4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects

Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 10; no. 1; pp. 5091 - 11
Main Authors Liao, Shan-Ting, Han, Chao, Xu, Ding-Qiao, Fu, Xiao-Wei, Wang, Jun-Song, Kong, Ling-Yi
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.11.2019
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U 13 C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages. Redirection of the TCA cycle intermediate aconitate to itaconate production has anti-inflammatory effects. Here the authors show that the itaconate derivative 4-octyl-itaconate is anti-inflammatory partly as a result of inhibiting GAPDH enzymatic activity and thereby glycolysis in macrophages.
AbstractList Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U13C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U 13 C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages. Redirection of the TCA cycle intermediate aconitate to itaconate production has anti-inflammatory effects. Here the authors show that the itaconate derivative 4-octyl-itaconate is anti-inflammatory partly as a result of inhibiting GAPDH enzymatic activity and thereby glycolysis in macrophages.
Redirection of the TCA cycle intermediate aconitate to itaconate production has anti-inflammatory effects. Here the authors show that the itaconate derivative 4-octyl-itaconate is anti-inflammatory partly as a result of inhibiting GAPDH enzymatic activity and thereby glycolysis in macrophages.
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U13C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U13C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.
Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in inflammatory disease. The endogenous metabolite itaconate has been reported to regulate macrophage function, but its precise mechanism is not clear. Here, we show that 4-octyl itaconate (4-OI, a cell-permeable itaconate derivative) directly alkylates cysteine residue 22 on the glycolytic enzyme GAPDH and decreases its enzyme activity. Glycolytic flux analysis by U 13 C glucose tracing provides evidence that 4-OI blocks glycolytic flux at GAPDH. 4-OI thereby downregulates aerobic glycolysis in activated macrophages, which is required for its anti-inflammatory effects. The anti-inflammatory effects of 4-OI are replicated by heptelidic acid, 2-DG and reversed by increasing wild-type (but not C22A mutant) GAPDH expression. 4-OI protects against lipopolysaccharide-induced lethality in vivo and inhibits cytokine release. These findings show that 4-OI has anti-inflammatory effects by targeting GAPDH to decrease aerobic glycolysis in macrophages.
ArticleNumber 5091
Author Kong, Ling-Yi
Han, Chao
Liao, Shan-Ting
Fu, Xiao-Wei
Xu, Ding-Qiao
Wang, Jun-Song
Author_xml – sequence: 1
  givenname: Shan-Ting
  surname: Liao
  fullname: Liao, Shan-Ting
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 2
  givenname: Chao
  surname: Han
  fullname: Han, Chao
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 3
  givenname: Ding-Qiao
  surname: Xu
  fullname: Xu, Ding-Qiao
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 4
  givenname: Xiao-Wei
  surname: Fu
  fullname: Fu, Xiao-Wei
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University
– sequence: 5
  givenname: Jun-Song
  orcidid: 0000-0002-8935-4969
  surname: Wang
  fullname: Wang, Jun-Song
  email: wang.junsong@gmail.com
  organization: Center for Molecular Metabolism, Nanjing University of Science and Technology
– sequence: 6
  givenname: Ling-Yi
  orcidid: 0000-0001-9712-2618
  surname: Kong
  fullname: Kong, Ling-Yi
  email: cpu_lykong@126.com
  organization: Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31704924$$D View this record in MEDLINE/PubMed
BookMark eNp9kk9vFCEYxiemxta1X8CDIfHiZZR_C8zFpKm1bdKkHvRMGHhnymYWKrDG-fZld2tteygXCPyeh5eX521zEGKApnlP8GeCmfqSOeFCtph0LWFYqnb5qjmimJOWSMoOHq0Pm-OcV7gO1hHF-ZvmkBGJeUf5UWN5e23LPCFfjI3BFEA-3Pjel4wMpNh7i8ZptnGas8-on1ExaYTiw4jOT358u0AlIvgLqSATim99GCazXpsS04xgGMCW_K55PZgpw_H9vGh-fT_7eXrRXl2fX56eXLVWYFHaJXDgAlPuGCNqsNAPnHVADJZCMtpTNzDeE0xkJ53rBm6I6xxbGkcVOCbZornc-7poVvo2-bVJs47G691GTKM2qXg7gaa9ED0DaUVthLPEcEWUJSCdUBzU1uvr3ut206_BWQglmemJ6dOT4G_0GP_oqiey_tCi-XRvkOLvDeSi1z5bmCYTIG6ypowwprAitKIfn6GruEmhtmpHYcGIYJX68Liih1L-_WUF6B6wKeacYHhACNbbzOh9ZnTNjN5lRi-rSD0T2ZqE4uP2VX56Wcr20lzvCSOk_2W_oLoDOn7VUw
CitedBy_id crossref_primary_10_1016_j_freeradbiomed_2020_07_008
crossref_primary_10_1038_s41392_024_02104_8
crossref_primary_10_1126_science_abb9818
crossref_primary_10_3390_ijms25063142
crossref_primary_10_1016_j_isci_2024_109544
crossref_primary_10_1016_j_compositesb_2024_112005
crossref_primary_10_3390_cells10082053
crossref_primary_10_1038_s41467_024_50229_9
crossref_primary_10_1038_s41581_021_00413_7
crossref_primary_10_1016_j_cmet_2022_02_002
crossref_primary_10_1016_j_mcpro_2023_100641
crossref_primary_10_1186_s40364_024_00646_1
crossref_primary_10_3390_brainsci14111098
crossref_primary_10_7554_eLife_92420
crossref_primary_10_1097_IN9_0000000000000036
crossref_primary_10_3390_antiox12020489
crossref_primary_10_1016_j_celrep_2023_112145
crossref_primary_10_2508_chikusan_95_1
crossref_primary_10_1016_j_jff_2023_105450
crossref_primary_10_1093_jas_skae251
crossref_primary_10_1016_j_devcel_2024_07_011
crossref_primary_10_1177_15353702231214255
crossref_primary_10_1111_imr_12848
crossref_primary_10_1186_s13567_023_01149_x
crossref_primary_10_1016_j_bbrc_2021_10_054
crossref_primary_10_1038_s41598_023_42813_8
crossref_primary_10_7554_eLife_64611
crossref_primary_10_1002_art_42284
crossref_primary_10_1016_j_drup_2024_101177
crossref_primary_10_1007_s10495_025_02099_9
crossref_primary_10_3389_fchem_2021_669308
crossref_primary_10_3389_fphar_2023_1138762
crossref_primary_10_4049_jimmunol_2200848
crossref_primary_10_1155_2020_5404780
crossref_primary_10_1126_scitranslmed_adn2635
crossref_primary_10_3390_molecules29061298
crossref_primary_10_1016_j_cbpa_2024_102425
crossref_primary_10_1038_s41419_022_04592_4
crossref_primary_10_1007_s11064_024_04263_0
crossref_primary_10_1073_pnas_2400675121
crossref_primary_10_1002_advs_202105376
crossref_primary_10_1136_ard_2023_224774
crossref_primary_10_3390_ijms231710037
crossref_primary_10_1089_ars_2019_7974
crossref_primary_10_1016_j_heliyon_2023_e23001
crossref_primary_10_1186_s10020_023_00626_5
crossref_primary_10_1007_s10753_023_01909_z
crossref_primary_10_1016_j_abb_2022_109420
crossref_primary_10_3389_fgene_2022_1056405
crossref_primary_10_3389_fimmu_2022_912899
crossref_primary_10_1002_adfm_202003341
crossref_primary_10_1186_s12951_024_02787_9
crossref_primary_10_1016_j_clim_2023_109289
crossref_primary_10_3389_fimmu_2020_01043
crossref_primary_10_1177_00220345241279555
crossref_primary_10_3389_fimmu_2022_1012442
crossref_primary_10_3389_fimmu_2022_935692
crossref_primary_10_1016_j_celrep_2022_111598
crossref_primary_10_3389_fphar_2021_665376
crossref_primary_10_1002_ange_202421416
crossref_primary_10_1016_j_intimp_2023_110412
crossref_primary_10_1016_j_joca_2022_10_008
crossref_primary_10_7554_eLife_92420_2
crossref_primary_10_3389_fimmu_2021_790574
crossref_primary_10_1016_j_celrep_2022_110719
crossref_primary_10_1016_j_cmet_2023_12_015
crossref_primary_10_1111_jnc_15206
crossref_primary_10_1186_s13045_023_01478_6
crossref_primary_10_1038_s41423_022_00922_w
crossref_primary_10_1007_s12013_023_01213_5
crossref_primary_10_3390_cells9081808
crossref_primary_10_3389_fimmu_2022_893912
crossref_primary_10_3390_biom13060993
crossref_primary_10_1016_j_cmet_2022_03_009
crossref_primary_10_1002_adma_202402871
crossref_primary_10_3390_ijms24076609
crossref_primary_10_1096_fj_202100909RR
crossref_primary_10_1371_journal_pntd_0011350
crossref_primary_10_1002_acn3_52080
crossref_primary_10_3390_v15020525
crossref_primary_10_1016_j_isci_2022_104561
crossref_primary_10_1016_j_metabol_2025_156152
crossref_primary_10_1093_jleuko_qiae198
crossref_primary_10_1016_j_celrep_2023_112064
crossref_primary_10_1038_s41586_023_05720_6
crossref_primary_10_3389_fimmu_2022_748375
crossref_primary_10_1111_imm_13454
crossref_primary_10_1155_2022_7837837
crossref_primary_10_1371_journal_ppat_1011506
crossref_primary_10_1007_s00343_023_3137_y
crossref_primary_10_1007_s10753_023_01819_0
crossref_primary_10_1038_s41392_024_02077_8
crossref_primary_10_1002_eji_202350476
crossref_primary_10_1128_jvi_01325_23
crossref_primary_10_1002_cbdv_202401199
crossref_primary_10_1016_j_jare_2024_09_024
crossref_primary_10_1016_j_intimp_2023_111361
crossref_primary_10_1111_jcmm_16013
crossref_primary_10_3389_fimmu_2023_1203756
crossref_primary_10_1021_acsbiomaterials_4c00882
crossref_primary_10_1021_acs_jproteome_4c00313
crossref_primary_10_1016_j_jbc_2021_100369
crossref_primary_10_1016_j_copbio_2020_11_005
crossref_primary_10_1016_j_bcp_2025_116759
crossref_primary_10_1007_s10067_024_07165_2
crossref_primary_10_1007_s00405_021_07221_6
crossref_primary_10_1155_2022_5180242
crossref_primary_10_1038_s41467_023_41470_9
crossref_primary_10_1186_s12870_019_2226_8
crossref_primary_10_1002_adhm_202102791
crossref_primary_10_1016_j_ejphar_2024_176432
crossref_primary_10_1111_febs_15625
crossref_primary_10_1073_pnas_2423114122
crossref_primary_10_1093_ibd_izad117
crossref_primary_10_1097_HEP_0000000000000549
crossref_primary_10_1016_j_tem_2024_08_009
crossref_primary_10_3389_fphar_2024_1439289
crossref_primary_10_1021_acs_jproteome_1c00325
crossref_primary_10_3389_fonc_2024_1522919
crossref_primary_10_1042_BCJ20220364
crossref_primary_10_3389_fimmu_2021_665782
crossref_primary_10_1038_s41467_022_34306_5
crossref_primary_10_3389_fcimb_2020_607650
crossref_primary_10_1042_BST20210269
crossref_primary_10_1128_JVI_00210_21
crossref_primary_10_1016_j_immuni_2020_09_014
crossref_primary_10_1002_advs_202302910
crossref_primary_10_1016_j_cmet_2023_09_004
crossref_primary_10_3390_ijms23169069
crossref_primary_10_1039_D1MD00163A
crossref_primary_10_1152_ajpcell_00126_2021
crossref_primary_10_1002_anie_202421416
crossref_primary_10_1016_j_copbio_2021_01_020
crossref_primary_10_1016_j_ijantimicag_2024_107172
crossref_primary_10_3390_antiox10122019
crossref_primary_10_3389_fimmu_2023_1147520
crossref_primary_10_1038_s41467_021_21718_y
crossref_primary_10_1016_j_intimp_2022_109190
crossref_primary_10_1016_j_biopha_2023_114301
crossref_primary_10_1016_j_cellin_2024_100224
crossref_primary_10_1007_s10266_024_00909_1
crossref_primary_10_1038_s41423_021_00780_y
crossref_primary_10_1111_iej_13926
crossref_primary_10_1111_jnc_15376
crossref_primary_10_1515_revneuro_2024_0054
crossref_primary_10_1016_j_intimp_2022_108548
crossref_primary_10_4049_jimmunol_2300155
crossref_primary_10_1016_j_intimp_2022_109065
crossref_primary_10_1016_j_heliyon_2023_e17551
crossref_primary_10_3390_biom12091236
crossref_primary_10_1016_j_celrep_2023_112658
crossref_primary_10_1038_s42255_023_00801_2
crossref_primary_10_1038_s42255_024_01145_1
crossref_primary_10_1016_j_phymed_2024_156179
crossref_primary_10_1186_s40364_024_00677_8
crossref_primary_10_1038_s41368_022_00177_1
crossref_primary_10_1016_j_celrep_2024_114570
crossref_primary_10_1093_jleuko_qiae045
crossref_primary_10_1016_j_ejmech_2020_112740
crossref_primary_10_1016_j_phrs_2021_105613
crossref_primary_10_1002_eji_202451139
crossref_primary_10_3390_metabo10110453
crossref_primary_10_1016_j_virol_2022_10_007
crossref_primary_10_1016_j_freeradbiomed_2024_04_218
crossref_primary_10_1016_j_matdes_2022_110943
crossref_primary_10_1038_s41467_020_20164_6
crossref_primary_10_1038_s42255_022_00565_1
crossref_primary_10_1016_j_molcel_2022_05_009
crossref_primary_10_1186_s11658_023_00503_3
crossref_primary_10_1186_s12951_023_02119_3
crossref_primary_10_3389_fimmu_2024_1352165
crossref_primary_10_1016_j_ebiom_2024_104993
crossref_primary_10_1111_imm_13875
crossref_primary_10_1021_acs_jafc_1c05783
crossref_primary_10_1186_s12974_024_03121_8
crossref_primary_10_1016_j_intimp_2023_110915
crossref_primary_10_1111_cpr_13711
crossref_primary_10_3389_fimmu_2022_832015
crossref_primary_10_1016_j_tem_2024_02_004
crossref_primary_10_1016_j_aquaculture_2023_739376
crossref_primary_10_1016_j_surg_2021_10_054
crossref_primary_10_3389_fimmu_2023_1117638
crossref_primary_10_1093_ejo_cjae035
crossref_primary_10_1016_j_celrep_2023_113040
crossref_primary_10_1186_s40364_020_00251_y
crossref_primary_10_1016_j_celrep_2023_112196
crossref_primary_10_1038_s41423_025_01268_9
crossref_primary_10_4103_tcmj_tcmj_79_21
crossref_primary_10_1002_wsbm_1486
crossref_primary_10_3389_fimmu_2022_937247
crossref_primary_10_1016_j_mtbio_2025_101588
crossref_primary_10_1111_jnc_15169
crossref_primary_10_3389_fimmu_2022_1043572
crossref_primary_10_1016_j_jep_2023_116365
crossref_primary_10_1007_s00281_024_01015_8
crossref_primary_10_3389_fimmu_2022_920029
crossref_primary_10_1016_j_intimp_2024_113019
crossref_primary_10_3389_fphar_2022_1037341
crossref_primary_10_1126_scitranslmed_ade3782
crossref_primary_10_1159_000539278
crossref_primary_10_3390_ijms241914902
crossref_primary_10_3389_fimmu_2022_780839
crossref_primary_10_1016_j_jointm_2022_01_001
crossref_primary_10_3389_fimmu_2024_1434688
crossref_primary_10_1016_j_mucimm_2024_06_004
crossref_primary_10_1039_D2OB00047D
crossref_primary_10_1002_mco2_789
crossref_primary_10_1089_ars_2020_8161
crossref_primary_10_1002_oby_23707
crossref_primary_10_1038_s41418_024_01303_8
crossref_primary_10_1016_j_marenvres_2022_105709
crossref_primary_10_1016_j_bioadv_2022_212979
crossref_primary_10_3389_fimmu_2022_864638
crossref_primary_10_4103_tcmj_tcmj_83_21
crossref_primary_10_1021_acsapm_1c00017
crossref_primary_10_1186_s12951_024_02385_9
crossref_primary_10_1016_j_cmet_2024_11_012
crossref_primary_10_1016_j_ejphar_2022_174951
crossref_primary_10_1159_000516780
crossref_primary_10_3390_v12010056
crossref_primary_10_1038_s44324_024_00008_3
crossref_primary_10_3389_fimmu_2022_850177
crossref_primary_10_1007_s00360_024_01549_1
crossref_primary_10_1007_s10557_024_07545_5
crossref_primary_10_1016_j_cmet_2020_07_016
crossref_primary_10_3389_fddsv_2023_1294454
crossref_primary_10_4049_jimmunol_2300101
crossref_primary_10_1186_s11658_024_00642_1
crossref_primary_10_1038_s41385_021_00462_y
crossref_primary_10_3390_pathogens10080957
crossref_primary_10_1016_j_jep_2020_113517
crossref_primary_10_1016_j_phymed_2024_155955
crossref_primary_10_1038_s41419_023_06001_w
crossref_primary_10_1016_j_phrs_2025_107588
crossref_primary_10_1007_s10753_021_01571_3
crossref_primary_10_2147_DDDT_S280922
crossref_primary_10_1016_j_ejphar_2024_177122
crossref_primary_10_1007_s10787_024_01490_3
crossref_primary_10_1080_08830185_2022_2067153
crossref_primary_10_1177_1721727X241241360
crossref_primary_10_1038_s41392_023_01499_0
crossref_primary_10_1016_j_tcb_2023_10_005
crossref_primary_10_1016_j_aquaculture_2024_741281
crossref_primary_10_4049_jimmunol_2100488
crossref_primary_10_1007_s10753_024_02050_1
crossref_primary_10_3390_microorganisms13030531
crossref_primary_10_1097_SHK_0000000000001549
crossref_primary_10_5483_BMBRep_2022_55_11_128
crossref_primary_10_1016_j_fsi_2020_07_034
crossref_primary_10_1016_j_bbadis_2023_166656
crossref_primary_10_1016_j_biopha_2023_115521
crossref_primary_10_14348_molcells_2023_2183
crossref_primary_10_1159_000512280
crossref_primary_10_3233_BME_240103
crossref_primary_10_1186_s12979_023_00377_1
crossref_primary_10_1172_JCI173034
crossref_primary_10_1002_iid3_1042
crossref_primary_10_3389_fimmu_2024_1403263
crossref_primary_10_1007_s13105_024_01012_3
crossref_primary_10_1016_j_apmt_2024_102314
crossref_primary_10_1038_s41423_024_01174_6
Cites_doi 10.1038/nri.2018.27
10.1038/s41419-019-1462-z
10.1007/978-1-59745-244-1_11
10.3389/fimmu.2016.00145
10.4049/jimmunol.1502456
10.1146/annurev-pathol-012414-040431
10.1038/nature25986
10.1016/j.cmet.2016.08.013
10.1038/cdd.2009.137
10.1016/j.redox.2019.101147
10.1189/jlb.0602325
10.1016/j.annemergmed.2004.12.006
10.1038/nature01326
10.3389/fimmu.2017.00289
10.1016/j.cmet.2017.08.017
10.1084/jem.20151570
10.1016/j.chom.2017.07.020
10.1007/978-1-4939-6759-9_9
10.1038/ncomms6930
10.1172/JCI59643
10.1002/bit.10393
10.1073/pnas.1218599110
10.1038/nature11986
10.1080/08035259950169314
10.1016/j.freeradbiomed.2017.10.344
10.1038/s41586-018-0052-z
10.1126/science.aan4665
10.2337/db07-0838
10.1038/nri2922
10.1002/hep.27929
10.1073/pnas.1603907113
10.1038/nri.2016.70
10.3389/fimmu.2018.01987
10.1038/ncomms5436
10.1111/imm.12910
10.7554/eLife.03342
10.1038/srep38308
10.1074/jbc.R115.693903
10.1093/brain/awq386
10.1038/s41467-018-08187-6
10.1038/s41590-018-0108-0
10.1016/j.cmet.2016.06.004
10.1021/pr101054m
10.1038/nri2788
10.1021/ja2070889
10.1371/journal.ppat.1005408
10.1038/s41577-019-0128-5
10.1016/j.cell.2011.03.054
10.1038/s41374-018-0162-0
10.1034/j.1399-6576.2003.00004.x
10.15252/emmm.201708712
ContentType Journal Article
Copyright The Author(s) 2019
2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019
– notice: 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-13078-5
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
ProQuest Health & Medical Collection (NC LIVE)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Open Access
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 11
ExternalDocumentID oai_doaj_org_article_2b66b3e7c6704dc1a4818c1e7d684e87
PMC6841710
31704924
10_1038_s41467_019_13078_5
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX18-0825)
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-5e4e46024d3318fcebf439e1a076732b2df34b101797dd9f4a1d9d35ad28ed373
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:27:49 EDT 2025
Thu Aug 21 14:04:59 EDT 2025
Fri Jul 11 08:27:25 EDT 2025
Wed Aug 13 06:12:21 EDT 2025
Thu Apr 03 07:11:08 EDT 2025
Tue Jul 01 04:08:46 EDT 2025
Thu Apr 24 22:58:05 EDT 2025
Fri Feb 21 02:38:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-5e4e46024d3318fcebf439e1a076732b2df34b101797dd9f4a1d9d35ad28ed373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8935-4969
0000-0001-9712-2618
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-13078-5
PMID 31704924
PQID 2313063163
PQPubID 546298
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_2b66b3e7c6704dc1a4818c1e7d684e87
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6841710
proquest_miscellaneous_2313380812
proquest_journals_2313063163
pubmed_primary_31704924
crossref_primary_10_1038_s41467_019_13078_5
crossref_citationtrail_10_1038_s41467_019_13078_5
springer_journals_10_1038_s41467_019_13078_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-11-08
PublicationDateYYYYMMDD 2019-11-08
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-08
  day: 08
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2019
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Loftus, Finlay (CR34) 2016; 291
Naujoks (CR17) 2016; 12
Otto (CR11) 2018; 18
Loisa (CR48) 2003; 47
Liberti (CR26) 2017; 26
Galvan-Pena (CR32) 2019; 10
Alves-Filho, Pålsson-McDermott (CR3) 2016; 7
Casaril (CR45) 2017; 113
O’Neill, Artyomov (CR25) 2019; 19
Mills (CR20) 2018; 556
Warwick, Usachev (CR4) 2017; 1554
Luan, Medzhitov (CR19) 2016; 24
Blatnik, Frizzell, Thorpe, Baynes (CR24) 2008; 57
Vasandan (CR43) 2016; 6
Mosser (CR38) 2003; 73
Yang (CR35) 2018; 9
Funes (CR7) 2018; 2
Qiu (CR36) 2019; 10
Tannahill (CR39) 2013; 496
Sakai (CR47) 2019; 99
Silveira, Procianoy (CR49) 1999; 88
Jin (CR2) 2015; 6
Shin (CR14) 2011; 10
Strelko (CR13) 2011; 133
Mathis, Shoelson (CR33) 2011; 11
Van, Baardman, Winther (CR10) 2015; 105
Schulze-Topphoff (CR22) 2016; 113
Michelucci (CR30) 2013; 110
Sica, Mantovani (CR5) 2012; 3
Kang (CR42) 2018; 19
Régnier (CR51) 2012; 117
Geeraerts, Bolli, Fendt, Van Ginderachter (CR1) 2017; 8
Colell, Green, Ricci (CR31) 2009; 16
Mosser, Edwards (CR6) 2010; 6
Van, Wittmann, Heinzle, Heijnen (CR53) 2002; 80
Luo (CR29) 2011; 5
Bambouskova (CR18) 2018; 556
Vijayan (CR40) 2019; 22
Wyatt (CR41) 2016; 196
Shestov (CR27) 2014; 3
Linker (CR21) 2011; 134
Cohen (CR46) 2002; 420
Escoll (CR37) 2017; 22
Guo (CR28) 2015; 62
Nanchen, Fuhrer, Sauer (CR52) 2007; 358
Yang (CR8) 2014; 5
Wyngene, Vandewalle, Libert (CR9) 2018; 10
Lampropoulou (CR16) 2016; 24
O’Neill, Pearce (CR15) 2016; 213
Broderick (CR44) 2015; 10
Shapiro (CR50) 2005; 45
Kornberg (CR23) 2018; 360
O’Neill, Kishton, Rathmell (CR12) 2016; 16
A Michelucci (13078_CR30) 2013; 110
R Silveira (13078_CR49) 1999; 88
CA Warwick (13078_CR4) 2017; 1554
DBJ Van (13078_CR10) 2015; 105
G Otto (13078_CR11) 2018; 18
P Escoll (13078_CR37) 2017; 22
X Geeraerts (13078_CR1) 2017; 8
NI Shapiro (13078_CR50) 2005; 45
EL Mills (13078_CR20) 2018; 556
DM Mosser (13078_CR6) 2010; 6
HH Luan (13078_CR19) 2016; 24
D Qiu (13078_CR36) 2019; 10
DM Mosser (13078_CR38) 2003; 73
SC Funes (13078_CR7) 2018; 2
AA Shestov (13078_CR27) 2014; 3
V Lampropoulou (13078_CR16) 2016; 24
JC Alves-Filho (13078_CR3) 2016; 7
W Luo (13078_CR29) 2011; 5
L Broderick (13078_CR44) 2015; 10
LAJ O’Neill (13078_CR12) 2016; 16
MV Liberti (13078_CR26) 2017; 26
D Mathis (13078_CR33) 2011; 11
J Cohen (13078_CR46) 2002; 420
AB Vasandan (13078_CR43) 2016; 6
H Yang (13078_CR35) 2018; 9
GM Tannahill (13078_CR39) 2013; 496
U Schulze-Topphoff (13078_CR22) 2016; 113
AM Casaril (13078_CR45) 2017; 113
W Guo (13078_CR28) 2015; 62
LAJ O’Neill (13078_CR15) 2016; 213
LAJ O’Neill (13078_CR25) 2019; 19
J Jin (13078_CR2) 2015; 6
S Kang (13078_CR42) 2018; 19
EV Wyatt (13078_CR41) 2016; 196
M Bambouskova (13078_CR18) 2018; 556
WA Van (13078_CR53) 2002; 80
V Vijayan (13078_CR40) 2019; 22
S Galvan-Pena (13078_CR32) 2019; 10
RM Loftus (13078_CR34) 2016; 291
MA Régnier (13078_CR51) 2012; 117
A Nanchen (13078_CR52) 2007; 358
RA Linker (13078_CR21) 2011; 134
P Loisa (13078_CR48) 2003; 47
JH Shin (13078_CR14) 2011; 10
L Yang (13078_CR8) 2014; 5
A Sica (13078_CR5) 2012; 3
M Blatnik (13078_CR24) 2008; 57
K Sakai (13078_CR47) 2019; 99
A Colell (13078_CR31) 2009; 16
CL Strelko (13078_CR13) 2011; 133
VL Wyngene (13078_CR9) 2018; 10
MD Kornberg (13078_CR23) 2018; 360
J Naujoks (13078_CR17) 2016; 12
References_xml – volume: 18
  start-page: 294
  year: 2018
  end-page: 295
  ident: CR11
  article-title: Immunometabolism: itaconate helps KEAP1’s cool
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2018.27
– volume: 10
  year: 2019
  ident: CR36
  article-title: Gpr174-deficient regulatory T cells decrease cytokine storm in septic mice
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1462-z
– volume: 358
  start-page: 177
  year: 2007
  end-page: 197
  ident: CR52
  article-title: Determination of metabolic flux ratios from 13C-experiments and gas chromatography-mass spectrometry data
  publication-title: Metabolomics
  doi: 10.1007/978-1-59745-244-1_11
– volume: 7
  start-page: 145
  year: 2016
  ident: CR3
  article-title: Pyruvate kinase M2: a potential target for regulating inflammation
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00145
– volume: 196
  start-page: 4227
  year: 2016
  end-page: 4236
  ident: CR41
  article-title: Metabolic reprogramming of host cells by virulent for optimal replication and modulation of inflammation
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502456
– volume: 10
  start-page: 395
  year: 2015
  end-page: 424
  ident: CR44
  article-title: The inflammasomes and autoinflammatory syndromes
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012414-040431
– volume: 556
  start-page: 113
  year: 2018
  end-page: 117
  ident: CR20
  article-title: Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 24
  start-page: 379
  year: 2016
  end-page: 387
  ident: CR19
  article-title: Food fight: role of itaconate and other metabolites in antimicrobial defense
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.013
– volume: 16
  start-page: 1573
  year: 2009
  end-page: 1581
  ident: CR31
  article-title: Novel roles for GAPDH in cell death and carcinogenesis
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.137
– volume: 22
  start-page: 101147
  year: 2019
  ident: CR40
  article-title: Human and murine macrophages exhibit differential metabolic responses to lipopolysaccharide - a divergent role for glycolysis
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101147
– volume: 73
  start-page: 209
  year: 2003
  end-page: 212
  ident: CR38
  article-title: The many faces of macrophage activation
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0602325
– volume: 45
  start-page: 524
  year: 2005
  end-page: 528
  ident: CR50
  article-title: Serum lactate as a predictor of mortality in emergency department patients with infection
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/j.annemergmed.2004.12.006
– volume: 420
  start-page: 885
  year: 2002
  end-page: 891
  ident: CR46
  article-title: The immunopathogenesis of sepsis
  publication-title: Nature
  doi: 10.1038/nature01326
– volume: 8
  start-page: 289
  year: 2017
  ident: CR1
  article-title: Macrophage metabolism as therapeutic target for cancer, atherosclerosis, and obesity
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00289
– volume: 26
  start-page: 648
  year: 2017
  end-page: 659
  ident: CR26
  article-title: A predictive model for selective targeting of the Warburg effect through GAPDH inhibition with a natural product
  publication-title: Cell. Metab.
  doi: 10.1016/j.cmet.2017.08.017
– volume: 213
  start-page: 15
  year: 2016
  end-page: 23
  ident: CR15
  article-title: Immunometabolism governs dendritic cell and macrophage function
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151570
– volume: 22
  start-page: 302
  year: 2017
  end-page: 316
  ident: CR37
  article-title: modulates mitochondrial dynamics to trigger metabolic repurposing of infected macrophages
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.020
– volume: 1554
  start-page: 161
  year: 2017
  end-page: 173
  ident: CR4
  article-title: Culture, transfection, and immunocytochemical analysis of primary macrophages
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6759-9_9
– volume: 6
  year: 2015
  ident: CR2
  article-title: Proinflammatory TLR signalling is regulated by a TRAF2-dependent proteolysis mechanism in macrophages
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6930
– volume: 10
  start-page: e8712
  year: 2018
  ident: CR9
  article-title: Reprogramming of basic metabolic pathways in microbial sepsis: therapeutic targets at last?
  publication-title: EMBO Mol. Med.
– volume: 3
  start-page: 787
  year: 2012
  end-page: 795
  ident: CR5
  article-title: Macrophage plasticity and polarization: in vivo veritas
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI59643
– volume: 80
  start-page: 477
  year: 2002
  end-page: 479
  ident: CR53
  article-title: Correcting mass isotopomer distributions for naturally occurring isotopes
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10393
– volume: 110
  start-page: 7820
  year: 2013
  end-page: 7825
  ident: CR30
  article-title: Immune-responsive gene 1 protein links metabolism to immunity by catalyzing itaconic acid production
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1218599110
– volume: 496
  start-page: 238
  year: 2013
  end-page: 242
  ident: CR39
  article-title: Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 88
  start-page: 647
  year: 1999
  end-page: 650
  ident: CR49
  article-title: Evaluation of interleukin-6, tumour necrosis factor-α and interleukin-1β for early diagnosis of neonatal sepsis
  publication-title: Acta Paediatr.
  doi: 10.1080/08035259950169314
– volume: 113
  start-page: 395
  year: 2017
  end-page: 405
  ident: CR45
  article-title: Selenium-containing indolyl compounds: kinetics of reaction with inflammation-associated oxidants and protective effect against oxidation of extracellular matrix proteins
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.10.344
– volume: 556
  start-page: 501
  year: 2018
  end-page: 504
  ident: CR18
  article-title: Electrophilic properties of itaconate and derivatives regulate the IkappaBzeta-ATF3 inflammatory axis
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 360
  start-page: 449
  year: 2018
  end-page: 453
  ident: CR23
  article-title: Dimethyl fumarate targets GAPDH and aerobic glycolysis to modulate immunity
  publication-title: Science
  doi: 10.1126/science.aan4665
– volume: 57
  start-page: 41
  year: 2008
  end-page: 49
  ident: CR24
  article-title: Inactivation of glyceraldehyde-3-phosphate dehydrogenase by fumarate in diabetes: formation of S-(2-succinyl) cysteine, a novel chemical modification of protein and possible biomarker of mitochondrial stress
  publication-title: Diabetes
  doi: 10.2337/db07-0838
– volume: 11
  start-page: 81
  year: 2011
  ident: CR33
  article-title: Immunometabolism: an emerging frontier
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2922
– volume: 62
  start-page: 1132
  year: 2015
  end-page: 1144
  ident: CR28
  article-title: MiR-199a-5p is negatively associated with malignancies and regulates glycolysis and lactate production by targeting hexokinase 2 in liver cancer
  publication-title: Hepatology
  doi: 10.1002/hep.27929
– volume: 113
  start-page: 4777
  year: 2016
  end-page: 4782
  ident: CR22
  article-title: Dimethyl fumarate treatment induces adaptive and innate immune modulation independent of Nrf2
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1603907113
– volume: 16
  start-page: 553
  year: 2016
  end-page: 565
  ident: CR12
  article-title: A guide to immunometabolism for immunologists
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.70
– volume: 117
  start-page: 1276
  year: 2012
  end-page: 1288
  ident: CR51
  article-title: Prognostic significance of blood lactate and lactate clearance in trauma patients
  publication-title: Crit. Care Med.
– volume: 9
  start-page: 1987
  year: 2018
  ident: CR35
  article-title: Cytotoxic necrotizing factor 1 downregulates CD36 transcription in macrophages to induce inflammation during acute urinary tract infections
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01987
– volume: 5
  year: 2014
  ident: CR8
  article-title: PKM2 regulates the Warburg effect and promotes HMGB1 release in sepsis
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5436
– volume: 105
  start-page: e53424
  year: 2015
  ident: CR10
  article-title: Metabolic characterization of polarized M1 and M2 bone marrow-derived macrophages using real-time extracellular flux analysis
  publication-title: J. Vis. Exp.
– volume: 2
  start-page: 186
  year: 2018
  end-page: 195
  ident: CR7
  article-title: Implications of macrophage polarization in autoimmunity
  publication-title: Immunology
  doi: 10.1111/imm.12910
– volume: 3
  start-page: e03342
  year: 2014
  ident: CR27
  article-title: Quantitative determinants of aerobic glycolysis identify flux through the enzyme GAPDH as a limiting step
  publication-title: eLife
  doi: 10.7554/eLife.03342
– volume: 6
  year: 2016
  ident: CR43
  article-title: Human Mesenchymal stem cells program macrophage plasticity by altering their metabolic status via a PGE2-dependent mechanism
  publication-title: Sci. Rep.
  doi: 10.1038/srep38308
– volume: 291
  start-page: 1
  year: 2016
  end-page: 10
  ident: CR34
  article-title: Immunometabolism: cellular metabolism turns immune regulator
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.693903
– volume: 134
  start-page: 678
  year: 2011
  end-page: 692
  ident: CR21
  article-title: Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway
  publication-title: Brain
  doi: 10.1093/brain/awq386
– volume: 10
  year: 2019
  ident: CR32
  article-title: Malonylation of GAPDH is an inflammatory signal in macrophages
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08187-6
– volume: 19
  start-page: 561
  year: 2018
  end-page: 570
  ident: CR42
  article-title: Semaphorin 6D reverse signaling controls macrophage lipid metabolism and anti-inflammatory polarization
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0108-0
– volume: 24
  start-page: 158
  year: 2016
  end-page: 166
  ident: CR16
  article-title: Itaconate links inhibition of succinate dehydrogenase with macrophage metabolic remodeling and regulation of inflammation
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 10
  start-page: 2238
  year: 2011
  end-page: 2247
  ident: CR14
  article-title: H NMR-based metabolomic profiling in mice infected with
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101054m
– volume: 6
  start-page: 460
  year: 2010
  ident: CR6
  article-title: Exploring the full spectrum of macrophage activation
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2788
– volume: 133
  start-page: 16386
  year: 2011
  end-page: 16389
  ident: CR13
  article-title: Itaconic acid is a mammalian metabolite induced during macrophage activation
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2070889
– volume: 12
  start-page: e1005408
  year: 2016
  ident: CR17
  article-title: IFNs modify the proteome of Legionella-containing vacuoles and restrict infection via IRG1-derived itaconic acid
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005408
– volume: 19
  start-page: 273
  year: 2019
  end-page: 281
  ident: CR25
  article-title: Itaconate: the poster child of metabolic reprogramming in macrophage function
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0128-5
– volume: 5
  start-page: 732
  year: 2011
  end-page: 744
  ident: CR29
  article-title: Pyruvate kinase M2 is a PHD3-stimulated coactivator for hypoxia-inducible factor 1
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.054
– volume: 99
  start-page: 671
  year: 2019
  end-page: 683
  ident: CR47
  article-title: Protective effect and mechanism of IL-10 on renal ischemia-reperfusion injury
  publication-title: Lab. Invest.
  doi: 10.1038/s41374-018-0162-0
– volume: 47
  start-page: 319
  year: 2003
  end-page: 325
  ident: CR48
  article-title: Anti-inflammatory cytokine response and the development of multiple organ failure in severe sepsis
  publication-title: Acta Anaesth. Scand.
  doi: 10.1034/j.1399-6576.2003.00004.x
– volume: 213
  start-page: 15
  year: 2016
  ident: 13078_CR15
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20151570
– volume: 19
  start-page: 273
  year: 2019
  ident: 13078_CR25
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-019-0128-5
– volume: 9
  start-page: 1987
  year: 2018
  ident: 13078_CR35
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.01987
– volume: 10
  start-page: e8712
  year: 2018
  ident: 13078_CR9
  publication-title: EMBO Mol. Med.
  doi: 10.15252/emmm.201708712
– volume: 10
  year: 2019
  ident: 13078_CR36
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1462-z
– volume: 133
  start-page: 16386
  year: 2011
  ident: 13078_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2070889
– volume: 18
  start-page: 294
  year: 2018
  ident: 13078_CR11
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2018.27
– volume: 134
  start-page: 678
  year: 2011
  ident: 13078_CR21
  publication-title: Brain
  doi: 10.1093/brain/awq386
– volume: 3
  start-page: e03342
  year: 2014
  ident: 13078_CR27
  publication-title: eLife
  doi: 10.7554/eLife.03342
– volume: 16
  start-page: 553
  year: 2016
  ident: 13078_CR12
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri.2016.70
– volume: 19
  start-page: 561
  year: 2018
  ident: 13078_CR42
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0108-0
– volume: 47
  start-page: 319
  year: 2003
  ident: 13078_CR48
  publication-title: Acta Anaesth. Scand.
  doi: 10.1034/j.1399-6576.2003.00004.x
– volume: 6
  year: 2015
  ident: 13078_CR2
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6930
– volume: 496
  start-page: 238
  year: 2013
  ident: 13078_CR39
  publication-title: Nature
  doi: 10.1038/nature11986
– volume: 24
  start-page: 379
  year: 2016
  ident: 13078_CR19
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.08.013
– volume: 7
  start-page: 145
  year: 2016
  ident: 13078_CR3
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2016.00145
– volume: 62
  start-page: 1132
  year: 2015
  ident: 13078_CR28
  publication-title: Hepatology
  doi: 10.1002/hep.27929
– volume: 73
  start-page: 209
  year: 2003
  ident: 13078_CR38
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.0602325
– volume: 24
  start-page: 158
  year: 2016
  ident: 13078_CR16
  publication-title: Cell Metab.
  doi: 10.1016/j.cmet.2016.06.004
– volume: 5
  start-page: 732
  year: 2011
  ident: 13078_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2011.03.054
– volume: 57
  start-page: 41
  year: 2008
  ident: 13078_CR24
  publication-title: Diabetes
  doi: 10.2337/db07-0838
– volume: 88
  start-page: 647
  year: 1999
  ident: 13078_CR49
  publication-title: Acta Paediatr.
  doi: 10.1080/08035259950169314
– volume: 6
  year: 2016
  ident: 13078_CR43
  publication-title: Sci. Rep.
  doi: 10.1038/srep38308
– volume: 1554
  start-page: 161
  year: 2017
  ident: 13078_CR4
  publication-title: Methods Mol. Biol.
  doi: 10.1007/978-1-4939-6759-9_9
– volume: 22
  start-page: 302
  year: 2017
  ident: 13078_CR37
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2017.07.020
– volume: 5
  year: 2014
  ident: 13078_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5436
– volume: 110
  start-page: 7820
  year: 2013
  ident: 13078_CR30
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1218599110
– volume: 26
  start-page: 648
  year: 2017
  ident: 13078_CR26
  publication-title: Cell. Metab.
  doi: 10.1016/j.cmet.2017.08.017
– volume: 10
  start-page: 2238
  year: 2011
  ident: 13078_CR14
  publication-title: J. Proteome Res.
  doi: 10.1021/pr101054m
– volume: 22
  start-page: 101147
  year: 2019
  ident: 13078_CR40
  publication-title: Redox Biol.
  doi: 10.1016/j.redox.2019.101147
– volume: 420
  start-page: 885
  year: 2002
  ident: 13078_CR46
  publication-title: Nature
  doi: 10.1038/nature01326
– volume: 117
  start-page: 1276
  year: 2012
  ident: 13078_CR51
  publication-title: Crit. Care Med.
– volume: 2
  start-page: 186
  year: 2018
  ident: 13078_CR7
  publication-title: Immunology
  doi: 10.1111/imm.12910
– volume: 113
  start-page: 395
  year: 2017
  ident: 13078_CR45
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.10.344
– volume: 8
  start-page: 289
  year: 2017
  ident: 13078_CR1
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2017.00289
– volume: 105
  start-page: e53424
  year: 2015
  ident: 13078_CR10
  publication-title: J. Vis. Exp.
– volume: 45
  start-page: 524
  year: 2005
  ident: 13078_CR50
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/j.annemergmed.2004.12.006
– volume: 10
  year: 2019
  ident: 13078_CR32
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-08187-6
– volume: 556
  start-page: 501
  year: 2018
  ident: 13078_CR18
  publication-title: Nature
  doi: 10.1038/s41586-018-0052-z
– volume: 16
  start-page: 1573
  year: 2009
  ident: 13078_CR31
  publication-title: Cell Death Differ.
  doi: 10.1038/cdd.2009.137
– volume: 99
  start-page: 671
  year: 2019
  ident: 13078_CR47
  publication-title: Lab. Invest.
  doi: 10.1038/s41374-018-0162-0
– volume: 291
  start-page: 1
  year: 2016
  ident: 13078_CR34
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.R115.693903
– volume: 11
  start-page: 81
  year: 2011
  ident: 13078_CR33
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2922
– volume: 358
  start-page: 177
  year: 2007
  ident: 13078_CR52
  publication-title: Metabolomics
  doi: 10.1007/978-1-59745-244-1_11
– volume: 10
  start-page: 395
  year: 2015
  ident: 13078_CR44
  publication-title: Annu. Rev. Pathol.
  doi: 10.1146/annurev-pathol-012414-040431
– volume: 196
  start-page: 4227
  year: 2016
  ident: 13078_CR41
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1502456
– volume: 6
  start-page: 460
  year: 2010
  ident: 13078_CR6
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2788
– volume: 556
  start-page: 113
  year: 2018
  ident: 13078_CR20
  publication-title: Nature
  doi: 10.1038/nature25986
– volume: 360
  start-page: 449
  year: 2018
  ident: 13078_CR23
  publication-title: Science
  doi: 10.1126/science.aan4665
– volume: 3
  start-page: 787
  year: 2012
  ident: 13078_CR5
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI59643
– volume: 80
  start-page: 477
  year: 2002
  ident: 13078_CR53
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.10393
– volume: 12
  start-page: e1005408
  year: 2016
  ident: 13078_CR17
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1005408
– volume: 113
  start-page: 4777
  year: 2016
  ident: 13078_CR22
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1603907113
SSID ssj0000391844
Score 2.678036
Snippet Activated macrophages switch from oxidative phosphorylation to aerobic glycolysis, similar to the Warburg effect, presenting a potential therapeutic target in...
Redirection of the TCA cycle intermediate aconitate to itaconate production has anti-inflammatory effects. Here the authors show that the itaconate derivative...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 5091
SubjectTerms 13
13/1
13/21
38
38/77
42
42/109
631/250/2504/342
631/250/256/2516
631/443/319
631/45/320
64
64/60
82/58
Alkylates
Alkylation
Animals
Antimetabolites - pharmacology
Cysteine - drug effects
Cysteine - genetics
Cysteine - metabolism
Deoxyglucose - pharmacology
Down-Regulation
Endotoxemia - immunology
Enzymatic activity
Enzyme activity
Enzymes
Glucose - metabolism
Glyceraldehyde-3-phosphate dehydrogenase
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - antagonists & inhibitors
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - drug effects
Glyceraldehyde-3-Phosphate Dehydrogenase (Phosphorylating) - metabolism
Glycolysis
Glycolysis - drug effects
Humanities and Social Sciences
Inflammation - immunology
Inflammatory diseases
Interleukin-1beta - drug effects
Interleukin-1beta - immunology
Lethality
Lipopolysaccharides
Lipopolysaccharides - pharmacology
Macrophage Activation - immunology
Macrophages
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Metabolites
Mice
multidisciplinary
Nitric Oxide Synthase Type II - drug effects
Nitric Oxide Synthase Type II - immunology
Oxidative phosphorylation
Oxidative Phosphorylation - drug effects
Phosphorylation
RAW 264.7 Cells
Science
Science (multidisciplinary)
Sesquiterpenes - pharmacology
Succinates - pharmacology
Therapeutic applications
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lj9QwDLbQSkhcEG8KCwoSN4i2eTRtj8tjGSHxOLDS3qI82UpDBzHdw_x7nKQz7PC8cJ2mGsufHX-OUxvgKYuB-d5JGnndUqk4o9YaQWWMGF6D6ZhJB_rv3qvFqXx71pxdGvWV7oSV9sBFcUfcKmVFaJ1qa-kdMxJDjGOh9aqTocvfkWPMu5RM5T1Y9Ji6yPkrmVp0R2uZ9wRkNBS3bUydmr1IlBv2_45l_npZ8qeKaQ5EJzfg-swgyXGR_CZcCeMtuFpmSm5uAyrkg5s2S4JJv0tH44EM4_lgh2lNTEhdlxz5vNwg_qkXCbEbUi6D43-RN8cfXy3ItCJpENNEUOkDRQtEo_mSi_Fkvv1xB05PXn96uaDzJAXqMEGZaBNkkArDsRfow9EFG5GIBGbqVrWCW-6jkDZ7Z-t9H6VBAL1ojOdd8KIVd-FgXI3hPhCujPCd4b1PNVOhesZrg4C7aBBe3lXAtlrVbm4znqZdLHUud4tOFyQ0IqEzErqp4Nnuna-lycZfV79IYO1WpgbZ-Qc0Gz2bjf6X2VRwuIVaz1671sh1MYMSSFEreLJ7jP6WiihmDKuLskakcSW8gnvFMnaSIBfDhIvLCto9m9kTdf_JOJznnt4oFUOyV8HzrXX9EOvPqnjwP1TxEK7x7BbprPwQDqZvF-ERMq3JPs5O9R20hSMa
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LbxMxELagCIkL4s1CQUbiBlbjx9rOCZVHGiHxOFCpN8uvbVcKu6XZHvLvGXudrcKj19ibeP3NeD7PTGYQek2bSMPcC9KwmSJCMkqcs5yIpgHzGq2mNjn0v3yVy2Px-aQ-KQ63dUmr3J6J-aAOvU8-8gPgIcBuOdCHd-e_SOoalaKrpYXGTXSLgqVJKV16cTT5WFL1cy1E-a_MjOuDtcgnA_AaAl8HF6h6xx7lsv3_4pp_p0z-ETfN5mhxD90tPBIfjsDfRzdi9wDdHjtLbh4i2JZvftisMFz9fXKQR9x2Z61rhzW2MdVe8vh0tQEpSBVJsNvgMSUcfgsfHX7_uMRDj1M7pgHD1rcE5BBE52cOyeOSA_IIHS8-_fiwJKWfAvFwTRlIHUUUEoxy4KDJjY-uAToSqZ0pqThzLDRcuKyjKoR5IyzAGHhtA9MxcMUfo72u7-JThJm0PGjL5iFFTrmcUzazALtvLIDMdIXodleNL8XGU8-LlclBb67NiIQBJExGwtQVejM9cz6W2rh29vsE1jQzlcnOH_QXp6ZonWFOSsej8lLNRPDUCuAnnkYVpBZRqwrtb6E2RXfX5krSKvRqGgatS6EU28X-cpzDU9MSVqEno2RMKwFGBtcuJiqkdmRmZ6m7I117lit7w6ooUL4Kvd1K19Wy_r8Vz65_i-foDssCn3zh-2hvuLiML4BJDe5lVpffZkAasA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Zb9QwEB6VVki8VNxNKchIvEFEfMTOPi5HWa3EIUGlvlm-0kZasqibPuy_Z-wcaKEg8Ro7ysgzY3_jmXwD8ILWgfqZE3nNCpULyWhureG5qGs8XoOpqIkX-h8_ycWZWJ6X53vAxn9hUtF-orRM2_RYHfZ6I5JLIyDJcdfFyKe8BQeRqh1t-2A-X35dTjcrkfO8EmL4Q6bg1Q0v75xCiaz_JoT5Z6Hkb9nSdAid3oXDAT2SeS_vPdgL7X243feT3D4AXIzPrtuuCAb8Ll6LB9K0l41tug0xITIuOXKx2qLuIw8JsVvSF4Ljt8iH-Zd3C9KtSWzC1BFc8CZH60OD-Z4S8WSo_HgIZ6fvv71d5EMXhdxhcNLlZRBBSDyKPUf_rV2wNYKQQE2hpOLMMl9zYZNnKu9ntTCoPM9L41kVPFf8Eey36zYcAWHScF8ZNvMxX8rljLLCoLJdbVC1rMqAjquq3UAxHjtdrHRKdfNK95rQqAmdNKHLDF5O7_zoCTb-OftNVNY0M5Jjpwfrqws9GItmVkrLg3JSFcI7agSiEkeD8rISoVIZnIyq1oPHbjTiXIyeOMLTDJ5Pw-hrMYFi2rC-7ufw2KqEZfC4t4xJEsRhGGwxkYHasZkdUXdH2uYy8XmjVBSBXgavRuv6Jdbfl-L4_6Y_gTssOUC8ET-B_e7qOjxFPNXZZ4MD_QSF1Bn7
  priority: 102
  providerName: Springer Nature
Title 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to exert anti-inflammatory effects
URI https://link.springer.com/article/10.1038/s41467-019-13078-5
https://www.ncbi.nlm.nih.gov/pubmed/31704924
https://www.proquest.com/docview/2313063163
https://www.proquest.com/docview/2313380812
https://pubmed.ncbi.nlm.nih.gov/PMC6841710
https://doaj.org/article/2b66b3e7c6704dc1a4818c1e7d684e87
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_tQ0i8IL7JGJWReINA_VE7eUCoK-uqShsTUKlvkRM7W6SSsjaTyH_P2UmKCoUnXhIpthXrPny_89l3AK9obqmJMxHmrK9CIRkN01TzUOQ5mlerI6rdhv75hZzMxHQ-mO9BV-6oJeB6p2vn6knNVou3P27qD6jw75sr49G7tfDqjmAlxBUZvaLBPhyiZVKuosF5C_f9ysxjdGhEe3dm99At--TT-O_Cnn8eofwtjurN0_g-3GtxJRk2gvAA9mz5EO40lSbrR4Bk-pRV9YIUFS6BJQJMUpTXRVpUa6Kty8WUkatFjVLhMpSQtCbNEXH8FzkbXn6ckGpJXHmmiiArihAphaL0zYfoSXsm5DHMxqdfR5Owra8QZui2VOHACiskGmnDUbPzzKY5whNLdV9JxVnKTM5F6nVWGRPnQiNbDR9owyJruOJP4KBclvYZECY1N5FmsXGRVC5jyvoaxSDLNTKdRQHQjqpJ1iYfdzUwFokPgvMoaTiRICcSz4lkEMDrzZjvTeqNf_Y-ccza9HRps_2H5eoqabUwYamUKbcqk6ovTEa1QLySUauMjISNVADHHauTThQTRMDoV3EErgG83DSjFrrQii7t8rbpw10RExbA00YyNjNBhIZuGBMBqC2Z2ZrqdktZXPtM3zgrihAwgDeddP2a1t9JcfQ_SPEc7jKvFm4H_RgOqtWtfYH4q0p7sK_mCp_R-KwHh8Ph9MsU3yenF5ef8etIjnp-Z6Pnle8nLC4xrA
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIgQXxJuFAkaCE1iNH_vIAaFCSVP6gEMr9Wa8trddKWxKsxXaP8VvZOx9VOHRW69ZJ5n1fJ757BnPALxihWN2bCQt-CilMuGM5rkWVBYFulenM6b9gf7efjI9lJ-P4qMV-NXfhfFplb1NDIbazo0_I19HHoLsViB9eH_6g_quUT662rfQaGGx45qfuGVbvNveRP2-5nzy6eDjlHZdBahBsl7T2EknE3RNViCeC-PyAp2yYxp39KngObeFkHlAamrtuJAaX8aKWFueOStSgb97Da5LgZ7c30yfbA1nOr7aeiZldzdnJLL1hQyWCHkURfFxwxYv-b_QJuBf3PbvFM0_4rTB_U3uwO2Ot5KNFmh3YcVV9-BG28myuQ-ohi-mbmakrNHEVkhgSVmdlHlZL4h2vtaTIcezBlHnK6CQvCFtCjr-F9na-Lo5JfWc-PZPNUFVlxRxj1D9HlIASJdz8gAOr2SmH8JqNa_cYyA80cJmmo-tj9SKZMz4SCPMTKERVDyLgPWzqkxX3Nz32JipEGQXmWo1oVATKmhCxRG8Gb5z2pb2uHT0B6-sYaQvyx0-mJ8dq26VK54nSS5capJ0JK1hWiIfMsylNsmky9II1npVq85WLNQFsiN4OTzGVe5DN7py8_N2jPBNUngEj1pkDJIgA8RtHpcRpEuYWRJ1-UlVnoRK4igVQ4oZwdseXRdi_X8qnlz-Fi_g5vRgb1ftbu_vPIVbPIDfn8OvwWp9du6eIYur8-dh6RD4dtVr9TdXPFda
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VVCAuiDcLBYwEJ1gla3sfOSDUkoaUQogQlXpzvba3XSnslmYrtH-NX8fY-6jCo7des05ie74Zf-OZnQF4GWQm0GPF_YyOYp9HNPDTVDKfZxker0YmgbQX-p_n0eyAfzwMDzfgV_cujE2r7GyiM9S6VPaOfIg8BNktQ_owzNq0iMVk-u70h287SNlIa9dOo4HIvql_ovu2ers3QVm_onS6--39zG87DPgKiXvlh4YbHuExpRliO1MmzfCANoFE7z5mNKU6Yzx1qI21Hmdc4sI0C6WmidEsZvi712Aztl7RADZ3dueLr_0Nj629nnDevqkzYslwxZ1dQlbl42LQfQvXTkPXNOBfTPfvhM0_orbuMJzehlstiyXbDezuwIYp7sL1pq9lfQ9QKF9UVS9JXqHBLZDOkrw4ydO8WhFpbOUnRY6XNWLQ1kMhaU2ahHT8L_JhezGZkaokthlURVDwuY9agMD97hICSJuBch8OrmSvH8CgKAvzCAiNJNOJpGNt47YsGgd0JBF0KpMIMZp4EHS7KlRb6tx23FgKF3JniWgkIVASwklChB687r9z2hT6uHT0jhVWP9IW6XYflGfHotV5QdMoSpmJVRSPuFaB5MiOVGBiHSXcJLEHW52oRWs5VuIC5x686B-jzttAjixMed6MYbZlCvXgYYOMfibIB9Hpo9yDeA0za1Ndf1LkJ66uOM4qQMLpwZsOXRfT-v9WPL58Fc_hBuqp-LQ3338CN6nDvr2U34JBdXZuniKlq9Jnre4QOLpqdf0NNnFc7A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=4-Octyl+itaconate+inhibits+aerobic+glycolysis+by+targeting+GAPDH+to+exert+anti-inflammatory+effects&rft.jtitle=Nature+communications&rft.au=Shan-Ting+Liao&rft.au=Chao+Han&rft.au=Ding-Qiao+Xu&rft.au=Xiao-Wei+Fu&rft.date=2019-11-08&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=1&rft.epage=11&rft_id=info:doi/10.1038%2Fs41467-019-13078-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_2b66b3e7c6704dc1a4818c1e7d684e87
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon