017; 3
Ceballos (CR25) 2016; 8
Goodman (CR46) 2020; 124
Gul (CR11) 2011; 115
Park (CR41) 2017; 9
Lippert (CR48) 2017; 4
Aivazian (CR57) 2017; 4
Newaz (CR44) 2012; 3
Jin (CR80) 2017; 13
Schaibley (CR97) 2016; 7
Pogna (CR56) 2016; 10
Lagarde (CR93) 2014; 112
Yu (CR78) 2016; 28
Raja (CR49) 2017; 8
Glazov (CR96) 2014; 89
Wang (CR10) 2015; 6
Chen (CR68) 2018; 10
Lee (CR31) 2014; 9
Wang (CR61) 2017; 8
Wang, Zhang, Rana (CR66) 2015; 15
Li (CR74) 2017; 9
Chernikov (CR39) 2015; 9
Jin (CR107) 2018; 360
Thilagam (CR26) 2016; 120
Jin (CR111) 2018; 10
Furchi (CR33) 2014; 14
Schaibley (CR37) 2016; 1
Hintermayr (CR76) 2018; 12
Zeng (CR7) 2012; 7
Li, Carter (CR72) 2019; 141
Othonos (CR13) 1998; 83
Rosenwaks (CR16) 1994; 50
Wang, Zhang, Rana (CR65) 2015; 15
Li, Cheng, Huang (CR110) 2018; 14
Mak (CR6) 2012; 7
Ceballos, Zereshki, Zhao (CR85) 2017; 1
Godde (CR88) 2016; 94
Splendiani (CR4) 2010; 10
Jin (CR28) 2018; 13
Chernikov (CR40) 2015; 115
Li (CR3) 2014; 90
CR92
Yao (CR52) 2017; 119
Komsa (CR71) 2012; 109
Kozawa (CR62) 2014; 5
Cunningham (CR27) 2017; 11
Xu (CR34) 2014; 10
Zhang (CR105) 2017; 12
Ceballos, Zhao (CR22) 2017; 27
Ross (CR90) 2013; 4
Li (CR63) 2019; 13
Raja (CR51) 2019; 14
Ciarrocchi (CR112) 2019; 13
Golla (CR81) 2017; 5
Mai (CR94) 2014; 14
Zhu (CR30) 2017; 17
Hoshi (CR43) 2017; 95
Dey (CR101) 2017; 119
Nguyen (CR53) 2019; 572
Sun, Martinez, Wang (CR8) 2016; 10
Sun (CR73) 2019; 44
Edelberg (CR108) 2019; 19
A Splendiani (430_CR4) 2010; 10
ZH Nie (430_CR87) 2019; 4
A Ciarrocchi (430_CR112) 2019; 13
M Amani (430_CR9) 2015; 350
PH L (430_CR91) 2020; 3
KF Mak (430_CR36) 2018; 12
YX Lin (430_CR45) 2014; 14
A Othonos (430_CR13) 1998; 83
P Rivera (430_CR38) 2018; 13
Y Hoshi (430_CR43) 2017; 95
G Aivazian (430_CR57) 2017; 4
P Steinleitner (430_CR60) 2017; 17
XX Zhang (430_CR105) 2017; 12
HN Wang (430_CR10) 2015; 6
A Thilagam (430_CR26) 2016; 120
PV Nguyen (430_CR53) 2019; 572
Y Li (430_CR3) 2014; 90
D Golla (430_CR81) 2017; 5
JR Schaibley (430_CR97) 2016; 7
F Ceballos (430_CR85) 2017; 1
H Hao (430_CR75) 2020; 29
D Edelberg (430_CR108) 2019; 19
CH Jin (430_CR28) 2018; 13
YR Liu (430_CR70) 2018; 12
J Kim (430_CR106) 2017; 3
TF Yan (430_CR103) 2017; 95
Y Sun (430_CR73) 2019; 44
CM Chow (430_CR79) 2017; 17
S Maiti (430_CR15) 2016; 120
A Raja (430_CR51) 2019; 14
CY Jiang (430_CR104) 2018; 9
A Singh (430_CR99) 2016; 117
ZH Yu (430_CR78) 2016; 28
S Gul (430_CR11) 2011; 115
L Wang (430_CR61) 2017; 8
CH Zhu (430_CR77) 2017; 8
SC Hao (430_CR50) 2020; 5
LS Li (430_CR72) 2019; 141
MJ Lederer (430_CR20) 1997; 70
EAA Pogna (430_CR56) 2016; 10
MM Furchi (430_CR33) 2014; 14
YY Li (430_CR74) 2017; 9
D Rauh (430_CR32) 2012; 22
ZY Jiang (430_CR1) 2017; 118
KF Mak (430_CR6) 2012; 7
D Tedeschi (430_CR14) 2016; 16
DH Lien (430_CR89) 2019; 364
AKM Newaz (430_CR44) 2012; 3
A Raja (430_CR49) 2017; 8
T Godde (430_CR88) 2016; 94
G Moody (430_CR69) 2018; 121
HN Wang (430_CR65) 2015; 15
XD Xu (430_CR34) 2014; 10
430_CR92
A Chernikov (430_CR39) 2015; 9
C Mai (430_CR94) 2014; 14
YZ Li (430_CR63) 2019; 13
F Ceballos (430_CR22) 2017; 27
MJ Lederer (430_CR19) 1999; 74
VA Hintermayr (430_CR76) 2018; 12
P Dey (430_CR101) 2017; 119
MM Glazov (430_CR96) 2014; 89
F Ceballos (430_CR25) 2016; 8
M Haiml (430_CR12) 1999; 74
KY Yao (430_CR52) 2017; 119
430_CR67
S Lippert (430_CR48) 2017; 4
A Chernikov (430_CR40) 2015; 115
430_CR64
HN Wang (430_CR66) 2015; 15
H Imaeda (430_CR83) 2018; 122
S Dal Conte (430_CR21) 2020; 2
YZ Li (430_CR23) 2019; 7
CH Jin (430_CR80) 2017; 13
ZH Nie (430_CR47) 2019; 2
LB Huang (430_CR82) 2011; 605
XL Song (430_CR102) 2016; 16
430_CR59
HY Yu (430_CR35) 2015; 2
ZZ Qiu (430_CR54) 2019; 5
T Yu (430_CR95) 2014; 89
RP Li (430_CR110) 2018; 14
XP Hong (430_CR29) 2014; 9
PD Cunningham (430_CR27) 2017; 11
DW Kidd (430_CR2) 2016; 93
M Kaminska (430_CR18) 1989; 54
AJ Goodman (430_CR46) 2020; 124
ZP Sun (430_CR8) 2016; 10
LA Jauregui (430_CR84) 2019; 366
JS Ross (430_CR90) 2013; 4
Y Rosenwaks (430_CR16) 1994; 50
Y Park (430_CR41) 2017; 9
D Lagarde (430_CR93) 2014; 112
P Rivera (430_CR98) 2016; 351
A Chernikov (430_CR24) 2014; 113
K Chen (430_CR68) 2018; 10
CH Jin (430_CR107) 2018; 360
B Chakraborty (430_CR55) 2018; 18
D Kozawa (430_CR62) 2014; 5
J Wang (430_CR58) 2019; 5
HL Zeng (430_CR7) 2012; 7
F Volmer (430_CR100) 2017; 95
H Jin (430_CR111) 2018; 10
HM Zhu (430_CR30) 2017; 17
HP Komsa (430_CR71) 2012; 109
S Gupta (430_CR17) 1992; 28
HY Yu (430_CR5) 2017; 3
JQ He (430_CR109) 2015; 23
JR Schaibley (430_CR37) 2016; 1
CH Lee (430_CR31) 2014; 9
Y Fu (430_CR42) 2019; 6
SD Lane (430_CR86) 2018; 2
References_xml – volume: 70
  start-page: 3428
  year: 1997
  end-page: 3430
  ident: CR20
  article-title: GaAs based anti-resonant Fabry–Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119192
– volume: 119
  start-page: 137401
  year: 2017
  ident: CR101
  article-title: Gate-controlled spin-valley locking of resident carriers in WSe monolayers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.137401
– volume: 14
  start-page: 202
  year: 2014
  end-page: 206
  ident: CR94
  article-title: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl403742j
– volume: 4
  start-page: 025024
  year: 2017
  ident: CR57
  article-title: Many-body effects in nonlinear optical responses of 2D layered semiconductors
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa56f1
– volume: 15
  start-page: 339
  year: 2015
  end-page: 345
  ident: CR65
  article-title: Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl503636c
– volume: 19
  start-page: 4371
  year: 2019
  end-page: 4379
  ident: CR108
  article-title: Approaching the intrinsic limit in transition metal diselenides via point defect control
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00985
– volume: 50
  start-page: 1746
  year: 1994
  end-page: 1754
  ident: CR16
  article-title: Photogenerated carrier dynamics under the influence of electric fields in III-V semiconductors
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.1746
– volume: 5
  start-page: 056101
  year: 2017
  ident: CR81
  article-title: Ultrafast relaxation of hot phonons in graphene-hBN heterostructures
  publication-title: APL Mater.
  doi: 10.1063/1.4982738
– volume: 120
  start-page: 1918
  year: 2016
  end-page: 1925
  ident: CR15
  article-title: Tuning the charge carrier dynamics via interfacial alloying in core/shell CdTe/ZnSe NCs
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b09904
– volume: 14
  start-page: 832
  year: 2019
  end-page: 837
  ident: CR51
  article-title: Dielectric disorder in two-dimensional materials
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0520-0
– volume: 117
  start-page: 257402
  year: 2016
  ident: CR99
  article-title: Long-lived valley polarization of intravalley trions in monolayer WSe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.257402
– volume: 10
  start-page: 227
  year: 2016
  end-page: 238
  ident: CR8
  article-title: Optical modulators with 2D layered materials
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.15
– volume: 3
  start-page: 641
  year: 2020
  end-page: 647
  ident: CR91
  article-title: Electrical and chemical tuning of exciton lifetime in monolayer MoS for field-effect transistors
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02170
– ident: CR92
– volume: 17
  start-page: 1194
  year: 2017
  end-page: 1199
  ident: CR79
  article-title: Unusual exciton–phonon interactions at van der waals engineered interfaces
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04944
– volume: 27
  start-page: 1604509
  year: 2017
  ident: CR22
  article-title: Ultrafast laser spectroscopy of two-dimensional materials beyond graphene
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604509
– volume: 350
  start-page: 1065
  year: 2015
  end-page: 1068
  ident: CR9
  article-title: Near-unity photoluminescence quantum yield in MoS
  publication-title: Science
  doi: 10.1126/science.aad2114
– volume: 12
  start-page: 883
  year: 2017
  end-page: 888
  ident: CR105
  article-title: Magnetic brightening and control of dark excitons in monolayer WSe
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.105
– volume: 8
  start-page: 11681
  year: 2016
  end-page: 11688
  ident: CR25
  article-title: Exciton formation in monolayer transition metal dichalcogenides
  publication-title: Nanoscale
  doi: 10.1039/C6NR02516A
– volume: 89
  start-page: 205303
  year: 2014
  ident: CR95
  article-title: Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205303
– volume: 2
  start-page: 28
  year: 2020
  end-page: 42
  ident: CR21
  article-title: Ultrafast photophysics of 2D semiconductors and related heterostructures
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.07.007
– volume: 95
  start-page: 241406
  year: 2017
  ident: CR103
  article-title: Long valley relaxation time of free carriers in monolayer WSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.241406
– volume: 4
  start-page: 1099
  year: 2019
  end-page: 1105
  ident: CR87
  article-title: Ultrafast free carrier dynamics in black phosphorus–molybdenum disulfide (BP/MoS ) heterostructures
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00045C
– volume: 366
  start-page: 870
  year: 2019
  end-page: 875
  ident: CR84
  article-title: Electrical control of interlayer exciton dynamics in atomically thin heterostructures
  publication-title: Science
  doi: 10.1126/science.aaw4194
– volume: 6
  year: 2015
  ident: CR10
  article-title: Ultrafast response of monolayer molybdenum disulfide photodetectors
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9831
– volume: 360
  start-page: 893
  year: 2018
  end-page: 896
  ident: CR107
  article-title: Imaging of pure spin-valley diffusion current in WS -WSe heterostructures
  publication-title: Science
  doi: 10.1126/science.aao3503
– volume: 9
  start-page: 10647
  year: 2017
  end-page: 10652
  ident: CR41
  article-title: Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS
  publication-title: Nanoscale
  doi: 10.1039/C7NR01834G
– volume: 9
  start-page: 676
  year: 2014
  end-page: 681
  ident: CR31
  article-title: Atomically thin p–n junctions with van der Waals heterointerfaces
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.150
– volume: 572
  start-page: 220
  year: 2019
  end-page: 223
  ident: CR53
  article-title: Visualizing electrostatic gating effects in two-dimensional heterostructures
  publication-title: Nature
  doi: 10.1038/s41586-019-1402-1
– volume: 5
  year: 2019
  ident: CR54
  article-title: Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2347
– volume: 364
  start-page: 468
  year: 2019
  end-page: 471
  ident: CR89
  article-title: Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors
  publication-title: Science
  doi: 10.1126/science.aaw8053
– volume: 14
  start-page: 4785
  year: 2014
  end-page: 4791
  ident: CR33
  article-title: Photovoltaic effect in an electrically tunable van der waals heterojunction
  publication-title: Nano Lett.
  doi: 10.1021/nl501962c
– volume: 113
  start-page: 076802
  year: 2014
  ident: CR24
  article-title: Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.076802
– volume: 13
  start-page: 1800270
  year: 2019
  ident: CR63
  article-title: Slow cooling of high-energy c excitons is limited by intervalley-transfer in monolayer MoS
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800270
– volume: 14
  start-page: 1802091
  year: 2018
  ident: CR110
  article-title: Recent progress of janus 2D transition metal chalcogenides: from theory to experiments
  publication-title: Small
  doi: 10.1002/smll.201802091
– volume: 7
  start-page: 490
  year: 2012
  end-page: 493
  ident: CR7
  article-title: Valley polarization in MoS monolayers by optical pumping
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 93
  start-page: 125423
  year: 2016
  ident: CR2
  article-title: Binding energies and structures of two-dimensional excitonic complexes in transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.125423
– volume: 74
  start-page: 1993
  year: 1999
  end-page: 1995
  ident: CR19
  article-title: Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123724
– volume: 9
  start-page: 466
  year: 2015
  end-page: 470
  ident: CR39
  article-title: Population inversion and giant bandgap renormalization in atomically thin WS layers
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.104
– volume: 13
  start-page: 127
  year: 2017
  end-page: 131
  ident: CR80
  article-title: Interlayer electron–phonon coupling in WSe /hBN heterostructures
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3928
– volume: 16
  start-page: 3085
  year: 2016
  end-page: 3093
  ident: CR14
  article-title: Long-lived hot carriers in III–V nanowires
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00251
– volume: 120
  start-page: 124306
  year: 2016
  ident: CR26
  article-title: Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4963123
– volume: 11
  start-page: 12601
  year: 2017
  end-page: 12608
  ident: CR27
  article-title: Photoinduced bandgap renormalization and exciton binding energy reduction in WS
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06885
– volume: 12
  start-page: 451
  year: 2018
  end-page: 460
  ident: CR36
  article-title: Light–valley interactions in 2D semiconductors
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0204-6
– volume: 95
  start-page: 241403
  year: 2017
  ident: CR43
  article-title: Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.241403
– volume: 109
  start-page: 035503
  year: 2012
  ident: CR71
  article-title: Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.035503
– volume: 1
  start-page: 16055
  year: 2016
  ident: CR37
  article-title: Valleytronics in 2D materials
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.55
– volume: 22
  start-page: 3371
  year: 2012
  end-page: 3377
  ident: CR32
  article-title: Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201103118
– volume: 10
  start-page: 343
  year: 2014
  end-page: 350
  ident: CR34
  article-title: Spin and pseudospins in layered transition metal dichalcogenides
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 10
  start-page: 19310
  year: 2018
  end-page: 19315
  ident: CR111
  article-title: Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer
  publication-title: Nanoscale
  doi: 10.1039/C8NR04568B
– volume: 44
  start-page: 4103
  year: 2019
  end-page: 4106
  ident: CR73
  article-title: Slowing down photocarrier relaxation in Dirac semimetal Cd As via Mn doping
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.004103
– volume: 4
  year: 2013
  ident: CR90
  article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 122
  start-page: 19273
  year: 2018
  end-page: 19279
  ident: CR83
  article-title: Acceleration of photocarrier relaxation in graphene achieved by epitaxial growth: ultrafast photoluminescence decay of monolayer graphene on SiC
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b06845
– volume: 115
  start-page: 20864
  year: 2011
  end-page: 20875
  ident: CR11
  article-title: Synthesis, optical and structural properties, and charge carrier dynamics of Cu-doped ZnSe nanocrystals
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp2047272
– volume: 28
  start-page: 2464
  year: 1992
  end-page: 2472
  ident: CR17
  article-title: Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.159553
– volume: 119
  start-page: 087401
  year: 2017
  ident: CR52
  article-title: Optically discriminating carrier-induced quasiparticle band gap and exciton energy renormalization in monolayer MoS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.087401
– volume: 17
  start-page: 1455
  year: 2017
  end-page: 1460
  ident: CR60
  article-title: Direct observation of ultrafast exciton formation in a monolayer of WSe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04422
– volume: 2
  start-page: 035003
  year: 2018
  ident: CR86
  article-title: Unipolar optical doping and extended photocarrier lifetime in graphene by band-alignment engineering
  publication-title: Nano Futures
  doi: 10.1088/2399-1984/aace6c
– volume: 15
  start-page: 8204
  year: 2015
  end-page: 8210
  ident: CR66
  article-title: Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03708
– volume: 8
  year: 2017
  ident: CR49
  article-title: Coulomb engineering of the bandgap and excitons in two-dimensional materials
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15251
– volume: 8
  year: 2017
  ident: CR77
  article-title: A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14111
– volume: 351
  start-page: 688
  year: 2016
  end-page: 691
  ident: CR98
  article-title: Valley-polarized exciton dynamics in a 2D semiconductor heterostructure
  publication-title: Science
  doi: 10.1126/science.aac7820
– volume: 94
  start-page: 165301
  year: 2016
  ident: CR88
  article-title: Exciton and trion dynamics in atomically thin MoSe and WSe : effect of localization
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.165301
– volume: 3
  year: 2017
  ident: CR106
  article-title: Observation of ultralong valley lifetime in WSe /MoS heterostructures
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700518
– volume: 9
  year: 2018
  ident: CR104
  article-title: Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03174-3
– volume: 13
  start-page: 1004
  year: 2018
  end-page: 1015
  ident: CR38
  article-title: Interlayer valley excitons in heterobilayers of transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0193-0
– volume: 3
  year: 2012
  ident: CR44
  article-title: Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1740
– volume: 8
  year: 2017
  ident: CR61
  article-title: Slow cooling and efficient extraction of C-exciton hot carriers in MoS monolayer
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13906
– volume: 121
  start-page: 057403
  year: 2018
  ident: CR69
  article-title: Microsecond valley lifetime of defect-bound excitons in monolayer WSe
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.057403
– ident: CR67
– volume: 9
  start-page: 19360
  year: 2017
  end-page: 19366
  ident: CR74
  article-title: Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS
  publication-title: Nanoscale
  doi: 10.1039/C7NR07227A
– volume: 605
  start-page: 1657
  year: 2011
  end-page: 1661
  ident: CR82
  article-title: Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2010.12.009
– volume: 3
  year: 2017
  ident: CR5
  article-title: Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701696
– volume: 83
  start-page: 1789
  year: 1998
  end-page: 1830
  ident: CR13
  article-title: Probing ultrafast carrier and phonon dynamics in semiconductors
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367411
– volume: 5
  year: 2019
  ident: CR58
  article-title: Optical generation of high carrier densities in 2D semiconductor heterobilayers
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0145
– volume: 17
  start-page: 3591
  year: 2017
  end-page: 3598
  ident: CR30
  article-title: Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00748
– volume: 16
  start-page: 5010
  year: 2016
  end-page: 5014
  ident: CR102
  article-title: Long-lived hole spin/valley polarization probed by kerr rotation in monolayer WSe
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01727
– volume: 9
  start-page: 682
  year: 2014
  end-page: 686
  ident: CR29
  article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.167
– volume: 23
  start-page: 33370
  year: 2015
  end-page: 33377
  ident: CR109
  article-title: Photocarrier dynamics in transition metal dichalcogenide alloy Mo W S
  publication-title: Opt. Express
  doi: 10.1364/OE.23.033370
– volume: 124
  start-page: 12175
  year: 2020
  end-page: 12184
  ident: CR46
  article-title: Substrate-dependent exciton diffusion and annihilation in chemically treated MoS and WS2
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c04000
– ident: CR64
– volume: 10
  start-page: 1271
  year: 2010
  end-page: 1275
  ident: CR4
  article-title: Emerging photoluminescence in monolayer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 7
  year: 2016
  ident: CR97
  article-title: Directional interlayer spin-valley transfer in two-dimensional heterostructures
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13747
– volume: 28
  start-page: 547
  year: 2016
  end-page: 552
  ident: CR78
  article-title: Realization of room-temperature phonon-limited carrier transport in monolayer MoS by dielectric and carrier screening
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503033
– volume: 13
  start-page: 131
  year: 2019
  end-page: 136
  ident: CR112
  article-title: Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0325-y
– volume: 5
  start-page: 139
  year: 2020
  end-page: 143
  ident: CR50
  article-title: Controlling exciton transport in monolayer MoSe by dielectric screening
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00462A
– volume: 10
  start-page: 1125
  year: 2018
  end-page: 1131
  ident: CR68
  article-title: Carrier trapping by oxygen impurities in molybdenum diselenide
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15478
– volume: 29
  start-page: 077201
  year: 2020
  ident: CR75
  article-title: Modulation of carrier lifetime in MoS monolayer by uniaxial strain
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab99ba
– volume: 7
  start-page: 494
  year: 2012
  end-page: 498
  ident: CR6
  article-title: Control of valley polarization in monolayer MoS by optical helicity
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 10
  start-page: 1182
  year: 2016
  end-page: 1188
  ident: CR56
  article-title: Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06488
– volume: 89
  start-page: 201302
  year: 2014
  ident: CR96
  article-title: Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.201302
– volume: 13
  start-page: 994
  year: 2018
  end-page: 1003
  ident: CR28
  article-title: Ultrafast dynamics in van der Waals heterostructures
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0298-5
– volume: 141
  start-page: 10451
  year: 2019
  end-page: 10461
  ident: CR72
  article-title: Defect-mediated charge-carrier trapping and nonradiative recombination in WSe monolayers
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04663
– volume: 90
  start-page: 205422
  year: 2014
  ident: CR3
  article-title: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS , MoSe , WS , and WSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.205422
– volume: 115
  start-page: 126802
  year: 2015
  ident: CR40
  article-title: Electrical tuning of exciton binding energies in monolayer WS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.126802
– volume: 5
  year: 2014
  ident: CR62
  article-title: Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5543
– volume: 18
  start-page: 6455
  year: 2018
  end-page: 6460
  ident: CR55
  article-title: Control of strong light–matter interaction in monolayer WS through electric field gating
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02932
– volume: 118
  start-page: 266401
  year: 2017
  ident: CR1
  article-title: Scaling universality between band gap and exciton binding energy of two-dimensional semiconductors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.266401
– volume: 4
  start-page: 025045
  year: 2017
  ident: CR48
  article-title: Influence of the substrate material on the optical properties of tungsten diselenide monolayers
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5b21
– volume: 12
  start-page: 10151
  year: 2018
  end-page: 10158
  ident: CR76
  article-title: Accelerated carrier relaxation through reduced coulomb screening in two-dimensional halide perovskite nanoplatelets
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05029
– volume: 2
  start-page: 57
  year: 2015
  end-page: 70
  ident: CR35
  article-title: Valley excitons in two-dimensional semiconductors
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwu078
– volume: 6
  start-page: 1901307
  year: 2019
  ident: CR42
  article-title: Effect of dielectric environment on excitonic dynamics in monolayer WS
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901307
– volume: 7
  start-page: 4304
  year: 2019
  end-page: 4319
  ident: CR23
  article-title: Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06343E
– volume: 95
  start-page: 235408
  year: 2017
  ident: CR100
  article-title: Intervalley dark trion states with spin lifetimes of 150 ns in WSe
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.235408
– volume: 54
  start-page: 1881
  year: 1989
  end-page: 1883
  ident: CR18
  article-title: Structural properties of As‐rich GaAs grown by molecular beam epitaxy at low temperatures
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.101229
– volume: 74
  start-page: 1269
  year: 1999
  end-page: 1271
  ident: CR12
  article-title: Femtosecond response times and high optical nonlinearity in beryllium-doped low-temperature grown GaAs
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123521
– volume: 2
  start-page: 103
  year: 2019
  ident: CR47
  article-title: Tailoring exciton dynamics of monolayer transition metal dichalcogenides by interfacial electron-phonon coupling
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0202-0
– ident: CR59
– volume: 12
  start-page: 10529
  year: 2018
  end-page: 10536
  ident: CR70
  article-title: Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06503
– volume: 14
  start-page: 5569
  year: 2014
  end-page: 5576
  ident: CR45
  article-title: Dielectric screening of excitons and trions in single-layer MoS
  publication-title: Nano Lett.
  doi: 10.1021/nl501988y
– volume: 1
  start-page: 044001
  year: 2017
  ident: CR85
  article-title: Separating electrons and holes by monolayer increments in van der Waals heterostructures
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.044001
– volume: 112
  start-page: 047401
  year: 2014
  ident: CR93
  article-title: Carrier and polarization dynamics in monolayer MoS
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.047401
– volume: 29
  start-page: 077201
  year: 2020
  ident: 430_CR75
  publication-title: Chin. Phys. B
  doi: 10.1088/1674-1056/ab99ba
– ident: 430_CR67
  doi: 10.1038/s41699-017-0019-1
– volume: 5
  year: 2014
  ident: 430_CR62
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5543
– volume: 351
  start-page: 688
  year: 2016
  ident: 430_CR98
  publication-title: Science
  doi: 10.1126/science.aac7820
– volume: 22
  start-page: 3371
  year: 2012
  ident: 430_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201103118
– volume: 117
  start-page: 257402
  year: 2016
  ident: 430_CR99
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.117.257402
– volume: 95
  start-page: 241406
  year: 2017
  ident: 430_CR103
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.241406
– volume: 141
  start-page: 10451
  year: 2019
  ident: 430_CR72
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b04663
– volume: 112
  start-page: 047401
  year: 2014
  ident: 430_CR93
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.047401
– volume: 14
  start-page: 1802091
  year: 2018
  ident: 430_CR110
  publication-title: Small
  doi: 10.1002/smll.201802091
– volume: 8
  year: 2017
  ident: 430_CR61
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13906
– volume: 364
  start-page: 468
  year: 2019
  ident: 430_CR89
  publication-title: Science
  doi: 10.1126/science.aaw8053
– volume: 27
  start-page: 1604509
  year: 2017
  ident: 430_CR22
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201604509
– volume: 16
  start-page: 3085
  year: 2016
  ident: 430_CR14
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b00251
– volume: 13
  start-page: 131
  year: 2019
  ident: 430_CR112
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0325-y
– volume: 124
  start-page: 12175
  year: 2020
  ident: 430_CR46
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.0c04000
– ident: 430_CR59
– volume: 14
  start-page: 4785
  year: 2014
  ident: 430_CR33
  publication-title: Nano Lett.
  doi: 10.1021/nl501962c
– volume: 12
  start-page: 451
  year: 2018
  ident: 430_CR36
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0204-6
– volume: 119
  start-page: 087401
  year: 2017
  ident: 430_CR52
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.087401
– volume: 4
  year: 2013
  ident: 430_CR90
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms2498
– volume: 14
  start-page: 5569
  year: 2014
  ident: 430_CR45
  publication-title: Nano Lett.
  doi: 10.1021/nl501988y
– volume: 28
  start-page: 547
  year: 2016
  ident: 430_CR78
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503033
– volume: 4
  start-page: 1099
  year: 2019
  ident: 430_CR87
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00045C
– volume: 89
  start-page: 205303
  year: 2014
  ident: 430_CR95
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.205303
– volume: 118
  start-page: 266401
  year: 2017
  ident: 430_CR1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.118.266401
– volume: 572
  start-page: 220
  year: 2019
  ident: 430_CR53
  publication-title: Nature
  doi: 10.1038/s41586-019-1402-1
– volume: 95
  start-page: 241403
  year: 2017
  ident: 430_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.241403
– volume: 8
  start-page: 11681
  year: 2016
  ident: 430_CR25
  publication-title: Nanoscale
  doi: 10.1039/C6NR02516A
– volume: 12
  start-page: 883
  year: 2017
  ident: 430_CR105
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.105
– volume: 2
  start-page: 57
  year: 2015
  ident: 430_CR35
  publication-title: Natl Sci. Rev.
  doi: 10.1093/nsr/nwu078
– volume: 5
  start-page: 056101
  year: 2017
  ident: 430_CR81
  publication-title: APL Mater.
  doi: 10.1063/1.4982738
– volume: 15
  start-page: 8204
  year: 2015
  ident: 430_CR66
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b03708
– volume: 115
  start-page: 20864
  year: 2011
  ident: 430_CR11
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp2047272
– volume: 14
  start-page: 832
  year: 2019
  ident: 430_CR51
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-019-0520-0
– volume: 7
  start-page: 4304
  year: 2019
  ident: 430_CR23
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C8TC06343E
– volume: 17
  start-page: 1194
  year: 2017
  ident: 430_CR79
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04944
– ident: 430_CR92
  doi: 10.1364/CLEO_SI.2020.SM1Q.7
– volume: 10
  start-page: 1125
  year: 2018
  ident: 430_CR68
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b15478
– volume: 7
  year: 2016
  ident: 430_CR97
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13747
– volume: 350
  start-page: 1065
  year: 2015
  ident: 430_CR9
  publication-title: Science
  doi: 10.1126/science.aad2114
– volume: 115
  start-page: 126802
  year: 2015
  ident: 430_CR40
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.126802
– volume: 74
  start-page: 1993
  year: 1999
  ident: 430_CR19
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123724
– volume: 4
  start-page: 025024
  year: 2017
  ident: 430_CR57
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa56f1
– volume: 120
  start-page: 1918
  year: 2016
  ident: 430_CR15
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/acs.jpcc.5b09904
– volume: 13
  start-page: 1004
  year: 2018
  ident: 430_CR38
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0193-0
– volume: 4
  start-page: 025045
  year: 2017
  ident: 430_CR48
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa5b21
– volume: 3
  year: 2017
  ident: 430_CR106
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700518
– volume: 605
  start-page: 1657
  year: 2011
  ident: 430_CR82
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2010.12.009
– volume: 94
  start-page: 165301
  year: 2016
  ident: 430_CR88
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.94.165301
– volume: 13
  start-page: 1800270
  year: 2019
  ident: 430_CR63
  publication-title: Laser Photonics Rev.
  doi: 10.1002/lpor.201800270
– ident: 430_CR64
– volume: 9
  year: 2018
  ident: 430_CR104
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03174-3
– volume: 1
  start-page: 044001
  year: 2017
  ident: 430_CR85
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.1.044001
– volume: 12
  start-page: 10529
  year: 2018
  ident: 430_CR70
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06503
– volume: 89
  start-page: 201302
  year: 2014
  ident: 430_CR96
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.89.201302
– volume: 6
  year: 2015
  ident: 430_CR10
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9831
– volume: 3
  start-page: 641
  year: 2020
  ident: 430_CR91
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02170
– volume: 366
  start-page: 870
  year: 2019
  ident: 430_CR84
  publication-title: Science
  doi: 10.1126/science.aaw4194
– volume: 10
  start-page: 227
  year: 2016
  ident: 430_CR8
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2016.15
– volume: 5
  year: 2019
  ident: 430_CR58
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aax0145
– volume: 93
  start-page: 125423
  year: 2016
  ident: 430_CR2
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.93.125423
– volume: 70
  start-page: 3428
  year: 1997
  ident: 430_CR20
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.119192
– volume: 5
  year: 2019
  ident: 430_CR54
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aaw2347
– volume: 8
  year: 2017
  ident: 430_CR77
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14111
– volume: 2
  start-page: 035003
  year: 2018
  ident: 430_CR86
  publication-title: Nano Futures
  doi: 10.1088/2399-1984/aace6c
– volume: 121
  start-page: 057403
  year: 2018
  ident: 430_CR69
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.057403
– volume: 2
  start-page: 28
  year: 2020
  ident: 430_CR21
  publication-title: Trends Chem.
  doi: 10.1016/j.trechm.2019.07.007
– volume: 360
  start-page: 893
  year: 2018
  ident: 430_CR107
  publication-title: Science
  doi: 10.1126/science.aao3503
– volume: 19
  start-page: 4371
  year: 2019
  ident: 430_CR108
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b00985
– volume: 54
  start-page: 1881
  year: 1989
  ident: 430_CR18
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.101229
– volume: 44
  start-page: 4103
  year: 2019
  ident: 430_CR73
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.004103
– volume: 3
  year: 2012
  ident: 430_CR44
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms1740
– volume: 6
  start-page: 1901307
  year: 2019
  ident: 430_CR42
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201901307
– volume: 10
  start-page: 1182
  year: 2016
  ident: 430_CR56
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b06488
– volume: 9
  start-page: 10647
  year: 2017
  ident: 430_CR41
  publication-title: Nanoscale
  doi: 10.1039/C7NR01834G
– volume: 12
  start-page: 10151
  year: 2018
  ident: 430_CR76
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b05029
– volume: 7
  start-page: 490
  year: 2012
  ident: 430_CR7
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.95
– volume: 120
  start-page: 124306
  year: 2016
  ident: 430_CR26
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4963123
– volume: 15
  start-page: 339
  year: 2015
  ident: 430_CR65
  publication-title: Nano Lett.
  doi: 10.1021/nl503636c
– volume: 11
  start-page: 12601
  year: 2017
  ident: 430_CR27
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b06885
– volume: 10
  start-page: 343
  year: 2014
  ident: 430_CR34
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2942
– volume: 9
  start-page: 682
  year: 2014
  ident: 430_CR29
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.167
– volume: 1
  start-page: 16055
  year: 2016
  ident: 430_CR37
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2016.55
– volume: 13
  start-page: 994
  year: 2018
  ident: 430_CR28
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-018-0298-5
– volume: 5
  start-page: 139
  year: 2020
  ident: 430_CR50
  publication-title: Nanoscale Horiz.
  doi: 10.1039/C9NH00462A
– volume: 50
  start-page: 1746
  year: 1994
  ident: 430_CR16
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.1746
– volume: 16
  start-page: 5010
  year: 2016
  ident: 430_CR102
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01727
– volume: 9
  start-page: 19360
  year: 2017
  ident: 430_CR74
  publication-title: Nanoscale
  doi: 10.1039/C7NR07227A
– volume: 90
  start-page: 205422
  year: 2014
  ident: 430_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.205422
– volume: 17
  start-page: 1455
  year: 2017
  ident: 430_CR60
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04422
– volume: 17
  start-page: 3591
  year: 2017
  ident: 430_CR30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b00748
– volume: 10
  start-page: 1271
  year: 2010
  ident: 430_CR4
  publication-title: Nano Lett.
  doi: 10.1021/nl903868w
– volume: 83
  start-page: 1789
  year: 1998
  ident: 430_CR13
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.367411
– volume: 122
  start-page: 19273
  year: 2018
  ident: 430_CR83
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.8b06845
– volume: 13
  start-page: 127
  year: 2017
  ident: 430_CR80
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3928
– volume: 2
  start-page: 103
  year: 2019
  ident: 430_CR47
  publication-title: Commun. Phys.
  doi: 10.1038/s42005-019-0202-0
– volume: 109
  start-page: 035503
  year: 2012
  ident: 430_CR71
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.035503
– volume: 9
  start-page: 466
  year: 2015
  ident: 430_CR39
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.104
– volume: 119
  start-page: 137401
  year: 2017
  ident: 430_CR101
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.119.137401
– volume: 8
  year: 2017
  ident: 430_CR49
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15251
– volume: 3
  year: 2017
  ident: 430_CR5
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1701696
– volume: 95
  start-page: 235408
  year: 2017
  ident: 430_CR100
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.235408
– volume: 74
  start-page: 1269
  year: 1999
  ident: 430_CR12
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.123521
– volume: 14
  start-page: 202
  year: 2014
  ident: 430_CR94
  publication-title: Nano Lett.
  doi: 10.1021/nl403742j
– volume: 28
  start-page: 2464
  year: 1992
  ident: 430_CR17
  publication-title: IEEE J. Quantum Electron.
  doi: 10.1109/3.159553
– volume: 10
  start-page: 19310
  year: 2018
  ident: 430_CR111
  publication-title: Nanoscale
  doi: 10.1039/C8NR04568B
– volume: 23
  start-page: 33370
  year: 2015
  ident: 430_CR109
  publication-title: Opt. Express
  doi: 10.1364/OE.23.033370
– volume: 9
  start-page: 676
  year: 2014
  ident: 430_CR31
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.150
– volume: 113
  start-page: 076802
  year: 2014
  ident: 430_CR24
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.113.076802
– volume: 7
  start-page: 494
  year: 2012
  ident: 430_CR6
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.96
– volume: 18
  start-page: 6455
  year: 2018
  ident: 430_CR55
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.8b02932
SSID ssj0000941087
ssib052855617
ssib038074990
ssib054953849
Score 2.4662695
SecondaryResourceType review_article
Snippet Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states....
Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 192
SubjectTerms 639/624/1075/401
639/624/399
Applied and Technical Physics
Atomic
Classical and Continuum Physics
Energy
External stimuli
Lasers
Mechanical stimuli
Molecular
Optical and Plasma Physics
Optical Devices
Optics
Photonics
Physics
Physics and Astronomy
Review
Review Article
Semiconductors
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejUNhlbN1X2m5ksNtm6sSOP47bWCmDjh1W6M3Yjk07RlJeUrY_v5Kd99a3z8suOcROIn6RkISlnwh5aZwxSchIO2ckFeCTqItJUAHhr29a17QS-51PP8qTM_HhvDu_NeoLa8IKPXAB7qgDa4xN8CFB5J64N6mX-H7lpHShNFeBz7uVTH0p9XIN02rpkmFcH00CufUoZkuZ54qKLU-UCft_F2X-Wiz504lpdkTH98m9JYKs3xTJH5A7cdgju7mSM0wPyafTsV9GctVjqq8uxhnc1QoH09XYuPK9LPVlEv1UXw71_G2kPbL8F4aOesKC-XFAJthxNT0iZ8fvP787ocvYBBogG5mpZKEL3DPwOywq2WvWG6O4Zg5COwivAvL7KNf5ZBj3IXvw1LWRSx91FJI_JjvDOMSnpHbK9ToqBlcHgCatjROsF43pPCRCsSLNGkIbFk5xHG3x1eazba5tgd0C7DbDbkVFXm2euSqMGn_d_Rb_zGYnsmHnG6AjdtER-y8dqcjh-r_axUQn2wrFceaaaCryYrMMxoUnJm6I4zXukYYZiKBAjidFDTaScN4aDRhXRG0pyJao2yvD5UUm8IYUjykD3329VqUfYv0Ziv3_AcUBuduiDTQNbfkh2ZlX1_EZhFWzf54t6AYdtx1G
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Health & Medical Collection (NC LIVE)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2goCBxA6tO7PhxQoCoKqQiDlTam-U4Dq1UxcsmFf35nXG8qZZHLzmsvcpkPOOZ8Yy_IeStccb0QgbaOCOpAJtEXegFFeD-tlXtqlrifefjb_LoRHxdNat84Dbmssrtnpg26i56PCM_qIXi2CJLVB_Wvyh2jcLsam6hcZvcQegylGq1UssZC4QuFdMq35VhXB-MAhH2KMZMCe2Kih17lGD7_-Vr_l0y-UfeNJmjwwfkfvYjy4_zwj8kt8LwiNxN9Zx-fEy-H8cuN-YqY1-uT-MERmuD7elKvL5yOQ91cz_6sTwbyul3pB1i_c84HeWIZfNxQDzYuBmfkJPDLz8-H9HcPIF6iEkmKplvPG8ZWB8WlOw064xRXDMHDh44WR5RfpRr2t4w3vpkx_umDly2QQch-VOyN8QhPCelU67TQTF4OmBor7VxgnUCON5COBQKUm1ZaH1GFscGF-c2Zbi5tjPbLbDdJrZbUZB3y3_WM67GjbM_4cosMxETO_0QNz9tVjHbwL4dKt_6HmK8nrem7yRKonJSOl-xguxv19VmRR3ttVgV5M0yDCqGeRM3hHiBc6RhBvwooOPZLAYLJZzXRgOPC6J2BGSH1N2R4ew0wXhDoMeUgfe-34rSNVn_Z8WLm7_iJblXo3RXFa35PtmbNhfhFbhNU_s66cYV2-MT8g
  priority: 102
  providerName: ProQuest
Title Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors
URI https://link.springer.com/article/10.1038/s41377-020-00430-4
https://www.ncbi.nlm.nih.gov/pubmed/33298847
https://www.proquest.com/docview/2473197241
https://www.proquest.com/docview/2469092234
https://pubmed.ncbi.nlm.nih.gov/PMC7680791
https://doaj.org/article/5911e1cbcf114f3b9fd6a99f7a66ac10
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZ5UOilNH06TRcXemtFJUvW47hZEsJCQmgb2JuQZbkJBDusHdqfn5H8CJsmhV5ssEZ4GI00M9LoG4Q-a6t1xYXHudUCc7BJ2PqKYw7ub0EzSzMR7jufnomTC75c5astlI13YWLSfoS0jMv0mB32reUBGg-HYCfCVGG-jXYDVDvo9u58vvyxnHZWIGChRMnhhgxh6pHOG1YogvU_5mH-nSj54LQ0GqHjl-jF4D2m857fPbTl61foWczidO1rdH7alEM5rrSp0pvLpgNTtQ5F6dJwaeVP31T2Vejb9KpOu98NLgPCf4_OkbYhWb6pAwpss27foIvjo5-LEzyUTMAOIpEOC-JyxwoCNod4KUpFSq0lU8SCWweulQvYPtLmRaUJK1y03lWeeSYKrzwX7C3aqZvav0eplbZUXhJ4WhBopZS2nJSc6ryAIMgniI4iNG7AEw9lLa5NPNdmyvRiNyB2E8VueIK-TH1uejSNf1IfhpGZKAMSdvzQrH-ZQTNMDqu1p65wFUR2FSt0VYqgf9IKYR0lCToYx9UM07M1GZcs1FvjNEGfpmaYWOG0xNa-uQ00QhMN3hPw8a5Xg4kTxjKtQMYJkhsKssHqZkt9dRnBuyG8I1LDf7-OqnTP1tOi2P8_8g_oeRa0nVKcsQO0061v_UdwnrpihrblSs6GOQPvw6Oz8-_wdSEWs7ghcQeYYxdK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYIEJ7DqxI4dHxDiVW1pt-LQSnszjuPQSpAsm1Slf4rfyIyTbLU8euslh9hJJuOxZ8aP7yPkubZaV0J6mlktqQCfRK2vBBUQ_hZJapNU4nnn6b6cHIpPs2y2Rn6NZ2FwW-U4JoaBumwczpFvpUJxpMgSyZv5D4qsUbi6OlJo9Gax689OIWVrX-98gPZ9kabbHw_eT-jAKkAdBOsdlcxljhcMhmXmlSxzVmqteM4sRD4QfTiEv1E2KyrNeOGCg6uy1HNZ-NwLyeG9V8hVcLwMkz01U8s5HUiVEpar4WwO4_lWKxDRj2KOFtC1qFjxf4Em4F-x7d9bNP9Ypw3ub_sWuTnErfHb3tBukzVf3yHXwv5R194ln6dNORCBxU0Vz4-aDpzkAunwYjwu87MvKs9q-x0eiI_ruDttaIncAj0uSNziNv2mRvzZZtHeI4eXotb7ZL1uav-AxFbZMveKwdWCQqs811awUiQ6KyD98hFJRhUaNyCZI6HGNxNW1HluerUbULsJajciIi-Xz8x7HI8La7_DllnWRAzucKNZfDVDlzYZ-AmfuMJVkFNWvNBVKdHylZXSuoRFZHNsVzMMDK05N-OIPFsWQ5fGdRpb--YE60jNNMRtIMdGbwZLSThPdQ46johaMZAVUVdL6uOjABsOiSVTGr77ajSlc7H-r4qHF__FU3J9cjDdM3s7-7uPyI0ULT1JaMo3yXq3OPGPIWTriiehn8Tky2V3zN-v4E5D
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkGCE1jrxI4dHxCitKuW0tUKUak313EcWgmSZZOq9K_x65jJY6vl0Vsve4idrDOe8czE4-8j5KW2WhdCeppYLakAn0StLwQVEP5mUWyjWOJ55_2p3DkQHw-TwzXyazgLg2WVw5rYLtR55fAb-TgWiiNFlojGRV8WMduavJv_oMgghTutA51GpyJ7_vwM0rf67e4WzPWrOJ5sf_mwQ3uGAeogcG-oZC5xPGOwRDOvZJ6yXGvFU2YhCoJIxCEUjrJJVmjGM9c6uyKJPZeZT72QHJ57jawrzIpGZH1zezr7vPzCA4lTxFLVn9RhPB3XAvH9KGZsLdYWFSvesCUN-Fek-3fB5h-7tq0znNwmt_ooNnzfqd0dsubLu-R6W03q6ntktl_lPS1YWBXh_LhqwGUukBwvxMMzP7um_Ly03-GG8KQMm7OK5sg00KGEhDUW7VclotFWi_o-ObgSwT4go7Iq_SMSWmXz1CsGvxYEWqSptoLlItJJBsmYD0g0iNC4Htcc6TW-mXZ_naemE7sBsZtW7EYE5PXynnmH6nFp702cmWVPRORuL1SLr6Y3cJOA1_CRy1wBGWbBM13kEu1AWSmti1hANoZ5Nf0yUZsLpQ7Ii2UzGDju2tjSV6fYR2qmIYqDcTzs1GA5Es5jnYKMA6JWFGRlqKst5clxCyIOaSZTGv73zaBKF8P6vygeX_4Wz8kNMErzaXe694TcjFHRo4jGfIOMmsWpfwrxW5M96w0lJEdXbZu_AT7_U94
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+photocarrier+relaxation+dynamics+in+two-dimensional+semiconductors&rft.jtitle=Light%2C+science+%26+applications&rft.au=Wang%2C+Yuhan&rft.au=Nie%2C+Zhonghui&rft.au=Wang%2C+Fengqiu&rft.date=2020-11-23&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=9&rft_id=info:doi/10.1038%2Fs41377-020-00430-4&rft_id=info%3Apmid%2F33298847&rft.externalDocID=PMC7680791
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon