Achieving ultrahigh triboelectric charge density for efficient energy harvesting

With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 8; no. 1; pp. 88 - 8
Main Authors Wang, Jie, Wu, Changsheng, Dai, Yejing, Zhao, Zhihao, Wang, Aurelia, Zhang, Tiejun, Wang, Zhong Lin
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 20.07.2017
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum ( P  ~ 10 −6  torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m −2 , which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy. Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.
AbstractList With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum ( P  ~ 10 −6  torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m −2 , which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy. Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.
With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum ( P  ~ 10 −6  torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m −2 , which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.
Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.
With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10  torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m , which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.
With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10-6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m-2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10-6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m-2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.
With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10−6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m−2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.
ArticleNumber 88
Author Zhang, Tiejun
Dai, Yejing
Wang, Aurelia
Wu, Changsheng
Zhao, Zhihao
Wang, Zhong Lin
Wang, Jie
Author_xml – sequence: 1
  givenname: Jie
  surname: Wang
  fullname: Wang, Jie
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), School of Materials Science and Engineering, Georgia Institute of Technology
– sequence: 2
  givenname: Changsheng
  surname: Wu
  fullname: Wu, Changsheng
  organization: School of Materials Science and Engineering, Georgia Institute of Technology
– sequence: 3
  givenname: Yejing
  surname: Dai
  fullname: Dai, Yejing
  organization: School of Materials Science and Engineering, Georgia Institute of Technology, Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Material Science and Engineering, Tianjin University
– sequence: 4
  givenname: Zhihao
  surname: Zhao
  fullname: Zhao, Zhihao
  organization: Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Material Science and Engineering, Tianjin University
– sequence: 5
  givenname: Aurelia
  surname: Wang
  fullname: Wang, Aurelia
  organization: School of Materials Science and Engineering, Georgia Institute of Technology
– sequence: 6
  givenname: Tiejun
  surname: Zhang
  fullname: Zhang, Tiejun
  organization: School of Materials Science and Engineering, Georgia Institute of Technology
– sequence: 7
  givenname: Zhong Lin
  surname: Wang
  fullname: Wang, Zhong Lin
  email: zhong.wang@mse.gatech.edu
  organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), School of Materials Science and Engineering, Georgia Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28729530$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1r3DAQFSWlSbb5Az0UQy-9uNW37UshhLYJBNpDexayNLK1eKVUshf230ebTcMm0EoIDdJ7TzOjd45OQgyA0DuCPxHM2s-ZEy6bGpOyMGGk5q_QGcWc1KSh7OQoPkUXOa9xGawjLedv0CltG9oJhs_Qz0szetj6MFTLNCc9-mGs5uT7CBOYEpjKjDoNUFkI2c-7ysVUgXPeeAhzBQHSsKsKZAt5LjJv0WunpwwXj_sK_f729dfVdX374_vN1eVtbSSWcy1K8hakBtryDjhI0XBsgVsNTc9b0LJz3AmqTce0k9IKblsnHHWdlH0PbIVuDro26rW6S36j005F7dXDQUyD0mn2ZgJlW9kJoFQLqzkD2WnCtC0NkLjHTPKi9eWgdbf0G7CmFJb09Ez0-U3woxriVglBuqZ8xwp9fBRI8c9SGqE2PhuYJh0gLlmRjlKByyQF-uEFdB2XFEqr9ijcNA1jbUG9P87oKZW_H1cA9AAwKeacwD1BCFZ7g6iDQVQxiHowiNrX2b4gGT_r2cd9VX76P5UdqLm8EwZIR2n_m3UPgFzPzQ
CitedBy_id crossref_primary_10_1007_s11705_022_2271_y
crossref_primary_10_1186_s40580_018_0163_0
crossref_primary_10_5796_electrochemistry_24_00106
crossref_primary_10_1016_j_nanoen_2018_11_022
crossref_primary_10_1002_adfm_202306022
crossref_primary_10_1002_anie_202403269
crossref_primary_10_1002_smll_202301952
crossref_primary_10_1002_aenm_202201454
crossref_primary_10_1016_j_nanoen_2021_106418
crossref_primary_10_1039_D1EE01641E
crossref_primary_10_1016_j_nanoen_2021_106891
crossref_primary_10_1002_smll_202308469
crossref_primary_10_3390_polym12122854
crossref_primary_10_1002_aenm_202101958
crossref_primary_10_1039_D1EE02623B
crossref_primary_10_1109_TITS_2024_3355384
crossref_primary_10_1016_j_nanoen_2023_109010
crossref_primary_10_1038_s41467_021_25047_y
crossref_primary_10_1016_j_nanoen_2018_12_080
crossref_primary_10_1016_j_xcrp_2020_100142
crossref_primary_10_1002_adfm_201806379
crossref_primary_10_3390_mi16010011
crossref_primary_10_1016_j_nanoen_2018_11_037
crossref_primary_10_1002_anie_202014241
crossref_primary_10_1002_smtd_202300261
crossref_primary_10_1016_j_nanoen_2021_106303
crossref_primary_10_1016_j_nanoen_2021_106425
crossref_primary_10_1016_j_nanoen_2018_12_076
crossref_primary_10_1039_D3RA05932D
crossref_primary_10_1557_mre_2020_2
crossref_primary_10_1007_s40684_019_00134_0
crossref_primary_10_1016_j_cap_2019_10_016
crossref_primary_10_1039_C9EE01267B
crossref_primary_10_1038_s41467_022_33766_z
crossref_primary_10_1039_D1EE01349A
crossref_primary_10_1002_adfm_202103559
crossref_primary_10_1002_nano_202000084
crossref_primary_10_1021_acsomega_2c07688
crossref_primary_10_1016_j_nanoen_2018_04_059
crossref_primary_10_1021_acsnano_8b08274
crossref_primary_10_3390_nano12223955
crossref_primary_10_1002_smtd_202301682
crossref_primary_10_1039_D3EE03216G
crossref_primary_10_1016_j_nanoen_2021_105787
crossref_primary_10_1016_j_nanoen_2024_109508
crossref_primary_10_1038_s41467_024_48456_1
crossref_primary_10_1016_j_nanoen_2020_105381
crossref_primary_10_1002_aenm_201802159
crossref_primary_10_1016_j_nanoen_2019_05_057
crossref_primary_10_1016_j_nanoen_2018_12_042
crossref_primary_10_1016_j_nanoen_2024_110608
crossref_primary_10_1016_j_nanoen_2020_105387
crossref_primary_10_1016_j_decarb_2024_100053
crossref_primary_10_1063_5_0011539
crossref_primary_10_1016_j_nanoen_2018_12_062
crossref_primary_10_1007_s40820_023_01094_6
crossref_primary_10_1021_acsnano_0c01865
crossref_primary_10_1007_s12274_021_3724_1
crossref_primary_10_1016_j_nanoen_2018_11_012
crossref_primary_10_1007_s40544_020_0390_3
crossref_primary_10_1021_acsaelm_0c01142
crossref_primary_10_1002_adfm_202112155
crossref_primary_10_1038_s41467_024_50518_3
crossref_primary_10_1002_adma_201803580
crossref_primary_10_1016_j_nanoen_2022_107916
crossref_primary_10_1007_s11431_018_9386_9
crossref_primary_10_1016_j_nanoen_2017_11_080
crossref_primary_10_1016_j_mattod_2024_08_013
crossref_primary_10_1016_j_nanoen_2021_106649
crossref_primary_10_1016_j_nanoen_2021_106880
crossref_primary_10_1002_adem_202001187
crossref_primary_10_1016_j_nanoen_2020_105373
crossref_primary_10_1016_j_nanoen_2020_105011
crossref_primary_10_1039_D4EE01119H
crossref_primary_10_1016_j_nanoen_2018_12_054
crossref_primary_10_1021_acsami_8b02495
crossref_primary_10_1039_C9EE03307F
crossref_primary_10_1016_j_nanoen_2019_103960
crossref_primary_10_1016_j_nanoen_2024_109441
crossref_primary_10_1016_j_matt_2023_08_022
crossref_primary_10_1016_j_nanoen_2024_110436
crossref_primary_10_1016_j_nanoen_2025_110713
crossref_primary_10_1038_s41467_019_08846_2
crossref_primary_10_1016_j_nanoen_2019_05_073
crossref_primary_10_1038_s41467_020_14846_4
crossref_primary_10_1002_adfm_202412984
crossref_primary_10_1016_j_nanoen_2018_03_064
crossref_primary_10_1016_j_mattod_2019_05_016
crossref_primary_10_1016_j_mattod_2024_08_001
crossref_primary_10_1002_aesr_202400002
crossref_primary_10_1007_s11804_025_00651_2
crossref_primary_10_1016_j_nanoen_2018_12_025
crossref_primary_10_1038_s41467_021_25043_2
crossref_primary_10_1038_s41467_023_38396_7
crossref_primary_10_1016_j_nanoen_2022_108063
crossref_primary_10_1016_j_xcrp_2020_100185
crossref_primary_10_34133_2022_9812865
crossref_primary_10_1039_D2CP05522H
crossref_primary_10_1002_adma_202409833
crossref_primary_10_1002_admt_202300703
crossref_primary_10_1016_j_cej_2024_150542
crossref_primary_10_1016_j_nanoen_2017_11_056
crossref_primary_10_1093_nsr_nwz025
crossref_primary_10_1002_ente_202000400
crossref_primary_10_1016_j_nanoen_2019_04_025
crossref_primary_10_1016_j_nanoen_2020_105599
crossref_primary_10_1016_j_nanoen_2020_105358
crossref_primary_10_1016_j_mattod_2025_01_007
crossref_primary_10_1557_s43577_024_00858_8
crossref_primary_10_1002_ange_202403269
crossref_primary_10_1016_j_nanoen_2018_03_051
crossref_primary_10_1021_acsnano_8b03824
crossref_primary_10_34133_2021_6849171
crossref_primary_10_1016_j_nanoen_2021_106742
crossref_primary_10_1016_j_nanoen_2020_105112
crossref_primary_10_1016_j_ceramint_2020_07_329
crossref_primary_10_1039_D3MH01369C
crossref_primary_10_1088_2631_7990_ad4fca
crossref_primary_10_1021_acsaelm_3c01381
crossref_primary_10_1002_adfm_202007221
crossref_primary_10_1002_adfm_201909384
crossref_primary_10_1021_acsnano_8b01557
crossref_primary_10_1016_j_nanoen_2019_103864
crossref_primary_10_1016_j_nanoen_2020_105343
crossref_primary_10_1002_adfm_201806351
crossref_primary_10_1038_s41467_019_09461_x
crossref_primary_10_1038_s41467_021_25046_z
crossref_primary_10_1002_adfm_202102431
crossref_primary_10_1016_j_nanoen_2023_108385
crossref_primary_10_1021_acssensors_4c00401
crossref_primary_10_3390_mi14081592
crossref_primary_10_1016_j_ccr_2021_214049
crossref_primary_10_1002_smtd_202300562
crossref_primary_10_1038_s41570_019_0115_1
crossref_primary_10_1002_aisy_202000117
crossref_primary_10_1002_adfm_202101348
crossref_primary_10_1002_aenm_202404147
crossref_primary_10_3390_polym14050995
crossref_primary_10_1016_j_xcrp_2021_100707
crossref_primary_10_1016_j_nanoen_2018_03_073
crossref_primary_10_1016_j_nanoen_2023_108388
crossref_primary_10_1002_aelm_201800413
crossref_primary_10_1039_C7LC01259D
crossref_primary_10_1016_j_nanoen_2024_110359
crossref_primary_10_1016_j_nanoen_2024_110116
crossref_primary_10_1016_j_nanoen_2025_110758
crossref_primary_10_1021_acsnano_9b10142
crossref_primary_10_1039_D0CS00033G
crossref_primary_10_1016_j_nanoen_2017_07_045
crossref_primary_10_1016_j_nanoen_2019_04_075
crossref_primary_10_34133_2022_9809406
crossref_primary_10_1016_j_nanoen_2018_09_057
crossref_primary_10_1007_s11705_020_1956_3
crossref_primary_10_1016_j_carbon_2024_119926
crossref_primary_10_1016_j_ecmx_2025_100976
crossref_primary_10_1002_adfm_202413359
crossref_primary_10_1016_j_nanoen_2022_107745
crossref_primary_10_1039_D2SE00947A
crossref_primary_10_1002_gch2_201800096
crossref_primary_10_1016_j_nanoen_2021_106133
crossref_primary_10_1016_j_eurpolymj_2020_110163
crossref_primary_10_1021_acsami_1c05796
crossref_primary_10_1111_ijac_15015
crossref_primary_10_1016_j_nanoen_2021_106257
crossref_primary_10_1016_j_nanoen_2021_106137
crossref_primary_10_1039_D4TA07756C
crossref_primary_10_1016_j_nanoen_2021_106014
crossref_primary_10_1016_j_nanoen_2024_110102
crossref_primary_10_1039_D2NR03445J
crossref_primary_10_1002_adma_202405310
crossref_primary_10_1002_advs_202206243
crossref_primary_10_1038_s41467_023_36675_x
crossref_primary_10_1039_C8EE00188J
crossref_primary_10_1007_s11356_022_20854_2
crossref_primary_10_1016_j_jiec_2023_08_048
crossref_primary_10_1038_s41467_018_06045_z
crossref_primary_10_1002_aenm_201901731
crossref_primary_10_1002_smtd_201800078
crossref_primary_10_1126_sciadv_abj9220
crossref_primary_10_1080_19475411_2021_1973143
crossref_primary_10_1016_j_nanoen_2022_107978
crossref_primary_10_1039_D2NH00229A
crossref_primary_10_1016_j_nanoen_2018_01_021
crossref_primary_10_1002_adfm_202203884
crossref_primary_10_3390_nanoenergyadv1020007
crossref_primary_10_3390_nanoenergyadv3030013
crossref_primary_10_1016_j_triboint_2018_09_026
crossref_primary_10_1126_sciadv_add0464
crossref_primary_10_1021_acsnano_1c00233
crossref_primary_10_1002_aenm_202400672
crossref_primary_10_1016_j_polymer_2025_128171
crossref_primary_10_1016_j_isci_2024_108878
crossref_primary_10_1039_D0RA02181D
crossref_primary_10_1002_adfm_201905816
crossref_primary_10_1016_j_mattod_2023_04_006
crossref_primary_10_1021_acsnano_8b02562
crossref_primary_10_1039_D3EE00539A
crossref_primary_10_1002_adfm_201901102
crossref_primary_10_1002_adma_202308424
crossref_primary_10_1016_j_nanoen_2018_01_032
crossref_primary_10_1039_D4TA02651A
crossref_primary_10_1016_j_nanoen_2019_103944
crossref_primary_10_1039_D0SC05145D
crossref_primary_10_1002_aenm_202302699
crossref_primary_10_1016_j_nanoen_2019_04_089
crossref_primary_10_1016_j_nanoen_2019_04_083
crossref_primary_10_1038_s41467_022_31822_2
crossref_primary_10_1039_C9EE01078E
crossref_primary_10_1002_adfm_202402233
crossref_primary_10_1587_elex_18_20210430
crossref_primary_10_1016_j_nanoen_2023_108906
crossref_primary_10_1002_admt_202100858
crossref_primary_10_3390_ma17091964
crossref_primary_10_1016_j_nanoen_2022_107637
crossref_primary_10_1016_j_nanoen_2019_103956
crossref_primary_10_1016_j_nanoen_2019_103957
crossref_primary_10_1002_adma_201802898
crossref_primary_10_26599_NR_2025_94907039
crossref_primary_10_1039_C8MH01259H
crossref_primary_10_4028_www_scientific_net_SSP_281_598
crossref_primary_10_1039_D1ME00180A
crossref_primary_10_1039_D3TB01481A
crossref_primary_10_31436_iiumej_v24i2_2554
crossref_primary_10_1088_1361_6528_ac8f4f
crossref_primary_10_1002_adfm_202416944
crossref_primary_10_1002_inf2_12534
crossref_primary_10_1155_2018_6545803
crossref_primary_10_1016_j_ijmecsci_2024_109280
crossref_primary_10_1002_adfm_202204304
crossref_primary_10_1016_j_isci_2023_108261
crossref_primary_10_3934_matersci_2025001
crossref_primary_10_1002_adma_202109355
crossref_primary_10_1038_s41467_020_15368_9
crossref_primary_10_1007_s12274_023_5733_8
crossref_primary_10_1002_adfm_201808114
crossref_primary_10_1016_j_nanoen_2019_02_035
crossref_primary_10_1021_acsami_0c17512
crossref_primary_10_1063_5_0025001
crossref_primary_10_1016_j_nanoen_2022_107937
crossref_primary_10_3390_nano10122544
crossref_primary_10_1016_j_nanoen_2021_106227
crossref_primary_10_1021_acsami_2c17722
crossref_primary_10_1002_adma_202210915
crossref_primary_10_1088_1361_6528_ad0983
crossref_primary_10_1039_D0EE00922A
crossref_primary_10_1016_j_nanoen_2019_03_074
crossref_primary_10_1016_j_nanoen_2020_105074
crossref_primary_10_1002_smll_202007289
crossref_primary_10_1186_s11671_018_2764_2
crossref_primary_10_1002_aenm_201900772
crossref_primary_10_1016_j_nanoen_2018_09_036
crossref_primary_10_1016_j_scib_2021_03_021
crossref_primary_10_1039_D0NR02925D
crossref_primary_10_1002_aenm_201901987
crossref_primary_10_1016_j_joule_2017_09_004
crossref_primary_10_1002_aenm_201802190
crossref_primary_10_1016_j_isci_2022_103977
crossref_primary_10_1021_acs_chemrev_3c00408
crossref_primary_10_1039_D2NJ06351D
crossref_primary_10_1016_j_nanoen_2019_103909
crossref_primary_10_1002_adfm_202409088
crossref_primary_10_1021_acsnano_8b07935
crossref_primary_10_1002_adfm_202311502
crossref_primary_10_1016_j_nanoen_2022_107844
crossref_primary_10_1021_acsaem_3c00635
crossref_primary_10_1016_j_nanoen_2019_103904
crossref_primary_10_1016_j_nanoen_2022_107847
crossref_primary_10_1016_j_ymssp_2023_110503
crossref_primary_10_1016_j_nanoen_2018_09_039
crossref_primary_10_1016_j_nanoen_2020_105067
crossref_primary_10_1016_j_nanoen_2022_106994
crossref_primary_10_1002_adfm_202204322
crossref_primary_10_1002_advs_202408718
crossref_primary_10_1080_19475411_2024_2352481
crossref_primary_10_1002_adma_201706790
crossref_primary_10_1016_j_apsusc_2018_09_249
crossref_primary_10_1002_admt_202000289
crossref_primary_10_1002_advs_202206467
crossref_primary_10_1002_mame_202000276
crossref_primary_10_1016_j_nanoen_2024_110480
crossref_primary_10_1016_j_xcrp_2024_102025
crossref_primary_10_1109_TIE_2022_3220848
crossref_primary_10_1002_aenm_201702649
crossref_primary_10_1002_adfm_202309421
crossref_primary_10_1021_acsami_2c11081
crossref_primary_10_1002_eom2_12049
crossref_primary_10_1016_j_nanoen_2019_02_058
crossref_primary_10_1002_ente_202400834
crossref_primary_10_1002_adfm_202411020
crossref_primary_10_1016_j_nanoen_2019_01_029
crossref_primary_10_1002_adfm_202111662
crossref_primary_10_1002_adfm_202007872
crossref_primary_10_1016_j_nanoen_2019_01_023
crossref_primary_10_1016_j_nanoen_2019_103912
crossref_primary_10_1088_2631_7990_ace669
crossref_primary_10_1039_D4NA00340C
crossref_primary_10_1126_sciadv_abg7595
crossref_primary_10_3390_s24123817
crossref_primary_10_1016_j_jmmm_2021_168609
crossref_primary_10_1002_adfm_202208277
crossref_primary_10_1002_admt_202301309
crossref_primary_10_1002_adma_202105882
crossref_primary_10_1002_aenm_202003616
crossref_primary_10_1007_s12598_023_02518_3
crossref_primary_10_1021_acsami_8b19599
crossref_primary_10_1021_acsnano_1c07480
crossref_primary_10_21303_2461_4262_2023_002647
crossref_primary_10_1016_j_nanoen_2020_104513
crossref_primary_10_1016_j_nanoen_2023_108836
crossref_primary_10_1016_j_nanoen_2020_105725
crossref_primary_10_1038_s41467_019_13569_5
crossref_primary_10_1002_adfm_201906890
crossref_primary_10_1002_ange_201806658
crossref_primary_10_1002_adma_202302954
crossref_primary_10_1002_smll_202301381
crossref_primary_10_1002_aenm_202002756
crossref_primary_10_1007_s11433_019_9643_0
crossref_primary_10_1002_advs_202001757
crossref_primary_10_1039_C9TA01249D
crossref_primary_10_1021_acsami_7b15238
crossref_primary_10_1021_acs_iecr_0c01117
crossref_primary_10_1126_sciadv_aav6437
crossref_primary_10_1016_j_nanoen_2023_108728
crossref_primary_10_1039_D1TA02966E
crossref_primary_10_1021_acsaem_2c03027
crossref_primary_10_1039_D2TA03232E
crossref_primary_10_1039_D0TA04612D
crossref_primary_10_1016_j_nanoen_2022_107480
crossref_primary_10_1016_j_nanoen_2019_104079
crossref_primary_10_1002_eom2_12093
crossref_primary_10_3390_mi10010017
crossref_primary_10_1016_j_nanoen_2020_104969
crossref_primary_10_1021_acsnano_1c10678
crossref_primary_10_3390_machines10030215
crossref_primary_10_1016_j_matt_2021_10_019
crossref_primary_10_1088_2631_7990_ad39ba
crossref_primary_10_1016_j_nanoen_2023_108616
crossref_primary_10_3390_nanoenergyadv2010006
crossref_primary_10_1039_C7TA10175A
crossref_primary_10_1016_j_nanoen_2021_106199
crossref_primary_10_1039_D0TA12073A
crossref_primary_10_1002_adfm_201900098
crossref_primary_10_1016_j_cej_2023_146571
crossref_primary_10_1016_j_smaim_2020_07_002
crossref_primary_10_1021_acsenergylett_0c01062
crossref_primary_10_1016_j_jmst_2024_08_047
crossref_primary_10_1016_j_apmt_2019_100496
crossref_primary_10_1039_D0NR07756A
crossref_primary_10_1080_10584587_2021_1964293
crossref_primary_10_1016_j_nanoen_2018_07_011
crossref_primary_10_1016_j_nanoen_2019_104086
crossref_primary_10_1002_admt_201800569
crossref_primary_10_1002_advs_202201098
crossref_primary_10_1016_j_isci_2020_102018
crossref_primary_10_1016_j_eml_2020_101100
crossref_primary_10_1016_j_nanoen_2023_108509
crossref_primary_10_1016_j_nanoen_2020_104602
crossref_primary_10_1515_ntrev_2024_0125
crossref_primary_10_1002_aenm_201800889
crossref_primary_10_1016_j_nanoen_2022_107112
crossref_primary_10_1002_admt_202100084
crossref_primary_10_1016_j_nanoen_2019_104011
crossref_primary_10_1016_j_elstat_2022_103685
crossref_primary_10_1021_acssuschemeng_7b03337
crossref_primary_10_1007_s10853_021_06637_z
crossref_primary_10_1002_adma_202209895
crossref_primary_10_1109_MEI_2022_9757853
crossref_primary_10_1016_j_cej_2022_139469
crossref_primary_10_1016_j_nanoen_2022_107427
crossref_primary_10_1016_j_nanoen_2022_107781
crossref_primary_10_1016_j_mtener_2024_101502
crossref_primary_10_1016_j_nanoen_2019_104379
crossref_primary_10_1002_smll_201805418
crossref_primary_10_1016_j_nanoen_2019_104017
crossref_primary_10_1002_aenm_202003802
crossref_primary_10_1002_aenm_202200963
crossref_primary_10_1016_j_nanoen_2018_06_038
crossref_primary_10_1021_acsnano_2c12458
crossref_primary_10_1002_aelm_201900725
crossref_primary_10_1016_j_nanoen_2022_107530
crossref_primary_10_1002_aenm_201802906
crossref_primary_10_1088_1361_6633_ac0a50
crossref_primary_10_3390_nanoenergyadv2020009
crossref_primary_10_1002_aenm_202000886
crossref_primary_10_1002_nano_202100003
crossref_primary_10_1039_D3EE01325A
crossref_primary_10_1016_j_nanoen_2021_106390
crossref_primary_10_1126_sciadv_adr9139
crossref_primary_10_3390_nano12101647
crossref_primary_10_1016_j_nanoen_2024_110094
crossref_primary_10_1021_acsnano_1c10755
crossref_primary_10_1002_aenm_202100050
crossref_primary_10_1088_2631_7990_ad4f32
crossref_primary_10_1021_acsnano_8b05359
crossref_primary_10_1002_adfm_201903162
crossref_primary_10_1039_C8NR05957H
crossref_primary_10_1016_j_pmatsci_2023_101206
crossref_primary_10_1039_D2TA03683E
crossref_primary_10_1002_admt_202201957
crossref_primary_10_1021_acsaelm_9b00483
crossref_primary_10_1007_s40820_021_00713_4
crossref_primary_10_1103_PhysRevLett_125_078301
crossref_primary_10_1016_j_nanoen_2019_104165
crossref_primary_10_1016_j_ijhydene_2024_02_196
crossref_primary_10_1002_smll_202201754
crossref_primary_10_37394_232010_2022_19_24
crossref_primary_10_1039_D4EE01493F
crossref_primary_10_1016_j_matt_2022_02_021
crossref_primary_10_15625_2525_2518_16244
crossref_primary_10_1016_j_cej_2022_139138
crossref_primary_10_1016_j_mattod_2023_03_010
crossref_primary_10_1016_j_nanoen_2022_107318
crossref_primary_10_1002_chem_202000722
crossref_primary_10_1002_aenm_202303874
crossref_primary_10_1016_j_nanoen_2022_108030
crossref_primary_10_3390_molecules29112443
crossref_primary_10_1007_s12274_023_5660_8
crossref_primary_10_1002_admt_202101139
crossref_primary_10_1038_s41467_020_18086_4
crossref_primary_10_1002_aenm_202002929
crossref_primary_10_1016_j_nanoen_2021_106816
crossref_primary_10_1007_s42765_023_00295_3
crossref_primary_10_1016_j_synthmet_2020_116692
crossref_primary_10_1016_j_triboint_2023_108504
crossref_primary_10_1016_j_nanoen_2023_108310
crossref_primary_10_1016_j_nanoen_2023_108796
crossref_primary_10_1002_ente_201901265
crossref_primary_10_1002_aenm_202000730
crossref_primary_10_1016_j_nanoen_2022_108143
crossref_primary_10_1587_elex_19_20220094
crossref_primary_10_1002_advs_202001116
crossref_primary_10_1039_C8TC02964D
crossref_primary_10_1016_j_nanoen_2018_06_078
crossref_primary_10_1021_acsnano_3c11087
crossref_primary_10_1038_s41467_021_25753_7
crossref_primary_10_1039_D3EE00220A
crossref_primary_10_1126_sciadv_aba9624
crossref_primary_10_1021_acsami_1c21359
crossref_primary_10_3390_s21010158
crossref_primary_10_1016_j_nanoen_2020_105439
crossref_primary_10_1016_j_jsamd_2021_08_005
crossref_primary_10_1039_D3EE01248D
crossref_primary_10_1016_j_nanoen_2020_104461
crossref_primary_10_1016_j_nanoen_2022_107056
crossref_primary_10_1002_adma_201901958
crossref_primary_10_1038_s41467_020_20045_y
crossref_primary_10_1002_admt_202000531
crossref_primary_10_1002_adma_202406058
crossref_primary_10_1002_aenm_202000965
crossref_primary_10_1016_j_xcrp_2022_101163
crossref_primary_10_1002_adfm_202401717
crossref_primary_10_1002_aenm_202000605
crossref_primary_10_1002_aenm_202203689
crossref_primary_10_1038_s41467_020_17891_1
crossref_primary_10_1016_j_ceja_2021_100237
crossref_primary_10_1021_acsmaterialslett_1c00819
crossref_primary_10_1002_smll_201905726
crossref_primary_10_1002_smm2_1093
crossref_primary_10_1016_j_nanoen_2018_05_011
crossref_primary_10_1021_acsami_9b20060
crossref_primary_10_1002_adfm_202004714
crossref_primary_10_1002_aesr_202100161
crossref_primary_10_1002_admt_202000520
crossref_primary_10_3390_nano12193510
crossref_primary_10_1007_s40544_022_0646_1
crossref_primary_10_3390_en17030638
crossref_primary_10_1016_j_nanoen_2018_06_055
crossref_primary_10_1021_acsnano_3c12035
crossref_primary_10_1088_1361_6528_ac6df5
crossref_primary_10_1016_j_apenergy_2023_120792
crossref_primary_10_1002_adfm_201808849
crossref_primary_10_1039_D4EE00482E
crossref_primary_10_3390_nano9050773
crossref_primary_10_1002_adfm_202002547
crossref_primary_10_1021_acsnano_0c10840
crossref_primary_10_1038_s41467_024_53847_5
crossref_primary_10_1002_anie_201806658
crossref_primary_10_1016_j_mseb_2023_116814
crossref_primary_10_1016_j_mattod_2020_11_012
crossref_primary_10_1002_aenm_201903024
crossref_primary_10_1016_j_device_2024_100437
crossref_primary_10_1002_ange_202014241
crossref_primary_10_1007_s10853_021_06323_0
crossref_primary_10_1002_aelm_201900464
crossref_primary_10_3390_su142114422
crossref_primary_10_1002_adma_202307918
crossref_primary_10_1002_smll_202205704
crossref_primary_10_1002_aesr_202300233
crossref_primary_10_1021_acsnano_8b08567
crossref_primary_10_1016_j_nanoen_2019_104419
crossref_primary_10_1063_5_0056948
crossref_primary_10_1021_acs_nanolett_2c00107
crossref_primary_10_1039_D1SE01582F
crossref_primary_10_1002_adma_202300283
crossref_primary_10_1016_j_nanoen_2022_107025
crossref_primary_10_3389_fmats_2022_939173
crossref_primary_10_1021_acsnano_0c09803
crossref_primary_10_1039_D4EE02447H
crossref_primary_10_1039_C8NR03774D
crossref_primary_10_1002_admt_201800588
crossref_primary_10_1021_acsnano_0c04113
crossref_primary_10_1002_adma_202109918
crossref_primary_10_1016_j_nanoen_2022_107136
crossref_primary_10_1021_acsaenm_3c00416
crossref_primary_10_1016_j_compositesb_2020_108602
crossref_primary_10_1016_j_nanoen_2023_108762
crossref_primary_10_1021_acsnano_2c05531
crossref_primary_10_1557_s43577_025_00876_0
crossref_primary_10_1002_adma_202400505
crossref_primary_10_1021_acs_nanolett_2c02995
crossref_primary_10_1016_j_mtphys_2022_100701
crossref_primary_10_1016_j_elstat_2025_104037
crossref_primary_10_1002_adfm_201904090
crossref_primary_10_1021_acsami_8b05966
crossref_primary_10_1088_1757_899X_678_1_012133
crossref_primary_10_1002_admt_201800019
crossref_primary_10_1002_adma_202001699
crossref_primary_10_1016_j_nanoen_2019_06_027
crossref_primary_10_1021_acsnano_3c02043
crossref_primary_10_1002_smll_202107222
crossref_primary_10_1021_acsami_2c19233
crossref_primary_10_1002_admt_201800140
crossref_primary_10_1038_s41467_024_50872_2
crossref_primary_10_1002_adfm_202002613
crossref_primary_10_1016_j_nanoen_2023_108651
crossref_primary_10_1002_smtd_202200066
crossref_primary_10_1126_sciadv_aay5065
crossref_primary_10_3389_fpsyt_2023_1163003
crossref_primary_10_1016_j_cej_2024_148726
crossref_primary_10_1016_j_nanoen_2022_107272
crossref_primary_10_1038_s41467_019_09464_8
crossref_primary_10_1016_j_nanoen_2018_11_058
crossref_primary_10_1002_admt_201800009
crossref_primary_10_1039_C8RA05305G
crossref_primary_10_1002_adfm_201907378
crossref_primary_10_1016_j_nanoen_2018_11_062
crossref_primary_10_1002_advs_202401636
Cites_doi 10.1016/j.nanoen.2012.01.004
10.1126/sciadv.1501624
10.1002/adfm.201504675
10.1016/j.mattod.2016.12.001
10.1002/aenm.201501593
10.1002/adfm.201600021
10.1021/acsnano.6b02076
10.1038/nenergy.2016.138
10.1021/acsnano.5b00534
10.1016/j.nanoen.2014.11.050
10.1016/j.nanoen.2016.12.061
10.1002/adma.201501934
10.1021/acsnano.6b03007
10.1021/acsnano.6b01569
10.1038/ncomms5929
10.1038/ncomms10987
10.1016/j.nanoen.2014.08.007
10.1016/j.nanoen.2016.10.025
10.1016/j.nanoen.2014.11.009
10.1016/j.nanoen.2016.07.016
10.1039/C5EE01532D
10.1016/j.nanoen.2016.09.038
10.1002/adma.201402491
10.1039/C5TA10239A
10.1039/C6TC05282G
10.1021/acsnano.6b00949
10.1021/acsami.6b00548
10.1038/ncomms9376
10.1038/ncomms9031
10.1038/542159a
10.1016/j.nanoen.2014.10.034
10.1038/ncomms12744
10.1038/ncomms12985
10.1038/nature11475
10.1126/science.1201512
10.1002/aenm.201501467
10.1038/ncomms9975
10.1038/ncomms4426
ContentType Journal Article
Copyright The Author(s) 2017
2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2017
– notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-017-00131-4
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Proquest Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef

PubMed
MEDLINE - Academic

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 8
ExternalDocumentID oai_doaj_org_article_d8695e22a5da43e69a13ad29560b0364
PMC5519710
28729530
10_1038_s41467_017_00131_4
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-5467de6ae2849e4e65740de4dae7b48ea69f4f52ac93af66d54d8f5f2f966bbe3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:23:33 EDT 2025
Thu Aug 21 18:12:43 EDT 2025
Fri Jul 11 00:03:25 EDT 2025
Wed Aug 13 10:43:01 EDT 2025
Thu Apr 03 07:10:03 EDT 2025
Thu Apr 24 23:07:30 EDT 2025
Tue Jul 01 02:21:01 EDT 2025
Fri Feb 21 02:39:47 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-5467de6ae2849e4e65740de4dae7b48ea69f4f52ac93af66d54d8f5f2f966bbe3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://www.proquest.com/docview/1920777338?pq-origsite=%requestingapplication%
PMID 28729530
PQID 1920777338
PQPubID 546298
PageCount 8
ParticipantIDs doaj_primary_oai_doaj_org_article_d8695e22a5da43e69a13ad29560b0364
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5519710
proquest_miscellaneous_1922505051
proquest_journals_1920777338
pubmed_primary_28729530
crossref_primary_10_1038_s41467_017_00131_4
crossref_citationtrail_10_1038_s41467_017_00131_4
springer_journals_10_1038_s41467_017_00131_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-07-20
PublicationDateYYYYMMDD 2017-07-20
PublicationDate_xml – month: 07
  year: 2017
  text: 2017-07-20
  day: 20
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2017
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Wang (CR10) 2017; 20
Wei, Zhu, Wang (CR26) 2014; 10
Jing, Xie, Zhu, Han, Wang (CR11) 2015; 6
Chun (CR29) 2016; 7
Guo (CR18) 2016; 6
Rodrigues, Alves, Puga, Pereira, Ventura (CR21) 2016; 30
Fan, Tian, Wang (CR2) 2012; 1
Bae (CR31) 2014; 5
Wang (CR25) 2016; 4
Chen (CR5) 2016; 2
Wang (CR38) 2015; 5
Wang (CR23) 2016; 26
Zi (CR20) 2016; 10
Chu, Majumdar (CR1) 2012; 488
Chandrasekhar, Alluri, Vivekananthan, Purusothaman, Kim (CR7) 2017; 5
Wu (CR19) 2017; 32
Wang (CR28) 2016; 7
Wang (CR27) 2014; 26
Chen (CR37) 2015; 9
Chandrasekhar, Alluri, Saravanakumar, Selvarajan, Kim (CR16) 2016; 8
Wang (CR6) 2015; 27
Yi (CR3) 2016; 2
Zhu, Chen, Zhang, Jing, Wang (CR30) 2014; 5
Wu (CR14) 2016; 10
Wang (CR32) 2016; 26
Zi (CR22) 2015; 6
Wang (CR36) 2017; 542
Zi (CR13) 2016; 7
Zhu (CR8) 2016; 27
Cui (CR34) 2016; 10
Wang, Lin, Wang (CR9) 2015; 11
Zhang, Zheng, Wang, Rahman, Zhou (CR17) 2016; 30
Lee, Gupta, Kim (CR15) 2015; 14
Baytekin (CR35) 2011; 33
Zhu, Peng, Chen, Jing, Wang (CR4) 2015; 14
Yi (CR24) 2016; 10
Niu, Wang, Yi, Zhou, Wang (CR12) 2015; 6
Wang, Chen, Lin (CR33) 2015; 8
G Zhu (131_CR30) 2014; 5
M Zhu (131_CR8) 2016; 27
J Wang (131_CR28) 2016; 7
ZL Wang (131_CR36) 2017; 542
A Chandrasekhar (131_CR16) 2016; 8
F Yi (131_CR3) 2016; 2
Y Zi (131_CR20) 2016; 10
Y Zi (131_CR13) 2016; 7
KY Lee (131_CR15) 2015; 14
ZL Wang (131_CR33) 2015; 8
S Wang (131_CR27) 2014; 26
S Chu (131_CR1) 2012; 488
N Cui (131_CR34) 2016; 10
S Wang (131_CR25) 2016; 4
S Niu (131_CR12) 2015; 6
A Chandrasekhar (131_CR7) 2017; 5
X Wang (131_CR38) 2015; 5
X Zhang (131_CR17) 2016; 30
J Bae (131_CR31) 2014; 5
J Wang (131_CR6) 2015; 27
F-R Fan (131_CR2) 2012; 1
XY Wei (131_CR26) 2014; 10
J Wang (131_CR32) 2016; 26
ZL Wang (131_CR10) 2017; 20
S Wang (131_CR9) 2015; 11
J Chun (131_CR29) 2016; 7
HT Baytekin (131_CR35) 2011; 33
J Chen (131_CR37) 2015; 9
C Wu (131_CR14) 2016; 10
Q Jing (131_CR11) 2015; 6
CRS Rodrigues (131_CR21) 2016; 30
F Yi (131_CR24) 2016; 10
Y Zi (131_CR22) 2015; 6
H Guo (131_CR18) 2016; 6
G Zhu (131_CR4) 2015; 14
J Wang (131_CR23) 2016; 26
J Chen (131_CR5) 2016; 2
C Wu (131_CR19) 2017; 32
25247474 - Nat Commun. 2014 Sep 23;5:4929
27677971 - Nat Commun. 2016 Sep 28;7:12744
27386560 - Sci Adv. 2016 Jun 17;2(6):e1501624
27703165 - Nat Commun. 2016 Oct 05;7:12985
26271603 - Nat Commun. 2015 Aug 14;6:8031
25146891 - Adv Mater. 2014 Oct 22;26(39):6720-8
26964693 - Nat Commun. 2016 Mar 11;7:10987
25719956 - ACS Nano. 2015 Mar 24;9(3):3324-31
26175123 - Adv Mater. 2015 Sep 2;27(33):4830-6
21700838 - Science. 2011 Jul 15;333(6040):308-12
28179678 - Nature. 2017 Feb 8;542(7640):159-160
27351212 - ACS Nano. 2016 Jul 26;10(7):6519-25
27077467 - ACS Nano. 2016 Apr 26;10(4):4797-805
27129019 - ACS Nano. 2016 Jun 28;10(6):6131-8
27058268 - ACS Nano. 2016 Apr 26;10(4):4652-9
26656252 - Nat Commun. 2015 Dec 11;6:8975
26406279 - Nat Commun. 2015 Sep 25;6:8376
24594501 - Nat Commun. 2014 Mar 04;5:3426
22895334 - Nature. 2012 Aug 16;488(7411):294-303
27023206 - ACS Appl Mater Interfaces. 2016 Apr 20;8(15):9692-9
References_xml – volume: 1
  start-page: 328
  year: 2012
  end-page: 334
  ident: CR2
  article-title: Flexible triboelectric generator!
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 2
  start-page: e1501624
  year: 2016
  ident: CR3
  article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501624
– volume: 26
  start-page: 1070
  year: 2016
  end-page: 1076
  ident: CR23
  article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504675
– volume: 20
  start-page: 74
  year: 2017
  end-page: 82
  ident: CR10
  article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 6
  start-page: 1501593
  year: 2016
  ident: CR18
  article-title: A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501593
– volume: 26
  start-page: 3542
  year: 2016
  end-page: 3548
  ident: CR32
  article-title: Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600021
– volume: 10
  start-page: 6131
  year: 2016
  end-page: 6138
  ident: CR34
  article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02076
– volume: 2
  start-page: 16138
  year: 2016
  ident: CR5
  article-title: Micro-cable structured textile for simultaneouslyharvesting solar and mechanical energy
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.138
– volume: 9
  start-page: 3324
  year: 2015
  end-page: 3321
  ident: CR37
  article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 14
  start-page: 126
  year: 2015
  end-page: 138
  ident: CR4
  article-title: Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.050
– volume: 32
  start-page: 287
  year: 2017
  end-page: 293
  ident: CR19
  article-title: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.061
– volume: 27
  start-page: 4830
  year: 2015
  end-page: 4836
  ident: CR6
  article-title: A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501934
– volume: 10
  start-page: 6519
  year: 2016
  end-page: 6525
  ident: CR24
  article-title: Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03007
– volume: 10
  start-page: 4797
  year: 2016
  end-page: 4805
  ident: CR20
  article-title: Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator
  publication-title: Acs Nano
  doi: 10.1021/acsnano.6b01569
– volume: 5
  start-page: 4929
  year: 2014
  ident: CR31
  article-title: Flutter-driven triboelectrification for harvesting wind energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5929
– volume: 7
  start-page: 10987
  year: 2016
  ident: CR13
  article-title: Effective energy storage from a triboelectric nanogenerator
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10987
– volume: 10
  start-page: 83
  year: 2014
  end-page: 89
  ident: CR26
  article-title: Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.007
– volume: 30
  start-page: 321
  year: 2016
  end-page: 329
  ident: CR17
  article-title: Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.025
– volume: 14
  start-page: 139
  year: 2015
  end-page: 160
  ident: CR15
  article-title: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.009
– volume: 27
  start-page: 439
  year: 2016
  end-page: 446
  ident: CR8
  article-title: 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.016
– volume: 8
  start-page: 2250
  year: 2015
  end-page: 2282
  ident: CR33
  article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 30
  start-page: 379
  year: 2016
  end-page: 386
  ident: CR21
  article-title: Triboelectric driven turbine to generate electricity from the motion of water
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.038
– volume: 26
  start-page: 6720
  year: 2014
  end-page: 6728
  ident: CR27
  article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402491
– volume: 4
  start-page: 3728
  year: 2016
  end-page: 3734
  ident: CR25
  article-title: Molecular surface functionalization to enhance the power output of triboelectric nanogenerators
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10239A
– volume: 5
  start-page: 1488
  year: 2017
  end-page: 1493
  ident: CR7
  article-title: A sustainable freestanding biomechanical energy harvesting smart backpack as a portable-wearable power source
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05282G
– volume: 10
  start-page: 4652
  year: 2016
  end-page: 4659
  ident: CR14
  article-title: Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00949
– volume: 8
  start-page: 9692
  year: 2016
  end-page: 9699
  ident: CR16
  article-title: Human interactive triboelectric nanogenerator as a self-powered smart seat
  publication-title: Acs Appl. Mater. Interf.
  doi: 10.1021/acsami.6b00548
– volume: 6
  start-page: 8376
  year: 2015
  ident: CR22
  article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 6
  start-page: 8031
  year: 2015
  ident: CR11
  article-title: Self-powered thin-film motion vector sensor
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9031
– volume: 542
  start-page: 159
  year: 2017
  end-page: 160
  ident: CR36
  article-title: Catch wave power in floating nets
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 11
  start-page: 436
  year: 2015
  end-page: 462
  ident: CR9
  article-title: Triboelectric nanogenerators as self-powered active sensors
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.034
– volume: 7
  start-page: 12744
  year: 2016
  ident: CR28
  article-title: Sustainably powering wearable electronics solely by biomechanical energy
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12744
– volume: 7
  start-page: 12985
  year: 2016
  ident: CR29
  article-title: Boosted output performance of triboelectric nanogenerator via electric double layer effect
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12985
– volume: 488
  start-page: 294
  year: 2012
  end-page: 303
  ident: CR1
  article-title: Opportunities and challenges for a sustainable energy future
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 33
  start-page: 308
  year: 2011
  end-page: 312
  ident: CR35
  article-title: The mosaic of surface charge in contact electrification
  publication-title: Science
  doi: 10.1126/science.1201512
– volume: 5
  start-page: 3426
  year: 2014
  ident: CR30
  article-title: Radial-arrayed rotary electrification for high performance triboelectric generator
  publication-title: Nat. Commun.
– volume: 5
  start-page: 1501467
  year: 2015
  ident: CR38
  article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501467
– volume: 6
  start-page: 8975
  year: 2015
  ident: CR12
  article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9975
– volume: 10
  start-page: 6131
  year: 2016
  ident: 131_CR34
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b02076
– volume: 488
  start-page: 294
  year: 2012
  ident: 131_CR1
  publication-title: Nature
  doi: 10.1038/nature11475
– volume: 6
  start-page: 8975
  year: 2015
  ident: 131_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9975
– volume: 4
  start-page: 3728
  year: 2016
  ident: 131_CR25
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C5TA10239A
– volume: 27
  start-page: 4830
  year: 2015
  ident: 131_CR6
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501934
– volume: 10
  start-page: 83
  year: 2014
  ident: 131_CR26
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.08.007
– volume: 14
  start-page: 126
  year: 2015
  ident: 131_CR4
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.050
– volume: 20
  start-page: 74
  year: 2017
  ident: 131_CR10
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2016.12.001
– volume: 26
  start-page: 1070
  year: 2016
  ident: 131_CR23
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201504675
– volume: 11
  start-page: 436
  year: 2015
  ident: 131_CR9
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.10.034
– volume: 10
  start-page: 4797
  year: 2016
  ident: 131_CR20
  publication-title: Acs Nano
  doi: 10.1021/acsnano.6b01569
– volume: 5
  start-page: 3426
  year: 2014
  ident: 131_CR30
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4426
– volume: 7
  start-page: 12985
  year: 2016
  ident: 131_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12985
– volume: 5
  start-page: 4929
  year: 2014
  ident: 131_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5929
– volume: 27
  start-page: 439
  year: 2016
  ident: 131_CR8
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.07.016
– volume: 5
  start-page: 1501467
  year: 2015
  ident: 131_CR38
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501467
– volume: 542
  start-page: 159
  year: 2017
  ident: 131_CR36
  publication-title: Nature
  doi: 10.1038/542159a
– volume: 1
  start-page: 328
  year: 2012
  ident: 131_CR2
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2012.01.004
– volume: 32
  start-page: 287
  year: 2017
  ident: 131_CR19
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.12.061
– volume: 26
  start-page: 3542
  year: 2016
  ident: 131_CR32
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201600021
– volume: 7
  start-page: 10987
  year: 2016
  ident: 131_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10987
– volume: 8
  start-page: 2250
  year: 2015
  ident: 131_CR33
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C5EE01532D
– volume: 14
  start-page: 139
  year: 2015
  ident: 131_CR15
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2014.11.009
– volume: 26
  start-page: 6720
  year: 2014
  ident: 131_CR27
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201402491
– volume: 33
  start-page: 308
  year: 2011
  ident: 131_CR35
  publication-title: Science
  doi: 10.1126/science.1201512
– volume: 10
  start-page: 6519
  year: 2016
  ident: 131_CR24
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b03007
– volume: 5
  start-page: 1488
  year: 2017
  ident: 131_CR7
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC05282G
– volume: 6
  start-page: 1501593
  year: 2016
  ident: 131_CR18
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201501593
– volume: 9
  start-page: 3324
  year: 2015
  ident: 131_CR37
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00534
– volume: 30
  start-page: 321
  year: 2016
  ident: 131_CR17
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.10.025
– volume: 2
  start-page: e1501624
  year: 2016
  ident: 131_CR3
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1501624
– volume: 10
  start-page: 4652
  year: 2016
  ident: 131_CR14
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b00949
– volume: 6
  start-page: 8031
  year: 2015
  ident: 131_CR11
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9031
– volume: 30
  start-page: 379
  year: 2016
  ident: 131_CR21
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2016.09.038
– volume: 2
  start-page: 16138
  year: 2016
  ident: 131_CR5
  publication-title: Nature Energy
  doi: 10.1038/nenergy.2016.138
– volume: 7
  start-page: 12744
  year: 2016
  ident: 131_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12744
– volume: 6
  start-page: 8376
  year: 2015
  ident: 131_CR22
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9376
– volume: 8
  start-page: 9692
  year: 2016
  ident: 131_CR16
  publication-title: Acs Appl. Mater. Interf.
  doi: 10.1021/acsami.6b00548
– reference: 27129019 - ACS Nano. 2016 Jun 28;10(6):6131-8
– reference: 27077467 - ACS Nano. 2016 Apr 26;10(4):4797-805
– reference: 26175123 - Adv Mater. 2015 Sep 2;27(33):4830-6
– reference: 25146891 - Adv Mater. 2014 Oct 22;26(39):6720-8
– reference: 21700838 - Science. 2011 Jul 15;333(6040):308-12
– reference: 26656252 - Nat Commun. 2015 Dec 11;6:8975
– reference: 27677971 - Nat Commun. 2016 Sep 28;7:12744
– reference: 26406279 - Nat Commun. 2015 Sep 25;6:8376
– reference: 27351212 - ACS Nano. 2016 Jul 26;10(7):6519-25
– reference: 27058268 - ACS Nano. 2016 Apr 26;10(4):4652-9
– reference: 27386560 - Sci Adv. 2016 Jun 17;2(6):e1501624
– reference: 27703165 - Nat Commun. 2016 Oct 05;7:12985
– reference: 24594501 - Nat Commun. 2014 Mar 04;5:3426
– reference: 26271603 - Nat Commun. 2015 Aug 14;6:8031
– reference: 27023206 - ACS Appl Mater Interfaces. 2016 Apr 20;8(15):9692-9
– reference: 25247474 - Nat Commun. 2014 Sep 23;5:4929
– reference: 26964693 - Nat Commun. 2016 Mar 11;7:10987
– reference: 22895334 - Nature. 2012 Aug 16;488(7411):294-303
– reference: 25719956 - ACS Nano. 2015 Mar 24;9(3):3324-31
– reference: 28179678 - Nature. 2017 Feb 8;542(7640):159-160
SSID ssj0000391844
Score 2.6693203
Snippet With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for...
Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 88
SubjectTerms 639/301/299
639/4077/4072/4062
Breakdowns
Charge density
Dielectric polarization
Efficiency
Electric contacts
Electrification
Electrodes
Energy
Energy charge
Energy harvesting
Ferroelectric materials
Humanities and Social Sciences
multidisciplinary
Nanogenerators
Ocean waves
Polarization
Science
Science (multidisciplinary)
Sensors
Vacuum
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcUHk2UJCRuLVRk9iOk2NBVBUSiAOVerOceExXqrIVu3vov2dmkl3t0gIXrvE4dsbzjO1vAN5bciEhRZNT5tXnBlPKWz40nrTBwkWTCqmi8OVrfX5hPl_ay61SX3wmbIQHHhl3Epu6tVhVwcZgNNZtKHWIFYf1He-hsfUln7eVTIkN1i2lLma6JVPo5mRhxCawURaMmdzseCIB7L8vyrx7WPK3HVNxRGf78HiKINXpOPMn8ACHp_BwrCl5-wy-nfZXM-TfBGp1Ta9iPGLFZa3mY8WbWa8EHQlV5LPry1tFYatCQZKgsRXKZUBFJALAMfx4Dhdnn75_PM-nsgl5T9nIMrf0nRHrgOR5WjRYW2eKiCYGdJ1pMNRtMslWoedlqutoTWySTVWi1KfrUL-AvWE-4AGoWLaJGB6q4BrTVRRd2raMGkPT9Oi0y6Bcs9D3E6Y4l7a49rK3rRs_st0T272w3ZsMjjZ9bkZEjb9Sf-CV2VAyGrY8IBnxk4z4f8lIBofrdfWTii48hbaFc45S9AzebZpJuXjHJAw4XwkNh4hkuDJ4OYrBZiaUatIIusjA7QjIzlR3W4bZlQB4W74tXFLP47UobU3rj6x49T9Y8RoeVaIDjuzjIewtf67wDYVVy-6taNAvHG4cng
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxLuBgozEDaLmYcfOCRVEVSGBOFBpb5YTj9uVqqR0dw_998w43sDy6DW2Y3s8Hs94xt8AvFF0hLjgZU6WV59LDCFvOWg81BIL7WUoYhaFL1-bk1P5eaEW6cJtlcIqtzIxCmo_9nxHfkiaSKG1Jovq_eWPnLNGsXc1pdC4DXcYuoxDuvRCz3csjH5upExvZYraHK5klAwsmiPSTC53zqMI2_8vXfPvkMk__KbxODp-APeTHimOpoV_CLdweAR3p8yS14_h21F_vkS-LBCbC_oVoxILTm41Tnlvlr2IGEkoPEewr68FKa8CI54E9S0wPgkUVCXCcAxnT-D0-NP3jyd5Sp6Q92STrHNF8_TYOKTzp0WJjdKy8Ci9Q91Jg65pgwyqcj0vVtN4Jb0JKlSBDKCuw_op7A3jgPsgfNmG1pWuctrIriIdU7Wlr9EZ06OudQblloS2T8jinODiwkYPd23sRHZLZLeR7FZm8HZucznhatxY-wOvzFyTMbHjh_HqzKYtZr1pWoVV5ZR3ssaGhlw7X7EB2LG3NYOD7bratFFX9hdbZfB6LqYtxn4TN-C4iXVYUSTxlcGziQ3mkZDBST3URQZ6h0F2hrpbMizPI4y34jfDJbV8t2Wl34b1X1I8v3kWL-BeFblbk_w7gL311QZfktq07l7FvfETeFsU2w
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLZKERIXxJuBFgWJG4yYR15zLKtWVaUiDlTqLcpMnHalarZqdw_99zieh1goSFwnzozHcRI7dj4DfFS0hfgYZE6eV5dLjDFvUtJ4rCUWJshYcBWF02_6-EyenKvzHaimuzCctM-QlrxMT9lhX24lT-m0pjJETC4fwMME3Z60eqEX87lKQjy3Uo73Y4ra3tN1aw9iqP777Ms_0yR_i5XyFnT0FJ6MtqM4GLh9BjvYP4dHQzXJuxfw_aC7XGI6IBCbK3pVQiIWqaDVaqh1s-wE4yKhCClrfX0nyGAVyBgS9G2BfA1QEAlDb_QXL-Hs6PDH4jgfCybkHfkh61zRfwbUHmnPaVCiVkYWAWXwaFpp0esmyqgq36UB0jooGWxUsYrk9LQt1q9gt1_1-AZEKJvY-NJX3ljZVmRXqqYMNXprOzS1yaCcROi6EU08FbW4chzVrq0bxO5I7I7F7mQGn-Y-1wOWxj-pv6aRmSkTDjY_WN1cuFEvXLC6UVhVXgUva9TEcu1DlZy-NkVYM9ibxtWNk_PWkVFbGGPIOc_gw9xM0yrFSnyPqw3TJOOQlqwMXg9qMHNCTiZ9oS4yMFsKssXqdku_vGTobpXuCZfU8_OkSr-w9VdRvP0_8nfwuGJtN7QG7sHu-maD-2Q6rdv3PFd-Ao-oEn8
  priority: 102
  providerName: Springer Nature
Title Achieving ultrahigh triboelectric charge density for efficient energy harvesting
URI https://link.springer.com/article/10.1038/s41467-017-00131-4
https://www.ncbi.nlm.nih.gov/pubmed/28729530
https://www.proquest.com/docview/1920777338
https://www.proquest.com/docview/1922505051
https://pubmed.ncbi.nlm.nih.gov/PMC5519710
https://doaj.org/article/d8695e22a5da43e69a13ad29560b0364
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY9911wUN9rZ5S2zJkh_GSEOzEmgp2wJ5E7J1agPBWdMElv9-J9kOzZbuJQFbii-6O93vLOl3AO8FhRDjLI8p8ypjjs7Fud807lKOXWm564YqCheX2fmYjyZisgdtuaNmAO92pna-ntR4Mfv0-3b9lRz-S31kXH2-48Hd_Xwb6GNivg-HFJmkd9SLBu6HmTnNKaHhzdmZ3V09O7AixCn8vuh7oSow-u-Cof_upvxrSTVEquFTeNJATNavbeIZ7GH1HB7VRSfXL-CqX95M0b9HYKsZ_ZQnLGa-7tW8LokzLVmgT0Jm_eb25ZoRrmUYqCbo2QzDaUFGTQJDR3X9EsbDs5-D87ipqxCXlK4sY0F_2WJmkEJTjhwzIXnXIrcGZcEVmix33InElF6PWWYFt8oJlzjKjYoC01dwUM0rPAJme7nLTc8kRipeJAQ_Rd6zKRqlSpSpjKDXDqEuG9JxX_tipsPid6p0rQFNGtBBA5pH8GHT51dNufHf1qdeM5uWni47XJgvrnXjfdqqLBeYJEZYw1PMSOTU2MTnhoVfiI3gpNWrbk1QE_btSikph4_g3eY2eZ9fUjEVzlehjceQNLNF8Lo2g40krRlFILcMZEvU7TvV9CYwfAt_nLhHPT-2pnRPrAeH4vhBEd7A4yTYuKRZ8QQOlosVviUwtSw6sC8nkj7V8FsHDvv90Y8RfZ-eXV59p6uDbNAJryk6wZP-AKUdHo4
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1m9hxckCoPKotfYhDK-3NOPG4XanKlu6u0P4pfiMzTrKwPHrrNXYcZzxPj_0NwEtFJsR6J2OKvOpYovdxyYfGfSYx0U76JFRRODjMh8fy80iN1uBHfxeGj1X2OjEoajepeY98izyRRGtNEdW7828xV43i7GpfQqNliz1cfKeQbfp29yOt76s03fl09GEYd1UF4pqc9VmsSDU4zC2SYi5RYq60TBxKZ1FXskCbl156ldqa_yLPnZKu8MqnniKDqsKMxr0G18nwJixReqSXezqMtl5I2d3NSbJiayqDJmJTEJBtYrli_0KZgH_5tn8f0fwjTxvM384duN35rWK7ZbS7sIbNPbjRVrJc3Icv2_XpGHlzQszPaChGQRZcTGvS1tkZ1yJgMqFwfGJ-thDkLAsM-BX0bYHhCqKgLgH2ozl5AMdXQtaHsN5MGnwEwg1KX9qBTa0uZJWST6vKgcvQFkWNOtMRDHoSmrpDMueCGmcmZNSzwrRkN0R2E8huZASvl--ctzgel_Z-zyuz7MkY3OHB5OLEdCJtXJGXCtPUKmdlhjlNObMu5YCz4uxuBJv9uppOMUzNLzaO4MWymUSa8zS2wck89GHHlNRlBBstGyxnQgEufSFLItArDLIy1dWWZnwaYMMV31Ee0Jtvelb6bVr_JcXjy__iOdwcHh3sm_3dw70ncCsNnK5J927C-uxijk_JZZtVz4KcCPh61YL5E8wkU1I
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEIgXxDeFAUGCJ6jWj6RpHxAajNPGYNoDk_YW0sbZTpp6Y3cndP8afx122h4cH3vba5u2rmM7duz8DPBC0RJivZMxRV5NLNH7uOKicZ9LTLSTPgldFD7vFzuH8uOROlqDH8NZGC6rHGxiMNRu0vAe-SZ5IonWmiKqTd-XRRxsj96efYu5gxRnWod2Gp2I7OHiO4Vv0ze72zTXL7Ns9OHL-5247zAQN-S4z2JFZsJhYZGMdIUSC6Vl4lA6i7qWJdqi8tKrzDb8R0XhlHSlVz7zFCXUNeb03itwVecqZR3TR3q5v8PI66WU_TmdhMieymCVeFkIKDexXFkLQ8uAf_m5f5dr_pGzDUvh6Bbc7H1YsdUJ3W1Yw_YOXOu6Wi7uwsFWczJG3qgQ81N6FSMiC26sNel67owbEfCZUDiunp8tBDnOAgOWBX1bYDiOKGhIgABpj-_B4aWw9T6st5MWH4JwaeUrm9rM6lLWGfm3qkpdjrYsG9S5jiAdWGiaHtWcm2ucmpBdz0vTsd0Q201gu5ERvFo-c9Zhelw4-h3PzHIk43GHC5PzY9Ort3FlUSnMMquclTkWRHJuXcbBZ82Z3gg2hnk1vZGYml8iHcHz5W1Sb87Z2BYn8zCGnVQynRE86MRgSQkFu_SFPIlArwjICqmrd9rxSYAQV3xeOaUnXw-i9BtZ_2XFo4v_4hlcJ5U0n3b39x7DjSwIuiYzvAHrs_M5PiHvbVY_DWoi4Otl6-VPmJhXiA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+ultrahigh+triboelectric+charge+density+for+efficient+energy+harvesting&rft.jtitle=Nature+communications&rft.au=Wang%2C+Jie&rft.au=Wu%2C+Changsheng&rft.au=Dai%2C+Yejing&rft.au=Zhao%2C+Zhihao&rft.date=2017-07-20&rft.eissn=2041-1723&rft.volume=8&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1038%2Fs41467-017-00131-4&rft_id=info%3Apmid%2F28729530&rft.externalDocID=28729530
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon