Analysis of false-negative rapid diagnostic tests for symptomatic malaria in the Democratic Republic of the Congo
The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes ( pfhrp2/3 ) raise concern about exi...
Saved in:
Published in | Scientific reports Vol. 11; no. 1; pp. 6495 - 12 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
22.03.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2045-2322 2045-2322 |
DOI | 10.1038/s41598-021-85913-z |
Cover
Loading…
Abstract | The majority of
Plasmodium falciparum
malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the
pfhrp2
and/or
pfhrp3
genes (
pfhrp2/3
) raise concern about existing malaria diagnostic strategies. We previously identified
pfhrp2
-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT;
pfhrp2/3
genotyping and species-specific PCR assays; a bead-based immunoassay for
Plasmodium
antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative
pfhrp2/3
deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with
P. falciparum
was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen’s kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to
pfhrp2/3
-deleted
P. falciparum
was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC. |
---|---|
AbstractList | The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen’s kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3-deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC. The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes ( pfhrp2/3 ) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2 -negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen’s kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3 -deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC. Abstract The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen’s kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3-deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC. The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen's kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3-deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC.The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing reports of false-negative RDT results due to parasites with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3) raise concern about existing malaria diagnostic strategies. We previously identified pfhrp2-negative parasites among asymptomatic children in the Democratic Republic of the Congo (DRC), but their impact on diagnosis of symptomatic malaria is unknown. We performed a cross-sectional study of false-negative RDTs in symptomatic subjects in 2017. Parasites were characterized by microscopy; RDT; pfhrp2/3 genotyping and species-specific PCR assays; a bead-based immunoassay for Plasmodium antigens; and/or whole-genome sequencing. Among 3627 symptomatic subjects, 427 (11.8%) had RDT-/microscopy + results. Parasites from eight (0.2%) samples were initially classified as putative pfhrp2/3 deletions by PCR, but antigen testing and whole-genome sequencing confirmed the presence of intact genes. 56.8% of subjects had PCR-confirmed malaria. Non-falciparum co-infection with P. falciparum was common (13.2%). Agreement between PCR and HRP2-based RDTs was satisfactory (Cohen's kappa = 0.66) and superior to microscopy (0.33). Symptomatic malaria due to pfhrp2/3-deleted P. falciparum was not observed. Ongoing HRP2-based RDT use is appropriate for the detection of falciparum malaria in the DRC. |
ArticleNumber | 6495 |
Author | Mwandagalirwa, Kashamuka Parr, Jonathan B. Rogier, Eric Atibu, Joseph Olenga, Jean W. Poffley, Alison Likwela, Joris L. Tshefu, Antoinette K. Mansiangi, Paul Morgan, Camille E. Juliano, Jonathan J. Mvuama, Nono Thwai, Kyaw Lay N’Siala, Adrien Denton, Madeline Landela, Ange Efundu, Solange Umesumbu Sompwe, Eric M. Phanzu, Fernandine Kalonji, Albert Kieto, Eddy Mungala, Pomie |
Author_xml | – sequence: 1 givenname: Jonathan B. surname: Parr fullname: Parr, Jonathan B. email: jonathan_parr@med.unc.edu organization: Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina – sequence: 2 givenname: Eddy surname: Kieto fullname: Kieto, Eddy organization: SANRU Asbl (Sante Rurale/Global Fund) – sequence: 3 givenname: Fernandine surname: Phanzu fullname: Phanzu, Fernandine organization: SANRU Asbl (Sante Rurale/Global Fund) – sequence: 4 givenname: Paul surname: Mansiangi fullname: Mansiangi, Paul organization: University of Kinshasa School of Public Health – sequence: 5 givenname: Kashamuka surname: Mwandagalirwa fullname: Mwandagalirwa, Kashamuka organization: University of Kinshasa School of Public Health – sequence: 6 givenname: Nono surname: Mvuama fullname: Mvuama, Nono organization: University of Kinshasa School of Public Health – sequence: 7 givenname: Ange surname: Landela fullname: Landela, Ange organization: Institut National Pour La Recherche Biomedicale – sequence: 8 givenname: Joseph surname: Atibu fullname: Atibu, Joseph organization: University of Kinshasa School of Public Health – sequence: 9 givenname: Solange Umesumbu surname: Efundu fullname: Efundu, Solange Umesumbu organization: Programme National de La Lutte Contre Le Paludisme – sequence: 10 givenname: Jean W. surname: Olenga fullname: Olenga, Jean W. organization: SANRU Asbl (Sante Rurale/Global Fund) – sequence: 11 givenname: Kyaw Lay surname: Thwai fullname: Thwai, Kyaw Lay organization: Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina – sequence: 12 givenname: Camille E. surname: Morgan fullname: Morgan, Camille E. organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina – sequence: 13 givenname: Madeline surname: Denton fullname: Denton, Madeline organization: Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina – sequence: 14 givenname: Alison surname: Poffley fullname: Poffley, Alison organization: Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina – sequence: 15 givenname: Jonathan J. surname: Juliano fullname: Juliano, Jonathan J. organization: Division of Infectious Diseases, Institute for Global Health and Infectious Diseases, University of North Carolina, Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina – sequence: 16 givenname: Pomie surname: Mungala fullname: Mungala, Pomie organization: SANRU Asbl (Sante Rurale/Global Fund) – sequence: 17 givenname: Joris L. surname: Likwela fullname: Likwela, Joris L. organization: SANRU Asbl (Sante Rurale/Global Fund) – sequence: 18 givenname: Eric M. surname: Sompwe fullname: Sompwe, Eric M. organization: Programme National de La Lutte Contre Le Paludisme – sequence: 19 givenname: Eric surname: Rogier fullname: Rogier, Eric organization: Malaria Branch, Division of Parasitic Diseases and Malaria, Centers for Disease Control and Prevention – sequence: 20 givenname: Antoinette K. surname: Tshefu fullname: Tshefu, Antoinette K. organization: University of Kinshasa School of Public Health – sequence: 21 givenname: Adrien surname: N’Siala fullname: N’Siala, Adrien organization: SANRU Asbl (Sante Rurale/Global Fund) – sequence: 22 givenname: Albert surname: Kalonji fullname: Kalonji, Albert organization: SANRU Asbl (Sante Rurale/Global Fund) |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33753817$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1r3DAQNSWlSdP8gR6KoZde3Eoa2ZYuhbD9CgQKpT0LWZYdLba0kbyBza_v2E7aJIfoMoPmvTdPmnmdHfngbZa9peQjJSA-JU5LKQrCaCFKSaG4fZGdMMLLggFjRw_y4-wspS3BUzLJqXyVHQPUJQhan2TX514Ph-RSHrq800Oyhbe9ntyNzaPeuTZvne59SJMz-WTTlPIuxDwdxt0URj3fjnrQ0enc-Xy6svkXOwYTl8ovu9s3AyaoPZc2wffhTfZy6XN2F0-zP9--_t78KC5_fr_YnF8WpiLVVHAhrWDAgdG2Moy0-EoQnQDKWoySGVKZumS6NBWHpjIWrDSt7rioZhKcZherbhv0Vu2iG3U8qKCdWi5C7JWO6HKwqpINlbQ0tZTAW00bAdiICGigI1pw1Pq8auF7Rtsa66eoh0eijyveXak-3KhaipIRiQIf7gRiuN7jN6rRJWOHQXsb9kmxknBAJK8Q-v4JdBv2Eae0oADnBlWNqHcPHf2zcj9ZBIgVYGJIKdpOGTfhVMJs0A2KEjXvkVr3SOEeqWWP1C1S2RPqvfqzJFhJCcG-t_G_7WdYfwF8rdqq |
CitedBy_id | crossref_primary_10_1080_14737159_2023_2255136 crossref_primary_10_1038_s41564_021_00962_4 crossref_primary_10_3389_fcimb_2022_757844 crossref_primary_10_12688_openreseurope_18617_1 crossref_primary_10_3201_eid2906_221016 crossref_primary_10_1371_journal_pntd_0011759 crossref_primary_10_1016_j_ebiom_2021_103415 crossref_primary_10_1097_MD9_0000000000000343 crossref_primary_10_1186_s12936_024_04928_9 crossref_primary_10_3201_eid2810_220695 crossref_primary_10_3390_tropicalmed7100265 crossref_primary_10_1186_s12936_022_04226_2 crossref_primary_10_1038_s41467_024_54667_3 crossref_primary_10_1186_s12936_024_04852_y crossref_primary_10_1186_s12936_022_04153_2 crossref_primary_10_1038_s41598_021_02452_3 crossref_primary_10_1186_s12936_024_04904_3 |
Cites_doi | 10.4269/ajtmh.17-0996 10.1016/j.meegid.2017.09.004 10.1007/978-0-387-98141-3 10.1016/j.meegid.2018.04.039 10.1186/s12936-016-1641-7 10.1016/j.exppara.2008.12.012 10.1038/nbt.1754 10.1136/bmjgh-2019-001582 10.1371/journal.pone.0032891 10.1093/infdis/jix347 10.1128/JCM.42.3.1214-1219.2004 10.1093/infdis/jiaa478 10.1371/journal.pone.0071539 10.1186/1475-2875-9-129 10.1093/infdis/jix345 10.1016/j.pt.2019.12.004 10.1086/432010 10.1371/journal.pone.0031848 10.1093/bioinformatics/btq033 10.1101/2020.02.17.20024190v1.abstract 10.1016/S1473-3099(18)30420-1 10.4269/ajtmh.2012.10-0665 10.7554/eLife.25008 10.1016/0166-6851(92)90081-T 10.1371/journal.pone.0016420 10.1038/s41467-020-15779-8 10.1186/s12936-018-2502-3 10.3201/eid2403.171723 10.1016/S0140-6736(04)16767-6 10.1038/nature16039 10.1093/bioinformatics/btu170 10.1186/s12936-020-3137-8 10.1016/j.ebiom.2020.102757 10.1186/s12936-018-2287-4 10.1186/1475-2875-13-283 10.4269/ajtmh.1995.52.565 10.2471/BLT.20.250621 10.1093/infdis/jiy525 10.1371/journal.pone.0236369 10.1371/journal.pone.0175771 10.1128/AAC.47.8.2418-2423.2003 10.1093/infdis/jix094 10.1101/gr.107524.110 10.2144/000112631 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-021-85913-z |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_69b1915c79934da1b83f83083b3f0a84 PMC7985209 33753817 10_1038_s41598_021_85913_z |
Genre | Journal Article |
GrantInformation_xml | – fundername: Doris Duke Charitable Foundation funderid: http://dx.doi.org/10.13039/100000862 – fundername: National Institute of General Medical Sciences grantid: T32GM008719 funderid: http://dx.doi.org/10.13039/100000057 – fundername: Global Fund to Fight AIDS, Tuberculosis and Malaria funderid: http://dx.doi.org/10.13039/100004417 – fundername: National Institute of Allergy and Infectious Diseases grantid: R01AI132547 funderid: http://dx.doi.org/10.13039/100000060 – fundername: National Institute of Allergy and Infectious Diseases grantid: R01AI132547 – fundername: NIGMS NIH HHS grantid: T32GM008719 – fundername: ; – fundername: ; grantid: R01AI132547 – fundername: ; grantid: T32GM008719 |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT NPM 7XB 8FK K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-489e8234321d6c20d85938f8312d38f92c06c752a5c643b6ce3e9cdaf48643213 |
IEDL.DBID | M48 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:30:35 EDT 2025 Thu Aug 21 18:40:07 EDT 2025 Thu Jul 10 22:56:20 EDT 2025 Sat Aug 23 13:34:00 EDT 2025 Thu Jan 02 22:58:26 EST 2025 Tue Jul 01 01:07:45 EDT 2025 Thu Apr 24 23:11:51 EDT 2025 Fri Feb 21 02:39:07 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-489e8234321d6c20d85938f8312d38f92c06c752a5c643b6ce3e9cdaf48643213 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41598-021-85913-z |
PMID | 33753817 |
PQID | 2503538367 |
PQPubID | 2041939 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_69b1915c79934da1b83f83083b3f0a84 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7985209 proquest_miscellaneous_2504352046 proquest_journals_2503538367 pubmed_primary_33753817 crossref_citationtrail_10_1038_s41598_021_85913_z crossref_primary_10_1038_s41598_021_85913_z springer_journals_10_1038_s41598_021_85913_z |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-22 |
PublicationDateYYYYMMDD | 2021-03-22 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Morgan A. P. vcfdo. Available at: https://github.com/IDEELResearch/vcfdo (2019). PickardALResistance to antimalarials in southeast asia and genetic polymorphisms in pfmdr1Antimicrob. Agents Chemother.200347241824231:CAS:528:DC%2BD3sXlvFCmurs%3D1287849916605710.1128/AAC.47.8.2418-2423.2003 Walker-JonahADolanSAGwadzRWPantonLJWellemsTEAn RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic crossMol. Biochem. Parasitol.1992513133201:CAS:528:DyaK38XitVyqsbk%3D134942310.1016/0166-6851(92)90081-T VerityRThe impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRCNat. Commun.20201121072020NatCo..11.2107V1:CAS:528:DC%2BB3cXosF2lu70%3D32355199719290610.1038/s41467-020-15779-8 WickhamHggplot2: Elegant graphics for data analysis2009BerlinSpringer1170.6200410.1007/978-0-387-98141-3 MorganAPFalciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelagoMalar. J.2020154710.1186/s12936-020-3137-8 WuLComparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategiesNature2015528S86932663377010.1038/nature16039 Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997 (2013). PotiKESullivanDJDondorpAMWoodrowCJHRP2: Transforming malaria diagnosis, but with caveatsTrends Parasitol.2020361121263184811910.1016/j.pt.2019.12.004 Broad Institute. Picard tools. GitHub repository available at https://broadinstitute.github.io/picard/ (2016). World Health OrganizationResponse Plan to pfhrp2 Gene Deletions2019WHO WatsonOJModelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan AfricaElife201710.7554/eLife.25008291119745690282 Brazeau, N. F. et al. The Epidemiology of Plasmodium vivax Among Adults in the Democratic Republic of the Congo: A Nationally-Representative, Cross-Sectional Survey. Pre-print available on medRxiv at https://www.medrxiv.org/content/https://doi.org/10.1101/2020.02.17.20024190v1.abstract. (2020). JonesSOne-step PCR: A novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparumPLoS ONE202015e02363691:CAS:528:DC%2BB3cXhsFSktL7J32702040737746210.1371/journal.pone.0236369 RobinsonJTIntegrative genomics viewerNat. Biotechnol.20112924261:CAS:528:DC%2BC3MXjsFWrtg%3D%3D21221095334618210.1038/nbt.1754 LucchiNWA new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium knowlesiPLoS ONE20127e318482012PLoSO...731848L1:CAS:528:DC%2BC38Xjt1Kqsbg%3D22363751328278210.1371/journal.pone.0031848 ParrJBPfhrp2-deleted Plasmodium falciparum parasites in the Democratic Republic of the Congo: A national cross-sectional surveyJ. Infect. Dis.201721636441:CAS:528:DC%2BC1cXitFGjsL3I2817750210.1093/infdis/jix347 SrisuthamSFour human Plasmodium species quantification using droplet digital PCRPLoS ONE201712e017577128423028539697110.1371/journal.pone.01757711:CAS:528:DC%2BC1cXhs1Wks7k%3D PatiPDhangadamajhiGBalMRanjitMHigh proportions of pfhrp2 gene deletion and performance of HRP2-based rapid diagnostic test in Plasmodium falciparum field isolates of OdishaMalar. J.2018173941:CAS:528:DC%2BC1MXhtFCht7nI30373573620692510.1186/s12936-018-2502-3 TaylorSMMolecular malaria epidemiology: Mapping and burden estimates for the Democratic Republic of the Congo, 2007PLoS ONE20116e164202011PLoSO...616420T1:CAS:528:DC%2BC3MXhvVKrs7o%3D21305011303154910.1371/journal.pone.0016420 KoitaOAFalse-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 geneAm. J. Trop. Med. Hyg.2012861941981:CAS:528:DC%2BC38Xjs1SitL8%3D22302847326926610.4269/ajtmh.2012.10-0665 ChengQPlasmodium falciparum parasites lacking histidine-rich protein 2 and 3: A review and recommendations for accurate reportingMalar. J.20141328325052298411547110.1186/1475-2875-13-2831:CAS:528:DC%2BC2cXhvVGmsL%2FN WatsonOJImpact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletionsElife201982 PerandinFDevelopment of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosisJ. Clin. Microbiol.200442121412191:CAS:528:DC%2BD2cXivF2ktro%3D1500407835683410.1128/JCM.42.3.1214-1219.2004 QuinlanARHallIMBEDTools: A flexible suite of utilities for comparing genomic featuresBioinformatics201026210.1093/bioinformatics/btq0331:CAS:528:DC%2BC3cXivFGkurc%3D GrignardLA novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infectionsEBioMedicine20205510275732403083721825910.1016/j.ebiom.2020.102757 World Health OrganizationFalse-Negative RDT Results and Implications of New Reports of P. falciparum Histidine-Rich Protein 2/3 Gene Deletions2016WHO VeronVSimonSCarmeBMultiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samplesExp. Parasitol.20091213463511:CAS:528:DC%2BD1MXisFKrsLY%3D1912402110.1016/j.exppara.2008.12.012 WoodrowCJFanelloCPfhrp2 deletions in the Democratic Republic of Congo: Evidence of absence, or absence of evidence?J. Infect. Dis.201721650450628931242585331410.1093/infdis/jix345 BakerJGlobal sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: Implications for the performance of malaria rapid diagnostic testsMalar. J.2010922010ikpm.book.....B10.1186/1475-2875-9-1291:CAS:528:DC%2BC3cXms1GgsLY%3D McKennaAThe genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing dataGenome Res.201020129713031:CAS:528:DC%2BC3cXhtFeru7jM20644199292850810.1101/gr.107524.110 SepúlvedaNGlobal analysis of Plasmodium falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysisInfect. Genet. Evol.2018622112192972938610.1016/j.meegid.2018.04.0391:CAS:528:DC%2BC1cXpt1Knt7g%3D World Health OrganizationProtocol for Estimating the Prevalence of pfhrp2/pfhrp3 Gene Deletions Among Symptomatic Falciparum Patients with False-Negative RDT Results2018WHO MitchellCLUnder the radar: Epidemiology of Plasmodium ovale in the Democratic Republic of the CongoJ. Infect. Dis.202010.1093/infdis/jiaa478322744998825215 ParrJBAndersonOJulianoJJMeshnickSRStreamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparumMalar. J.20181713729609602587955510.1186/s12936-018-2287-41:CAS:528:DC%2BC1MXjt1OgtL0%3D VermaAKBhartiPKDasAHRP-2 deletion: A hole in the ship of malaria eliminationLancet Infect. Dis.2018188268273006466710.1016/S1473-3099(18)30420-1 President's Malaria Initiative. Democratic Republic of the Congo Malaria Operational Plan FY 2018. Available at https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-2018/fy-2018-democratic-republic-of-the-congo-malaria-operational-plan.pdf?sfvrsn=5. BakerJGenetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic testsJ. Infect. Dis.20051928708771:CAS:528:DC%2BD2MXhtVent77M1608883710.1086/432010 KamauEAlemayehuSFeghaliKCSaundersDOckenhouseCFMultiplex qPCR for detection and absolute quantification of malariaPLoS ONE20138e715392013PLoSO...871539K1:CAS:528:DC%2BC3sXhsVagtb%2FK24009663375697310.1371/journal.pone.0071539 MarkwalterCFCharacterization of Plasmodium lactate dehydrogenase and histidine-rich protein 2 clearance patterns via rapid on-bead detection from a single dried blood spotAm. J. Trop. Med. Hyg.201898138913961:CAS:528:DC%2BC1MXhs1ahsLw%3D29557342595339510.4269/ajtmh.17-0996 GattonMLImplications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosisJ. Infect. Dis.2017215115611662832903410.1093/infdis/jix094 BerhaneAMajor threat to malaria control programs by plasmodium falciparum lacking histidine-rich protein 2, EritreaEmerg. Infect. Dis.2018244624701:CAS:528:DC%2BC1cXisVKntLfJ29460730582335210.3201/eid2403.171723 MenegonMIdentification of Plasmodium falciparum isolates lacking histidine-rich protein 2 and 3 in EritreaInfect. Genet. Evol.2017551311341:CAS:528:DC%2BC2sXhsFWitLvP2888994410.1016/j.meegid.2017.09.004 PloweCVDjimdeABouareMDoumboOWellemsTEPyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: Polymerase chain reaction methods for surveillance in AfricaAm. J. Trop. Med. Hyg.1995525655681:CAS:528:DyaK2MXnslSqsr8%3D761156610.4269/ajtmh.1995.52.565 OyolaSOWhole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplificationMalar. J.2016155971:CAS:528:DC%2BC1cXjsFCqu7k%3D10.1186/s12936-016-1641-7279982715175302 WatsonOJFalse-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan AfricaBMJ Glob. Health201910.1136/bmjgh-2019-001582314065916666813 PriceRNMefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy numberLancet20043644384471:CAS:528:DC%2BD2cXmt1Wjurs%3D15288742433798710.1016/S0140-6736(04)16767-6 BolgerAMLohseMUsadelBTrimmomatic: A flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP24695404410359010.1093/bioinformatics/btu170 ThomsonRPrevalence of Plasmodium falciparum lacking histidine-rich proteins 2 and 3: A systematic reviewBull. World Health Organ.20209855856832773901741132410.2471/BLT.20.250621 ParrJBMeshnickSRResponse to woodrow and fanelloJ. Infect. Dis.201721650350428931243585368410.1093/infdis/jix347 PlucinskiMMScreening for Pfhrp2/3-deleted Plasmodium falciparum, non-falciparum, and low-density malaria infections by a multiplex antigen assayJ. Infect. Dis.20192194374471:CAS:528:DC%2BB3cXjslaqur8%3D3020297210.1093/infdis/jiy525 AfoninaIPrimers with 5’ flaps improve real-time PCRBiote CV Plowe (85913_CR18) 1995; 52 JB Parr (85913_CR10) 2017; 216 NW Lucchi (85913_CR40) 2012; 7 85913_CR49 R Verity (85913_CR52) 2020; 11 CJ Woodrow (85913_CR11) 2017; 216 AR Quinlan (85913_CR30) 2010; 26 J Baker (85913_CR46) 2010; 9 M Menegon (85913_CR9) 2017; 55 S Jones (85913_CR14) 2020; 15 N Sepúlveda (85913_CR45) 2018; 62 AP Morgan (85913_CR24) 2020; 15 World Health Organization (85913_CR47) 2019 OJ Watson (85913_CR6) 2017 85913_CR17 AL Pickard (85913_CR19) 2003; 47 L Wu (85913_CR16) 2015; 528 SM Taylor (85913_CR48) 2011; 6 AK Verma (85913_CR2) 2018; 18 A Walker-Jonah (85913_CR44) 1992; 51 KE Poti (85913_CR3) 2020; 36 J Baker (85913_CR20) 2005; 192 World Health Organization (85913_CR41) 2018 OA Koita (85913_CR21) 2012; 86 S Srisutham (85913_CR37) 2017; 12 P Pati (85913_CR43) 2018; 17 85913_CR27 Q Cheng (85913_CR4) 2014; 13 A Berhane (85913_CR8) 2018; 24 85913_CR28 L Grignard (85913_CR51) 2020; 55 RN Price (85913_CR22) 2004; 364 CL Mitchell (85913_CR50) 2020 A McKenna (85913_CR29) 2010; 20 OJ Watson (85913_CR15) 2019 AM Bolger (85913_CR26) 2014; 30 World Health Organization (85913_CR1) 2016 JT Robinson (85913_CR32) 2011; 29 85913_CR34 JB Parr (85913_CR13) 2018; 17 JB Parr (85913_CR12) 2017; 216 MM Plucinski (85913_CR35) 2019; 219 F Perandin (85913_CR39) 2004; 42 H Wickham (85913_CR31) 2009 S Auburn (85913_CR33) 2012; 7 CF Markwalter (85913_CR42) 2018; 98 ML Gatton (85913_CR7) 2017; 215 V Veron (85913_CR38) 2009; 121 SO Oyola (85913_CR25) 2016; 15 I Afonina (85913_CR23) 2007; 43 R Thomson (85913_CR5) 2020; 98 E Kamau (85913_CR36) 2013; 8 OJ Watson (85913_CR53) 2019; 8 |
References_xml | – reference: PotiKESullivanDJDondorpAMWoodrowCJHRP2: Transforming malaria diagnosis, but with caveatsTrends Parasitol.2020361121263184811910.1016/j.pt.2019.12.004 – reference: SepúlvedaNGlobal analysis of Plasmodium falciparum histidine-rich protein-2 (pfhrp2) and pfhrp3 gene deletions using whole-genome sequencing data and meta-analysisInfect. Genet. Evol.2018622112192972938610.1016/j.meegid.2018.04.0391:CAS:528:DC%2BC1cXpt1Knt7g%3D – reference: LucchiNWA new single-step PCR assay for the detection of the zoonotic malaria parasite Plasmodium knowlesiPLoS ONE20127e318482012PLoSO...731848L1:CAS:528:DC%2BC38Xjt1Kqsbg%3D22363751328278210.1371/journal.pone.0031848 – reference: Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv: 1303.3997 (2013). – reference: BakerJGenetic diversity of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and its effect on the performance of PfHRP2-based rapid diagnostic testsJ. Infect. Dis.20051928708771:CAS:528:DC%2BD2MXhtVent77M1608883710.1086/432010 – reference: AfoninaIPrimers with 5’ flaps improve real-time PCRBiotechniques2007437707741:CAS:528:DC%2BD1cXhsVCitA%3D%3D1825125310.2144/000112631 – reference: PlucinskiMMScreening for Pfhrp2/3-deleted Plasmodium falciparum, non-falciparum, and low-density malaria infections by a multiplex antigen assayJ. Infect. Dis.20192194374471:CAS:528:DC%2BB3cXjslaqur8%3D3020297210.1093/infdis/jiy525 – reference: ChengQPlasmodium falciparum parasites lacking histidine-rich protein 2 and 3: A review and recommendations for accurate reportingMalar. J.20141328325052298411547110.1186/1475-2875-13-2831:CAS:528:DC%2BC2cXhvVGmsL%2FN – reference: BerhaneAMajor threat to malaria control programs by plasmodium falciparum lacking histidine-rich protein 2, EritreaEmerg. Infect. Dis.2018244624701:CAS:528:DC%2BC1cXisVKntLfJ29460730582335210.3201/eid2403.171723 – reference: RobinsonJTIntegrative genomics viewerNat. Biotechnol.20112924261:CAS:528:DC%2BC3MXjsFWrtg%3D%3D21221095334618210.1038/nbt.1754 – reference: McKennaAThe genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing dataGenome Res.201020129713031:CAS:528:DC%2BC3cXhtFeru7jM20644199292850810.1101/gr.107524.110 – reference: MitchellCLUnder the radar: Epidemiology of Plasmodium ovale in the Democratic Republic of the CongoJ. Infect. Dis.202010.1093/infdis/jiaa478322744998825215 – reference: WickhamHggplot2: Elegant graphics for data analysis2009BerlinSpringer1170.6200410.1007/978-0-387-98141-3 – reference: BakerJGlobal sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: Implications for the performance of malaria rapid diagnostic testsMalar. J.2010922010ikpm.book.....B10.1186/1475-2875-9-1291:CAS:528:DC%2BC3cXms1GgsLY%3D – reference: BolgerAMLohseMUsadelBTrimmomatic: A flexible trimmer for Illumina sequence dataBioinformatics201430211421201:CAS:528:DC%2BC2cXht1Sqt7nP24695404410359010.1093/bioinformatics/btu170 – reference: President's Malaria Initiative. Democratic Republic of the Congo Malaria Operational Plan FY 2018. Available at https://www.pmi.gov/docs/default-source/default-document-library/malaria-operational-plans/fy-2018/fy-2018-democratic-republic-of-the-congo-malaria-operational-plan.pdf?sfvrsn=5. – reference: ThomsonRPrevalence of Plasmodium falciparum lacking histidine-rich proteins 2 and 3: A systematic reviewBull. World Health Organ.20209855856832773901741132410.2471/BLT.20.250621 – reference: WuLComparison of diagnostics for the detection of asymptomatic Plasmodium falciparum infections to inform control and elimination strategiesNature2015528S86932663377010.1038/nature16039 – reference: PriceRNMefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy numberLancet20043644384471:CAS:528:DC%2BD2cXmt1Wjurs%3D15288742433798710.1016/S0140-6736(04)16767-6 – reference: Broad Institute. Picard tools. GitHub repository available at https://broadinstitute.github.io/picard/ (2016). – reference: World Health OrganizationFalse-Negative RDT Results and Implications of New Reports of P. falciparum Histidine-Rich Protein 2/3 Gene Deletions2016WHO – reference: KamauEAlemayehuSFeghaliKCSaundersDOckenhouseCFMultiplex qPCR for detection and absolute quantification of malariaPLoS ONE20138e715392013PLoSO...871539K1:CAS:528:DC%2BC3sXhsVagtb%2FK24009663375697310.1371/journal.pone.0071539 – reference: PickardALResistance to antimalarials in southeast asia and genetic polymorphisms in pfmdr1Antimicrob. Agents Chemother.200347241824231:CAS:528:DC%2BD3sXlvFCmurs%3D1287849916605710.1128/AAC.47.8.2418-2423.2003 – reference: KoitaOAFalse-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 geneAm. J. Trop. Med. Hyg.2012861941981:CAS:528:DC%2BC38Xjs1SitL8%3D22302847326926610.4269/ajtmh.2012.10-0665 – reference: QuinlanARHallIMBEDTools: A flexible suite of utilities for comparing genomic featuresBioinformatics201026210.1093/bioinformatics/btq0331:CAS:528:DC%2BC3cXivFGkurc%3D – reference: SrisuthamSFour human Plasmodium species quantification using droplet digital PCRPLoS ONE201712e017577128423028539697110.1371/journal.pone.01757711:CAS:528:DC%2BC1cXhs1Wks7k%3D – reference: WoodrowCJFanelloCPfhrp2 deletions in the Democratic Republic of Congo: Evidence of absence, or absence of evidence?J. Infect. Dis.201721650450628931242585331410.1093/infdis/jix345 – reference: OyolaSOWhole genome sequencing of Plasmodium falciparum from dried blood spots using selective whole genome amplificationMalar. J.2016155971:CAS:528:DC%2BC1cXjsFCqu7k%3D10.1186/s12936-016-1641-7279982715175302 – reference: VermaAKBhartiPKDasAHRP-2 deletion: A hole in the ship of malaria eliminationLancet Infect. Dis.2018188268273006466710.1016/S1473-3099(18)30420-1 – reference: Morgan A. P. vcfdo. Available at: https://github.com/IDEELResearch/vcfdo (2019). – reference: WatsonOJModelling the drivers of the spread of Plasmodium falciparum hrp2 gene deletions in sub-Saharan AfricaElife201710.7554/eLife.25008291119745690282 – reference: GattonMLImplications of parasites lacking Plasmodium falciparum histidine-rich protein 2 on malaria morbidity and control when rapid diagnostic tests are used for diagnosisJ. Infect. Dis.2017215115611662832903410.1093/infdis/jix094 – reference: PatiPDhangadamajhiGBalMRanjitMHigh proportions of pfhrp2 gene deletion and performance of HRP2-based rapid diagnostic test in Plasmodium falciparum field isolates of OdishaMalar. J.2018173941:CAS:528:DC%2BC1MXhtFCht7nI30373573620692510.1186/s12936-018-2502-3 – reference: MarkwalterCFCharacterization of Plasmodium lactate dehydrogenase and histidine-rich protein 2 clearance patterns via rapid on-bead detection from a single dried blood spotAm. J. Trop. Med. Hyg.201898138913961:CAS:528:DC%2BC1MXhs1ahsLw%3D29557342595339510.4269/ajtmh.17-0996 – reference: Brazeau, N. F. et al. The Epidemiology of Plasmodium vivax Among Adults in the Democratic Republic of the Congo: A Nationally-Representative, Cross-Sectional Survey. Pre-print available on medRxiv at https://www.medrxiv.org/content/https://doi.org/10.1101/2020.02.17.20024190v1.abstract. (2020). – reference: MorganAPFalciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelagoMalar. J.2020154710.1186/s12936-020-3137-8 – reference: ParrJBMeshnickSRResponse to woodrow and fanelloJ. Infect. Dis.201721650350428931243585368410.1093/infdis/jix347 – reference: GrignardLA novel multiplex qPCR assay for detection of Plasmodium falciparum with histidine-rich protein 2 and 3 (pfhrp2 and pfhrp3) deletions in polyclonal infectionsEBioMedicine20205510275732403083721825910.1016/j.ebiom.2020.102757 – reference: World Health OrganizationProtocol for Estimating the Prevalence of pfhrp2/pfhrp3 Gene Deletions Among Symptomatic Falciparum Patients with False-Negative RDT Results2018WHO – reference: VerityRThe impact of antimalarial resistance on the genetic structure of Plasmodium falciparum in the DRCNat. Commun.20201121072020NatCo..11.2107V1:CAS:528:DC%2BB3cXosF2lu70%3D32355199719290610.1038/s41467-020-15779-8 – reference: JonesSOne-step PCR: A novel protocol for determination of pfhrp2 deletion status in Plasmodium falciparumPLoS ONE202015e02363691:CAS:528:DC%2BB3cXhsFSktL7J32702040737746210.1371/journal.pone.0236369 – reference: WatsonOJFalse-negative malaria rapid diagnostic test results and their impact on community-based malaria surveys in sub-Saharan AfricaBMJ Glob. Health201910.1136/bmjgh-2019-001582314065916666813 – reference: World Health OrganizationResponse Plan to pfhrp2 Gene Deletions2019WHO – reference: PloweCVDjimdeABouareMDoumboOWellemsTEPyrimethamine and proguanil resistance-conferring mutations in Plasmodium falciparum dihydrofolate reductase: Polymerase chain reaction methods for surveillance in AfricaAm. J. Trop. Med. Hyg.1995525655681:CAS:528:DyaK2MXnslSqsr8%3D761156610.4269/ajtmh.1995.52.565 – reference: AuburnSCharacterization of within-host Plasmodium falciparum diversity using next-generation sequence dataPLoS ONE20127e328912012PLoSO...732891A1:CAS:528:DC%2BC38Xjs12mtbY%3D22393456329060410.1371/journal.pone.0032891 – reference: Walker-JonahADolanSAGwadzRWPantonLJWellemsTEAn RFLP map of the Plasmodium falciparum genome, recombination rates and favored linkage groups in a genetic crossMol. Biochem. Parasitol.1992513133201:CAS:528:DyaK38XitVyqsbk%3D134942310.1016/0166-6851(92)90081-T – reference: ParrJBAndersonOJulianoJJMeshnickSRStreamlined, PCR-based testing for pfhrp2- and pfhrp3-negative Plasmodium falciparumMalar. J.20181713729609602587955510.1186/s12936-018-2287-41:CAS:528:DC%2BC1MXjt1OgtL0%3D – reference: TaylorSMMolecular malaria epidemiology: Mapping and burden estimates for the Democratic Republic of the Congo, 2007PLoS ONE20116e164202011PLoSO...616420T1:CAS:528:DC%2BC3MXhvVKrs7o%3D21305011303154910.1371/journal.pone.0016420 – reference: WatsonOJImpact of seasonal variations in Plasmodium falciparum malaria transmission on the surveillance of pfhrp2 gene deletionsElife201982 – reference: MenegonMIdentification of Plasmodium falciparum isolates lacking histidine-rich protein 2 and 3 in EritreaInfect. Genet. Evol.2017551311341:CAS:528:DC%2BC2sXhsFWitLvP2888994410.1016/j.meegid.2017.09.004 – reference: VeronVSimonSCarmeBMultiplex real-time PCR detection of P. falciparum, P. vivax and P. malariae in human blood samplesExp. Parasitol.20091213463511:CAS:528:DC%2BD1MXisFKrsLY%3D1912402110.1016/j.exppara.2008.12.012 – reference: ParrJBPfhrp2-deleted Plasmodium falciparum parasites in the Democratic Republic of the Congo: A national cross-sectional surveyJ. Infect. Dis.201721636441:CAS:528:DC%2BC1cXitFGjsL3I2817750210.1093/infdis/jix347 – reference: PerandinFDevelopment of a real-time PCR assay for detection of Plasmodium falciparum, Plasmodium vivax, and Plasmodium ovale for routine clinical diagnosisJ. Clin. Microbiol.200442121412191:CAS:528:DC%2BD2cXivF2ktro%3D1500407835683410.1128/JCM.42.3.1214-1219.2004 – volume: 8 start-page: 2 year: 2019 ident: 85913_CR53 publication-title: Elife – volume: 98 start-page: 1389 year: 2018 ident: 85913_CR42 publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.17-0996 – volume: 55 start-page: 131 year: 2017 ident: 85913_CR9 publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2017.09.004 – volume-title: ggplot2: Elegant graphics for data analysis year: 2009 ident: 85913_CR31 doi: 10.1007/978-0-387-98141-3 – volume: 62 start-page: 211 year: 2018 ident: 85913_CR45 publication-title: Infect. Genet. Evol. doi: 10.1016/j.meegid.2018.04.039 – ident: 85913_CR34 – volume: 15 start-page: 597 year: 2016 ident: 85913_CR25 publication-title: Malar. J. doi: 10.1186/s12936-016-1641-7 – volume-title: Protocol for Estimating the Prevalence of pfhrp2/pfhrp3 Gene Deletions Among Symptomatic Falciparum Patients with False-Negative RDT Results year: 2018 ident: 85913_CR41 – ident: 85913_CR28 – volume: 121 start-page: 346 year: 2009 ident: 85913_CR38 publication-title: Exp. Parasitol. doi: 10.1016/j.exppara.2008.12.012 – volume: 29 start-page: 24 year: 2011 ident: 85913_CR32 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1754 – year: 2019 ident: 85913_CR15 publication-title: BMJ Glob. Health doi: 10.1136/bmjgh-2019-001582 – volume-title: False-Negative RDT Results and Implications of New Reports of P. falciparum Histidine-Rich Protein 2/3 Gene Deletions year: 2016 ident: 85913_CR1 – volume: 7 start-page: e32891 year: 2012 ident: 85913_CR33 publication-title: PLoS ONE doi: 10.1371/journal.pone.0032891 – volume: 216 start-page: 503 year: 2017 ident: 85913_CR12 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix347 – volume: 42 start-page: 1214 year: 2004 ident: 85913_CR39 publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.42.3.1214-1219.2004 – year: 2020 ident: 85913_CR50 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiaa478 – volume: 8 start-page: e71539 year: 2013 ident: 85913_CR36 publication-title: PLoS ONE doi: 10.1371/journal.pone.0071539 – volume: 9 start-page: 2 year: 2010 ident: 85913_CR46 publication-title: Malar. J. doi: 10.1186/1475-2875-9-129 – volume: 216 start-page: 504 year: 2017 ident: 85913_CR11 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix345 – volume: 36 start-page: 112 year: 2020 ident: 85913_CR3 publication-title: Trends Parasitol. doi: 10.1016/j.pt.2019.12.004 – volume: 192 start-page: 870 year: 2005 ident: 85913_CR20 publication-title: J. Infect. Dis. doi: 10.1086/432010 – ident: 85913_CR27 – volume: 7 start-page: e31848 year: 2012 ident: 85913_CR40 publication-title: PLoS ONE doi: 10.1371/journal.pone.0031848 – volume-title: Response Plan to pfhrp2 Gene Deletions year: 2019 ident: 85913_CR47 – volume: 26 start-page: 2 year: 2010 ident: 85913_CR30 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq033 – ident: 85913_CR49 doi: 10.1101/2020.02.17.20024190v1.abstract – volume: 18 start-page: 826 year: 2018 ident: 85913_CR2 publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(18)30420-1 – volume: 86 start-page: 194 year: 2012 ident: 85913_CR21 publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2012.10-0665 – year: 2017 ident: 85913_CR6 publication-title: Elife doi: 10.7554/eLife.25008 – ident: 85913_CR17 – volume: 51 start-page: 313 year: 1992 ident: 85913_CR44 publication-title: Mol. Biochem. Parasitol. doi: 10.1016/0166-6851(92)90081-T – volume: 6 start-page: e16420 year: 2011 ident: 85913_CR48 publication-title: PLoS ONE doi: 10.1371/journal.pone.0016420 – volume: 11 start-page: 2107 year: 2020 ident: 85913_CR52 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15779-8 – volume: 17 start-page: 394 year: 2018 ident: 85913_CR43 publication-title: Malar. J. doi: 10.1186/s12936-018-2502-3 – volume: 24 start-page: 462 year: 2018 ident: 85913_CR8 publication-title: Emerg. Infect. Dis. doi: 10.3201/eid2403.171723 – volume: 364 start-page: 438 year: 2004 ident: 85913_CR22 publication-title: Lancet doi: 10.1016/S0140-6736(04)16767-6 – volume: 528 start-page: S86 year: 2015 ident: 85913_CR16 publication-title: Nature doi: 10.1038/nature16039 – volume: 30 start-page: 2114 year: 2014 ident: 85913_CR26 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btu170 – volume: 216 start-page: 36 year: 2017 ident: 85913_CR10 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix347 – volume: 15 start-page: 47 year: 2020 ident: 85913_CR24 publication-title: Malar. J. doi: 10.1186/s12936-020-3137-8 – volume: 55 start-page: 102757 year: 2020 ident: 85913_CR51 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2020.102757 – volume: 17 start-page: 137 year: 2018 ident: 85913_CR13 publication-title: Malar. J. doi: 10.1186/s12936-018-2287-4 – volume: 13 start-page: 283 year: 2014 ident: 85913_CR4 publication-title: Malar. J. doi: 10.1186/1475-2875-13-283 – volume: 52 start-page: 565 year: 1995 ident: 85913_CR18 publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.1995.52.565 – volume: 98 start-page: 558 year: 2020 ident: 85913_CR5 publication-title: Bull. World Health Organ. doi: 10.2471/BLT.20.250621 – volume: 219 start-page: 437 year: 2019 ident: 85913_CR35 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jiy525 – volume: 15 start-page: e0236369 year: 2020 ident: 85913_CR14 publication-title: PLoS ONE doi: 10.1371/journal.pone.0236369 – volume: 12 start-page: e0175771 year: 2017 ident: 85913_CR37 publication-title: PLoS ONE doi: 10.1371/journal.pone.0175771 – volume: 47 start-page: 2418 year: 2003 ident: 85913_CR19 publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.47.8.2418-2423.2003 – volume: 215 start-page: 1156 year: 2017 ident: 85913_CR7 publication-title: J. Infect. Dis. doi: 10.1093/infdis/jix094 – volume: 20 start-page: 1297 year: 2010 ident: 85913_CR29 publication-title: Genome Res. doi: 10.1101/gr.107524.110 – volume: 43 start-page: 770 year: 2007 ident: 85913_CR23 publication-title: Biotechniques doi: 10.2144/000112631 |
SSID | ssj0000529419 |
Score | 2.4434347 |
Snippet | The majority of
Plasmodium falciparum
malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing... The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2. Increasing... Abstract The majority of Plasmodium falciparum malaria diagnoses in Africa are made using rapid diagnostic tests (RDTs) that detect histidine-rich protein 2.... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 6495 |
SubjectTerms | 631/326/417/2550 692/308/174 692/699/255/1629 Antigens Diagnostic tests Erythrocytes Genomes Genotyping Histidine Humanities and Social Sciences Malaria Microscopy multidisciplinary Parasites Plasmodium falciparum Science Science (multidisciplinary) Vector-borne diseases Whole genome sequencing |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlUOilNH26SYsKvbUitiTL0jFNGkIPPZQGchN6pgtde7vrHJJfn5Hk3WT7vPS0YGkWMQ_mGzT6BqG3gNmDUF1LDHUt4a2jRDnpSBe4ZTYkyrTM9vlZnJ7xT-ft-Z1RX6knrNADF8UdCGWhpGhdB4mUe9NYyaJkABwsi7WRmQkUct6dYqqwelPFGzW9kqmZPFhBpkqvyWhDEmUbI9dbmSgT9v8OZf7aLPnTjWlORCeP0MMJQeLDcvJddC_0j9H9MlPy6gn6saYZwUPEEZwrkD5cZHpvvDSLmce-dNeBOAacOa4w4Fa8upovxiHzt-K5gXJ3ZvCsxwAP8XGYD26ZV76EQoud_jstHQ39xfAUnZ18_Hp0Sqa5CsRBuTISLlWQNL0obbxwtPaJ80yCVhvq4VdRVwvXtdS0DvCKFS6woJw3kUuRhNgztNMPfXiBMG09tVBysAg4IVJvo1GeG0ejDSFGVaFmrWPtJtLxNPviu86X30zqYhcNdtHZLvq6Qu82MotCufHX3R-S6TY7E112_gBOpCcn0v9yogrtrw2vpxheaQCHDNIBE12F3myWIfrSlYrpw3CZ9wDepDUXFXpe_GRzEsagFJQNSHdbHrR11O2VfvYtM3x3Sqb2pAq9X_va7bH-rIqX_0MVe-gBTUFSM0LpPtoZl5fhFeCu0b7OIXYDtekoJQ priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k2gICNxA6uJ7ST2CUGhqjhwQFTam-X4sazEJttNemh_PTNOstXy6ClSbEdOZib-xjP-hpC3gNlDpeuSWe5KJkvHmXbKsTrIRjQBKdMS2-e36vRMfl2Ui2nDrZ_SKud_YvpR-87hHvkRLNUCjFNU9YfNOcOqURhdnUpo3CZ3kLoMU7rqRb3bY8Eoliz0dFYmF-qoh_UKz5TxgiFxm2BXe-tRou3_F9b8O2Xyj7hpWo5OHpD7E46kH0fBPyS3QvuI3B0rS14-Jucz2QjtIo2gYoG1YZlIvunWblae-jHHDoZTQJtDTwG90v5yvRm6xOJK1xac3pWlq5YCSKSfw7pz29TyPYzk2PhsbDru2mX3hJydfPlxfMqm6grMgdMyMKl0UBzPlRa-cjz3yHymohIF93DV3OWVq0tuSweopalcEEE7b6NUFQ4ST8lB27XhOaG89LwBx0NEQAuR-yZa7aV1PDYhxKgzUszf2LiJehwrYPwyKQQulBnlYkAuJsnFXGXk3W7MZiTeuLH3JxTdrieSZqcb3XZpJhs0lW7AOy1dDZhMels0MGElAIM2IuZWyYwczoI3kyX35lrvMvJm1ww2iIEV24buIvUB1MlzWWXk2agnu5kIAQ6hKmB0vadBe1Pdb2lXPxPPd60VJill5P2sa9fT-v-neHHzW7wk9ziqfy4Y54fkYNhehFeAq4bmdTKe327eIJ4 priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZKERIXxJu0BRmJG1gktuPYR1ioKg4cEJV6s_xcVmKTZTc9tL-esfNACwWJU6R4Jhplxplv4vFnhF4BZg9CNTUx1NWE144S5aQjTeCW2ZAo0zLb52dxds4_XdQXB4hOe2Fy036mtMyf6ak77O0OEk3aDEYrkhjXGLm-hW4n6vYU1QuxmP-rpJUrXqlxf0zJ5A2qezkoU_XfhC__bJP8ba00p6DT--jeiB3xu8HaB-ggtA_RneE0yatH6MdEMIK7iCOEVSBtWGZib7w1m5XHfuirA3UMCLPfYUCseHe13vRdZm7FawOF7srgVYsBGOIPYd25bR75EgZC7PTsNLTo2mX3GJ2ffvy6OCPjiQrEQaHSEy5VkDTtJa28cLT0ie1MRskq6uGqqCuFa2pqagdIxQoXWFDOm8ilSErsCTpsuzY8Q5jWnlooNlgEhBCpt9Eoz42j0YYQoypQNb1j7Ua68XTqxXedl72Z1INfNPhFZ7_o6wK9nnU2A9nGP6XfJ9fNkokoO9_otks9Bo4WykJFWrsGcBj3prJgsGSAOy2LpZG8QCeT4_U4e3caYCGDRMBEU6CX8zDMu7SYYtrQXWYZQJq05KJAT4c4mS1hDIpAWYF2sxdBe6buj7Srb5nbu1EyNSYV6M0Ua7_M-vurOPo_8WN0l6bpUDJC6Qk67LeX4Tlgq96-yJPpJ7-RHwI priority: 102 providerName: Springer Nature |
Title | Analysis of false-negative rapid diagnostic tests for symptomatic malaria in the Democratic Republic of the Congo |
URI | https://link.springer.com/article/10.1038/s41598-021-85913-z https://www.ncbi.nlm.nih.gov/pubmed/33753817 https://www.proquest.com/docview/2503538367 https://www.proquest.com/docview/2504352046 https://pubmed.ncbi.nlm.nih.gov/PMC7985209 https://doaj.org/article/69b1915c79934da1b83f83083b3f0a84 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_6wWAvY9_z2gUN9rZpiyV_SA9jpFlLCayMboG8GVmWskBjp04KTf_6nWQ7I1s22JNB0hlZd8f9zpJ-B_AGMbtJZBpTxXRMo1gzKrXQNDVRznPjKNM82-dFcj6ORpN4sgdduaN2AZc7UztXT2pcX72_vV5_Qof_2FwZFx-WGITcRTEWUsfGxundPhxiZEqdo35p4X7D9c1kFMr27sxu0a345Gn8d2HPP49Q_raP6sPT2UN40OJKMmgM4RHsmfIx3GsqTa6fwHVHPkIqSyx-uqGlmXrSb1KrxawgRXPmDsUJos_VkiCaJcv1fLGqPKsrmStcqZkis5IgaCSfzbzSte-5NA1Ztnu36xpW5bR6CuOz0-_Dc9pWW6Aak5gVjYQ0grl7pmGRaNYvHBOasIKHrMCnZLqf6DRmKtaIYvJEG26kLpSNROKE-DM4KKvSvADC4oLlmIhwi-jBsiK3ShaR0szmxlgrAwi7Nc50S0XuKmJcZX5LnIus0UuGesm8XrK7AN5uZBYNEcc_R5841W1GOhJt31DV06z1ySyROWarsU4Ro0WFCnOcsOCISXNu-0pEARx3is86w8wQMnIMEjxJA3i96UafdBstqjTVjR-DKJT1oySA542dbGbCOSaIIkTpdMuCtqa63VPOfnje71QKd2gpgHedrf2a1t-X4uX_DT-C-8y5Q59Txo7hYFXfmFeIu1Z5D_bTSdqDw8Fg9G2Ez5PTi6-X2DpMhj3_L6Pn3e0n5D0ufw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuBAUaCJ7CW2E7iPCDEburYqNC0SXvzHF9KJZp0bSfU_Sh-I8dO0qlc9ranSrUdOT7n-Hwnx_4OQm8Bs9usyFOiqE4JTzUlhRaa5JaXrLSeMi2wfQ6y_gn_cpqerqFf3V0Yf6yy2xPDRm1q7b-Rb4KrZmCcLMs_Tc6Jrxrls6tdCY1GLQ7s4ieEbLOP-zsg33eU7u0eb_dJW1WAaADrc8JFYQX19ykTk2kaG8_4JZxgCTXwW1AdZzpPqUo1eOsy05bZQhvluMj8IAbPvYXWOYNQpofWt3YH346WX3V83ownRXs7J2ZicwYe0t9iownxVHGMXK54wFAo4F_o9u9Dmn9kaoMD3LuP7rXIFX9uVO0BWrPVQ3S7qWW5eITOO3oTXDvsQKktqeww0IrjqZqMDDbNqT4YjgHfzmcY8DKeLcaTeR14Y_FYQZg9UnhUYYCleMeOaz0NLUe2oeP2z_ZN23U1rB-jkxtZ-SeoV9WVfYYwTQ0tIdRhDvCJo6Z0qjBcaepKa50rIpR0ayx1S3bua278kCHpzoRs5CJBLjLIRV5G6P1yzKSh-ri295YX3bKnp-kOf9TToWytXmZFCfFwqnNAgdyopIQJCwaot2QuVoJHaKMTvGz3jpm80vQIvVk2g9X7VI6qbH0R-gDOpTHPIvS00ZPlTBiDEFQkMDpf0aCVqa62VKPvgVk8L4Q_FhWhD52uXU3r_0vx_Pq3eI3u9I-_HsrD_cHBC3SXelOIGaF0A_Xm0wv7ElDdvHzVmhJGZzdtvb8BrkVc4Q |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxEB6VIhAXxJuFAkaCE1jZtffhPSAEDVFLUYUQlXozXj9CJLKbJqlQ-tP4dYy9u6nCo7eeIsX2yuuZsb_ZGX8D8AIxu83LIqOK6YymmWa01ELTwqYVr6ynTAtsn4f53lH68Tg73oJf_V0Yn1bZ74lhozaN9t_IB3hUczROnhcD16VFfB6O3s5OqK8g5SOtfTmNVkUO7Oonum-LN_tDlPVLxkYfvu7u0a7CANUI3Jc0FaUVzN-tTEyuWWw8-5dwgifM4G_JdJzrImMq03hyV7m23JbaKJeK3A_i-NwrcLXgWeJtrDgu1t93fAQtTcrunk7MxWCBZ6W_z8YS6knjOD3bOAtDyYB_4dy_0zX_iNmGo3B0C252GJa8a5XuNmzZ-g5ca6taru7CSU90QhpHHKq3pbUdB4JxMleziSGmze_D4QSR7nJBEDmTxWo6WzaBQZZMFTrcE0UmNUGASoZ22uh5aPliW2Ju_2zftNvU4-YeHF3Kut-H7bqp7UMgLDOsQqeHO0QqjpnKqdKkSjNXWetcGUHSr7HUHe25r77xQ4bwOxeylYtEucggF3kWwav1mFlL-nFh7_dedOuenrA7_NHMx7Kzf5mXFXrGmS4QD6ZGJRVOWHDEvxV3sRJpBDu94GW3iyzkuc5H8HzdjPbvgzqqts1p6IOIl8VpHsGDVk_WM-EcnVGR4OhiQ4M2prrZUk--B47xohQ-QSqC172unU_r_0vx6OK3eAbX0Wblp_3Dg8dwg3lLiDllbAe2l_NT-wTh3bJ6GuyIwLfLNtzfHvZfsQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Analysis+of+false-negative+rapid+diagnostic+tests+for+symptomatic+malaria+in+the+Democratic+Republic+of+the+Congo&rft.jtitle=Scientific+reports&rft.au=Parr%2C+Jonathan+B.&rft.au=Kieto%2C+Eddy&rft.au=Phanzu%2C+Fernandine&rft.au=Mansiangi%2C+Paul&rft.date=2021-03-22&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2045-2322&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41598-021-85913-z&rft.externalDocID=10_1038_s41598_021_85913_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |