Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition
Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO supp...
Saved in:
Published in | Nature communications Vol. 14; no. 1; pp. 647 - 15 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
06.02.2023
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N
2
complexes in solution are required for the stepwise dehydrogenation of ammonia to N
2
/H
2
, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B
5
sites) than isolated sites.
Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2. |
---|---|
AbstractList | Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites. Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N complexes in solution are required for the stepwise dehydrogenation of ammonia to N /H , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B sites) than isolated sites. Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N 2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N 2 /H 2 , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B 5 sites) than isolated sites. Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2. Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N 2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N 2 /H 2 , as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B 5 sites) than isolated sites. Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2. Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient catalysts for ammonia decomposition and their underlying mechanism yet remain obscure. Here we report that atomically-dispersed Ru atoms on MgO support on its polar (111) facets {denoted as MgO(111)} show the highest rate of ammonia decomposition, as far as we are aware, than all catalysts reported in literature due to the strong metal-support interaction and efficient surface coupling reaction. We have carefully investigated the loading effect of Ru from atomic form to cluster/nanoparticle on MgO(111). Progressive increase of surface Ru concentration, correlated with increase in specific activity per metal site, clearly indicates synergistic metal sites in close proximity, akin to those bimetallic N2 complexes in solution are required for the stepwise dehydrogenation of ammonia to N2/H2, as also supported by DFT modelling. Whereas, beyond surface doping, the specific activity drops substantially upon the formation of Ru cluster/nanoparticle, which challenges the classical view of allegorically higher activity of coordinated Ru atoms in cluster form (B5 sites) than isolated sites.Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors investigate atomically dispersed Ru atoms on polar (111) on MgO facets to show synergistic metal sites in close proximity are required for the stepwise dehydrogenation of ammonia to N2/H2. |
ArticleNumber | 647 |
Author | Suenaga, Kazu Thang, Ho Viet Fang, Huihuang Zheng, Jianwei Fellowes, Joshua Tsang, Shik Chi Edman Kato, Ryuichi Ayvali, Tugce Reyes, Yves Ira A. Leung, Kwan Chee Large, Alexander Ho, Ping-Luen Held, Georg Wu, Simson Chen, Hsin-Yi Tiffany |
Author_xml | – sequence: 1 givenname: Huihuang surname: Fang fullname: Fang, Huihuang organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 2 givenname: Simson surname: Wu fullname: Wu, Simson organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 3 givenname: Tugce surname: Ayvali fullname: Ayvali, Tugce organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 4 givenname: Jianwei surname: Zheng fullname: Zheng, Jianwei organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 5 givenname: Joshua surname: Fellowes fullname: Fellowes, Joshua organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 6 givenname: Ping-Luen orcidid: 0000-0002-3911-7973 surname: Ho fullname: Ho, Ping-Luen organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 7 givenname: Kwan Chee surname: Leung fullname: Leung, Kwan Chee organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford – sequence: 8 givenname: Alexander orcidid: 0000-0001-8676-4172 surname: Large fullname: Large, Alexander organization: Diamond Light Source – sequence: 9 givenname: Georg surname: Held fullname: Held, Georg organization: Diamond Light Source – sequence: 10 givenname: Ryuichi surname: Kato fullname: Kato, Ryuichi organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 11 givenname: Kazu surname: Suenaga fullname: Suenaga, Kazu organization: National Institute of Advanced Industrial Science and Technology (AIST) – sequence: 12 givenname: Yves Ira A. surname: Reyes fullname: Reyes, Yves Ira A. organization: Department of Engineering and System Science, National Tsing Hua University – sequence: 13 givenname: Ho Viet surname: Thang fullname: Thang, Ho Viet organization: The University of Danang, University of Science and Technology – sequence: 14 givenname: Hsin-Yi Tiffany orcidid: 0000-0002-9651-3200 surname: Chen fullname: Chen, Hsin-Yi Tiffany organization: Department of Engineering and System Science, National Tsing Hua University, College of Semiconductor Research, National Tsing Hua University, Department of Material Science and Engineering, National Tsing Hua University – sequence: 15 givenname: Shik Chi Edman orcidid: 0000-0002-8796-3146 surname: Tsang fullname: Tsang, Shik Chi Edman email: edman.tsang@chem.ox.ac.uk organization: The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36746965$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktP3TAQha0KVCjlD3RRReqGLlL8ipNsKiH6QuIhVe3amtiTW18l9q2dFPHv60ugBRZ4Y8v-zvGxZ16RHR88EvKG0Q-MiuY4SSZVXVIuSqGEaMvrF2SfU8lKVnOx82C9Rw5TWtM8RMsaKV-SPaFqqVpV7ZPLTy5tMCa0RZpjDwaL73OBPuHYDZiK4IuL1dURY-x90YdYGJhguJmcKWAcg3dQWDRh3ITkJhf8a7Lbw5Dw8G4-ID-_fP5x-q08v_p6dnpyXhpF1VRW0loDnamERWkRm5ZykL0VAjiHDpkSslWd6GjXt_mZFBmtLNBG1RYpVuKAnC2-NsBab6IbId7oAE7fboS40hBzygG1qVAZarA2TMhadYBWynwFM6zueiqz18fFazN3I1qDfoowPDJ9fOLdL70Kf3SbU0vRZoOjO4MYfs-YJj26ZHAYwGOYk-Z1LblqmWIZffcEXYc5-vxVW0rIhvGmydTbh4n-RbkvWwaaBTAxpBSx18ZNsC1ADugGzajeNolemkTnJtG3TaKvs5Q_kd67PysSiyhl2K8w_o_9jOov7grPXA |
CitedBy_id | crossref_primary_10_1016_j_fuel_2024_133106 crossref_primary_10_1021_jacs_4c02792 crossref_primary_10_1039_D3CY00042G crossref_primary_10_1016_j_ijhydene_2024_09_178 crossref_primary_10_1021_acssuschemeng_4c03829 crossref_primary_10_1016_j_jechem_2024_08_020 crossref_primary_10_1016_S1872_2067_23_64465_1 crossref_primary_10_47495_okufbed_1448566 crossref_primary_10_1021_jacsau_4c00759 crossref_primary_10_1002_celc_202300845 crossref_primary_10_1016_j_cjsc_2024_100236 crossref_primary_10_1002_adfm_202315529 crossref_primary_10_1016_j_scib_2023_10_006 crossref_primary_10_1016_j_susc_2024_122483 crossref_primary_10_2320_matertrans_MT_M2023212 crossref_primary_10_1002_anie_202416195 crossref_primary_10_1039_D4SE00281D crossref_primary_10_1002_cssc_202401970 crossref_primary_10_1002_aic_18713 crossref_primary_10_1016_j_enconman_2025_119610 crossref_primary_10_59717_j_xinn_energy_2024_100056 crossref_primary_10_1016_j_apcatb_2025_125020 crossref_primary_10_1002_cctc_202400241 crossref_primary_10_1016_j_cej_2023_143755 crossref_primary_10_1016_j_fuel_2023_129591 crossref_primary_10_1016_j_fuel_2025_135119 crossref_primary_10_1007_s42114_025_01252_x crossref_primary_10_1016_j_ijhydene_2025_02_236 crossref_primary_10_1007_s00339_023_07045_7 crossref_primary_10_1016_j_checat_2024_101000 crossref_primary_10_7209_carbon_030105 crossref_primary_10_1016_j_cej_2024_157400 crossref_primary_10_1021_acscatal_4c05085 crossref_primary_10_1016_j_apsusc_2024_160396 crossref_primary_10_1016_j_ijheatmasstransfer_2025_126667 crossref_primary_10_1016_j_nanoen_2024_109997 crossref_primary_10_1016_j_ijhydene_2024_03_204 crossref_primary_10_1002_ange_202416195 crossref_primary_10_1016_j_susc_2024_122628 crossref_primary_10_1016_j_enchem_2024_100140 crossref_primary_10_1038_s41467_024_55615_x crossref_primary_10_1021_acs_energyfuels_4c03658 crossref_primary_10_1016_j_ijhydene_2024_12_496 crossref_primary_10_1039_D4EE02763A crossref_primary_10_1016_j_cej_2024_152101 crossref_primary_10_1016_j_jcat_2024_115575 crossref_primary_10_1039_D4CC02372B crossref_primary_10_1021_acsanm_4c01416 crossref_primary_10_1016_j_cej_2024_152503 crossref_primary_10_1016_j_ijhydene_2024_12_136 crossref_primary_10_1016_j_fuel_2024_133134 crossref_primary_10_1016_j_ijhydene_2024_11_455 crossref_primary_10_1021_acsaem_4c01198 crossref_primary_10_1021_acs_chemmater_3c03018 crossref_primary_10_1021_acs_jpcc_4c07183 crossref_primary_10_1002_asia_202400005 crossref_primary_10_1002_adfm_202418021 crossref_primary_10_1016_j_enconman_2025_119559 crossref_primary_10_1016_j_ijhydene_2024_11_170 crossref_primary_10_1002_aenm_202303792 crossref_primary_10_1021_acs_iecr_4c03838 crossref_primary_10_1016_j_isci_2024_110571 crossref_primary_10_3390_catal14030197 crossref_primary_10_1016_j_jmst_2025_01_024 crossref_primary_10_1016_j_cej_2023_146715 crossref_primary_10_1021_acscatal_4c06088 crossref_primary_10_1021_jacs_3c14816 crossref_primary_10_1016_j_fuel_2024_132346 crossref_primary_10_1016_j_scp_2024_101492 crossref_primary_10_1016_j_ijhydene_2023_11_293 crossref_primary_10_1016_j_enconman_2025_119530 crossref_primary_10_1039_D3IM00036B crossref_primary_10_1002_aenm_202401252 crossref_primary_10_1021_acs_accounts_4c00683 crossref_primary_10_1038_s41467_024_51810_y crossref_primary_10_1021_acs_energyfuels_4c01071 crossref_primary_10_1002_smll_202407338 crossref_primary_10_1016_j_cogsc_2024_100945 crossref_primary_10_1021_acscatal_4c06371 crossref_primary_10_1021_acsomega_4c06472 crossref_primary_10_1021_acscatal_5c00187 crossref_primary_10_1021_acs_nanolett_3c03796 crossref_primary_10_1002_eem2_12766 crossref_primary_10_1039_D4TA07339H crossref_primary_10_1039_D4CY00945B crossref_primary_10_1016_j_apcatb_2025_125075 crossref_primary_10_1016_j_jece_2025_116115 crossref_primary_10_1016_j_ces_2024_121000 crossref_primary_10_1039_D3EE04338J crossref_primary_10_1039_D5CP00430F crossref_primary_10_1021_acscatal_3c03928 crossref_primary_10_1007_s11426_024_2400_8 crossref_primary_10_1016_j_fuel_2024_131543 crossref_primary_10_1039_D4CY00835A crossref_primary_10_1016_j_fuel_2023_130176 crossref_primary_10_3390_molecules29163817 crossref_primary_10_3390_catal14100715 crossref_primary_10_1016_j_jallcom_2024_175270 crossref_primary_10_1007_s44251_023_00013_6 crossref_primary_10_1016_j_mcat_2024_114767 crossref_primary_10_1016_j_mtsust_2023_100554 crossref_primary_10_1038_s43246_024_00652_8 crossref_primary_10_1016_j_apsusc_2023_159175 crossref_primary_10_1021_acs_energyfuels_3c00804 crossref_primary_10_1002_cctc_202400860 crossref_primary_10_1016_j_apcatb_2024_123844 crossref_primary_10_1002_sstr_202300394 crossref_primary_10_1021_acscatal_4c02313 |
Cites_doi | 10.1021/ja801021w 10.1088/0953-8984/21/8/084204 10.1103/PhysRevLett.77.3865 10.1088/1367-2630/9/9/339 10.1016/S1381-1169(97)00245-8 10.1021/cg8002096 10.1016/0378-7753(93)01822-Y 10.1016/j.ijhydene.2018.12.024 10.1039/C9RA10296E 10.1088/1361-648X/ac5704 10.1021/acs.jpclett.0c01450 10.1007/s11426-019-9578-8 10.1016/S0039-6028(99)01026-2 10.1021/acs.energyfuels.1c01261 10.1039/ft9908602645 10.1016/j.cplett.2007.03.044 10.1039/c0ee00809e 10.1007/s10562-007-9237-z 10.1016/j.jcat.2004.12.013 10.1038/s41929-019-0368-6 10.1002/cctc.201900306 10.1016/j.catcom.2005.10.002 10.1016/j.jcat.2004.03.046 10.1016/j.cclet.2017.12.011 10.1016/S0166-9834(00)82492-6 10.1103/PhysRevB.60.16120 10.1039/c3sc50794g 10.1021/acs.iecr.1c00843 10.1016/j.apcatb.2016.08.051 10.1021/jacs.9b13349 10.1006/jcat.2000.2858 10.1016/j.apcata.2015.09.001 10.1002/cnma.202100037 10.1016/j.apcatb.2017.04.043 10.1007/s11814-021-0767-7 10.1038/nchem.2595 10.1103/PhysRevB.47.558 10.1016/j.apcatb.2003.10.013 10.1103/PhysRevB.64.075417 10.1016/j.apcata.2014.01.026 10.1103/PhysRevB.59.1758 10.1038/nchem.1476 10.1021/acscatal.8b02277 10.1021/acs.chemrev.0c00042 10.1039/b812376d 10.1021/ja902587k 10.1103/PhysRevB.50.17953 10.1039/B712102D 10.1021/es0700350 10.1016/j.commatsci.2005.04.010 10.1021/j100304a034 10.1021/jacs.1c02859 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B 10.1039/C2EE02865D 10.1021/jacs.0c03627 10.1002/jcc.20575 10.1063/1.3382344 10.1007/s12274-020-2765-1 10.1016/j.catcom.2016.12.007 10.1016/j.jcrysgro.2009.08.026 10.1038/nchem.626 10.1021/ja031718s 10.1016/j.ijhydene.2011.10.004 10.1016/j.ultramic.2014.11.012 10.1016/j.ultramic.2018.06.003 10.1063/1.3553716 10.1021/acssuschemeng.8b06308 10.1016/0360-3199(94)90009-4 10.1063/1.1329672 10.1016/0021-9517(92)90112-U 10.1007/s12274-018-2062-4 10.1016/0927-0256(96)00008-0 10.1038/s41586-020-2464-9 10.1002/anie.200602393 10.1016/j.jcat.2004.12.005 10.1007/s11244-009-9203-7 10.1016/j.apsusc.2019.144044 10.1021/acscatal.0c00954 |
ContentType | Journal Article |
Copyright | The Author(s) 2023 2023. The Author(s). The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2023 – notice: 2023. The Author(s). – notice: The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-023-36339-w |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_c5e6c0ce7c13476baed44be11c17bf04 PMC9902439 36746965 10_1038_s41467_023_36339_w |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-54ddcabc53de4dee8902a4fd33a22abe163496b3b0bf94670e105da0867de0e53 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:32 EDT 2025 Thu Aug 21 18:38:35 EDT 2025 Mon Jul 21 11:09:49 EDT 2025 Wed Aug 13 07:38:15 EDT 2025 Mon Jul 21 05:58:43 EDT 2025 Tue Jul 01 00:58:40 EDT 2025 Thu Apr 24 23:09:25 EDT 2025 Fri Feb 21 02:38:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2023. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-54ddcabc53de4dee8902a4fd33a22abe163496b3b0bf94670e105da0867de0e53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9651-3200 0000-0002-8796-3146 0000-0001-8676-4172 0000-0002-3911-7973 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-023-36339-w |
PMID | 36746965 |
PQID | 2773481288 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_c5e6c0ce7c13476baed44be11c17bf04 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9902439 proquest_miscellaneous_2774269161 proquest_journals_2773481288 pubmed_primary_36746965 crossref_citationtrail_10_1038_s41467_023_36339_w crossref_primary_10_1038_s41467_023_36339_w springer_journals_10_1038_s41467_023_36339_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-02-06 |
PublicationDateYYYYMMDD | 2023-02-06 |
PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-06 day: 06 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2023 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Hansgen, Vlachos, Chen (CR53) 2010; 2 Chen (CR18) 2021; 35 Wang (CR23) 2017; 9 Lucentini, Garcia, Vendrell, Llorca (CR9) 2021; 60 Le, Do, Kim, Kim, Chae (CR8) 2021; 38 Chen, Tian, Lu, Xiong (CR46) 2015; 506 García-García, Guerrero-Ruiz, Rodríguez-Ramos (CR14) 2009; 52 Aika, Takano, Murata (CR29) 1992; 136 Asakura, Bando, Iwasawa (CR48) 1990; 86 Grimme, Antony, Ehrlich, Krieg (CR73) 2010; 132 Ju (CR32) 2019; 11 Zheng, Zhang, Xu, Li (CR16) 2007; 119 Tsai, Weinberg (CR54) 1987; 91 Kresse, Joubert (CR71) 1999; 59 Kanbara (CR25) 2015; 6 Giordano, Goniakowski, Pacchioni (CR41) 2001; 64 Siporin, Davis (CR31) 2004; 225 Kitano (CR24) 2012; 4 Frondelius, Häkkinen, Honkala (CR39) 2007; 9 Goniakowski, Noguera (CR74) 1999; 60 Hacquart, Jupille (CR56) 2009; 311 Henkelman, Uberuaga, Jónsson (CR75) 2000; 113 Li (CR17) 2018; 11 Wu (CR20) 2020; 10 Zhao (CR37) 2020; 13 Perdew, Burke, Ernzerhof (CR72) 1996; 77 Metkemeijer, Achard (CR5) 1994; 49 Geysermans, Finocchi, Goniakowski, Hacquart, Jupille (CR57) 2009; 11 Hayashi (CR26) 2013; 4 Schüth, Palkovits, Schlögl, Su (CR3) 2012; 5 Duan (CR19) 2019; 2 Tang, Sanville, Henkelman (CR76) 2009; 21 Zhu, Hu, Kübel, Richards (CR35) 2006; 45 Ju (CR51) 2017; 211 Metkemeijer, Achard (CR4) 1994; 19 Karim (CR13) 2009; 131 Guo (CR40) 2021; 7 Tang (CR44) 2018; 29 Henkelman, Arnaldsson, Jónsson (CR78) 2006; 36 Xu (CR33) 2009; 9 Song, Cai, Hanson, Rodriguez, Hrbek (CR11) 2004; 126 Aika (CR49) 1986; 28 Su (CR22) 2017; 201 Wang, Cai, Wei (CR42) 2019; 7 Zhang, Xu, Ge, Li (CR50) 2006; 7 Lan, Irvine, Tao (CR1) 2012; 37 Rees, Compton (CR6) 2011; 4 Dahl, Törnqvist, Chorkendorff (CR12) 2000; 192 Lamb, Dolan, Kennedy (CR2) 2019; 44 Barthel (CR67) 2018; 193 Hu, Wang, Si, Ma, Jia (CR58) 2019; 62 Du (CR66) 2015; 151 Pun (CR65) 2008; 130 Sanville, Kenny, Smith, Henkelman (CR77) 2007; 28 Wu (CR27) 2017; 91 Zuo (CR38) 2018; 8 Yu, Trinkle (CR79) 2011; 134 Blöchl (CR69) 1994; 50 Kresse, Hafner (CR70) 1993; 47 Hacquart, Jupille (CR55) 2007; 439 Boisen, Dahl, Nørskov, Christensen (CR7) 2005; 230 Raróg-Pilecka, Miśkiewicz, Szmigiel, Kowalczyk (CR10) 2005; 231 Bielawa, Hinrichsen, Birkner, Muhler (CR15) 2001; 40 Singh, Buratto, Torres, Murray (CR28) 2020; 120 Wu, Jiang, Liu, Wang, Jin (CR60) 2007; 41 Yin, Xu, Ng, Au (CR21) 2004; 48 Kresse, Furthmüller (CR68) 1996; 6 Wang, Ta, Shen (CR43) 2014; 475 Verziu (CR45) 2008; 10 Deng (CR62) 2020; 11 Yunusov, Moroz, Ivanova, Likholobov, Shur (CR30) 1998; 132 Ye (CR52) 2020; 583 Zhang (CR59) 2020; 500 Wu (CR61) 2021; 143 Guo (CR63) 2020; 142 Rizzi, Magrin, Granozzi (CR47) 1999; 443 Yan (CR34) 2020; 10 Sarma (CR36) 2020; 142 Thang, Chen (CR64) 2022; 34 H Bielawa (36339_CR15) 2001; 40 SM Yunusov (36339_CR30) 1998; 132 G Kresse (36339_CR71) 1999; 59 G Henkelman (36339_CR78) 2006; 36 DA Hansgen (36339_CR53) 2010; 2 G Kresse (36339_CR68) 1996; 6 NV Rees (36339_CR6) 2011; 4 S Wu (36339_CR20) 2020; 10 T Xu (36339_CR33) 2009; 9 D Singh (36339_CR28) 2020; 120 W Raróg-Pilecka (36339_CR10) 2005; 231 F Schüth (36339_CR3) 2012; 5 SF Yin (36339_CR21) 2004; 48 K Zhu (36339_CR35) 2006; 45 GA Rizzi (36339_CR47) 1999; 443 K Aika (36339_CR49) 1986; 28 E Sanville (36339_CR77) 2007; 28 M Yu (36339_CR79) 2011; 134 HV Thang (36339_CR64) 2022; 34 R Hacquart (36339_CR56) 2009; 311 J Zhang (36339_CR50) 2006; 7 X Ju (36339_CR32) 2019; 11 Z Wu (36339_CR27) 2017; 91 X Yan (36339_CR34) 2020; 10 M Verziu (36339_CR45) 2008; 10 FR García-García (36339_CR14) 2009; 52 R Lan (36339_CR1) 2012; 37 W Zheng (36339_CR16) 2007; 119 Y Guo (36339_CR40) 2021; 7 J Barthel (36339_CR67) 2018; 193 SE Siporin (36339_CR31) 2004; 225 Q Zhang (36339_CR59) 2020; 500 JP Perdew (36339_CR72) 1996; 77 S Grimme (36339_CR73) 2010; 132 K Aika (36339_CR29) 1992; 136 A Boisen (36339_CR7) 2005; 230 XC Hu (36339_CR58) 2019; 62 Z Wu (36339_CR60) 2007; 41 AM Karim (36339_CR13) 2009; 131 F Hayashi (36339_CR26) 2013; 4 Z Zuo (36339_CR38) 2018; 8 G Kresse (36339_CR70) 1993; 47 P Geysermans (36339_CR57) 2009; 11 Z Wang (36339_CR42) 2019; 7 H Du (36339_CR66) 2015; 151 M Kitano (36339_CR24) 2012; 4 J Li (36339_CR17) 2018; 11 P Wang (36339_CR23) 2017; 9 J Chen (36339_CR46) 2015; 506 I Lucentini (36339_CR9) 2021; 60 KE Lamb (36339_CR2) 2019; 44 Q Su (36339_CR22) 2017; 201 L Giordano (36339_CR41) 2001; 64 CQ Chen (36339_CR18) 2021; 35 P Frondelius (36339_CR39) 2007; 9 F Wang (36339_CR43) 2014; 475 H Duan (36339_CR19) 2019; 2 R Metkemeijer (36339_CR4) 1994; 19 BB Sarma (36339_CR36) 2020; 142 J Goniakowski (36339_CR74) 1999; 60 TN Ye (36339_CR52) 2020; 583 D Pun (36339_CR65) 2008; 130 M Tang (36339_CR44) 2018; 29 Z Song (36339_CR11) 2004; 126 K Asakura (36339_CR48) 1990; 86 S Wu (36339_CR61) 2021; 143 T Deng (36339_CR62) 2020; 11 G Henkelman (36339_CR75) 2000; 113 TA Le (36339_CR8) 2021; 38 S Zhao (36339_CR37) 2020; 13 X Ju (36339_CR51) 2017; 211 S Kanbara (36339_CR25) 2015; 6 PE Blöchl (36339_CR69) 1994; 50 R Hacquart (36339_CR55) 2007; 439 R Metkemeijer (36339_CR5) 1994; 49 W Tang (36339_CR76) 2009; 21 S Dahl (36339_CR12) 2000; 192 X Guo (36339_CR63) 2020; 142 W Tsai (36339_CR54) 1987; 91 |
References_xml | – volume: 130 start-page: 6047 year: 2008 end-page: 6054 ident: CR65 article-title: Indenyl Zirconium Dinitrogen Chemistry: N Coordination to an Isolated Zirconium Sandwich and Synthesis of Side‑on, End‑on Dinitrogen Compounds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801021w – volume: 21 start-page: 84204 year: 2009 ident: CR76 article-title: A grid-based Bader analysis algorithm without lattice bias publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 77 start-page: 3865 year: 1996 end-page: 3868 ident: CR72 article-title: Generalized Gradient Approximation Made Simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 339 year: 2007 end-page: 357 ident: CR39 article-title: Adsorption of small Au clusters on MgO and MgO/Mo: The role of oxygen vacancies and the Mo-support publication-title: New J. Phys doi: 10.1088/1367-2630/9/9/339 – volume: 132 start-page: 263 year: 1998 end-page: 265 ident: CR30 article-title: Anionic ruthenium cluster K [Ru (CO) ] as precursor of catalytically active ruthenium particles and potassium promoter. New efficient ammonia synthesis catalysts based on supported K [Ru (CO) ] publication-title: J. Mol. Catal. A Chem. doi: 10.1016/S1381-1169(97)00245-8 – volume: 9 start-page: 192 year: 2009 end-page: 196 ident: CR33 article-title: Syntheses of nano/submicrostructured metal oxides with all polar surfaces exposed via a molten salt route publication-title: Cryst. Growth Des. doi: 10.1021/cg8002096 – volume: 49 start-page: 271 year: 1994 end-page: 282 ident: CR5 article-title: Ammonia as a feedstock for a hydrogen fuel cell; reformer and fuel cell behaviour publication-title: J. Power Sources doi: 10.1016/0378-7753(93)01822-Y – volume: 44 start-page: 3580 year: 2019 end-page: 3593 ident: CR2 article-title: Ammonia for hydrogen storage; A review of catalytic ammonia decomposition and hydrogen separation and purification publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.12.024 – volume: 10 start-page: 10681 year: 2020 end-page: 10688 ident: CR34 article-title: Synthesis of nano-octahedral MgO: Via a solvothermal-solid-decomposition method for the removal of methyl orange from aqueous solutions publication-title: RSC Adv. doi: 10.1039/C9RA10296E – volume: 34 start-page: 214007 year: 2022 ident: CR64 article-title: Do stoichiometric or nonstoichiometric models of a polar surface affect their structural, energetic and electronic structure properties? A DFT case study of Ru/MgO(111) publication-title: J. Phy. Condens. Matter doi: 10.1088/1361-648X/ac5704 – volume: 11 start-page: 6320 year: 2020 end-page: 6329 ident: CR62 article-title: Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: D-Band Center-Based Descriptor publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01450 – volume: 62 start-page: 1625 year: 2019 end-page: 1633 ident: CR58 article-title: Hydrogen production via catalytic decomposition of NH using promoted MgO-supported ruthenium catalysts publication-title: Sci. China Chem. doi: 10.1007/s11426-019-9578-8 – volume: 443 start-page: 277 year: 1999 end-page: 286 ident: CR47 article-title: Preparation of epitaxial ultrathin RuO -TiO (110) films by decomposition of Ru (CO) publication-title: Surf. Sci. doi: 10.1016/S0039-6028(99)01026-2 – volume: 35 start-page: 11693 year: 2021 end-page: 11706 ident: CR18 article-title: Ru-Based Catalysts for Ammonia Decomposition: A Mini-Review publication-title: Energ. Fuels doi: 10.1021/acs.energyfuels.1c01261 – volume: 86 start-page: 2645 year: 1990 end-page: 2655 ident: CR48 article-title: Structure and behaviour of Ru (CO) supported on inorganic oxide surfaces, studied by EXAFS, infrared spectroscopy and temperature-programmed decomposition publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/ft9908602645 – volume: 439 start-page: 91 year: 2007 end-page: 94 ident: CR55 article-title: Hydrated MgO smoke crystals from cubes to octahedra publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.03.044 – volume: 4 start-page: 1255 year: 2011 end-page: 1260 ident: CR6 article-title: Carbon-free energy: A review of ammonia- and hydrazine-based electrochemical fuel cells publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00809e – volume: 119 start-page: 311 year: 2007 end-page: 318 ident: CR16 article-title: NH decomposition kinetics on supported Ru clusters: Morphology and particle size effect publication-title: Catal. Lett. doi: 10.1007/s10562-007-9237-z – volume: 230 start-page: 309 year: 2005 end-page: 312 ident: CR7 article-title: Why the optimal ammonia synthesis catalyst is not the optimal ammonia decomposition catalyst publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.013 – volume: 2 start-page: 1078 year: 2019 end-page: 1087 ident: CR19 article-title: Molecular nitrogen promotes catalytic hydrodeoxygenation publication-title: Nat. Catal. doi: 10.1038/s41929-019-0368-6 – volume: 11 start-page: 4161 year: 2019 end-page: 4170 ident: CR32 article-title: Highly Efficient Ru/MgO Catalyst with Surface-Enriched Basic Sites for Production of Hydrogen from Ammonia Decomposition publication-title: ChemCatChem doi: 10.1002/cctc.201900306 – volume: 7 start-page: 148 year: 2006 end-page: 152 ident: CR50 article-title: Highly efficient Ru/MgO catalysts for NH3 decomposition: Synthesis, characterization and promoter effect publication-title: Catal. Commun. doi: 10.1016/j.catcom.2005.10.002 – volume: 225 start-page: 359 year: 2004 end-page: 368 ident: CR31 article-title: Use of kinetic models to explore the role of base promoters on Ru/MgO ammonia synthesis catalysts publication-title: J. Catal. doi: 10.1016/j.jcat.2004.03.046 – volume: 29 start-page: 935 year: 2018 end-page: 938 ident: CR44 article-title: Synthesis and orientational assemblies of MgO nanosheets with exposed (111) facets publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.12.011 – volume: 28 start-page: 57 year: 1986 end-page: 68 ident: CR49 article-title: Support and promoter effect of ruthenium catalyst. III. Kinetics of ammonia synthesis over various Ru catalysts publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)82492-6 – volume: 60 start-page: 16120 year: 1999 end-page: 16128 ident: CR74 article-title: Characteristics of Pd deposition on the MgO(111) surface publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.16120 – volume: 4 start-page: 3124 year: 2013 end-page: 3130 ident: CR26 article-title: Ammonia decomposition by ruthenium nanoparticles loaded on inorganic electride C12A7:e- publication-title: Chem. Sci. doi: 10.1039/c3sc50794g – volume: 60 start-page: 18560 year: 2021 end-page: 18611 ident: CR9 article-title: Review of the decomposition of ammonia to generate hydrogen publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c00843 – volume: 201 start-page: 451 year: 2017 end-page: 460 ident: CR22 article-title: Layered double hydroxides derived Ni (Mg Al O ) catalysts: Enhanced ammonia decomposition by hydrogen spillover effect publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.08.051 – volume: 142 start-page: 5709 year: 2020 end-page: 5721 ident: CR63 article-title: Tackling the Activity and Selectivity Challenges of Electrocatalysts toward the Nitrogen Reduction Reaction via Atomically Dispersed Biatom Catalysts publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13349 – volume: 192 start-page: 381 year: 2000 end-page: 390 ident: CR12 article-title: Dissociative adsorption of N on Ru(0001): A surface reaction totally dominated by steps publication-title: J. Catal. doi: 10.1006/jcat.2000.2858 – volume: 506 start-page: 118 year: 2015 end-page: 125 ident: CR46 article-title: Catalytic performance of MgO with different exposed crystal facets towards the ozonation of 4-chlorophenol publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.09.001 – volume: 7 start-page: 526 year: 2021 end-page: 529 ident: CR40 article-title: High Performance of Single-atom Catalyst Pd /MgO for Semi-hydrogenation of Acetylene to Ethylene in Excess Ethylene publication-title: ChemNanoMat doi: 10.1002/cnma.202100037 – volume: 211 start-page: 167 year: 2017 end-page: 175 ident: CR51 article-title: Mesoporous Ru/MgO prepared by a deposition-precipitation method as highly active catalyst for producing CO -free hydrogen from ammonia decomposition publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.04.043 – volume: 38 start-page: 1087 year: 2021 end-page: 1103 ident: CR8 article-title: A review on the recent developments of ruthenium and nickel catalysts for COx-free H2 generation by ammonia decomposition publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0767-7 – volume: 9 start-page: 64 year: 2017 end-page: 70 ident: CR23 article-title: Breaking scaling relations to achieve low-temperature ammonia synthesis through LiH-mediated nitrogen transfer and hydrogenation publication-title: Nat. Chem. doi: 10.1038/nchem.2595 – volume: 47 start-page: 558 year: 1993 end-page: 561 ident: CR70 article-title: Ab initio molecular dynamics for liquid metals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 48 start-page: 237 year: 2004 end-page: 241 ident: CR21 article-title: Nano Ru/CNTs: A highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2003.10.013 – volume: 64 start-page: 754171 year: 2001 end-page: 754179 ident: CR41 article-title: Characteristics of Pd adsorption on the MgO(100) surface: Role of oxygen vacancies publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.64.075417 – volume: 475 start-page: 76 year: 2014 end-page: 81 ident: CR43 article-title: MgO nanosheets, nanodisks, and nanofibers for the Meerwein-Ponndorf-Verley reaction publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.01.026 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR71 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 4 start-page: 934 year: 2012 end-page: 940 ident: CR24 article-title: Ammonia synthesis using a stable electride as an electron donor and reversible hydrogen store publication-title: Nat. Chem. doi: 10.1038/nchem.1476 – volume: 8 start-page: 9821 year: 2018 end-page: 9835 ident: CR38 article-title: Dry Reforming of Methane on Single-Site Ni/MgO Catalysts: Importance of Site Confinement publication-title: ACS Catal. doi: 10.1021/acscatal.8b02277 – volume: 120 start-page: 5517 year: 2020 end-page: 5581 ident: CR28 article-title: Activation of Dinitrogen by Polynuclear Metal Complexes publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00042 – volume: 11 start-page: 2228 year: 2009 end-page: 2233 ident: CR57 article-title: Combination of (100), (110) and (111) facets in MgO crystals shapes from dry to wet environment publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b812376d – volume: 131 start-page: 12230 year: 2009 end-page: 12239 ident: CR13 article-title: Correlating particle size and shape of supported Ru/γ-Al O catalysts with NH3 decomposition activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902587k – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR69 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 10 start-page: 373 year: 2008 end-page: 38 ident: CR45 article-title: Sunflower and rapeseed oil transesterification to biodiesel over different nanocrystalline MgO catalysts publication-title: Green. Chem. doi: 10.1039/B712102D – volume: 41 start-page: 5812 year: 2007 end-page: 5817 ident: CR60 article-title: DRIFT study of manganese/titania-based catalysts for low-temperature selective catalytic reduction of NO with NH publication-title: Environ. Sci. Technol. doi: 10.1021/es0700350 – volume: 36 start-page: 354 year: 2006 end-page: 360 ident: CR78 article-title: A fast and robust algorithm for Bader decomposition of charge density publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 91 start-page: 5302 year: 1987 end-page: 5307 ident: CR54 article-title: Steady-state decomposition of ammonia on the Ru(001) surface publication-title: J. Phys. Chem. doi: 10.1021/j100304a034 – volume: 143 start-page: 9105 year: 2021 end-page: 9112 ident: CR61 article-title: Rapid Interchangeable Hydrogen, Hydride, and Proton Species at the Interface of Transition Metal Atom on Oxide Surface publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02859 – volume: 40 start-page: 1061 year: 2001 end-page: 1063 ident: CR15 article-title: The ammonia-synthesis catalyst of the next generation: Barium-promoted oxide-supported ruthenium publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B – volume: 5 start-page: 6278 year: 2012 end-page: 6289 ident: CR3 article-title: Ammonia as a possible element in an energy infrastructure: Catalysts for ammonia decomposition publication-title: Energy Environ. Sci. doi: 10.1039/C2EE02865D – volume: 142 start-page: 14890 year: 2020 end-page: 14902 ident: CR36 article-title: Metal-specific reactivity in single-atom catalysts: CO oxidation on 4d and 5d transition metals atomically dispersed on MgO publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03627 – volume: 28 start-page: 899 year: 2007 end-page: 908 ident: CR77 article-title: Improved grid-based algorithm for Bader charge allocation publication-title: J. Comput. Chem. doi: 10.1002/jcc.20575 – volume: 132 start-page: 154104 year: 2010 ident: CR73 article-title: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 13 start-page: 1544 year: 2020 end-page: 1551 ident: CR37 article-title: Formation of active oxygen species on single-atom Pt catalyst and promoted catalytic oxidation of toluene publication-title: Nano Res. doi: 10.1007/s12274-020-2765-1 – volume: 91 start-page: 10 year: 2017 end-page: 15 ident: CR27 article-title: Promoting hydrolysis of ammonia borane over multiwalled carbon nanotube-supported Ru catalysts via hydrogen spillover publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.12.007 – volume: 311 start-page: 4598 year: 2009 end-page: 4604 ident: CR56 article-title: Morphology of MgO smoke crystallites upon etching in wet environment publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.08.026 – volume: 2 start-page: 484 year: 2010 end-page: 489 ident: CR53 article-title: Using first principles to predict bimetallic catalysts for the ammonia decomposition reaction publication-title: Nat. Chem. doi: 10.1038/nchem.626 – volume: 126 start-page: 8576 year: 2004 end-page: 8584 ident: CR11 article-title: Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: A study of the model catalysts for ammonia synthesis publication-title: J. Am. Chem. Soc. doi: 10.1021/ja031718s – volume: 37 start-page: 1482 year: 2012 end-page: 1494 ident: CR1 article-title: Ammonia and related chemicals as potential indirect hydrogen storage materials publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.10.004 – volume: 151 start-page: 62 year: 2015 end-page: 67 ident: CR66 article-title: A nonlinear filtering algorithm for denoising HR(S)TEM micrographs publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2014.11.012 – volume: 193 start-page: 1 year: 2018 end-page: 11 ident: CR67 article-title: Dr. Probe: A software for high-resolution STEM image simulation publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2018.06.003 – volume: 134 start-page: 64111 year: 2011 ident: CR79 article-title: Accurate and efficient algorithm for Bader charge integration publication-title: J. Chem. Phys. doi: 10.1063/1.3553716 – volume: 7 start-page: 8226 year: 2019 end-page: 8235 ident: CR42 article-title: Highly Active Ruthenium Catalyst Supported on Barium Hexaaluminate for Ammonia Decomposition to CO -Free Hydrogen publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06308 – volume: 19 start-page: 535 year: 1994 end-page: 542 ident: CR4 article-title: Comparison of ammonia and methanol applied indirectly in a hydrogen fuel cell publication-title: Int. J. Hydrog. Energy doi: 10.1016/0360-3199(94)90009-4 – volume: 113 start-page: 9901 year: 2000 end-page: 9904 ident: CR75 article-title: A climbing image nudged elastic band method for finding saddle points and minimum energy paths publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 – volume: 136 start-page: 126 year: 1992 end-page: 140 ident: CR29 article-title: Preparation and characterization of chlorine-free ruthenium catalysts and the promoter effect in ammonia synthesis: 3. A magnesia-supported ruthenium catalyst publication-title: J. Catal. doi: 10.1016/0021-9517(92)90112-U – volume: 11 start-page: 4774 year: 2018 end-page: 4785 ident: CR17 article-title: Sub-nm ruthenium cluster as an efficient and robust catalyst for decomposition and synthesis of ammonia: Break the “size shackles” publication-title: Nano Res. doi: 10.1007/s12274-018-2062-4 – volume: 6 start-page: 1 year: 2015 end-page: 9 ident: CR25 article-title: Electride support boosts nitrogen dissociation over ruthenium catalyst and shifts the bottleneck in ammonia synthesis publication-title: Nat. Commun. – volume: 6 start-page: 15 year: 1996 end-page: 50 ident: CR68 article-title: Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 583 start-page: 391 year: 2020 end-page: 395 ident: CR52 article-title: Vacancy-enabled N2 activation for ammonia synthesis on an Ni-loaded catalyst publication-title: Nature doi: 10.1038/s41586-020-2464-9 – volume: 45 start-page: 7277 year: 2006 end-page: 7281 ident: CR35 article-title: Efficient preparation and catalytic activity of MgO(111) nanosheets publication-title: Angew. Chem. - Int. Ed. doi: 10.1002/anie.200602393 – volume: 231 start-page: 11 year: 2005 end-page: 19 ident: CR10 article-title: Structure sensitivity of ammonia synthesis over promoted ruthenium catalysts supported on graphitised carbon publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.005 – volume: 52 start-page: 758 year: 2009 end-page: 764 ident: CR14 article-title: Role of B5-type sites in Ru catalysts used for the NH decomposition reaction publication-title: Top. Catal. doi: 10.1007/s11244-009-9203-7 – volume: 500 start-page: 144044 year: 2020 ident: CR59 article-title: Promoting effects of acid enhancing on N selectivity for selectivity catalytic oxidation of NH3 over RuOx/TiO2: The mechanism study publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144044 – volume: 10 start-page: 5614 year: 2020 end-page: 5622 ident: CR20 article-title: Removal of Hydrogen Poisoning by Electrostatically Polar MgO Support for Low-Pressure NH Synthesis at a High Rate over the Ru Catalyst publication-title: ACS Catal. doi: 10.1021/acscatal.0c00954 – volume: 10 start-page: 10681 year: 2020 ident: 36339_CR34 publication-title: RSC Adv. doi: 10.1039/C9RA10296E – volume: 201 start-page: 451 year: 2017 ident: 36339_CR22 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2016.08.051 – volume: 500 start-page: 144044 year: 2020 ident: 36339_CR59 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.144044 – volume: 40 start-page: 1061 year: 2001 ident: 36339_CR15 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/1521-3773(20010316)40:6<1061::AID-ANIE10610>3.0.CO;2-B – volume: 28 start-page: 899 year: 2007 ident: 36339_CR77 publication-title: J. Comput. Chem. doi: 10.1002/jcc.20575 – volume: 132 start-page: 154104 year: 2010 ident: 36339_CR73 publication-title: J. Chem. Phys. doi: 10.1063/1.3382344 – volume: 230 start-page: 309 year: 2005 ident: 36339_CR7 publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.013 – volume: 231 start-page: 11 year: 2005 ident: 36339_CR10 publication-title: J. Catal. doi: 10.1016/j.jcat.2004.12.005 – volume: 29 start-page: 935 year: 2018 ident: 36339_CR44 publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2017.12.011 – volume: 5 start-page: 6278 year: 2012 ident: 36339_CR3 publication-title: Energy Environ. Sci. doi: 10.1039/C2EE02865D – volume: 52 start-page: 758 year: 2009 ident: 36339_CR14 publication-title: Top. Catal. doi: 10.1007/s11244-009-9203-7 – volume: 91 start-page: 5302 year: 1987 ident: 36339_CR54 publication-title: J. Phys. Chem. doi: 10.1021/j100304a034 – volume: 10 start-page: 373 year: 2008 ident: 36339_CR45 publication-title: Green. Chem. doi: 10.1039/B712102D – volume: 192 start-page: 381 year: 2000 ident: 36339_CR12 publication-title: J. Catal. doi: 10.1006/jcat.2000.2858 – volume: 44 start-page: 3580 year: 2019 ident: 36339_CR2 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2018.12.024 – volume: 583 start-page: 391 year: 2020 ident: 36339_CR52 publication-title: Nature doi: 10.1038/s41586-020-2464-9 – volume: 131 start-page: 12230 year: 2009 ident: 36339_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja902587k – volume: 311 start-page: 4598 year: 2009 ident: 36339_CR56 publication-title: J. Cryst. Growth doi: 10.1016/j.jcrysgro.2009.08.026 – volume: 506 start-page: 118 year: 2015 ident: 36339_CR46 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2015.09.001 – volume: 4 start-page: 3124 year: 2013 ident: 36339_CR26 publication-title: Chem. Sci. doi: 10.1039/c3sc50794g – volume: 7 start-page: 148 year: 2006 ident: 36339_CR50 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2005.10.002 – volume: 132 start-page: 263 year: 1998 ident: 36339_CR30 publication-title: J. Mol. Catal. A Chem. doi: 10.1016/S1381-1169(97)00245-8 – volume: 62 start-page: 1625 year: 2019 ident: 36339_CR58 publication-title: Sci. China Chem. doi: 10.1007/s11426-019-9578-8 – volume: 36 start-page: 354 year: 2006 ident: 36339_CR78 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2005.04.010 – volume: 225 start-page: 359 year: 2004 ident: 36339_CR31 publication-title: J. Catal. doi: 10.1016/j.jcat.2004.03.046 – volume: 8 start-page: 9821 year: 2018 ident: 36339_CR38 publication-title: ACS Catal. doi: 10.1021/acscatal.8b02277 – volume: 2 start-page: 484 year: 2010 ident: 36339_CR53 publication-title: Nat. Chem. doi: 10.1038/nchem.626 – volume: 119 start-page: 311 year: 2007 ident: 36339_CR16 publication-title: Catal. Lett. doi: 10.1007/s10562-007-9237-z – volume: 37 start-page: 1482 year: 2012 ident: 36339_CR1 publication-title: Int. J. Hydrog. Energy doi: 10.1016/j.ijhydene.2011.10.004 – volume: 21 start-page: 84204 year: 2009 ident: 36339_CR76 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/21/8/084204 – volume: 38 start-page: 1087 year: 2021 ident: 36339_CR8 publication-title: Korean J. Chem. Eng. doi: 10.1007/s11814-021-0767-7 – volume: 211 start-page: 167 year: 2017 ident: 36339_CR51 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2017.04.043 – volume: 439 start-page: 91 year: 2007 ident: 36339_CR55 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2007.03.044 – volume: 10 start-page: 5614 year: 2020 ident: 36339_CR20 publication-title: ACS Catal. doi: 10.1021/acscatal.0c00954 – volume: 6 start-page: 15 year: 1996 ident: 36339_CR68 publication-title: Comput. Mater. Sci. doi: 10.1016/0927-0256(96)00008-0 – volume: 47 start-page: 558 year: 1993 ident: 36339_CR70 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.558 – volume: 60 start-page: 18560 year: 2021 ident: 36339_CR9 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/acs.iecr.1c00843 – volume: 2 start-page: 1078 year: 2019 ident: 36339_CR19 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0368-6 – volume: 41 start-page: 5812 year: 2007 ident: 36339_CR60 publication-title: Environ. Sci. Technol. doi: 10.1021/es0700350 – volume: 142 start-page: 5709 year: 2020 ident: 36339_CR63 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b13349 – volume: 9 start-page: 192 year: 2009 ident: 36339_CR33 publication-title: Cryst. Growth Des. doi: 10.1021/cg8002096 – volume: 6 start-page: 1 year: 2015 ident: 36339_CR25 publication-title: Nat. Commun. – volume: 64 start-page: 754171 year: 2001 ident: 36339_CR41 publication-title: Phys. Rev. B Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.64.075417 – volume: 59 start-page: 1758 year: 1999 ident: 36339_CR71 publication-title: Phys. Rev. B - Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.59.1758 – volume: 19 start-page: 535 year: 1994 ident: 36339_CR4 publication-title: Int. J. Hydrog. Energy doi: 10.1016/0360-3199(94)90009-4 – volume: 48 start-page: 237 year: 2004 ident: 36339_CR21 publication-title: Appl. Catal. B Environ. doi: 10.1016/j.apcatb.2003.10.013 – volume: 28 start-page: 57 year: 1986 ident: 36339_CR49 publication-title: Appl. Catal. doi: 10.1016/S0166-9834(00)82492-6 – volume: 91 start-page: 10 year: 2017 ident: 36339_CR27 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2016.12.007 – volume: 49 start-page: 271 year: 1994 ident: 36339_CR5 publication-title: J. Power Sources doi: 10.1016/0378-7753(93)01822-Y – volume: 136 start-page: 126 year: 1992 ident: 36339_CR29 publication-title: J. Catal. doi: 10.1016/0021-9517(92)90112-U – volume: 443 start-page: 277 year: 1999 ident: 36339_CR47 publication-title: Surf. Sci. doi: 10.1016/S0039-6028(99)01026-2 – volume: 34 start-page: 214007 year: 2022 ident: 36339_CR64 publication-title: J. Phy. Condens. Matter doi: 10.1088/1361-648X/ac5704 – volume: 11 start-page: 2228 year: 2009 ident: 36339_CR57 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/b812376d – volume: 11 start-page: 4774 year: 2018 ident: 36339_CR17 publication-title: Nano Res. doi: 10.1007/s12274-018-2062-4 – volume: 77 start-page: 3865 year: 1996 ident: 36339_CR72 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 120 start-page: 5517 year: 2020 ident: 36339_CR28 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00042 – volume: 475 start-page: 76 year: 2014 ident: 36339_CR43 publication-title: Appl. Catal. A Gen. doi: 10.1016/j.apcata.2014.01.026 – volume: 130 start-page: 6047 year: 2008 ident: 36339_CR65 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja801021w – volume: 151 start-page: 62 year: 2015 ident: 36339_CR66 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2014.11.012 – volume: 7 start-page: 526 year: 2021 ident: 36339_CR40 publication-title: ChemNanoMat doi: 10.1002/cnma.202100037 – volume: 50 start-page: 17953 year: 1994 ident: 36339_CR69 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 134 start-page: 64111 year: 2011 ident: 36339_CR79 publication-title: J. Chem. Phys. doi: 10.1063/1.3553716 – volume: 11 start-page: 6320 year: 2020 ident: 36339_CR62 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c01450 – volume: 60 start-page: 16120 year: 1999 ident: 36339_CR74 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.60.16120 – volume: 4 start-page: 1255 year: 2011 ident: 36339_CR6 publication-title: Energy Environ. Sci. doi: 10.1039/c0ee00809e – volume: 193 start-page: 1 year: 2018 ident: 36339_CR67 publication-title: Ultramicroscopy doi: 10.1016/j.ultramic.2018.06.003 – volume: 11 start-page: 4161 year: 2019 ident: 36339_CR32 publication-title: ChemCatChem doi: 10.1002/cctc.201900306 – volume: 143 start-page: 9105 year: 2021 ident: 36339_CR61 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.1c02859 – volume: 13 start-page: 1544 year: 2020 ident: 36339_CR37 publication-title: Nano Res. doi: 10.1007/s12274-020-2765-1 – volume: 45 start-page: 7277 year: 2006 ident: 36339_CR35 publication-title: Angew. Chem. - Int. Ed. doi: 10.1002/anie.200602393 – volume: 35 start-page: 11693 year: 2021 ident: 36339_CR18 publication-title: Energ. Fuels doi: 10.1021/acs.energyfuels.1c01261 – volume: 9 start-page: 339 year: 2007 ident: 36339_CR39 publication-title: New J. Phys doi: 10.1088/1367-2630/9/9/339 – volume: 86 start-page: 2645 year: 1990 ident: 36339_CR48 publication-title: J. Chem. Soc. Faraday Trans. doi: 10.1039/ft9908602645 – volume: 126 start-page: 8576 year: 2004 ident: 36339_CR11 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja031718s – volume: 7 start-page: 8226 year: 2019 ident: 36339_CR42 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.8b06308 – volume: 4 start-page: 934 year: 2012 ident: 36339_CR24 publication-title: Nat. Chem. doi: 10.1038/nchem.1476 – volume: 9 start-page: 64 year: 2017 ident: 36339_CR23 publication-title: Nat. Chem. doi: 10.1038/nchem.2595 – volume: 142 start-page: 14890 year: 2020 ident: 36339_CR36 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.0c03627 – volume: 113 start-page: 9901 year: 2000 ident: 36339_CR75 publication-title: J. Chem. Phys. doi: 10.1063/1.1329672 |
SSID | ssj0000391844 |
Score | 2.6796288 |
Snippet | Ammonia is regarded as an energy vector for hydrogen storage, transport and utilization, which links to usage of renewable energies. However, efficient... Ruthenium-based materials show promising performance for ammonia decomposition, yet the underlying mechanism remains to be further explored. Here the authors... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 647 |
SubjectTerms | 119/118 147/137 639/301/299 639/4077/4079/4088/4089 639/638/77/887 Ammonia Bimetals Catalysts Clusters Decomposition Dehydrogenation Dispersion Humanities and Social Sciences Hydrogen storage Magnesium oxide Metals multidisciplinary Nanoparticles Renewable energy Ruthenium Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1ba9VAEB6kIPgiar1Ea1nBB0WXJtlLso_WWorQCmKhb8teJnqg5khzDqX_3tlNzrHH64uv2U1YZmd2vsnMfgPwvKqiVqp1vHIeudTBc2NU4A0a71uFlcv9U45P9NGpfH-mzq61-ko1YSM98Ci4vaBQhzJgE9KlR-0dRik9VlWoGt-NTKDk864FU_kMFoZCFzndkilFuzfIfCaQi-JCC2H45YYnyoT9v0OZvxZL_pQxzY7o8A7cnhAkezOu_C7cwP4e3Bx7Sl5tw8nBLJF_DxjZsLzoXED2cckoWMWv_hwHNu_Z8ecPL-jweckIsLL8_-aKvsVcUsmZYxFTnflUzHUfTg_ffXp7xKemCTxQLLLgSsYYnA9KRJQRMeURneyiEK6uaT8If0mjvfCl7wxJpERCWNFRZNNELFGJB7DVz3t8BKyuE6QybexKlB0BkZBuzvtE8UaG3IkCqpUAbZgYxVNji3ObM9uitaPQLQndZqHbywJerd_5NvJp_HX2ftqX9czEhZ0fkIbYSUPsvzSkgJ3VrtrJQAdbN4nWh5xzW8Cz9TCZVsqXuB7nyzwnXfQlTFzAw1EJ1isRupHaaFVAs6EeG0vdHOlnXzJ9N_n_mmBgAa9XivRjWX8WxeP_IYoncKtOFpCqzvUObC0ulviUQNXC72b7-Q5NFB2k priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCIkXxE3agozEAwiiJvGR5AlxLRVSi4So1DfLx6RdqSRls6uq_54ZJ5tqOfqaOJE9nhl_9oy_YexlngetVGXT3DpIpfYurWvl0xJq5yoFuY31Uw4O9f6R_HqsjscDt35Mq1z7xOioQ-fpjHyvKImHBb1p9e78V0pVoyi6OpbQuMlu5bjSUEpXNfsynbEQ-3kl5XhXJhPVXi-jZ8CFKhVaiDq92FiPIm3_v7Dm3ymTf8RN43I0u8fujjiSvx8m_j67Ae0DdnuoLHn5kB1-mhMFeA-B96tFYz3w7yuOW1b46c6g513LD06-vUIX9JojbOXxFOcS_8UtjXRueQDKNh9Tuh6xo9nnHx_307F0QupxR7JMlQzBW-eVCCADAEUTrWyCELYocFYQhclaO-Ey19QokQwQZwWL-5syQAZKPGZbbdfCU8aLgoBVXYUmA9kgHPF0f94R0RuacyMSlq8FaPzIK07lLc5MjG-LygxCNyh0E4VuLhL2ZvrmfGDVuLb1B5qXqSUxYscH3eLEjAZmvALtMw-lp8ux2lkIUuJAc5-XrslkwnbXs2pGM-3NlVIl7MX0Gg2Moia2hW4V29B1X0TGCXsyKMHUE6FLqWutElZuqMdGVzfftPPTSOKNKKBAMJiwt2tFuurW_0Wxff0odtidgnSbssr1LttaLlbwDEHT0j2PlvEbnesUHg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qi-BLqfe1VSL4oOji7uayu4_HSykHWkEt9C3kMlsPtHvKuVD6751kL3K0Cr5ukiWZzGS-JDNfAF7luVdSVibNjcVUKGfTupYuLbG2tpKYm_h-yvGJOjoV0zN5tgXFkAsTg_YjpWVcpofosPdLEU2aPEzKFed1en0HdgJVO-n2zmQy_TYdT1YC53klRJ8hk_HqlsYbXiiS9d-GMP8MlPzttjQ6ocM92O3RI5t0_b0PW9g-gLvde5I3D-Hk0ywQfy_Rs-V60RiH7Oua0UYVLy0Nj81bdnz-5TUtPG8YgVUWz25u6F_MBHWcGeYxxJj3gVyP4PTw8_ePR2n_YELqaB-ySqXw3hnrJPcoPGK4QzSi8ZyboqC5IOwlamW5zWxTk0QyJHTlDe1qSo8ZSv4Yttt5i0-BFUWAU3XlmwxFQyDEhax5G-jdyIgbnkA-CFC7nk08PGpxoeOtNq90J3RNQtdR6Po6gbdjm6uOS-OftT-EeRlrBh7s-GG-ONe9XmgnUbnMYelCSqyyBr0QNNDc5aVtMpHAwTCrujfOpS7KQOlDjrlK4OVYTGYV7kpMi_N1rBOSfAkPJ_CkU4KxJ1yVQtVKJlBuqMdGVzdL2tmPSN1Nvr8gCJjAu0GRfnXr76J49n_V9-FeEXQ9xJarA9heLdb4nKDTyr7obeUnTk0TwQ priority: 102 providerName: Springer Nature |
Title | Dispersed surface Ru ensembles on MgO(111) for catalytic ammonia decomposition |
URI | https://link.springer.com/article/10.1038/s41467-023-36339-w https://www.ncbi.nlm.nih.gov/pubmed/36746965 https://www.proquest.com/docview/2773481288 https://www.proquest.com/docview/2774269161 https://pubmed.ncbi.nlm.nih.gov/PMC9902439 https://doaj.org/article/c5e6c0ce7c13476baed44be11c17bf04 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3di9NAEB_uA8EX8dvoWSL4oGg0yW42yYNIr149Cq1yWuhb2I_JWaip9oOz_72zm6RSrYIvCexuwmZ2JvObnZ0ZgKdRZESSZDKIpMKAC62CPE90kGKuVJZgJF39lOFInI_5YJJMDqAtd9QQcLnXtLP1pMaL2asf3zdvSeDf1CHj2esld-JO2idggrE8uDqEY9JMqa1oMGzgvvszs5wMGutojkMeBTSANXE0-1-zo6tcSv99OPTP45S_-VSdqurfhBsNxvS7NVPcggOsbsO1uurk5g6M3k1tevAlGn-5XpRSo3-x9smcxa9qhkt_XvnDyw_P6Pf03CdI67sdng29y5eWaafSN2hPojfHve7CuH_2uXceNGUVAk3WyipIuDFaKp0wg9wgWk-j5KVhTMYxrRghNJ4LxVSoypwoEiJhMCPJ9kkNhpiwe3BUzSt8AH4cW9CVZ6YMkZcEVbSNrVc2CRyJesk8iFoCFrrJOW5LX8wK5_tmWVETvSCiF47oxZUHL7bPfKszbvxz9Kldl-1Imy3bNcwXl0UjfIVOUOhQY6pt4KxQEg3n9KGRjlJVhtyDk3ZVi5YDizi1iX9IfWcePNl2k_BZj4qscL52Y2woMKFmD-7XTLCdCRMpF7lIPEh32GNnqrs91fSLS_BNCCEmoOjBy5aRfk3r76R4-F-EewTXY8vq9gC6OIGj1WKNjwlfrVQHDtNJStes_74Dx93u4NOA7qdno48X1NoTvY7bueg44foJixYkKw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELaqIgQviJtAASOBBIKoOZzrASGgLFvaXSTUSn1zfUzKSiUpm12t9k_xG5lxkq2Wo299TZzIHo_Hnz3Hx9jzMLRpkuTKD5UGX6RG-0WRGD-DQus8gVA5_pTROB0eii9HydEG-9XnwlBYZW8TnaG2taE78u0oozosaE3zd2c_fWKNIu9qT6HRqsUeLBd4ZGve7u7g_L6IosGng49Dv2MV8A2C9ZmfCGuN0iaJLQgLQI42JUobxyqKsMMIUESR6lgHuiT--QAQgliF0D-zEACxRKDJvyJi3MkpM33weXWnQ9XWcyG63Jwgzrcb4SwRbox-nOIX_mJt_3M0Af_Ctn-HaP7hp3Xb3-Amu9HhVv6-VbRbbAOq2-xqy2S5vMPGOxMqOd6A5c18WioD_Nuc4xEZfuhTaHhd8dHJ15do8l5xhMnc3Rot8V9ckWQnilug6PYuhOwuO7wUod5jm1VdwQPGo4iAXJHbMgBRIvwxlK-vqbAcmo8y9ljYC1Caro450WmcSudPj3PZCl2i0KUTulx47PXqm7O2iseFrT_QvKxaUgVu96CenshuQUuTQGoCA5mhZNxUK7BC4EBDE2a6DITHtvpZlZ1ZaOS5Envs2eo1Lmjy0qgK6rlrQ-nFiMQ9dr9VglVP4jQTaZEmHsvW1GOtq-tvqsl3VzQcUUeE4NNjb3pFOu_W_0Xx8OJRPGXXhgejfbm_O957xK5HpOcU0Z5usc3ZdA6PEbDN9BO3Sjg7vuxl-RsBOVIg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9NAEF5VqUC8IG4MBRYJJBBY8bFe2w8IUdKopTRUFZX6tuwxLpGKU-JEUf4av44ZH6nC0be-xutoPTsz--3O8TH2IgydTJJM-6E24AtpjZ_nifVTyI3JEgh1zZ9yMJK7x-LTSXKywX51tTCUVtn5xNpRu4mlO_J-lFIfFvSmWb9o0yIOB8P35z99YpCiSGtHp9GoyD4sF3h8q97tDXCtX0bRcOfrx12_ZRjwLQL3mZ8I56w2NokdCAdAQTctChfHOopw8ghWRC5NbAJTEBd9AAhHnMZjQOogAGKMQPe_mdKpqMc2t3dGh0erGx7qvZ4J0VbqBHHWr0Ttl3Cb9GMZx7m_WNsNa9KAfyHdvxM2_4ja1pvh8Ba72aJY_qFRu9tsA8o77FrDa7m8y0aDMTUgr8Dxaj4ttAV-NOd4YIYf5gwqPin5wemXV-gAX3MEzby-Q1rif3FNsh1r7oBy3duEsnvs-ErEep_1ykkJDxmPIoJ1eeaKAESBYMhS9b6hNnPoTIrYY2EnQGXbruZErnGm6uh6nKlG6AqFrmqhq4XH3qzeOW96elw6epvWZTWS-nHXP0ymp6o1b2UTkDawkFoqzZVGgxMCPzS0YWqKQHhsq1tV1TqJSl2otMeerx6jeVPMRpcwmddjqNgYcbnHHjRKsJpJLFMhc5l4LF1Tj7Wprj8px9_rFuKIQSKEoh572ynSxbT-L4pHl3_FM3YdTVJ93hvtP2Y3IlJzSm-XW6w3m87hCaK3mXnamgln367aMn8DcMRXsg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dispersed+surface+Ru+ensembles+on+MgO%28111%29+for+catalytic+ammonia+decomposition&rft.jtitle=Nature+communications&rft.au=Fang%2C+Huihuang&rft.au=Wu%2C+Simson&rft.au=Ayvali%2C+Tugce&rft.au=Zheng%2C+Jianwei&rft.date=2023-02-06&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=14&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-023-36339-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1038_s41467_023_36339_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |