Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana
Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnecti...
Saved in:
Published in | Nature communications Vol. 9; no. 1; pp. 4534 - 13 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
31.10.2018
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-018-06772-3 |
Cover
Loading…
Abstract | Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnections of homeotic TFs, microRNAs (miRNAs) and other factors controlling organ initiation and growth have not been studied systematically so far. Here, using a combination of genome-wide TF binding, mRNA and miRNA expression data, we reconstruct the dynamic GRN controlling floral meristem development and organ differentiation. We identify prevalent feed-forward loops (FFLs) mediated by floral homeotic TFs and miRNAs that regulate common targets. Experimental validation of a coherent FFL shows that petal size is controlled by the SEPALLATA3-regulated miR319/TCP4 module. We further show that combinatorial DNA-binding of homeotic factors and selected other TFs is predictive of organ-specific patterns of gene expression. Our results provide a valuable resource for studying molecular regulatory processes underlying floral organ specification in plants.
Homeotic transcription factors and miRNAs promote floral organ specification. Here Chen et al. reconstruct gene regulatory networks in
Arabidopsis
flowers and find evidence for feed forward loops between transcription factors, miRNAs and their targets that determine organ-specific gene expression. |
---|---|
AbstractList | Homeotic transcription factors and miRNAs promote floral organ specification. Here Chen et al. reconstruct gene regulatory networks in Arabidopsis flowers and find evidence for feed forward loops between transcription factors, miRNAs and their targets that determine organ-specific gene expression. Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnections of homeotic TFs, microRNAs (miRNAs) and other factors controlling organ initiation and growth have not been studied systematically so far. Here, using a combination of genome-wide TF binding, mRNA and miRNA expression data, we reconstruct the dynamic GRN controlling floral meristem development and organ differentiation. We identify prevalent feed-forward loops (FFLs) mediated by floral homeotic TFs and miRNAs that regulate common targets. Experimental validation of a coherent FFL shows that petal size is controlled by the SEPALLATA3-regulated miR319/TCP4 module. We further show that combinatorial DNA-binding of homeotic factors and selected other TFs is predictive of organ-specific patterns of gene expression. Our results provide a valuable resource for studying molecular regulatory processes underlying floral organ specification in plants. Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnections of homeotic TFs, microRNAs (miRNAs) and other factors controlling organ initiation and growth have not been studied systematically so far. Here, using a combination of genome-wide TF binding, mRNA and miRNA expression data, we reconstruct the dynamic GRN controlling floral meristem development and organ differentiation. We identify prevalent feed-forward loops (FFLs) mediated by floral homeotic TFs and miRNAs that regulate common targets. Experimental validation of a coherent FFL shows that petal size is controlled by the SEPALLATA3-regulated miR319/TCP4 module. We further show that combinatorial DNA-binding of homeotic factors and selected other TFs is predictive of organ-specific patterns of gene expression. Our results provide a valuable resource for studying molecular regulatory processes underlying floral organ specification in plants. Homeotic transcription factors and miRNAs promote floral organ specification. Here Chen et al. reconstruct gene regulatory networks in Arabidopsis flowers and find evidence for feed forward loops between transcription factors, miRNAs and their targets that determine organ-specific gene expression. Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnections of homeotic TFs, microRNAs (miRNAs) and other factors controlling organ initiation and growth have not been studied systematically so far. Here, using a combination of genome-wide TF binding, mRNA and miRNA expression data, we reconstruct the dynamic GRN controlling floral meristem development and organ differentiation. We identify prevalent feed-forward loops (FFLs) mediated by floral homeotic TFs and miRNAs that regulate common targets. Experimental validation of a coherent FFL shows that petal size is controlled by the SEPALLATA3-regulated miR319/TCP4 module. We further show that combinatorial DNA-binding of homeotic factors and selected other TFs is predictive of organ-specific patterns of gene expression. Our results provide a valuable resource for studying molecular regulatory processes underlying floral organ specification in plants.Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnections of homeotic TFs, microRNAs (miRNAs) and other factors controlling organ initiation and growth have not been studied systematically so far. Here, using a combination of genome-wide TF binding, mRNA and miRNA expression data, we reconstruct the dynamic GRN controlling floral meristem development and organ differentiation. We identify prevalent feed-forward loops (FFLs) mediated by floral homeotic TFs and miRNAs that regulate common targets. Experimental validation of a coherent FFL shows that petal size is controlled by the SEPALLATA3-regulated miR319/TCP4 module. We further show that combinatorial DNA-binding of homeotic factors and selected other TFs is predictive of organ-specific patterns of gene expression. Our results provide a valuable resource for studying molecular regulatory processes underlying floral organ specification in plants. Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the function of the gene regulatory network (GRN) controlling floral organ specification is still poorly understood. In particular, the interconnections of homeotic TFs, microRNAs (miRNAs) and other factors controlling organ initiation and growth have not been studied systematically so far. Here, using a combination of genome-wide TF binding, mRNA and miRNA expression data, we reconstruct the dynamic GRN controlling floral meristem development and organ differentiation. We identify prevalent feed-forward loops (FFLs) mediated by floral homeotic TFs and miRNAs that regulate common targets. Experimental validation of a coherent FFL shows that petal size is controlled by the SEPALLATA3-regulated miR319/TCP4 module. We further show that combinatorial DNA-binding of homeotic factors and selected other TFs is predictive of organ-specific patterns of gene expression. Our results provide a valuable resource for studying molecular regulatory processes underlying floral organ specification in plants. |
ArticleNumber | 4534 |
Author | Yan, Wenhao Chen, Dijun Kaufmann, Kerstin Fu, Liang-Yu |
Author_xml | – sequence: 1 givenname: Dijun orcidid: 0000-0002-7456-2511 surname: Chen fullname: Chen, Dijun email: chendijun2012@gmail.com organization: Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin – sequence: 2 givenname: Wenhao orcidid: 0000-0001-8165-7335 surname: Yan fullname: Yan, Wenhao organization: Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin – sequence: 3 givenname: Liang-Yu orcidid: 0000-0002-0017-118X surname: Fu fullname: Fu, Liang-Yu organization: Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin – sequence: 4 givenname: Kerstin orcidid: 0000-0001-7960-6256 surname: Kaufmann fullname: Kaufmann, Kerstin email: kerstin.kaufmann@hu-berlin.de organization: Institute for Biology, Plant Cell and Molecular Biology, Humboldt-Universität zu Berlin |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30382087$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhSNUREvpH2CBIrFhE_ArTrxBqioelSqxgbV1E99kPHjswXZa9d_jmWmh7aLe2LLP_XR873ldHfngsareUvKREt5_SoIK2TWE9g2RXcca_qI6YUTQhnaMHz04H1dnKa1JWVzRXohX1TEvBEb67qTS53Fc2YxjXiLWYapn9FhHnBcHOcTb2mO-CfF3qsfgcwzOWT_Xkws3GGuD1-jCdoM-19bX5xEGa8I22VTnFTgLHt5ULydwCc_u9tPq19cvPy--N1c_vl1enF81oyQyN2JSXHFRzq2aTMtaEANXYmgl7YD1UozYwyQZSDSmM2QYVMsHA8C61hgj-Wl1eeCaAGu9jXYD8VYHsHp_EeKsIWY7OtQ98E5KQcnEJ9EqqUCq0spJ0bblAsfC-nxgbZdhg2Ys34vgHkEfv3i70nO41rL0VIi2AD7cAWL4s2DKemPTiM6Bx7AkzSjrlOh7wYv0_RPpOizRl1btVVJIJXfAdw8d_bNyP8ci6A-CMYaUIk56tBmy3c0MrNOU6F1q9CE1uqRG71Ojdw7Yk9J7-rNF_FCUitjPGP_bfqbqLylf1PA |
CitedBy_id | crossref_primary_10_1109_JBHI_2022_3199243 crossref_primary_10_1016_j_pbi_2022_102262 crossref_primary_10_3390_plants10081602 crossref_primary_10_1111_pce_15129 crossref_primary_10_1016_j_pld_2019_12_001 crossref_primary_10_1016_j_coisb_2020_07_010 crossref_primary_10_24072_pcjournal_68 crossref_primary_10_1007_s12298_024_01434_9 crossref_primary_10_3389_fpls_2024_1370949 crossref_primary_10_3389_fpls_2019_01624 crossref_primary_10_1093_aob_mcac072 crossref_primary_10_1016_j_ijbiomac_2023_125046 crossref_primary_10_1093_jxb_erab110 crossref_primary_10_1093_jxb_erab235 crossref_primary_10_1111_tpj_16416 crossref_primary_10_1093_jxb_erac164 crossref_primary_10_1007_s11427_020_1693_4 crossref_primary_10_1016_j_jgg_2023_02_015 crossref_primary_10_1093_hr_uhad196 crossref_primary_10_1038_s41597_020_00678_w crossref_primary_10_15252_msb_20199174 crossref_primary_10_3390_biology11050798 crossref_primary_10_3389_frai_2023_1201002 crossref_primary_10_3389_fgene_2022_916867 crossref_primary_10_3390_plants11070860 crossref_primary_10_3390_horticulturae8040284 crossref_primary_10_3389_fpls_2022_1055196 crossref_primary_10_1038_s41438_021_00662_4 crossref_primary_10_1186_s13068_022_02191_1 crossref_primary_10_1016_j_molp_2022_10_016 crossref_primary_10_1093_nar_gkac773 crossref_primary_10_3389_fpls_2022_1049479 crossref_primary_10_1007_s00299_021_02828_9 crossref_primary_10_1038_s41586_024_07713_5 crossref_primary_10_3389_fgene_2021_618089 crossref_primary_10_3389_fpls_2022_828579 crossref_primary_10_3389_fpls_2023_1323507 crossref_primary_10_1093_jxb_erab490 crossref_primary_10_1093_plphys_kiaa090 crossref_primary_10_1146_annurev_arplant_070122_030236 crossref_primary_10_1111_nph_16589 crossref_primary_10_1016_j_scienta_2019_03_064 crossref_primary_10_1007_s00425_022_03886_3 crossref_primary_10_1016_j_devcel_2021_02_001 crossref_primary_10_3390_plants13050615 crossref_primary_10_1042_ETLS20210286 crossref_primary_10_1007_s00299_022_02863_0 crossref_primary_10_1093_bioinformatics_btz731 crossref_primary_10_1080_23818107_2024_2400654 crossref_primary_10_1093_jxb_eraf005 crossref_primary_10_7554_eLife_50541 crossref_primary_10_1093_nar_gkaa729 crossref_primary_10_3389_fpls_2020_599464 crossref_primary_10_1111_ppl_13479 crossref_primary_10_3390_plants13081078 crossref_primary_10_3390_ijms25116127 crossref_primary_10_1016_j_ympev_2020_106777 crossref_primary_10_1111_tpj_14940 crossref_primary_10_3389_fgene_2020_606285 crossref_primary_10_3390_horticulturae10080889 crossref_primary_10_1016_j_indcrop_2024_118662 crossref_primary_10_1093_plphys_kiac370 crossref_primary_10_1016_j_devcel_2020_12_015 crossref_primary_10_12688_f1000research_17207_1 crossref_primary_10_1093_nar_gkz945 crossref_primary_10_1093_plcell_koae044 crossref_primary_10_1016_j_cub_2020_03_031 crossref_primary_10_1007_s11033_023_08486_2 crossref_primary_10_1016_j_gpb_2020_02_004 crossref_primary_10_1186_s12870_025_06101_z crossref_primary_10_3390_ijms251910250 crossref_primary_10_1111_nph_16601 crossref_primary_10_1093_hr_uhae249 crossref_primary_10_3389_fmicb_2020_588263 crossref_primary_10_1016_j_cels_2023_05_002 crossref_primary_10_1038_s42003_020_01235_2 crossref_primary_10_1093_plphys_kiab568 crossref_primary_10_3389_fpls_2024_1421503 crossref_primary_10_1016_j_scienta_2023_112302 crossref_primary_10_1186_s40529_021_00330_9 crossref_primary_10_1016_j_devcel_2021_01_019 crossref_primary_10_3389_fpls_2022_1019538 crossref_primary_10_1002_advs_202415083 crossref_primary_10_1371_journal_pone_0271640 crossref_primary_10_1038_s41467_019_09513_2 crossref_primary_10_3390_f12060749 crossref_primary_10_1038_s41477_023_01605_8 crossref_primary_10_3389_fpls_2021_684227 crossref_primary_10_3389_fpls_2023_1273409 crossref_primary_10_7717_peerj_8778 crossref_primary_10_1016_j_bbagrm_2019_194447 crossref_primary_10_1093_nar_gkad945 crossref_primary_10_24072_pcjournal_327 crossref_primary_10_1016_j_scienta_2024_113406 crossref_primary_10_1038_s41467_022_30770_1 crossref_primary_10_1016_j_pld_2024_03_008 crossref_primary_10_1214_23_AOAS1732 crossref_primary_10_1242_dev_200120 crossref_primary_10_1007_s11816_023_00870_5 crossref_primary_10_3390_epigenomes8040040 crossref_primary_10_1016_j_indcrop_2024_118971 crossref_primary_10_1515_biol_2022_0612 crossref_primary_10_1186_s13059_024_03437_x |
Cites_doi | 10.1105/tpc.2.8.741 10.1038/nrg2102 10.1104/pp.112.202614 10.1105/tpc.111.083329 10.1038/nrg1990 10.1038/nature11245 10.1242/dev.00949 10.1038/35054172 10.1105/tpc.2.8.755 10.1105/tpc.114.130591 10.1016/j.cell.2012.04.005 10.1023/A:1025426920923 10.1186/gb-2014-15-3-r41 10.1016/j.devcel.2008.05.002 10.1111/pbi.12340 10.1111/j.1365-313X.2010.04299.x 10.1073/pnas.1207075109 10.1073/pnas.1109435108 10.1038/s42003-018-0091-x 10.1073/pnas.1103175108 10.1016/j.cub.2004.04.032 10.1016/j.cub.2005.02.017 10.1016/S1534-5807(02)00122-3 10.1371/journal.pgen.0020117 10.1073/pnas.1320457111 10.1126/science.1166386 10.1105/tpc.016238 10.1242/dev.01815 10.1038/nrg3291 10.1242/dev.00620 10.1105/tpc.108.064758 10.1214/11-AOAS466 10.1073/pnas.1112871109 10.1105/tpc.021147 10.1038/nature12633 10.1016/j.devcel.2009.03.011 10.1016/j.cell.2009.06.031 10.1016/0092-8674(92)90295-N 10.1105/tpc.113.113209 10.1186/1746-4811-1-13 10.1016/j.cell.2009.06.014 10.1126/science.1088060 10.1038/35019019 10.1093/jxb/erv444 10.1038/msb.2010.76 10.1105/tpc.105.038398 10.1242/dev.036673 10.1105/tpc.110.075606 10.1093/nar/gni178 10.1038/s41477-017-0003-y 10.1105/tpc.6.9.1211 10.1101/gad.1937010 10.1371/journal.pgen.1006263 10.1016/j.devcel.2011.03.019 10.1038/ncomms2947 10.1105/tpc.17.00098 10.1016/j.devcel.2016.08.013 10.1126/science.1203877 10.1242/dev.075069 10.1105/tpc.17.00389 10.1111/nph.12444 10.1186/s12870-018-1348-8 10.1101/gad.13.16.2108 10.1186/gb-2009-10-2-r24 10.1016/j.febslet.2005.07.071 10.1016/j.cell.2013.09.053 10.1126/science.1241097 10.1093/mp/sst119 10.1016/j.pbi.2015.12.004 10.1038/ng1803 10.1371/journal.pbio.1000148 10.3389/fpls.2014.00165 10.1105/tpc.17.00145 10.1126/science.1185244 10.1038/ncomms11192 10.1387/ijdb.113450ns 10.1016/j.cub.2003.08.027 10.1038/35054083 10.1016/j.bbagrm.2016.07.014 10.1093/bioinformatics/btl038 10.1073/pnas.0908718106 10.1371/journal.pbio.1000090 10.1242/dev.127.18.3877 10.1104/pp.15.00915 10.1104/pp.16.00533 10.1186/s13059-015-0597-1 10.1093/genetics/159.2.767 10.1242/dev.124.22.4481 |
ContentType | Journal Article |
Copyright | The Author(s) 2018 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2018 – notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-018-06772-3 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_8a3766410f3f45969a69467f915534ec PMC6208445 30382087 10_1038_s41467_018_06772_3 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-4f9393460659fd525a4b394b5617a2864ce8af62a6edd7d0bb953bdaa275ddd63 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:31:49 EDT 2025 Thu Aug 21 18:23:37 EDT 2025 Fri Sep 05 10:14:48 EDT 2025 Wed Aug 13 09:13:02 EDT 2025 Wed Feb 19 02:36:28 EST 2025 Tue Jul 01 02:21:18 EDT 2025 Thu Apr 24 23:07:31 EDT 2025 Fri Feb 21 02:39:57 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-4f9393460659fd525a4b394b5617a2864ce8af62a6edd7d0bb953bdaa275ddd63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-7456-2511 0000-0001-8165-7335 0000-0002-0017-118X 0000-0001-7960-6256 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-06772-3 |
PMID | 30382087 |
PQID | 2127646965 |
PQPubID | 546298 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8a3766410f3f45969a69467f915534ec pubmedcentral_primary_oai_pubmedcentral_nih_gov_6208445 proquest_miscellaneous_2127948843 proquest_journals_2127646965 pubmed_primary_30382087 crossref_citationtrail_10_1038_s41467_018_06772_3 crossref_primary_10_1038_s41467_018_06772_3 springer_journals_10_1038_s41467_018_06772_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-10-31 |
PublicationDateYYYYMMDD | 2018-10-31 |
PublicationDate_xml | – month: 10 year: 2018 text: 2018-10-31 day: 31 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2018 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Jofuku (CR17) 1994; 6 Pajoro (CR2) 2014; 15 Siriwardana, Lamb (CR41) 2012; 56 Huang, Lopez-Giraldez, Townsend, Irish (CR68) 2012; 139 Wurschum (CR19) 2006; 18 Chen (CR36) 2004; 303 Gerstein (CR55) 2012; 489 Nemhauser, Feldman, Zambryski (CR25) 2000; 127 Alon (CR51) 2007; 8 Huang, Irish (CR60) 2016; 67 Yant (CR53) 2010; 22 CR72 Bencivenga, Serrano-Mislata, Bush, Fox, Sablowski (CR42) 2016; 39 Wu (CR34) 2009; 138 Wang (CR66) 2016; 7 Gutierrez (CR58) 2009; 21 Gu (CR44) 2013; 4 Xie, Yang (CR78) 2013; 6 Mathieu, Yant, Mürdter, Küttner, Schmid (CR21) 2009; 7 Wollmann, Mica, Todesco, Long, Weigel (CR16) 2010; 137 Xu (CR35) 2016; 12 Smaczniak, Muiño, Chen, Angenent, Kaufmann (CR61) 2017; 29 Wils, Kaufmann (CR3) 2017; 1860 Simonini, Bencivenga, Trick, Østergaard (CR81) 2017; 29 Baker, Sieber, Wellmer, Meyerowitz (CR67) 2005; 15 Aerts, de Bruijn, van Mourik, Angenent, van Dijk (CR31) 2018; 18 Yan, Chen, Kaufmann (CR29) 2016; 29 Heyndrickx, Van de Velde, Wang, Weigel, Vandepoele (CR30) 2014; 26 Roeder, Ferrándiz, Yanofsky (CR74) 2003; 13 Sessions (CR24) 1997; 124 Zhao (CR47) 2016; 171 CR84 CR83 Hellens (CR77) 2005; 1 Immink, Pose, Ferrario, Ott, Kaufmann, Valentim, de Folter, van der Wal, van Dijk, Schmid, Angenent (CR86) 2012; 160 Liu, Xi, Shen, Tan, Yu (CR8) 2009; 16 Morel (CR18) 2017; 29 Chen (CR76) 2005; 33 Schiessl, Muino, Sablowski (CR27) 2014; 111 Moyroud, Minguet, Ott, Yant, Posé, Monniaux, Blanchet, Bastien, Thévenon, Weigel, Schmid, Parcy (CR87) 2011; 23 Wellmer, Alves-Ferreira, Dubois, Riechmann, Meyerowitz (CR46) 2006; 2 Burda, Krzywicki, Martin, Zagorski (CR52) 2011; 108 Kim (CR57) 2009; 323 Norberg, Holmlund, Nilsson (CR65) 2005; 132 Deng, Ying, Helliwell, Taylor, Peacock, Dennis (CR82) 2011; 108 Winter (CR12) 2011; 20 Andrés, Coupland (CR1) 2012; 13 Xu (CR69) 2010; 63 Yang, Ye, Xu, Sundaresan (CR63) 1999; 13 Smith, Campbell, Hake (CR73) 2004; 14 Lohmann, Weigel (CR13) 2002; 2 Immink (CR40) 2009; 10 Smyth, Bowman, Meyerowitz (CR45) 1990; 2 Wuest, O'Maoileidigh, Rae, Kwasniewska, Raganelli, Hanczaryk, Lohan, Loftus, Graciet, Wellmer (CR88) 2012; 109 Wang, Czech, Weigel (CR33) 2009; 138 Jiao, Meyerowitz (CR62) 2010; 6 Bao, Franks, Levin, Liu (CR75) 2004; 16 Ó’Maoiléidigh, Graciet, Wellmer (CR32) 2014; 201 Hong, Jackson (CR38) 2015; 13 Li, Brown, Huang, Bickel (CR39) 2011; 5 Chen, Rajewsky (CR56) 2007; 8 Hornstein, Shomron (CR70) 2006; 38 Serrano-Mislata (CR28) 2017; 3 Honma, Goto (CR14) 2001; 409 Byrne (CR22) 2003; 130 Aukerman, Sakai (CR20) 2003; 15 Kamiuchi, Yamamoto, Furutani, Tasaka, Aida (CR64) 2014; 5 Dinneny (CR23) 2004; 131 Scortecci, Michaels, Amasino (CR43) 2003; 52 Lee (CR7) 2013; 342 Kaufmann (CR11) 2010; 328 O'Maoileidigh, Wuest, Rae, Raganelli, Ryan, Kwasniewska, Das, Lohan, Loftus, Graciet, Wellmer (CR85) 2013; 25 Hnisz (CR5) 2013; 155 King, Moritz, Harberd (CR26) 2001; 159 Wernicke, Rasche (CR54) 2006; 22 Smaczniak (CR59) 2012; 109 Nag, King, Jack (CR37) 2009; 106 Irish, Sussex (CR10) 1990; 2 Theißen, Saedler (CR15) 2001; 409 Dreze (CR79) 2011; 333 Albert, Jeong, Barabási (CR50) 2000; 406 Posé (CR4) 2013; 503 Ebert, Sharp (CR71) 2012; 149 Herranz, Cohen (CR49) 2010; 24 Weigel, Alvarez, Smyth, Yanofsky, Meyerowitz (CR9) 1992; 69 Chen (CR48) 2005; 579 Chen (CR80) 2018; 1 Li (CR6) 2008; 15 CM Winter (6772_CR12) 2011; 20 KS Heyndrickx (6772_CR30) 2014; 26 X Bao (6772_CR75) 2004; 16 D Hnisz (6772_CR5) 2013; 155 CC Baker (6772_CR67) 2005; 15 A Pajoro (6772_CR2) 2014; 15 K. D. Jofuku (6772_CR17) 1994; 6 JR Dinneny (6772_CR23) 2004; 131 CR Wils (6772_CR3) 2017; 1860 X Chen (6772_CR48) 2005; 579 W Yan (6772_CR29) 2016; 29 MS Ebert (6772_CR71) 2012; 149 Y Hong (6772_CR38) 2015; 13 X Gu (6772_CR44) 2013; 4 H Wollmann (6772_CR16) 2010; 137 T. Wurschum (6772_CR19) 2006; 18 RG Immink (6772_CR40) 2009; 10 MB Gerstein (6772_CR55) 2012; 489 M Norberg (6772_CR65) 2005; 132 RP Hellens (6772_CR77) 2005; 1 Johannes Mathieu (6772_CR21) 2009; 7 G Theißen (6772_CR15) 2001; 409 F Andrés (6772_CR1) 2012; 13 K Kaufmann (6772_CR11) 2010; 328 A Nag (6772_CR37) 2009; 106 JU Lohmann (6772_CR13) 2002; 2 Y Jiao (6772_CR62) 2010; 6 T Huang (6772_CR68) 2012; 139 JL Nemhauser (6772_CR25) 2000; 127 C Chen (6772_CR76) 2005; 33 Q Li (6772_CR39) 2011; 5 M Xu (6772_CR69) 2010; 63 MJ Aukerman (6772_CR20) 2003; 15 U Alon (6772_CR51) 2007; 8 ME Byrne (6772_CR22) 2003; 130 A Sessions (6772_CR24) 1997; 124 L Yant (6772_CR53) 2010; 22 C Liu (6772_CR8) 2009; 16 R. G. H. Immink (6772_CR86) 2012; 160 JW Wang (6772_CR33) 2009; 138 C Smaczniak (6772_CR61) 2017; 29 E Hornstein (6772_CR70) 2006; 38 M Xu (6772_CR35) 2016; 12 T Huang (6772_CR60) 2016; 67 Y Kamiuchi (6772_CR64) 2014; 5 P Morel (6772_CR18) 2017; 29 F Wellmer (6772_CR46) 2006; 2 L Gutierrez (6772_CR58) 2009; 21 JH Kim (6772_CR57) 2009; 323 Z Wang (6772_CR66) 2016; 7 D Weigel (6772_CR9) 1992; 69 K Schiessl (6772_CR27) 2014; 111 DR Smyth (6772_CR45) 1990; 2 W. Deng (6772_CR82) 2011; 108 S. E. Wuest (6772_CR88) 2012; 109 D Chen (6772_CR80) 2018; 1 JH Lee (6772_CR7) 2013; 342 NS Siriwardana (6772_CR41) 2012; 56 C Smaczniak (6772_CR59) 2012; 109 K Xie (6772_CR78) 2013; 6 G Wu (6772_CR34) 2009; 138 HMS Smith (6772_CR73) 2004; 14 A Serrano-Mislata (6772_CR28) 2017; 3 AHK Roeder (6772_CR74) 2003; 13 WC Yang (6772_CR63) 1999; 13 6772_CR84 6772_CR83 D Li (6772_CR6) 2008; 15 S Wernicke (6772_CR54) 2006; 22 Z Burda (6772_CR52) 2011; 108 KE King (6772_CR26) 2001; 159 VF Irish (6772_CR10) 1990; 2 S Bencivenga (6772_CR42) 2016; 39 Edwige Moyroud (6772_CR87) 2011; 23 N Aerts (6772_CR31) 2018; 18 Sara Simonini (6772_CR81) 2017; 29 X Chen (6772_CR36) 2004; 303 K Chen (6772_CR56) 2007; 8 T Honma (6772_CR14) 2001; 409 DS Ó’Maoiléidigh (6772_CR32) 2014; 201 R Albert (6772_CR50) 2000; 406 D Posé (6772_CR4) 2013; 503 C Zhao (6772_CR47) 2016; 171 M Dreze (6772_CR79) 2011; 333 D. S. O'Maoileidigh (6772_CR85) 2013; 25 H Herranz (6772_CR49) 2010; 24 K Scortecci (6772_CR43) 2003; 52 6772_CR72 |
References_xml | – volume: 2 start-page: 741 year: 1990 end-page: 753 ident: CR10 article-title: Function of the apetala-1 gene during Arabidopsis floral development publication-title: Plant Cell doi: 10.1105/tpc.2.8.741 – volume: 8 start-page: 450 year: 2007 end-page: 461 ident: CR51 article-title: Network motifs: theory and experimental approaches publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2102 – volume: 160 start-page: 433 issue: 1 year: 2012 end-page: 449 ident: CR86 article-title: Characterization of SOC1's Central Role in Flowering by the Identification of Its Upstream and Downstream Regulators publication-title: PLANT PHYSIOLOGY doi: 10.1104/pp.112.202614 – volume: 23 start-page: 1293 issue: 4 year: 2011 end-page: 1306 ident: CR87 article-title: Prediction of Regulatory Interactions from Genome Sequences Using a Biophysical Model for theArabidopsisLEAFY Transcription Factor publication-title: The Plant Cell doi: 10.1105/tpc.111.083329 – volume: 8 start-page: 93 year: 2007 end-page: 103 ident: CR56 article-title: The evolution of gene regulation by transcription factors and microRNAs publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1990 – volume: 489 start-page: 91 year: 2012 end-page: 100 ident: CR55 article-title: Architecture of the human regulatory network derived from ENCODE data publication-title: Nature doi: 10.1038/nature11245 – volume: 131 start-page: 1101 year: 2004 end-page: 1110 ident: CR23 article-title: The role of JAGGED in shaping lateral organs publication-title: Development doi: 10.1242/dev.00949 – volume: 409 start-page: 469 year: 2001 end-page: 471 ident: CR15 article-title: Floral quartets publication-title: Nature doi: 10.1038/35054172 – volume: 2 start-page: 755 year: 1990 end-page: 767 ident: CR45 article-title: Early flower development in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.2.8.755 – volume: 26 start-page: 3894 year: 2014 end-page: 3910 ident: CR30 article-title: A functional and evolutionary perspective on transcription factor binding in Arabidopsis thaliana publication-title: Plant Cell doi: 10.1105/tpc.114.130591 – volume: 149 start-page: 505 year: 2012 end-page: 524 ident: CR71 article-title: Roles for microRNAs in conferring robustness to biological processes publication-title: Cell doi: 10.1016/j.cell.2012.04.005 – volume: 52 start-page: 915 year: 2003 end-page: 922 ident: CR43 article-title: Genetic interactions between FLM and other flowering-time genes in Arabidopsis thaliana publication-title: Plant Mol. Biol. doi: 10.1023/A:1025426920923 – volume: 15 year: 2014 ident: CR2 article-title: Dynamics of chromatin accessibility and gene regulation by MADS-domain transcription factors in flower development publication-title: Genome Biol. doi: 10.1186/gb-2014-15-3-r41 – volume: 15 start-page: 110 year: 2008 end-page: 120 ident: CR6 article-title: A repressor complex governs the integration of flowering signals in Arabidopsis publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.05.002 – volume: 13 start-page: 282 year: 2015 end-page: 292 ident: CR38 article-title: Floral induction and flower formation-the role and potential applications of miRNAs publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12340 – ident: CR84 – volume: 63 start-page: 974 year: 2010 end-page: 989 ident: CR69 article-title: Arabidopsis BLADE-ON-PETIOLE1 and 2 promote floral meristem fate and determinacy in a previously undefined pathway targeting APETALA1 and AGAMOUS-LIKE24 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04299.x – volume: 109 start-page: 13452 issue: 33 year: 2012 end-page: 13457 ident: CR88 article-title: Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1207075109 – volume: 108 start-page: 17263 year: 2011 end-page: 17268 ident: CR52 article-title: Motifs emerge from function in model gene regulatory networks publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1109435108 – volume: 1 start-page: 89 year: 2018 ident: CR80 article-title: The HTPmod Shiny application enables modeling and visualization of large-scale biological data publication-title: Commun. Biol. doi: 10.1038/s42003-018-0091-x – volume: 108 start-page: 6680 issue: 16 year: 2011 end-page: 6685 ident: CR82 article-title: FLOWERING LOCUS C (FLC) regulates development pathways throughout the life cycle of Arabidopsis publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1103175108 – volume: 14 start-page: 812 year: 2004 end-page: 817 ident: CR73 article-title: Competence to respond to floral inductive signals requires the homeobox genes PENNYWISE and POUND-FOOLISH publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.04.032 – volume: 15 start-page: 303 year: 2005 end-page: 315 ident: CR67 article-title: The early extra petals1 mutant uncovers a role for microRNA miR164c in regulating petal number in Arabidopsis publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.02.017 – volume: 2 start-page: 135 year: 2002 end-page: 142 ident: CR13 article-title: Building beauty: the genetic control of floral patterning publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00122-3 – volume: 2 start-page: 1012 year: 2006 end-page: 1024 ident: CR46 article-title: Genome-wide analysis of gene expression during early Arabidopsis flower development publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020117 – volume: 111 start-page: 2830 year: 2014 end-page: 2835 ident: CR27 article-title: Arabidopsis JAGGED links floral organ patterning to tissue growth by repressing Kip-related cell cycle inhibitors publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320457111 – volume: 323 start-page: 1053 year: 2009 end-page: 1057 ident: CR57 article-title: Trifurcate feed-forward regulation of age-dependent cell death involving miR164 in Arabidopsis publication-title: Science doi: 10.1126/science.1166386 – volume: 15 start-page: 2730 year: 2003 end-page: 2741 ident: CR20 article-title: Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2 -like target genes publication-title: Plant Cell doi: 10.1105/tpc.016238 – volume: 124 start-page: 4481 year: 1997 end-page: 4491 ident: CR24 article-title: ETTIN patterns the Arabidopsis floral meristem and reproductive organs publication-title: Development – volume: 132 start-page: 2203 year: 2005 end-page: 2213 ident: CR65 article-title: The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs publication-title: Development doi: 10.1242/dev.01815 – volume: 13 start-page: 627 year: 2012 end-page: 639 ident: CR1 article-title: The genetic basis of flowering responses to seasonal cues publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3291 – volume: 130 start-page: 3941 year: 2003 end-page: 3950 ident: CR22 article-title: Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER publication-title: Development doi: 10.1242/dev.00620 – volume: 159 start-page: 767 year: 2001 end-page: 776 ident: CR26 article-title: Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA publication-title: Genetics – volume: 21 start-page: 3119 year: 2009 end-page: 3132 ident: CR58 article-title: Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance publication-title: Plant Cell doi: 10.1105/tpc.108.064758 – volume: 5 start-page: 1752 year: 2011 end-page: 1779 ident: CR39 article-title: Measuring reproducibility of high-throughput experiments publication-title: Ann. Appl. Stat. doi: 10.1214/11-AOAS466 – volume: 109 start-page: 1560 year: 2012 end-page: 1565 ident: CR59 article-title: Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112871109 – volume: 16 start-page: 1478 year: 2004 end-page: 1489 ident: CR75 article-title: Repression of AGAMOUS by BELLRINGER in floral and inflorescence meristems publication-title: Plant Cell doi: 10.1105/tpc.021147 – volume: 503 start-page: 414 year: 2013 end-page: 417 ident: CR4 article-title: Temperature-dependent regulation of flowering by antagonistic FLM variants publication-title: Nature doi: 10.1038/nature12633 – volume: 16 start-page: 711 year: 2009 end-page: 722 ident: CR8 article-title: Regulation of floral patterning by flowering time genes publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.03.011 – volume: 138 start-page: 750 year: 2009 end-page: 759 ident: CR34 article-title: The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis publication-title: Cell doi: 10.1016/j.cell.2009.06.031 – volume: 69 start-page: 843 year: 1992 end-page: 859 ident: CR9 article-title: LEAFY controls floral meristem identity in Arabidopsis publication-title: Cell doi: 10.1016/0092-8674(92)90295-N – volume: 25 start-page: 2482 issue: 7 year: 2013 end-page: 2503 ident: CR85 article-title: Control of Reproductive Floral Organ Identity Specification in Arabidopsis by the C Function Regulator AGAMOUS publication-title: The Plant Cell doi: 10.1105/tpc.113.113209 – volume: 1 start-page: 13 year: 2005 ident: CR77 article-title: Transient expression vectors for functional genomics, quantification of promoter activity and RNA silencing in plants publication-title: Plant Methods doi: 10.1186/1746-4811-1-13 – volume: 138 start-page: 738 year: 2009 end-page: 749 ident: CR33 article-title: miR156-Regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana publication-title: Cell doi: 10.1016/j.cell.2009.06.014 – volume: 303 start-page: 2022 year: 2004 end-page: 2025 ident: CR36 article-title: A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development publication-title: Science doi: 10.1126/science.1088060 – volume: 406 start-page: 378 year: 2000 end-page: 482 ident: CR50 article-title: Error and attack tolerance of complex networks publication-title: Nature doi: 10.1038/35019019 – volume: 171 start-page: 2744 year: 2016 end-page: 2759 ident: CR47 article-title: Mutational evidence for the critical role of CBF transcription factors in cold acclimation in Arabidopsis publication-title: Plant Physiol. – volume: 67 start-page: 61 year: 2016 end-page: 68 ident: CR60 article-title: Gene networks controlling petal organogenesis publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv444 – volume: 6 start-page: 419 year: 2010 ident: CR62 article-title: Cell-type specific analysis of translating RNAs in developing flowers reveals new levels of control publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.76 – volume: 18 start-page: 295 issue: 2 year: 2006 end-page: 307 ident: CR19 article-title: APETALA2 Regulates the Stem Cell Niche in the Arabidopsis Shoot Meristem publication-title: THE PLANT CELL ONLINE doi: 10.1105/tpc.105.038398 – volume: 137 start-page: 3633 year: 2010 end-page: 3642 ident: CR16 article-title: On reconciling the interactions between APETALA2, miR172 and AGAMOUS with the ABC model of flower development publication-title: Development doi: 10.1242/dev.036673 – volume: 22 start-page: 2156 year: 2010 end-page: 2170 ident: CR53 article-title: Orchestration of the floral transition and floral development in Arabidopsis by the bifunctional transcription factor APETALA2 publication-title: Plant Cell doi: 10.1105/tpc.110.075606 – volume: 33 start-page: e179 year: 2005 ident: CR76 article-title: Real-time quantification of microRNAs by stem-loop RT-PCR publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni178 – volume: 3 start-page: 749 year: 2017 end-page: 754 ident: CR28 article-title: DELLA genes restrict inflorescence meristem function independently of plant height publication-title: Nat. Plants doi: 10.1038/s41477-017-0003-y – volume: 6 start-page: 1211 issue: 9 year: 1994 end-page: 1225 ident: CR17 article-title: Control of Arabidopsis Flower and Seed Development by the Homeotic Gene APETALA2 publication-title: THE PLANT CELL ONLINE doi: 10.1105/tpc.6.9.1211 – volume: 24 start-page: 1339 year: 2010 end-page: 1344 ident: CR49 article-title: MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems publication-title: Genes Dev. doi: 10.1101/gad.1937010 – ident: CR72 – volume: 12 start-page: e1006263 year: 2016 ident: CR35 article-title: Developmental functions of miR156-regulated SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes in Arabidopsis thaliana publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006263 – volume: 20 start-page: 430 year: 2011 end-page: 443 ident: CR12 article-title: LEAFY target genes reveal floral regulatory logic, cis motifs, and a link to biotic stimulus response publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.03.019 – volume: 4 start-page: 1947 year: 2013 ident: CR44 article-title: Arabidopsis FLC clade members form flowering-repressor complexes coordinating responses to endogenous and environmental cues publication-title: Nat. Commun. doi: 10.1038/ncomms2947 – volume: 29 start-page: 1605 year: 2017 end-page: 1621 ident: CR18 article-title: Divergence of the floral A-function between an asterid and a rosid species publication-title: Plant Cell doi: 10.1105/tpc.17.00098 – volume: 39 start-page: 198 year: 2016 end-page: 208 ident: CR42 article-title: Control of oriented tissue growth through repression of organ boundary genes promotes stem morphogenesis publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.08.013 – volume: 333 start-page: 601 year: 2011 end-page: 607 ident: CR79 article-title: Evidence for Network Evolution in an Arabidopsis Interactome Map publication-title: Science doi: 10.1126/science.1203877 – volume: 139 start-page: 2161 year: 2012 end-page: 2169 ident: CR68 article-title: RBE controls microRNA164 expression to effect floral organogenesis publication-title: Development doi: 10.1242/dev.075069 – volume: 29 start-page: 1864 issue: 8 year: 2017 end-page: 1882 ident: CR81 article-title: Auxin-Induced Modulation of ETTIN Activity Orchestrates Gene Expression in Arabidopsis publication-title: The Plant Cell doi: 10.1105/tpc.17.00389 – volume: 201 start-page: 16 year: 2014 end-page: 30 ident: CR32 article-title: Gene networks controlling Arabidopsis thaliana flower development publication-title: New Phytol. doi: 10.1111/nph.12444 – volume: 18 year: 2018 ident: CR31 article-title: Comparative analysis of binding patterns of MADS-domain proteins in Arabidopsis thaliana publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1348-8 – volume: 13 start-page: 2108 year: 1999 end-page: 2117 ident: CR63 article-title: The SPOROCYTELESS gene of Arabidopsis is required for initiation of sporogenesis and encodes a novel nuclear protein publication-title: Genes Dev. doi: 10.1101/gad.13.16.2108 – volume: 10 year: 2009 ident: CR40 article-title: SEPALLATA3: the ‘glue’ for MADS box transcription factor complex formation publication-title: Genome Biol. doi: 10.1186/gb-2009-10-2-r24 – volume: 579 start-page: 5923 year: 2005 end-page: 5931 ident: CR48 article-title: microRNA biogenesis and function in plants publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.07.071 – volume: 155 start-page: 934 year: 2013 end-page: 947 ident: CR5 article-title: Super-enhancers in the control of cell identity and disease publication-title: Cell doi: 10.1016/j.cell.2013.09.053 – volume: 342 start-page: 628 year: 2013 end-page: 632 ident: CR7 article-title: Regulation of temperature-responsive flowering by MADS-Box transcription factor repressors publication-title: Science doi: 10.1126/science.1241097 – volume: 6 start-page: 1975 year: 2013 end-page: 1983 ident: CR78 article-title: RNA-Guided genome editing in plants using a CRISPR-Cas system publication-title: Mol. Plant doi: 10.1093/mp/sst119 – volume: 29 start-page: 154 year: 2016 end-page: 162 ident: CR29 article-title: Molecular mechanisms of floral organ specification by MADS domain proteins publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.12.004 – volume: 38 start-page: S20 year: 2006 ident: CR70 article-title: Canalization of development by micrornas publication-title: Nat. Genet. doi: 10.1038/ng1803 – volume: 7 start-page: e1000148 issue: 7 year: 2009 ident: CR21 article-title: Repression of Flowering by the miR172 Target SMZ publication-title: PLoS Biology doi: 10.1371/journal.pbio.1000148 – volume: 5 start-page: 165 year: 2014 ident: CR64 article-title: The CUC1 and CUC2 genes promote carpel margin meristem formation during Arabidopsis gynoecium development publication-title: Front. Plant Sci doi: 10.3389/fpls.2014.00165 – volume: 29 start-page: tpc.00145.2017 year: 2017 ident: CR61 article-title: Differences in DNA-binding specificity of floral homeotic protein complexes predict organ-specific target genes publication-title: Plant Cell doi: 10.1105/tpc.17.00145 – volume: 328 start-page: 85 year: 2010 end-page: 89 ident: CR11 article-title: Orchestration of floral initiation by APETALA1 publication-title: Science doi: 10.1126/science.1185244 – volume: 7 start-page: 11192 year: 2016 ident: CR66 article-title: SCF SAP controls organ size by targeting PPD proteins for degradation in Arabidopsis thaliana publication-title: Nat. Commun. doi: 10.1038/ncomms11192 – volume: 56 start-page: 207 year: 2012 end-page: 221 ident: CR41 article-title: The poetry of reproduction: the role of LEAFY in Arabidopsis thaliana flower formation publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.113450ns – volume: 13 start-page: 1630 year: 2003 end-page: 1635 ident: CR74 article-title: The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.08.027 – volume: 409 start-page: 525 year: 2001 end-page: 529 ident: CR14 article-title: Complexes of MADS-box proteins are sufficient to convert leaves into floral organs publication-title: Nature doi: 10.1038/35054083 – ident: CR83 – volume: 1860 start-page: 95 year: 2017 end-page: 105 ident: CR3 article-title: Gene-regulatory networks controlling inflorescence and flower development in Arabidopsis thaliana publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2016.07.014 – volume: 127 start-page: 3877 year: 2000 end-page: 3888 ident: CR25 article-title: Auxin and ETTIN in Arabidopsis gynoecium morphogenesis publication-title: Development – volume: 22 start-page: 1152 year: 2006 end-page: 1153 ident: CR54 article-title: FANMOD: a tool for fast network motif detection publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl038 – volume: 106 start-page: 22534 year: 2009 end-page: 22539 ident: CR37 article-title: miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908718106 – volume: 2 start-page: 755 year: 1990 ident: 6772_CR45 publication-title: Plant Cell doi: 10.1105/tpc.2.8.755 – volume: 21 start-page: 3119 year: 2009 ident: 6772_CR58 publication-title: Plant Cell doi: 10.1105/tpc.108.064758 – volume: 108 start-page: 6680 issue: 16 year: 2011 ident: 6772_CR82 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1103175108 – volume: 2 start-page: 1012 year: 2006 ident: 6772_CR46 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.0020117 – volume: 7 start-page: e1000148 issue: 7 year: 2009 ident: 6772_CR21 publication-title: PLoS Biology doi: 10.1371/journal.pbio.1000148 – volume: 5 start-page: 165 year: 2014 ident: 6772_CR64 publication-title: Front. Plant Sci doi: 10.3389/fpls.2014.00165 – volume: 8 start-page: 93 year: 2007 ident: 6772_CR56 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg1990 – volume: 29 start-page: tpc.00145.2017 year: 2017 ident: 6772_CR61 publication-title: Plant Cell doi: 10.1105/tpc.17.00145 – volume: 25 start-page: 2482 issue: 7 year: 2013 ident: 6772_CR85 publication-title: The Plant Cell doi: 10.1105/tpc.113.113209 – volume: 1860 start-page: 95 year: 2017 ident: 6772_CR3 publication-title: Biochim. Biophys. Acta doi: 10.1016/j.bbagrm.2016.07.014 – volume: 131 start-page: 1101 year: 2004 ident: 6772_CR23 publication-title: Development doi: 10.1242/dev.00949 – volume: 323 start-page: 1053 year: 2009 ident: 6772_CR57 publication-title: Science doi: 10.1126/science.1166386 – volume: 13 start-page: 282 year: 2015 ident: 6772_CR38 publication-title: Plant Biotechnol. J. doi: 10.1111/pbi.12340 – volume: 39 start-page: 198 year: 2016 ident: 6772_CR42 publication-title: Dev. Cell doi: 10.1016/j.devcel.2016.08.013 – volume: 13 start-page: 1630 year: 2003 ident: 6772_CR74 publication-title: Curr. Biol. doi: 10.1016/j.cub.2003.08.027 – ident: 6772_CR84 doi: 10.1371/journal.pbio.1000090 – volume: 127 start-page: 3877 year: 2000 ident: 6772_CR25 publication-title: Development doi: 10.1242/dev.127.18.3877 – volume: 6 start-page: 1975 year: 2013 ident: 6772_CR78 publication-title: Mol. Plant doi: 10.1093/mp/sst119 – volume: 106 start-page: 22534 year: 2009 ident: 6772_CR37 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0908718106 – volume: 149 start-page: 505 year: 2012 ident: 6772_CR71 publication-title: Cell doi: 10.1016/j.cell.2012.04.005 – volume: 6 start-page: 1211 issue: 9 year: 1994 ident: 6772_CR17 publication-title: THE PLANT CELL ONLINE doi: 10.1105/tpc.6.9.1211 – volume: 15 start-page: 303 year: 2005 ident: 6772_CR67 publication-title: Curr. Biol. doi: 10.1016/j.cub.2005.02.017 – volume: 160 start-page: 433 issue: 1 year: 2012 ident: 6772_CR86 publication-title: PLANT PHYSIOLOGY doi: 10.1104/pp.112.202614 – volume: 13 start-page: 627 year: 2012 ident: 6772_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3291 – volume: 18 start-page: 295 issue: 2 year: 2006 ident: 6772_CR19 publication-title: THE PLANT CELL ONLINE doi: 10.1105/tpc.105.038398 – volume: 328 start-page: 85 year: 2010 ident: 6772_CR11 publication-title: Science doi: 10.1126/science.1185244 – volume: 333 start-page: 601 year: 2011 ident: 6772_CR79 publication-title: Science doi: 10.1126/science.1203877 – volume: 12 start-page: e1006263 year: 2016 ident: 6772_CR35 publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1006263 – volume: 33 start-page: e179 year: 2005 ident: 6772_CR76 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gni178 – volume: 29 start-page: 1864 issue: 8 year: 2017 ident: 6772_CR81 publication-title: The Plant Cell doi: 10.1105/tpc.17.00389 – volume: 4 start-page: 1947 year: 2013 ident: 6772_CR44 publication-title: Nat. Commun. doi: 10.1038/ncomms2947 – volume: 489 start-page: 91 year: 2012 ident: 6772_CR55 publication-title: Nature doi: 10.1038/nature11245 – ident: 6772_CR72 doi: 10.1104/pp.15.00915 – volume: 23 start-page: 1293 issue: 4 year: 2011 ident: 6772_CR87 publication-title: The Plant Cell doi: 10.1105/tpc.111.083329 – volume: 15 year: 2014 ident: 6772_CR2 publication-title: Genome Biol. doi: 10.1186/gb-2014-15-3-r41 – volume: 138 start-page: 738 year: 2009 ident: 6772_CR33 publication-title: Cell doi: 10.1016/j.cell.2009.06.014 – volume: 7 start-page: 11192 year: 2016 ident: 6772_CR66 publication-title: Nat. Commun. doi: 10.1038/ncomms11192 – volume: 132 start-page: 2203 year: 2005 ident: 6772_CR65 publication-title: Development doi: 10.1242/dev.01815 – volume: 15 start-page: 110 year: 2008 ident: 6772_CR6 publication-title: Dev. Cell doi: 10.1016/j.devcel.2008.05.002 – volume: 20 start-page: 430 year: 2011 ident: 6772_CR12 publication-title: Dev. Cell doi: 10.1016/j.devcel.2011.03.019 – volume: 1 start-page: 13 year: 2005 ident: 6772_CR77 publication-title: Plant Methods doi: 10.1186/1746-4811-1-13 – volume: 303 start-page: 2022 year: 2004 ident: 6772_CR36 publication-title: Science doi: 10.1126/science.1088060 – volume: 16 start-page: 1478 year: 2004 ident: 6772_CR75 publication-title: Plant Cell doi: 10.1105/tpc.021147 – volume: 3 start-page: 749 year: 2017 ident: 6772_CR28 publication-title: Nat. Plants doi: 10.1038/s41477-017-0003-y – volume: 38 start-page: S20 year: 2006 ident: 6772_CR70 publication-title: Nat. Genet. doi: 10.1038/ng1803 – volume: 29 start-page: 154 year: 2016 ident: 6772_CR29 publication-title: Curr. Opin. Plant Biol. doi: 10.1016/j.pbi.2015.12.004 – volume: 16 start-page: 711 year: 2009 ident: 6772_CR8 publication-title: Dev. Cell doi: 10.1016/j.devcel.2009.03.011 – volume: 109 start-page: 13452 issue: 33 year: 2012 ident: 6772_CR88 publication-title: Proceedings of the National Academy of Sciences doi: 10.1073/pnas.1207075109 – volume: 137 start-page: 3633 year: 2010 ident: 6772_CR16 publication-title: Development doi: 10.1242/dev.036673 – volume: 8 start-page: 450 year: 2007 ident: 6772_CR51 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2102 – volume: 22 start-page: 1152 year: 2006 ident: 6772_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl038 – volume: 342 start-page: 628 year: 2013 ident: 6772_CR7 publication-title: Science doi: 10.1126/science.1241097 – volume: 5 start-page: 1752 year: 2011 ident: 6772_CR39 publication-title: Ann. Appl. Stat. doi: 10.1214/11-AOAS466 – volume: 1 start-page: 89 year: 2018 ident: 6772_CR80 publication-title: Commun. Biol. doi: 10.1038/s42003-018-0091-x – volume: 155 start-page: 934 year: 2013 ident: 6772_CR5 publication-title: Cell doi: 10.1016/j.cell.2013.09.053 – volume: 14 start-page: 812 year: 2004 ident: 6772_CR73 publication-title: Curr. Biol. doi: 10.1016/j.cub.2004.04.032 – volume: 409 start-page: 469 year: 2001 ident: 6772_CR15 publication-title: Nature doi: 10.1038/35054172 – volume: 111 start-page: 2830 year: 2014 ident: 6772_CR27 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1320457111 – volume: 13 start-page: 2108 year: 1999 ident: 6772_CR63 publication-title: Genes Dev. doi: 10.1101/gad.13.16.2108 – volume: 409 start-page: 525 year: 2001 ident: 6772_CR14 publication-title: Nature doi: 10.1038/35054083 – volume: 503 start-page: 414 year: 2013 ident: 6772_CR4 publication-title: Nature doi: 10.1038/nature12633 – volume: 2 start-page: 741 year: 1990 ident: 6772_CR10 publication-title: Plant Cell doi: 10.1105/tpc.2.8.741 – volume: 139 start-page: 2161 year: 2012 ident: 6772_CR68 publication-title: Development doi: 10.1242/dev.075069 – volume: 171 start-page: 2744 year: 2016 ident: 6772_CR47 publication-title: Plant Physiol. doi: 10.1104/pp.16.00533 – volume: 109 start-page: 1560 year: 2012 ident: 6772_CR59 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1112871109 – volume: 18 year: 2018 ident: 6772_CR31 publication-title: BMC Plant Biol. doi: 10.1186/s12870-018-1348-8 – volume: 52 start-page: 915 year: 2003 ident: 6772_CR43 publication-title: Plant Mol. Biol. doi: 10.1023/A:1025426920923 – volume: 108 start-page: 17263 year: 2011 ident: 6772_CR52 publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1109435108 – volume: 6 start-page: 419 year: 2010 ident: 6772_CR62 publication-title: Mol. Syst. Biol. doi: 10.1038/msb.2010.76 – ident: 6772_CR83 doi: 10.1186/s13059-015-0597-1 – volume: 201 start-page: 16 year: 2014 ident: 6772_CR32 publication-title: New Phytol. doi: 10.1111/nph.12444 – volume: 138 start-page: 750 year: 2009 ident: 6772_CR34 publication-title: Cell doi: 10.1016/j.cell.2009.06.031 – volume: 406 start-page: 378 year: 2000 ident: 6772_CR50 publication-title: Nature doi: 10.1038/35019019 – volume: 63 start-page: 974 year: 2010 ident: 6772_CR69 publication-title: Plant J. doi: 10.1111/j.1365-313X.2010.04299.x – volume: 130 start-page: 3941 year: 2003 ident: 6772_CR22 publication-title: Development doi: 10.1242/dev.00620 – volume: 22 start-page: 2156 year: 2010 ident: 6772_CR53 publication-title: Plant Cell doi: 10.1105/tpc.110.075606 – volume: 56 start-page: 207 year: 2012 ident: 6772_CR41 publication-title: Int. J. Dev. Biol. doi: 10.1387/ijdb.113450ns – volume: 579 start-page: 5923 year: 2005 ident: 6772_CR48 publication-title: FEBS Lett. doi: 10.1016/j.febslet.2005.07.071 – volume: 26 start-page: 3894 year: 2014 ident: 6772_CR30 publication-title: Plant Cell doi: 10.1105/tpc.114.130591 – volume: 69 start-page: 843 year: 1992 ident: 6772_CR9 publication-title: Cell doi: 10.1016/0092-8674(92)90295-N – volume: 159 start-page: 767 year: 2001 ident: 6772_CR26 publication-title: Genetics doi: 10.1093/genetics/159.2.767 – volume: 67 start-page: 61 year: 2016 ident: 6772_CR60 publication-title: J. Exp. Bot. doi: 10.1093/jxb/erv444 – volume: 2 start-page: 135 year: 2002 ident: 6772_CR13 publication-title: Dev. Cell doi: 10.1016/S1534-5807(02)00122-3 – volume: 24 start-page: 1339 year: 2010 ident: 6772_CR49 publication-title: Genes Dev. doi: 10.1101/gad.1937010 – volume: 29 start-page: 1605 year: 2017 ident: 6772_CR18 publication-title: Plant Cell doi: 10.1105/tpc.17.00098 – volume: 124 start-page: 4481 year: 1997 ident: 6772_CR24 publication-title: Development doi: 10.1242/dev.124.22.4481 – volume: 15 start-page: 2730 year: 2003 ident: 6772_CR20 publication-title: Plant Cell doi: 10.1105/tpc.016238 – volume: 10 year: 2009 ident: 6772_CR40 publication-title: Genome Biol. doi: 10.1186/gb-2009-10-2-r24 |
SSID | ssj0000391844 |
Score | 2.593231 |
Snippet | Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and... Floral homeotic transcription factors (TFs) act in a combinatorial manner to specify the organ identities in the flower. However, the architecture and the... Homeotic transcription factors and miRNAs promote floral organ specification. Here Chen et al. reconstruct gene regulatory networks in Arabidopsis flowers and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 4534 |
SubjectTerms | 38/39 38/91 49/15 631/114/2114 631/449/2653 Arabidopsis - genetics Arabidopsis Proteins - genetics Arabidopsis Proteins - metabolism Binding Combinatorial analysis Control theory Deoxyribonucleic acid DNA DNA, Plant - metabolism Flowers Flowers - genetics Flowers - growth & development Gene expression Gene Expression Regulation, Developmental Gene Expression Regulation, Plant Gene Regulatory Networks Genomes Humanities and Social Sciences MicroRNAs - genetics MicroRNAs - metabolism miRNA multidisciplinary Organ Specificity - genetics Ribonucleic acid RNA Science Science (multidisciplinary) Specifications Transcription factors Transcription Factors - metabolism |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOil9F2naVGht9bEK43G1jEtDaHQnhrITUiWRBaCHdabQ_59R5J3s9vnpVdLQoPmKc_oG8beodcKesAa0bU1SGFr21hfCx-DtX1jVW7J8vUbnp3Dlwt1sdPqK9WEFXjgcnDHnSUVQFg0UUZQGrXF1BU-JlxzCaFP1pd83s5lKttgqenqAvMrmUZ2xxNkm9AsujqBpola7nmiDNj_uyjz12LJnzKm2RGdPmIP5wiSnxTKH7N7YXjC7peekrdPmTnZSQ3wMXKSkMBXpeX8uLrlQyn8nvhcpZ7eo_N4lbqlcX9XQsSXA-1h3dKP19Ny4uvL_EfEPmPnp5-_fzqr5y4KdU-Xk3UNUUstAVMCNXollAUnNTgKnForOoQ-dDaisBi8b33jnFbSeWtFq7z3KJ-zg2EcwkvGvbd9SOhAERtwdNMga9B4jF6DXzROVGyxOVHTzxDjqdPFlcmpbtmZwgVDXDCZC0ZW7P12zXUB2Pjr7I-JUduZCRw7fyCRMbPImH-JTMWONmw2s8ZOJiHdI6BGVbG322HStZRAsUMYb8ocTRYPiI4XRSq2lFAoQMFU11as3ZOXPVL3R4blZcbzRloHQPt-2EjWHVl_PorD_3EUr9gDkVQiO-MjdrBe3YTXFGWt3ZusUD8AFIUhhA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELZgKyQuiDeBgozEDaxm47ETn1CLWlVIVAhRqTfLzth0pSpZNttD_z22482yPHqN7cTxPDyeGX9DyDuJSkALkklpawa8MsyUBlmF3hnTlkakkixfzuTpOXy-EBfZ4TbktMqNTkyKGvs2-sgPIhK5DGc5KT4uf7JYNSpGV3MJjbtkL7Q3Ykb2jo7Pvn6bvCwR_7wByLdlSt4cDJB0QzlvWARPqxjf2ZEScP-_rM2_kyb_iJymDenkIXmQLUl6OJL-Ebnjusfk3lhb8uYJ0Ye_hQho72ngFEdXY-n5fnVDuzEBfKA5Wz3eS6f-KlZNo7hNJaKLLnzD2AX2y2Ex0PVl8oyYp-T85Pj7p1OWqymwNhxS1gy84oqDjIFUj6ISBixXYIMBVZuqkdC6xnhZGekQayytVYJbNKaqBSJK_ozMur5zLwhFNK2LKEFelmDDiSNohRKlRwU4L21VkPlmRXWbocZjxYsrnULevNEjFXSggk5U0Lwg76cxyxFo49beR5FQU88Ikp0e9KsfOsucbkzQnhLmpecehJLKSBXe4yMkPgfXFmR_Q2adJXfQWz4ryNupOchcDKSYzvXXYx8VNB-EeTwfuWKaSTAJglHV1AWpd_hlZ6q7Ld3iMuF6yzAOIHz3w4azttP6_1K8vP0vXpH7VWT2tN3uk9l6de1eBztqbd9kYfkFMMgcAw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbxUhECe1xsSLaf1c-xFMvClxHwyzy7G-tGlM9GST3ggsYF_S7DZvXw_97wX2oz6tJl4XWCbMBwMz_IaQ9-iUhAaQIdqKgeCGmdI4xl3wxjSlkbkky9dveH4BXy7l5Q7h01uYnLSfIS2zmZ6ywz71kFW6XNQsYZ5xJh6Rxwm6PeHlL3E536skxPMaYHwfU4r6gaFbe1CG6n_Iv_wzTfK3WGnegs72yLPRd6QnA7X7ZMe3z8mToZrk3QuiT34JCtAu0Cgbnq6HYvPd-o62Q8p3T8f89PQSnYbrVCeNuvvkIbpq4xzGrlx30696urnKdyHmJbk4O_2-PGdj_QTWxGPJhkFQQgnAFDoNTnJpwAoFNrpMleE1QuNrE5Ab9M5VrrRWSWGdMbySzjkUr8hu27X-DaHOmcYnXKCAJdh4xoh2oHQYnAK3KC0vyGJaUd2M4OKpxsW1zkFuUeuBCzpyQWcuaFGQD_OYmwFa45-9PydGzT0TLHb-0K1_6FFMdG2ivURYlEEEkAqVQRX_ExIIvgDfFORwYrMedbXXCeMeARXKgrybm6OWpdCJaX13O_RR0dZBpOP1IBUzJdEJiG5UXRWk2pKXLVK3W9rVVUbyxjgOIM77cZKse7L-vhRv_6_7AXnKk_DnDfeQ7G7Wt_4oelIbe5xV5yfHAxhl priority: 102 providerName: Springer Nature |
Title | Architecture of gene regulatory networks controlling flower development in Arabidopsis thaliana |
URI | https://link.springer.com/article/10.1038/s41467-018-06772-3 https://www.ncbi.nlm.nih.gov/pubmed/30382087 https://www.proquest.com/docview/2127646965 https://www.proquest.com/docview/2127948843 https://pubmed.ncbi.nlm.nih.gov/PMC6208445 https://doaj.org/article/8a3766410f3f45969a69467f915534ec |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwELf2ISReEN-EjcpIvEEgjZ1L_IBQV61MlTYhoFLfLCe2t0pVMpJOWv97zk7SUSg88ZJIsR1b92GffeffEfIGtEh4wSEEyNOQs1iFKlI6jLU1ShWRSnxKlvMLOJvx6TyZ75E-3VFHwGbn1s7lk5rVy_e3P9afUOE_tlfGsw8N9-oeDbPQ4aHFIdsnh7gygZPy887c9zMzE7ih4d3dmd1Nt9YnD-O_y_b8M4TyNz-qX54mD8mDzq6ko1YQHpE9Uz4m99pMk-snRI5-cRjQylKUG0PrNhF9Va9p2YaDN7SLXXe31KlduhxqVN8FFtFFiX2ofKGr62bR0NWVPydRT8lscvp9fBZ2uRXCArcsq5BbwQTj4NyqVidxonjOBM_RnEpVnAEvTKYsxAqM1qmO8lwkLNdKxWmitQb2jByUVWleEKq1KozDDLIQ8Rz3HzhHRBqsFlwPozwOyLCnqCw64HGX_2IpvQOcZbLlgkQuSM8FyQLydtPmuoXd-GftE8eoTU0Hme0_VPWl7DRQZgrnUuDDyDLLEwFCgcD_WAeQz7gpAnLcs1n2Yigd_j1wEJAE5PWmGDXQuVVUaaqbto7AeZDjOJ63UrEZCRoIaGJlaUDSLXnZGup2Sbm48ijfgO04x37f9ZJ1N6y_k-Ll_yDFEbkfO5XwS_QxOVjVN-YV2l6rfED203mKz2zyeUAOR6Pptym-T04vvnzFr2MYD_ypxsAr3k--zDDL |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4lkCBYwEJ4iatSdOfECoPJYtfZxaqTfjxDZdqUqWzVZo_xS_kbHzWJZHb73GduJ4xuOxZ_x9hLwURqZQgoiFKLIYONOxTrSJmXFW6zLRaaBkOTwSkxP4cpqebpCf_V0Yn1bZ28RgqE1d-jPyHY9ELnAvJ9J3s--xZ43y0dWeQqNVi327_IFbtubt3keU7yvGxp-OP0zijlUgLtFZX8TgJJcchA8oOpOyVEPBJRToSGSa5QJKm2snmBbWmMwkRSFTXhitWZYaYwTH914j14FjI38zffx5ONPxaOs5QHc3J-H5TgPBEiWjPPZQbSzma-tfoAn4l2_7d4rmH3HasPyN75Dbnd9Kd1tFu0s2bHWP3GiZLJf3idr9LSBBa0dRLy2dt0T39XxJqzbdvKFdbry_BU_duedoo2aVuESnFX5DF1NTz5ppQxdn4RxGPyAnVzLKD8lmVVf2EaHG6NJ6TCInEihwf4M2KDHCGQlmlBQsIqN-RFXZAZt7fo1zFQLsPFetFBRKQQUpKB6R10ObWQvrcWnt915QQ00PyR0e1PNvqpvhKtdoqwWMEscdpFJILSS-x3kAfg62jMh2L2bV2YlGrbQ6Ii-GYpzhPmyjK1tftHUk2lnAfmy1WjH0BB0QdOHyLCLZmr6sdXW9pJqeBRRxge0A8Ltves1adev_Q_H48r94Tm5Ojg8P1MHe0f4Tcot5xQ8L_TbZXMwv7FP04BbFszBtKPl61fP0F8ppV8M |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4EChgJThBt1nac5IBQS7tqKawqRKXejBPbdKUq2W62QvvX-HWMnceyPHrrNXESx_Pw2DP-PoBXQmcxL7gIhciTkDOqQhUpHVJtjVJFpGJPyfJ5Ig5O-MfT-HQDfnZnYVxZZecTvaPWVeH2yIcOiVzgWk7EQ9uWRRzvjd_PLkLHIOUyrR2dRqMiR2b5A5dv9bvDPZT1a0rH-18_HIQtw0BYYOC-CLnNWMa4cMlFq2MaK56zjOcYVCSKpoIXJlVWUCWM1omO8jyLWa6VokmstRYM33sDNhOcFdMBbO7uT46_9Ds8Dns95bw9qROxdFhz75eiURo64DYasrXZ0JMG_CvS_btg84-srZ8Mx3fgdhvFkp1G7e7Chinvwc2G13J5H-TOb-kJUlmCWmrIvKG9r-ZLUjbF5zVpK-XdmXhizx1jG9GrMiYyLfEbKp_qalZPa7I487sy6gGcXMs4P4RBWZXmMRCtVWEcQpEVEc9xtYMeKdLC6ozrUZTTAEbdiMqihTl3bBvn0qfbWSobKUiUgvRSkCyAN_0zswbk48rWu05QfUsH0O0vVPPvsrV3mSr03IKPIsssjzORKZHhe6yD42fcFAFsd2KWrdeo5UrHA3jZ30Z7d0kcVZrqsmmTodfl2I9HjVb0PcFwBAO6NAkgWdOXta6u3ymnZx5TXOBznON333aaterW_4fiydV_8QJuoY3KT4eTo6ewRZ3e-1l_GwaL-aV5huHcIn_e2g2Bb9dtqr8AukpdXg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Architecture+of+gene+regulatory+networks+controlling+flower+development+in+Arabidopsis+thaliana&rft.jtitle=Nature+communications&rft.au=Dijun+Chen&rft.au=Wenhao+Yan&rft.au=Liang-Yu+Fu&rft.au=Kerstin+Kaufmann&rft.date=2018-10-31&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41467-018-06772-3&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8a3766410f3f45969a69467f915534ec |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |