Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition

Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO supp...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 14; no. 1; pp. 647 - 15
Main Authors Fang, Huihuang, Wu, Simson, Ayvali, Tugce, Zheng, Jianwei, Fellowes, Joshua, Ho, Ping-Luen, Leung, Kwan Chee, Large, Alexander, Held, Georg, Kato, Ryuichi, Suenaga, Kazu, Reyes, Yves Ira A., Thang, Ho Viet, Chen, Hsin-Yi Tiffany, Tsang, Shik Chi Edman
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 06.02.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N 2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N 2 /H 2 , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B 5 sites) than isolated sites. Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2.
AbstractList Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.
Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N complexes in solution are required for the stepwise dehydrogenation of ammonia to N /H , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B sites) than isolated sites.
Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N 2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N 2 /H 2 , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B 5 sites) than isolated sites. Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2.
Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N 2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N 2 /H 2 , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B 5 sites) than isolated sites.
Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2.
Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2.
ArticleNumber 647
Author Suenaga, Kazu
Thang, Ho Viet
Fang, Huihuang
Zheng, Jianwei
Fellowes, Joshua
Tsang, Shik Chi Edman
Kato, Ryuichi
Ayvali, Tugce
Reyes, Yves Ira A.
Leung, Kwan Chee
Large, Alexander
Ho, Ping-Luen
Held, Georg
Wu, Simson
Chen, Hsin-Yi Tiffany
Author_xml – sequence: 1
  givenname: Huihuang
  surname: Fang
  fullname: Fang, Huihuang
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 2
  givenname: Simson
  surname: Wu
  fullname: Wu, Simson
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 3
  givenname: Tugce
  surname: Ayvali
  fullname: Ayvali, Tugce
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 4
  givenname: Jianwei
  surname: Zheng
  fullname: Zheng, Jianwei
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 5
  givenname: Joshua
  surname: Fellowes
  fullname: Fellowes, Joshua
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 6
  givenname: Ping-Luen
  orcidid: 0000-0002-3911-7973
  surname: Ho
  fullname: Ho, Ping-Luen
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 7
  givenname: Kwan Chee
  surname: Leung
  fullname: Leung, Kwan Chee
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
– sequence: 8
  givenname: Alexander
  orcidid: 0000-0001-8676-4172
  surname: Large
  fullname: Large, Alexander
  organization: Diamond Light Source
– sequence: 9
  givenname: Georg
  surname: Held
  fullname: Held, Georg
  organization: Diamond Light Source
– sequence: 10
  givenname: Ryuichi
  surname: Kato
  fullname: Kato, Ryuichi
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 11
  givenname: Kazu
  surname: Suenaga
  fullname: Suenaga, Kazu
  organization: National Institute of Advanced Industrial Science and Technology (AIST)
– sequence: 12
  givenname: Yves Ira A.
  surname: Reyes
  fullname: Reyes, Yves Ira A.
  organization: Department of Engineering and System Science, National Tsing Hua University
– sequence: 13
  givenname: Ho Viet
  surname: Thang
  fullname: Thang, Ho Viet
  organization: The University of Danang, University of Science and Technology
– sequence: 14
  givenname: Hsin-Yi Tiffany
  orcidid: 0000-0002-9651-3200
  surname: Chen
  fullname: Chen, Hsin-Yi Tiffany
  organization: Department of Engineering and System Science, National Tsing Hua University, College of Semiconductor Research, National Tsing Hua University, Department of Material Science and Engineering, National Tsing Hua University
– sequence: 15
  givenname: Shik Chi Edman
  orcidid: 0000-0002-8796-3146
  surname: Tsang
  fullname: Tsang, Shik Chi Edman
  email: edman.tsang@chem.ox.ac.uk
  organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36746965$$D View this record in MEDLINE/PubMed
BookMark eNp9kktP3TAQha0KVCjlD3RRReqGLlL8ipNsKiH6QuIhVe3amtiTW18l9q2dFPHv60ugBRZ4Y8v-zvGxZ16RHR88EvKG0Q-MiuY4SSZVXVIuSqGEaMvrF2SfU8lKVnOx82C9Rw5TWtM8RMsaKV-SPaFqqVpV7ZPLTy5tMCa0RZpjDwaL73OBPuHYDZiK4IuL1dURY-x90YdYGJhguJmcKWAcg3dQWDRh3ITkJhf8a7Lbw5Dw8G4-ID-_fP5x-q08v_p6dnpyXhpF1VRW0loDnamERWkRm5ZykL0VAjiHDpkSslWd6GjXt_mZFBmtLNBG1RYpVuKAnC2-NsBab6IbId7oAE7fboS40hBzygG1qVAZarA2TMhadYBWynwFM6zueiqz18fFazN3I1qDfoowPDJ9fOLdL70Kf3SbU0vRZoOjO4MYfs-YJj26ZHAYwGOYk-Z1LblqmWIZffcEXYc5-vxVW0rIhvGmydTbh4n-RbkvWwaaBTAxpBSx18ZNsC1ADugGzajeNolemkTnJtG3TaKvs5Q_kd67PysSiyhl2K8w_o_9jOov7grPXA
CitedBy_id crossref_primary_10_1016_j_fuel_2024_133106
crossref_primary_10_1021_jacs_4c02792
crossref_primary_10_1039_D3CY00042G
crossref_primary_10_1016_j_ijhydene_2024_09_178
crossref_primary_10_1021_acssuschemeng_4c03829
crossref_primary_10_1016_j_jechem_2024_08_020
crossref_primary_10_1016_S1872_2067_23_64465_1
crossref_primary_10_47495_okufbed_1448566
crossref_primary_10_1021_jacsau_4c00759
crossref_primary_10_1002_celc_202300845
crossref_primary_10_1016_j_cjsc_2024_100236
crossref_primary_10_1002_adfm_202315529
crossref_primary_10_1016_j_scib_2023_10_006
crossref_primary_10_1016_j_susc_2024_122483
crossref_primary_10_2320_matertrans_MT_M2023212
crossref_primary_10_1002_anie_202416195
crossref_primary_10_1039_D4SE00281D
crossref_primary_10_1002_cssc_202401970
crossref_primary_10_1002_aic_18713
crossref_primary_10_1016_j_enconman_2025_119610
crossref_primary_10_59717_j_xinn_energy_2024_100056
crossref_primary_10_1016_j_apcatb_2025_125020
crossref_primary_10_1002_cctc_202400241
crossref_primary_10_1016_j_cej_2023_143755
crossref_primary_10_1016_j_fuel_2023_129591
crossref_primary_10_1016_j_fuel_2025_135119
crossref_primary_10_1007_s42114_025_01252_x
crossref_primary_10_1016_j_ijhydene_2025_02_236
crossref_primary_10_1007_s00339_023_07045_7
crossref_primary_10_1016_j_checat_2024_101000
crossref_primary_10_7209_carbon_030105
crossref_primary_10_1016_j_cej_2024_157400
crossref_primary_10_1021_acscatal_4c05085
crossref_primary_10_1016_j_apsusc_2024_160396
crossref_primary_10_1016_j_ijheatmasstransfer_2025_126667
crossref_primary_10_1016_j_nanoen_2024_109997
crossref_primary_10_1016_j_ijhydene_2024_03_204
crossref_primary_10_1002_ange_202416195
crossref_primary_10_1016_j_susc_2024_122628
crossref_primary_10_1016_j_enchem_2024_100140
crossref_primary_10_1038_s41467_024_55615_x
crossref_primary_10_1021_acs_energyfuels_4c03658
crossref_primary_10_1016_j_ijhydene_2024_12_496
crossref_primary_10_1039_D4EE02763A
crossref_primary_10_1016_j_cej_2024_152101
crossref_primary_10_1016_j_jcat_2024_115575
crossref_primary_10_1039_D4CC02372B
crossref_primary_10_1021_acsanm_4c01416
crossref_primary_10_1016_j_cej_2024_152503
crossref_primary_10_1016_j_ijhydene_2024_12_136
crossref_primary_10_1016_j_fuel_2024_133134
crossref_primary_10_1016_j_ijhydene_2024_11_455
crossref_primary_10_1021_acsaem_4c01198
crossref_primary_10_1021_acs_chemmater_3c03018
crossref_primary_10_1021_acs_jpcc_4c07183
crossref_primary_10_1002_asia_202400005
crossref_primary_10_1002_adfm_202418021
crossref_primary_10_1016_j_enconman_2025_119559
crossref_primary_10_1016_j_ijhydene_2024_11_170
crossref_primary_10_1002_aenm_202303792
crossref_primary_10_1021_acs_iecr_4c03838
crossref_primary_10_1016_j_isci_2024_110571
crossref_primary_10_3390_catal14030197
crossref_primary_10_1016_j_jmst_2025_01_024
crossref_primary_10_1016_j_cej_2023_146715
crossref_primary_10_1021_acscatal_4c06088
crossref_primary_10_1021_jacs_3c14816
crossref_primary_10_1016_j_fuel_2024_132346
crossref_primary_10_1016_j_scp_2024_101492
crossref_primary_10_1016_j_ijhydene_2023_11_293
crossref_primary_10_1016_j_enconman_2025_119530
crossref_primary_10_1039_D3IM00036B
crossref_primary_10_1002_aenm_202401252
crossref_primary_10_1021_acs_accounts_4c00683
crossref_primary_10_1038_s41467_024_51810_y
crossref_primary_10_1021_acs_energyfuels_4c01071
crossref_primary_10_1002_smll_202407338
crossref_primary_10_1016_j_cogsc_2024_100945
crossref_primary_10_1021_acscatal_4c06371
crossref_primary_10_1021_acsomega_4c06472
crossref_primary_10_1021_acscatal_5c00187
crossref_primary_10_1021_acs_nanolett_3c03796
crossref_primary_10_1002_eem2_12766
crossref_primary_10_1039_D4TA07339H
crossref_primary_10_1039_D4CY00945B
crossref_primary_10_1016_j_apcatb_2025_125075
crossref_primary_10_1016_j_jece_2025_116115
crossref_primary_10_1016_j_ces_2024_121000
crossref_primary_10_1039_D3EE04338J
crossref_primary_10_1039_D5CP00430F
crossref_primary_10_1021_acscatal_3c03928
crossref_primary_10_1007_s11426_024_2400_8
crossref_primary_10_1016_j_fuel_2024_131543
crossref_primary_10_1039_D4CY00835A
crossref_primary_10_1016_j_fuel_2023_130176
crossref_primary_10_3390_molecules29163817
crossref_primary_10_3390_catal14100715
crossref_primary_10_1016_j_jallcom_2024_175270
crossref_primary_10_1007_s44251_023_00013_6
crossref_primary_10_1016_j_mcat_2024_114767
crossref_primary_10_1016_j_mtsust_2023_100554
crossref_primary_10_1038_s43246_024_00652_8
crossref_primary_10_1016_j_apsusc_2023_159175
crossref_primary_10_1021_acs_energyfuels_3c00804
crossref_primary_10_1002_cctc_202400860
crossref_primary_10_1016_j_apcatb_2024_123844
crossref_primary_10_1002_sstr_202300394
crossref_primary_10_1021_acscatal_4c02313
Cites_doi 10.1021/ja801021w
10.1088/0953-8984/21/8/084204
10.1103/PhysRevLett.77.3865
10.1088/1367-2630/9/9/339
10.1016/S1381-1169(97)00245-8
10.1021/cg8002096
10.1016/0378-7753(93)01822-Y
10.1016/j.ijhydene.2018.12.024
10.1039/C9RA10296E
10.1088/1361-648X/ac5704
10.1021/acs.jpclett.0c01450
10.1007/s11426-019-9578-8
10.1016/S0039-6028(99)01026-2
10.1021/acs.energyfuels.1c01261
10.1039/ft9908602645
10.1016/j.cplett.2007.03.044
10.1039/c0ee00809e
10.1007/s10562-007-9237-z
10.1016/j.jcat.2004.12.013
10.1038/s41929-019-0368-6
10.1002/cctc.201900306
10.1016/j.catcom.2005.10.002
10.1016/j.jcat.2004.03.046
10.1016/j.cclet.2017.12.011
10.1016/S0166-9834(00)82492-6
10.1103/PhysRevB.60.16120
10.1039/c3sc50794g
10.1021/acs.iecr.1c00843
10.1016/j.apcatb.2016.08.051
10.1021/jacs.9b13349
10.1006/jcat.2000.2858
10.1016/j.apcata.2015.09.001
10.1002/cnma.202100037
10.1016/j.apcatb.2017.04.043
10.1007/s11814-021-0767-7
10.1038/nchem.2595
10.1103/PhysRevB.47.558
10.1016/j.apcatb.2003.10.013
10.1103/PhysRevB.64.075417
10.1016/j.apcata.2014.01.026
10.1103/PhysRevB.59.1758
10.1038/nchem.1476
10.1021/acscatal.8b02277
10.1021/acs.chemrev.0c00042
10.1039/b812376d
10.1021/ja902587k
10.1103/PhysRevB.50.17953
10.1039/B712102D
10.1021/es0700350
10.1016/j.commatsci.2005.04.010
10.1021/j100304a034
10.1021/jacs.1c02859
10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B
10.1039/C2EE02865D
10.1021/jacs.0c03627
10.1002/jcc.20575
10.1063/1.3382344
10.1007/s12274-020-2765-1
10.1016/j.catcom.2016.12.007
10.1016/j.jcrysgro.2009.08.026
10.1038/nchem.626
10.1021/ja031718s
10.1016/j.ijhydene.2011.10.004
10.1016/j.ultramic.2014.11.012
10.1016/j.ultramic.2018.06.003
10.1063/1.3553716
10.1021/acssuschemeng.8b06308
10.1016/0360-3199(94)90009-4
10.1063/1.1329672
10.1016/0021-9517(92)90112-U
10.1007/s12274-018-2062-4
10.1016/0927-0256(96)00008-0
10.1038/s41586-020-2464-9
10.1002/anie.200602393
10.1016/j.jcat.2004.12.005
10.1007/s11244-009-9203-7
10.1016/j.apsusc.2019.144044
10.1021/acscatal.0c00954
ContentType Journal Article
Copyright The Author(s) 2023
2023. The Author(s).
The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2023
– notice: 2023. The Author(s).
– notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-023-36339-w
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Database
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed

CrossRef

Publicly Available Content Database

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_c5e6c0ce7c13476baed44be11c17bf04
PMC9902439
36746965
10_1038_s41467_023_36339_w
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
PJZUB
PPXIY
PQGLB
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PKEHL
PQEST
PQUKI
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-54ddcabc53de4dee8902a4fd33a22abe163496b3b0bf94670e105da0867de0e53
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:31:32 EDT 2025
Thu Aug 21 18:38:35 EDT 2025
Mon Jul 21 11:09:49 EDT 2025
Wed Aug 13 07:38:15 EDT 2025
Mon Jul 21 05:58:43 EDT 2025
Tue Jul 01 00:58:40 EDT 2025
Thu Apr 24 23:09:25 EDT 2025
Fri Feb 21 02:38:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2023. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-54ddcabc53de4dee8902a4fd33a22abe163496b3b0bf94670e105da0867de0e53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9651-3200
0000-0002-8796-3146
0000-0001-8676-4172
0000-0002-3911-7973
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36339-w
PMID 36746965
PQID 2773481288
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_c5e6c0ce7c13476baed44be11c17bf04
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9902439
proquest_miscellaneous_2774269161
proquest_journals_2773481288
pubmed_primary_36746965
crossref_citationtrail_10_1038_s41467_023_36339_w
crossref_primary_10_1038_s41467_023_36339_w
springer_journals_10_1038_s41467_023_36339_w
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-06
PublicationDateYYYYMMDD 2023-02-06
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-06
  day: 06
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2023
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Hansgen, Vlachos, Chen (CR53) 2010; 2
Chen (CR18) 2021; 35
Wang (CR23) 2017; 9
Lucentini, Garcia, Vendrell, Llorca (CR9) 2021; 60
Le, Do, Kim, Kim, Chae (CR8) 2021; 38
Chen, Tian, Lu, Xiong (CR46) 2015; 506
García-García, Guerrero-Ruiz, Rodríguez-Ramos (CR14) 2009; 52
Aika, Takano, Murata (CR29) 1992; 136
Asakura, Bando, Iwasawa (CR48) 1990; 86
Grimme, Antony, Ehrlich, Krieg (CR73) 2010; 132
Ju (CR32) 2019; 11
Zheng, Zhang, Xu, Li (CR16) 2007; 119
Tsai, Weinberg (CR54) 1987; 91
Kresse, Joubert (CR71) 1999; 59
Kanbara (CR25) 2015; 6
Giordano, Goniakowski, Pacchioni (CR41) 2001; 64
Siporin, Davis (CR31) 2004; 225
Kitano (CR24) 2012; 4
Frondelius, Häkkinen, Honkala (CR39) 2007; 9
Goniakowski, Noguera (CR74) 1999; 60
Hacquart, Jupille (CR56) 2009; 311
Henkelman, Uberuaga, Jónsson (CR75) 2000; 113
Li (CR17) 2018; 11
Wu (CR20) 2020; 10
Zhao (CR37) 2020; 13
Perdew, Burke, Ernzerhof (CR72) 1996; 77
Metkemeijer, Achard (CR5) 1994; 49
Geysermans, Finocchi, Goniakowski, Hacquart, Jupille (CR57) 2009; 11
Hayashi (CR26) 2013; 4
Schüth, Palkovits, Schlögl, Su (CR3) 2012; 5
Duan (CR19) 2019; 2
Tang, Sanville, Henkelman (CR76) 2009; 21
Zhu, Hu, Kübel, Richards (CR35) 2006; 45
Ju (CR51) 2017; 211
Metkemeijer, Achard (CR4) 1994; 19
Karim (CR13) 2009; 131
Guo (CR40) 2021; 7
Tang (CR44) 2018; 29
Henkelman, Arnaldsson, Jónsson (CR78) 2006; 36
Xu (CR33) 2009; 9
Song, Cai, Hanson, Rodriguez, Hrbek (CR11) 2004; 126
Aika (CR49) 1986; 28
Su (CR22) 2017; 201
Wang, Cai, Wei (CR42) 2019; 7
Zhang, Xu, Ge, Li (CR50) 2006; 7
Lan, Irvine, Tao (CR1) 2012; 37
Rees, Compton (CR6) 2011; 4
Dahl, Törnqvist, Chorkendorff (CR12) 2000; 192
Lamb, Dolan, Kennedy (CR2) 2019; 44
Barthel (CR67) 2018; 193
Hu, Wang, Si, Ma, Jia (CR58) 2019; 62
Du (CR66) 2015; 151
Pun (CR65) 2008; 130
Sanville, Kenny, Smith, Henkelman (CR77) 2007; 28
Wu (CR27) 2017; 91
Zuo (CR38) 2018; 8
Yu, Trinkle (CR79) 2011; 134
Blöchl (CR69) 1994; 50
Kresse, Hafner (CR70) 1993; 47
Hacquart, Jupille (CR55) 2007; 439
Boisen, Dahl, Nørskov, Christensen (CR7) 2005; 230
Raróg-Pilecka, Miśkiewicz, Szmigiel, Kowalczyk (CR10) 2005; 231
Bielawa, Hinrichsen, Birkner, Muhler (CR15) 2001; 40
Singh, Buratto, Torres, Murray (CR28) 2020; 120
Wu, Jiang, Liu, Wang, Jin (CR60) 2007; 41
Yin, Xu, Ng, Au (CR21) 2004; 48
Kresse, Furthmüller (CR68) 1996; 6
Wang, Ta, Shen (CR43) 2014; 475
Verziu (CR45) 2008; 10
Deng (CR62) 2020; 11
Yunusov, Moroz, Ivanova, Likholobov, Shur (CR30) 1998; 132
Ye (CR52) 2020; 583
Zhang (CR59) 2020; 500
Wu (CR61) 2021; 143
Guo (CR63) 2020; 142
Rizzi, Magrin, Granozzi (CR47) 1999; 443
Yan (CR34) 2020; 10
Sarma (CR36) 2020; 142
Thang, Chen (CR64) 2022; 34
H Bielawa (36339_CR15) 2001; 40
SM Yunusov (36339_CR30) 1998; 132
G Kresse (36339_CR71) 1999; 59
G Henkelman (36339_CR78) 2006; 36
DA Hansgen (36339_CR53) 2010; 2
G Kresse (36339_CR68) 1996; 6
NV Rees (36339_CR6) 2011; 4
S Wu (36339_CR20) 2020; 10
T Xu (36339_CR33) 2009; 9
D Singh (36339_CR28) 2020; 120
W Raróg-Pilecka (36339_CR10) 2005; 231
F Schüth (36339_CR3) 2012; 5
SF Yin (36339_CR21) 2004; 48
K Zhu (36339_CR35) 2006; 45
GA Rizzi (36339_CR47) 1999; 443
K Aika (36339_CR49) 1986; 28
E Sanville (36339_CR77) 2007; 28
M Yu (36339_CR79) 2011; 134
HV Thang (36339_CR64) 2022; 34
R Hacquart (36339_CR56) 2009; 311
J Zhang (36339_CR50) 2006; 7
X Ju (36339_CR32) 2019; 11
Z Wu (36339_CR27) 2017; 91
X Yan (36339_CR34) 2020; 10
M Verziu (36339_CR45) 2008; 10
FR García-García (36339_CR14) 2009; 52
R Lan (36339_CR1) 2012; 37
W Zheng (36339_CR16) 2007; 119
Y Guo (36339_CR40) 2021; 7
J Barthel (36339_CR67) 2018; 193
SE Siporin (36339_CR31) 2004; 225
Q Zhang (36339_CR59) 2020; 500
JP Perdew (36339_CR72) 1996; 77
S Grimme (36339_CR73) 2010; 132
K Aika (36339_CR29) 1992; 136
A Boisen (36339_CR7) 2005; 230
XC Hu (36339_CR58) 2019; 62
Z Wu (36339_CR60) 2007; 41
AM Karim (36339_CR13) 2009; 131
F Hayashi (36339_CR26) 2013; 4
Z Zuo (36339_CR38) 2018; 8
G Kresse (36339_CR70) 1993; 47
P Geysermans (36339_CR57) 2009; 11
Z Wang (36339_CR42) 2019; 7
H Du (36339_CR66) 2015; 151
M Kitano (36339_CR24) 2012; 4
J Li (36339_CR17) 2018; 11
P Wang (36339_CR23) 2017; 9
J Chen (36339_CR46) 2015; 506
I Lucentini (36339_CR9) 2021; 60
KE Lamb (36339_CR2) 2019; 44
Q Su (36339_CR22) 2017; 201
L Giordano (36339_CR41) 2001; 64
CQ Chen (36339_CR18) 2021; 35
P Frondelius (36339_CR39) 2007; 9
F Wang (36339_CR43) 2014; 475
H Duan (36339_CR19) 2019; 2
R Metkemeijer (36339_CR4) 1994; 19
BB Sarma (36339_CR36) 2020; 142
J Goniakowski (36339_CR74) 1999; 60
TN Ye (36339_CR52) 2020; 583
D Pun (36339_CR65) 2008; 130
M Tang (36339_CR44) 2018; 29
Z Song (36339_CR11) 2004; 126
K Asakura (36339_CR48) 1990; 86
S Wu (36339_CR61) 2021; 143
T Deng (36339_CR62) 2020; 11
G Henkelman (36339_CR75) 2000; 113
TA Le (36339_CR8) 2021; 38
S Zhao (36339_CR37) 2020; 13
X Ju (36339_CR51) 2017; 211
S Kanbara (36339_CR25) 2015; 6
PE Blöchl (36339_CR69) 1994; 50
R Hacquart (36339_CR55) 2007; 439
R Metkemeijer (36339_CR5) 1994; 49
W Tang (36339_CR76) 2009; 21
S Dahl (36339_CR12) 2000; 192
X Guo (36339_CR63) 2020; 142
W Tsai (36339_CR54) 1987; 91
References_xml – volume: 130
  start-page: 6047
  year: 2008
  end-page: 6054
  ident: CR65
  article-title: Indenyl Zirconium Dinitrogen Chemistry: N Coordination to an Isolated Zirconium Sandwich and Synthesis of Side‑on, End‑on Dinitrogen Compounds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801021w
– volume: 21
  start-page: 84204
  year: 2009
  ident: CR76
  article-title: A grid-based Bader analysis algorithm without lattice bias
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 77
  start-page: 3865
  year: 1996
  end-page: 3868
  ident: CR72
  article-title: Generalized Gradient Approximation Made Simple
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 339
  year: 2007
  end-page: 357
  ident: CR39
  article-title: Adsorption of small Au clusters on MgO and MgO/Mo: The role of oxygen vacancies and the Mo-support
  publication-title: New J. Phys
  doi: 10.1088/1367-2630/9/9/339
– volume: 132
  start-page: 263
  year: 1998
  end-page: 265
  ident: CR30
  article-title: Anionic ruthenium cluster K [Ru (CO) ] as precursor of catalytically active ruthenium particles and potassium promoter. New efficient ammonia synthesis catalysts based on supported K [Ru (CO) ]
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/S1381-1169(97)00245-8
– volume: 9
  start-page: 192
  year: 2009
  end-page: 196
  ident: CR33
  article-title: Syntheses of nano/submicrostructured metal oxides with all polar surfaces exposed via a molten salt route
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg8002096
– volume: 49
  start-page: 271
  year: 1994
  end-page: 282
  ident: CR5
  article-title: Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(93)01822-Y
– volume: 44
  start-page: 3580
  year: 2019
  end-page: 3593
  ident: CR2
  article-title: Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.12.024
– volume: 10
  start-page: 10681
  year: 2020
  end-page: 10688
  ident: CR34
  article-title: Synthesis of nano-octahedral MgO: Via a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10296E
– volume: 34
  start-page: 214007
  year: 2022
  ident: CR64
  article-title: Do stoichiometric or nonstoichiometric models of a polar surface affect their structural, energetic and electronic structure properties? A DFT case study of Ru/MgO(111)
  publication-title: J. Phy. Condens. Matter
  doi: 10.1088/1361-648X/ac5704
– volume: 11
  start-page: 6320
  year: 2020
  end-page: 6329
  ident: CR62
  article-title: Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: D-Band Center-Based Descriptor
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01450
– volume: 62
  start-page: 1625
  year: 2019
  end-page: 1633
  ident: CR58
  article-title: Hydrogen production via catalytic decomposition of NH using promoted MgO-supported ruthenium catalysts
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-019-9578-8
– volume: 443
  start-page: 277
  year: 1999
  end-page: 286
  ident: CR47
  article-title: Preparation of epitaxial ultrathin RuO -TiO (110) films by decomposition of Ru (CO)
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(99)01026-2
– volume: 35
  start-page: 11693
  year: 2021
  end-page: 11706
  ident: CR18
  article-title: Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review
  publication-title: Energ. Fuels
  doi: 10.1021/acs.energyfuels.1c01261
– volume: 86
  start-page: 2645
  year: 1990
  end-page: 2655
  ident: CR48
  article-title: Structure and behaviour of Ru (CO) supported on inorganic oxide surfaces, studied by EXAFS, infrared spectroscopy and temperature-programmed decomposition
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9908602645
– volume: 439
  start-page: 91
  year: 2007
  end-page: 94
  ident: CR55
  article-title: Hydrated MgO smoke crystals from cubes to octahedra
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.03.044
– volume: 4
  start-page: 1255
  year: 2011
  end-page: 1260
  ident: CR6
  article-title: Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuel cells
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00809e
– volume: 119
  start-page: 311
  year: 2007
  end-page: 318
  ident: CR16
  article-title: NH decomposition kinetics on supported Ru clusters: Morphology and particle size effect
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-007-9237-z
– volume: 230
  start-page: 309
  year: 2005
  end-page: 312
  ident: CR7
  article-title: Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.12.013
– volume: 2
  start-page: 1078
  year: 2019
  end-page: 1087
  ident: CR19
  article-title: Molecular nitrogen promotes catalytic hydrodeoxygenation
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0368-6
– volume: 11
  start-page: 4161
  year: 2019
  end-page: 4170
  ident: CR32
  article-title: Highly Efficient Ru/MgO Catalyst with Surface-Enriched Basic Sites for Production of Hydrogen from Ammonia Decomposition
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900306
– volume: 7
  start-page: 148
  year: 2006
  end-page: 152
  ident: CR50
  article-title: Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2005.10.002
– volume: 225
  start-page: 359
  year: 2004
  end-page: 368
  ident: CR31
  article-title: Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.03.046
– volume: 29
  start-page: 935
  year: 2018
  end-page: 938
  ident: CR44
  article-title: Synthesis and orientational assemblies of MgO nanosheets with exposed (111) facets
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.12.011
– volume: 28
  start-page: 57
  year: 1986
  end-page: 68
  ident: CR49
  article-title: Support and promoter effect of ruthenium catalyst. III. Kinetics of ammonia synthesis over various Ru catalysts
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)82492-6
– volume: 60
  start-page: 16120
  year: 1999
  end-page: 16128
  ident: CR74
  article-title: Characteristics of Pd deposition on the MgO(111) surface
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.16120
– volume: 4
  start-page: 3124
  year: 2013
  end-page: 3130
  ident: CR26
  article-title: Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e-
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc50794g
– volume: 60
  start-page: 18560
  year: 2021
  end-page: 18611
  ident: CR9
  article-title: Review of the decomposition of ammonia to generate hydrogen
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c00843
– volume: 201
  start-page: 451
  year: 2017
  end-page: 460
  ident: CR22
  article-title: Layered double hydroxides derived Ni (Mg Al O ) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.08.051
– volume: 142
  start-page: 5709
  year: 2020
  end-page: 5721
  ident: CR63
  article-title: Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13349
– volume: 192
  start-page: 381
  year: 2000
  end-page: 390
  ident: CR12
  article-title: Dissociative adsorption of N on Ru(0001): A surface reaction totally dominated by steps
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2858
– volume: 506
  start-page: 118
  year: 2015
  end-page: 125
  ident: CR46
  article-title: Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2015.09.001
– volume: 7
  start-page: 526
  year: 2021
  end-page: 529
  ident: CR40
  article-title: High Performance of Single-atom Catalyst Pd /MgO for Semi-hydrogenation of Acetylene to Ethylene in Excess Ethylene
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202100037
– volume: 211
  start-page: 167
  year: 2017
  end-page: 175
  ident: CR51
  article-title: Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing CO -free hydrogen from ammonia decomposition
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.04.043
– volume: 38
  start-page: 1087
  year: 2021
  end-page: 1103
  ident: CR8
  article-title: A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0767-7
– volume: 9
  start-page: 64
  year: 2017
  end-page: 70
  ident: CR23
  article-title: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2595
– volume: 47
  start-page: 558
  year: 1993
  end-page: 561
  ident: CR70
  article-title: Ab initio molecular dynamics for liquid metals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 48
  start-page: 237
  year: 2004
  end-page: 241
  ident: CR21
  article-title: Nano Ru/CNTs: A highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2003.10.013
– volume: 64
  start-page: 754171
  year: 2001
  end-page: 754179
  ident: CR41
  article-title: Characteristics of Pd adsorption on the MgO(100) surface: Role of oxygen vacancies
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.075417
– volume: 475
  start-page: 76
  year: 2014
  end-page: 81
  ident: CR43
  article-title: MgO nanosheets, nanodisks, and nanofibers for the Meerwein-Ponndorf-Verley reaction
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2014.01.026
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR71
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 4
  start-page: 934
  year: 2012
  end-page: 940
  ident: CR24
  article-title: Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1476
– volume: 8
  start-page: 9821
  year: 2018
  end-page: 9835
  ident: CR38
  article-title: Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02277
– volume: 120
  start-page: 5517
  year: 2020
  end-page: 5581
  ident: CR28
  article-title: Activation of Dinitrogen by Polynuclear Metal Complexes
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00042
– volume: 11
  start-page: 2228
  year: 2009
  end-page: 2233
  ident: CR57
  article-title: Combination of (100), (110) and (111) facets in MgO crystals shapes from dry to wet environment
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b812376d
– volume: 131
  start-page: 12230
  year: 2009
  end-page: 12239
  ident: CR13
  article-title: Correlating particle size and shape of supported Ru/γ-Al O catalysts with NH3 decomposition activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902587k
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR69
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 10
  start-page: 373
  year: 2008
  end-page: 38
  ident: CR45
  article-title: Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts
  publication-title: Green. Chem.
  doi: 10.1039/B712102D
– volume: 41
  start-page: 5812
  year: 2007
  end-page: 5817
  ident: CR60
  article-title: DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0700350
– volume: 36
  start-page: 354
  year: 2006
  end-page: 360
  ident: CR78
  article-title: A fast and robust algorithm for Bader decomposition of charge density
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 91
  start-page: 5302
  year: 1987
  end-page: 5307
  ident: CR54
  article-title: Steady-state decomposition of ammonia on the Ru(001) surface
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100304a034
– volume: 143
  start-page: 9105
  year: 2021
  end-page: 9112
  ident: CR61
  article-title: Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02859
– volume: 40
  start-page: 1061
  year: 2001
  end-page: 1063
  ident: CR15
  article-title: The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B
– volume: 5
  start-page: 6278
  year: 2012
  end-page: 6289
  ident: CR3
  article-title: Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE02865D
– volume: 142
  start-page: 14890
  year: 2020
  end-page: 14902
  ident: CR36
  article-title: Metal-specific reactivity in single-atom catalysts: CO oxidation on 4d and 5d transition metals atomically dispersed on MgO
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03627
– volume: 28
  start-page: 899
  year: 2007
  end-page: 908
  ident: CR77
  article-title: Improved grid-based algorithm for Bader charge allocation
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20575
– volume: 132
  start-page: 154104
  year: 2010
  ident: CR73
  article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 13
  start-page: 1544
  year: 2020
  end-page: 1551
  ident: CR37
  article-title: Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2765-1
– volume: 91
  start-page: 10
  year: 2017
  end-page: 15
  ident: CR27
  article-title: Promoting hydrolysis of ammonia borane over multiwalled carbon nanotube-supported Ru catalysts via hydrogen spillover
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2016.12.007
– volume: 311
  start-page: 4598
  year: 2009
  end-page: 4604
  ident: CR56
  article-title: Morphology of MgO smoke crystallites upon etching in wet environment
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.08.026
– volume: 2
  start-page: 484
  year: 2010
  end-page: 489
  ident: CR53
  article-title: Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.626
– volume: 126
  start-page: 8576
  year: 2004
  end-page: 8584
  ident: CR11
  article-title: Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: A study of the model catalysts for ammonia synthesis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031718s
– volume: 37
  start-page: 1482
  year: 2012
  end-page: 1494
  ident: CR1
  article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.10.004
– volume: 151
  start-page: 62
  year: 2015
  end-page: 67
  ident: CR66
  article-title: A nonlinear filtering algorithm for denoising HR(S)TEM micrographs
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2014.11.012
– volume: 193
  start-page: 1
  year: 2018
  end-page: 11
  ident: CR67
  article-title: Dr. Probe: A software for high-resolution STEM image simulation
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.06.003
– volume: 134
  start-page: 64111
  year: 2011
  ident: CR79
  article-title: Accurate and efficient algorithm for Bader charge integration
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553716
– volume: 7
  start-page: 8226
  year: 2019
  end-page: 8235
  ident: CR42
  article-title: Highly Active Ruthenium Catalyst Supported on Barium Hexaaluminate for Ammonia Decomposition to CO -Free Hydrogen
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06308
– volume: 19
  start-page: 535
  year: 1994
  end-page: 542
  ident: CR4
  article-title: Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/0360-3199(94)90009-4
– volume: 113
  start-page: 9901
  year: 2000
  end-page: 9904
  ident: CR75
  article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
– volume: 136
  start-page: 126
  year: 1992
  end-page: 140
  ident: CR29
  article-title: Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis: 3. A magnesia-supported ruthenium catalyst
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(92)90112-U
– volume: 11
  start-page: 4774
  year: 2018
  end-page: 4785
  ident: CR17
  article-title: Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles”
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2062-4
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  ident: CR25
  article-title: Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis
  publication-title: Nat. Commun.
– volume: 6
  start-page: 15
  year: 1996
  end-page: 50
  ident: CR68
  article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 583
  start-page: 391
  year: 2020
  end-page: 395
  ident: CR52
  article-title: Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst
  publication-title: Nature
  doi: 10.1038/s41586-020-2464-9
– volume: 45
  start-page: 7277
  year: 2006
  end-page: 7281
  ident: CR35
  article-title: Efficient preparation and catalytic activity of MgO(111) nanosheets
  publication-title: Angew. Chem. - Int. Ed.
  doi: 10.1002/anie.200602393
– volume: 231
  start-page: 11
  year: 2005
  end-page: 19
  ident: CR10
  article-title: Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.12.005
– volume: 52
  start-page: 758
  year: 2009
  end-page: 764
  ident: CR14
  article-title: Role of B5-type sites in Ru catalysts used for the NH decomposition reaction
  publication-title: Top. Catal.
  doi: 10.1007/s11244-009-9203-7
– volume: 500
  start-page: 144044
  year: 2020
  ident: CR59
  article-title: Promoting effects of acid enhancing on N selectivity for selectivity catalytic oxidation of NH3 over RuOx/TiO2: The mechanism study
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144044
– volume: 10
  start-page: 5614
  year: 2020
  end-page: 5622
  ident: CR20
  article-title: Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH Synthesis at a High Rate over the Ru Catalyst
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00954
– volume: 10
  start-page: 10681
  year: 2020
  ident: 36339_CR34
  publication-title: RSC Adv.
  doi: 10.1039/C9RA10296E
– volume: 201
  start-page: 451
  year: 2017
  ident: 36339_CR22
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2016.08.051
– volume: 500
  start-page: 144044
  year: 2020
  ident: 36339_CR59
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2019.144044
– volume: 40
  start-page: 1061
  year: 2001
  ident: 36339_CR15
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B
– volume: 28
  start-page: 899
  year: 2007
  ident: 36339_CR77
  publication-title: J. Comput. Chem.
  doi: 10.1002/jcc.20575
– volume: 132
  start-page: 154104
  year: 2010
  ident: 36339_CR73
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3382344
– volume: 230
  start-page: 309
  year: 2005
  ident: 36339_CR7
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.12.013
– volume: 231
  start-page: 11
  year: 2005
  ident: 36339_CR10
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.12.005
– volume: 29
  start-page: 935
  year: 2018
  ident: 36339_CR44
  publication-title: Chin. Chem. Lett.
  doi: 10.1016/j.cclet.2017.12.011
– volume: 5
  start-page: 6278
  year: 2012
  ident: 36339_CR3
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C2EE02865D
– volume: 52
  start-page: 758
  year: 2009
  ident: 36339_CR14
  publication-title: Top. Catal.
  doi: 10.1007/s11244-009-9203-7
– volume: 91
  start-page: 5302
  year: 1987
  ident: 36339_CR54
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100304a034
– volume: 10
  start-page: 373
  year: 2008
  ident: 36339_CR45
  publication-title: Green. Chem.
  doi: 10.1039/B712102D
– volume: 192
  start-page: 381
  year: 2000
  ident: 36339_CR12
  publication-title: J. Catal.
  doi: 10.1006/jcat.2000.2858
– volume: 44
  start-page: 3580
  year: 2019
  ident: 36339_CR2
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2018.12.024
– volume: 583
  start-page: 391
  year: 2020
  ident: 36339_CR52
  publication-title: Nature
  doi: 10.1038/s41586-020-2464-9
– volume: 131
  start-page: 12230
  year: 2009
  ident: 36339_CR13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja902587k
– volume: 311
  start-page: 4598
  year: 2009
  ident: 36339_CR56
  publication-title: J. Cryst. Growth
  doi: 10.1016/j.jcrysgro.2009.08.026
– volume: 506
  start-page: 118
  year: 2015
  ident: 36339_CR46
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2015.09.001
– volume: 4
  start-page: 3124
  year: 2013
  ident: 36339_CR26
  publication-title: Chem. Sci.
  doi: 10.1039/c3sc50794g
– volume: 7
  start-page: 148
  year: 2006
  ident: 36339_CR50
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2005.10.002
– volume: 132
  start-page: 263
  year: 1998
  ident: 36339_CR30
  publication-title: J. Mol. Catal. A Chem.
  doi: 10.1016/S1381-1169(97)00245-8
– volume: 62
  start-page: 1625
  year: 2019
  ident: 36339_CR58
  publication-title: Sci. China Chem.
  doi: 10.1007/s11426-019-9578-8
– volume: 36
  start-page: 354
  year: 2006
  ident: 36339_CR78
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2005.04.010
– volume: 225
  start-page: 359
  year: 2004
  ident: 36339_CR31
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2004.03.046
– volume: 8
  start-page: 9821
  year: 2018
  ident: 36339_CR38
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.8b02277
– volume: 2
  start-page: 484
  year: 2010
  ident: 36339_CR53
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.626
– volume: 119
  start-page: 311
  year: 2007
  ident: 36339_CR16
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-007-9237-z
– volume: 37
  start-page: 1482
  year: 2012
  ident: 36339_CR1
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/j.ijhydene.2011.10.004
– volume: 21
  start-page: 84204
  year: 2009
  ident: 36339_CR76
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/8/084204
– volume: 38
  start-page: 1087
  year: 2021
  ident: 36339_CR8
  publication-title: Korean J. Chem. Eng.
  doi: 10.1007/s11814-021-0767-7
– volume: 211
  start-page: 167
  year: 2017
  ident: 36339_CR51
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2017.04.043
– volume: 439
  start-page: 91
  year: 2007
  ident: 36339_CR55
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2007.03.044
– volume: 10
  start-page: 5614
  year: 2020
  ident: 36339_CR20
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c00954
– volume: 6
  start-page: 15
  year: 1996
  ident: 36339_CR68
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/0927-0256(96)00008-0
– volume: 47
  start-page: 558
  year: 1993
  ident: 36339_CR70
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.47.558
– volume: 60
  start-page: 18560
  year: 2021
  ident: 36339_CR9
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/acs.iecr.1c00843
– volume: 2
  start-page: 1078
  year: 2019
  ident: 36339_CR19
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0368-6
– volume: 41
  start-page: 5812
  year: 2007
  ident: 36339_CR60
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es0700350
– volume: 142
  start-page: 5709
  year: 2020
  ident: 36339_CR63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b13349
– volume: 9
  start-page: 192
  year: 2009
  ident: 36339_CR33
  publication-title: Cryst. Growth Des.
  doi: 10.1021/cg8002096
– volume: 6
  start-page: 1
  year: 2015
  ident: 36339_CR25
  publication-title: Nat. Commun.
– volume: 64
  start-page: 754171
  year: 2001
  ident: 36339_CR41
  publication-title: Phys. Rev. B Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.64.075417
– volume: 59
  start-page: 1758
  year: 1999
  ident: 36339_CR71
  publication-title: Phys. Rev. B - Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.59.1758
– volume: 19
  start-page: 535
  year: 1994
  ident: 36339_CR4
  publication-title: Int. J. Hydrog. Energy
  doi: 10.1016/0360-3199(94)90009-4
– volume: 48
  start-page: 237
  year: 2004
  ident: 36339_CR21
  publication-title: Appl. Catal. B Environ.
  doi: 10.1016/j.apcatb.2003.10.013
– volume: 28
  start-page: 57
  year: 1986
  ident: 36339_CR49
  publication-title: Appl. Catal.
  doi: 10.1016/S0166-9834(00)82492-6
– volume: 91
  start-page: 10
  year: 2017
  ident: 36339_CR27
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2016.12.007
– volume: 49
  start-page: 271
  year: 1994
  ident: 36339_CR5
  publication-title: J. Power Sources
  doi: 10.1016/0378-7753(93)01822-Y
– volume: 136
  start-page: 126
  year: 1992
  ident: 36339_CR29
  publication-title: J. Catal.
  doi: 10.1016/0021-9517(92)90112-U
– volume: 443
  start-page: 277
  year: 1999
  ident: 36339_CR47
  publication-title: Surf. Sci.
  doi: 10.1016/S0039-6028(99)01026-2
– volume: 34
  start-page: 214007
  year: 2022
  ident: 36339_CR64
  publication-title: J. Phy. Condens. Matter
  doi: 10.1088/1361-648X/ac5704
– volume: 11
  start-page: 2228
  year: 2009
  ident: 36339_CR57
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/b812376d
– volume: 11
  start-page: 4774
  year: 2018
  ident: 36339_CR17
  publication-title: Nano Res.
  doi: 10.1007/s12274-018-2062-4
– volume: 77
  start-page: 3865
  year: 1996
  ident: 36339_CR72
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.77.3865
– volume: 120
  start-page: 5517
  year: 2020
  ident: 36339_CR28
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c00042
– volume: 475
  start-page: 76
  year: 2014
  ident: 36339_CR43
  publication-title: Appl. Catal. A Gen.
  doi: 10.1016/j.apcata.2014.01.026
– volume: 130
  start-page: 6047
  year: 2008
  ident: 36339_CR65
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja801021w
– volume: 151
  start-page: 62
  year: 2015
  ident: 36339_CR66
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2014.11.012
– volume: 7
  start-page: 526
  year: 2021
  ident: 36339_CR40
  publication-title: ChemNanoMat
  doi: 10.1002/cnma.202100037
– volume: 50
  start-page: 17953
  year: 1994
  ident: 36339_CR69
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 134
  start-page: 64111
  year: 2011
  ident: 36339_CR79
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.3553716
– volume: 11
  start-page: 6320
  year: 2020
  ident: 36339_CR62
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c01450
– volume: 60
  start-page: 16120
  year: 1999
  ident: 36339_CR74
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.60.16120
– volume: 4
  start-page: 1255
  year: 2011
  ident: 36339_CR6
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c0ee00809e
– volume: 193
  start-page: 1
  year: 2018
  ident: 36339_CR67
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2018.06.003
– volume: 11
  start-page: 4161
  year: 2019
  ident: 36339_CR32
  publication-title: ChemCatChem
  doi: 10.1002/cctc.201900306
– volume: 143
  start-page: 9105
  year: 2021
  ident: 36339_CR61
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.1c02859
– volume: 13
  start-page: 1544
  year: 2020
  ident: 36339_CR37
  publication-title: Nano Res.
  doi: 10.1007/s12274-020-2765-1
– volume: 45
  start-page: 7277
  year: 2006
  ident: 36339_CR35
  publication-title: Angew. Chem. - Int. Ed.
  doi: 10.1002/anie.200602393
– volume: 35
  start-page: 11693
  year: 2021
  ident: 36339_CR18
  publication-title: Energ. Fuels
  doi: 10.1021/acs.energyfuels.1c01261
– volume: 9
  start-page: 339
  year: 2007
  ident: 36339_CR39
  publication-title: New J. Phys
  doi: 10.1088/1367-2630/9/9/339
– volume: 86
  start-page: 2645
  year: 1990
  ident: 36339_CR48
  publication-title: J. Chem. Soc. Faraday Trans.
  doi: 10.1039/ft9908602645
– volume: 126
  start-page: 8576
  year: 2004
  ident: 36339_CR11
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja031718s
– volume: 7
  start-page: 8226
  year: 2019
  ident: 36339_CR42
  publication-title: ACS Sustain. Chem. Eng.
  doi: 10.1021/acssuschemeng.8b06308
– volume: 4
  start-page: 934
  year: 2012
  ident: 36339_CR24
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1476
– volume: 9
  start-page: 64
  year: 2017
  ident: 36339_CR23
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2595
– volume: 142
  start-page: 14890
  year: 2020
  ident: 36339_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.0c03627
– volume: 113
  start-page: 9901
  year: 2000
  ident: 36339_CR75
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1329672
SSID ssj0000391844
Score 2.6796288
Snippet Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient...
Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 647
SubjectTerms 119/118
147/137
639/301/299
639/4077/4079/4088/4089
639/638/77/887
Ammonia
Bimetals
Catalysts
Clusters
Decomposition
Dehydrogenation
Dispersion
Humanities and Social Sciences
Hydrogen storage
Magnesium oxide
Metals
multidisciplinary
Nanoparticles
Renewable energy
Ruthenium
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEB6kIPgiar1Ea1nBB0WXJtlLso_WWorQCmKhb8teJnqg5khzDqX_3tlNzrHH64uv2U1YZmd2vsnMfgPwvKqiVqp1vHIeudTBc2NU4A0a71uFlcv9U45P9NGpfH-mzq61-ko1YSM98Ci4vaBQhzJgE9KlR-0dRik9VlWoGt-NTKDk864FU_kMFoZCFzndkilFuzfIfCaQi-JCC2H45YYnyoT9v0OZvxZL_pQxzY7o8A7cnhAkezOu_C7cwP4e3Bx7Sl5tw8nBLJF_DxjZsLzoXED2cckoWMWv_hwHNu_Z8ecPL-jweckIsLL8_-aKvsVcUsmZYxFTnflUzHUfTg_ffXp7xKemCTxQLLLgSsYYnA9KRJQRMeURneyiEK6uaT8If0mjvfCl7wxJpERCWNFRZNNELFGJB7DVz3t8BKyuE6QybexKlB0BkZBuzvtE8UaG3IkCqpUAbZgYxVNji3ObM9uitaPQLQndZqHbywJerd_5NvJp_HX2ftqX9czEhZ0fkIbYSUPsvzSkgJ3VrtrJQAdbN4nWh5xzW8Cz9TCZVsqXuB7nyzwnXfQlTFzAw1EJ1isRupHaaFVAs6EeG0vdHOlnXzJ9N_n_mmBgAa9XivRjWX8WxeP_IYoncKtOFpCqzvUObC0ulviUQNXC72b7-Q5NFB2k
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIkXxE3agozEAwiiJvGR5AlxLRVSi4So1DfLx6RdqSRls6uq_54ZJ5tqOfqaOJE9nhl_9oy_YexlngetVGXT3DpIpfYurWvl0xJq5yoFuY31Uw4O9f6R_HqsjscDt35Mq1z7xOioQ-fpjHyvKImHBb1p9e78V0pVoyi6OpbQuMlu5bjSUEpXNfsynbEQ-3kl5XhXJhPVXi-jZ8CFKhVaiDq92FiPIm3_v7Dm3ymTf8RN43I0u8fujjiSvx8m_j67Ae0DdnuoLHn5kB1-mhMFeA-B96tFYz3w7yuOW1b46c6g513LD06-vUIX9JojbOXxFOcS_8UtjXRueQDKNh9Tuh6xo9nnHx_307F0QupxR7JMlQzBW-eVCCADAEUTrWyCELYocFYQhclaO-Ey19QokQwQZwWL-5syQAZKPGZbbdfCU8aLgoBVXYUmA9kgHPF0f94R0RuacyMSlq8FaPzIK07lLc5MjG-LygxCNyh0E4VuLhL2ZvrmfGDVuLb1B5qXqSUxYscH3eLEjAZmvALtMw-lp8ux2lkIUuJAc5-XrslkwnbXs2pGM-3NlVIl7MX0Gg2Moia2hW4V29B1X0TGCXsyKMHUE6FLqWutElZuqMdGVzfftPPTSOKNKKBAMJiwt2tFuurW_0Wxff0odtidgnSbssr1LttaLlbwDEHT0j2PlvEbnesUHg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qi-BLqfe1VSL4oOji7uayu4_HSykHWkEt9C3kMlsPtHvKuVD6751kL3K0Cr5ukiWZzGS-JDNfAF7luVdSVibNjcVUKGfTupYuLbG2tpKYm_h-yvGJOjoV0zN5tgXFkAsTg_YjpWVcpofosPdLEU2aPEzKFed1en0HdgJVO-n2zmQy_TYdT1YC53klRJ8hk_HqlsYbXiiS9d-GMP8MlPzttjQ6ocM92O3RI5t0_b0PW9g-gLvde5I3D-Hk0ywQfy_Rs-V60RiH7Oua0UYVLy0Nj81bdnz-5TUtPG8YgVUWz25u6F_MBHWcGeYxxJj3gVyP4PTw8_ePR2n_YELqaB-ySqXw3hnrJPcoPGK4QzSi8ZyboqC5IOwlamW5zWxTk0QyJHTlDe1qSo8ZSv4Yttt5i0-BFUWAU3XlmwxFQyDEhax5G-jdyIgbnkA-CFC7nk08PGpxoeOtNq90J3RNQtdR6Po6gbdjm6uOS-OftT-EeRlrBh7s-GG-ONe9XmgnUbnMYelCSqyyBr0QNNDc5aVtMpHAwTCrujfOpS7KQOlDjrlK4OVYTGYV7kpMi_N1rBOSfAkPJ_CkU4KxJ1yVQtVKJlBuqMdGVzdL2tmPSN1Nvr8gCJjAu0GRfnXr76J49n_V9-FeEXQ9xJarA9heLdb4nKDTyr7obeUnTk0TwQ
  priority: 102
  providerName: Springer Nature
Title Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition
URI https://link.springer.com/article/10.1038/s41467-023-36339-w
https://www.ncbi.nlm.nih.gov/pubmed/36746965
https://www.proquest.com/docview/2773481288
https://www.proquest.com/docview/2774269161
https://pubmed.ncbi.nlm.nih.gov/PMC9902439
https://doaj.org/article/c5e6c0ce7c13476baed44be11c17bf04
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_uA8EX8dvoWSL4oGg0yW42yYNIr149Cq1yWuhb2I_JWaip9oOz_72zm6RSrYIvCexuwmZ2JvObnZ0ZgKdRZESSZDKIpMKAC62CPE90kGKuVJZgJF39lOFInI_5YJJMDqAtd9QQcLnXtLP1pMaL2asf3zdvSeDf1CHj2esld-JO2idggrE8uDqEY9JMqa1oMGzgvvszs5wMGutojkMeBTSANXE0-1-zo6tcSv99OPTP45S_-VSdqurfhBsNxvS7NVPcggOsbsO1uurk5g6M3k1tevAlGn-5XpRSo3-x9smcxa9qhkt_XvnDyw_P6Pf03CdI67sdng29y5eWaafSN2hPojfHve7CuH_2uXceNGUVAk3WyipIuDFaKp0wg9wgWk-j5KVhTMYxrRghNJ4LxVSoypwoEiJhMCPJ9kkNhpiwe3BUzSt8AH4cW9CVZ6YMkZcEVbSNrVc2CRyJesk8iFoCFrrJOW5LX8wK5_tmWVETvSCiF47oxZUHL7bPfKszbvxz9Kldl-1Imy3bNcwXl0UjfIVOUOhQY6pt4KxQEg3n9KGRjlJVhtyDk3ZVi5YDizi1iX9IfWcePNl2k_BZj4qscL52Y2woMKFmD-7XTLCdCRMpF7lIPEh32GNnqrs91fSLS_BNCCEmoOjBy5aRfk3r76R4-F-EewTXY8vq9gC6OIGj1WKNjwlfrVQHDtNJStes_74Dx93u4NOA7qdno48X1NoTvY7bueg44foJixYkKw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgQviJtAASOBBIKoOZzrASGgLFvaXSTUSn1zfUzKSiUpm12t9k_xG5lxkq2Wo299TZzIHo_Hnz3Hx9jzMLRpkuTKD5UGX6RG-0WRGD-DQus8gVA5_pTROB0eii9HydEG-9XnwlBYZW8TnaG2taE78u0oozosaE3zd2c_fWKNIu9qT6HRqsUeLBd4ZGve7u7g_L6IosGng49Dv2MV8A2C9ZmfCGuN0iaJLQgLQI42JUobxyqKsMMIUESR6lgHuiT--QAQgliF0D-zEACxRKDJvyJi3MkpM33weXWnQ9XWcyG63Jwgzrcb4SwRbox-nOIX_mJt_3M0Af_Ctn-HaP7hp3Xb3-Amu9HhVv6-VbRbbAOq2-xqy2S5vMPGOxMqOd6A5c18WioD_Nuc4xEZfuhTaHhd8dHJ15do8l5xhMnc3Rot8V9ckWQnilug6PYuhOwuO7wUod5jm1VdwQPGo4iAXJHbMgBRIvwxlK-vqbAcmo8y9ljYC1Caro450WmcSudPj3PZCl2i0KUTulx47PXqm7O2iseFrT_QvKxaUgVu96CenshuQUuTQGoCA5mhZNxUK7BC4EBDE2a6DITHtvpZlZ1ZaOS5Envs2eo1Lmjy0qgK6rlrQ-nFiMQ9dr9VglVP4jQTaZEmHsvW1GOtq-tvqsl3VzQcUUeE4NNjb3pFOu_W_0Xx8OJRPGXXhgejfbm_O957xK5HpOcU0Z5usc3ZdA6PEbDN9BO3Sjg7vuxl-RsBOVIg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VqUC8IG4MBRYJJBBY8bFe2w8IUdKopTRUFZX6tuwxLpGKU-JEUf4av44ZH6nC0be-xutoPTsz--3O8TH2IgydTJJM-6E24AtpjZ_nifVTyI3JEgh1zZ9yMJK7x-LTSXKywX51tTCUVtn5xNpRu4mlO_J-lFIfFvSmWb9o0yIOB8P35z99YpCiSGtHp9GoyD4sF3h8q97tDXCtX0bRcOfrx12_ZRjwLQL3mZ8I56w2NokdCAdAQTctChfHOopw8ghWRC5NbAJTEBd9AAhHnMZjQOogAGKMQPe_mdKpqMc2t3dGh0erGx7qvZ4J0VbqBHHWr0Ttl3Cb9GMZx7m_WNsNa9KAfyHdvxM2_4ja1pvh8Ba72aJY_qFRu9tsA8o77FrDa7m8y0aDMTUgr8Dxaj4ttAV-NOd4YIYf5gwqPin5wemXV-gAX3MEzby-Q1rif3FNsh1r7oBy3duEsnvs-ErEep_1ykkJDxmPIoJ1eeaKAESBYMhS9b6hNnPoTIrYY2EnQGXbruZErnGm6uh6nKlG6AqFrmqhq4XH3qzeOW96elw6epvWZTWS-nHXP0ymp6o1b2UTkDawkFoqzZVGgxMCPzS0YWqKQHhsq1tV1TqJSl2otMeerx6jeVPMRpcwmddjqNgYcbnHHjRKsJpJLFMhc5l4LF1Tj7Wprj8px9_rFuKIQSKEoh572ynSxbT-L4pHl3_FM3YdTVJ93hvtP2Y3IlJzSm-XW6w3m87hCaK3mXnamgln367aMn8DcMRXsg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dispersed+surface+Ru+ensembles+on+MgO%28111%29+for+catalytic+ammonia+decomposition&rft.jtitle=Nature+communications&rft.au=Fang%2C+Huihuang&rft.au=Wu%2C+Simson&rft.au=Ayvali%2C+Tugce&rft.au=Zheng%2C+Jianwei&rft.date=2023-02-06&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36339-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_36339_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon