Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts

The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nan...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 7209 - 10
Main Authors Yu, Jiafeng, Sun, Xingtao, Tong, Xin, Zhang, Jixin, Li, Jie, Li, Shiyan, Liu, Yuefeng, Tsubaki, Noritatsu, Abe, Takayuki, Sun, Jian
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 10.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO 2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals. Applications of Cu catalysts at high-temperature is a long-sought goal but limited by their serious deactivation due to low copper’s Tammann temperature. Here, the authors introduce an encapsulation layer to improve thermal stability at 800 °C by reconstructing electronic structure of Cu atoms.
AbstractList The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO 2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals. Applications of Cu catalysts at high-temperature is a long-sought goal but limited by their serious deactivation due to low copper’s Tammann temperature. Here, the authors introduce an encapsulation layer to improve thermal stability at 800 °C by reconstructing electronic structure of Cu atoms.
The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.Applications of Cu catalysts at high-temperature is a long-sought goal but limited by their serious deactivation due to low copper’s Tammann temperature. Here, the authors introduce an encapsulation layer to improve thermal stability at 800 °C by reconstructing electronic structure of Cu atoms.
The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO 2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.
The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.
The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a barrier on the metal surface by the classical strong metal-support interaction (SMSI) is supposed to be an efficient way for immobilizing nanoparticles. However, Cu particles were regarded as impossible to form classical SMSI before irreversible sintering. Herein, we fabricate the SMSI between sputtering reconstructed Cu and flame-made LaTiO2 support at a mild reduction temperature, exhibiting an ultra-stable performance for more than 500 h at 600 °C. The sintering of Cu nanoparticles is effectively suppressed even at as high as 800 °C. The critical factors to success are reconstructing the electronic structure of Cu atoms in parallel with enhancing the support reducibility, which makes them adjustable by sputtering power or decorated supports. This strategy will extremely broaden the applications of Cu-based catalysts at more severe conditions and shed light on establishing SMSI on other metals.
Applications of Cu catalysts at high-temperature is a long-sought goal but limited by their serious deactivation due to low copper’s Tammann temperature. Here, the authors introduce an encapsulation layer to improve thermal stability at 800 °C by reconstructing electronic structure of Cu atoms.
ArticleNumber 7209
Author Liu, Yuefeng
Li, Shiyan
Yu, Jiafeng
Tong, Xin
Tsubaki, Noritatsu
Abe, Takayuki
Li, Jie
Zhang, Jixin
Sun, Xingtao
Sun, Jian
Author_xml – sequence: 1
  givenname: Jiafeng
  surname: Yu
  fullname: Yu, Jiafeng
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 2
  givenname: Xingtao
  surname: Sun
  fullname: Sun, Xingtao
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 3
  givenname: Xin
  surname: Tong
  fullname: Tong, Xin
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 4
  givenname: Jixin
  surname: Zhang
  fullname: Zhang, Jixin
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 5
  givenname: Jie
  surname: Li
  fullname: Li, Jie
  organization: School of Chemistry and Chemical Engineering, Yangzhou University
– sequence: 6
  givenname: Shiyan
  surname: Li
  fullname: Li, Shiyan
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, University of Chinese Academy of Sciences
– sequence: 7
  givenname: Yuefeng
  orcidid: 0000-0001-9823-3811
  surname: Liu
  fullname: Liu, Yuefeng
  email: yuefeng.liu@dicp.ac.cn
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
– sequence: 8
  givenname: Noritatsu
  orcidid: 0000-0001-6786-5058
  surname: Tsubaki
  fullname: Tsubaki, Noritatsu
  email: tsubaki@eng.u-toyama.ac.jp
  organization: Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190
– sequence: 9
  givenname: Takayuki
  surname: Abe
  fullname: Abe, Takayuki
  organization: Hydrogen Isotope Research Center, University of Toyama, Gofuku 3190
– sequence: 10
  givenname: Jian
  orcidid: 0000-0002-4191-578X
  surname: Sun
  fullname: Sun, Jian
  email: sunj@dicp.ac.cn
  organization: Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34893618$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhSNUREvpH2CBIrFhE7Adx48NEhrxqKjEhq6tG-dmxiNPPNhOpfn3OJ1S2i7qja_scz5dX5_X1ckUJqyqt5R8pKRVnxKnXMiGMNow2XWyoS-qM0Y4bahk7cmD-rS6SGlLymo1VZy_qk5brnQrqDqrfl77HKHZuPWmzhuMO_B1ytA77_KhDmOd9nPOGN20riPaMKUcZ5txqFdz00MqhYUM_pByelO9HMEnvLjbz6vrb19_r340V7--X66-XDVWEJGbzmocB-DApETR6RGUZHrsO-C9xIEQ4NgxIroRe9JpaTXpB2Zb6EeplKbteXV55A4BtmYf3Q7iwQRw5vYgxLWBmJ31aLSyIwAoha3ilg8aSYEKzgQTXBFZWJ-PrP3c73CwOJVx-EfQxzeT25h1uDFKLABVAB_uADH8mTFls3PJovcwYZiTYYJo3gmpSZG-fyLdhjlOZVSLSglGJNFF9e5hR_et_PuzImBHgY0hpYjjvYQSs2TDHLNhSjbMbTbMMjP1xGRdhuzC8irnn7e2R2vaLzHA-L_tZ1x_AbPRzhI
CitedBy_id crossref_primary_10_1016_j_jechem_2024_04_007
crossref_primary_10_1038_s41467_022_33308_7
crossref_primary_10_1021_acscatal_4c07729
crossref_primary_10_1002_cssc_202401846
crossref_primary_10_1021_jacs_3c01336
crossref_primary_10_1002_advs_202205087
crossref_primary_10_1021_acs_accounts_4c00713
crossref_primary_10_1016_j_fuel_2023_129840
crossref_primary_10_1021_acs_iecr_4c04005
crossref_primary_10_1021_acsmaterialsau_1c00080
crossref_primary_10_1002_ange_202407025
crossref_primary_10_1016_j_cej_2024_152283
crossref_primary_10_1016_j_cej_2024_157331
crossref_primary_10_1002_anie_202319896
crossref_primary_10_1007_s10562_025_04983_0
crossref_primary_10_1021_prechem_4c00002
crossref_primary_10_1016_j_fuel_2024_131888
crossref_primary_10_1021_acs_chemrev_4c00282
crossref_primary_10_1021_acsnano_3c00443
crossref_primary_10_1002_ange_202310191
crossref_primary_10_1016_j_triboint_2024_109836
crossref_primary_10_1038_s41929_023_01040_0
crossref_primary_10_1002_celc_202200141
crossref_primary_10_1002_anie_202407025
crossref_primary_10_1039_D2CS00214K
crossref_primary_10_1002_anie_202412637
crossref_primary_10_1038_s41545_022_00200_2
crossref_primary_10_1021_acssuschemeng_2c05450
crossref_primary_10_1002_smll_202401360
crossref_primary_10_1002_adfm_202304303
crossref_primary_10_3389_fenrg_2022_924515
crossref_primary_10_3724_2097_213X_2024_JFCT_0009
crossref_primary_10_1016_j_apcatb_2023_123488
crossref_primary_10_1016_j_apcatb_2024_124674
crossref_primary_10_1039_D3NJ05133A
crossref_primary_10_1038_s41467_023_43679_0
crossref_primary_10_1002_aenm_202402295
crossref_primary_10_1021_acssuschemeng_2c04995
crossref_primary_10_1002_adma_202409689
crossref_primary_10_1007_s10853_024_09514_7
crossref_primary_10_1039_D2CS00322H
crossref_primary_10_1016_j_nanoen_2025_110650
crossref_primary_10_1002_ange_202319896
crossref_primary_10_1016_j_jcat_2022_06_026
crossref_primary_10_1021_acssuschemeng_3c06781
crossref_primary_10_1002_adfm_202417732
crossref_primary_10_1016_j_jcou_2023_102460
crossref_primary_10_1021_acscatal_4c02069
crossref_primary_10_1039_D2TA10036C
crossref_primary_10_1039_D3NR02304D
crossref_primary_10_1021_acs_energyfuels_2c01563
crossref_primary_10_1016_j_recm_2023_08_004
crossref_primary_10_1021_acs_accounts_3c00311
crossref_primary_10_1039_D4TA03072A
crossref_primary_10_1002_ange_202412637
crossref_primary_10_1038_s44286_025_00199_6
crossref_primary_10_1016_j_seppur_2023_125101
crossref_primary_10_14356_kona_2025004
crossref_primary_10_1002_anie_202310191
crossref_primary_10_1002_adfm_202401194
crossref_primary_10_1073_pnas_2411406122
crossref_primary_10_1016_j_apcatb_2024_124699
crossref_primary_10_1016_j_cej_2024_153309
crossref_primary_10_1039_D4MH01220H
crossref_primary_10_1002_cctc_202301623
crossref_primary_10_1016_j_cej_2023_144461
Cites_doi 10.1016/j.apsusc.2012.09.039
10.1016/S0926-860X(00)00854-1
10.1021/acs.chemmater.6b04213
10.1021/acs.chemrev.5b00482
10.1021/acsanm.9b00569
10.1126/sciadv.1700231
10.1021/ja3034153
10.1002/anie.201601823
10.1016/S0368-2048(03)00126-9
10.1021/acscatal.5b00188
10.1126/science.211.4487.1121
10.1021/jp014487p
10.1016/0021-9517(78)90182-3
10.1016/j.susc.2014.08.029
10.1016/j.electacta.2014.11.203
10.1016/0021-9517(91)90334-Z
10.1002/adma.201901905
10.1002/anie.201400290
10.1038/s41929-019-0364-x
10.1021/jacs.8b08246
10.1107/S0909049505012719
10.1002/anie.201903298
10.1016/j.apsusc.2008.05.325
10.1002/anie.201201283
10.1007/s10853-013-7836-1
10.1021/jp106648c
10.1007/s11671-010-9591-4
10.1016/j.apcatb.2014.12.011
10.1023/A:1023567718303
10.1016/j.apcatb.2016.05.050
10.1007/s10562-004-0768-2
10.1016/j.micromeso.2012.06.029
10.1021/acs.nanolett.6b01769
10.1016/j.jechem.2017.07.006
10.1021/jacs.5b11306
10.1021/jacs.8b10864
10.1039/C9CC00297A
10.1021/ja00469a029
10.1103/PhysRevB.69.144103
10.1002/cctc.201100090
10.1021/jp046091u
10.1039/C5CP02158H
10.1021/acscatal.6b02991
10.1126/sciadv.aau3275
10.1039/C8SC00729B
10.1016/j.apcatb.2021.120410
10.1021/jp057053t
10.1103/PhysRev.76.388
10.1038/nchem.2607
10.1016/j.jece.2021.105790
10.1038/s41929-021-00611-3
10.1039/b718956g
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-27557-1
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
Publicly Available Content Database
CrossRef

PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_98cfaaa88e384c4d9e0eb06426264807
PMC8664808
34893618
10_1038_s41467_021_27557_1
Genre Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22078315
  funderid: https://doi.org/10.13039/501100001809
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 22078315
– fundername: ;
  grantid: 22078315
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
PRINS
RC3
SOI
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-5c9efda4a277e659fa8729fb5a4b7ed00a4e52065feb0597c90bd2c3abf788913
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:28:43 EDT 2025
Thu Aug 21 13:46:55 EDT 2025
Sun Aug 24 03:27:58 EDT 2025
Wed Aug 13 06:24:31 EDT 2025
Mon Jul 21 06:09:30 EDT 2025
Tue Jul 01 04:17:41 EDT 2025
Thu Apr 24 23:07:57 EDT 2025
Fri Feb 21 02:39:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-5c9efda4a277e659fa8729fb5a4b7ed00a4e52065feb0597c90bd2c3abf788913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9823-3811
0000-0001-6786-5058
0000-0002-4191-578X
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-021-27557-1
PMID 34893618
PQID 2608620709
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_98cfaaa88e384c4d9e0eb06426264807
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8664808
proquest_miscellaneous_2609456790
proquest_journals_2608620709
pubmed_primary_34893618
crossref_primary_10_1038_s41467_021_27557_1
crossref_citationtrail_10_1038_s41467_021_27557_1
springer_journals_10_1038_s41467_021_27557_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-10
PublicationDateYYYYMMDD 2021-12-10
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-10
  day: 10
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Van Der Grift (CR50) 1991; 131
Yano (CR47) 2003; 131-132
Ren (CR36) 2008; 254
Huang (CR28) 2010; 5
Matsubu (CR41) 2017; 9
Góra-Marek (CR43) 2012; 162
Su (CR37) 2017; 26
Twigg, Spencer (CR2) 2001; 212
Zhang (CR30) 2016; 16
Wang (CR22) 2021; 4
Anderson (CR23) 1949; 76
Zhang (CR18) 2019; 141
Wang (CR35) 2015; 153
Kuwauchi (CR27) 2012; 51
Willinger (CR14) 2014; 53
Sun (CR25) 2018; 4
Dong (CR21) 2018; 140
Fu (CR40) 2021; 9
Tang (CR20) 2016; 55
Zhang (CR3) 2017; 7
Khalid (CR33) 2012; 263
Figueiredo (CR11) 2019; 2
Zhu (CR12) 2019; 58
Tauster (CR8) 1978; 100
Reddy (CR34) 2002; 106
Liu (CR49) 2011; 3
Kumar (CR44) 2006; 110
Zhang (CR32) 2010; 114
Tang (CR19) 2016; 138
Tang (CR17) 2017; 3
Gawande (CR1) 2016; 116
CR16
Haisheng (CR52) 2015; 5
Schumann (CR42) 2015; 5
Pauly (CR46) 2014; 630
Twigg, Spencer (CR5) 2003; 22
Yu (CR48) 2016; 198
Tauster, Fung (CR13) 1978; 55
Andrievski (CR4) 2014; 49
Goodman (CR10) 2005; 99
Gong (CR51) 2012; 134
Kim (CR24) 2017; 29
Fu (CR15) 2005; 109
Yu (CR38) 2019; 55
Liu (CR31) 2015; 168-169
Ravel, Newville (CR53) 2005; 12
Wang (CR7) 2019; 31
van Deelen (CR6) 2019; 2
Sun (CR45) 2015; 17
Chen (CR39) 2021; 297
Zhang (CR29) 2004; 69
Tauster (CR9) 1981; 211
Zhang (CR26) 2018; 9
TW van Deelen (27557_CR6) 2019; 2
H Tang (27557_CR20) 2016; 55
Y Liu (27557_CR31) 2015; 168-169
H Tang (27557_CR19) 2016; 138
M Ren (27557_CR36) 2008; 254
H Wang (27557_CR22) 2021; 4
F Wang (27557_CR35) 2015; 153
MV Twigg (27557_CR2) 2001; 212
Y Yu (27557_CR38) 2019; 55
Z Zhang (27557_CR29) 2004; 69
C Sun (27557_CR45) 2015; 17
J Zhang (27557_CR18) 2019; 141
J Gong (27557_CR51) 2012; 134
Y Haisheng (27557_CR52) 2015; 5
Y Kuwauchi (27557_CR27) 2012; 51
C-N Huang (27557_CR28) 2010; 5
T Yano (27557_CR47) 2003; 131-132
PA Anderson (27557_CR23) 1949; 76
RA Andrievski (27557_CR4) 2014; 49
BM Reddy (27557_CR34) 2002; 106
SJ Tauster (27557_CR13) 1978; 55
JC Matsubu (27557_CR41) 2017; 9
Y Fu (27557_CR40) 2021; 9
X Su (27557_CR37) 2017; 26
MB Gawande (27557_CR1) 2016; 116
Z Zhang (27557_CR26) 2018; 9
J Chen (27557_CR39) 2021; 297
SJ Tauster (27557_CR9) 1981; 211
DW Goodman (27557_CR10) 2005; 99
S Zhang (27557_CR30) 2016; 16
MG Willinger (27557_CR14) 2014; 53
27557_CR16
MV Twigg (27557_CR5) 2003; 22
N Pauly (27557_CR46) 2014; 630
L Wang (27557_CR7) 2019; 31
HK Kim (27557_CR24) 2017; 29
SJ Tauster (27557_CR8) 1978; 100
CJG Van Der Grift (27557_CR50) 1991; 131
WT Figueiredo (27557_CR11) 2019; 2
J Dong (27557_CR21) 2018; 140
J Sun (27557_CR25) 2018; 4
X Zhang (27557_CR3) 2017; 7
B Ravel (27557_CR53) 2005; 12
K Góra-Marek (27557_CR43) 2012; 162
Q Fu (27557_CR15) 2005; 109
H Tang (27557_CR17) 2017; 3
J Schumann (27557_CR42) 2015; 5
J Liu (27557_CR49) 2011; 3
M Zhu (27557_CR12) 2019; 58
NR Khalid (27557_CR33) 2012; 263
J Zhang (27557_CR32) 2010; 114
J Yu (27557_CR48) 2016; 198
CP Kumar (27557_CR44) 2006; 110
References_xml – volume: 263
  start-page: 254
  year: 2012
  end-page: 259
  ident: CR33
  article-title: Synthesis and photocatalytic properties of visible light responsive La/TiO2-graphene composites
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.09.039
– volume: 212
  start-page: 161
  year: 2001
  end-page: 174
  ident: CR2
  article-title: Deactivation of supported copper metal catalysts for hydrogenation reactions
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(00)00854-1
– volume: 29
  start-page: 3403
  year: 2017
  end-page: 3411
  ident: CR24
  article-title: Reduction of the work function of gold by N-heterocyclic carbenes
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04213
– volume: 116
  start-page: 3722
  year: 2016
  end-page: 3811
  ident: CR1
  article-title: Cu and Cu-based nanoparticles: synthesis and applications in catalysis
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00482
– volume: 2
  start-page: 2559
  year: 2019
  end-page: 2573
  ident: CR11
  article-title: Understanding the strong metal–support interaction (SMSI) effect in CuxNi1–x/CeO2 (0 < x < 1) nanoparticles for enhanced catalysis
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00569
– volume: 3
  start-page: e1700231
  year: 2017
  ident: CR17
  article-title: Classical strong metal–support interactions between gold nanoparticles and titanium dioxide
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700231
– ident: CR16
– volume: 134
  start-page: 13922
  year: 2012
  end-page: 13925
  ident: CR51
  article-title: Synthesis of ethanol via syngas on Cu/SiO2 catalysts with balanced Cu0–Cu+ sites
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3034153
– volume: 55
  start-page: 10606
  year: 2016
  end-page: 10611
  ident: CR20
  article-title: Ultrastable hydroxyapatite/titanium-dioxide-supported gold nanocatalyst with strong metal–support interaction for carbon monoxide oxidation
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601823
– volume: 131-132
  start-page: 133
  year: 2003
  end-page: 144
  ident: CR47
  article-title: Anomalous chemical shifts of Cu 2p and Cu LMM Auger spectra of silicate glasses
  publication-title: J. Electron Spectrosc.
  doi: 10.1016/S0368-2048(03)00126-9
– volume: 5
  start-page: 3260
  year: 2015
  end-page: 3270
  ident: CR42
  article-title: Promoting strong metal support interaction: doping ZnO for enhanced activity of Cu/ZnO:M (M = Al, Ga, Mg) catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00188
– volume: 211
  start-page: 1121
  year: 1981
  end-page: 1125
  ident: CR9
  article-title: Strong interactions in supported-metal catalysts
  publication-title: Science
  doi: 10.1126/science.211.4487.1121
– volume: 106
  start-page: 5695
  year: 2002
  end-page: 5700
  ident: CR34
  article-title: Surface characterization of La2O3−TiO2 and V2O5/La2O3−TiO2 catalysts
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp014487p
– volume: 55
  start-page: 29
  year: 1978
  end-page: 35
  ident: CR13
  article-title: Strong metal-support interactions: occurrence among the binary oxides of groups IIA–VB
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(78)90182-3
– volume: 630
  start-page: 294
  year: 2014
  end-page: 299
  ident: CR46
  article-title: LMM Auger primary excitation spectra of copper
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2014.08.029
– volume: 153
  start-page: 170
  year: 2015
  end-page: 174
  ident: CR35
  article-title: Fabrication of La-doped TiO2 film electrode and investigation of its electrocatalytic activity for furfural reduction
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.203
– volume: 131
  start-page: 178
  year: 1991
  end-page: 189
  ident: CR50
  article-title: Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(91)90334-Z
– volume: 31
  start-page: 1901905
  year: 2019
  ident: CR7
  article-title: New strategies for the preparation of sinter-resistant metal-nanoparticle-based catalysts
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901905
– volume: 53
  start-page: 5998
  year: 2014
  end-page: 6001
  ident: CR14
  article-title: A case of strong metal–support interactions: combining advanced microscopy and model systems to elucidate the atomic structure of interfaces
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400290
– volume: 2
  start-page: 955
  year: 2019
  end-page: 970
  ident: CR6
  article-title: Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0364-x
– volume: 140
  start-page: 13808
  year: 2018
  end-page: 13816
  ident: CR21
  article-title: Carbide-supported Au catalysts for water–gas shift reactions: a new territory for the strong metal–support interaction effect
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08246
– volume: 12
  start-page: 537
  year: 2005
  end-page: 541
  ident: CR53
  article-title: ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 58
  start-page: 9083
  year: 2019
  end-page: 9087
  ident: CR12
  article-title: Strong metal–support interactions between copper and iron oxide during the high-temperature water-gas shift reaction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903298
– volume: 254
  start-page: 7314
  year: 2008
  end-page: 7320
  ident: CR36
  article-title: Evolution of TiO2 coating layers on lamellar sericite in the presence of La3+ and the pigmentary properties
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.05.325
– volume: 51
  start-page: 7729
  year: 2012
  end-page: 7733
  ident: CR27
  article-title: Intrinsic catalytic structure of gold nanoparticles supported on TiO2
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201283
– volume: 49
  start-page: 1449
  year: 2014
  end-page: 1460
  ident: CR4
  article-title: Review of thermal stability of nanomaterials
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7836-1
– volume: 114
  start-page: 18396
  year: 2010
  end-page: 18400
  ident: CR32
  article-title: Increasing the oxygen vacancy density on the TiO2 surface by La-doping for dye-sensitized solar cells
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106648c
– volume: 5
  year: 2010
  ident: CR28
  article-title: Nonstoichiometric titanium oxides via pulsed laser ablation in water
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9591-4
– volume: 5
  start-page: 6
  year: 2015
  end-page: 12
  ident: CR52
  article-title: The XAFS beamline of SSRF
  publication-title: Nucl. Sci. Tech.
– volume: 168-169
  start-page: 125
  year: 2015
  end-page: 131
  ident: CR31
  article-title: Photocatalytic reduction of CO2 with water vapor on surface La-modified TiO2 nanoparticles with enhanced CH4 selectivity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.12.011
– volume: 22
  start-page: 191
  year: 2003
  end-page: 203
  ident: CR5
  article-title: Deactivation of copper metal catalysts for methanol decomposition, methanol steam reforming and methanol synthesis
  publication-title: Top. Catal.
  doi: 10.1023/A:1023567718303
– volume: 198
  start-page: 171
  year: 2016
  end-page: 179
  ident: CR48
  article-title: Facile synthesis of highly active Rh/Al2O3 steam reforming catalysts with preformed support by flame spray pyrolysis
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.05.050
– volume: 99
  start-page: 1
  year: 2005
  end-page: 4
  ident: CR10
  article-title: “Catalytically active Au on Titania:” yet another example of a strong metal support interaction (SMSI)?
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-004-0768-2
– volume: 162
  start-page: 175
  year: 2012
  ident: CR43
  article-title: Copper sites in zeolites - quantitative IR studies
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.06.029
– volume: 16
  start-page: 4528
  year: 2016
  end-page: 4534
  ident: CR30
  article-title: Dynamical observation and detailed description of catalysts under strong metal–support interaction
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01769
– volume: 26
  start-page: 854
  year: 2017
  end-page: 867
  ident: CR37
  article-title: Designing of highly selective and high-temperature endurable RWGS heterogeneous catalysts: recent advances and the future directions
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.07.006
– volume: 138
  start-page: 56
  year: 2016
  end-page: 59
  ident: CR19
  article-title: Strong metal–support interactions between gold nanoparticles and nonoxides
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11306
– volume: 141
  start-page: 2975
  year: 2019
  end-page: 2983
  ident: CR18
  article-title: Wet-chemistry strong metal–support interactions in titania-supported Au catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10864
– volume: 55
  start-page: 4178
  year: 2019
  end-page: 4181
  ident: CR38
  article-title: Highly active and stable copper catalysts derived from copper silicate double-shell nanofibers with strong metal–support interactions for the RWGS reaction
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00297A
– volume: 100
  start-page: 170
  year: 1978
  end-page: 175
  ident: CR8
  article-title: Strong metal-support interactions. Group 8 noble metals supported on titanium dioxide
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00469a029
– volume: 69
  start-page: 144103
  year: 2004
  ident: CR29
  article-title: HRTEM and EELS study of screw dislocation cores in SrTiO3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.144103
– volume: 3
  start-page: 934
  year: 2011
  end-page: 948
  ident: CR49
  article-title: Advanced electron microscopy of metal–support interactions in supported metal catalysts
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201100090
– volume: 109
  start-page: 944
  year: 2005
  end-page: 951
  ident: CR15
  article-title: Metal-oxide interfacial reactions: encapsulation of Pd on TiO2 (110)
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046091u
– volume: 17
  start-page: 15996
  year: 2015
  end-page: 16006
  ident: CR45
  article-title: Effects of different manganese precursors as promoters on catalytic performance of CuO–MnOx/TiO2 catalysts for NO removal by CO
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02158H
– volume: 7
  start-page: 912
  year: 2017
  end-page: 918
  ident: CR3
  article-title: Highly dispersed copper over β-Mo2C as an efficient and stable catalyst for the reverse water gas shift (RWGS) reaction
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02991
– volume: 4
  start-page: eaau3275
  year: 2018
  ident: CR25
  article-title: Freezing copper as a noble metal-like catalyst for preliminary hydrogenation
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau3275
– volume: 9
  start-page: 3386
  year: 2018
  end-page: 3394
  ident: CR26
  article-title: Tailored metastable Ce-Zr oxides with highly distorted lattice oxygen for accelerating redox cycles
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC00729B
– volume: 297
  start-page: 120410
  year: 2021
  ident: CR39
  article-title: Strong metal-support interaction assisted redispersion strategy for obtaining ultrafine and stable IrO2/Ir active sites with exceptional methane oxidation activity
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120410
– volume: 110
  start-page: 5223
  year: 2006
  end-page: 5229
  ident: CR44
  article-title: EPR investigation of TiO2 nanoparticles with temperature-dependent properties
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057053t
– volume: 76
  start-page: 388
  year: 1949
  end-page: 390
  ident: CR23
  article-title: The work function of copper
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.76.388
– volume: 9
  start-page: 120
  year: 2017
  end-page: 127
  ident: CR41
  article-title: Adsorbate-mediated strong metal–support interactions in oxide-supported Rh catalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2607
– volume: 9
  start-page: 105790
  year: 2021
  ident: CR40
  article-title: In situ redispersion of rhodium nanocatalyst for CO2 reforming of CH4
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105790
– volume: 4
  start-page: 418
  year: 2021
  end-page: 424
  ident: CR22
  article-title: Strong metal–support interactions on gold nanoparticle catalysts achieved through Le Chatelier’s principle
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00611-3
– volume: 5
  year: 2010
  ident: 27557_CR28
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9591-4
– volume: 49
  start-page: 1449
  year: 2014
  ident: 27557_CR4
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-013-7836-1
– volume: 5
  start-page: 3260
  year: 2015
  ident: 27557_CR42
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.5b00188
– volume: 114
  start-page: 18396
  year: 2010
  ident: 27557_CR32
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp106648c
– volume: 2
  start-page: 2559
  year: 2019
  ident: 27557_CR11
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b00569
– volume: 212
  start-page: 161
  year: 2001
  ident: 27557_CR2
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/S0926-860X(00)00854-1
– volume: 9
  start-page: 120
  year: 2017
  ident: 27557_CR41
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2607
– volume: 297
  start-page: 120410
  year: 2021
  ident: 27557_CR39
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2021.120410
– volume: 76
  start-page: 388
  year: 1949
  ident: 27557_CR23
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRev.76.388
– volume: 12
  start-page: 537
  year: 2005
  ident: 27557_CR53
  publication-title: J. Synchrotron Radiat.
  doi: 10.1107/S0909049505012719
– volume: 31
  start-page: 1901905
  year: 2019
  ident: 27557_CR7
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201901905
– volume: 53
  start-page: 5998
  year: 2014
  ident: 27557_CR14
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201400290
– volume: 254
  start-page: 7314
  year: 2008
  ident: 27557_CR36
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2008.05.325
– volume: 2
  start-page: 955
  year: 2019
  ident: 27557_CR6
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0364-x
– volume: 3
  start-page: e1700231
  year: 2017
  ident: 27557_CR17
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1700231
– volume: 116
  start-page: 3722
  year: 2016
  ident: 27557_CR1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00482
– volume: 109
  start-page: 944
  year: 2005
  ident: 27557_CR15
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp046091u
– volume: 5
  start-page: 6
  year: 2015
  ident: 27557_CR52
  publication-title: Nucl. Sci. Tech.
– volume: 69
  start-page: 144103
  year: 2004
  ident: 27557_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.69.144103
– volume: 3
  start-page: 934
  year: 2011
  ident: 27557_CR49
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201100090
– volume: 168-169
  start-page: 125
  year: 2015
  ident: 27557_CR31
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2014.12.011
– volume: 99
  start-page: 1
  year: 2005
  ident: 27557_CR10
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-004-0768-2
– volume: 106
  start-page: 5695
  year: 2002
  ident: 27557_CR34
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp014487p
– volume: 17
  start-page: 15996
  year: 2015
  ident: 27557_CR45
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02158H
– volume: 630
  start-page: 294
  year: 2014
  ident: 27557_CR46
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2014.08.029
– volume: 131-132
  start-page: 133
  year: 2003
  ident: 27557_CR47
  publication-title: J. Electron Spectrosc.
  doi: 10.1016/S0368-2048(03)00126-9
– volume: 4
  start-page: 418
  year: 2021
  ident: 27557_CR22
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-021-00611-3
– volume: 110
  start-page: 5223
  year: 2006
  ident: 27557_CR44
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057053t
– volume: 16
  start-page: 4528
  year: 2016
  ident: 27557_CR30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01769
– volume: 58
  start-page: 9083
  year: 2019
  ident: 27557_CR12
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201903298
– volume: 51
  start-page: 7729
  year: 2012
  ident: 27557_CR27
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201201283
– volume: 7
  start-page: 912
  year: 2017
  ident: 27557_CR3
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.6b02991
– volume: 162
  start-page: 175
  year: 2012
  ident: 27557_CR43
  publication-title: Microporous Mesoporous Mater.
  doi: 10.1016/j.micromeso.2012.06.029
– volume: 131
  start-page: 178
  year: 1991
  ident: 27557_CR50
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(91)90334-Z
– volume: 141
  start-page: 2975
  year: 2019
  ident: 27557_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b10864
– volume: 263
  start-page: 254
  year: 2012
  ident: 27557_CR33
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2012.09.039
– volume: 55
  start-page: 4178
  year: 2019
  ident: 27557_CR38
  publication-title: Chem. Commun.
  doi: 10.1039/C9CC00297A
– ident: 27557_CR16
  doi: 10.1039/b718956g
– volume: 134
  start-page: 13922
  year: 2012
  ident: 27557_CR51
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3034153
– volume: 55
  start-page: 10606
  year: 2016
  ident: 27557_CR20
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201601823
– volume: 4
  start-page: eaau3275
  year: 2018
  ident: 27557_CR25
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau3275
– volume: 211
  start-page: 1121
  year: 1981
  ident: 27557_CR9
  publication-title: Science
  doi: 10.1126/science.211.4487.1121
– volume: 9
  start-page: 3386
  year: 2018
  ident: 27557_CR26
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC00729B
– volume: 29
  start-page: 3403
  year: 2017
  ident: 27557_CR24
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04213
– volume: 22
  start-page: 191
  year: 2003
  ident: 27557_CR5
  publication-title: Top. Catal.
  doi: 10.1023/A:1023567718303
– volume: 55
  start-page: 29
  year: 1978
  ident: 27557_CR13
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(78)90182-3
– volume: 140
  start-page: 13808
  year: 2018
  ident: 27557_CR21
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b08246
– volume: 26
  start-page: 854
  year: 2017
  ident: 27557_CR37
  publication-title: J. Energy Chem.
  doi: 10.1016/j.jechem.2017.07.006
– volume: 9
  start-page: 105790
  year: 2021
  ident: 27557_CR40
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2021.105790
– volume: 100
  start-page: 170
  year: 1978
  ident: 27557_CR8
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00469a029
– volume: 198
  start-page: 171
  year: 2016
  ident: 27557_CR48
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.05.050
– volume: 138
  start-page: 56
  year: 2016
  ident: 27557_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11306
– volume: 153
  start-page: 170
  year: 2015
  ident: 27557_CR35
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2014.11.203
SSID ssj0000391844
Score 2.5982552
Snippet The rational design of high-temperature endurable Cu-based catalysts is a long-sought goal since they are suffering from significant sintering. Establishing a...
Applications of Cu catalysts at high-temperature is a long-sought goal but limited by their serious deactivation due to low copper’s Tammann temperature. Here,...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7209
SubjectTerms 140/146
147/143
639/166/898
639/638/77/884
639/638/77/887
Catalysts
Copper
Deactivation
Electronic structure
Heavy metals
High temperature
Humanities and Social Sciences
Metal surfaces
multidisciplinary
Nanoparticles
Science
Science (multidisciplinary)
Sintering
Sputtering
Thermal stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwEB0hJCQuVWn5CNAqlbgViyT-iH0EVLRq1Z5YiZtlJ7ZAotmVshz23zO2s8tuoXDhmkyi0fPY8yaePAOceFeV3gpFPNIDwhzlxDAjsVSRgreq8SaKJP3-I0Zj9vOG36wc9RV6wpI8cALuTEm0N0ZKRyVrWKtc4WxgzSL0ZqX_yDHnrRRTcQ2mCksXNvwlU1B51rO4JoSOhKrmvCblWiaKgv0vscznzZL_7JjGRHT1ET4MDDI_T57vwIbrPsFWOlNy_hl-je_xBSTIEOeB3P1FW2SAsQd2nk983k_j2dT47jxWw0lB1rX55QMJOa3N4yedeT_rd2F89eP6ckSGExNIg4XIjPBGOd8i2FVdO8EVIo3k2VtumK1dWxSGOV4h6_CIIZYSjSpsWzXUWI-lsCrpHmx2k84dQF7YIBnaVMpawYwTRigcbW-d9NIaajMoF-jpZpATD6da3Ou4rU2lTohrRFxHxHWZwfflM9MkpvGq9UUYlKVlEMKOFzA89BAe-q3wyOB4MaR6mJ29xhoOCzlc7FQG35a3cV6FzRLTuclDtFFILmtVZLCfImDpCQ2KPaKUGdRrsbHm6vqd7u42andLEdzCJ08XUfTk1v-hOHwPKI5guwrhX1aYe49hE6PLfUFGNbNf4-R5BGwSHKY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIlLVd6BgoLEDazm4eepgoqqAsGJlfZm2Y4NSCXZNtvD_vvOON5Uy6PX-CFnPPZ8Ho-_IeRtDE0dndA0AjygLLScWmYVHFWU4J320SaSpK_fxNmCfV7yZXa4jTmscrsnpo26Gzz6yI8AdwP4BgXVx6sLilmj8HY1p9C4S-4hdRmGdMmlnH0syH6uGMtvZapWHY0s7QwYl9BIziWtd-xRou3_F9b8O2Tyj3vTZI5OD8h-xpHlh2niH5I7oX9E7k-ZJTePyZfFOXRAkYy4RIj3G-oCDkyRsJtyiOW4Shmqoe8ynYknHtnQlSdXFC1bVybHzmZcj0_I4vTT95MzmvMmUA_HkTXlXofYgcgbKYPgGuQNEDo6bpmToasqywJvAHvE4ABdSa8r1zW-tS7CgVjX7VOy1w99eE7KyiFxqG-0c4LZIKzQMOfRBRWVs60rSL2VnvGZVBxzW5ybdLndKjNJ3IDETZK4qQvybm6zmig1bq39ESdlrol02OnDcPnD5NVltAKlslap0CrmWadDBb8mkG1f4Jv5ghxup9TkNTqaG40qyJu5GFYXXpnYPgxXqY4GiCl1VZBnkwbMI2mRt0fUqiByRzd2hrpb0v_6mRi8lcBhQcv3Wy26Gdb_RfHi9r94SR40qNh1A7b1kOyB3oRXgJjW7nVaFte56hRV
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PaxUxEB5KpeBFrG11tcoK3mxwN5tkk2N9tBRFTz7oLSS7iQp1X-m-Ht5_70z2R3lahV43kzA7mSTfJJMvAO9i4GX0yrCI8ICJUEnmhNMYqmglW9NEl0iSvnxVF0vx6VJe7gCf7sKkpP1EaZmm6Sk77EMv0pCmhAJeS1kzjHgeEXU7efVCLeZ9FWI810KM92OKSt9TdWsNSlT99-HLv9Mk_zgrTUvQ-VN4MmLH_HTQdh92QvcM9obXJDcH8Hl5hQ0wIiDOCdb9QlnEfin7dZOvYt5fp1epse08xcEDd2xo88Uto9WszdNmzqZf94ewPD_7trhg41sJrMEQZM1kY0Js0cy8roOSBm2MsDl66YSvQ1sUTgTJEW_E4BFR1Y0pfMubyvmIQbApqyPY7VZdeAF54YkstOHGeyVcUE4Z7Ofog47au8pnUE7Ws81IJE7vWVzZdKBdaTtY3KLFbbK4LTN4P9e5Hmg0_iv9kTplliQK7PRhdfPdji5hjUZHck7rUGnRiNaEAn9NEcO-onvyGRxPXWrHcdlbjN4whMNpzmTwdi7GEUXHJK4Lq9skYxBW1qbI4PngAbMmFXH1qFJnUG_5xpaq2yXdzx-JtVsrUgtrnkxedKfWv03x8mHir-AxJ0cvOa6vx7CLfhReI2pa-zdpmPwGKz8SIQ
  priority: 102
  providerName: Springer Nature
Title Ultra-high thermal stability of sputtering reconstructed Cu-based catalysts
URI https://link.springer.com/article/10.1038/s41467-021-27557-1
https://www.ncbi.nlm.nih.gov/pubmed/34893618
https://www.proquest.com/docview/2608620709
https://www.proquest.com/docview/2609456790
https://pubmed.ncbi.nlm.nih.gov/PMC8664808
https://doaj.org/article/98cfaaa88e384c4d9e0eb06426264807
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFD4am0B7mbiOjFEFiTcI5OLrA0JdtTIVbUJApb5ZdmIDUknH0kn033PsJIVC4YGXRErs1D3-Tvyd2P4OwFNn88wZJhOH9CAhtqCJJlpgqCIYrWTpdBBJOr9gZ1MymdHZDvTpjjoDNltDO59Pano1f_H92-o1Ovyrdsu4eNmQ4O5-sUHOKeUJRkN7ODJx76jnHd0Pb-ZCYkBDur0z26vuw63CC7Iwnwbkl6EqKPpvo6F_rqb8bUo1jFTj23DQUcx42GLiDuzY-i7cbJNOru7B2-kcH5B4neLYs7-vWBYpYlgku4oXLm4uQ_JqfHYcwuVWYtZW8eg68YNeFYdvPqtm2dyH6fj04-gs6VIqJCVGKsuEltK6Cnsj59wyKrErkF07QzUx3FZpqomlOdISZw0SL17K1FR5WWjjMFaWWfEAdutFbR9CnBqvKVrm0hhGtGWaSYSDM1Y4YXRhIsh666my0xv3aS_mKsx7F0K1xldofBWMr7IInq3rXLZqG_8sfeI7ZV3SK2WHC4urT6pzPCUF4k1rIWwhSEkqaVP8a8wL8TO_nT6C475LVY8-hUEeRnr4NpQRPFnfRsfzsym6tovrUEYi--QyjeCwRcC6JT2CIuAb2Nho6uad-svnIO4tmG8W1nzeo-hns_5uiqP__qFHsJ97-Gc5jsjHsIuQso-RZy3NAG7wGcejGL8ZwN5wOPkwwfPJ6cW793h1xEaD8AVjEJzsByVCK6w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMNFAgSnCBq4jh-HBCCQrVl25660t6MndhQqSQL2Qrtn-I3MnYe1fLordfEsSbjz57Pr28AXjhLMmeYTBzSg4TavEg01QKnKoIVlSydDiJJR8dsMqOf5sV8A34Nd2H8scphTAwDddWUfo18F3k3km8EqHy7-J74rFF-d3VIodHBYmpXP3HK1r45-IDt-5KQ_Y8ne5OkzyqQlEjWl0lRSusqNIhwblkh0RokmM4UmhpuqzTV1BYEI7OzBrkHL2VqKlLm2jicLsosx3qvwXUMvKnvUXzOxzUdr7YuKO3v5qS52G1pGIn8OQjCi4In2Vr8C2kC_sVt_z6i-cc-bQh_-3fgds9b43cd0O7Chq3vwY0uk-XqPkxnZ1hB4sWPY08pv2FZ5J3h5O0qblzcLkJGbKw7DnPwTrfWVvHeeeIjaRWHhaRVu2wfwOxKPPoQNuumttsQp8YLlZZEGsOotkwziRhzxgonjM5NBNngPVX2IuY-l8aZCpvpuVCdxxV6XAWPqyyCV-M3i07C49LS732jjCW9_HZ40Pz4ovrerKRAEGsthM0FLWklbYq_xry6P_N39CPYGZpU9WNCqy4QHMHz8TX2Zr9Fo2vbnIcyEiktl2kEWx0CRktyrxPEMhEBX8PGmqnrb-rTr0ExXDBvFn75ekDRhVn_d8Wjy__iGdycnBwdqsOD4-ljuEU8yDOCcX0HNhFD9gmytaV5GrpIDJ-vuk_-BlaIUjY
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFH4qRaBeEDuBAkGCE0STxesBIWgZtQxUHBhpbsZObKhUkoFMheav8et4dpZqWHrrNXGsl-fv2Z-37wE8dTbPnGEycUgPEmILmmiiBU5VBKOVLJ0OIkkfjtjBnLxb0MUW_BruwvhjlUOfGDrqqin9GvkEeTeSbwSonLj-WMTH_emr5ffEZ5DyO61DOo0OIjO7_onTt_bl4T629bM8n779tHeQ9BkGkhKJ-yqhpbSuQuNyzi2jEi1DsukM1cRwW6WpJpbmOEo7a5CH8FKmpsrLQhuHU0eZFVjvJbjMC5r5GOMLPq7veOV1QUh_TyctxKQloVfyZyJyTilPso2xMKQM-BfP_fu45h97tmEonF6Haz2HjV93oLsBW7a-CVe6rJbrWzCbn2AFiRdCjj29_IZlkYOGU7jruHFxuwzZsbHuOMzHOw1bW8V7p4kfVas4LCqt21V7G-YX4tE7sF03tb0HcWq8aGmZS2MY0ZZpJhFvzljhhNGFiSAbvKfKXtDc59U4UWFjvRCq87hCj6vgcZVF8Hz8ZtnJeZxb-o1vlLGkl-IOD5ofX1Qf2UoKBLTWQthCkJJU0qb4a8wr_TN_Xz-C3aFJVd8_tOoMzRE8GV9jZPvtGl3b5jSUkUhvuUwjuNshYLSk8JpBLBMR8A1sbJi6-aY-_hrUwwXzZuGXLwYUnZn1f1fcP_8vHsNVjEb1_vBo9gB2co_xLMchfhe2EUL2IRK3lXkUIiSGzxcdkr8BD4lWbA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Ultra-high+thermal+stability+of+sputtering+reconstructed+Cu-based+catalysts&rft.jtitle=Nature+communications&rft.au=Yu%2C+Jiafeng&rft.au=Sun%2C+Xingtao&rft.au=Tong%2C+Xin&rft.au=Zhang%2C+Jixin&rft.date=2021-12-10&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=12&rft_id=info:doi/10.1038%2Fs41467-021-27557-1&rft_id=info%3Apmid%2F34893618&rft.externalDocID=PMC8664808
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon