Achieving ultrahigh triboelectric charge density for efficient energy harvesting
With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 88 - 8 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
20.07.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (
P
~ 10
−6
torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m
−2
, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.
Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power. |
---|---|
AbstractList | With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (
P
~ 10
−6
torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m
−2
, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.
Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power. With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum ( P ~ 10 −6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m −2 , which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy. Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power. With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m , which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power. With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10-6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m-2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power.With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10-6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m-2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy.Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization from contact electrification with dielectric polarization from a ferroelectric material in vacuum to dramatically enhance the TENG output power. With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for self-powered sensor networks and large-scale renewable blue energy. As an energy harvester, its output power density and efficiency are dictated by the triboelectric charge density. Here we report a method for increasing the triboelectric charge density by coupling surface polarization from triboelectrification and hysteretic dielectric polarization from ferroelectric material in vacuum (P ~ 10−6 torr). Without the constraint of air breakdown, a triboelectric charge density of 1003 µC m−2, which is close to the limit of dielectric breakdown, is attained. Our findings establish an optimization methodology for triboelectric nanogenerators and enable their more promising usage in applications ranging from powering electronic devices to harvesting large-scale blue energy. |
ArticleNumber | 88 |
Author | Zhang, Tiejun Dai, Yejing Wang, Aurelia Wu, Changsheng Zhao, Zhihao Wang, Zhong Lin Wang, Jie |
Author_xml | – sequence: 1 givenname: Jie surname: Wang fullname: Wang, Jie organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 2 givenname: Changsheng surname: Wu fullname: Wu, Changsheng organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 3 givenname: Yejing surname: Dai fullname: Dai, Yejing organization: School of Materials Science and Engineering, Georgia Institute of Technology, Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Material Science and Engineering, Tianjin University – sequence: 4 givenname: Zhihao surname: Zhao fullname: Zhao, Zhihao organization: Key Laboratory for Advanced Ceramics and Machining Technology, Ministry of Education, School of Material Science and Engineering, Tianjin University – sequence: 5 givenname: Aurelia surname: Wang fullname: Wang, Aurelia organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 6 givenname: Tiejun surname: Zhang fullname: Zhang, Tiejun organization: School of Materials Science and Engineering, Georgia Institute of Technology – sequence: 7 givenname: Zhong Lin surname: Wang fullname: Wang, Zhong Lin email: zhong.wang@mse.gatech.edu organization: Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, National Center for Nanoscience and Technology (NCNST), School of Materials Science and Engineering, Georgia Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28729530$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQFSWlSbb5Az0UQy-9uNW37UshhLYJBNpDexayNLK1eKVUshf230ebTcMm0EoIDdJ7TzOjd45OQgyA0DuCPxHM2s-ZEy6bGpOyMGGk5q_QGcWc1KSh7OQoPkUXOa9xGawjLedv0CltG9oJhs_Qz0szetj6MFTLNCc9-mGs5uT7CBOYEpjKjDoNUFkI2c-7ysVUgXPeeAhzBQHSsKsKZAt5LjJv0WunpwwXj_sK_f729dfVdX374_vN1eVtbSSWcy1K8hakBtryDjhI0XBsgVsNTc9b0LJz3AmqTce0k9IKblsnHHWdlH0PbIVuDro26rW6S36j005F7dXDQUyD0mn2ZgJlW9kJoFQLqzkD2WnCtC0NkLjHTPKi9eWgdbf0G7CmFJb09Ez0-U3woxriVglBuqZ8xwp9fBRI8c9SGqE2PhuYJh0gLlmRjlKByyQF-uEFdB2XFEqr9ijcNA1jbUG9P87oKZW_H1cA9AAwKeacwD1BCFZ7g6iDQVQxiHowiNrX2b4gGT_r2cd9VX76P5UdqLm8EwZIR2n_m3UPgFzPzQ |
CitedBy_id | crossref_primary_10_1007_s11705_022_2271_y crossref_primary_10_1186_s40580_018_0163_0 crossref_primary_10_5796_electrochemistry_24_00106 crossref_primary_10_1016_j_nanoen_2018_11_022 crossref_primary_10_1002_adfm_202306022 crossref_primary_10_1002_anie_202403269 crossref_primary_10_1002_smll_202301952 crossref_primary_10_1002_aenm_202201454 crossref_primary_10_1016_j_nanoen_2021_106418 crossref_primary_10_1039_D1EE01641E crossref_primary_10_1016_j_nanoen_2021_106891 crossref_primary_10_1002_smll_202308469 crossref_primary_10_3390_polym12122854 crossref_primary_10_1002_aenm_202101958 crossref_primary_10_1039_D1EE02623B crossref_primary_10_1109_TITS_2024_3355384 crossref_primary_10_1016_j_nanoen_2023_109010 crossref_primary_10_1038_s41467_021_25047_y crossref_primary_10_1016_j_nanoen_2018_12_080 crossref_primary_10_1016_j_xcrp_2020_100142 crossref_primary_10_1002_adfm_201806379 crossref_primary_10_3390_mi16010011 crossref_primary_10_1016_j_nanoen_2018_11_037 crossref_primary_10_1002_anie_202014241 crossref_primary_10_1002_smtd_202300261 crossref_primary_10_1016_j_nanoen_2021_106303 crossref_primary_10_1016_j_nanoen_2021_106425 crossref_primary_10_1016_j_nanoen_2018_12_076 crossref_primary_10_1039_D3RA05932D crossref_primary_10_1557_mre_2020_2 crossref_primary_10_1007_s40684_019_00134_0 crossref_primary_10_1016_j_cap_2019_10_016 crossref_primary_10_1039_C9EE01267B crossref_primary_10_1038_s41467_022_33766_z crossref_primary_10_1039_D1EE01349A crossref_primary_10_1002_adfm_202103559 crossref_primary_10_1002_nano_202000084 crossref_primary_10_1021_acsomega_2c07688 crossref_primary_10_1016_j_nanoen_2018_04_059 crossref_primary_10_1021_acsnano_8b08274 crossref_primary_10_3390_nano12223955 crossref_primary_10_1002_smtd_202301682 crossref_primary_10_1039_D3EE03216G crossref_primary_10_1016_j_nanoen_2021_105787 crossref_primary_10_1016_j_nanoen_2024_109508 crossref_primary_10_1038_s41467_024_48456_1 crossref_primary_10_1016_j_nanoen_2020_105381 crossref_primary_10_1002_aenm_201802159 crossref_primary_10_1016_j_nanoen_2019_05_057 crossref_primary_10_1016_j_nanoen_2018_12_042 crossref_primary_10_1016_j_nanoen_2024_110608 crossref_primary_10_1016_j_nanoen_2020_105387 crossref_primary_10_1016_j_decarb_2024_100053 crossref_primary_10_1063_5_0011539 crossref_primary_10_1016_j_nanoen_2018_12_062 crossref_primary_10_1007_s40820_023_01094_6 crossref_primary_10_1021_acsnano_0c01865 crossref_primary_10_1007_s12274_021_3724_1 crossref_primary_10_1016_j_nanoen_2018_11_012 crossref_primary_10_1007_s40544_020_0390_3 crossref_primary_10_1021_acsaelm_0c01142 crossref_primary_10_1002_adfm_202112155 crossref_primary_10_1038_s41467_024_50518_3 crossref_primary_10_1002_adma_201803580 crossref_primary_10_1016_j_nanoen_2022_107916 crossref_primary_10_1007_s11431_018_9386_9 crossref_primary_10_1016_j_nanoen_2017_11_080 crossref_primary_10_1016_j_mattod_2024_08_013 crossref_primary_10_1016_j_nanoen_2021_106649 crossref_primary_10_1016_j_nanoen_2021_106880 crossref_primary_10_1002_adem_202001187 crossref_primary_10_1016_j_nanoen_2020_105373 crossref_primary_10_1016_j_nanoen_2020_105011 crossref_primary_10_1039_D4EE01119H crossref_primary_10_1016_j_nanoen_2018_12_054 crossref_primary_10_1021_acsami_8b02495 crossref_primary_10_1039_C9EE03307F crossref_primary_10_1016_j_nanoen_2019_103960 crossref_primary_10_1016_j_nanoen_2024_109441 crossref_primary_10_1016_j_matt_2023_08_022 crossref_primary_10_1016_j_nanoen_2024_110436 crossref_primary_10_1016_j_nanoen_2025_110713 crossref_primary_10_1038_s41467_019_08846_2 crossref_primary_10_1016_j_nanoen_2019_05_073 crossref_primary_10_1038_s41467_020_14846_4 crossref_primary_10_1002_adfm_202412984 crossref_primary_10_1016_j_nanoen_2018_03_064 crossref_primary_10_1016_j_mattod_2019_05_016 crossref_primary_10_1016_j_mattod_2024_08_001 crossref_primary_10_1002_aesr_202400002 crossref_primary_10_1007_s11804_025_00651_2 crossref_primary_10_1016_j_nanoen_2018_12_025 crossref_primary_10_1038_s41467_021_25043_2 crossref_primary_10_1038_s41467_023_38396_7 crossref_primary_10_1016_j_nanoen_2022_108063 crossref_primary_10_1016_j_xcrp_2020_100185 crossref_primary_10_34133_2022_9812865 crossref_primary_10_1039_D2CP05522H crossref_primary_10_1002_adma_202409833 crossref_primary_10_1002_admt_202300703 crossref_primary_10_1016_j_cej_2024_150542 crossref_primary_10_1016_j_nanoen_2017_11_056 crossref_primary_10_1093_nsr_nwz025 crossref_primary_10_1002_ente_202000400 crossref_primary_10_1016_j_nanoen_2019_04_025 crossref_primary_10_1016_j_nanoen_2020_105599 crossref_primary_10_1016_j_nanoen_2020_105358 crossref_primary_10_1016_j_mattod_2025_01_007 crossref_primary_10_1557_s43577_024_00858_8 crossref_primary_10_1002_ange_202403269 crossref_primary_10_1016_j_nanoen_2018_03_051 crossref_primary_10_1021_acsnano_8b03824 crossref_primary_10_34133_2021_6849171 crossref_primary_10_1016_j_nanoen_2021_106742 crossref_primary_10_1016_j_nanoen_2020_105112 crossref_primary_10_1016_j_ceramint_2020_07_329 crossref_primary_10_1039_D3MH01369C crossref_primary_10_1088_2631_7990_ad4fca crossref_primary_10_1021_acsaelm_3c01381 crossref_primary_10_1002_adfm_202007221 crossref_primary_10_1002_adfm_201909384 crossref_primary_10_1021_acsnano_8b01557 crossref_primary_10_1016_j_nanoen_2019_103864 crossref_primary_10_1016_j_nanoen_2020_105343 crossref_primary_10_1002_adfm_201806351 crossref_primary_10_1038_s41467_019_09461_x crossref_primary_10_1038_s41467_021_25046_z crossref_primary_10_1002_adfm_202102431 crossref_primary_10_1016_j_nanoen_2023_108385 crossref_primary_10_1021_acssensors_4c00401 crossref_primary_10_3390_mi14081592 crossref_primary_10_1016_j_ccr_2021_214049 crossref_primary_10_1002_smtd_202300562 crossref_primary_10_1038_s41570_019_0115_1 crossref_primary_10_1002_aisy_202000117 crossref_primary_10_1002_adfm_202101348 crossref_primary_10_1002_aenm_202404147 crossref_primary_10_3390_polym14050995 crossref_primary_10_1016_j_xcrp_2021_100707 crossref_primary_10_1016_j_nanoen_2018_03_073 crossref_primary_10_1016_j_nanoen_2023_108388 crossref_primary_10_1002_aelm_201800413 crossref_primary_10_1039_C7LC01259D crossref_primary_10_1016_j_nanoen_2024_110359 crossref_primary_10_1016_j_nanoen_2024_110116 crossref_primary_10_1016_j_nanoen_2025_110758 crossref_primary_10_1021_acsnano_9b10142 crossref_primary_10_1039_D0CS00033G crossref_primary_10_1016_j_nanoen_2017_07_045 crossref_primary_10_1016_j_nanoen_2019_04_075 crossref_primary_10_34133_2022_9809406 crossref_primary_10_1016_j_nanoen_2018_09_057 crossref_primary_10_1007_s11705_020_1956_3 crossref_primary_10_1016_j_carbon_2024_119926 crossref_primary_10_1016_j_ecmx_2025_100976 crossref_primary_10_1002_adfm_202413359 crossref_primary_10_1016_j_nanoen_2022_107745 crossref_primary_10_1039_D2SE00947A crossref_primary_10_1002_gch2_201800096 crossref_primary_10_1016_j_nanoen_2021_106133 crossref_primary_10_1016_j_eurpolymj_2020_110163 crossref_primary_10_1021_acsami_1c05796 crossref_primary_10_1111_ijac_15015 crossref_primary_10_1016_j_nanoen_2021_106257 crossref_primary_10_1016_j_nanoen_2021_106137 crossref_primary_10_1039_D4TA07756C crossref_primary_10_1016_j_nanoen_2021_106014 crossref_primary_10_1016_j_nanoen_2024_110102 crossref_primary_10_1039_D2NR03445J crossref_primary_10_1002_adma_202405310 crossref_primary_10_1002_advs_202206243 crossref_primary_10_1038_s41467_023_36675_x crossref_primary_10_1039_C8EE00188J crossref_primary_10_1007_s11356_022_20854_2 crossref_primary_10_1016_j_jiec_2023_08_048 crossref_primary_10_1038_s41467_018_06045_z crossref_primary_10_1002_aenm_201901731 crossref_primary_10_1002_smtd_201800078 crossref_primary_10_1126_sciadv_abj9220 crossref_primary_10_1080_19475411_2021_1973143 crossref_primary_10_1016_j_nanoen_2022_107978 crossref_primary_10_1039_D2NH00229A crossref_primary_10_1016_j_nanoen_2018_01_021 crossref_primary_10_1002_adfm_202203884 crossref_primary_10_3390_nanoenergyadv1020007 crossref_primary_10_3390_nanoenergyadv3030013 crossref_primary_10_1016_j_triboint_2018_09_026 crossref_primary_10_1126_sciadv_add0464 crossref_primary_10_1021_acsnano_1c00233 crossref_primary_10_1002_aenm_202400672 crossref_primary_10_1016_j_polymer_2025_128171 crossref_primary_10_1016_j_isci_2024_108878 crossref_primary_10_1039_D0RA02181D crossref_primary_10_1002_adfm_201905816 crossref_primary_10_1016_j_mattod_2023_04_006 crossref_primary_10_1021_acsnano_8b02562 crossref_primary_10_1039_D3EE00539A crossref_primary_10_1002_adfm_201901102 crossref_primary_10_1002_adma_202308424 crossref_primary_10_1016_j_nanoen_2018_01_032 crossref_primary_10_1039_D4TA02651A crossref_primary_10_1016_j_nanoen_2019_103944 crossref_primary_10_1039_D0SC05145D crossref_primary_10_1002_aenm_202302699 crossref_primary_10_1016_j_nanoen_2019_04_089 crossref_primary_10_1016_j_nanoen_2019_04_083 crossref_primary_10_1038_s41467_022_31822_2 crossref_primary_10_1039_C9EE01078E crossref_primary_10_1002_adfm_202402233 crossref_primary_10_1587_elex_18_20210430 crossref_primary_10_1016_j_nanoen_2023_108906 crossref_primary_10_1002_admt_202100858 crossref_primary_10_3390_ma17091964 crossref_primary_10_1016_j_nanoen_2022_107637 crossref_primary_10_1016_j_nanoen_2019_103956 crossref_primary_10_1016_j_nanoen_2019_103957 crossref_primary_10_1002_adma_201802898 crossref_primary_10_26599_NR_2025_94907039 crossref_primary_10_1039_C8MH01259H crossref_primary_10_4028_www_scientific_net_SSP_281_598 crossref_primary_10_1039_D1ME00180A crossref_primary_10_1039_D3TB01481A crossref_primary_10_31436_iiumej_v24i2_2554 crossref_primary_10_1088_1361_6528_ac8f4f crossref_primary_10_1002_adfm_202416944 crossref_primary_10_1002_inf2_12534 crossref_primary_10_1155_2018_6545803 crossref_primary_10_1016_j_ijmecsci_2024_109280 crossref_primary_10_1002_adfm_202204304 crossref_primary_10_1016_j_isci_2023_108261 crossref_primary_10_3934_matersci_2025001 crossref_primary_10_1002_adma_202109355 crossref_primary_10_1038_s41467_020_15368_9 crossref_primary_10_1007_s12274_023_5733_8 crossref_primary_10_1002_adfm_201808114 crossref_primary_10_1016_j_nanoen_2019_02_035 crossref_primary_10_1021_acsami_0c17512 crossref_primary_10_1063_5_0025001 crossref_primary_10_1016_j_nanoen_2022_107937 crossref_primary_10_3390_nano10122544 crossref_primary_10_1016_j_nanoen_2021_106227 crossref_primary_10_1021_acsami_2c17722 crossref_primary_10_1002_adma_202210915 crossref_primary_10_1088_1361_6528_ad0983 crossref_primary_10_1039_D0EE00922A crossref_primary_10_1016_j_nanoen_2019_03_074 crossref_primary_10_1016_j_nanoen_2020_105074 crossref_primary_10_1002_smll_202007289 crossref_primary_10_1186_s11671_018_2764_2 crossref_primary_10_1002_aenm_201900772 crossref_primary_10_1016_j_nanoen_2018_09_036 crossref_primary_10_1016_j_scib_2021_03_021 crossref_primary_10_1039_D0NR02925D crossref_primary_10_1002_aenm_201901987 crossref_primary_10_1016_j_joule_2017_09_004 crossref_primary_10_1002_aenm_201802190 crossref_primary_10_1016_j_isci_2022_103977 crossref_primary_10_1021_acs_chemrev_3c00408 crossref_primary_10_1039_D2NJ06351D crossref_primary_10_1016_j_nanoen_2019_103909 crossref_primary_10_1002_adfm_202409088 crossref_primary_10_1021_acsnano_8b07935 crossref_primary_10_1002_adfm_202311502 crossref_primary_10_1016_j_nanoen_2022_107844 crossref_primary_10_1021_acsaem_3c00635 crossref_primary_10_1016_j_nanoen_2019_103904 crossref_primary_10_1016_j_nanoen_2022_107847 crossref_primary_10_1016_j_ymssp_2023_110503 crossref_primary_10_1016_j_nanoen_2018_09_039 crossref_primary_10_1016_j_nanoen_2020_105067 crossref_primary_10_1016_j_nanoen_2022_106994 crossref_primary_10_1002_adfm_202204322 crossref_primary_10_1002_advs_202408718 crossref_primary_10_1080_19475411_2024_2352481 crossref_primary_10_1002_adma_201706790 crossref_primary_10_1016_j_apsusc_2018_09_249 crossref_primary_10_1002_admt_202000289 crossref_primary_10_1002_advs_202206467 crossref_primary_10_1002_mame_202000276 crossref_primary_10_1016_j_nanoen_2024_110480 crossref_primary_10_1016_j_xcrp_2024_102025 crossref_primary_10_1109_TIE_2022_3220848 crossref_primary_10_1002_aenm_201702649 crossref_primary_10_1002_adfm_202309421 crossref_primary_10_1021_acsami_2c11081 crossref_primary_10_1002_eom2_12049 crossref_primary_10_1016_j_nanoen_2019_02_058 crossref_primary_10_1002_ente_202400834 crossref_primary_10_1002_adfm_202411020 crossref_primary_10_1016_j_nanoen_2019_01_029 crossref_primary_10_1002_adfm_202111662 crossref_primary_10_1002_adfm_202007872 crossref_primary_10_1016_j_nanoen_2019_01_023 crossref_primary_10_1016_j_nanoen_2019_103912 crossref_primary_10_1088_2631_7990_ace669 crossref_primary_10_1039_D4NA00340C crossref_primary_10_1126_sciadv_abg7595 crossref_primary_10_3390_s24123817 crossref_primary_10_1016_j_jmmm_2021_168609 crossref_primary_10_1002_adfm_202208277 crossref_primary_10_1002_admt_202301309 crossref_primary_10_1002_adma_202105882 crossref_primary_10_1002_aenm_202003616 crossref_primary_10_1007_s12598_023_02518_3 crossref_primary_10_1021_acsami_8b19599 crossref_primary_10_1021_acsnano_1c07480 crossref_primary_10_21303_2461_4262_2023_002647 crossref_primary_10_1016_j_nanoen_2020_104513 crossref_primary_10_1016_j_nanoen_2023_108836 crossref_primary_10_1016_j_nanoen_2020_105725 crossref_primary_10_1038_s41467_019_13569_5 crossref_primary_10_1002_adfm_201906890 crossref_primary_10_1002_ange_201806658 crossref_primary_10_1002_adma_202302954 crossref_primary_10_1002_smll_202301381 crossref_primary_10_1002_aenm_202002756 crossref_primary_10_1007_s11433_019_9643_0 crossref_primary_10_1002_advs_202001757 crossref_primary_10_1039_C9TA01249D crossref_primary_10_1021_acsami_7b15238 crossref_primary_10_1021_acs_iecr_0c01117 crossref_primary_10_1126_sciadv_aav6437 crossref_primary_10_1016_j_nanoen_2023_108728 crossref_primary_10_1039_D1TA02966E crossref_primary_10_1021_acsaem_2c03027 crossref_primary_10_1039_D2TA03232E crossref_primary_10_1039_D0TA04612D crossref_primary_10_1016_j_nanoen_2022_107480 crossref_primary_10_1016_j_nanoen_2019_104079 crossref_primary_10_1002_eom2_12093 crossref_primary_10_3390_mi10010017 crossref_primary_10_1016_j_nanoen_2020_104969 crossref_primary_10_1021_acsnano_1c10678 crossref_primary_10_3390_machines10030215 crossref_primary_10_1016_j_matt_2021_10_019 crossref_primary_10_1088_2631_7990_ad39ba crossref_primary_10_1016_j_nanoen_2023_108616 crossref_primary_10_3390_nanoenergyadv2010006 crossref_primary_10_1039_C7TA10175A crossref_primary_10_1016_j_nanoen_2021_106199 crossref_primary_10_1039_D0TA12073A crossref_primary_10_1002_adfm_201900098 crossref_primary_10_1016_j_cej_2023_146571 crossref_primary_10_1016_j_smaim_2020_07_002 crossref_primary_10_1021_acsenergylett_0c01062 crossref_primary_10_1016_j_jmst_2024_08_047 crossref_primary_10_1016_j_apmt_2019_100496 crossref_primary_10_1039_D0NR07756A crossref_primary_10_1080_10584587_2021_1964293 crossref_primary_10_1016_j_nanoen_2018_07_011 crossref_primary_10_1016_j_nanoen_2019_104086 crossref_primary_10_1002_admt_201800569 crossref_primary_10_1002_advs_202201098 crossref_primary_10_1016_j_isci_2020_102018 crossref_primary_10_1016_j_eml_2020_101100 crossref_primary_10_1016_j_nanoen_2023_108509 crossref_primary_10_1016_j_nanoen_2020_104602 crossref_primary_10_1515_ntrev_2024_0125 crossref_primary_10_1002_aenm_201800889 crossref_primary_10_1016_j_nanoen_2022_107112 crossref_primary_10_1002_admt_202100084 crossref_primary_10_1016_j_nanoen_2019_104011 crossref_primary_10_1016_j_elstat_2022_103685 crossref_primary_10_1021_acssuschemeng_7b03337 crossref_primary_10_1007_s10853_021_06637_z crossref_primary_10_1002_adma_202209895 crossref_primary_10_1109_MEI_2022_9757853 crossref_primary_10_1016_j_cej_2022_139469 crossref_primary_10_1016_j_nanoen_2022_107427 crossref_primary_10_1016_j_nanoen_2022_107781 crossref_primary_10_1016_j_mtener_2024_101502 crossref_primary_10_1016_j_nanoen_2019_104379 crossref_primary_10_1002_smll_201805418 crossref_primary_10_1016_j_nanoen_2019_104017 crossref_primary_10_1002_aenm_202003802 crossref_primary_10_1002_aenm_202200963 crossref_primary_10_1016_j_nanoen_2018_06_038 crossref_primary_10_1021_acsnano_2c12458 crossref_primary_10_1002_aelm_201900725 crossref_primary_10_1016_j_nanoen_2022_107530 crossref_primary_10_1002_aenm_201802906 crossref_primary_10_1088_1361_6633_ac0a50 crossref_primary_10_3390_nanoenergyadv2020009 crossref_primary_10_1002_aenm_202000886 crossref_primary_10_1002_nano_202100003 crossref_primary_10_1039_D3EE01325A crossref_primary_10_1016_j_nanoen_2021_106390 crossref_primary_10_1126_sciadv_adr9139 crossref_primary_10_3390_nano12101647 crossref_primary_10_1016_j_nanoen_2024_110094 crossref_primary_10_1021_acsnano_1c10755 crossref_primary_10_1002_aenm_202100050 crossref_primary_10_1088_2631_7990_ad4f32 crossref_primary_10_1021_acsnano_8b05359 crossref_primary_10_1002_adfm_201903162 crossref_primary_10_1039_C8NR05957H crossref_primary_10_1016_j_pmatsci_2023_101206 crossref_primary_10_1039_D2TA03683E crossref_primary_10_1002_admt_202201957 crossref_primary_10_1021_acsaelm_9b00483 crossref_primary_10_1007_s40820_021_00713_4 crossref_primary_10_1103_PhysRevLett_125_078301 crossref_primary_10_1016_j_nanoen_2019_104165 crossref_primary_10_1016_j_ijhydene_2024_02_196 crossref_primary_10_1002_smll_202201754 crossref_primary_10_37394_232010_2022_19_24 crossref_primary_10_1039_D4EE01493F crossref_primary_10_1016_j_matt_2022_02_021 crossref_primary_10_15625_2525_2518_16244 crossref_primary_10_1016_j_cej_2022_139138 crossref_primary_10_1016_j_mattod_2023_03_010 crossref_primary_10_1016_j_nanoen_2022_107318 crossref_primary_10_1002_chem_202000722 crossref_primary_10_1002_aenm_202303874 crossref_primary_10_1016_j_nanoen_2022_108030 crossref_primary_10_3390_molecules29112443 crossref_primary_10_1007_s12274_023_5660_8 crossref_primary_10_1002_admt_202101139 crossref_primary_10_1038_s41467_020_18086_4 crossref_primary_10_1002_aenm_202002929 crossref_primary_10_1016_j_nanoen_2021_106816 crossref_primary_10_1007_s42765_023_00295_3 crossref_primary_10_1016_j_synthmet_2020_116692 crossref_primary_10_1016_j_triboint_2023_108504 crossref_primary_10_1016_j_nanoen_2023_108310 crossref_primary_10_1016_j_nanoen_2023_108796 crossref_primary_10_1002_ente_201901265 crossref_primary_10_1002_aenm_202000730 crossref_primary_10_1016_j_nanoen_2022_108143 crossref_primary_10_1587_elex_19_20220094 crossref_primary_10_1002_advs_202001116 crossref_primary_10_1039_C8TC02964D crossref_primary_10_1016_j_nanoen_2018_06_078 crossref_primary_10_1021_acsnano_3c11087 crossref_primary_10_1038_s41467_021_25753_7 crossref_primary_10_1039_D3EE00220A crossref_primary_10_1126_sciadv_aba9624 crossref_primary_10_1021_acsami_1c21359 crossref_primary_10_3390_s21010158 crossref_primary_10_1016_j_nanoen_2020_105439 crossref_primary_10_1016_j_jsamd_2021_08_005 crossref_primary_10_1039_D3EE01248D crossref_primary_10_1016_j_nanoen_2020_104461 crossref_primary_10_1016_j_nanoen_2022_107056 crossref_primary_10_1002_adma_201901958 crossref_primary_10_1038_s41467_020_20045_y crossref_primary_10_1002_admt_202000531 crossref_primary_10_1002_adma_202406058 crossref_primary_10_1002_aenm_202000965 crossref_primary_10_1016_j_xcrp_2022_101163 crossref_primary_10_1002_adfm_202401717 crossref_primary_10_1002_aenm_202000605 crossref_primary_10_1002_aenm_202203689 crossref_primary_10_1038_s41467_020_17891_1 crossref_primary_10_1016_j_ceja_2021_100237 crossref_primary_10_1021_acsmaterialslett_1c00819 crossref_primary_10_1002_smll_201905726 crossref_primary_10_1002_smm2_1093 crossref_primary_10_1016_j_nanoen_2018_05_011 crossref_primary_10_1021_acsami_9b20060 crossref_primary_10_1002_adfm_202004714 crossref_primary_10_1002_aesr_202100161 crossref_primary_10_1002_admt_202000520 crossref_primary_10_3390_nano12193510 crossref_primary_10_1007_s40544_022_0646_1 crossref_primary_10_3390_en17030638 crossref_primary_10_1016_j_nanoen_2018_06_055 crossref_primary_10_1021_acsnano_3c12035 crossref_primary_10_1088_1361_6528_ac6df5 crossref_primary_10_1016_j_apenergy_2023_120792 crossref_primary_10_1002_adfm_201808849 crossref_primary_10_1039_D4EE00482E crossref_primary_10_3390_nano9050773 crossref_primary_10_1002_adfm_202002547 crossref_primary_10_1021_acsnano_0c10840 crossref_primary_10_1038_s41467_024_53847_5 crossref_primary_10_1002_anie_201806658 crossref_primary_10_1016_j_mseb_2023_116814 crossref_primary_10_1016_j_mattod_2020_11_012 crossref_primary_10_1002_aenm_201903024 crossref_primary_10_1016_j_device_2024_100437 crossref_primary_10_1002_ange_202014241 crossref_primary_10_1007_s10853_021_06323_0 crossref_primary_10_1002_aelm_201900464 crossref_primary_10_3390_su142114422 crossref_primary_10_1002_adma_202307918 crossref_primary_10_1002_smll_202205704 crossref_primary_10_1002_aesr_202300233 crossref_primary_10_1021_acsnano_8b08567 crossref_primary_10_1016_j_nanoen_2019_104419 crossref_primary_10_1063_5_0056948 crossref_primary_10_1021_acs_nanolett_2c00107 crossref_primary_10_1039_D1SE01582F crossref_primary_10_1002_adma_202300283 crossref_primary_10_1016_j_nanoen_2022_107025 crossref_primary_10_3389_fmats_2022_939173 crossref_primary_10_1021_acsnano_0c09803 crossref_primary_10_1039_D4EE02447H crossref_primary_10_1039_C8NR03774D crossref_primary_10_1002_admt_201800588 crossref_primary_10_1021_acsnano_0c04113 crossref_primary_10_1002_adma_202109918 crossref_primary_10_1016_j_nanoen_2022_107136 crossref_primary_10_1021_acsaenm_3c00416 crossref_primary_10_1016_j_compositesb_2020_108602 crossref_primary_10_1016_j_nanoen_2023_108762 crossref_primary_10_1021_acsnano_2c05531 crossref_primary_10_1557_s43577_025_00876_0 crossref_primary_10_1002_adma_202400505 crossref_primary_10_1021_acs_nanolett_2c02995 crossref_primary_10_1016_j_mtphys_2022_100701 crossref_primary_10_1016_j_elstat_2025_104037 crossref_primary_10_1002_adfm_201904090 crossref_primary_10_1021_acsami_8b05966 crossref_primary_10_1088_1757_899X_678_1_012133 crossref_primary_10_1002_admt_201800019 crossref_primary_10_1002_adma_202001699 crossref_primary_10_1016_j_nanoen_2019_06_027 crossref_primary_10_1021_acsnano_3c02043 crossref_primary_10_1002_smll_202107222 crossref_primary_10_1021_acsami_2c19233 crossref_primary_10_1002_admt_201800140 crossref_primary_10_1038_s41467_024_50872_2 crossref_primary_10_1002_adfm_202002613 crossref_primary_10_1016_j_nanoen_2023_108651 crossref_primary_10_1002_smtd_202200066 crossref_primary_10_1126_sciadv_aay5065 crossref_primary_10_3389_fpsyt_2023_1163003 crossref_primary_10_1016_j_cej_2024_148726 crossref_primary_10_1016_j_nanoen_2022_107272 crossref_primary_10_1038_s41467_019_09464_8 crossref_primary_10_1016_j_nanoen_2018_11_058 crossref_primary_10_1002_admt_201800009 crossref_primary_10_1039_C8RA05305G crossref_primary_10_1002_adfm_201907378 crossref_primary_10_1016_j_nanoen_2018_11_062 crossref_primary_10_1002_advs_202401636 |
Cites_doi | 10.1016/j.nanoen.2012.01.004 10.1126/sciadv.1501624 10.1002/adfm.201504675 10.1016/j.mattod.2016.12.001 10.1002/aenm.201501593 10.1002/adfm.201600021 10.1021/acsnano.6b02076 10.1038/nenergy.2016.138 10.1021/acsnano.5b00534 10.1016/j.nanoen.2014.11.050 10.1016/j.nanoen.2016.12.061 10.1002/adma.201501934 10.1021/acsnano.6b03007 10.1021/acsnano.6b01569 10.1038/ncomms5929 10.1038/ncomms10987 10.1016/j.nanoen.2014.08.007 10.1016/j.nanoen.2016.10.025 10.1016/j.nanoen.2014.11.009 10.1016/j.nanoen.2016.07.016 10.1039/C5EE01532D 10.1016/j.nanoen.2016.09.038 10.1002/adma.201402491 10.1039/C5TA10239A 10.1039/C6TC05282G 10.1021/acsnano.6b00949 10.1021/acsami.6b00548 10.1038/ncomms9376 10.1038/ncomms9031 10.1038/542159a 10.1016/j.nanoen.2014.10.034 10.1038/ncomms12744 10.1038/ncomms12985 10.1038/nature11475 10.1126/science.1201512 10.1002/aenm.201501467 10.1038/ncomms9975 10.1038/ncomms4426 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-017-00131-4 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Proquest Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_d8695e22a5da43e69a13ad29560b0364 PMC5519710 28729530 10_1038_s41467_017_00131_4 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-5467de6ae2849e4e65740de4dae7b48ea69f4f52ac93af66d54d8f5f2f966bbe3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:23:33 EDT 2025 Thu Aug 21 18:12:43 EDT 2025 Fri Jul 11 00:03:25 EDT 2025 Wed Aug 13 10:43:01 EDT 2025 Thu Apr 03 07:10:03 EDT 2025 Thu Apr 24 23:07:30 EDT 2025 Tue Jul 01 02:21:01 EDT 2025 Fri Feb 21 02:39:47 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-5467de6ae2849e4e65740de4dae7b48ea69f4f52ac93af66d54d8f5f2f966bbe3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.proquest.com/docview/1920777338?pq-origsite=%requestingapplication% |
PMID | 28729530 |
PQID | 1920777338 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d8695e22a5da43e69a13ad29560b0364 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5519710 proquest_miscellaneous_1922505051 proquest_journals_1920777338 pubmed_primary_28729530 crossref_primary_10_1038_s41467_017_00131_4 crossref_citationtrail_10_1038_s41467_017_00131_4 springer_journals_10_1038_s41467_017_00131_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-07-20 |
PublicationDateYYYYMMDD | 2017-07-20 |
PublicationDate_xml | – month: 07 year: 2017 text: 2017-07-20 day: 20 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Wang (CR10) 2017; 20 Wei, Zhu, Wang (CR26) 2014; 10 Jing, Xie, Zhu, Han, Wang (CR11) 2015; 6 Chun (CR29) 2016; 7 Guo (CR18) 2016; 6 Rodrigues, Alves, Puga, Pereira, Ventura (CR21) 2016; 30 Fan, Tian, Wang (CR2) 2012; 1 Bae (CR31) 2014; 5 Wang (CR25) 2016; 4 Chen (CR5) 2016; 2 Wang (CR38) 2015; 5 Wang (CR23) 2016; 26 Zi (CR20) 2016; 10 Chu, Majumdar (CR1) 2012; 488 Chandrasekhar, Alluri, Vivekananthan, Purusothaman, Kim (CR7) 2017; 5 Wu (CR19) 2017; 32 Wang (CR28) 2016; 7 Wang (CR27) 2014; 26 Chen (CR37) 2015; 9 Chandrasekhar, Alluri, Saravanakumar, Selvarajan, Kim (CR16) 2016; 8 Wang (CR6) 2015; 27 Yi (CR3) 2016; 2 Zhu, Chen, Zhang, Jing, Wang (CR30) 2014; 5 Wu (CR14) 2016; 10 Wang (CR32) 2016; 26 Zi (CR22) 2015; 6 Wang (CR36) 2017; 542 Zi (CR13) 2016; 7 Zhu (CR8) 2016; 27 Cui (CR34) 2016; 10 Wang, Lin, Wang (CR9) 2015; 11 Zhang, Zheng, Wang, Rahman, Zhou (CR17) 2016; 30 Lee, Gupta, Kim (CR15) 2015; 14 Baytekin (CR35) 2011; 33 Zhu, Peng, Chen, Jing, Wang (CR4) 2015; 14 Yi (CR24) 2016; 10 Niu, Wang, Yi, Zhou, Wang (CR12) 2015; 6 Wang, Chen, Lin (CR33) 2015; 8 G Zhu (131_CR30) 2014; 5 M Zhu (131_CR8) 2016; 27 J Wang (131_CR28) 2016; 7 ZL Wang (131_CR36) 2017; 542 A Chandrasekhar (131_CR16) 2016; 8 F Yi (131_CR3) 2016; 2 Y Zi (131_CR20) 2016; 10 Y Zi (131_CR13) 2016; 7 KY Lee (131_CR15) 2015; 14 ZL Wang (131_CR33) 2015; 8 S Wang (131_CR27) 2014; 26 S Chu (131_CR1) 2012; 488 N Cui (131_CR34) 2016; 10 S Wang (131_CR25) 2016; 4 S Niu (131_CR12) 2015; 6 A Chandrasekhar (131_CR7) 2017; 5 X Wang (131_CR38) 2015; 5 X Zhang (131_CR17) 2016; 30 J Bae (131_CR31) 2014; 5 J Wang (131_CR6) 2015; 27 F-R Fan (131_CR2) 2012; 1 XY Wei (131_CR26) 2014; 10 J Wang (131_CR32) 2016; 26 ZL Wang (131_CR10) 2017; 20 S Wang (131_CR9) 2015; 11 J Chun (131_CR29) 2016; 7 HT Baytekin (131_CR35) 2011; 33 J Chen (131_CR37) 2015; 9 C Wu (131_CR14) 2016; 10 Q Jing (131_CR11) 2015; 6 CRS Rodrigues (131_CR21) 2016; 30 F Yi (131_CR24) 2016; 10 Y Zi (131_CR22) 2015; 6 H Guo (131_CR18) 2016; 6 G Zhu (131_CR4) 2015; 14 J Wang (131_CR23) 2016; 26 J Chen (131_CR5) 2016; 2 C Wu (131_CR19) 2017; 32 25247474 - Nat Commun. 2014 Sep 23;5:4929 27677971 - Nat Commun. 2016 Sep 28;7:12744 27386560 - Sci Adv. 2016 Jun 17;2(6):e1501624 27703165 - Nat Commun. 2016 Oct 05;7:12985 26271603 - Nat Commun. 2015 Aug 14;6:8031 25146891 - Adv Mater. 2014 Oct 22;26(39):6720-8 26964693 - Nat Commun. 2016 Mar 11;7:10987 25719956 - ACS Nano. 2015 Mar 24;9(3):3324-31 26175123 - Adv Mater. 2015 Sep 2;27(33):4830-6 21700838 - Science. 2011 Jul 15;333(6040):308-12 28179678 - Nature. 2017 Feb 8;542(7640):159-160 27351212 - ACS Nano. 2016 Jul 26;10(7):6519-25 27077467 - ACS Nano. 2016 Apr 26;10(4):4797-805 27129019 - ACS Nano. 2016 Jun 28;10(6):6131-8 27058268 - ACS Nano. 2016 Apr 26;10(4):4652-9 26656252 - Nat Commun. 2015 Dec 11;6:8975 26406279 - Nat Commun. 2015 Sep 25;6:8376 24594501 - Nat Commun. 2014 Mar 04;5:3426 22895334 - Nature. 2012 Aug 16;488(7411):294-303 27023206 - ACS Appl Mater Interfaces. 2016 Apr 20;8(15):9692-9 |
References_xml | – volume: 1 start-page: 328 year: 2012 end-page: 334 ident: CR2 article-title: Flexible triboelectric generator! publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 2 start-page: e1501624 year: 2016 ident: CR3 article-title: A highly shape-adaptive, stretchable design based on conductive liquid for energy harvesting and self-powered biomechanical monitoring publication-title: Sci. Adv. doi: 10.1126/sciadv.1501624 – volume: 26 start-page: 1070 year: 2016 end-page: 1076 ident: CR23 article-title: All-plastic-materials based self-charging power system composed of triboelectric nanogenerators and supercapacitors publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504675 – volume: 20 start-page: 74 year: 2017 end-page: 82 ident: CR10 article-title: On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 6 start-page: 1501593 year: 2016 ident: CR18 article-title: A water-proof triboelectric-electromagnetic hybrid generator for energy harvesting in harsh environments publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501593 – volume: 26 start-page: 3542 year: 2016 end-page: 3548 ident: CR32 article-title: Self-powered electrochemical synthesis of polypyrrole from the pulsed output of a triboelectric nanogenerator as a sustainable energy system publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600021 – volume: 10 start-page: 6131 year: 2016 end-page: 6138 ident: CR34 article-title: Dynamic behavior of the triboelectric charges and structural optimization of the friction layer for a triboelectric nanogenerator publication-title: ACS Nano doi: 10.1021/acsnano.6b02076 – volume: 2 start-page: 16138 year: 2016 ident: CR5 article-title: Micro-cable structured textile for simultaneouslyharvesting solar and mechanical energy publication-title: Nature Energy doi: 10.1038/nenergy.2016.138 – volume: 9 start-page: 3324 year: 2015 end-page: 3321 ident: CR37 article-title: Networks of triboelectric nanogenerators for harvesting water wave energy: a potential approach toward blue energy publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 14 start-page: 126 year: 2015 end-page: 138 ident: CR4 article-title: Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.050 – volume: 32 start-page: 287 year: 2017 end-page: 293 ident: CR19 article-title: A spring-based resonance coupling for hugely enhancing the performance of triboelectric nanogenerators for harvesting low-frequency vibration energy publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.061 – volume: 27 start-page: 4830 year: 2015 end-page: 4836 ident: CR6 article-title: A flexible fiber-based supercapacitor-triboelectric-nanogenerator power system for wearable electronics publication-title: Adv. Mater. doi: 10.1002/adma.201501934 – volume: 10 start-page: 6519 year: 2016 end-page: 6525 ident: CR24 article-title: Stretchable and waterproof self-charging power system for harvesting energy from diverse deformation and powering wearable electronics publication-title: ACS Nano doi: 10.1021/acsnano.6b03007 – volume: 10 start-page: 4797 year: 2016 end-page: 4805 ident: CR20 article-title: Harvesting low-frequency (<5 Hz) irregular mechanical energy: a possible killer application of triboelectric nanogenerator publication-title: Acs Nano doi: 10.1021/acsnano.6b01569 – volume: 5 start-page: 4929 year: 2014 ident: CR31 article-title: Flutter-driven triboelectrification for harvesting wind energy publication-title: Nat. Commun. doi: 10.1038/ncomms5929 – volume: 7 start-page: 10987 year: 2016 ident: CR13 article-title: Effective energy storage from a triboelectric nanogenerator publication-title: Nat. Commun. doi: 10.1038/ncomms10987 – volume: 10 start-page: 83 year: 2014 end-page: 89 ident: CR26 article-title: Surface-charge engineering for high-performance triboelectric nanogenerator based on identical electrification materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.007 – volume: 30 start-page: 321 year: 2016 end-page: 329 ident: CR17 article-title: Liquid-solid contact triboelectrification and its use in self-powered nanosensor for detecting organics in water publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.025 – volume: 14 start-page: 139 year: 2015 end-page: 160 ident: CR15 article-title: Transparent flexible stretchable piezoelectric and triboelectric nanogenerators for powering portable electronics publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.009 – volume: 27 start-page: 439 year: 2016 end-page: 446 ident: CR8 article-title: 3D spacer fabric based multifunctional triboelectric nanogenerator with great feasibility for mechanized large-scale production publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.016 – volume: 8 start-page: 2250 year: 2015 end-page: 2282 ident: CR33 article-title: Progress in triboelectric nanogenerators as a new energy technology and self-powered sensors publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 30 start-page: 379 year: 2016 end-page: 386 ident: CR21 article-title: Triboelectric driven turbine to generate electricity from the motion of water publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.038 – volume: 26 start-page: 6720 year: 2014 end-page: 6728 ident: CR27 article-title: Maximum surface charge density for triboelectric nanogenerators achieved by ionized-air injection: methodology and theoretical understanding publication-title: Adv. Mater. doi: 10.1002/adma.201402491 – volume: 4 start-page: 3728 year: 2016 end-page: 3734 ident: CR25 article-title: Molecular surface functionalization to enhance the power output of triboelectric nanogenerators publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10239A – volume: 5 start-page: 1488 year: 2017 end-page: 1493 ident: CR7 article-title: A sustainable freestanding biomechanical energy harvesting smart backpack as a portable-wearable power source publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05282G – volume: 10 start-page: 4652 year: 2016 end-page: 4659 ident: CR14 article-title: Paper-based triboelectric nanogenerators made of stretchable interlocking kirigami patterns publication-title: ACS Nano doi: 10.1021/acsnano.6b00949 – volume: 8 start-page: 9692 year: 2016 end-page: 9699 ident: CR16 article-title: Human interactive triboelectric nanogenerator as a self-powered smart seat publication-title: Acs Appl. Mater. Interf. doi: 10.1021/acsami.6b00548 – volume: 6 start-page: 8376 year: 2015 ident: CR22 article-title: Standards and figure-of-merits for quantifying the performance of triboelectric nanogenerators publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 6 start-page: 8031 year: 2015 ident: CR11 article-title: Self-powered thin-film motion vector sensor publication-title: Nat. Commun. doi: 10.1038/ncomms9031 – volume: 542 start-page: 159 year: 2017 end-page: 160 ident: CR36 article-title: Catch wave power in floating nets publication-title: Nature doi: 10.1038/542159a – volume: 11 start-page: 436 year: 2015 end-page: 462 ident: CR9 article-title: Triboelectric nanogenerators as self-powered active sensors publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 7 start-page: 12744 year: 2016 ident: CR28 article-title: Sustainably powering wearable electronics solely by biomechanical energy publication-title: Nat. Commun. doi: 10.1038/ncomms12744 – volume: 7 start-page: 12985 year: 2016 ident: CR29 article-title: Boosted output performance of triboelectric nanogenerator via electric double layer effect publication-title: Nat. Commun. doi: 10.1038/ncomms12985 – volume: 488 start-page: 294 year: 2012 end-page: 303 ident: CR1 article-title: Opportunities and challenges for a sustainable energy future publication-title: Nature doi: 10.1038/nature11475 – volume: 33 start-page: 308 year: 2011 end-page: 312 ident: CR35 article-title: The mosaic of surface charge in contact electrification publication-title: Science doi: 10.1126/science.1201512 – volume: 5 start-page: 3426 year: 2014 ident: CR30 article-title: Radial-arrayed rotary electrification for high performance triboelectric generator publication-title: Nat. Commun. – volume: 5 start-page: 1501467 year: 2015 ident: CR38 article-title: Triboelectric nanogenerator based on fully enclosed rolling spherical structure for harvesting low-frequency water wave energy publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501467 – volume: 6 start-page: 8975 year: 2015 ident: CR12 article-title: A universal self-charging system driven by random biomechanical energy for sustainable operation of mobile electronics publication-title: Nat. Commun. doi: 10.1038/ncomms9975 – volume: 10 start-page: 6131 year: 2016 ident: 131_CR34 publication-title: ACS Nano doi: 10.1021/acsnano.6b02076 – volume: 488 start-page: 294 year: 2012 ident: 131_CR1 publication-title: Nature doi: 10.1038/nature11475 – volume: 6 start-page: 8975 year: 2015 ident: 131_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms9975 – volume: 4 start-page: 3728 year: 2016 ident: 131_CR25 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA10239A – volume: 27 start-page: 4830 year: 2015 ident: 131_CR6 publication-title: Adv. Mater. doi: 10.1002/adma.201501934 – volume: 10 start-page: 83 year: 2014 ident: 131_CR26 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.08.007 – volume: 14 start-page: 126 year: 2015 ident: 131_CR4 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.050 – volume: 20 start-page: 74 year: 2017 ident: 131_CR10 publication-title: Mater. Today doi: 10.1016/j.mattod.2016.12.001 – volume: 26 start-page: 1070 year: 2016 ident: 131_CR23 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201504675 – volume: 11 start-page: 436 year: 2015 ident: 131_CR9 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.10.034 – volume: 10 start-page: 4797 year: 2016 ident: 131_CR20 publication-title: Acs Nano doi: 10.1021/acsnano.6b01569 – volume: 5 start-page: 3426 year: 2014 ident: 131_CR30 publication-title: Nat. Commun. doi: 10.1038/ncomms4426 – volume: 7 start-page: 12985 year: 2016 ident: 131_CR29 publication-title: Nat. Commun. doi: 10.1038/ncomms12985 – volume: 5 start-page: 4929 year: 2014 ident: 131_CR31 publication-title: Nat. Commun. doi: 10.1038/ncomms5929 – volume: 27 start-page: 439 year: 2016 ident: 131_CR8 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.07.016 – volume: 5 start-page: 1501467 year: 2015 ident: 131_CR38 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501467 – volume: 542 start-page: 159 year: 2017 ident: 131_CR36 publication-title: Nature doi: 10.1038/542159a – volume: 1 start-page: 328 year: 2012 ident: 131_CR2 publication-title: Nano Energy doi: 10.1016/j.nanoen.2012.01.004 – volume: 32 start-page: 287 year: 2017 ident: 131_CR19 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.12.061 – volume: 26 start-page: 3542 year: 2016 ident: 131_CR32 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201600021 – volume: 7 start-page: 10987 year: 2016 ident: 131_CR13 publication-title: Nat. Commun. doi: 10.1038/ncomms10987 – volume: 8 start-page: 2250 year: 2015 ident: 131_CR33 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE01532D – volume: 14 start-page: 139 year: 2015 ident: 131_CR15 publication-title: Nano Energy doi: 10.1016/j.nanoen.2014.11.009 – volume: 26 start-page: 6720 year: 2014 ident: 131_CR27 publication-title: Adv. Mater. doi: 10.1002/adma.201402491 – volume: 33 start-page: 308 year: 2011 ident: 131_CR35 publication-title: Science doi: 10.1126/science.1201512 – volume: 10 start-page: 6519 year: 2016 ident: 131_CR24 publication-title: ACS Nano doi: 10.1021/acsnano.6b03007 – volume: 5 start-page: 1488 year: 2017 ident: 131_CR7 publication-title: J. Mater. Chem. C doi: 10.1039/C6TC05282G – volume: 6 start-page: 1501593 year: 2016 ident: 131_CR18 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201501593 – volume: 9 start-page: 3324 year: 2015 ident: 131_CR37 publication-title: ACS Nano doi: 10.1021/acsnano.5b00534 – volume: 30 start-page: 321 year: 2016 ident: 131_CR17 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.10.025 – volume: 2 start-page: e1501624 year: 2016 ident: 131_CR3 publication-title: Sci. Adv. doi: 10.1126/sciadv.1501624 – volume: 10 start-page: 4652 year: 2016 ident: 131_CR14 publication-title: ACS Nano doi: 10.1021/acsnano.6b00949 – volume: 6 start-page: 8031 year: 2015 ident: 131_CR11 publication-title: Nat. Commun. doi: 10.1038/ncomms9031 – volume: 30 start-page: 379 year: 2016 ident: 131_CR21 publication-title: Nano Energy doi: 10.1016/j.nanoen.2016.09.038 – volume: 2 start-page: 16138 year: 2016 ident: 131_CR5 publication-title: Nature Energy doi: 10.1038/nenergy.2016.138 – volume: 7 start-page: 12744 year: 2016 ident: 131_CR28 publication-title: Nat. Commun. doi: 10.1038/ncomms12744 – volume: 6 start-page: 8376 year: 2015 ident: 131_CR22 publication-title: Nat. Commun. doi: 10.1038/ncomms9376 – volume: 8 start-page: 9692 year: 2016 ident: 131_CR16 publication-title: Acs Appl. Mater. Interf. doi: 10.1021/acsami.6b00548 – reference: 27129019 - ACS Nano. 2016 Jun 28;10(6):6131-8 – reference: 27077467 - ACS Nano. 2016 Apr 26;10(4):4797-805 – reference: 26175123 - Adv Mater. 2015 Sep 2;27(33):4830-6 – reference: 25146891 - Adv Mater. 2014 Oct 22;26(39):6720-8 – reference: 21700838 - Science. 2011 Jul 15;333(6040):308-12 – reference: 26656252 - Nat Commun. 2015 Dec 11;6:8975 – reference: 27677971 - Nat Commun. 2016 Sep 28;7:12744 – reference: 26406279 - Nat Commun. 2015 Sep 25;6:8376 – reference: 27351212 - ACS Nano. 2016 Jul 26;10(7):6519-25 – reference: 27058268 - ACS Nano. 2016 Apr 26;10(4):4652-9 – reference: 27386560 - Sci Adv. 2016 Jun 17;2(6):e1501624 – reference: 27703165 - Nat Commun. 2016 Oct 05;7:12985 – reference: 24594501 - Nat Commun. 2014 Mar 04;5:3426 – reference: 26271603 - Nat Commun. 2015 Aug 14;6:8031 – reference: 27023206 - ACS Appl Mater Interfaces. 2016 Apr 20;8(15):9692-9 – reference: 25247474 - Nat Commun. 2014 Sep 23;5:4929 – reference: 26964693 - Nat Commun. 2016 Mar 11;7:10987 – reference: 22895334 - Nature. 2012 Aug 16;488(7411):294-303 – reference: 25719956 - ACS Nano. 2015 Mar 24;9(3):3324-31 – reference: 28179678 - Nature. 2017 Feb 8;542(7640):159-160 |
SSID | ssj0000391844 |
Score | 2.6693203 |
Snippet | With its light weight, low cost and high efficiency even at low operation frequency, the triboelectric nanogenerator is considered a potential solution for... Triboelectric nanogenerators (TENGs) harvest ambient mechanical energy and convert it into electrical energy. Here, the authors couple surface polarization... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 88 |
SubjectTerms | 639/301/299 639/4077/4072/4062 Breakdowns Charge density Dielectric polarization Efficiency Electric contacts Electrification Electrodes Energy Energy charge Energy harvesting Ferroelectric materials Humanities and Social Sciences multidisciplinary Nanogenerators Ocean waves Polarization Science Science (multidisciplinary) Sensors Vacuum |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6hSkhcUHk2UJCRuLVRk9iOk2NBVBUSiAOVerOceExXqrIVu3vov2dmkl3t0gIXrvE4dsbzjO1vAN5bciEhRZNT5tXnBlPKWz40nrTBwkWTCqmi8OVrfX5hPl_ay61SX3wmbIQHHhl3Epu6tVhVwcZgNNZtKHWIFYf1He-hsfUln7eVTIkN1i2lLma6JVPo5mRhxCawURaMmdzseCIB7L8vyrx7WPK3HVNxRGf78HiKINXpOPMn8ACHp_BwrCl5-wy-nfZXM-TfBGp1Ta9iPGLFZa3mY8WbWa8EHQlV5LPry1tFYatCQZKgsRXKZUBFJALAMfx4Dhdnn75_PM-nsgl5T9nIMrf0nRHrgOR5WjRYW2eKiCYGdJ1pMNRtMslWoedlqutoTWySTVWi1KfrUL-AvWE-4AGoWLaJGB6q4BrTVRRd2raMGkPT9Oi0y6Bcs9D3E6Y4l7a49rK3rRs_st0T272w3ZsMjjZ9bkZEjb9Sf-CV2VAyGrY8IBnxk4z4f8lIBofrdfWTii48hbaFc45S9AzebZpJuXjHJAw4XwkNh4hkuDJ4OYrBZiaUatIIusjA7QjIzlR3W4bZlQB4W74tXFLP47UobU3rj6x49T9Y8RoeVaIDjuzjIewtf67wDYVVy-6taNAvHG4cng priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwEB5BERIXxLuBgozEDaLmYcfOCRVEVSGBOFBpb5YTj9uVqqR0dw_998w43sDy6DW2Y3s8Hs94xt8AvFF0hLjgZU6WV59LDCFvOWg81BIL7WUoYhaFL1-bk1P5eaEW6cJtlcIqtzIxCmo_9nxHfkiaSKG1Jovq_eWPnLNGsXc1pdC4DXcYuoxDuvRCz3csjH5upExvZYraHK5klAwsmiPSTC53zqMI2_8vXfPvkMk__KbxODp-APeTHimOpoV_CLdweAR3p8yS14_h21F_vkS-LBCbC_oVoxILTm41Tnlvlr2IGEkoPEewr68FKa8CI54E9S0wPgkUVCXCcAxnT-D0-NP3jyd5Sp6Q92STrHNF8_TYOKTzp0WJjdKy8Ci9Q91Jg65pgwyqcj0vVtN4Jb0JKlSBDKCuw_op7A3jgPsgfNmG1pWuctrIriIdU7Wlr9EZ06OudQblloS2T8jinODiwkYPd23sRHZLZLeR7FZm8HZucznhatxY-wOvzFyTMbHjh_HqzKYtZr1pWoVV5ZR3ssaGhlw7X7EB2LG3NYOD7bratFFX9hdbZfB6LqYtxn4TN-C4iXVYUSTxlcGziQ3mkZDBST3URQZ6h0F2hrpbMizPI4y34jfDJbV8t2Wl34b1X1I8v3kWL-BeFblbk_w7gL311QZfktq07l7FvfETeFsU2w priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LbxQxDLZKERIXxJuBFgWJG4yYR15zLKtWVaUiDlTqLcpMnHalarZqdw_99zieh1goSFwnzozHcRI7dj4DfFS0hfgYZE6eV5dLjDFvUtJ4rCUWJshYcBWF02_6-EyenKvzHaimuzCctM-QlrxMT9lhX24lT-m0pjJETC4fwMME3Z60eqEX87lKQjy3Uo73Y4ra3tN1aw9iqP777Ms_0yR_i5XyFnT0FJ6MtqM4GLh9BjvYP4dHQzXJuxfw_aC7XGI6IBCbK3pVQiIWqaDVaqh1s-wE4yKhCClrfX0nyGAVyBgS9G2BfA1QEAlDb_QXL-Hs6PDH4jgfCybkHfkh61zRfwbUHmnPaVCiVkYWAWXwaFpp0esmyqgq36UB0jooGWxUsYrk9LQt1q9gt1_1-AZEKJvY-NJX3ljZVmRXqqYMNXprOzS1yaCcROi6EU08FbW4chzVrq0bxO5I7I7F7mQGn-Y-1wOWxj-pv6aRmSkTDjY_WN1cuFEvXLC6UVhVXgUva9TEcu1DlZy-NkVYM9ibxtWNk_PWkVFbGGPIOc_gw9xM0yrFSnyPqw3TJOOQlqwMXg9qMHNCTiZ9oS4yMFsKssXqdku_vGTobpXuCZfU8_OkSr-w9VdRvP0_8nfwuGJtN7QG7sHu-maD-2Q6rdv3PFd-Ao-oEn8 priority: 102 providerName: Springer Nature |
Title | Achieving ultrahigh triboelectric charge density for efficient energy harvesting |
URI | https://link.springer.com/article/10.1038/s41467-017-00131-4 https://www.ncbi.nlm.nih.gov/pubmed/28729530 https://www.proquest.com/docview/1920777338 https://www.proquest.com/docview/1922505051 https://pubmed.ncbi.nlm.nih.gov/PMC5519710 https://doaj.org/article/d8695e22a5da43e69a13ad29560b0364 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_6wWAvY9911wUN9rZ5S2zJkh_GSEOzEmgp2wJ5E7J1agPBWdMElv9-J9kOzZbuJQFbii-6O93vLOl3AO8FhRDjLI8p8ypjjs7Fud807lKOXWm564YqCheX2fmYjyZisgdtuaNmAO92pna-ntR4Mfv0-3b9lRz-S31kXH2-48Hd_Xwb6GNivg-HFJmkd9SLBu6HmTnNKaHhzdmZ3V09O7AixCn8vuh7oSow-u-Cof_upvxrSTVEquFTeNJATNavbeIZ7GH1HB7VRSfXL-CqX95M0b9HYKsZ_ZQnLGa-7tW8LokzLVmgT0Jm_eb25ZoRrmUYqCbo2QzDaUFGTQJDR3X9EsbDs5-D87ipqxCXlK4sY0F_2WJmkEJTjhwzIXnXIrcGZcEVmix33InElF6PWWYFt8oJlzjKjYoC01dwUM0rPAJme7nLTc8kRipeJAQ_Rd6zKRqlSpSpjKDXDqEuG9JxX_tipsPid6p0rQFNGtBBA5pH8GHT51dNufHf1qdeM5uWni47XJgvrnXjfdqqLBeYJEZYw1PMSOTU2MTnhoVfiI3gpNWrbk1QE_btSikph4_g3eY2eZ9fUjEVzlehjceQNLNF8Lo2g40krRlFILcMZEvU7TvV9CYwfAt_nLhHPT-2pnRPrAeH4vhBEd7A4yTYuKRZ8QQOlosVviUwtSw6sC8nkj7V8FsHDvv90Y8RfZ-eXV59p6uDbNAJryk6wZP-AKUdHo4 |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VIgQXxLMEChgJThA1m9hxckCoPKotfYhDK-3NOPG4XanKlu6u0P4pfiMzTrKwPHrrNXYcZzxPj_0NwEtFJsR6J2OKvOpYovdxyYfGfSYx0U76JFRRODjMh8fy80iN1uBHfxeGj1X2OjEoajepeY98izyRRGtNEdW7828xV43i7GpfQqNliz1cfKeQbfp29yOt76s03fl09GEYd1UF4pqc9VmsSDU4zC2SYi5RYq60TBxKZ1FXskCbl156ldqa_yLPnZKu8MqnniKDqsKMxr0G18nwJixReqSXezqMtl5I2d3NSbJiayqDJmJTEJBtYrli_0KZgH_5tn8f0fwjTxvM384duN35rWK7ZbS7sIbNPbjRVrJc3Icv2_XpGHlzQszPaChGQRZcTGvS1tkZ1yJgMqFwfGJ-thDkLAsM-BX0bYHhCqKgLgH2ozl5AMdXQtaHsN5MGnwEwg1KX9qBTa0uZJWST6vKgcvQFkWNOtMRDHoSmrpDMueCGmcmZNSzwrRkN0R2E8huZASvl--ctzgel_Z-zyuz7MkY3OHB5OLEdCJtXJGXCtPUKmdlhjlNObMu5YCz4uxuBJv9uppOMUzNLzaO4MWymUSa8zS2wck89GHHlNRlBBstGyxnQgEufSFLItArDLIy1dWWZnwaYMMV31Ee0Jtvelb6bVr_JcXjy__iOdwcHh3sm_3dw70ncCsNnK5J927C-uxijk_JZZtVz4KcCPh61YL5E8wkU1I |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9QwDLfGEIgXxDeFAUGCJ6jWj6RpHxAajNPGYNoDk_YW0sbZTpp6Y3cndP8afx122h4cH3vba5u2rmM7duz8DPBC0RJivZMxRV5NLNH7uOKicZ9LTLSTPgldFD7vFzuH8uOROlqDH8NZGC6rHGxiMNRu0vAe-SZ5IonWmiKqTd-XRRxsj96efYu5gxRnWod2Gp2I7OHiO4Vv0ze72zTXL7Ns9OHL-5247zAQN-S4z2JFZsJhYZGMdIUSC6Vl4lA6i7qWJdqi8tKrzDb8R0XhlHSlVz7zFCXUNeb03itwVecqZR3TR3q5v8PI66WU_TmdhMieymCVeFkIKDexXFkLQ8uAf_m5f5dr_pGzDUvh6Bbc7H1YsdUJ3W1Yw_YOXOu6Wi7uwsFWczJG3qgQ81N6FSMiC26sNel67owbEfCZUDiunp8tBDnOAgOWBX1bYDiOKGhIgABpj-_B4aWw9T6st5MWH4JwaeUrm9rM6lLWGfm3qkpdjrYsG9S5jiAdWGiaHtWcm2ucmpBdz0vTsd0Q201gu5ERvFo-c9Zhelw4-h3PzHIk43GHC5PzY9Ort3FlUSnMMquclTkWRHJuXcbBZ82Z3gg2hnk1vZGYml8iHcHz5W1Sb87Z2BYn8zCGnVQynRE86MRgSQkFu_SFPIlArwjICqmrd9rxSYAQV3xeOaUnXw-i9BtZ_2XFo4v_4hlcJ5U0n3b39x7DjSwIuiYzvAHrs_M5PiHvbVY_DWoi4Otl6-VPmJhXiA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Achieving+ultrahigh+triboelectric+charge+density+for+efficient+energy+harvesting&rft.jtitle=Nature+communications&rft.au=Wang%2C+Jie&rft.au=Wu%2C+Changsheng&rft.au=Dai%2C+Yejing&rft.au=Zhao%2C+Zhihao&rft.date=2017-07-20&rft.eissn=2041-1723&rft.volume=8&rft.issue=1&rft.spage=88&rft_id=info:doi/10.1038%2Fs41467-017-00131-4&rft_id=info%3Apmid%2F28729530&rft.externalDocID=28729530 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |