Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors
Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleyt...
Saved in:
Published in | Light, science & applications Vol. 9; no. 1; pp. 192 - 16 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
23.11.2020
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.
Semiconductor photocarriers: Exploring excitons in two dimensions
Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices. |
---|---|
AbstractList | Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.
Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices. Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors. Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors.Semiconductor photocarriers: Exploring excitons in two dimensionsElectrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices. Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices. Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors. Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states. Their strong light-matter coupling and emerging excitonic phenomena make them potential candidates for next-generation optoelectronic and valleytronic devices. The relaxation dynamics of optically excited states are a key ingredient of excitonic physics and directly impact the quantum efficiency and operating bandwidth of most photonic devices. Here, we summarize recent efforts in probing and modulating the photocarrier relaxation dynamics in 2D semiconductors. We classify these results according to the relaxation pathways or mechanisms they are associated with. The approaches discussed include both tailoring sample properties, such as the defect distribution and band structure, and applying external stimuli such as electric fields and mechanical strain. Particular emphasis is placed on discussing how the unique features of 2D semiconductors, including enhanced Coulomb interactions, sensitivity to the surrounding environment, flexible van der Waals (vdW) heterostructure construction, and non-degenerate valley/spin index of 2D transition metal dichalcogenides (TMDs), manifest themselves during photocarrier relaxation and how they can be manipulated. The extensive physical mechanisms that can be used to modulate photocarrier relaxation dynamics are instrumental for understanding and utilizing excitonic states in 2D semiconductors. Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly bound states called excitons, offering new opportunities in optoelectronics and in ‘valleytronics,’ which exploits the effects of valleys and peaks in an energy landscape. The excitons display particle-like properties, so are described as quasiparticles. Fengqiu Wang and colleagues at Nanjing University, in China, review many technical aspects of the creation and control of excitons in single layer (2D) semiconductor sheets. The restrictions of 2D materials promote unique exciton behavior and strong light-matter interactions. The authors focus on the ability of excitons to act as photocarriers of absorbed light energy, and on the relaxation processes that can release the energy. Learning how to control exciton formation, interactions and relaxation will be crucial for using them to develop novel optoelectronic and photonic devices. |
ArticleNumber | 192 |
Author | Wang, Yuhan Nie, Zhonghui Wang, Fengqiu |
Author_xml | – sequence: 1 givenname: Yuhan surname: Wang fullname: Wang, Yuhan organization: School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University – sequence: 2 givenname: Zhonghui surname: Nie fullname: Nie, Zhonghui organization: MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology – sequence: 3 givenname: Fengqiu orcidid: 0000-0001-9823-5788 surname: Wang fullname: Wang, Fengqiu email: fwang@nju.edu.cn organization: School of Electronic Science and Engineering and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Key Laboratory of Intelligent Optical Sensing and Manipulation, Ministry of Education, Nanjing University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33298847$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVArWob-AAsUiQ2b0OtH_NggoYpHpaJ2AWvLcZypR4k92Emhf49n0kLbRb2x5fPQ0b3nFToIMTiE3mD4gIHK08wwFaIGAjUAo1CzF-iYABO1aKg8ePA-Qic5b6AcxTBI8RIdUUqUlEwco6vvsZsHM_kYqthX2-s4RWtS8i5VyQ3mzwJ1t8GM3ubKh2r6HevOjy7kgpihyq4gMXSznWLKr9Fhb4bsTu7uFfr55fOPs2_1xeXX87NPF7XlwKeag20sbaGEACd4J6FTSlAJpqEUY2JBSCxM0_YKaGsZbgjuG-Iob510jNMVOl98u2g2epv8aNKtjsbr_UdMa23S5O3gdKMwdti2tseY9bRVfceNUr0wnBtbprlCHxev7dyOrrMuTMkMj0wfI8Ff63W80YJLEAoXg_d3Bin-ml2e9OizdcNggotz1oRxBYoQygr13RPqJs6pzHHHEhQrQdjO8O3DRP-i3C-uEORCsCnmnFyvrZ_2uyoB_aAx6F1N9FITXWqi9zXRuwTkifTe_VkRXUS5kMPapf-xn1H9BWi5zxs |
CitedBy_id | crossref_primary_10_1016_j_optlastec_2023_109635 crossref_primary_10_1002_smll_202309595 crossref_primary_10_1039_D4TC04975F crossref_primary_10_1021_acsnano_1c10577 crossref_primary_10_1088_1361_648X_ac9d7e crossref_primary_10_1021_acs_jpcc_4c04201 crossref_primary_10_1021_acs_nanolett_3c02536 crossref_primary_10_1038_s41699_024_00512_6 crossref_primary_10_1039_D1NR03639D crossref_primary_10_1021_acsami_1c00786 crossref_primary_10_1016_j_nanoen_2025_110902 crossref_primary_10_1002_smll_202302760 crossref_primary_10_1021_acsanm_4c02205 crossref_primary_10_1038_s41377_024_01380_x crossref_primary_10_1063_5_0180501 crossref_primary_10_1063_5_0149950 crossref_primary_10_1039_D3NR02116E crossref_primary_10_1103_PhysRevB_111_054310 crossref_primary_10_1515_nanoph_2021_0582 crossref_primary_10_1002_admt_202301079 crossref_primary_10_1038_s41467_024_50196_1 crossref_primary_10_1039_D3NR04878K crossref_primary_10_1007_s12274_021_3979_6 crossref_primary_10_1021_acsnano_2c10479 crossref_primary_10_1002_admi_202101343 crossref_primary_10_3390_catal14050298 crossref_primary_10_1021_acs_jpclett_2c00315 crossref_primary_10_1002_admi_202202003 crossref_primary_10_1007_s11432_022_3719_4 crossref_primary_10_1039_D4TC00660G crossref_primary_10_1016_j_mtphys_2022_100903 crossref_primary_10_1016_j_mtsust_2022_100264 crossref_primary_10_1007_s00604_023_05668_4 crossref_primary_10_1016_j_micrna_2022_207417 crossref_primary_10_1039_D3NH00194F crossref_primary_10_1039_D1NR04224F crossref_primary_10_1038_s41467_024_54776_z crossref_primary_10_1039_D2CP00670G crossref_primary_10_1088_1361_6528_ac715d crossref_primary_10_1002_adom_202403137 crossref_primary_10_1063_5_0240071 crossref_primary_10_1021_acsnano_1c06822 crossref_primary_10_1002_advs_202400633 crossref_primary_10_1063_5_0060587 crossref_primary_10_1039_D3EE01165H crossref_primary_10_1002_admt_202200032 crossref_primary_10_1007_s11467_023_1355_6 crossref_primary_10_1002_adfm_202311730 crossref_primary_10_1021_acsphotonics_4c00112 crossref_primary_10_1002_smll_202307346 crossref_primary_10_1063_5_0185604 crossref_primary_10_1021_acsami_4c05901 crossref_primary_10_1021_acs_jpcc_2c06310 crossref_primary_10_1080_21663831_2022_2111233 |
Cites_doi | 10.1063/1.119192 10.1103/PhysRevLett.119.137401 10.1021/nl403742j 10.1088/2053-1583/aa56f1 10.1021/nl503636c 10.1021/acs.nanolett.9b00985 10.1103/PhysRevB.50.1746 10.1063/1.4982738 10.1021/acs.jpcc.5b09904 10.1038/s41565-019-0520-0 10.1103/PhysRevLett.117.257402 10.1038/nphoton.2016.15 10.1021/acsanm.9b02170 10.1021/acs.nanolett.6b04944 10.1002/adfm.201604509 10.1126/science.aad2114 10.1038/nnano.2017.105 10.1039/C6NR02516A 10.1103/PhysRevB.89.205303 10.1016/j.trechm.2019.07.007 10.1103/PhysRevB.95.241406 10.1039/C9NH00045C 10.1126/science.aaw4194 10.1038/ncomms9831 10.1126/science.aao3503 10.1039/C7NR01834G 10.1038/nnano.2014.150 10.1038/s41586-019-1402-1 10.1126/sciadv.aaw2347 10.1126/science.aaw8053 10.1021/nl501962c 10.1103/PhysRevLett.113.076802 10.1002/lpor.201800270 10.1002/smll.201802091 10.1038/nnano.2012.95 10.1103/PhysRevB.93.125423 10.1063/1.123724 10.1038/nphoton.2015.104 10.1038/nphys3928 10.1021/acs.nanolett.6b00251 10.1063/1.4963123 10.1021/acsnano.7b06885 10.1038/s41566-018-0204-6 10.1103/PhysRevB.95.241403 10.1103/PhysRevLett.109.035503 10.1038/natrevmats.2016.55 10.1002/adfm.201103118 10.1038/nphys2942 10.1039/C8NR04568B 10.1364/OL.44.004103 10.1038/ncomms2498 10.1021/acs.jpcc.8b06845 10.1021/jp2047272 10.1109/3.159553 10.1103/PhysRevLett.119.087401 10.1021/acs.nanolett.6b04422 10.1088/2399-1984/aace6c 10.1021/acs.nanolett.5b03708 10.1038/ncomms15251 10.1038/ncomms14111 10.1126/science.aac7820 10.1103/PhysRevB.94.165301 10.1126/sciadv.1700518 10.1038/s41467-018-03174-3 10.1038/s41565-018-0193-0 10.1038/ncomms1740 10.1038/ncomms13906 10.1103/PhysRevLett.121.057403 10.1039/C7NR07227A 10.1016/j.susc.2010.12.009 10.1126/sciadv.1701696 10.1063/1.367411 10.1126/sciadv.aax0145 10.1021/acs.nanolett.7b00748 10.1021/acs.nanolett.6b01727 10.1038/nnano.2014.167 10.1364/OE.23.033370 10.1021/acs.jpcc.0c04000 10.1021/nl903868w 10.1038/ncomms13747 10.1002/adma.201503033 10.1038/s41566-018-0325-y 10.1039/C9NH00462A 10.1021/acsami.7b15478 10.1088/1674-1056/ab99ba 10.1038/nnano.2012.96 10.1021/acsnano.5b06488 10.1103/PhysRevB.89.201302 10.1038/s41565-018-0298-5 10.1021/jacs.9b04663 10.1103/PhysRevB.90.205422 10.1103/PhysRevLett.115.126802 10.1038/ncomms5543 10.1021/acs.nanolett.8b02932 10.1103/PhysRevLett.118.266401 10.1088/2053-1583/aa5b21 10.1021/acsnano.8b05029 10.1093/nsr/nwu078 10.1002/admi.201901307 10.1039/C8TC06343E 10.1103/PhysRevB.95.235408 10.1063/1.101229 10.1063/1.123521 10.1038/s42005-019-0202-0 10.1021/acsnano.8b06503 10.1021/nl501988y 10.1103/PhysRevMaterials.1.044001 10.1103/PhysRevLett.112.047401 10.1038/s41699-017-0019-1 10.1364/CLEO_SI.2020.SM1Q.7 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-020-00430-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection (NC LIVE) ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection (via ProQuest) ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Science Database (via ProQuest SciTech Premium Collection) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central (subscription) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 16 |
ExternalDocumentID | oai_doaj_org_article_5911e1cbcf114f3b9fd6a99f7a66ac10 PMC7680791 33298847 10_1038_s41377_020_00430_4 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61427812; 61804074 funderid: https://doi.org/10.13039/501100001809 – fundername: the State Key Project of Research and Development of China (2018YFB2200500, 2017YFA0206304); National Youth 1000-Talent Plan; A ‘Jiangsu Shuangchuang Team’ Program; Natural Science Foundation of Jiangsu Province (BK20170012). – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61804074 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 61427812 – fundername: ; – fundername: ; grantid: 61427812; 61804074 |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-60c5c3b08470e76d80d997380a533112c07817a5bf903bc41521f52e36be8e463 |
IEDL.DBID | AAJSJ |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:29:07 EDT 2025 Thu Aug 21 14:15:56 EDT 2025 Tue Aug 05 11:22:52 EDT 2025 Wed Aug 13 05:28:49 EDT 2025 Thu Jan 02 22:57:33 EST 2025 Thu Apr 24 23:00:11 EDT 2025 Tue Jul 01 03:45:14 EDT 2025 Fri Feb 21 02:38:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-60c5c3b08470e76d80d997380a533112c07817a5bf903bc41521f52e36be8e463 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0001-9823-5788 |
OpenAccessLink | https://www.nature.com/articles/s41377-020-00430-4 |
PMID | 33298847 |
PQID | 2473197241 |
PQPubID | 2041947 |
PageCount | 16 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5911e1cbcf114f3b9fd6a99f7a66ac10 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7680791 proquest_miscellaneous_2469092234 proquest_journals_2473197241 pubmed_primary_33298847 crossref_citationtrail_10_1038_s41377_020_00430_4 crossref_primary_10_1038_s41377_020_00430_4 springer_journals_10_1038_s41377_020_00430_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201123 |
PublicationDateYYYYMMDD | 2020-11-23 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201123 day: 23 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Gupta, Whitaker, Mourou (CR17) 1992; 28 Imaeda (CR83) 2018; 122 L (CR91) 2020; 3 Wang (CR58) 2019; 5 Jauregui (CR84) 2019; 366 Mak, Xiao, Shan (CR36) 2018; 12 Kim (CR106) 2017; 3 Chakraborty (CR55) 2018; 18 Amani (CR9) 2015; 350 Yu, Wu (CR95) 2014; 89 Hao (CR50) 2020; 5 Jiang (CR1) 2017; 118 Rauh, Deibel, Dyakonov (CR32) 2012; 22 Jiang (CR104) 2018; 9 Lien (CR89) 2019; 364 Lin (CR45) 2014; 14 Lederer (CR19) 1999; 74 Rivera (CR98) 2016; 351 Lederer (CR20) 1997; 70 Chernikov (CR24) 2014; 113 Moody (CR69) 2018; 121 Chow (CR79) 2017; 17 Yu (CR35) 2015; 2 Steinleitner (CR60) 2017; 17 Huang (CR82) 2011; 605 Nie (CR47) 2019; 2 Dal Conte (CR21) 2020; 2 Hao (CR75) 2020; 29 He (CR109) 2015; 23 Song (CR102) 2016; 16 Haiml (CR12) 1999; 74 Kaminska (CR18) 1989; 54 CR59 Liu (CR70) 2018; 12 Hong (CR29) 2014; 9 Qiu (CR54) 2019; 5 Zhu (CR77) 2017; 8 Yan (CR103) 2017; 95 Rivera (CR38) 2018; 13 Nie (CR87) 2019; 4 Li (CR23) 2019; 7 Singh (CR99) 2016; 117 Lane, Zhao (CR86) 2018; 2 Fu (CR42) 2019; 6 Kidd, Zhang, Varga (CR2) 2016; 93 CR67 CR64 Volmer (CR100) 2017; 95 Maiti (CR15) 2016; 120 Tedeschi (CR14) 2016; 16 Yu (CR5) 2017; 3 Ceballos (CR25) 2016; 8 Goodman (CR46) 2020; 124 Gul (CR11) 2011; 115 Park (CR41) 2017; 9 Lippert (CR48) 2017; 4 Aivazian (CR57) 2017; 4 Newaz (CR44) 2012; 3 Jin (CR80) 2017; 13 Schaibley (CR97) 2016; 7 Pogna (CR56) 2016; 10 Lagarde (CR93) 2014; 112 Yu (CR78) 2016; 28 Raja (CR49) 2017; 8 Glazov (CR96) 2014; 89 Wang (CR10) 2015; 6 Chen (CR68) 2018; 10 Lee (CR31) 2014; 9 Wang (CR61) 2017; 8 Wang, Zhang, Rana (CR66) 2015; 15 Li (CR74) 2017; 9 Chernikov (CR39) 2015; 9 Jin (CR107) 2018; 360 Thilagam (CR26) 2016; 120 Jin (CR111) 2018; 10 Furchi (CR33) 2014; 14 Schaibley (CR37) 2016; 1 Hintermayr (CR76) 2018; 12 Zeng (CR7) 2012; 7 Li, Carter (CR72) 2019; 141 Othonos (CR13) 1998; 83 Rosenwaks (CR16) 1994; 50 Wang, Zhang, Rana (CR65) 2015; 15 Li, Cheng, Huang (CR110) 2018; 14 Mak (CR6) 2012; 7 Ceballos, Zereshki, Zhao (CR85) 2017; 1 Godde (CR88) 2016; 94 Splendiani (CR4) 2010; 10 Jin (CR28) 2018; 13 Chernikov (CR40) 2015; 115 Li (CR3) 2014; 90 CR92 Yao (CR52) 2017; 119 Komsa (CR71) 2012; 109 Kozawa (CR62) 2014; 5 Cunningham (CR27) 2017; 11 Xu (CR34) 2014; 10 Zhang (CR105) 2017; 12 Ceballos, Zhao (CR22) 2017; 27 Ross (CR90) 2013; 4 Li (CR63) 2019; 13 Raja (CR51) 2019; 14 Ciarrocchi (CR112) 2019; 13 Golla (CR81) 2017; 5 Mai (CR94) 2014; 14 Zhu (CR30) 2017; 17 Hoshi (CR43) 2017; 95 Dey (CR101) 2017; 119 Nguyen (CR53) 2019; 572 Sun, Martinez, Wang (CR8) 2016; 10 Sun (CR73) 2019; 44 Edelberg (CR108) 2019; 19 A Splendiani (430_CR4) 2010; 10 ZH Nie (430_CR87) 2019; 4 A Ciarrocchi (430_CR112) 2019; 13 M Amani (430_CR9) 2015; 350 PH L (430_CR91) 2020; 3 KF Mak (430_CR36) 2018; 12 YX Lin (430_CR45) 2014; 14 A Othonos (430_CR13) 1998; 83 P Rivera (430_CR38) 2018; 13 Y Hoshi (430_CR43) 2017; 95 G Aivazian (430_CR57) 2017; 4 P Steinleitner (430_CR60) 2017; 17 XX Zhang (430_CR105) 2017; 12 HN Wang (430_CR10) 2015; 6 A Thilagam (430_CR26) 2016; 120 PV Nguyen (430_CR53) 2019; 572 Y Li (430_CR3) 2014; 90 D Golla (430_CR81) 2017; 5 JR Schaibley (430_CR97) 2016; 7 F Ceballos (430_CR85) 2017; 1 H Hao (430_CR75) 2020; 29 D Edelberg (430_CR108) 2019; 19 CH Jin (430_CR28) 2018; 13 YR Liu (430_CR70) 2018; 12 J Kim (430_CR106) 2017; 3 TF Yan (430_CR103) 2017; 95 Y Sun (430_CR73) 2019; 44 CM Chow (430_CR79) 2017; 17 S Maiti (430_CR15) 2016; 120 A Raja (430_CR51) 2019; 14 CY Jiang (430_CR104) 2018; 9 A Singh (430_CR99) 2016; 117 ZH Yu (430_CR78) 2016; 28 S Gul (430_CR11) 2011; 115 L Wang (430_CR61) 2017; 8 CH Zhu (430_CR77) 2017; 8 SC Hao (430_CR50) 2020; 5 LS Li (430_CR72) 2019; 141 MJ Lederer (430_CR20) 1997; 70 EAA Pogna (430_CR56) 2016; 10 MM Furchi (430_CR33) 2014; 14 YY Li (430_CR74) 2017; 9 D Rauh (430_CR32) 2012; 22 ZY Jiang (430_CR1) 2017; 118 KF Mak (430_CR6) 2012; 7 D Tedeschi (430_CR14) 2016; 16 DH Lien (430_CR89) 2019; 364 AKM Newaz (430_CR44) 2012; 3 A Raja (430_CR49) 2017; 8 T Godde (430_CR88) 2016; 94 G Moody (430_CR69) 2018; 121 HN Wang (430_CR65) 2015; 15 XD Xu (430_CR34) 2014; 10 430_CR92 A Chernikov (430_CR39) 2015; 9 C Mai (430_CR94) 2014; 14 YZ Li (430_CR63) 2019; 13 F Ceballos (430_CR22) 2017; 27 MJ Lederer (430_CR19) 1999; 74 VA Hintermayr (430_CR76) 2018; 12 P Dey (430_CR101) 2017; 119 MM Glazov (430_CR96) 2014; 89 F Ceballos (430_CR25) 2016; 8 M Haiml (430_CR12) 1999; 74 KY Yao (430_CR52) 2017; 119 430_CR67 S Lippert (430_CR48) 2017; 4 A Chernikov (430_CR40) 2015; 115 430_CR64 HN Wang (430_CR66) 2015; 15 H Imaeda (430_CR83) 2018; 122 S Dal Conte (430_CR21) 2020; 2 YZ Li (430_CR23) 2019; 7 CH Jin (430_CR80) 2017; 13 ZH Nie (430_CR47) 2019; 2 LB Huang (430_CR82) 2011; 605 XL Song (430_CR102) 2016; 16 430_CR59 HY Yu (430_CR35) 2015; 2 ZZ Qiu (430_CR54) 2019; 5 T Yu (430_CR95) 2014; 89 RP Li (430_CR110) 2018; 14 XP Hong (430_CR29) 2014; 9 PD Cunningham (430_CR27) 2017; 11 DW Kidd (430_CR2) 2016; 93 M Kaminska (430_CR18) 1989; 54 AJ Goodman (430_CR46) 2020; 124 ZP Sun (430_CR8) 2016; 10 LA Jauregui (430_CR84) 2019; 366 JS Ross (430_CR90) 2013; 4 Y Rosenwaks (430_CR16) 1994; 50 Y Park (430_CR41) 2017; 9 D Lagarde (430_CR93) 2014; 112 P Rivera (430_CR98) 2016; 351 A Chernikov (430_CR24) 2014; 113 K Chen (430_CR68) 2018; 10 CH Jin (430_CR107) 2018; 360 B Chakraborty (430_CR55) 2018; 18 D Kozawa (430_CR62) 2014; 5 J Wang (430_CR58) 2019; 5 HL Zeng (430_CR7) 2012; 7 F Volmer (430_CR100) 2017; 95 H Jin (430_CR111) 2018; 10 HM Zhu (430_CR30) 2017; 17 HP Komsa (430_CR71) 2012; 109 S Gupta (430_CR17) 1992; 28 HY Yu (430_CR5) 2017; 3 JQ He (430_CR109) 2015; 23 JR Schaibley (430_CR37) 2016; 1 CH Lee (430_CR31) 2014; 9 Y Fu (430_CR42) 2019; 6 SD Lane (430_CR86) 2018; 2 |
References_xml | – volume: 70 start-page: 3428 year: 1997 end-page: 3430 ident: CR20 article-title: GaAs based anti-resonant Fabry–Perot saturable absorber fabricated by metal organic vapor phase epitaxy and ion implantation publication-title: Appl. Phys. Lett. doi: 10.1063/1.119192 – volume: 119 start-page: 137401 year: 2017 ident: CR101 article-title: Gate-controlled spin-valley locking of resident carriers in WSe monolayers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.137401 – volume: 14 start-page: 202 year: 2014 end-page: 206 ident: CR94 article-title: Many-body effects in valleytronics: direct measurement of valley lifetimes in single-layer MoS publication-title: Nano Lett. doi: 10.1021/nl403742j – volume: 4 start-page: 025024 year: 2017 ident: CR57 article-title: Many-body effects in nonlinear optical responses of 2D layered semiconductors publication-title: 2D Mater. doi: 10.1088/2053-1583/aa56f1 – volume: 15 start-page: 339 year: 2015 end-page: 345 ident: CR65 article-title: Ultrafast dynamics of defect-assisted electron–hole recombination in monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl503636c – volume: 19 start-page: 4371 year: 2019 end-page: 4379 ident: CR108 article-title: Approaching the intrinsic limit in transition metal diselenides via point defect control publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00985 – volume: 50 start-page: 1746 year: 1994 end-page: 1754 ident: CR16 article-title: Photogenerated carrier dynamics under the influence of electric fields in III-V semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.1746 – volume: 5 start-page: 056101 year: 2017 ident: CR81 article-title: Ultrafast relaxation of hot phonons in graphene-hBN heterostructures publication-title: APL Mater. doi: 10.1063/1.4982738 – volume: 120 start-page: 1918 year: 2016 end-page: 1925 ident: CR15 article-title: Tuning the charge carrier dynamics via interfacial alloying in core/shell CdTe/ZnSe NCs publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b09904 – volume: 14 start-page: 832 year: 2019 end-page: 837 ident: CR51 article-title: Dielectric disorder in two-dimensional materials publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0520-0 – volume: 117 start-page: 257402 year: 2016 ident: CR99 article-title: Long-lived valley polarization of intravalley trions in monolayer WSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.257402 – volume: 10 start-page: 227 year: 2016 end-page: 238 ident: CR8 article-title: Optical modulators with 2D layered materials publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.15 – volume: 3 start-page: 641 year: 2020 end-page: 647 ident: CR91 article-title: Electrical and chemical tuning of exciton lifetime in monolayer MoS for field-effect transistors publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02170 – ident: CR92 – volume: 17 start-page: 1194 year: 2017 end-page: 1199 ident: CR79 article-title: Unusual exciton–phonon interactions at van der waals engineered interfaces publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04944 – volume: 27 start-page: 1604509 year: 2017 ident: CR22 article-title: Ultrafast laser spectroscopy of two-dimensional materials beyond graphene publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604509 – volume: 350 start-page: 1065 year: 2015 end-page: 1068 ident: CR9 article-title: Near-unity photoluminescence quantum yield in MoS publication-title: Science doi: 10.1126/science.aad2114 – volume: 12 start-page: 883 year: 2017 end-page: 888 ident: CR105 article-title: Magnetic brightening and control of dark excitons in monolayer WSe publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.105 – volume: 8 start-page: 11681 year: 2016 end-page: 11688 ident: CR25 article-title: Exciton formation in monolayer transition metal dichalcogenides publication-title: Nanoscale doi: 10.1039/C6NR02516A – volume: 89 start-page: 205303 year: 2014 ident: CR95 article-title: Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205303 – volume: 2 start-page: 28 year: 2020 end-page: 42 ident: CR21 article-title: Ultrafast photophysics of 2D semiconductors and related heterostructures publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.07.007 – volume: 95 start-page: 241406 year: 2017 ident: CR103 article-title: Long valley relaxation time of free carriers in monolayer WSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.241406 – volume: 4 start-page: 1099 year: 2019 end-page: 1105 ident: CR87 article-title: Ultrafast free carrier dynamics in black phosphorus–molybdenum disulfide (BP/MoS ) heterostructures publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00045C – volume: 366 start-page: 870 year: 2019 end-page: 875 ident: CR84 article-title: Electrical control of interlayer exciton dynamics in atomically thin heterostructures publication-title: Science doi: 10.1126/science.aaw4194 – volume: 6 year: 2015 ident: CR10 article-title: Ultrafast response of monolayer molybdenum disulfide photodetectors publication-title: Nat. Commun. doi: 10.1038/ncomms9831 – volume: 360 start-page: 893 year: 2018 end-page: 896 ident: CR107 article-title: Imaging of pure spin-valley diffusion current in WS -WSe heterostructures publication-title: Science doi: 10.1126/science.aao3503 – volume: 9 start-page: 10647 year: 2017 end-page: 10652 ident: CR41 article-title: Interplay between many body effects and Coulomb screening in the optical bandgap of atomically thin MoS publication-title: Nanoscale doi: 10.1039/C7NR01834G – volume: 9 start-page: 676 year: 2014 end-page: 681 ident: CR31 article-title: Atomically thin p–n junctions with van der Waals heterointerfaces publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.150 – volume: 572 start-page: 220 year: 2019 end-page: 223 ident: CR53 article-title: Visualizing electrostatic gating effects in two-dimensional heterostructures publication-title: Nature doi: 10.1038/s41586-019-1402-1 – volume: 5 year: 2019 ident: CR54 article-title: Giant gate-tunable bandgap renormalization and excitonic effects in a 2D semiconductor publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2347 – volume: 364 start-page: 468 year: 2019 end-page: 471 ident: CR89 article-title: Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors publication-title: Science doi: 10.1126/science.aaw8053 – volume: 14 start-page: 4785 year: 2014 end-page: 4791 ident: CR33 article-title: Photovoltaic effect in an electrically tunable van der waals heterojunction publication-title: Nano Lett. doi: 10.1021/nl501962c – volume: 113 start-page: 076802 year: 2014 ident: CR24 article-title: Exciton binding energy and nonhydrogenic rydberg series in monolayer WS2 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.076802 – volume: 13 start-page: 1800270 year: 2019 ident: CR63 article-title: Slow cooling of high-energy c excitons is limited by intervalley-transfer in monolayer MoS publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800270 – volume: 14 start-page: 1802091 year: 2018 ident: CR110 article-title: Recent progress of janus 2D transition metal chalcogenides: from theory to experiments publication-title: Small doi: 10.1002/smll.201802091 – volume: 7 start-page: 490 year: 2012 end-page: 493 ident: CR7 article-title: Valley polarization in MoS monolayers by optical pumping publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 93 start-page: 125423 year: 2016 ident: CR2 article-title: Binding energies and structures of two-dimensional excitonic complexes in transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.125423 – volume: 74 start-page: 1993 year: 1999 end-page: 1995 ident: CR19 article-title: Nonlinear optical absorption and temporal response of arsenic- and oxygen-implanted GaAs publication-title: Appl. Phys. Lett. doi: 10.1063/1.123724 – volume: 9 start-page: 466 year: 2015 end-page: 470 ident: CR39 article-title: Population inversion and giant bandgap renormalization in atomically thin WS layers publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.104 – volume: 13 start-page: 127 year: 2017 end-page: 131 ident: CR80 article-title: Interlayer electron–phonon coupling in WSe /hBN heterostructures publication-title: Nat. Phys. doi: 10.1038/nphys3928 – volume: 16 start-page: 3085 year: 2016 end-page: 3093 ident: CR14 article-title: Long-lived hot carriers in III–V nanowires publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00251 – volume: 120 start-page: 124306 year: 2016 ident: CR26 article-title: Exciton formation assisted by longitudinal optical phonons in monolayer transition metal dichalcogenides publication-title: J. Appl. Phys. doi: 10.1063/1.4963123 – volume: 11 start-page: 12601 year: 2017 end-page: 12608 ident: CR27 article-title: Photoinduced bandgap renormalization and exciton binding energy reduction in WS publication-title: ACS Nano doi: 10.1021/acsnano.7b06885 – volume: 12 start-page: 451 year: 2018 end-page: 460 ident: CR36 article-title: Light–valley interactions in 2D semiconductors publication-title: Nat. Photonics doi: 10.1038/s41566-018-0204-6 – volume: 95 start-page: 241403 year: 2017 ident: CR43 article-title: Suppression of exciton-exciton annihilation in tungsten disulfide monolayers encapsulated by hexagonal boron nitrides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.241403 – volume: 109 start-page: 035503 year: 2012 ident: CR71 article-title: Two-dimensional transition metal dichalcogenides under electron irradiation: defect production and doping publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.035503 – volume: 1 start-page: 16055 year: 2016 ident: CR37 article-title: Valleytronics in 2D materials publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.55 – volume: 22 start-page: 3371 year: 2012 end-page: 3377 ident: CR32 article-title: Charge density dependent nongeminate recombination in organic bulk heterojunction solar cells publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201103118 – volume: 10 start-page: 343 year: 2014 end-page: 350 ident: CR34 article-title: Spin and pseudospins in layered transition metal dichalcogenides publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 10 start-page: 19310 year: 2018 end-page: 19315 ident: CR111 article-title: Prediction of an extremely long exciton lifetime in a Janus-MoSTe monolayer publication-title: Nanoscale doi: 10.1039/C8NR04568B – volume: 44 start-page: 4103 year: 2019 end-page: 4106 ident: CR73 article-title: Slowing down photocarrier relaxation in Dirac semimetal Cd As via Mn doping publication-title: Opt. Lett. doi: 10.1364/OL.44.004103 – volume: 4 year: 2013 ident: CR90 article-title: Electrical control of neutral and charged excitons in a monolayer semiconductor publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 122 start-page: 19273 year: 2018 end-page: 19279 ident: CR83 article-title: Acceleration of photocarrier relaxation in graphene achieved by epitaxial growth: ultrafast photoluminescence decay of monolayer graphene on SiC publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b06845 – volume: 115 start-page: 20864 year: 2011 end-page: 20875 ident: CR11 article-title: Synthesis, optical and structural properties, and charge carrier dynamics of Cu-doped ZnSe nanocrystals publication-title: J. Phys. Chem. C. doi: 10.1021/jp2047272 – volume: 28 start-page: 2464 year: 1992 end-page: 2472 ident: CR17 article-title: Ultrafast carrier dynamics in III-V semiconductors grown by molecular-beam epitaxy at very low substrate temperatures publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.159553 – volume: 119 start-page: 087401 year: 2017 ident: CR52 article-title: Optically discriminating carrier-induced quasiparticle band gap and exciton energy renormalization in monolayer MoS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.087401 – volume: 17 start-page: 1455 year: 2017 end-page: 1460 ident: CR60 article-title: Direct observation of ultrafast exciton formation in a monolayer of WSe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04422 – volume: 2 start-page: 035003 year: 2018 ident: CR86 article-title: Unipolar optical doping and extended photocarrier lifetime in graphene by band-alignment engineering publication-title: Nano Futures doi: 10.1088/2399-1984/aace6c – volume: 15 start-page: 8204 year: 2015 end-page: 8210 ident: CR66 article-title: Surface recombination limited lifetimes of photoexcited carriers in few-layer transition metal dichalcogenide MoS publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03708 – volume: 8 year: 2017 ident: CR49 article-title: Coulomb engineering of the bandgap and excitons in two-dimensional materials publication-title: Nat. Commun. doi: 10.1038/ncomms15251 – volume: 8 year: 2017 ident: CR77 article-title: A robust and tuneable mid-infrared optical switch enabled by bulk Dirac fermions publication-title: Nat. Commun. doi: 10.1038/ncomms14111 – volume: 351 start-page: 688 year: 2016 end-page: 691 ident: CR98 article-title: Valley-polarized exciton dynamics in a 2D semiconductor heterostructure publication-title: Science doi: 10.1126/science.aac7820 – volume: 94 start-page: 165301 year: 2016 ident: CR88 article-title: Exciton and trion dynamics in atomically thin MoSe and WSe : effect of localization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.165301 – volume: 3 year: 2017 ident: CR106 article-title: Observation of ultralong valley lifetime in WSe /MoS heterostructures publication-title: Sci. Adv. doi: 10.1126/sciadv.1700518 – volume: 9 year: 2018 ident: CR104 article-title: Microsecond dark-exciton valley polarization memory in two-dimensional heterostructures publication-title: Nat. Commun. doi: 10.1038/s41467-018-03174-3 – volume: 13 start-page: 1004 year: 2018 end-page: 1015 ident: CR38 article-title: Interlayer valley excitons in heterobilayers of transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0193-0 – volume: 3 year: 2012 ident: CR44 article-title: Probing charge scattering mechanisms in suspended graphene by varying its dielectric environment publication-title: Nat. Commun. doi: 10.1038/ncomms1740 – volume: 8 year: 2017 ident: CR61 article-title: Slow cooling and efficient extraction of C-exciton hot carriers in MoS monolayer publication-title: Nat. Commun. doi: 10.1038/ncomms13906 – volume: 121 start-page: 057403 year: 2018 ident: CR69 article-title: Microsecond valley lifetime of defect-bound excitons in monolayer WSe publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.057403 – ident: CR67 – volume: 9 start-page: 19360 year: 2017 end-page: 19366 ident: CR74 article-title: Effects of rhenium dopants on photocarrier dynamics and optical properties of monolayer, few-layer, and bulk MoS publication-title: Nanoscale doi: 10.1039/C7NR07227A – volume: 605 start-page: 1657 year: 2011 end-page: 1661 ident: CR82 article-title: Ultrafast relaxation of hot optical phonons in monolayer and multilayer graphene on different substrates publication-title: Surf. Sci. doi: 10.1016/j.susc.2010.12.009 – volume: 3 year: 2017 ident: CR5 article-title: Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices publication-title: Sci. Adv. doi: 10.1126/sciadv.1701696 – volume: 83 start-page: 1789 year: 1998 end-page: 1830 ident: CR13 article-title: Probing ultrafast carrier and phonon dynamics in semiconductors publication-title: J. Appl. Phys. doi: 10.1063/1.367411 – volume: 5 year: 2019 ident: CR58 article-title: Optical generation of high carrier densities in 2D semiconductor heterobilayers publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0145 – volume: 17 start-page: 3591 year: 2017 end-page: 3598 ident: CR30 article-title: Interfacial charge transfer circumventing momentum mismatch at two-dimensional van der waals heterojunctions publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00748 – volume: 16 start-page: 5010 year: 2016 end-page: 5014 ident: CR102 article-title: Long-lived hole spin/valley polarization probed by kerr rotation in monolayer WSe publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01727 – volume: 9 start-page: 682 year: 2014 end-page: 686 ident: CR29 article-title: Ultrafast charge transfer in atomically thin MoS /WS heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 – volume: 23 start-page: 33370 year: 2015 end-page: 33377 ident: CR109 article-title: Photocarrier dynamics in transition metal dichalcogenide alloy Mo W S publication-title: Opt. Express doi: 10.1364/OE.23.033370 – volume: 124 start-page: 12175 year: 2020 end-page: 12184 ident: CR46 article-title: Substrate-dependent exciton diffusion and annihilation in chemically treated MoS and WS2 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c04000 – ident: CR64 – volume: 10 start-page: 1271 year: 2010 end-page: 1275 ident: CR4 article-title: Emerging photoluminescence in monolayer MoS publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 7 year: 2016 ident: CR97 article-title: Directional interlayer spin-valley transfer in two-dimensional heterostructures publication-title: Nat. Commun. doi: 10.1038/ncomms13747 – volume: 28 start-page: 547 year: 2016 end-page: 552 ident: CR78 article-title: Realization of room-temperature phonon-limited carrier transport in monolayer MoS by dielectric and carrier screening publication-title: Adv. Mater. doi: 10.1002/adma.201503033 – volume: 13 start-page: 131 year: 2019 end-page: 136 ident: CR112 article-title: Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures publication-title: Nat. Photonics doi: 10.1038/s41566-018-0325-y – volume: 5 start-page: 139 year: 2020 end-page: 143 ident: CR50 article-title: Controlling exciton transport in monolayer MoSe by dielectric screening publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00462A – volume: 10 start-page: 1125 year: 2018 end-page: 1131 ident: CR68 article-title: Carrier trapping by oxygen impurities in molybdenum diselenide publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15478 – volume: 29 start-page: 077201 year: 2020 ident: CR75 article-title: Modulation of carrier lifetime in MoS monolayer by uniaxial strain publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab99ba – volume: 7 start-page: 494 year: 2012 end-page: 498 ident: CR6 article-title: Control of valley polarization in monolayer MoS by optical helicity publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 10 start-page: 1182 year: 2016 end-page: 1188 ident: CR56 article-title: Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS publication-title: ACS Nano doi: 10.1021/acsnano.5b06488 – volume: 89 start-page: 201302 year: 2014 ident: CR96 article-title: Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.201302 – volume: 13 start-page: 994 year: 2018 end-page: 1003 ident: CR28 article-title: Ultrafast dynamics in van der Waals heterostructures publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0298-5 – volume: 141 start-page: 10451 year: 2019 end-page: 10461 ident: CR72 article-title: Defect-mediated charge-carrier trapping and nonradiative recombination in WSe monolayers publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04663 – volume: 90 start-page: 205422 year: 2014 ident: CR3 article-title: Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS , MoSe , WS , and WSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.205422 – volume: 115 start-page: 126802 year: 2015 ident: CR40 article-title: Electrical tuning of exciton binding energies in monolayer WS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.126802 – volume: 5 year: 2014 ident: CR62 article-title: Photocarrier relaxation pathway in two-dimensional semiconducting transition metal dichalcogenides publication-title: Nat. Commun. doi: 10.1038/ncomms5543 – volume: 18 start-page: 6455 year: 2018 end-page: 6460 ident: CR55 article-title: Control of strong light–matter interaction in monolayer WS through electric field gating publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02932 – volume: 118 start-page: 266401 year: 2017 ident: CR1 article-title: Scaling universality between band gap and exciton binding energy of two-dimensional semiconductors publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.266401 – volume: 4 start-page: 025045 year: 2017 ident: CR48 article-title: Influence of the substrate material on the optical properties of tungsten diselenide monolayers publication-title: 2D Mater. doi: 10.1088/2053-1583/aa5b21 – volume: 12 start-page: 10151 year: 2018 end-page: 10158 ident: CR76 article-title: Accelerated carrier relaxation through reduced coulomb screening in two-dimensional halide perovskite nanoplatelets publication-title: ACS Nano doi: 10.1021/acsnano.8b05029 – volume: 2 start-page: 57 year: 2015 end-page: 70 ident: CR35 article-title: Valley excitons in two-dimensional semiconductors publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwu078 – volume: 6 start-page: 1901307 year: 2019 ident: CR42 article-title: Effect of dielectric environment on excitonic dynamics in monolayer WS publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901307 – volume: 7 start-page: 4304 year: 2019 end-page: 4319 ident: CR23 article-title: Ultrafast carrier dynamics in two-dimensional transition metal dichalcogenides publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06343E – volume: 95 start-page: 235408 year: 2017 ident: CR100 article-title: Intervalley dark trion states with spin lifetimes of 150 ns in WSe publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.235408 – volume: 54 start-page: 1881 year: 1989 end-page: 1883 ident: CR18 article-title: Structural properties of As‐rich GaAs grown by molecular beam epitaxy at low temperatures publication-title: Appl. Phys. Lett. doi: 10.1063/1.101229 – volume: 74 start-page: 1269 year: 1999 end-page: 1271 ident: CR12 article-title: Femtosecond response times and high optical nonlinearity in beryllium-doped low-temperature grown GaAs publication-title: Appl. Phys. Lett. doi: 10.1063/1.123521 – volume: 2 start-page: 103 year: 2019 ident: CR47 article-title: Tailoring exciton dynamics of monolayer transition metal dichalcogenides by interfacial electron-phonon coupling publication-title: Commun. Phys. doi: 10.1038/s42005-019-0202-0 – ident: CR59 – volume: 12 start-page: 10529 year: 2018 end-page: 10536 ident: CR70 article-title: Enhancement of out-of-plane charge transport in a vertically stacked two-dimensional heterostructure using point defects publication-title: ACS Nano doi: 10.1021/acsnano.8b06503 – volume: 14 start-page: 5569 year: 2014 end-page: 5576 ident: CR45 article-title: Dielectric screening of excitons and trions in single-layer MoS publication-title: Nano Lett. doi: 10.1021/nl501988y – volume: 1 start-page: 044001 year: 2017 ident: CR85 article-title: Separating electrons and holes by monolayer increments in van der Waals heterostructures publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.044001 – volume: 112 start-page: 047401 year: 2014 ident: CR93 article-title: Carrier and polarization dynamics in monolayer MoS publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.047401 – volume: 29 start-page: 077201 year: 2020 ident: 430_CR75 publication-title: Chin. Phys. B doi: 10.1088/1674-1056/ab99ba – ident: 430_CR67 doi: 10.1038/s41699-017-0019-1 – volume: 5 year: 2014 ident: 430_CR62 publication-title: Nat. Commun. doi: 10.1038/ncomms5543 – volume: 351 start-page: 688 year: 2016 ident: 430_CR98 publication-title: Science doi: 10.1126/science.aac7820 – volume: 22 start-page: 3371 year: 2012 ident: 430_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201103118 – volume: 117 start-page: 257402 year: 2016 ident: 430_CR99 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.257402 – volume: 95 start-page: 241406 year: 2017 ident: 430_CR103 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.241406 – volume: 141 start-page: 10451 year: 2019 ident: 430_CR72 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b04663 – volume: 112 start-page: 047401 year: 2014 ident: 430_CR93 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.047401 – volume: 14 start-page: 1802091 year: 2018 ident: 430_CR110 publication-title: Small doi: 10.1002/smll.201802091 – volume: 8 year: 2017 ident: 430_CR61 publication-title: Nat. Commun. doi: 10.1038/ncomms13906 – volume: 364 start-page: 468 year: 2019 ident: 430_CR89 publication-title: Science doi: 10.1126/science.aaw8053 – volume: 27 start-page: 1604509 year: 2017 ident: 430_CR22 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201604509 – volume: 16 start-page: 3085 year: 2016 ident: 430_CR14 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b00251 – volume: 13 start-page: 131 year: 2019 ident: 430_CR112 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0325-y – volume: 124 start-page: 12175 year: 2020 ident: 430_CR46 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.0c04000 – ident: 430_CR59 – volume: 14 start-page: 4785 year: 2014 ident: 430_CR33 publication-title: Nano Lett. doi: 10.1021/nl501962c – volume: 12 start-page: 451 year: 2018 ident: 430_CR36 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0204-6 – volume: 119 start-page: 087401 year: 2017 ident: 430_CR52 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.087401 – volume: 4 year: 2013 ident: 430_CR90 publication-title: Nat. Commun. doi: 10.1038/ncomms2498 – volume: 14 start-page: 5569 year: 2014 ident: 430_CR45 publication-title: Nano Lett. doi: 10.1021/nl501988y – volume: 28 start-page: 547 year: 2016 ident: 430_CR78 publication-title: Adv. Mater. doi: 10.1002/adma.201503033 – volume: 4 start-page: 1099 year: 2019 ident: 430_CR87 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00045C – volume: 89 start-page: 205303 year: 2014 ident: 430_CR95 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.205303 – volume: 118 start-page: 266401 year: 2017 ident: 430_CR1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.118.266401 – volume: 572 start-page: 220 year: 2019 ident: 430_CR53 publication-title: Nature doi: 10.1038/s41586-019-1402-1 – volume: 95 start-page: 241403 year: 2017 ident: 430_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.241403 – volume: 8 start-page: 11681 year: 2016 ident: 430_CR25 publication-title: Nanoscale doi: 10.1039/C6NR02516A – volume: 12 start-page: 883 year: 2017 ident: 430_CR105 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.105 – volume: 2 start-page: 57 year: 2015 ident: 430_CR35 publication-title: Natl Sci. Rev. doi: 10.1093/nsr/nwu078 – volume: 5 start-page: 056101 year: 2017 ident: 430_CR81 publication-title: APL Mater. doi: 10.1063/1.4982738 – volume: 15 start-page: 8204 year: 2015 ident: 430_CR66 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b03708 – volume: 115 start-page: 20864 year: 2011 ident: 430_CR11 publication-title: J. Phys. Chem. C. doi: 10.1021/jp2047272 – volume: 14 start-page: 832 year: 2019 ident: 430_CR51 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0520-0 – volume: 7 start-page: 4304 year: 2019 ident: 430_CR23 publication-title: J. Mater. Chem. C doi: 10.1039/C8TC06343E – volume: 17 start-page: 1194 year: 2017 ident: 430_CR79 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04944 – ident: 430_CR92 doi: 10.1364/CLEO_SI.2020.SM1Q.7 – volume: 10 start-page: 1125 year: 2018 ident: 430_CR68 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b15478 – volume: 7 year: 2016 ident: 430_CR97 publication-title: Nat. Commun. doi: 10.1038/ncomms13747 – volume: 350 start-page: 1065 year: 2015 ident: 430_CR9 publication-title: Science doi: 10.1126/science.aad2114 – volume: 115 start-page: 126802 year: 2015 ident: 430_CR40 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.126802 – volume: 74 start-page: 1993 year: 1999 ident: 430_CR19 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123724 – volume: 4 start-page: 025024 year: 2017 ident: 430_CR57 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa56f1 – volume: 120 start-page: 1918 year: 2016 ident: 430_CR15 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.5b09904 – volume: 13 start-page: 1004 year: 2018 ident: 430_CR38 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0193-0 – volume: 4 start-page: 025045 year: 2017 ident: 430_CR48 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa5b21 – volume: 3 year: 2017 ident: 430_CR106 publication-title: Sci. Adv. doi: 10.1126/sciadv.1700518 – volume: 605 start-page: 1657 year: 2011 ident: 430_CR82 publication-title: Surf. Sci. doi: 10.1016/j.susc.2010.12.009 – volume: 94 start-page: 165301 year: 2016 ident: 430_CR88 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.94.165301 – volume: 13 start-page: 1800270 year: 2019 ident: 430_CR63 publication-title: Laser Photonics Rev. doi: 10.1002/lpor.201800270 – ident: 430_CR64 – volume: 9 year: 2018 ident: 430_CR104 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03174-3 – volume: 1 start-page: 044001 year: 2017 ident: 430_CR85 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.1.044001 – volume: 12 start-page: 10529 year: 2018 ident: 430_CR70 publication-title: ACS Nano doi: 10.1021/acsnano.8b06503 – volume: 89 start-page: 201302 year: 2014 ident: 430_CR96 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.201302 – volume: 6 year: 2015 ident: 430_CR10 publication-title: Nat. Commun. doi: 10.1038/ncomms9831 – volume: 3 start-page: 641 year: 2020 ident: 430_CR91 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02170 – volume: 366 start-page: 870 year: 2019 ident: 430_CR84 publication-title: Science doi: 10.1126/science.aaw4194 – volume: 10 start-page: 227 year: 2016 ident: 430_CR8 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.15 – volume: 5 year: 2019 ident: 430_CR58 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax0145 – volume: 93 start-page: 125423 year: 2016 ident: 430_CR2 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.125423 – volume: 70 start-page: 3428 year: 1997 ident: 430_CR20 publication-title: Appl. Phys. Lett. doi: 10.1063/1.119192 – volume: 5 year: 2019 ident: 430_CR54 publication-title: Sci. Adv. doi: 10.1126/sciadv.aaw2347 – volume: 8 year: 2017 ident: 430_CR77 publication-title: Nat. Commun. doi: 10.1038/ncomms14111 – volume: 2 start-page: 035003 year: 2018 ident: 430_CR86 publication-title: Nano Futures doi: 10.1088/2399-1984/aace6c – volume: 121 start-page: 057403 year: 2018 ident: 430_CR69 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.057403 – volume: 2 start-page: 28 year: 2020 ident: 430_CR21 publication-title: Trends Chem. doi: 10.1016/j.trechm.2019.07.007 – volume: 360 start-page: 893 year: 2018 ident: 430_CR107 publication-title: Science doi: 10.1126/science.aao3503 – volume: 19 start-page: 4371 year: 2019 ident: 430_CR108 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b00985 – volume: 54 start-page: 1881 year: 1989 ident: 430_CR18 publication-title: Appl. Phys. Lett. doi: 10.1063/1.101229 – volume: 44 start-page: 4103 year: 2019 ident: 430_CR73 publication-title: Opt. Lett. doi: 10.1364/OL.44.004103 – volume: 3 year: 2012 ident: 430_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms1740 – volume: 6 start-page: 1901307 year: 2019 ident: 430_CR42 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201901307 – volume: 10 start-page: 1182 year: 2016 ident: 430_CR56 publication-title: ACS Nano doi: 10.1021/acsnano.5b06488 – volume: 9 start-page: 10647 year: 2017 ident: 430_CR41 publication-title: Nanoscale doi: 10.1039/C7NR01834G – volume: 12 start-page: 10151 year: 2018 ident: 430_CR76 publication-title: ACS Nano doi: 10.1021/acsnano.8b05029 – volume: 7 start-page: 490 year: 2012 ident: 430_CR7 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.95 – volume: 120 start-page: 124306 year: 2016 ident: 430_CR26 publication-title: J. Appl. Phys. doi: 10.1063/1.4963123 – volume: 15 start-page: 339 year: 2015 ident: 430_CR65 publication-title: Nano Lett. doi: 10.1021/nl503636c – volume: 11 start-page: 12601 year: 2017 ident: 430_CR27 publication-title: ACS Nano doi: 10.1021/acsnano.7b06885 – volume: 10 start-page: 343 year: 2014 ident: 430_CR34 publication-title: Nat. Phys. doi: 10.1038/nphys2942 – volume: 9 start-page: 682 year: 2014 ident: 430_CR29 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.167 – volume: 1 start-page: 16055 year: 2016 ident: 430_CR37 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.55 – volume: 13 start-page: 994 year: 2018 ident: 430_CR28 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0298-5 – volume: 5 start-page: 139 year: 2020 ident: 430_CR50 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00462A – volume: 50 start-page: 1746 year: 1994 ident: 430_CR16 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.1746 – volume: 16 start-page: 5010 year: 2016 ident: 430_CR102 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01727 – volume: 9 start-page: 19360 year: 2017 ident: 430_CR74 publication-title: Nanoscale doi: 10.1039/C7NR07227A – volume: 90 start-page: 205422 year: 2014 ident: 430_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.205422 – volume: 17 start-page: 1455 year: 2017 ident: 430_CR60 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04422 – volume: 17 start-page: 3591 year: 2017 ident: 430_CR30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b00748 – volume: 10 start-page: 1271 year: 2010 ident: 430_CR4 publication-title: Nano Lett. doi: 10.1021/nl903868w – volume: 83 start-page: 1789 year: 1998 ident: 430_CR13 publication-title: J. Appl. Phys. doi: 10.1063/1.367411 – volume: 122 start-page: 19273 year: 2018 ident: 430_CR83 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.8b06845 – volume: 13 start-page: 127 year: 2017 ident: 430_CR80 publication-title: Nat. Phys. doi: 10.1038/nphys3928 – volume: 2 start-page: 103 year: 2019 ident: 430_CR47 publication-title: Commun. Phys. doi: 10.1038/s42005-019-0202-0 – volume: 109 start-page: 035503 year: 2012 ident: 430_CR71 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.035503 – volume: 9 start-page: 466 year: 2015 ident: 430_CR39 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.104 – volume: 119 start-page: 137401 year: 2017 ident: 430_CR101 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.137401 – volume: 8 year: 2017 ident: 430_CR49 publication-title: Nat. Commun. doi: 10.1038/ncomms15251 – volume: 3 year: 2017 ident: 430_CR5 publication-title: Sci. Adv. doi: 10.1126/sciadv.1701696 – volume: 95 start-page: 235408 year: 2017 ident: 430_CR100 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.235408 – volume: 74 start-page: 1269 year: 1999 ident: 430_CR12 publication-title: Appl. Phys. Lett. doi: 10.1063/1.123521 – volume: 14 start-page: 202 year: 2014 ident: 430_CR94 publication-title: Nano Lett. doi: 10.1021/nl403742j – volume: 28 start-page: 2464 year: 1992 ident: 430_CR17 publication-title: IEEE J. Quantum Electron. doi: 10.1109/3.159553 – volume: 10 start-page: 19310 year: 2018 ident: 430_CR111 publication-title: Nanoscale doi: 10.1039/C8NR04568B – volume: 23 start-page: 33370 year: 2015 ident: 430_CR109 publication-title: Opt. Express doi: 10.1364/OE.23.033370 – volume: 9 start-page: 676 year: 2014 ident: 430_CR31 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.150 – volume: 113 start-page: 076802 year: 2014 ident: 430_CR24 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.113.076802 – volume: 7 start-page: 494 year: 2012 ident: 430_CR6 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.96 – volume: 18 start-page: 6455 year: 2018 ident: 430_CR55 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02932 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.4662695 |
SecondaryResourceType | review_article |
Snippet | Due to strong Coulomb interactions, two-dimensional (2D) semiconductors can support excitons with large binding energies and complex many-particle states.... Semiconductor photocarriers: Exploring excitons in two dimensions Electrons and positively charged regions in semiconductors known as holes can form tightly... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 192 |
SubjectTerms | 639/624/1075/401 639/624/399 Applied and Technical Physics Atomic Classical and Continuum Physics Energy External stimuli Lasers Mechanical stimuli Molecular Optical and Plasma Physics Optical Devices Optics Photonics Physics Physics and Astronomy Review Review Article Semiconductors |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na90wDDejUNhlbN1X2m5ksNtm6sSOP47bWCmDjh1W6M3Yjk07RlJeUrY_v5Kd99a3z8suOcROIn6RkISlnwh5aZwxSchIO2ckFeCTqItJUAHhr29a17QS-51PP8qTM_HhvDu_NeoLa8IKPXAB7qgDa4xN8CFB5J64N6mX-H7lpHShNFeBz7uVTH0p9XIN02rpkmFcH00CufUoZkuZ54qKLU-UCft_F2X-Wiz504lpdkTH98m9JYKs3xTJH5A7cdgju7mSM0wPyafTsV9GctVjqq8uxhnc1QoH09XYuPK9LPVlEv1UXw71_G2kPbL8F4aOesKC-XFAJthxNT0iZ8fvP787ocvYBBogG5mpZKEL3DPwOywq2WvWG6O4Zg5COwivAvL7KNf5ZBj3IXvw1LWRSx91FJI_JjvDOMSnpHbK9ToqBlcHgCatjROsF43pPCRCsSLNGkIbFk5xHG3x1eazba5tgd0C7DbDbkVFXm2euSqMGn_d_Rb_zGYnsmHnG6AjdtER-y8dqcjh-r_axUQn2wrFceaaaCryYrMMxoUnJm6I4zXukYYZiKBAjidFDTaScN4aDRhXRG0pyJao2yvD5UUm8IYUjykD3329VqUfYv0Ziv3_AcUBuduiDTQNbfkh2ZlX1_EZhFWzf54t6AYdtx1G priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection (NC LIVE) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2goCBxA6tO7PhxQoCoKqQiDlTam-U4Dq1UxcsmFf35nXG8qZZHLzmsvcpkPOOZ8Yy_IeStccb0QgbaOCOpAJtEXegFFeD-tlXtqlrifefjb_LoRHxdNat84Dbmssrtnpg26i56PCM_qIXi2CJLVB_Wvyh2jcLsam6hcZvcQegylGq1UssZC4QuFdMq35VhXB-MAhH2KMZMCe2Kih17lGD7_-Vr_l0y-UfeNJmjwwfkfvYjy4_zwj8kt8LwiNxN9Zx-fEy-H8cuN-YqY1-uT-MERmuD7elKvL5yOQ91cz_6sTwbyul3pB1i_c84HeWIZfNxQDzYuBmfkJPDLz8-H9HcPIF6iEkmKplvPG8ZWB8WlOw064xRXDMHDh44WR5RfpRr2t4w3vpkx_umDly2QQch-VOyN8QhPCelU67TQTF4OmBor7VxgnUCON5COBQKUm1ZaH1GFscGF-c2Zbi5tjPbLbDdJrZbUZB3y3_WM67GjbM_4cosMxETO_0QNz9tVjHbwL4dKt_6HmK8nrem7yRKonJSOl-xguxv19VmRR3ttVgV5M0yDCqGeRM3hHiBc6RhBvwooOPZLAYLJZzXRgOPC6J2BGSH1N2R4ew0wXhDoMeUgfe-34rSNVn_Z8WLm7_iJblXo3RXFa35PtmbNhfhFbhNU_s66cYV2-MT8g priority: 102 providerName: ProQuest |
Title | Modulation of photocarrier relaxation dynamics in two-dimensional semiconductors |
URI | https://link.springer.com/article/10.1038/s41377-020-00430-4 https://www.ncbi.nlm.nih.gov/pubmed/33298847 https://www.proquest.com/docview/2473197241 https://www.proquest.com/docview/2469092234 https://pubmed.ncbi.nlm.nih.gov/PMC7680791 https://doaj.org/article/5911e1cbcf114f3b9fd6a99f7a66ac10 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEBZ5UOilNH06TRcXemtFJUvW47hZEsJCQmgb2JuQZbkJBDusHdqfn5H8CJsmhV5ssEZ4GI00M9LoG4Q-a6t1xYXHudUCc7BJ2PqKYw7ub0EzSzMR7jufnomTC75c5astlI13YWLSfoS0jMv0mB32reUBGg-HYCfCVGG-jXYDVDvo9u58vvyxnHZWIGChRMnhhgxh6pHOG1YogvU_5mH-nSj54LQ0GqHjl-jF4D2m857fPbTl61foWczidO1rdH7alEM5rrSp0pvLpgNTtQ5F6dJwaeVP31T2Vejb9KpOu98NLgPCf4_OkbYhWb6pAwpss27foIvjo5-LEzyUTMAOIpEOC-JyxwoCNod4KUpFSq0lU8SCWweulQvYPtLmRaUJK1y03lWeeSYKrzwX7C3aqZvav0eplbZUXhJ4WhBopZS2nJSc6ryAIMgniI4iNG7AEw9lLa5NPNdmyvRiNyB2E8VueIK-TH1uejSNf1IfhpGZKAMSdvzQrH-ZQTNMDqu1p65wFUR2FSt0VYqgf9IKYR0lCToYx9UM07M1GZcs1FvjNEGfpmaYWOG0xNa-uQ00QhMN3hPw8a5Xg4kTxjKtQMYJkhsKssHqZkt9dRnBuyG8I1LDf7-OqnTP1tOi2P8_8g_oeRa0nVKcsQO0061v_UdwnrpihrblSs6GOQPvw6Oz8-_wdSEWs7ghcQeYYxdK |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYIEJ7DqxI4dHxDiVW1pt-LQSnszjuPQSpAsm1Slf4rfyIyTbLU8euslh9hJJuOxZ8aP7yPkubZaV0J6mlktqQCfRK2vBBUQ_hZJapNU4nnn6b6cHIpPs2y2Rn6NZ2FwW-U4JoaBumwczpFvpUJxpMgSyZv5D4qsUbi6OlJo9Gax689OIWVrX-98gPZ9kabbHw_eT-jAKkAdBOsdlcxljhcMhmXmlSxzVmqteM4sRD4QfTiEv1E2KyrNeOGCg6uy1HNZ-NwLyeG9V8hVcLwMkz01U8s5HUiVEpar4WwO4_lWKxDRj2KOFtC1qFjxf4Em4F-x7d9bNP9Ypw3ub_sWuTnErfHb3tBukzVf3yHXwv5R194ln6dNORCBxU0Vz4-aDpzkAunwYjwu87MvKs9q-x0eiI_ruDttaIncAj0uSNziNv2mRvzZZtHeI4eXotb7ZL1uav-AxFbZMveKwdWCQqs811awUiQ6KyD98hFJRhUaNyCZI6HGNxNW1HluerUbULsJajciIi-Xz8x7HI8La7_DllnWRAzucKNZfDVDlzYZ-AmfuMJVkFNWvNBVKdHylZXSuoRFZHNsVzMMDK05N-OIPFsWQ5fGdRpb--YE60jNNMRtIMdGbwZLSThPdQ46johaMZAVUVdL6uOjABsOiSVTGr77ajSlc7H-r4qHF__FU3J9cjDdM3s7-7uPyI0ULT1JaMo3yXq3OPGPIWTriiehn8Tky2V3zN-v4E5D |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELbKViAuiDeBAkGCE1jrxI4dHxCitKuW0tUKUak313EcWgmSZZOq9K_x65jJY6vl0Vsve4idrDOe8czE4-8j5KW2WhdCeppYLakAn0StLwQVEP5mUWyjWOJ55_2p3DkQHw-TwzXyazgLg2WVw5rYLtR55fAb-TgWiiNFlojGRV8WMduavJv_oMgghTutA51GpyJ7_vwM0rf67e4WzPWrOJ5sf_mwQ3uGAeogcG-oZC5xPGOwRDOvZJ6yXGvFU2YhCoJIxCEUjrJJVmjGM9c6uyKJPZeZT72QHJ57jawrzIpGZH1zezr7vPzCA4lTxFLVn9RhPB3XAvH9KGZsLdYWFSvesCUN-Fek-3fB5h-7tq0znNwmt_ooNnzfqd0dsubLu-R6W03q6ntktl_lPS1YWBXh_LhqwGUukBwvxMMzP7um_Ly03-GG8KQMm7OK5sg00KGEhDUW7VclotFWi_o-ObgSwT4go7Iq_SMSWmXz1CsGvxYEWqSptoLlItJJBsmYD0g0iNC4Htcc6TW-mXZ_naemE7sBsZtW7EYE5PXynnmH6nFp702cmWVPRORuL1SLr6Y3cJOA1_CRy1wBGWbBM13kEu1AWSmti1hANoZ5Nf0yUZsLpQ7Ii2UzGDju2tjSV6fYR2qmIYqDcTzs1GA5Es5jnYKMA6JWFGRlqKst5clxCyIOaSZTGv73zaBKF8P6vygeX_4Wz8kNMErzaXe694TcjFHRo4jGfIOMmsWpfwrxW5M96w0lJEdXbZu_AT7_U94 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+photocarrier+relaxation+dynamics+in+two-dimensional+semiconductors&rft.jtitle=Light%2C+science+%26+applications&rft.au=Wang%2C+Yuhan&rft.au=Nie%2C+Zhonghui&rft.au=Wang%2C+Fengqiu&rft.date=2020-11-23&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=9&rft_id=info:doi/10.1038%2Fs41377-020-00430-4&rft_id=info%3Apmid%2F33298847&rft.externalDocID=PMC7680791 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |