SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters

Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different r...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 4985 - 15
Main Authors Port, Julia R., Yinda, Claude Kwe, Owusu, Irene Offei, Holbrook, Myndi, Fischer, Robert, Bushmaker, Trenton, Avanzato, Victoria A., Schulz, Jonathan E., Martens, Craig, van Doremalen, Neeltje, Clancy, Chad S., Munster, Vincent J.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 17.08.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution. Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease.
AbstractList Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution. Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease.
Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease.
Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.
Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.
Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject to debate. Here, we show Syrian hamsters are susceptible to SARS-CoV-2 infection through intranasal, aerosol and fomite exposure. Different routes of exposure present with distinct disease manifestations. Intranasal and aerosol inoculation causes severe respiratory pathology, higher virus loads and increased weight loss. In contrast, fomite exposure leads to milder disease manifestation characterized by an anti-inflammatory immune state and delayed shedding pattern. Whereas the overall magnitude of respiratory virus shedding is not linked to disease severity, the onset of shedding is. Early shedding is linked to an increase in disease severity. Airborne transmission is more efficient than fomite transmission and dependent on the direction of the airflow. Carefully characterized SARS-CoV-2 transmission models will be crucial to assess potential changes in transmission and pathogenic potential in the light of the ongoing SARS-CoV-2 evolution.Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in Syrian hamsters; while intranasal and aerosol inoculation causes severe pathogenesis, fomite exposure is characterized by milder disease.
ArticleNumber 4985
Author Port, Julia R.
Yinda, Claude Kwe
Owusu, Irene Offei
Munster, Vincent J.
Schulz, Jonathan E.
van Doremalen, Neeltje
Clancy, Chad S.
Bushmaker, Trenton
Holbrook, Myndi
Martens, Craig
Fischer, Robert
Avanzato, Victoria A.
Author_xml – sequence: 1
  givenname: Julia R.
  surname: Port
  fullname: Port, Julia R.
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 2
  givenname: Claude Kwe
  surname: Yinda
  fullname: Yinda, Claude Kwe
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 3
  givenname: Irene Offei
  surname: Owusu
  fullname: Owusu, Irene Offei
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 4
  givenname: Myndi
  orcidid: 0000-0003-2376-2633
  surname: Holbrook
  fullname: Holbrook, Myndi
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 5
  givenname: Robert
  surname: Fischer
  fullname: Fischer, Robert
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 6
  givenname: Trenton
  orcidid: 0000-0002-2161-4808
  surname: Bushmaker
  fullname: Bushmaker, Trenton
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health, Montana State University
– sequence: 7
  givenname: Victoria A.
  surname: Avanzato
  fullname: Avanzato, Victoria A.
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 8
  givenname: Jonathan E.
  surname: Schulz
  fullname: Schulz, Jonathan E.
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 9
  givenname: Craig
  surname: Martens
  fullname: Martens, Craig
  organization: Rocky Mountain Genomics Core Facility, Division of Intramural Research, National Institutes of Health
– sequence: 10
  givenname: Neeltje
  orcidid: 0000-0003-4368-6359
  surname: van Doremalen
  fullname: van Doremalen, Neeltje
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
– sequence: 11
  givenname: Chad S.
  orcidid: 0000-0002-5354-9270
  surname: Clancy
  fullname: Clancy, Chad S.
  organization: Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institutes of Health
– sequence: 12
  givenname: Vincent J.
  orcidid: 0000-0002-2288-3196
  surname: Munster
  fullname: Munster, Vincent J.
  email: vincent.munster@nih.gov
  organization: Laboratory of Virology, Division of Intramural Research, National Institutes of Health
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34404778$$D View this record in MEDLINE/PubMed
BookMark eNp9Uk1v1DAQjVARLaV_gAOyxIVLwF-xnQtSteKjUiUkFrhajj3ZepXYi52tujd-Ot5NKW0P9cWjmfeexzPvZXUUYoCqek3we4KZ-pA54ULWmJKaNqQRtXpWnVDMSU0kZUf34uPqLOc1Loe1RHH-ojpmnGMupTqp_izPvy_rRfxVU-R8BpMBZbiG5KcdMsGhKZmQR5-zjwFB33vrIdgd8hn5YNOe4FAfEzI-dTEFQDaOG5NKdoqlMPoJENxsYt4mKBS03CVvAroyY54g5VfV894MGc5u79Pq5-dPPxZf68tvXy4W55e1FVhMdcOckAYU9FxgKTkQS521-yH00vSKM9l2xnbEdY4q1bbQCt6bRrTQNQw37LS6mHVdNGu9SX40aaej8fqQiGmlTZq8HUBzww1gyZlqGy5Yp5iksi2xZCCoc0Xr46y12XYjOAuhTGl4IPqwEvyVXsVrXZQIxqQIvLsVSPH3FvKky4QtDIMJELdZ00aUpUre0gJ9-wi6jtsUyqgOKCypamRBvbnf0V0r_xZdAHQG2BRzTtDfQQjWe0Pp2VC6GEofDKX3JPWIZP1kpuKE8is_PE1lMzWXd8IK0v-2n2D9Bash39g
CitedBy_id crossref_primary_10_1128_AEM_01215_21
crossref_primary_10_1038_s41598_022_09218_5
crossref_primary_10_3390_v14051013
crossref_primary_10_1080_17425247_2023_2189697
crossref_primary_10_1136_bmj_2021_065312
crossref_primary_10_1038_s44298_023_00011_3
crossref_primary_10_1093_infdis_jiae018
crossref_primary_10_1002_jmv_28103
crossref_primary_10_1016_S0140_6736_22_00423_8
crossref_primary_10_3934_mbe_2023027
crossref_primary_10_1073_pnas_2200109119
crossref_primary_10_3390_v16010089
crossref_primary_10_1093_infdis_jiac276
crossref_primary_10_1016_j_buildenv_2022_109328
crossref_primary_10_1038_s41467_025_55938_3
crossref_primary_10_1371_journal_pone_0278061
crossref_primary_10_3390_v14030639
crossref_primary_10_1038_s41564_021_01047_y
crossref_primary_10_3389_fpubh_2022_805780
crossref_primary_10_3390_v14071507
crossref_primary_10_3389_fimmu_2022_811430
crossref_primary_10_3389_fmed_2021_836826
crossref_primary_10_1177_09636625221089391
crossref_primary_10_1371_journal_ppat_1011589
crossref_primary_10_1111_ina_13165
crossref_primary_10_7554_eLife_87094_3
crossref_primary_10_3201_eid2911_230804
crossref_primary_10_3390_vetsci10090536
crossref_primary_10_1001_jamapediatrics_2022_3833
crossref_primary_10_1093_cid_ciab903
crossref_primary_10_1016_j_scitotenv_2021_150786
crossref_primary_10_1038_s41467_023_38783_0
crossref_primary_10_1038_s41467_023_42796_0
crossref_primary_10_3390_microorganisms11041015
crossref_primary_10_1016_j_mtadv_2022_100228
crossref_primary_10_1093_cid_ciac157
crossref_primary_10_1021_acs_est_1c08342
crossref_primary_10_3390_biomedicines10051142
crossref_primary_10_1146_annurev_pathol_052620_121224
crossref_primary_10_3390_v16050729
crossref_primary_10_1098_rsif_2024_0009
crossref_primary_10_1016_S2666_5247_23_00099_X
crossref_primary_10_1099_jgv_0_001799
crossref_primary_10_3390_v15010175
crossref_primary_10_3390_ijerph192316092
crossref_primary_10_1016_j_chemosphere_2022_135247
crossref_primary_10_1016_j_vetmic_2023_109910
crossref_primary_10_1128_aem_02338_21
crossref_primary_10_1186_s12860_021_00403_4
crossref_primary_10_1016_j_cmi_2024_05_001
crossref_primary_10_1038_s41598_022_12252_y
crossref_primary_10_1172_jci_insight_163962
crossref_primary_10_1038_s41467_022_30195_w
crossref_primary_10_3390_v14091856
crossref_primary_10_1103_RevModPhys_95_045001
crossref_primary_10_1172_jci_insight_160108
crossref_primary_10_3390_v13112251
crossref_primary_10_1016_j_jaerosci_2021_105870
crossref_primary_10_1146_annurev_chembioeng_092220_111631
crossref_primary_10_1177_1420326X221084869
crossref_primary_10_1016_j_buildenv_2024_111909
crossref_primary_10_1128_spectrum_04717_22
crossref_primary_10_1038_s44298_024_00061_1
crossref_primary_10_1146_annurev_publhealth_052120_110009
crossref_primary_10_1016_j_buildenv_2022_109153
crossref_primary_10_3390_pathogens13121109
crossref_primary_10_1016_j_idm_2024_10_004
crossref_primary_10_2903_j_efsa_2023_7822
crossref_primary_10_1098_rsfs_2021_0072
crossref_primary_10_1016_j_cbi_2022_109796
crossref_primary_10_1016_j_tim_2023_07_002
crossref_primary_10_1099_jgv_0_002022
crossref_primary_10_1038_s41541_023_00654_6
crossref_primary_10_7554_eLife_87094
crossref_primary_10_7759_cureus_18557
crossref_primary_10_1016_j_virs_2022_09_008
crossref_primary_10_1098_rsfs_2021_0076
Cites_doi 10.3390/v12070779
10.1016/S2666-5247(20)30172-5
10.3201/eid2609.201788
10.1371/journal.pntd.0006978
10.3390/v11100940
10.1093/cid/ciaa644
10.1111/ina.12751
10.12688/wellcomeopenres.15889.2
10.1093/bioinformatics/btu638
10.1038/s41467-021-21918-6
10.1017/ice.2020.296
10.1001/jama.2020.2565
10.1017/ice.2020.282
10.3138/jammi-2020-0030
10.3201/eid2607.200764
10.1016/S2666-5247(20)30003-3
10.1093/infdis/jiz502
10.1128/JVI.78.7.3352-3360.2004
10.1016/j.ejrad.2020.109147
10.1038/s41586-020-2342-5
10.1126/science.abe2424
10.1101/2020.05.31.20115154
10.1056/NEJMc2001468
10.1016/j.xcrm.2020.100121
10.2807/1560-7917.ES.2020.25.3.2000045
10.1016/j.rmed.2020.105951
10.1016/j.jinf.2020.04.004
10.1038/s41586-020-2787-6
10.2807/1560-7917.ES.2020.25.10.2000180
10.1038/s41591-020-0843-2
10.1038/s41467-020-20568-4
10.1038/s41586-020-2271-3
10.1186/s13059-014-0550-8
10.1016/j.jaerosci.2020.105617
10.1093/cid/ciaa905
10.1056/NEJMc2004973
10.3109/08958378.2015.1033570
10.1038/s41467-020-17367-2
10.1080/22221751.2020.1858177
10.1016/j.cmi.2020.09.004
10.1038/s41598-020-69286-3
10.1371/journal.pone.0069127
10.1016/j.vascn.2003.07.001
10.1038/nmeth.3317
10.1016/S1473-3099(21)00262-0
10.1016/S1473-3099(20)30561-2
10.1056/NEJMp2026913
10.1371/journal.ppat.1009195
10.1021/acsnano.0c03252
10.1016/j.envint.2020.105832
10.3201/eid2609.202267
10.1038/s41467-020-16670-2
10.1126/science.abe8499
10.1016/j.bbi.2020.06.032
10.1016/j.cmi.2020.05.009
10.1002/jmv.25861
10.3201/eid2607.200885
10.3201/eid2611.203353
10.15585/mmwr.mm6919e6
10.1080/08958370802207318
10.1016/j.antiviral.2017.03.025
10.1183/13993003.01227-2020
10.1016/j.ijid.2020.09.025
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
COVID
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-25156-8
DatabaseName Springer Nature OA/Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni Edition)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

CrossRef
MEDLINE - Academic
Publicly Available Content Database

MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals (DOAJ)
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 15
ExternalDocumentID oai_doaj_org_article_4a4ae0743895463b83727995473e62dd
PMC8371001
34404778
10_1038_s41467_021_25156_8
Genre Journal Article
Research Support, N.I.H., Intramural
GrantInformation_xml – fundername: Division of Intramural Research, National Institute of Allergy and Infectious Diseases (Division of Intramural Research of the NIAID)
  grantid: NA
  funderid: https://doi.org/10.13039/100006492
– fundername: NIGMS NIH HHS
  grantid: T32 GM008169
– fundername: ;
  grantid: NA
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
COVID
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-53d67ae8ef460774e1c2dcc4146f7af84379bacb1dbd28899e964fa569eb53053
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:25:57 EDT 2025
Thu Aug 21 18:36:46 EDT 2025
Fri Jul 11 11:08:41 EDT 2025
Wed Aug 13 05:28:57 EDT 2025
Wed Feb 19 02:08:49 EST 2025
Thu Apr 24 22:58:56 EDT 2025
Tue Jul 01 04:17:33 EDT 2025
Fri Feb 21 02:39:07 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-53d67ae8ef460774e1c2dcc4146f7af84379bacb1dbd28899e964fa569eb53053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2161-4808
0000-0003-4368-6359
0000-0002-2288-3196
0000-0003-2376-2633
0000-0002-5354-9270
OpenAccessLink https://www.proquest.com/docview/2562072857?pq-origsite=%requestingapplication%
PMID 34404778
PQID 2562072857
PQPubID 546298
PageCount 15
ParticipantIDs doaj_primary_oai_doaj_org_article_4a4ae0743895463b83727995473e62dd
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8371001
proquest_miscellaneous_2562517492
proquest_journals_2562072857
pubmed_primary_34404778
crossref_primary_10_1038_s41467_021_25156_8
crossref_citationtrail_10_1038_s41467_021_25156_8
springer_journals_10_1038_s41467_021_25156_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-17
PublicationDateYYYYMMDD 2021-08-17
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-17
  day: 17
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Chan, J. F. et al. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 71, 2139 (2020).
ColaneriMSevere acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unitClin. Microbiol. Infect.2020261094.e11094.e51:CAS:528:DC%2BB3cXhtVOlu7jO10.1016/j.cmi.2020.05.009
Nouailles, G. et al. Longitudinal omics in Syrian hamsters integrated with human data unravel complexity of moderate immune responses to SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2020.12.18.423524v1.
Sun, K. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science.371, eabe2424, https://doi.org/10.1126/science.abe2424 (2021).
GandhiMRutherfordGWFacial masking for Covid-19 — potential for “Variolation” as we await a vaccineN. Engl. J. Med.2020383e1011:CAS:528:DC%2BB3cXit1WltbjK32897661789055910.1056/NEJMp2026913
MengHCT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, ChinaJ. Infect.202081e33e391:CAS:528:DC%2BB3cXhtFCjtb%2FK32294504715286510.1016/j.jinf.2020.04.004
LeungNHLRespiratory virus shedding in exhaled breath and efficacy of face masksNat. Med.2020266766801:CAS:528:DC%2BB3cXmsVWjs78%3D32371934823857110.1038/s41591-020-0843-2
HeGThe clinical feature of silent infections of novel coronavirus infection (COVID-19) in WenzhouJ. Med. Virol.202092176117631:CAS:528:DC%2BB3cXhtFKisbzO3227507410.1002/jmv.25861
CDC, Ventilation. (2020).
Wei, T. & V. Simko. R package “corrplot”: Visualization of a Correlation Matrix (2017).
HartingsJMRoyCJThe automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primatesJ. Pharm. Toxicol. Methods20044939551:CAS:528:DC%2BD3sXps1OlsL0%3D10.1016/j.vascn.2003.07.001
National Academies of Sciences, E. and Medicine, Airborne Transmission of SARS-CoV-2: Proceedings of a Workshop—in Brief (ed. M. Shelton-Davenport) 18 (The National Academies Press, Washington, DC, 2020).
KählerCJHainRFundamental protective mechanisms of face masks against droplet infectionsJ. Aerosol Sci.20201481056172020JAerS.148j5617K32834103732104510.1016/j.jaerosci.2020.1056171:CAS:528:DC%2BB3cXhtlegu7bP
Miller, S. L. et al. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31, 314 (2020).
BaiYPresumed asymptomatic carrier transmission of COVID-19JAMA2020323140614071:CAS:528:DC%2BB3cXnvVOjtLk%3D32083643704284410.1001/jama.2020.2565
Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog17, e1009195, https://doi.org/10.1371/journal.ppat.1009195 (2021).
Byambasuren, O. et al. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, (2020).
RichardMSARS-CoV-2 is transmitted via contact and via the air between ferretsNat. Commun.2020112020NatCo..11.3496R1:CAS:528:DC%2BB3cXhtlKntbrJ32641684734382810.1038/s41467-020-17367-2
BaeSHAsymptomatic transmission of SARS-CoV-2 on evacuation flightEmerg. Infect. Dis. J.20202627051:CAS:528:DC%2BB3MXkt1Churw%3D10.3201/eid2611.203353
Judson, S. D. & Munster, V. J. A framework for nosocomial transmission of emerging coronaviruses. Infect. Control Hosp. Epidemiol. 42, 639–641, https://doi.org/10.1017/ice.2020.296 (2021).
ParryAHSpectrum of chest computed tomographic (CT) findings in coronavirus disease-19 (COVID-19) patients in IndiaEur. J. Radiol.202012910914710914732623113731352810.1016/j.ejrad.2020.109147
Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect.9, 1–36 (2020).
GoldmanEExaggerated risk of transmission of COVID-19 by fomitesLancet Infect. Dis.2020208928931:CAS:528:DC%2BB3cXhtlegu7rF32628907733399310.1016/S1473-3099(20)30561-2
Kissler, S. M. et al. Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.24.432576v2.full.
Muñoz-FontelaCAnimal models for COVID-19Nature20205865095152020Natur.586..509M32967005813686210.1038/s41586-020-2787-61:CAS:528:DC%2BB3cXitV2qs7rE
Osterrieder, N. et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses12, 779 (2020).
Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun. 12, 1653 (2021).
MathersARCuffCFRole of interleukin-4 (IL-4) and IL-10 in serum immunoglobulin G antibody responses following mucosal or systemic reovirus infectionJ. Virol.200478335233601:CAS:528:DC%2BD2cXis1Klt7k%3D1501685737105410.1128/JVI.78.7.3352-3360.2004
ChiaPYDetection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patientsNat. Commun.2020112020NatCo..11.2800C1:CAS:528:DC%2BB3cXhtVGmtrfL32472043726022510.1038/s41467-020-16670-2
LuJCOVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020Emerg. Infect. Dis.202026162816311:CAS:528:DC%2BB3cXitlyltr3P32240078732355510.3201/eid2607.200764
LeeJHThe use of large-particle aerosol exposure to Nipah virus to mimic human neurological disease manifestations in the African Green monkeyJ. Infect. Dis.2019221S419S430736817810.1093/infdis/jiz5021:CAS:528:DC%2BB3cXhtFSiu7zP
Judson, S. D. & Munster, V. J. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses11 2019.
Chak-Yiu Lee, A. et al. Oral SARS-CoV-2 inoculation establishes subclinical respiratory infection with virus shedding in golden Syrian hamsters. Cell Rep. Med.1, 100121 (2020).
CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREur. Surveill.2020252000045
LoveMIHuberWAndersSModerated estimation of fold change and dispersion for RNA-seq data with DESeq2Genome Biol.20141525516281430204910.1186/s13059-014-0550-81:CAS:528:DC%2BC2MXjtVCrsL8%3D
Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 89, 579 (2020).
Ben-ShmuelADetection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilitiesClin. Microbiol. Infect.202026165816621:CAS:528:DC%2BB3cXhvFegtLbO32919072748117410.1016/j.cmi.2020.09.004
Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill.25, 2000045 (2020).
PastorinoBProlonged infectivity of SARS-CoV-2 in fomitesEmerg. Infect. Dis.202026225622571:CAS:528:DC%2BB3cXitlOlsbfN745410610.3201/eid2609.201788
Zhou, J. et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa905 (2020).
RotheCTransmission of 2019-nCoV infection from an asymptomatic contact in GermanyN. Engl. J. Med.202038297097132003551712097010.1056/NEJMc2001468
WHO, Coronavirus disease 2019 (COVID-19) Situation Report – 52. (2020).
ChengVCAir and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19)Infect. Control Hosp. Epidemiol.202041125812653250711410.1017/ice.2020.2821:CAS:528:DC%2BB3cXhtFCltLjL
HamnerLHigh SARS-CoV-2 attack rate following exposure at a choir practice - Skagit County, Washington, March 2020Mmwr. Morbidity Mortal. Wkly. Rep.2020696066101:CAS:528:DC%2BB3cXps1Cisr8%3D10.15585/mmwr.mm6919e6
MizumotoKEstimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020Eurosurveillance2020252000180707882910.2807/1560-7917.ES.2020.25.10.2000180
de WitEThe Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamstersPLoS ONE20138e691272013PLoSO...869127D23844250369951010.1371/journal.pone.00691271:CAS:528:DC%2BC3sXhtFGjsbnN
ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e101:CAS:528:DC%2BB3cXit1Kms7%2FJ32835322721486310.1016/S2666-5247(20)30003-3
KondaAAerosol filtration efficiency of common fabrics used in respiratory cloth masksACS Nano202014633963471:CAS:528:DC%2BB3cXnslChsr4%3D3232933710.1021/acsnano.0c03252
Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2, E13–E22 (2020).
Santarpia, J. L. et al. Aerosol and surface transmission potential of SARS-CoV-2. Sci. Reports.10, 12732 (2020).
LednickyJAViable SARS-CoV-2 in the air of a hospital room with COVID-19 patientsInt. J. Infect. Dis.20201004764821:CAS:528:DC%2BB3cXitFClur%2FI32949774749373710.1016/j.ijid.2020.09.025
KimDLangmeadBSalzbergSLHISAT: a fast spliced aligner with low memory requirementsNat. Methods2015123573601:CAS:528:DC%2BC2MXjvFOnsL0%3D25751142465581710.1038/nmeth.3317
NieSCoronavirus Disease 2019-related dyspnea cases difficult to interpret using chest computed tomographyRespiratory Med.202016710595110595110.1016/j.rmed.2020.105951
MatsonMJEffect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputumEmerg. Infect. Dis.202026227622781:CAS:528:DC%2BB3cXitlyltrrM745405810.3201/eid2609.202267
van Kampen, J. J. A. et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. Nat. Commun. 12, 267 (2021).
AndersSPylPTHuberWHTSeq−a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL2526070010.1093/bioinformatics/btu638
R Development Core Team, R:
A Konda (25156_CR39) 2020; 14
25156_CR28
25156_CR27
L Hamner (25156_CR57) 2020; 69
Y Liu (25156_CR15) 2020; 582
25156_CR26
25156_CR25
25156_CR24
G He (25156_CR43) 2020; 92
A Ben-Shmuel (25156_CR50) 2020; 26
N van Doremalen (25156_CR69) 2017; 143
JK Bohannon (25156_CR13) 2015; 27
QJ Leclerc (25156_CR58) 2020; 5
Y Bai (25156_CR47) 2020; 323
J Lu (25156_CR16) 2020; 26
25156_CR33
25156_CR32
25156_CR76
25156_CR31
25156_CR75
25156_CR30
25156_CR74
AR Mathers (25156_CR34) 2004; 78
H Meng (25156_CR45) 2020; 81
25156_CR70
JH Lee (25156_CR37) 2019; 221
D Kim (25156_CR71) 2015; 12
E Goldman (25156_CR49) 2020; 20
25156_CR35
AWH Chin (25156_CR51) 2020; 1
B Pastorino (25156_CR11) 2020; 26
M Colaneri (25156_CR23) 2020; 26
N van Doremalen (25156_CR7) 2020; 382
M Gandhi (25156_CR41) 2020; 383
E de Wit (25156_CR65) 2013; 8
25156_CR42
L Morawska (25156_CR59) 2020; 142
S Nie (25156_CR2) 2020; 167
JM Hartings (25156_CR67) 2004; 49
CJ Kähler (25156_CR40) 2020; 148
VC Cheng (25156_CR14) 2020; 41
JA Lednicky (25156_CR21) 2020; 100
M Richard (25156_CR55) 2020; 11
SH Bae (25156_CR48) 2020; 26
C Rothe (25156_CR44) 2020; 382
ZD Guo (25156_CR9) 2020; 26
MI Love (25156_CR73) 2014; 15
PY Chia (25156_CR8) 2020; 11
MJ Matson (25156_CR12) 2020; 26
DJ Alexander (25156_CR66) 2008; 20
JL Santarpia (25156_CR22) 2020; 10
25156_CR10
25156_CR54
25156_CR53
25156_CR52
K Mizumoto (25156_CR46) 2020; 25
25156_CR19
25156_CR18
25156_CR17
AH Parry (25156_CR3) 2020; 129
25156_CR56
C Muñoz-Fontela (25156_CR29) 2020; 586
VM Corman (25156_CR68) 2020; 25
25156_CR1
S Anders (25156_CR72) 2015; 31
25156_CR6
25156_CR5
25156_CR4
NHL Leung (25156_CR38) 2020; 26
25156_CR20
25156_CR64
25156_CR63
25156_CR62
DA Hammoud (25156_CR36) 2018; 12
25156_CR61
25156_CR60
33398267 - bioRxiv. 2020 Dec 28
References_xml – reference: van DoremalenNAerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1N. Engl. J. Med2020382156415673218240910.1056/NEJMc2004973
– reference: ParryAHSpectrum of chest computed tomographic (CT) findings in coronavirus disease-19 (COVID-19) patients in IndiaEur. J. Radiol.202012910914710914732623113731352810.1016/j.ejrad.2020.109147
– reference: Cevik, M. et al. SARS-CoV-2, SARS-CoV, and MERS-CoV viral load dynamics, duration of viral shedding, and infectiousness: a systematic review and meta-analysis. Lancet Microbe. 2, E13–E22 (2020).
– reference: HeGThe clinical feature of silent infections of novel coronavirus infection (COVID-19) in WenzhouJ. Med. Virol.202092176117631:CAS:528:DC%2BB3cXhtFKisbzO3227507410.1002/jmv.25861
– reference: MorawskaLHow can airborne transmission of COVID-19 indoors be minimised?Environ. Int.20201421058321058321:CAS:528:DC%2BB3cXhtFWktLbM32521345725076110.1016/j.envint.2020.105832
– reference: Corman, V. M. et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Euro Surveill.25, 2000045 (2020).
– reference: HammoudDAAerosol exposure to intermediate size Nipah virus particles induces neurological disease in African green monkeysPLOS Negl. Trop. Dis.201812e00069781:CAS:528:DC%2BC1MXitFWkur3M30462637628127610.1371/journal.pntd.0006978
– reference: Judson, S. D. & Munster, V. J. A framework for nosocomial transmission of emerging coronaviruses. Infect. Control Hosp. Epidemiol. 42, 639–641, https://doi.org/10.1017/ice.2020.296 (2021).
– reference: World Health Organization, Transmission of SARS-CoV-2: implications for infection prevention precautions: scientific brief, World Health Organization.https://apps.who.int/iris/handle/10665/333114 (2020).
– reference: ChinAWHStability of SARS-CoV-2 in different environmental conditionsLancet Microbe20201e101:CAS:528:DC%2BB3cXit1Kms7%2FJ32835322721486310.1016/S2666-5247(20)30003-3
– reference: LednickyJAViable SARS-CoV-2 in the air of a hospital room with COVID-19 patientsInt. J. Infect. Dis.20201004764821:CAS:528:DC%2BB3cXitFClur%2FI32949774749373710.1016/j.ijid.2020.09.025
– reference: LoveMIHuberWAndersSModerated estimation of fold change and dispersion for RNA-seq data with DESeq2Genome Biol.20141525516281430204910.1186/s13059-014-0550-81:CAS:528:DC%2BC2MXjtVCrsL8%3D
– reference: Santarpia, J. L. et al. Aerosol and surface transmission potential of SARS-CoV-2. Sci. Reports.10, 12732 (2020).
– reference: Guan, W. J. et al. Comorbidity and its impact on 1590 patients with COVID-19 in China: a nationwide analysis. Eur. Respir. J.55, 2000547 (2020).
– reference: LeeJHThe use of large-particle aerosol exposure to Nipah virus to mimic human neurological disease manifestations in the African Green monkeyJ. Infect. Dis.2019221S419S430736817810.1093/infdis/jiz5021:CAS:528:DC%2BB3cXhtFSiu7zP
– reference: RotheCTransmission of 2019-nCoV infection from an asymptomatic contact in GermanyN. Engl. J. Med.202038297097132003551712097010.1056/NEJMc2001468
– reference: MatsonMJEffect of environmental conditions on SARS-CoV-2 stability in human nasal mucus and sputumEmerg. Infect. Dis.202026227622781:CAS:528:DC%2BB3cXitlyltrrM745405810.3201/eid2609.202267
– reference: PastorinoBProlonged infectivity of SARS-CoV-2 in fomitesEmerg. Infect. Dis.202026225622571:CAS:528:DC%2BB3cXitlOlsbfN745410610.3201/eid2609.201788
– reference: R Development Core Team, R: A language and Environment for Statistical computing 2010, R Foundation for Statistical Computing (2015).
– reference: MengHCT imaging and clinical course of asymptomatic cases with COVID-19 pneumonia at admission in Wuhan, ChinaJ. Infect.202081e33e391:CAS:528:DC%2BB3cXhtFCjtb%2FK32294504715286510.1016/j.jinf.2020.04.004
– reference: MathersARCuffCFRole of interleukin-4 (IL-4) and IL-10 in serum immunoglobulin G antibody responses following mucosal or systemic reovirus infectionJ. Virol.200478335233601:CAS:528:DC%2BD2cXis1Klt7k%3D1501685737105410.1128/JVI.78.7.3352-3360.2004
– reference: Brown, J. C. et al. Increased transmission of SARS-CoV-2 lineage B.1.1.7 (VOC 2020212/01) is not accounted for by a replicative advantage in primary airway cells or antibody escape. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.24.432576v1.
– reference: Yinda, C. K. et al. K18-hACE2 mice develop respiratory disease resembling severe COVID-19. PLoS Pathog17, e1009195, https://doi.org/10.1371/journal.ppat.1009195 (2021).
– reference: Nouailles, G. et al. Longitudinal omics in Syrian hamsters integrated with human data unravel complexity of moderate immune responses to SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2020.12.18.423524v1.
– reference: Hou, Y. J. et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science370, 1464 (2020).
– reference: BohannonJKGeneration and characterization of large-particle aerosols using a center flow tangential aerosol generator with a non-human-primate, head-only aerosol chamberInhal. Toxicol.2015272472531:CAS:528:DC%2BC2MXhtVOkt7fN25970823498440110.3109/08958378.2015.1033570
– reference: KondaAAerosol filtration efficiency of common fabrics used in respiratory cloth masksACS Nano202014633963471:CAS:528:DC%2BB3cXnslChsr4%3D3232933710.1021/acsnano.0c03252
– reference: de WitEThe Middle East respiratory syndrome coronavirus (MERS-CoV) does not replicate in Syrian hamstersPLoS ONE20138e691272013PLoSO...869127D23844250369951010.1371/journal.pone.00691271:CAS:528:DC%2BC3sXhtFGjsbnN
– reference: SantarpiaJLAerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation careSci. Rep.2020102020NatSR..1012732S1:CAS:528:DC%2BB3cXhsVyku7rM32728118739164010.1038/s41598-020-69286-3
– reference: Kissler, S. M. et al. Densely sampled viral trajectories suggest longer duration of acute infection with B.1.1.7 variant relative to non-B.1.1.7 SARS-CoV-2. Preprint at https://www.biorxiv.org/content/10.1101/2021.02.24.432576v2.full.
– reference: HamnerLHigh SARS-CoV-2 attack rate following exposure at a choir practice - Skagit County, Washington, March 2020Mmwr. Morbidity Mortal. Wkly. Rep.2020696066101:CAS:528:DC%2BB3cXps1Cisr8%3D10.15585/mmwr.mm6919e6
– reference: Miller, S. L. et al. Transmission of SARS-CoV-2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air. 31, 314 (2020).
– reference: MizumotoKEstimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020Eurosurveillance2020252000180707882910.2807/1560-7917.ES.2020.25.10.2000180
– reference: van DoremalenNEfficacy of antibody-based therapies against Middle East respiratory syndrome coronavirus (MERS-CoV) in common marmosetsAntivir. Res.201714330372838914210.1016/j.antiviral.2017.03.0251:CAS:528:DC%2BC2sXlvVCkurk%3D
– reference: LeclercQJWhat settings have been linked to SARS-CoV-2 transmission clusters?Wellcome Open Res.202058332656368732772410.12688/wellcomeopenres.15889.21:CAS:528:DC%2BB3cXitFeks73M
– reference: GoldmanEExaggerated risk of transmission of COVID-19 by fomitesLancet Infect. Dis.2020208928931:CAS:528:DC%2BB3cXhtlegu7rF32628907733399310.1016/S1473-3099(20)30561-2
– reference: Zhou, J. et al. Investigating SARS-CoV-2 surface and air contamination in an acute healthcare setting during the peak of the COVID-19 pandemic in London. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciaa905 (2020).
– reference: CDC, Ventilation. (2020).
– reference: AlexanderDJAssociation of Inhalation Toxicologists (AIT) working party recommendation for standard delivered dose calculation and expression in non-clinical aerosol inhalation toxicology studies with pharmaceuticalsInhal. Toxicol.200820117911891:CAS:528:DC%2BD1cXht1yjtbfP1880280210.1080/08958370802207318
– reference: AndersSPylPTHuberWHTSeq−a Python framework to work with high-throughput sequencing dataBioinformatics2015311661691:CAS:528:DC%2BC28Xht1Sjt7vL2526070010.1093/bioinformatics/btu638
– reference: van Kampen, J. J. A. et al. Shedding of infectious virus in hospitalized patients with coronavirus disease-2019 (COVID-19): duration and key determinants. Nat. Commun. 12, 267 (2021).
– reference: Chak-Yiu Lee, A. et al. Oral SARS-CoV-2 inoculation establishes subclinical respiratory infection with virus shedding in golden Syrian hamsters. Cell Rep. Med.1, 100121 (2020).
– reference: GandhiMRutherfordGWFacial masking for Covid-19 — potential for “Variolation” as we await a vaccineN. Engl. J. Med.2020383e1011:CAS:528:DC%2BB3cXit1WltbjK32897661789055910.1056/NEJMp2026913
– reference: BaeSHAsymptomatic transmission of SARS-CoV-2 on evacuation flightEmerg. Infect. Dis. J.20202627051:CAS:528:DC%2BB3MXkt1Churw%3D10.3201/eid2611.203353
– reference: Bryche, B. et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav. Immun. 89, 579 (2020).
– reference: Ramanathan, M. et al. SARS-CoV-2 B.1.1.7 and B.1.351 Spike variants bind human ACE2 with increased affinity. The Lancet Infectious Diseases21, 1070, https://doi.org/10.1016/S1473-3099(21)00262-0 (2021).
– reference: Ben-ShmuelADetection and infectivity potential of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) environmental contamination in isolation units and quarantine facilitiesClin. Microbiol. Infect.202026165816621:CAS:528:DC%2BB3cXhvFegtLbO32919072748117410.1016/j.cmi.2020.09.004
– reference: HartingsJMRoyCJThe automated bioaerosol exposure system: preclinical platform development and a respiratory dosimetry application with nonhuman primatesJ. Pharm. Toxicol. Methods20044939551:CAS:528:DC%2BD3sXps1OlsL0%3D10.1016/j.vascn.2003.07.001
– reference: KählerCJHainRFundamental protective mechanisms of face masks against droplet infectionsJ. Aerosol Sci.20201481056172020JAerS.148j5617K32834103732104510.1016/j.jaerosci.2020.1056171:CAS:528:DC%2BB3cXhtlegu7bP
– reference: RichardMSARS-CoV-2 is transmitted via contact and via the air between ferretsNat. Commun.2020112020NatCo..11.3496R1:CAS:528:DC%2BB3cXhtlKntbrJ32641684734382810.1038/s41467-020-17367-2
– reference: Osterrieder, N. et al. Age-dependent progression of SARS-CoV-2 infection in Syrian hamsters. Viruses12, 779 (2020).
– reference: KimDLangmeadBSalzbergSLHISAT: a fast spliced aligner with low memory requirementsNat. Methods2015123573601:CAS:528:DC%2BC2MXjvFOnsL0%3D25751142465581710.1038/nmeth.3317
– reference: National Academies of Sciences, E. and Medicine, Airborne Transmission of SARS-CoV-2: Proceedings of a Workshop—in Brief (ed. M. Shelton-Davenport) 18 (The National Academies Press, Washington, DC, 2020).
– reference: Kolde, R. Implementation of heatmaps that offers more control over dimensions and appearance (2019).
– reference: Sun, K. et al. Transmission heterogeneities, kinetics, and controllability of SARS-CoV-2. Science.371, eabe2424, https://doi.org/10.1126/science.abe2424 (2021).
– reference: Ma, J. et al. Exhaled breath is a significant source of SARS-CoV-2 emission. https://doi.org/10.1101/2020.05.31.20115154 (2020).
– reference: ColaneriMSevere acute respiratory syndrome coronavirus 2 RNA contamination of inanimate surfaces and virus viability in a health care emergency unitClin. Microbiol. Infect.2020261094.e11094.e51:CAS:528:DC%2BB3cXhtVOlu7jO10.1016/j.cmi.2020.05.009
– reference: CormanVMDetection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCREur. Surveill.2020252000045
– reference: Sia, S. F. et al. Pathogenesis and transmission of SARS-CoV-2 in golden hamsters. Nature. 583, 834 (2020).
– reference: LiuYAerodynamic analysis of SARS-CoV-2 in two Wuhan hospitalsNature20205825575602020Natur.582..557L1:CAS:528:DC%2BB3cXhtF2jurrF3234002210.1038/s41586-020-2271-3
– reference: Byambasuren, O. et al. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. Official Journal of the Association of Medical Microbiology and Infectious Disease Canada, (2020).
– reference: BaiYPresumed asymptomatic carrier transmission of COVID-19JAMA2020323140614071:CAS:528:DC%2BB3cXnvVOjtLk%3D32083643704284410.1001/jama.2020.2565
– reference: Kutter, J. S. et al. SARS-CoV and SARS-CoV-2 are transmitted through the air between ferrets over more than one meter distance. Nat. Commun. 12, 1653 (2021).
– reference: Chan, J. F. et al. Surgical mask partition reduces the risk of non-contact transmission in a golden Syrian hamster model for Coronavirus Disease 2019 (COVID-19). Clin. Infect. Dis. 71, 2139 (2020).
– reference: GuoZDAerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020Emerg. Infect. Dis.202026158315913227549710.3201/eid2607.2008851:CAS:528:DC%2BB3cXitlOlsbrF
– reference: LeungNHLRespiratory virus shedding in exhaled breath and efficacy of face masksNat. Med.2020266766801:CAS:528:DC%2BB3cXmsVWjs78%3D32371934823857110.1038/s41591-020-0843-2
– reference: Judson, S. D. & Munster, V. J. Nosocomial transmission of emerging viruses via aerosol-generating medical procedures. Viruses11 2019.
– reference: WHO, Coronavirus disease 2019 (COVID-19) Situation Report – 52. (2020).
– reference: LuJCOVID-19 outbreak associated with air conditioning in restaurant, Guangzhou, China, 2020Emerg. Infect. Dis.202026162816311:CAS:528:DC%2BB3cXitlyltr3P32240078732355510.3201/eid2607.200764
– reference: Wei, T. & V. Simko. R package “corrplot”: Visualization of a Correlation Matrix (2017).
– reference: NieSCoronavirus Disease 2019-related dyspnea cases difficult to interpret using chest computed tomographyRespiratory Med.202016710595110595110.1016/j.rmed.2020.105951
– reference: Chan, J. F.-W. et al. Simulation of the clinical and pathological manifestations of coronavirus disease 2019 (COVID-19) in a golden Syrian Hamster model: implications for disease pathogenesis and transmissibility. Clin. Infect. Dis. 71, 2428 (2020).
– reference: ChengVCAir and environmental sampling for SARS-CoV-2 around hospitalized patients with coronavirus disease 2019 (COVID-19)Infect. Control Hosp. Epidemiol.202041125812653250711410.1017/ice.2020.2821:CAS:528:DC%2BB3cXhtFCltLjL
– reference: Rosenke, K. et al. Defining the Syrian hamster as a highly susceptible preclinical model for SARS-CoV-2 infection. Emerg. Microbes Infect.9, 1–36 (2020).
– reference: ChiaPYDetection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patientsNat. Commun.2020112020NatCo..11.2800C1:CAS:528:DC%2BB3cXhtVGmtrfL32472043726022510.1038/s41467-020-16670-2
– reference: Muñoz-FontelaCAnimal models for COVID-19Nature20205865095152020Natur.586..509M32967005813686210.1038/s41586-020-2787-61:CAS:528:DC%2BB3cXitV2qs7rE
– ident: 25156_CR33
  doi: 10.3390/v12070779
– ident: 25156_CR5
  doi: 10.1016/S2666-5247(20)30172-5
– volume: 26
  start-page: 2256
  year: 2020
  ident: 25156_CR11
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2609.201788
– volume: 12
  start-page: e0006978
  year: 2018
  ident: 25156_CR36
  publication-title: PLOS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0006978
– ident: 25156_CR53
  doi: 10.3390/v11100940
– ident: 25156_CR56
  doi: 10.1093/cid/ciaa644
– ident: 25156_CR18
  doi: 10.1111/ina.12751
– volume: 5
  start-page: 83
  year: 2020
  ident: 25156_CR58
  publication-title: Wellcome Open Res.
  doi: 10.12688/wellcomeopenres.15889.2
– volume: 31
  start-page: 166
  year: 2015
  ident: 25156_CR72
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btu638
– ident: 25156_CR54
  doi: 10.1038/s41467-021-21918-6
– ident: 25156_CR52
  doi: 10.1017/ice.2020.296
– ident: 25156_CR6
– volume: 323
  start-page: 1406
  year: 2020
  ident: 25156_CR47
  publication-title: JAMA
  doi: 10.1001/jama.2020.2565
– volume: 25
  start-page: 2000045
  year: 2020
  ident: 25156_CR68
  publication-title: Eur. Surveill.
– volume: 41
  start-page: 1258
  year: 2020
  ident: 25156_CR14
  publication-title: Infect. Control Hosp. Epidemiol.
  doi: 10.1017/ice.2020.282
– ident: 25156_CR42
  doi: 10.3138/jammi-2020-0030
– ident: 25156_CR74
– volume: 26
  start-page: 1628
  year: 2020
  ident: 25156_CR16
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2607.200764
– volume: 1
  start-page: e10
  year: 2020
  ident: 25156_CR51
  publication-title: Lancet Microbe
  doi: 10.1016/S2666-5247(20)30003-3
– volume: 221
  start-page: S419
  year: 2019
  ident: 25156_CR37
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jiz502
– volume: 78
  start-page: 3352
  year: 2004
  ident: 25156_CR34
  publication-title: J. Virol.
  doi: 10.1128/JVI.78.7.3352-3360.2004
– volume: 129
  start-page: 109147
  year: 2020
  ident: 25156_CR3
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2020.109147
– ident: 25156_CR25
  doi: 10.1038/s41586-020-2342-5
– ident: 25156_CR28
  doi: 10.1126/science.abe2424
– ident: 25156_CR35
– ident: 25156_CR17
  doi: 10.1101/2020.05.31.20115154
– volume: 382
  start-page: 970
  year: 2020
  ident: 25156_CR44
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMc2001468
– ident: 25156_CR32
  doi: 10.1016/j.xcrm.2020.100121
– ident: 25156_CR62
– ident: 25156_CR27
  doi: 10.2807/1560-7917.ES.2020.25.3.2000045
– volume: 167
  start-page: 105951
  year: 2020
  ident: 25156_CR2
  publication-title: Respiratory Med.
  doi: 10.1016/j.rmed.2020.105951
– volume: 81
  start-page: e33
  year: 2020
  ident: 25156_CR45
  publication-title: J. Infect.
  doi: 10.1016/j.jinf.2020.04.004
– volume: 586
  start-page: 509
  year: 2020
  ident: 25156_CR29
  publication-title: Nature
  doi: 10.1038/s41586-020-2787-6
– volume: 25
  start-page: 2000180
  year: 2020
  ident: 25156_CR46
  publication-title: Eurosurveillance
  doi: 10.2807/1560-7917.ES.2020.25.10.2000180
– volume: 26
  start-page: 676
  year: 2020
  ident: 25156_CR38
  publication-title: Nat. Med.
  doi: 10.1038/s41591-020-0843-2
– ident: 25156_CR4
  doi: 10.1038/s41467-020-20568-4
– volume: 582
  start-page: 557
  year: 2020
  ident: 25156_CR15
  publication-title: Nature
  doi: 10.1038/s41586-020-2271-3
– volume: 15
  year: 2014
  ident: 25156_CR73
  publication-title: Genome Biol.
  doi: 10.1186/s13059-014-0550-8
– volume: 148
  start-page: 105617
  year: 2020
  ident: 25156_CR40
  publication-title: J. Aerosol Sci.
  doi: 10.1016/j.jaerosci.2020.105617
– ident: 25156_CR10
  doi: 10.1093/cid/ciaa905
– volume: 382
  start-page: 1564
  year: 2020
  ident: 25156_CR7
  publication-title: N. Engl. J. Med
  doi: 10.1056/NEJMc2004973
– volume: 27
  start-page: 247
  year: 2015
  ident: 25156_CR13
  publication-title: Inhal. Toxicol.
  doi: 10.3109/08958378.2015.1033570
– volume: 11
  year: 2020
  ident: 25156_CR55
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-17367-2
– ident: 25156_CR24
  doi: 10.1080/22221751.2020.1858177
– volume: 26
  start-page: 1658
  year: 2020
  ident: 25156_CR50
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2020.09.004
– volume: 10
  year: 2020
  ident: 25156_CR22
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-69286-3
– volume: 8
  start-page: e69127
  year: 2013
  ident: 25156_CR65
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0069127
– volume: 49
  start-page: 39
  year: 2004
  ident: 25156_CR67
  publication-title: J. Pharm. Toxicol. Methods
  doi: 10.1016/j.vascn.2003.07.001
– volume: 12
  start-page: 357
  year: 2015
  ident: 25156_CR71
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3317
– ident: 25156_CR63
  doi: 10.1016/S1473-3099(21)00262-0
– ident: 25156_CR1
– ident: 25156_CR76
– volume: 20
  start-page: 892
  year: 2020
  ident: 25156_CR49
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(20)30561-2
– ident: 25156_CR19
– volume: 383
  start-page: e101
  year: 2020
  ident: 25156_CR41
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMp2026913
– ident: 25156_CR70
  doi: 10.1371/journal.ppat.1009195
– volume: 14
  start-page: 6339
  year: 2020
  ident: 25156_CR39
  publication-title: ACS Nano
  doi: 10.1021/acsnano.0c03252
– volume: 142
  start-page: 105832
  year: 2020
  ident: 25156_CR59
  publication-title: Environ. Int.
  doi: 10.1016/j.envint.2020.105832
– volume: 26
  start-page: 2276
  year: 2020
  ident: 25156_CR12
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2609.202267
– ident: 25156_CR20
  doi: 10.1038/s41598-020-69286-3
– ident: 25156_CR60
– volume: 11
  year: 2020
  ident: 25156_CR8
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-16670-2
– ident: 25156_CR61
  doi: 10.1126/science.abe8499
– ident: 25156_CR64
– ident: 25156_CR31
  doi: 10.1016/j.bbi.2020.06.032
– volume: 26
  start-page: 1094.e1
  year: 2020
  ident: 25156_CR23
  publication-title: Clin. Microbiol. Infect.
  doi: 10.1016/j.cmi.2020.05.009
– volume: 92
  start-page: 1761
  year: 2020
  ident: 25156_CR43
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.25861
– volume: 26
  start-page: 1583
  year: 2020
  ident: 25156_CR9
  publication-title: Emerg. Infect. Dis.
  doi: 10.3201/eid2607.200885
– volume: 26
  start-page: 2705
  year: 2020
  ident: 25156_CR48
  publication-title: Emerg. Infect. Dis. J.
  doi: 10.3201/eid2611.203353
– volume: 69
  start-page: 606
  year: 2020
  ident: 25156_CR57
  publication-title: Mmwr. Morbidity Mortal. Wkly. Rep.
  doi: 10.15585/mmwr.mm6919e6
– ident: 25156_CR26
– ident: 25156_CR75
– volume: 20
  start-page: 1179
  year: 2008
  ident: 25156_CR66
  publication-title: Inhal. Toxicol.
  doi: 10.1080/08958370802207318
– volume: 143
  start-page: 30
  year: 2017
  ident: 25156_CR69
  publication-title: Antivir. Res.
  doi: 10.1016/j.antiviral.2017.03.025
– ident: 25156_CR30
  doi: 10.1183/13993003.01227-2020
– volume: 100
  start-page: 476
  year: 2020
  ident: 25156_CR21
  publication-title: Int. J. Infect. Dis.
  doi: 10.1016/j.ijid.2020.09.025
– reference: 33398267 - bioRxiv. 2020 Dec 28;:
SSID ssj0000391844
Score 2.6032624
Snippet Transmission of SARS-CoV-2 is driven by contact, fomite, and airborne transmission. The relative contribution of different transmission routes remains subject...
Here, Port and Yinda et al. directly compare the relative contribution of contact, fomite, and airborne transmission route of SARS-CoV-2 to disease outcome in...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4985
SubjectTerms 13
13/106
13/21
13/51
38/39
38/77
38/90
38/91
45
631/326/596/2563
631/326/596/4130
Administration, Intranasal
Aerosols
Air flow
Animals
COVID-19
COVID-19 - blood
COVID-19 - transmission
COVID-19 - virology
Cytokines - blood
Disease transmission
Exposure
Female
Fomites
Hamsters
High-Throughput Nucleotide Sequencing
Humanities and Social Sciences
Inflammation
Inoculation
Lung - virology
Mesocricetus
multidisciplinary
Nasal Cavity - virology
Particle Size
Pathogenesis
Respiratory pathology
Respiratory System - virology
RNA, Viral - genetics
Rodents
SARS-CoV-2 - isolation & purification
Science
Science (multidisciplinary)
Severe acute respiratory syndrome coronavirus 2
Severity of Illness Index
Transmission efficiency
Vaccination
Viral diseases
Virus Replication
Virus Shedding
Viruses
Weight loss
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiDcpBRmJG0RdP2I7x1JRVUhwYCnqLbLjiboSOFWTSvTGT2fGyS5dnheua0c7mvk8Dz--YeyFgKAxkNeliNGVujW45jQ6w06IqKRQIALtd7x7b45P9NvT6vRaqy-6EzbRA0-K29dee6A452pibg9YUMlMYmYVGBkjeV-MedeKqeyDVY2li55fySyU2x909gl0IwFDemVKtxWJMmH_77LMXy9L_nRimgPR0R12e84g-cEk-V12A9I9dnPqKXl1n31bHnxYlof9p1Ly-fSFY_QDalLHfYp8pOiE1qVtMg6ZQYKeX_LVwFeJcsgBIsdUlvvVBQIkAV_fU-djjwP0IIrD1_Oe9hbxE768QhAnfua_EOnC8ICdHL35eHhczm0Wyharl7GsVDTWg4NOmwVmgyBaGduW9NVZ3zliLAy-DSKGKB3WZ1Ab3fnK1BAqdBfqIdtJfYLHjKtoAdDWweGUGKi4IyJ0MMo7L7tQMLFWedPOHOTUCuNzk8_ClWsmMzVopiabqXEFe7n55nxi4Pjr7Ndkyc1MYs_OPyCmmhlTzb8wVbC9NQ6aeUkP-AdGLqx0lS3Y880wmotOWHyC_nKaQ9TftSzYowk2G0kUMTFaixLaLUBtibo9klZnmfAb5SOqrIK9WkPvh1h_VsXu_1DFE3ZL0pohEmC7x3bGi0t4imnYGJ7lFfcdB0UrUw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxg6gb24mdEyoVVYUEB5aivVl2PKErQbJsUone-OnMOI9qefS6dqRZz9Mz428Ye5mBV-jIyzQLwaSqKlDnFBrDOsuCFJmEzFO-48PH4uRUvV_lqzHh1o1tlZNNjIY6tBXlyA_QNYuFFibXbzY_UpoaRdXVcYTGdXaDoMuopUuv9JxjIfRzo9T4VmYhzUGnomWgvgR07HmRmh1_FGH7_xVr_t0y-UfdNLqj4zvs9hhH8sOB8XfZNWjusZvDZMmL--zX8vDTMj1qv6SCjzUYjj4QaFQdd03gPfko5DElyzhEHAl6hMnXHV83FEl2EDgGtNyttygmDfCpW533LS7QsygOPzctZRjxE768QFFu-Jn7TtAL3QN2evzu89FJOg5bSCu8w_RpLkOhHRioVbHAmBCySoSqovOqtasN4RZ6V_ks-CAM3tKgLFTt8qIEn6PRkA_ZXtM28JhxGTQActwb3BI8XfEIDh0K6YwTtU9YNh25rUYkchqI8c3Girg0dmCTRTbZyCZrEvZq_mYz4HBcufstcXLeSRja8Yd2-9WOKmmVUw4ogjIlzQTweFUXER5PSyhECAnbn-TAjord2UsxTNiLeRnZRXUW10B7PuwhAPBSJOzRIDYzJZLwGLVGCvWOQO2QurvSrM8i7DfSR4BZCXs9id4lWf8_iidX_4un7JYgbSCQX73P9vrtOTzDMKv3z6Mu_Qa63iR4
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA/Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9UwDI_GEBIXxPgsDBQkblDxmqRJetyemCYkOPAY2q1KGpc9CdrptZPYjT8dO_2YHhtIXBtHtWI7dmLnZ8ZeZ-AVOvIizUKwqao02pzCzbDOsiBFJiHzdN_x8ZM-PlEfTvPTHSamtzCxaD9CWsZteqoOe9epaNJUUIAeOdepvcVuE3Q7afVSL-d7FUI8t0qN72MW0t4wdcsHRaj-m-LL62WSf-RKows6us_ujbEjPxi43WM70Dxgd4ZukpcP2a_VwedVumy_poKPeReOfg-oPR13TeA9-SWUK12QcYjYEfTwkq87vm4oeuwgcAxiuVtvUDUa4FOFOu9bHKCnUBx-nrd0q4hT-OoS1bfhZ-4HwS10j9jJ0fsvy-N0bLCQVnhu6dNcBm0cWKiVXmAcCFklQlXRetXG1ZawCr2rfBZ8EBZPZlBoVbtcF-Bz3CjkY7bbtA08ZVwGA4BS9hZJgqdjHUGgg5bOOlH7hGXTkpfViD5OTTC-lzELLm05iKlEMZVRTKVN2Jt5zvmAvfFP6kOS5ExJuNnxQ7v5Vo56VCqnHFDUZAvqA-DxeC4iJJ6RoEUICduf9KAcjbnDH2ixMMLmJmGv5mEUF-VWXAPtxUBDoN-FSNiTQW1mTiRhMBqDHJothdpidXukWZ9FqG_kj0CyEvZ2Ur0rtv6-FM_-j_w5uyvIOgjo1-yz3X5zAS8w1Or9y2hbvwHTDiI8
  priority: 102
  providerName: Springer Nature
Title SARS-CoV-2 disease severity and transmission efficiency is increased for airborne compared to fomite exposure in Syrian hamsters
URI https://link.springer.com/article/10.1038/s41467-021-25156-8
https://www.ncbi.nlm.nih.gov/pubmed/34404778
https://www.proquest.com/docview/2562072857
https://www.proquest.com/docview/2562517492
https://pubmed.ncbi.nlm.nih.gov/PMC8371001
https://doaj.org/article/4a4ae0743895463b83727995473e62dd
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwELf2ISReEN9kG5WReINAYye284BQV61MlTahlaK-RXbsbJVGMppOWt_407lzkqJCQbwkUuwkJ9-d785n_46Q15EzMRjyNIysVWGcC9C5GCbDIoosZxF3kcH1jrNzcTqNx7NktkO6ckftANZbQzusJzVdXL-7-776CAr_oTkyrt7XsVd33GwA1joRodol-2CZJCrqWevu-5mZpxDQYKKZ9eMoBNvN23M02z-zYas8pP82P_TP7ZS_5VS9qRo9JA9aH5MOGqF4RHZc-Zjca6pOrp6QH5PBxSQcVl9DRtv8DAX76LCMHdWlpUu0X8B_XEijzmNM4AFNOq_pvEQvs3aWgrNL9XwBIlQ62u1kp8sKGvDIFHV3NxWuPsIrdLICMS_plf6GsAz1UzIdnXwZnoZtIYYwh_hmGSbcCqmdckUs-uAvuihnNs9xvAqpC4WYhkbnJrLGMgURnEtFXOhEpM4kMKHwZ2SvrEr3glBupXMgDUZBF2sw_EOodCe4VpoVJiBRN-RZ3qKUY7GM68xny7nKGjZlwKbMsylTAXmzfuemwej4Z-9j5OS6J-Jr-wfV4jJr1TWLdawdelcqxXoBBsJ45qHzJHeCWRuQo04Osk5m4QeC9SVTiQzIq3UzsAtzMLp01W3TB8HBUxaQ543YrCnhiNUoJVAoNwRqg9TNlnJ-5SHBgT4E0wrI2070fpH196E4-A8yD8l9hiqBKMDyiOwtF7fuJfhhS9Mju3Im4apGn3pkfzAYT8ZwPz45_3wBT4di2PMrHD2vhD8BKvQyPw
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFE3thM7B4RKodrSx4Ft0d6ME0_oSpAsm61gb_wifiMzeWy1PHrrde1E3szr84z9DWPPIsgUBvI0jLw3ocoTtDmFzrCIIi9FJCHKKN9xcJgMj9X7cTxeY7_6uzB0rLL3iY2j9lVOOfJNDM1ioIWJ9evpt5C6RlF1tW-h0arFHiy-45atfrX7FuX7XIidd0fbw7DrKhDmCNbnYSx9oh0YKFQyQPADUS58nit0GYV2hSGCvszlWeQzLwxuRyBNVOHiJIUsRuuQ-N5L7DIG3gFZlB7rZU6H2NaNUt3dnIE0m7VqPBGdg0AgESehWYl_TZuAf2Hbv49o_lGnbcLfzg12vcOtfKtVtJtsDcpb7ErbyXJxm_0cbX0YhdvVx1DwrubDMeYCtcbjrvR8TjERdYqScxwa3gq69MknNZ-UhFxr8BwBNHeTGaplCbw_Hc_nFQ7QNSwOP6YVZTTxET5aoOmU_MR9JaqH-g47vhAx3GXrZVXCfcal1wCoYZnBKT6jLSXRr0MinXGiyAIW9Z_c5h3zOTXg-GKbCrw0thWTRTHZRkzWBOzF8plpy_tx7uw3JMnlTOLsbn6oZp9t5wKscsoBITaTUg-CzEjEjkTHpyUkwvuAbfR6YDtHUtsztQ_Y0-UwiovqOq6E6rSdQ4TjqQjYvVZtliuRxP-oNa5QryjUylJXR8rJSUMzjusjgq6AvexV72xZ__8UD87_F0_Y1eHRwb7d3z3ce8iuCbIMIhjWG2x9PjuFRwjx5tnjxq44-3TRhvwba7Vhsw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k2ggJHgBFE3thM7B4RKy6qlUCGWor25TjyhK0GybLaCvfG7-HXM5LHV8uit17UTzWaenhl_w9iTCDKFjjwNI-9NqPIEdU6hMSyiyEsRSYgyyne8O0h2D9WbcTxeY7_6uzDUVtnbxMZQ-yqnHPkmumYx0MLgAb7o2iLe7wxfTr-FNEGKKq39OI1WRPZh8R2Pb_WLvR3k9VMhhq8_bu-G3YSBMMfAfR7G0ifagYFCJQMMhCDKhc9zheaj0K4wBNaXuTyLfOaFwaMJpIkqXJykkMWoKRLfe4Fd1DKOSMf0WC_zO4S8bpTq7ukMpNmsVWOVqCcCg4o4Cc2KL2xGBvwrzv27XfOPmm3jCofX2NUuhuVbrdBdZ2tQ3mCX2qmWi5vs52jrwyjcrj6Fgnf1H47-F2hMHnel53PyjyhflKjj0GBY0AVQPqn5pKQotgbPMZjmbjJDES2B953yfF7hAl3J4vBjWlF2Ex_howWqUcmP3VeCfahvscNzYcNttl5WJdxlXHoNgNKWGdziMzpeEhQ7JNIZJ4osYFH_yW3eoaDTMI4vtqnGS2NbNllkk23YZE3Ani2fmbYYIGfufkWcXO4k_O7mh2r22XbmwCqnHFD0ZlKaR5AZiXEkQfNpCYnwPmAbvRzYzqjU9lQFAvZ4uYzsohqPK6E6afcQ-HgqAnanFZslJZKwILVGCvWKQK2QurpSTo4byHGkj8C6Ava8F71Tsv7_Ke6d_S8escuowvbt3sH-fXZFkGIQ1rDeYOvz2Qk8wGhvnj1s1Iqzo_PW49__ZGXp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SARS-CoV-2+disease+severity+and+transmission+efficiency+is+increased+for+airborne+compared+to+fomite+exposure+in+Syrian+hamsters&rft.jtitle=Nature+communications&rft.au=Port%2C+Julia+R&rft.au=Yinda%2C+Claude+Kwe&rft.au=Owusu%2C+Irene+Offei&rft.au=Holbrook%2C+Myndi&rft.date=2021-08-17&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=4985&rft_id=info:doi/10.1038%2Fs41467-021-25156-8&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon