SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters
Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different r...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 4985 - 15 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
17.08.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.
Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease. |
---|---|
AbstractList | Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.
Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease. Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease. Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution. Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution. Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease. |
ArticleNumber | 4985 |
Author | Port, Julia R. Yinda, Claude Kwe Owusu, Irene Offei Munster, Vincent J. Schulz, Jonathan E. van Doremalen, Neeltje Clancy, Chad S. Bushmaker, Trenton Holbrook, Myndi Martens, Craig Fischer, Robert Avanzato, Victoria A. |
Author_xml | – sequence: 1 givenname: Julia R. surname: Port fullname: Port, Julia R. organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 2 givenname: Claude Kwe surname: Yinda fullname: Yinda, Claude Kwe organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 3 givenname: Irene Offei surname: Owusu fullname: Owusu, Irene Offei organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 4 givenname: Myndi orcidid: 0000-0003-2376-2633 surname: Holbrook fullname: Holbrook, Myndi organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 5 givenname: Robert surname: Fischer fullname: Fischer, Robert organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 6 givenname: Trenton orcidid: 0000-0002-2161-4808 surname: Bushmaker fullname: Bushmaker, Trenton organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Montana State University – sequence: 7 givenname: Victoria A. surname: Avanzato fullname: Avanzato, Victoria A. organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 8 givenname: Jonathan E. surname: Schulz fullname: Schulz, Jonathan E. organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 9 givenname: Craig surname: Martens fullname: Martens, Craig organization: Rocky Mountain Genomics Core Facility, Division of Intramural Research, National Institutes of Health – sequence: 10 givenname: Neeltje orcidid: 0000-0003-4368-6359 surname: van Doremalen fullname: van Doremalen, Neeltje organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health – sequence: 11 givenname: Chad S. orcidid: 0000-0002-5354-9270 surname: Clancy fullname: Clancy, Chad S. organization: Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Health – sequence: 12 givenname: Vincent J. orcidid: 0000-0002-2288-3196 surname: Munster fullname: Munster, Vincent J. email: vincent.munster@nih.gov organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34404778$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIVLwF-xnQtSteKjUiUkFrhajj3ZepXYi52tujd-Ot5NKW0P9cWjmfeexzPvZXUUYoCqek3we4KZ-pA54ULWmJKaNqQRtXpWnVDMSU0kZUf34uPqLOc1Loe1RHH-ojpmnGMupTqp_izPvy_rRfxVU-R8BpMBZbiG5KcdMsGhKZmQR5-zjwFB33vrIdgd8hn5YNOe4FAfEzI-dTEFQDaOG5NKdoqlMPoJENxsYt4mKBS03CVvAroyY54g5VfV894MGc5u79Pq5-dPPxZf68tvXy4W55e1FVhMdcOckAYU9FxgKTkQS521-yH00vSKM9l2xnbEdY4q1bbQCt6bRrTQNQw37LS6mHVdNGu9SX40aaej8fqQiGmlTZq8HUBzww1gyZlqGy5Yp5iksi2xZCCoc0Xr46y12XYjOAuhTGl4IPqwEvyVXsVrXZQIxqQIvLsVSPH3FvKky4QtDIMJELdZ00aUpUre0gJ9-wi6jtsUyqgOKCypamRBvbnf0V0r_xZdAHQG2BRzTtDfQQjWe0Pp2VC6GEofDKX3JPWIZP1kpuKE8is_PE1lMzWXd8IK0v-2n2D9Bash39g |
CitedBy_id | crossref_primary_10_1128_AEM_01215_21 crossref_primary_10_1038_s41598_022_09218_5 crossref_primary_10_3390_v14051013 crossref_primary_10_1080_17425247_2023_2189697 crossref_primary_10_1136_bmj_2021_065312 crossref_primary_10_1038_s44298_023_00011_3 crossref_primary_10_1093_infdis_jiae018 crossref_primary_10_1002_jmv_28103 crossref_primary_10_1016_S0140_6736_22_00423_8 crossref_primary_10_3934_mbe_2023027 crossref_primary_10_1073_pnas_2200109119 crossref_primary_10_3390_v16010089 crossref_primary_10_1093_infdis_jiac276 crossref_primary_10_1016_j_buildenv_2022_109328 crossref_primary_10_1038_s41467_025_55938_3 crossref_primary_10_1371_journal_pone_0278061 crossref_primary_10_3390_v14030639 crossref_primary_10_1038_s41564_021_01047_y crossref_primary_10_3389_fpubh_2022_805780 crossref_primary_10_3390_v14071507 crossref_primary_10_3389_fimmu_2022_811430 crossref_primary_10_3389_fmed_2021_836826 crossref_primary_10_1177_09636625221089391 crossref_primary_10_1371_journal_ppat_1011589 crossref_primary_10_1111_ina_13165 crossref_primary_10_7554_eLife_87094_3 crossref_primary_10_3201_eid2911_230804 crossref_primary_10_3390_vetsci10090536 crossref_primary_10_1001_jamapediatrics_2022_3833 crossref_primary_10_1093_cid_ciab903 crossref_primary_10_1016_j_scitotenv_2021_150786 crossref_primary_10_1038_s41467_023_38783_0 crossref_primary_10_1038_s41467_023_42796_0 crossref_primary_10_3390_microorganisms11041015 crossref_primary_10_1016_j_mtadv_2022_100228 crossref_primary_10_1093_cid_ciac157 crossref_primary_10_1021_acs_est_1c08342 crossref_primary_10_3390_biomedicines10051142 crossref_primary_10_1146_annurev_pathol_052620_121224 crossref_primary_10_3390_v16050729 crossref_primary_10_1098_rsif_2024_0009 crossref_primary_10_1016_S2666_5247_23_00099_X crossref_primary_10_1099_jgv_0_001799 crossref_primary_10_3390_v15010175 crossref_primary_10_3390_ijerph192316092 crossref_primary_10_1016_j_chemosphere_2022_135247 crossref_primary_10_1016_j_vetmic_2023_109910 crossref_primary_10_1128_aem_02338_21 crossref_primary_10_1186_s12860_021_00403_4 crossref_primary_10_1016_j_cmi_2024_05_001 crossref_primary_10_1038_s41598_022_12252_y crossref_primary_10_1172_jci_insight_163962 crossref_primary_10_1038_s41467_022_30195_w crossref_primary_10_3390_v14091856 crossref_primary_10_1103_RevModPhys_95_045001 crossref_primary_10_1172_jci_insight_160108 crossref_primary_10_3390_v13112251 crossref_primary_10_1016_j_jaerosci_2021_105870 crossref_primary_10_1146_annurev_chembioeng_092220_111631 crossref_primary_10_1177_1420326X221084869 crossref_primary_10_1016_j_buildenv_2024_111909 crossref_primary_10_1128_spectrum_04717_22 crossref_primary_10_1038_s44298_024_00061_1 crossref_primary_10_1146_annurev_publhealth_052120_110009 crossref_primary_10_1016_j_buildenv_2022_109153 crossref_primary_10_3390_pathogens13121109 crossref_primary_10_1016_j_idm_2024_10_004 crossref_primary_10_2903_j_efsa_2023_7822 crossref_primary_10_1098_rsfs_2021_0072 crossref_primary_10_1016_j_cbi_2022_109796 crossref_primary_10_1016_j_tim_2023_07_002 crossref_primary_10_1099_jgv_0_002022 crossref_primary_10_1038_s41541_023_00654_6 crossref_primary_10_7554_eLife_87094 crossref_primary_10_7759_cureus_18557 crossref_primary_10_1016_j_virs_2022_09_008 crossref_primary_10_1098_rsfs_2021_0076 |
Cites_doi | 10.3390/v12070779 10.1016/S2666-5247(20)30172-5 10.3201/eid2609.201788 10.1371/journal.pntd.0006978 10.3390/v11100940 10.1093/cid/ciaa644 10.1111/ina.12751 10.12688/wellcomeopenres.15889.2 10.1093/bioinformatics/btu638 10.1038/s41467-021-21918-6 10.1017/ice.2020.296 10.1001/jama.2020.2565 10.1017/ice.2020.282 10.3138/jammi-2020-0030 10.3201/eid2607.200764 10.1016/S2666-5247(20)30003-3 10.1093/infdis/jiz502 10.1128/JVI.78.7.3352-3360.2004 10.1016/j.ejrad.2020.109147 10.1038/s41586-020-2342-5 10.1126/science.abe2424 10.1101/2020.05.31.20115154 10.1056/NEJMc2001468 10.1016/j.xcrm.2020.100121 10.2807/1560-7917.ES.2020.25.3.2000045 10.1016/j.rmed.2020.105951 10.1016/j.jinf.2020.04.004 10.1038/s41586-020-2787-6 10.2807/1560-7917.ES.2020.25.10.2000180 10.1038/s41591-020-0843-2 10.1038/s41467-020-20568-4 10.1038/s41586-020-2271-3 10.1186/s13059-014-0550-8 10.1016/j.jaerosci.2020.105617 10.1093/cid/ciaa905 10.1056/NEJMc2004973 10.3109/08958378.2015.1033570 10.1038/s41467-020-17367-2 10.1080/22221751.2020.1858177 10.1016/j.cmi.2020.09.004 10.1038/s41598-020-69286-3 10.1371/journal.pone.0069127 10.1016/j.vascn.2003.07.001 10.1038/nmeth.3317 10.1016/S1473-3099(21)00262-0 10.1016/S1473-3099(20)30561-2 10.1056/NEJMp2026913 10.1371/journal.ppat.1009195 10.1021/acsnano.0c03252 10.1016/j.envint.2020.105832 10.3201/eid2609.202267 10.1038/s41467-020-16670-2 10.1126/science.abe8499 10.1016/j.bbi.2020.06.032 10.1016/j.cmi.2020.05.009 10.1002/jmv.25861 10.3201/eid2607.200885 10.3201/eid2611.203353 10.15585/mmwr.mm6919e6 10.1080/08958370802207318 10.1016/j.antiviral.2017.03.025 10.1183/13993003.01227-2020 10.1016/j.ijid.2020.09.025 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU COVID DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-25156-8 |
DatabaseName | Springer Nature OA/Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni Edition) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College Coronavirus Research Database ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 15 |
ExternalDocumentID | oai_doaj_org_article_4a4ae0743895463b83727995473e62dd PMC8371001 34404778 10_1038_s41467_021_25156_8 |
Genre | Journal Article Research Support, N.I.H., Intramural |
GrantInformation_xml | – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID) grantid: NA funderid: https://doi.org/10.13039/100006492 – fundername: NIGMS NIH HHS grantid: T32 GM008169 – fundername: ; grantid: NA |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K COVID DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-53d67ae8ef460774e1c2dcc4146f7af84379bacb1dbd28899e964fa569eb53053 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:25:57 EDT 2025 Thu Aug 21 18:36:46 EDT 2025 Fri Jul 11 11:08:41 EDT 2025 Wed Aug 13 05:28:57 EDT 2025 Wed Feb 19 02:08:49 EST 2025 Thu Apr 24 22:58:56 EDT 2025 Tue Jul 01 04:17:33 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-53d67ae8ef460774e1c2dcc4146f7af84379bacb1dbd28899e964fa569eb53053 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2161-4808 0000-0003-4368-6359 0000-0002-2288-3196 0000-0003-2376-2633 0000-0002-5354-9270 |
OpenAccessLink | https://www.proquest.com/docview/2562072857?pq-origsite=%requestingapplication% |
PMID | 34404778 |
PQID | 2562072857 |
PQPubID | 546298 |
PageCount | 15 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4a4ae0743895463b83727995473e62dd pubmedcentral_primary_oai_pubmedcentral_nih_gov_8371001 proquest_miscellaneous_2562517492 proquest_journals_2562072857 pubmed_primary_34404778 crossref_primary_10_1038_s41467_021_25156_8 crossref_citationtrail_10_1038_s41467_021_25156_8 springer_journals_10_1038_s41467_021_25156_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-17 |
PublicationDateYYYYMMDD | 2021-08-17 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chan, J. F. et al. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 71, 2139 (2020). ColaneriMSevere acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unitClin. Microbiol. Infect.2020261094.e11094.e51:CAS:528:DC%2BB3cXhtVOlu7jO10.1016/j.cmi.2020.05.009 Nouailles, G. et al. Longitudinal omics in Syrian hamsters integrated with human data unravel complexity of moderate immune responses to SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2020.12.18.423524v1. Sun, K. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science.371, eabe2424, https://doi.org/10.1126/science.abe2424 (2021). GandhiMRutherfordGWFacial masking for Covid-19 — potential for “Variolation” as we await a vaccineN. Engl. J. Med.2020383e1011:CAS:528:DC%2BB3cXit1WltbjK32897661789055910.1056/NEJMp2026913 MengHCT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, ChinaJ. Infect.202081e33e391:CAS:528:DC%2BB3cXhtFCjtb%2FK32294504715286510.1016/j.jinf.2020.04.004 LeungNHLRespiratory virus shedding in exhaled breath and efficacy of face masksNat. Med.2020266766801:CAS:528:DC%2BB3cXmsVWjs78%3D32371934823857110.1038/s41591-020-0843-2 HeGThe clinical feature of silent infections of novel coronavirus infection (COVID-19) in WenzhouJ. Med. Virol.202092176117631:CAS:528:DC%2BB3cXhtFKisbzO3227507410.1002/jmv.25861 CDC, Ventilation. (2020). Wei, T. & V. Simko. R package “corrplot”: Visualization of a Correlation Matrix (2017). HartingsJMRoyCJThe automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primatesJ. Pharm. Toxicol. Methods20044939551:CAS:528:DC%2BD3sXps1OlsL0%3D10.1016/j.vascn.2003.07.001 National Academies of Sciences, E. and Medicine, Airborne Transmission of SARS-CoV-2: Proceedings of a Workshop—in Brief (ed. M. Shelton-Davenport) 18 (The National Academies Press, Washington, DC, 2020). KählerCJHainRFundamental protective mechanisms of face masks against droplet infectionsJ. Aerosol Sci.20201481056172020JAerS.148j5617K32834103732104510.1016/j.jaerosci.2020.1056171:CAS:528:DC%2BB3cXhtlegu7bP Miller, S. L. et al. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31, 314 (2020). BaiYPresumed asymptomatic carrier transmission of COVID-19JAMA2020323140614071:CAS:528:DC%2BB3cXnvVOjtLk%3D32083643704284410.1001/jama.2020.2565 Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog17, e1009195, https://doi.org/10.1371/journal.ppat.1009195 (2021). Byambasuren, O. et al. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, (2020). RichardMSARS-CoV-2 is transmitted via contact and via the air between ferretsNat. Commun.2020112020NatCo..11.3496R1:CAS:528:DC%2BB3cXhtlKntbrJ32641684734382810.1038/s41467-020-17367-2 BaeSHAsymptomatic transmission of SARS-CoV-2 on evacuation flightEmerg. Infect. Dis. J.20202627051:CAS:528:DC%2BB3MXkt1Churw%3D10.3201/eid2611.203353 Judson, S. D. & Munster, V. J. A framework for nosocomial transmission of emerging coronaviruses. Infect. Control Hosp. Epidemiol. 42, 639–641, https://doi.org/10.1017/ice.2020.296 (2021). ParryAHSpectrum of chest computed tomographic (CT) findings in coronavirus disease-19 (COVID-19) patients in IndiaEur. J. Radiol.202012910914710914732623113731352810.1016/j.ejrad.2020.109147 Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect.9, 1–36 (2020). GoldmanEExaggerated risk of transmission of COVID-19 by fomitesLancet Infect. Dis.2020208928931:CAS:528:DC%2BB3cXhtlegu7rF32628907733399310.1016/S1473-3099(20)30561-2 Kissler, S. M. et al. Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.24.432576v2.full. Muñoz-FontelaCAnimal models for COVID-19Nature20205865095152020Natur.586..509M32967005813686210.1038/s41586-020-2787-61:CAS:528:DC%2BB3cXitV2qs7rE Osterrieder, N. et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses12, 779 (2020). Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun. 12, 1653 (2021). MathersARCuffCFRole of interleukin-4 (IL-4) and IL-10 in serum immunoglobulin G antibody responses following mucosal or systemic reovirus infectionJ. Virol.200478335233601:CAS:528:DC%2BD2cXis1Klt7k%3D1501685737105410.1128/JVI.78.7.3352-3360.2004 ChiaPYDetection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patientsNat. Commun.2020112020NatCo..11.2800C1:CAS:528:DC%2BB3cXhtVGmtrfL32472043726022510.1038/s41467-020-16670-2 LuJCOVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020Emerg. Infect. Dis.202026162816311:CAS:528:DC%2BB3cXitlyltr3P32240078732355510.3201/eid2607.200764 LeeJHThe use of large-particle aerosol exposure to Nipah virus to mimic human neurological disease manifestations in the African Green monkeyJ. Infect. Dis.2019221S419S430736817810.1093/infdis/jiz5021:CAS:528:DC%2BB3cXhtFSiu7zP Judson, S. D. & Munster, V. J. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses11 2019. Chak-Yiu Lee, A. et al. Oral SARS-CoV-2 inoculation establishes subclinical respiratory infection with virus shedding in golden Syrian hamsters. Cell Rep. Med.1, 100121 (2020). CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREur. Surveill.2020252000045 LoveMIHuberWAndersSModerated estimation of fold change and dispersion for RNA-seq data with DESeq2Genome Biol.20141525516281430204910.1186/s13059-014-0550-81:CAS:528:DC%2BC2MXjtVCrsL8%3D Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 89, 579 (2020). Ben-ShmuelADetection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilitiesClin. Microbiol. Infect.202026165816621:CAS:528:DC%2BB3cXhvFegtLbO32919072748117410.1016/j.cmi.2020.09.004 Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill.25, 2000045 (2020). PastorinoBProlonged infectivity of SARS-CoV-2 in fomitesEmerg. Infect. Dis.202026225622571:CAS:528:DC%2BB3cXitlOlsbfN745410610.3201/eid2609.201788 Zhou, J. et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa905 (2020). RotheCTransmission of 2019-nCoV infection from an asymptomatic contact in GermanyN. Engl. J. Med.202038297097132003551712097010.1056/NEJMc2001468 WHO, Coronavirus disease 2019 (COVID-19) Situation Report – 52. (2020). ChengVCAir and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19)Infect. Control Hosp. Epidemiol.202041125812653250711410.1017/ice.2020.2821:CAS:528:DC%2BB3cXhtFCltLjL HamnerLHigh SARS-CoV-2 attack rate following exposure at a choir practice - Skagit County, Washington, March 2020Mmwr. Morbidity Mortal. Wkly. Rep.2020696066101:CAS:528:DC%2BB3cXps1Cisr8%3D10.15585/mmwr.mm6919e6 MizumotoKEstimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020Eurosurveillance2020252000180707882910.2807/1560-7917.ES.2020.25.10.2000180 de WitEThe Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamstersPLoS ONE20138e691272013PLoSO...869127D23844250369951010.1371/journal.pone.00691271:CAS:528:DC%2BC3sXhtFGjsbnN ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e101:CAS:528:DC%2BB3cXit1Kms7%2FJ32835322721486310.1016/S2666-5247(20)30003-3 KondaAAerosol filtration efficiency of common fabrics used in respiratory cloth masksACS Nano202014633963471:CAS:528:DC%2BB3cXnslChsr4%3D3232933710.1021/acsnano.0c03252 Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2, E13–E22 (2020). Santarpia, J. L. et al. Aerosol and surface transmission potential of SARS-CoV-2. Sci. Reports.10, 12732 (2020). LednickyJAViable SARS-CoV-2 in the air of a hospital room with COVID-19 patientsInt. J. Infect. Dis.20201004764821:CAS:528:DC%2BB3cXitFClur%2FI32949774749373710.1016/j.ijid.2020.09.025 KimDLangmeadBSalzbergSLHISAT: a fast spliced aligner with low memory requirementsNat. Methods2015123573601:CAS:528:DC%2BC2MXjvFOnsL0%3D25751142465581710.1038/nmeth.3317 NieSCoronavirus Disease 2019-related dyspnea cases difficult to interpret using chest computed tomographyRespiratory Med.202016710595110595110.1016/j.rmed.2020.105951 MatsonMJEffect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputumEmerg. Infect. Dis.202026227622781:CAS:528:DC%2BB3cXitlyltrrM745405810.3201/eid2609.202267 van Kampen, J. J. A. et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. Nat. Commun. 12, 267 (2021). AndersSPylPTHuberWHTSeq−a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL2526070010.1093/bioinformatics/btu638 R Development Core Team, R: A Konda (25156_CR39) 2020; 14 25156_CR28 25156_CR27 L Hamner (25156_CR57) 2020; 69 Y Liu (25156_CR15) 2020; 582 25156_CR26 25156_CR25 25156_CR24 G He (25156_CR43) 2020; 92 A Ben-Shmuel (25156_CR50) 2020; 26 N van Doremalen (25156_CR69) 2017; 143 JK Bohannon (25156_CR13) 2015; 27 QJ Leclerc (25156_CR58) 2020; 5 Y Bai (25156_CR47) 2020; 323 J Lu (25156_CR16) 2020; 26 25156_CR33 25156_CR32 25156_CR76 25156_CR31 25156_CR75 25156_CR30 25156_CR74 AR Mathers (25156_CR34) 2004; 78 H Meng (25156_CR45) 2020; 81 25156_CR70 JH Lee (25156_CR37) 2019; 221 D Kim (25156_CR71) 2015; 12 E Goldman (25156_CR49) 2020; 20 25156_CR35 AWH Chin (25156_CR51) 2020; 1 B Pastorino (25156_CR11) 2020; 26 M Colaneri (25156_CR23) 2020; 26 N van Doremalen (25156_CR7) 2020; 382 M Gandhi (25156_CR41) 2020; 383 E de Wit (25156_CR65) 2013; 8 25156_CR42 L Morawska (25156_CR59) 2020; 142 S Nie (25156_CR2) 2020; 167 JM Hartings (25156_CR67) 2004; 49 CJ Kähler (25156_CR40) 2020; 148 VC Cheng (25156_CR14) 2020; 41 JA Lednicky (25156_CR21) 2020; 100 M Richard (25156_CR55) 2020; 11 SH Bae (25156_CR48) 2020; 26 C Rothe (25156_CR44) 2020; 382 ZD Guo (25156_CR9) 2020; 26 MI Love (25156_CR73) 2014; 15 PY Chia (25156_CR8) 2020; 11 MJ Matson (25156_CR12) 2020; 26 DJ Alexander (25156_CR66) 2008; 20 JL Santarpia (25156_CR22) 2020; 10 25156_CR10 25156_CR54 25156_CR53 25156_CR52 K Mizumoto (25156_CR46) 2020; 25 25156_CR19 25156_CR18 25156_CR17 AH Parry (25156_CR3) 2020; 129 25156_CR56 C Muñoz-Fontela (25156_CR29) 2020; 586 VM Corman (25156_CR68) 2020; 25 25156_CR1 S Anders (25156_CR72) 2015; 31 25156_CR6 25156_CR5 25156_CR4 NHL Leung (25156_CR38) 2020; 26 25156_CR20 25156_CR64 25156_CR63 25156_CR62 DA Hammoud (25156_CR36) 2018; 12 25156_CR61 25156_CR60 33398267 - bioRxiv. 2020 Dec 28 |
References_xml | – reference: van DoremalenNAerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1N. Engl. J. Med2020382156415673218240910.1056/NEJMc2004973 – reference: ParryAHSpectrum of chest computed tomographic (CT) findings in coronavirus disease-19 (COVID-19) patients in IndiaEur. J. Radiol.202012910914710914732623113731352810.1016/j.ejrad.2020.109147 – reference: Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2, E13–E22 (2020). – reference: HeGThe clinical feature of silent infections of novel coronavirus infection (COVID-19) in WenzhouJ. Med. Virol.202092176117631:CAS:528:DC%2BB3cXhtFKisbzO3227507410.1002/jmv.25861 – reference: MorawskaLHow can airborne transmission of COVID-19 indoors be minimised?Environ. Int.20201421058321058321:CAS:528:DC%2BB3cXhtFWktLbM32521345725076110.1016/j.envint.2020.105832 – reference: Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill.25, 2000045 (2020). – reference: HammoudDAAerosol exposure to intermediate size Nipah virus particles induces neurological disease in African green monkeysPLOS Negl. Trop. Dis.201812e00069781:CAS:528:DC%2BC1MXitFWkur3M30462637628127610.1371/journal.pntd.0006978 – reference: Judson, S. D. & Munster, V. J. A framework for nosocomial transmission of emerging coronaviruses. Infect. Control Hosp. Epidemiol. 42, 639–641, https://doi.org/10.1017/ice.2020.296 (2021). – reference: World Health Organization, Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, World Health Organization.https://apps.who.int/iris/handle/10665/333114 (2020). – reference: ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e101:CAS:528:DC%2BB3cXit1Kms7%2FJ32835322721486310.1016/S2666-5247(20)30003-3 – reference: LednickyJAViable SARS-CoV-2 in the air of a hospital room with COVID-19 patientsInt. J. Infect. Dis.20201004764821:CAS:528:DC%2BB3cXitFClur%2FI32949774749373710.1016/j.ijid.2020.09.025 – reference: LoveMIHuberWAndersSModerated estimation of fold change and dispersion for RNA-seq data with DESeq2Genome Biol.20141525516281430204910.1186/s13059-014-0550-81:CAS:528:DC%2BC2MXjtVCrsL8%3D – reference: Santarpia, J. L. et al. Aerosol and surface transmission potential of SARS-CoV-2. Sci. Reports.10, 12732 (2020). – reference: Guan, W. J. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J.55, 2000547 (2020). – reference: LeeJHThe use of large-particle aerosol exposure to Nipah virus to mimic human neurological disease manifestations in the African Green monkeyJ. Infect. Dis.2019221S419S430736817810.1093/infdis/jiz5021:CAS:528:DC%2BB3cXhtFSiu7zP – reference: RotheCTransmission of 2019-nCoV infection from an asymptomatic contact in GermanyN. Engl. J. Med.202038297097132003551712097010.1056/NEJMc2001468 – reference: MatsonMJEffect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputumEmerg. Infect. Dis.202026227622781:CAS:528:DC%2BB3cXitlyltrrM745405810.3201/eid2609.202267 – reference: PastorinoBProlonged infectivity of SARS-CoV-2 in fomitesEmerg. Infect. Dis.202026225622571:CAS:528:DC%2BB3cXitlOlsbfN745410610.3201/eid2609.201788 – reference: R Development Core Team, R: A language and Environment for Statistical computing 2010, R Foundation for Statistical Computing (2015). – reference: MengHCT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, ChinaJ. Infect.202081e33e391:CAS:528:DC%2BB3cXhtFCjtb%2FK32294504715286510.1016/j.jinf.2020.04.004 – reference: MathersARCuffCFRole of interleukin-4 (IL-4) and IL-10 in serum immunoglobulin G antibody responses following mucosal or systemic reovirus infectionJ. Virol.200478335233601:CAS:528:DC%2BD2cXis1Klt7k%3D1501685737105410.1128/JVI.78.7.3352-3360.2004 – reference: Brown, J. C. et al. Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.24.432576v1. – reference: Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog17, e1009195, https://doi.org/10.1371/journal.ppat.1009195 (2021). – reference: Nouailles, G. et al. Longitudinal omics in Syrian hamsters integrated with human data unravel complexity of moderate immune responses to SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2020.12.18.423524v1. – reference: Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science370, 1464 (2020). – reference: BohannonJKGeneration and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamberInhal. Toxicol.2015272472531:CAS:528:DC%2BC2MXhtVOkt7fN25970823498440110.3109/08958378.2015.1033570 – reference: KondaAAerosol filtration efficiency of common fabrics used in respiratory cloth masksACS Nano202014633963471:CAS:528:DC%2BB3cXnslChsr4%3D3232933710.1021/acsnano.0c03252 – reference: de WitEThe Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamstersPLoS ONE20138e691272013PLoSO...869127D23844250369951010.1371/journal.pone.00691271:CAS:528:DC%2BC3sXhtFGjsbnN – reference: SantarpiaJLAerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation careSci. Rep.2020102020NatSR..1012732S1:CAS:528:DC%2BB3cXhsVyku7rM32728118739164010.1038/s41598-020-69286-3 – reference: Kissler, S. M. et al. Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.24.432576v2.full. – reference: HamnerLHigh SARS-CoV-2 attack rate following exposure at a choir practice - Skagit County, Washington, March 2020Mmwr. Morbidity Mortal. Wkly. Rep.2020696066101:CAS:528:DC%2BB3cXps1Cisr8%3D10.15585/mmwr.mm6919e6 – reference: Miller, S. L. et al. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31, 314 (2020). – reference: MizumotoKEstimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020Eurosurveillance2020252000180707882910.2807/1560-7917.ES.2020.25.10.2000180 – reference: van DoremalenNEfficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosetsAntivir. Res.201714330372838914210.1016/j.antiviral.2017.03.0251:CAS:528:DC%2BC2sXlvVCkurk%3D – reference: LeclercQJWhat settings have been linked to SARS-CoV-2 transmission clusters?Wellcome Open Res.202058332656368732772410.12688/wellcomeopenres.15889.21:CAS:528:DC%2BB3cXitFeks73M – reference: GoldmanEExaggerated risk of transmission of COVID-19 by fomitesLancet Infect. Dis.2020208928931:CAS:528:DC%2BB3cXhtlegu7rF32628907733399310.1016/S1473-3099(20)30561-2 – reference: Zhou, J. et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa905 (2020). – reference: CDC, Ventilation. (2020). – reference: AlexanderDJAssociation of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticalsInhal. Toxicol.200820117911891:CAS:528:DC%2BD1cXht1yjtbfP1880280210.1080/08958370802207318 – reference: AndersSPylPTHuberWHTSeq−a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL2526070010.1093/bioinformatics/btu638 – reference: van Kampen, J. J. A. et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. Nat. Commun. 12, 267 (2021). – reference: Chak-Yiu Lee, A. et al. Oral SARS-CoV-2 inoculation establishes subclinical respiratory infection with virus shedding in golden Syrian hamsters. Cell Rep. Med.1, 100121 (2020). – reference: GandhiMRutherfordGWFacial masking for Covid-19 — potential for “Variolation” as we await a vaccineN. Engl. J. Med.2020383e1011:CAS:528:DC%2BB3cXit1WltbjK32897661789055910.1056/NEJMp2026913 – reference: BaeSHAsymptomatic transmission of SARS-CoV-2 on evacuation flightEmerg. Infect. Dis. J.20202627051:CAS:528:DC%2BB3MXkt1Churw%3D10.3201/eid2611.203353 – reference: Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 89, 579 (2020). – reference: Ramanathan, M. et al. SARS-CoV-2 B.1.1.7 and B.1.351 Spike variants bind human ACE2 with increased affinity. The Lancet Infectious Diseases21, 1070, https://doi.org/10.1016/S1473-3099(21)00262-0 (2021). – reference: Ben-ShmuelADetection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilitiesClin. Microbiol. Infect.202026165816621:CAS:528:DC%2BB3cXhvFegtLbO32919072748117410.1016/j.cmi.2020.09.004 – reference: HartingsJMRoyCJThe automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primatesJ. Pharm. Toxicol. Methods20044939551:CAS:528:DC%2BD3sXps1OlsL0%3D10.1016/j.vascn.2003.07.001 – reference: KählerCJHainRFundamental protective mechanisms of face masks against droplet infectionsJ. Aerosol Sci.20201481056172020JAerS.148j5617K32834103732104510.1016/j.jaerosci.2020.1056171:CAS:528:DC%2BB3cXhtlegu7bP – reference: RichardMSARS-CoV-2 is transmitted via contact and via the air between ferretsNat. Commun.2020112020NatCo..11.3496R1:CAS:528:DC%2BB3cXhtlKntbrJ32641684734382810.1038/s41467-020-17367-2 – reference: Osterrieder, N. et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses12, 779 (2020). – reference: KimDLangmeadBSalzbergSLHISAT: a fast spliced aligner with low memory requirementsNat. Methods2015123573601:CAS:528:DC%2BC2MXjvFOnsL0%3D25751142465581710.1038/nmeth.3317 – reference: National Academies of Sciences, E. and Medicine, Airborne Transmission of SARS-CoV-2: Proceedings of a Workshop—in Brief (ed. M. Shelton-Davenport) 18 (The National Academies Press, Washington, DC, 2020). – reference: Kolde, R. Implementation of heatmaps that offers more control over dimensions and appearance (2019). – reference: Sun, K. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science.371, eabe2424, https://doi.org/10.1126/science.abe2424 (2021). – reference: Ma, J. et al. Exhaled breath is a significant source of SARS-CoV-2 emission. https://doi.org/10.1101/2020.05.31.20115154 (2020). – reference: ColaneriMSevere acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unitClin. Microbiol. Infect.2020261094.e11094.e51:CAS:528:DC%2BB3cXhtVOlu7jO10.1016/j.cmi.2020.05.009 – reference: CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREur. Surveill.2020252000045 – reference: Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 583, 834 (2020). – reference: LiuYAerodynamic analysis of SARS-CoV-2 in two Wuhan hospitalsNature20205825575602020Natur.582..557L1:CAS:528:DC%2BB3cXhtF2jurrF3234002210.1038/s41586-020-2271-3 – reference: Byambasuren, O. et al. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, (2020). – reference: BaiYPresumed asymptomatic carrier transmission of COVID-19JAMA2020323140614071:CAS:528:DC%2BB3cXnvVOjtLk%3D32083643704284410.1001/jama.2020.2565 – reference: Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun. 12, 1653 (2021). – reference: Chan, J. F. et al. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 71, 2139 (2020). – reference: GuoZDAerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020Emerg. Infect. Dis.202026158315913227549710.3201/eid2607.2008851:CAS:528:DC%2BB3cXitlOlsbrF – reference: LeungNHLRespiratory virus shedding in exhaled breath and efficacy of face masksNat. Med.2020266766801:CAS:528:DC%2BB3cXmsVWjs78%3D32371934823857110.1038/s41591-020-0843-2 – reference: Judson, S. D. & Munster, V. J. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses11 2019. – reference: WHO, Coronavirus disease 2019 (COVID-19) Situation Report – 52. (2020). – reference: LuJCOVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020Emerg. Infect. Dis.202026162816311:CAS:528:DC%2BB3cXitlyltr3P32240078732355510.3201/eid2607.200764 – reference: Wei, T. & V. Simko. R package “corrplot”: Visualization of a Correlation Matrix (2017). – reference: NieSCoronavirus Disease 2019-related dyspnea cases difficult to interpret using chest computed tomographyRespiratory Med.202016710595110595110.1016/j.rmed.2020.105951 – reference: Chan, J. F.-W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian Hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71, 2428 (2020). – reference: ChengVCAir and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19)Infect. Control Hosp. Epidemiol.202041125812653250711410.1017/ice.2020.2821:CAS:528:DC%2BB3cXhtFCltLjL – reference: Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect.9, 1–36 (2020). – reference: ChiaPYDetection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patientsNat. Commun.2020112020NatCo..11.2800C1:CAS:528:DC%2BB3cXhtVGmtrfL32472043726022510.1038/s41467-020-16670-2 – reference: Muñoz-FontelaCAnimal models for COVID-19Nature20205865095152020Natur.586..509M32967005813686210.1038/s41586-020-2787-61:CAS:528:DC%2BB3cXitV2qs7rE – ident: 25156_CR33 doi: 10.3390/v12070779 – ident: 25156_CR5 doi: 10.1016/S2666-5247(20)30172-5 – volume: 26 start-page: 2256 year: 2020 ident: 25156_CR11 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2609.201788 – volume: 12 start-page: e0006978 year: 2018 ident: 25156_CR36 publication-title: PLOS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0006978 – ident: 25156_CR53 doi: 10.3390/v11100940 – ident: 25156_CR56 doi: 10.1093/cid/ciaa644 – ident: 25156_CR18 doi: 10.1111/ina.12751 – volume: 5 start-page: 83 year: 2020 ident: 25156_CR58 publication-title: Wellcome Open Res. doi: 10.12688/wellcomeopenres.15889.2 – volume: 31 start-page: 166 year: 2015 ident: 25156_CR72 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu638 – ident: 25156_CR54 doi: 10.1038/s41467-021-21918-6 – ident: 25156_CR52 doi: 10.1017/ice.2020.296 – ident: 25156_CR6 – volume: 323 start-page: 1406 year: 2020 ident: 25156_CR47 publication-title: JAMA doi: 10.1001/jama.2020.2565 – volume: 25 start-page: 2000045 year: 2020 ident: 25156_CR68 publication-title: Eur. Surveill. – volume: 41 start-page: 1258 year: 2020 ident: 25156_CR14 publication-title: Infect. Control Hosp. Epidemiol. doi: 10.1017/ice.2020.282 – ident: 25156_CR42 doi: 10.3138/jammi-2020-0030 – ident: 25156_CR74 – volume: 26 start-page: 1628 year: 2020 ident: 25156_CR16 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200764 – volume: 1 start-page: e10 year: 2020 ident: 25156_CR51 publication-title: Lancet Microbe doi: 10.1016/S2666-5247(20)30003-3 – volume: 221 start-page: S419 year: 2019 ident: 25156_CR37 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiz502 – volume: 78 start-page: 3352 year: 2004 ident: 25156_CR34 publication-title: J. Virol. doi: 10.1128/JVI.78.7.3352-3360.2004 – volume: 129 start-page: 109147 year: 2020 ident: 25156_CR3 publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2020.109147 – ident: 25156_CR25 doi: 10.1038/s41586-020-2342-5 – ident: 25156_CR28 doi: 10.1126/science.abe2424 – ident: 25156_CR35 – ident: 25156_CR17 doi: 10.1101/2020.05.31.20115154 – volume: 382 start-page: 970 year: 2020 ident: 25156_CR44 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMc2001468 – ident: 25156_CR32 doi: 10.1016/j.xcrm.2020.100121 – ident: 25156_CR62 – ident: 25156_CR27 doi: 10.2807/1560-7917.ES.2020.25.3.2000045 – volume: 167 start-page: 105951 year: 2020 ident: 25156_CR2 publication-title: Respiratory Med. doi: 10.1016/j.rmed.2020.105951 – volume: 81 start-page: e33 year: 2020 ident: 25156_CR45 publication-title: J. Infect. doi: 10.1016/j.jinf.2020.04.004 – volume: 586 start-page: 509 year: 2020 ident: 25156_CR29 publication-title: Nature doi: 10.1038/s41586-020-2787-6 – volume: 25 start-page: 2000180 year: 2020 ident: 25156_CR46 publication-title: Eurosurveillance doi: 10.2807/1560-7917.ES.2020.25.10.2000180 – volume: 26 start-page: 676 year: 2020 ident: 25156_CR38 publication-title: Nat. Med. doi: 10.1038/s41591-020-0843-2 – ident: 25156_CR4 doi: 10.1038/s41467-020-20568-4 – volume: 582 start-page: 557 year: 2020 ident: 25156_CR15 publication-title: Nature doi: 10.1038/s41586-020-2271-3 – volume: 15 year: 2014 ident: 25156_CR73 publication-title: Genome Biol. doi: 10.1186/s13059-014-0550-8 – volume: 148 start-page: 105617 year: 2020 ident: 25156_CR40 publication-title: J. Aerosol Sci. doi: 10.1016/j.jaerosci.2020.105617 – ident: 25156_CR10 doi: 10.1093/cid/ciaa905 – volume: 382 start-page: 1564 year: 2020 ident: 25156_CR7 publication-title: N. Engl. J. Med doi: 10.1056/NEJMc2004973 – volume: 27 start-page: 247 year: 2015 ident: 25156_CR13 publication-title: Inhal. Toxicol. doi: 10.3109/08958378.2015.1033570 – volume: 11 year: 2020 ident: 25156_CR55 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17367-2 – ident: 25156_CR24 doi: 10.1080/22221751.2020.1858177 – volume: 26 start-page: 1658 year: 2020 ident: 25156_CR50 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.09.004 – volume: 10 year: 2020 ident: 25156_CR22 publication-title: Sci. Rep. doi: 10.1038/s41598-020-69286-3 – volume: 8 start-page: e69127 year: 2013 ident: 25156_CR65 publication-title: PLoS ONE doi: 10.1371/journal.pone.0069127 – volume: 49 start-page: 39 year: 2004 ident: 25156_CR67 publication-title: J. Pharm. Toxicol. Methods doi: 10.1016/j.vascn.2003.07.001 – volume: 12 start-page: 357 year: 2015 ident: 25156_CR71 publication-title: Nat. Methods doi: 10.1038/nmeth.3317 – ident: 25156_CR63 doi: 10.1016/S1473-3099(21)00262-0 – ident: 25156_CR1 – ident: 25156_CR76 – volume: 20 start-page: 892 year: 2020 ident: 25156_CR49 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(20)30561-2 – ident: 25156_CR19 – volume: 383 start-page: e101 year: 2020 ident: 25156_CR41 publication-title: N. Engl. J. Med. doi: 10.1056/NEJMp2026913 – ident: 25156_CR70 doi: 10.1371/journal.ppat.1009195 – volume: 14 start-page: 6339 year: 2020 ident: 25156_CR39 publication-title: ACS Nano doi: 10.1021/acsnano.0c03252 – volume: 142 start-page: 105832 year: 2020 ident: 25156_CR59 publication-title: Environ. Int. doi: 10.1016/j.envint.2020.105832 – volume: 26 start-page: 2276 year: 2020 ident: 25156_CR12 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2609.202267 – ident: 25156_CR20 doi: 10.1038/s41598-020-69286-3 – ident: 25156_CR60 – volume: 11 year: 2020 ident: 25156_CR8 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16670-2 – ident: 25156_CR61 doi: 10.1126/science.abe8499 – ident: 25156_CR64 – ident: 25156_CR31 doi: 10.1016/j.bbi.2020.06.032 – volume: 26 start-page: 1094.e1 year: 2020 ident: 25156_CR23 publication-title: Clin. Microbiol. Infect. doi: 10.1016/j.cmi.2020.05.009 – volume: 92 start-page: 1761 year: 2020 ident: 25156_CR43 publication-title: J. Med. Virol. doi: 10.1002/jmv.25861 – volume: 26 start-page: 1583 year: 2020 ident: 25156_CR9 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2607.200885 – volume: 26 start-page: 2705 year: 2020 ident: 25156_CR48 publication-title: Emerg. Infect. Dis. J. doi: 10.3201/eid2611.203353 – volume: 69 start-page: 606 year: 2020 ident: 25156_CR57 publication-title: Mmwr. Morbidity Mortal. Wkly. Rep. doi: 10.15585/mmwr.mm6919e6 – ident: 25156_CR26 – ident: 25156_CR75 – volume: 20 start-page: 1179 year: 2008 ident: 25156_CR66 publication-title: Inhal. Toxicol. doi: 10.1080/08958370802207318 – volume: 143 start-page: 30 year: 2017 ident: 25156_CR69 publication-title: Antivir. Res. doi: 10.1016/j.antiviral.2017.03.025 – ident: 25156_CR30 doi: 10.1183/13993003.01227-2020 – volume: 100 start-page: 476 year: 2020 ident: 25156_CR21 publication-title: Int. J. Infect. Dis. doi: 10.1016/j.ijid.2020.09.025 – reference: 33398267 - bioRxiv. 2020 Dec 28;: |
SSID | ssj0000391844 |
Score | 2.6032624 |
Snippet | Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject... Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4985 |
SubjectTerms | 13 13/106 13/21 13/51 38/39 38/77 38/90 38/91 45 631/326/596/2563 631/326/596/4130 Administration, Intranasal Aerosols Air flow Animals COVID-19 COVID-19 - blood COVID-19 - transmission COVID-19 - virology Cytokines - blood Disease transmission Exposure Female Fomites Hamsters High-Throughput Nucleotide Sequencing Humanities and Social Sciences Inflammation Inoculation Lung - virology Mesocricetus multidisciplinary Nasal Cavity - virology Particle Size Pathogenesis Respiratory pathology Respiratory System - virology RNA, Viral - genetics Rodents SARS-CoV-2 - isolation & purification Science Science (multidisciplinary) Severe acute respiratory syndrome coronavirus 2 Severity of Illness Index Transmission efficiency Vaccination Viral diseases Virus Replication Virus Shedding Viruses Weight loss |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpBRmJG0RdP2I7x1JRVUhwYCnqLbLjiboSOFWTSvTGT2fGyS5dnheua0c7mvk8Dz--YeyFgKAxkNeliNGVujW45jQ6w06IqKRQIALtd7x7b45P9NvT6vRaqy-6EzbRA0-K29dee6A452pibg9YUMlMYmYVGBkjeV-MedeKqeyDVY2li55fySyU2x909gl0IwFDemVKtxWJMmH_77LMXy9L_nRimgPR0R12e84g-cEk-V12A9I9dnPqKXl1n31bHnxYlof9p1Ly-fSFY_QDalLHfYp8pOiE1qVtMg6ZQYKeX_LVwFeJcsgBIsdUlvvVBQIkAV_fU-djjwP0IIrD1_Oe9hbxE768QhAnfua_EOnC8ICdHL35eHhczm0Wyharl7GsVDTWg4NOmwVmgyBaGduW9NVZ3zliLAy-DSKGKB3WZ1Ab3fnK1BAqdBfqIdtJfYLHjKtoAdDWweGUGKi4IyJ0MMo7L7tQMLFWedPOHOTUCuNzk8_ClWsmMzVopiabqXEFe7n55nxi4Pjr7Ndkyc1MYs_OPyCmmhlTzb8wVbC9NQ6aeUkP-AdGLqx0lS3Y880wmotOWHyC_nKaQ9TftSzYowk2G0kUMTFaixLaLUBtibo9klZnmfAb5SOqrIK9WkPvh1h_VsXu_1DFE3ZL0pohEmC7x3bGi0t4imnYGJ7lFfcdB0UrUw priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6gb24mdEyoVVYUEB5aivVl2PKErQbJsUone-OnMOI9qefS6dqRZz9Mz428Ye5mBV-jIyzQLwaSqKlDnFBrDOsuCFJmEzFO-48PH4uRUvV_lqzHh1o1tlZNNjIY6tBXlyA_QNYuFFibXbzY_UpoaRdXVcYTGdXaDoMuopUuv9JxjIfRzo9T4VmYhzUGnomWgvgR07HmRmh1_FGH7_xVr_t0y-UfdNLqj4zvs9hhH8sOB8XfZNWjusZvDZMmL--zX8vDTMj1qv6SCjzUYjj4QaFQdd03gPfko5DElyzhEHAl6hMnXHV83FEl2EDgGtNyttygmDfCpW533LS7QsygOPzctZRjxE768QFFu-Jn7TtAL3QN2evzu89FJOg5bSCu8w_RpLkOhHRioVbHAmBCySoSqovOqtasN4RZ6V_ks-CAM3tKgLFTt8qIEn6PRkA_ZXtM28JhxGTQActwb3BI8XfEIDh0K6YwTtU9YNh25rUYkchqI8c3Girg0dmCTRTbZyCZrEvZq_mYz4HBcufstcXLeSRja8Yd2-9WOKmmVUw4ogjIlzQTweFUXER5PSyhECAnbn-TAjord2UsxTNiLeRnZRXUW10B7PuwhAPBSJOzRIDYzJZLwGLVGCvWOQO2QurvSrM8i7DfSR4BZCXs9id4lWf8_iidX_4un7JYgbSCQX73P9vrtOTzDMKv3z6Mu_Qa63iR4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA/Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GEBIXxPgsDBQkblDxmqRJetyemCYkOPAY2q1KGpc9CdrptZPYjT8dO_2YHhtIXBtHtWI7dmLnZ8ZeZ-AVOvIizUKwqao02pzCzbDOsiBFJiHzdN_x8ZM-PlEfTvPTHSamtzCxaD9CWsZteqoOe9epaNJUUIAeOdepvcVuE3Q7afVSL-d7FUI8t0qN72MW0t4wdcsHRaj-m-LL62WSf-RKows6us_ujbEjPxi43WM70Dxgd4ZukpcP2a_VwedVumy_poKPeReOfg-oPR13TeA9-SWUK12QcYjYEfTwkq87vm4oeuwgcAxiuVtvUDUa4FOFOu9bHKCnUBx-nrd0q4hT-OoS1bfhZ-4HwS10j9jJ0fsvy-N0bLCQVnhu6dNcBm0cWKiVXmAcCFklQlXRetXG1ZawCr2rfBZ8EBZPZlBoVbtcF-Bz3CjkY7bbtA08ZVwGA4BS9hZJgqdjHUGgg5bOOlH7hGXTkpfViD5OTTC-lzELLm05iKlEMZVRTKVN2Jt5zvmAvfFP6kOS5ExJuNnxQ7v5Vo56VCqnHFDUZAvqA-DxeC4iJJ6RoEUICduf9KAcjbnDH2ixMMLmJmGv5mEUF-VWXAPtxUBDoN-FSNiTQW1mTiRhMBqDHJothdpidXukWZ9FqG_kj0CyEvZ2Ur0rtv6-FM_-j_w5uyvIOgjo1-yz3X5zAS8w1Or9y2hbvwHTDiI8 priority: 102 providerName: Springer Nature |
Title | SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters |
URI | https://link.springer.com/article/10.1038/s41467-021-25156-8 https://www.ncbi.nlm.nih.gov/pubmed/34404778 https://www.proquest.com/docview/2562072857 https://www.proquest.com/docview/2562517492 https://pubmed.ncbi.nlm.nih.gov/PMC8371001 https://doaj.org/article/4a4ae0743895463b83727995473e62dd |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kG5WReINAYye284BQV61MlTahlaK-RXbsbJVGMppOWt_407lzkqJCQbwkUuwkJ9-d785n_46Q15EzMRjyNIysVWGcC9C5GCbDIoosZxF3kcH1jrNzcTqNx7NktkO6ckftANZbQzusJzVdXL-7-776CAr_oTkyrt7XsVd33GwA1joRodol-2CZJCrqWevu-5mZpxDQYKKZ9eMoBNvN23M02z-zYas8pP82P_TP7ZS_5VS9qRo9JA9aH5MOGqF4RHZc-Zjca6pOrp6QH5PBxSQcVl9DRtv8DAX76LCMHdWlpUu0X8B_XEijzmNM4AFNOq_pvEQvs3aWgrNL9XwBIlQ62u1kp8sKGvDIFHV3NxWuPsIrdLICMS_plf6GsAz1UzIdnXwZnoZtIYYwh_hmGSbcCqmdckUs-uAvuihnNs9xvAqpC4WYhkbnJrLGMgURnEtFXOhEpM4kMKHwZ2SvrEr3glBupXMgDUZBF2sw_EOodCe4VpoVJiBRN-RZ3qKUY7GM68xny7nKGjZlwKbMsylTAXmzfuemwej4Z-9j5OS6J-Jr-wfV4jJr1TWLdawdelcqxXoBBsJ45qHzJHeCWRuQo04Osk5m4QeC9SVTiQzIq3UzsAtzMLp01W3TB8HBUxaQ543YrCnhiNUoJVAoNwRqg9TNlnJ-5SHBgT4E0wrI2070fpH196E4-A8yD8l9hiqBKMDyiOwtF7fuJfhhS9Mju3Im4apGn3pkfzAYT8ZwPz45_3wBT4di2PMrHD2vhD8BKvQyPw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFE3thM7B4RKodrSx4Ft0d6ME0_oSpAsm61gb_wifiMzeWy1PHrrde1E3szr84z9DWPPIsgUBvI0jLw3ocoTtDmFzrCIIi9FJCHKKN9xcJgMj9X7cTxeY7_6uzB0rLL3iY2j9lVOOfJNDM1ioIWJ9evpt5C6RlF1tW-h0arFHiy-45atfrX7FuX7XIidd0fbw7DrKhDmCNbnYSx9oh0YKFQyQPADUS58nit0GYV2hSGCvszlWeQzLwxuRyBNVOHiJIUsRuuQ-N5L7DIG3gFZlB7rZU6H2NaNUt3dnIE0m7VqPBGdg0AgESehWYl_TZuAf2Hbv49o_lGnbcLfzg12vcOtfKtVtJtsDcpb7ErbyXJxm_0cbX0YhdvVx1DwrubDMeYCtcbjrvR8TjERdYqScxwa3gq69MknNZ-UhFxr8BwBNHeTGaplCbw_Hc_nFQ7QNSwOP6YVZTTxET5aoOmU_MR9JaqH-g47vhAx3GXrZVXCfcal1wCoYZnBKT6jLSXRr0MinXGiyAIW9Z_c5h3zOTXg-GKbCrw0thWTRTHZRkzWBOzF8plpy_tx7uw3JMnlTOLsbn6oZp9t5wKscsoBITaTUg-CzEjEjkTHpyUkwvuAbfR6YDtHUtsztQ_Y0-UwiovqOq6E6rSdQ4TjqQjYvVZtliuRxP-oNa5QryjUylJXR8rJSUMzjusjgq6AvexV72xZ__8UD87_F0_Y1eHRwb7d3z3ce8iuCbIMIhjWG2x9PjuFRwjx5tnjxq44-3TRhvwba7Vhsw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBFE3thM7B4RKy6qlUCGWor25TjyhK0GybLaCvfG7-HXM5LHV8uit17UTzWaenhl_w9iTCDKFjjwNI-9NqPIEdU6hMSyiyEsRSYgyyne8O0h2D9WbcTxeY7_6uzDUVtnbxMZQ-yqnHPkmumYx0MLgAb7o2iLe7wxfTr-FNEGKKq39OI1WRPZh8R2Pb_WLvR3k9VMhhq8_bu-G3YSBMMfAfR7G0ifagYFCJQMMhCDKhc9zheaj0K4wBNaXuTyLfOaFwaMJpIkqXJykkMWoKRLfe4Fd1DKOSMf0WC_zO4S8bpTq7ukMpNmsVWOVqCcCg4o4Cc2KL2xGBvwrzv27XfOPmm3jCofX2NUuhuVbrdBdZ2tQ3mCX2qmWi5vs52jrwyjcrj6Fgnf1H47-F2hMHnel53PyjyhflKjj0GBY0AVQPqn5pKQotgbPMZjmbjJDES2B953yfF7hAl3J4vBjWlF2Ex_howWqUcmP3VeCfahvscNzYcNttl5WJdxlXHoNgNKWGdziMzpeEhQ7JNIZJ4osYFH_yW3eoaDTMI4vtqnGS2NbNllkk23YZE3Ani2fmbYYIGfufkWcXO4k_O7mh2r22XbmwCqnHFD0ZlKaR5AZiXEkQfNpCYnwPmAbvRzYzqjU9lQFAvZ4uYzsohqPK6E6afcQ-HgqAnanFZslJZKwILVGCvWKQK2QurpSTo4byHGkj8C6Ava8F71Tsv7_Ke6d_S8escuowvbt3sH-fXZFkGIQ1rDeYOvz2Qk8wGhvnj1s1Iqzo_PW49__ZGXp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+disease+severity+and+transmission+efficiency+is+increased+for+airborne+compared+to+fomite+exposure+in+Syrian+hamsters&rft.jtitle=Nature+communications&rft.au=Port%2C+Julia+R&rft.au=Yinda%2C+Claude+Kwe&rft.au=Owusu%2C+Irene+Offei&rft.au=Holbrook%2C+Myndi&rft.date=2021-08-17&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=4985&rft_id=info:doi/10.1038%2Fs41467-021-25156-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |