Tuneable near white-emissive two-dimensional covalent organic frameworks

Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π–π stacking-caused thermal energy dissipation pro...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 9; no. 1; pp. 2335 - 9
Main Authors Li, Xing, Gao, Qiang, Wang, Juefan, Chen, Yifeng, Chen, Zhi-Hui, Xu, Hai-Sen, Tang, Wei, Leng, Kai, Ning, Guo-Hong, Wu, Jishan, Xu, Qing-Hua, Quek, Su Ying, Lu, Yixin, Loh, Kian Ping
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.06.2018
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π–π stacking-caused thermal energy dissipation process. Currently there is a lack of guiding principle on how to design fluorescent, solid-state material made of COF. Herein, we demonstrate that the eclipsed stacking structure of 2D COFs can be used to turn on, and tune, the solid-state photoluminescence from non-emissive building blocks by the restriction of intramolecular bond rotation via intralayer and interlayer hydrogen bonds among highly organized layers in the eclipse-stacked COFs. Our COFs serve as a platform whereby the size of the conjugated linkers and side-chain functionalities can be varied, rendering the emission colour-tuneable from blue to yellow and even white. This work provides a guide to design new solid-state emitters using COFs. Encoding functionalities in covalent organic frameworks (COFs) is important for widening their application field but the development of fluorescent COFs is hampered by a lack of guiding design principles. Here the authors demonstrate tuning and switching of the photoluminescence in 2D COFs made of non-emissive building blocks.
AbstractList Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π–π stacking-caused thermal energy dissipation process. Currently there is a lack of guiding principle on how to design fluorescent, solid-state material made of COF. Herein, we demonstrate that the eclipsed stacking structure of 2D COFs can be used to turn on, and tune, the solid-state photoluminescence from non-emissive building blocks by the restriction of intramolecular bond rotation via intralayer and interlayer hydrogen bonds among highly organized layers in the eclipse-stacked COFs. Our COFs serve as a platform whereby the size of the conjugated linkers and side-chain functionalities can be varied, rendering the emission colour-tuneable from blue to yellow and even white. This work provides a guide to design new solid-state emitters using COFs.
Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π–π stacking-caused thermal energy dissipation process. Currently there is a lack of guiding principle on how to design fluorescent, solid-state material made of COF. Herein, we demonstrate that the eclipsed stacking structure of 2D COFs can be used to turn on, and tune, the solid-state photoluminescence from non-emissive building blocks by the restriction of intramolecular bond rotation via intralayer and interlayer hydrogen bonds among highly organized layers in the eclipse-stacked COFs. Our COFs serve as a platform whereby the size of the conjugated linkers and side-chain functionalities can be varied, rendering the emission colour-tuneable from blue to yellow and even white. This work provides a guide to design new solid-state emitters using COFs. Encoding functionalities in covalent organic frameworks (COFs) is important for widening their application field but the development of fluorescent COFs is hampered by a lack of guiding design principles. Here the authors demonstrate tuning and switching of the photoluminescence in 2D COFs made of non-emissive building blocks.
Encoding functionalities in covalent organic frameworks (COFs) is important for widening their application field but the development of fluorescent COFs is hampered by a lack of guiding design principles. Here the authors demonstrate tuning and switching of the photoluminescence in 2D COFs made of non-emissive building blocks.
Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π-π stacking-caused thermal energy dissipation process. Currently there is a lack of guiding principle on how to design fluorescent, solid-state material made of COF. Herein, we demonstrate that the eclipsed stacking structure of 2D COFs can be used to turn on, and tune, the solid-state photoluminescence from non-emissive building blocks by the restriction of intramolecular bond rotation via intralayer and interlayer hydrogen bonds among highly organized layers in the eclipse-stacked COFs. Our COFs serve as a platform whereby the size of the conjugated linkers and side-chain functionalities can be varied, rendering the emission colour-tuneable from blue to yellow and even white. This work provides a guide to design new solid-state emitters using COFs.Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building blocks. The fluorescence quenching is usually attributed to non-irradiative rotation-related or π-π stacking-caused thermal energy dissipation process. Currently there is a lack of guiding principle on how to design fluorescent, solid-state material made of COF. Herein, we demonstrate that the eclipsed stacking structure of 2D COFs can be used to turn on, and tune, the solid-state photoluminescence from non-emissive building blocks by the restriction of intramolecular bond rotation via intralayer and interlayer hydrogen bonds among highly organized layers in the eclipse-stacked COFs. Our COFs serve as a platform whereby the size of the conjugated linkers and side-chain functionalities can be varied, rendering the emission colour-tuneable from blue to yellow and even white. This work provides a guide to design new solid-state emitters using COFs.
ArticleNumber 2335
Author Chen, Zhi-Hui
Wu, Jishan
Xu, Qing-Hua
Lu, Yixin
Wang, Juefan
Chen, Yifeng
Li, Xing
Tang, Wei
Xu, Hai-Sen
Leng, Kai
Gao, Qiang
Loh, Kian Ping
Quek, Su Ying
Ning, Guo-Hong
Author_xml – sequence: 1
  givenname: Xing
  surname: Li
  fullname: Li, Xing
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3, Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Centre for Life Sciences, #05-01, 28 Medical Drive
– sequence: 2
  givenname: Qiang
  surname: Gao
  fullname: Gao, Qiang
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 3
  givenname: Juefan
  orcidid: 0000-0003-3199-7651
  surname: Wang
  fullname: Wang, Juefan
  organization: Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Department of Physics, National University of Singapore, 2 Science Drive 3
– sequence: 4
  givenname: Yifeng
  surname: Chen
  fullname: Chen, Yifeng
  organization: Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Department of Physics, National University of Singapore, 2 Science Drive 3
– sequence: 5
  givenname: Zhi-Hui
  surname: Chen
  fullname: Chen, Zhi-Hui
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 6
  givenname: Hai-Sen
  surname: Xu
  fullname: Xu, Hai-Sen
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 7
  givenname: Wei
  surname: Tang
  fullname: Tang, Wei
  organization: Institute of Materials Research and Engineering, ASTAR, 2 Fusionopolis Way, Innovis
– sequence: 8
  givenname: Kai
  surname: Leng
  fullname: Leng, Kai
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3, Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2
– sequence: 9
  givenname: Guo-Hong
  orcidid: 0000-0002-5640-9062
  surname: Ning
  fullname: Ning, Guo-Hong
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 10
  givenname: Jishan
  orcidid: 0000-0002-8231-0437
  surname: Wu
  fullname: Wu, Jishan
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 11
  givenname: Qing-Hua
  orcidid: 0000-0002-4153-0767
  surname: Xu
  fullname: Xu, Qing-Hua
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 12
  givenname: Su Ying
  surname: Quek
  fullname: Quek, Su Ying
  organization: Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Department of Physics, National University of Singapore, 2 Science Drive 3
– sequence: 13
  givenname: Yixin
  surname: Lu
  fullname: Lu, Yixin
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3
– sequence: 14
  givenname: Kian Ping
  surname: Loh
  fullname: Loh, Kian Ping
  email: chmlohkp@nus.edu.sg
  organization: Department of Chemistry, National University of Singapore, 3 Science Drive 3, Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29899332$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLUN_gAWKxIZNwK_4sUFCFdBKldiUtWU7N1MPiV3szIz695hJKW0X9eZa9jnnnvt4jY5iioDQW4I_EszUp8IJF7LFRLWYS6Fb8QKdUMxJSyRlRw_ux-i0lA2uh2miOH-FjqlWWjNGT9D51TaCdSM0NeRmfx1maGEKpYQdNPM-tX2YIJaQoh0bn3Z2hDg3Ka9tDL4Zsp1gn_Kv8ga9HOxY4PQurtDPb1-vzs7byx_fL86-XLZeYDG3nIMWimqOrfIOM86g6xUApxLroRscUcJiIFY6QRxgLQbf9QO1gybODZSt0MWi2ye7MTc5TDbfmmSDOTxUY8bmOfgRjGNKVwHZC-24dc7WVAzL3jJCBFGuan1etG62boLe18qyHR-JPv6J4dqs0850WkutWBX4cCeQ0-8tlNnUznkYRxshbYuhuOsEkZzoCn3_BLpJ21ybekBx1UlZm7FC7x46urfyb2AVQBeAz6mUDMM9hGDzdzHMshimLoY5LIYRlaSekHyY7VxnWqsK4_NUtlBLzRPXkP_bfob1B-BSzSs
CitedBy_id crossref_primary_10_1021_acsami_0c05182
crossref_primary_10_1021_acsami_9b14795
crossref_primary_10_1016_j_trechm_2021_10_007
crossref_primary_10_1007_s40820_021_00696_2
crossref_primary_10_1038_s41467_023_39998_x
crossref_primary_10_1021_jacs_8b08452
crossref_primary_10_1002_anie_202409926
crossref_primary_10_1016_j_ccr_2020_213756
crossref_primary_10_1039_D2CC04311D
crossref_primary_10_1021_acsapm_4c01432
crossref_primary_10_1021_jacs_4c17776
crossref_primary_10_1002_anie_201913983
crossref_primary_10_1002_ange_202309820
crossref_primary_10_1002_smll_202100955
crossref_primary_10_1021_acs_chemmater_3c00043
crossref_primary_10_1039_D4TC02262A
crossref_primary_10_1021_acsanm_9b01366
crossref_primary_10_1039_D1MA00234A
crossref_primary_10_1002_smll_202311064
crossref_primary_10_1002_anie_202016667
crossref_primary_10_1016_j_jssc_2024_124596
crossref_primary_10_1016_j_polymer_2023_126257
crossref_primary_10_1039_D3PY01265D
crossref_primary_10_1039_D1CS00983D
crossref_primary_10_1021_acs_nanolett_4c04949
crossref_primary_10_3390_polym15183704
crossref_primary_10_1002_aenm_202003054
crossref_primary_10_1021_acsanm_0c00884
crossref_primary_10_1021_acsami_0c16657
crossref_primary_10_1002_adfm_202000516
crossref_primary_10_1038_s43586_022_00181_z
crossref_primary_10_1016_j_xcrp_2021_100630
crossref_primary_10_1007_s00604_024_06590_z
crossref_primary_10_1016_j_optmat_2023_113873
crossref_primary_10_1039_D2CC03498K
crossref_primary_10_1021_jacs_3c03614
crossref_primary_10_1021_jacs_8b08312
crossref_primary_10_1016_j_talanta_2023_124869
crossref_primary_10_1016_j_matchemphys_2022_126208
crossref_primary_10_1039_D4DT01518E
crossref_primary_10_1016_j_enchem_2023_100101
crossref_primary_10_1002_adma_202301190
crossref_primary_10_1016_j_jcis_2021_02_010
crossref_primary_10_1016_j_dyepig_2022_110464
crossref_primary_10_1021_acsami_0c20203
crossref_primary_10_1039_D0QM00846J
crossref_primary_10_1039_D0TC03261A
crossref_primary_10_1021_jacs_0c03409
crossref_primary_10_1039_D2TB01185A
crossref_primary_10_1016_j_memsci_2022_120431
crossref_primary_10_1002_adfm_202308096
crossref_primary_10_1055_a_1477_5123
crossref_primary_10_1039_D1RA02342J
crossref_primary_10_1021_jacs_8b07450
crossref_primary_10_1016_j_surfin_2021_101313
crossref_primary_10_1002_ange_202316385
crossref_primary_10_1246_bcsj_20200391
crossref_primary_10_1021_acsanm_1c03889
crossref_primary_10_1038_s44160_022_00071_y
crossref_primary_10_1007_s11426_019_9492_4
crossref_primary_10_1016_j_colsurfa_2020_125993
crossref_primary_10_1002_adma_202406905
crossref_primary_10_1002_ange_201904291
crossref_primary_10_1002_anie_202312617
crossref_primary_10_1002_marc_202400711
crossref_primary_10_1002_ange_201912594
crossref_primary_10_1002_smll_202103516
crossref_primary_10_1039_D0TC01872D
crossref_primary_10_1016_j_materresbull_2024_112697
crossref_primary_10_1021_jacs_0c06474
crossref_primary_10_1364_PRJ_8_000091
crossref_primary_10_1002_ange_202108650
crossref_primary_10_1002_anie_202310794
crossref_primary_10_1002_smll_202403772
crossref_primary_10_1021_acsanm_2c02504
crossref_primary_10_1021_accountsmr_1c00017
crossref_primary_10_1021_acsami_1c24555
crossref_primary_10_1021_acsami_3c13446
crossref_primary_10_1021_acs_chemmater_1c02344
crossref_primary_10_1021_acsami_0c23132
crossref_primary_10_1038_s41586_022_04409_6
crossref_primary_10_1002_smll_202100918
crossref_primary_10_1021_acsami_1c01791
crossref_primary_10_1021_acsnano_3c06142
crossref_primary_10_1021_jacs_2c07596
crossref_primary_10_1021_acssuschemeng_3c00438
crossref_primary_10_1039_D1TC05998J
crossref_primary_10_1002_adom_202202598
crossref_primary_10_1002_advs_202001676
crossref_primary_10_1021_acs_analchem_3c01637
crossref_primary_10_1021_acs_jpca_9b09476
crossref_primary_10_1021_jacs_3c03868
crossref_primary_10_1039_C9CS00884E
crossref_primary_10_1002_anie_201913091
crossref_primary_10_1021_jacs_0c11719
crossref_primary_10_1021_acs_chemrev_9b00550
crossref_primary_10_1002_ange_202409926
crossref_primary_10_1016_j_radphyschem_2022_110453
crossref_primary_10_1021_acsmaterialslett_0c00119
crossref_primary_10_1016_j_micromeso_2025_113579
crossref_primary_10_1002_ange_201913983
crossref_primary_10_3390_biomimetics8020171
crossref_primary_10_1016_j_flatc_2019_100133
crossref_primary_10_3390_molecules27196635
crossref_primary_10_1016_j_polymer_2020_123079
crossref_primary_10_1016_j_jcis_2022_11_098
crossref_primary_10_1021_acsnano_4c15289
crossref_primary_10_1021_acs_analchem_9b03534
crossref_primary_10_1021_acs_analchem_2c01999
crossref_primary_10_1002_adma_202413629
crossref_primary_10_1007_s11705_022_2252_1
crossref_primary_10_1021_jacs_0c08436
crossref_primary_10_1021_acssuschemeng_9b05725
crossref_primary_10_1002_adma_202413060
crossref_primary_10_1016_j_dyepig_2021_109710
crossref_primary_10_1021_jacsau_3c00554
crossref_primary_10_1007_s12274_020_2723_y
crossref_primary_10_1021_acsmaterialslett_9b00185
crossref_primary_10_1002_marc_202200751
crossref_primary_10_1021_jacs_1c12020
crossref_primary_10_1002_ange_202309026
crossref_primary_10_1021_jacs_3c01102
crossref_primary_10_1021_acsanm_4c02840
crossref_primary_10_1002_adom_202100601
crossref_primary_10_1016_j_cej_2023_144106
crossref_primary_10_1002_anie_201909020
crossref_primary_10_1002_smll_202102630
crossref_primary_10_1002_anie_202108650
crossref_primary_10_3390_macromol1030016
crossref_primary_10_1002_smll_202401269
crossref_primary_10_1016_j_bios_2019_111924
crossref_primary_10_1038_s41467_020_15281_1
crossref_primary_10_1039_D2NJ06160K
crossref_primary_10_1039_D4TA04342A
crossref_primary_10_1038_s41467_020_18588_1
crossref_primary_10_1039_D2TA01546C
crossref_primary_10_1039_D4TA04330H
crossref_primary_10_1002_adma_202002366
crossref_primary_10_1246_bcsj_20210121
crossref_primary_10_1002_adpr_202200145
crossref_primary_10_1002_ange_201909020
crossref_primary_10_1039_D4QI00419A
crossref_primary_10_1002_asia_201900586
crossref_primary_10_1002_smll_202402486
crossref_primary_10_1039_D4SC04320K
crossref_primary_10_1002_ange_201913091
crossref_primary_10_1002_chem_202100671
crossref_primary_10_1002_ange_202404941
crossref_primary_10_1021_acs_chemmater_1c02660
crossref_primary_10_1039_D0TA07281H
crossref_primary_10_1039_C9CS00807A
crossref_primary_10_1021_acsami_0c12785
crossref_primary_10_1039_D4CC05468G
crossref_primary_10_1002_adma_201905879
crossref_primary_10_1021_jacs_3c10511
crossref_primary_10_1002_aenm_202102300
crossref_primary_10_1002_agt2_24
crossref_primary_10_1016_j_polymer_2021_124474
crossref_primary_10_1021_jacs_0c00553
crossref_primary_10_1002_ange_202002724
crossref_primary_10_1039_D0CS01027H
crossref_primary_10_1002_agt2_191
crossref_primary_10_1002_anie_202107179
crossref_primary_10_1039_C9CC01548E
crossref_primary_10_1002_adma_202006274
crossref_primary_10_1021_acs_chemmater_8b03685
crossref_primary_10_1002_anie_202309026
crossref_primary_10_1039_D0CC06409B
crossref_primary_10_1002_anie_202309820
crossref_primary_10_1007_s10853_019_03914_w
crossref_primary_10_1007_s11426_020_9836_x
crossref_primary_10_1002_chem_202001105
crossref_primary_10_1021_acssensors_1c00183
crossref_primary_10_1039_C9SC03040A
crossref_primary_10_1002_pol_20230090
crossref_primary_10_1016_j_ccr_2021_213781
crossref_primary_10_1038_s41467_024_50953_2
crossref_primary_10_1021_jacs_9b08017
crossref_primary_10_1002_anie_202425436
crossref_primary_10_1002_anie_201912594
crossref_primary_10_1021_acs_chemmater_0c02910
crossref_primary_10_1002_advs_201801410
crossref_primary_10_1002_chem_202401044
crossref_primary_10_1002_ange_202310794
crossref_primary_10_1039_D1CC03409J
crossref_primary_10_1016_j_mtener_2020_100635
crossref_primary_10_1021_acsami_9b17452
crossref_primary_10_1016_j_partic_2021_03_002
crossref_primary_10_1021_jacs_3c04410
crossref_primary_10_1002_anie_201904291
crossref_primary_10_1002_ange_202312617
crossref_primary_10_1021_acsami_2c23302
crossref_primary_10_1016_j_cej_2022_136584
crossref_primary_10_1016_j_micromeso_2022_112408
crossref_primary_10_1016_j_cej_2024_149174
crossref_primary_10_1021_acs_analchem_3c03954
crossref_primary_10_1021_jacs_1c02932
crossref_primary_10_1021_acsami_9b02640
crossref_primary_10_1021_jacs_8b08380
crossref_primary_10_1039_D0CS01138J
crossref_primary_10_1016_j_mbm_2023_100024
crossref_primary_10_1002_chem_201904626
crossref_primary_10_1021_acsami_0c04147
crossref_primary_10_1016_j_apsusc_2020_148382
crossref_primary_10_1021_acsami_0c21823
crossref_primary_10_1002_advs_202304697
crossref_primary_10_1002_adma_202102290
crossref_primary_10_1002_adfm_202207145
crossref_primary_10_1002_ange_202016667
crossref_primary_10_1038_s41467_021_25013_8
crossref_primary_10_1021_jacs_0c00923
crossref_primary_10_1021_acsanm_2c04652
crossref_primary_10_1016_j_mtchem_2024_102140
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1021_acsami_9b07779
crossref_primary_10_1002_anie_202316385
crossref_primary_10_1021_acs_inorgchem_4c05583
crossref_primary_10_1038_s41557_020_00562_5
crossref_primary_10_1002_smll_202405550
crossref_primary_10_1039_D4CE00635F
crossref_primary_10_1016_j_nantod_2021_101101
crossref_primary_10_1039_D3TA04781D
crossref_primary_10_1039_C8CS00376A
crossref_primary_10_1039_D4CC00167B
crossref_primary_10_1021_jacs_4c02365
crossref_primary_10_1002_adfm_202401562
crossref_primary_10_1002_advs_202203058
crossref_primary_10_1002_ange_202425436
crossref_primary_10_1039_D3CP01510F
crossref_primary_10_1002_anie_202404941
crossref_primary_10_1021_acscentsci_0c00260
crossref_primary_10_1002_anie_202213268
crossref_primary_10_1063_5_0206246
crossref_primary_10_1016_j_matt_2020_01_019
crossref_primary_10_1021_acsami_3c15339
crossref_primary_10_1021_acsami_0c21248
crossref_primary_10_1039_D3CC00057E
crossref_primary_10_1002_marc_202400673
crossref_primary_10_1002_cjoc_202400704
crossref_primary_10_1039_C8DT03005G
crossref_primary_10_1002_adfm_202106507
crossref_primary_10_1038_s41467_021_24842_x
crossref_primary_10_1007_s10853_020_05380_1
crossref_primary_10_1016_j_envres_2023_118018
crossref_primary_10_1021_acsami_4c12813
crossref_primary_10_1002_ange_202107179
crossref_primary_10_1016_j_matlet_2022_131951
crossref_primary_10_1021_acs_analchem_3c03985
crossref_primary_10_1002_adfm_202308336
crossref_primary_10_1002_ange_202213268
crossref_primary_10_1002_anie_202002724
crossref_primary_10_1039_D1MA00506E
crossref_primary_10_1021_acsami_2c20580
crossref_primary_10_1021_acs_chemmater_8b02560
crossref_primary_10_1002_adom_202402907
crossref_primary_10_1002_aenm_202003626
crossref_primary_10_1039_D0CS00793E
crossref_primary_10_1039_C9MH01381D
crossref_primary_10_1016_j_cej_2023_143538
crossref_primary_10_1039_C8CC08307J
crossref_primary_10_1021_acs_chemmater_2c01726
crossref_primary_10_1039_D0SC04359A
crossref_primary_10_1002_adom_201902158
crossref_primary_10_1002_marc_202300678
crossref_primary_10_1039_D0CS00236D
Cites_doi 10.1038/nchem.695
10.1021/ja8096256
10.1021/ja9015765
10.1063/1.4754130
10.1039/C6PY00561F
10.1021/jacs.6b02700
10.1021/jacs.7b05182
10.1021/jacs.6b07516
10.1126/science.1139915
10.1039/C2CP23144A
10.1039/cs9770600063
10.1126/science.aal1585
10.1021/jacs.6b00652
10.1021/ja509602c
10.1021/jacs.6b09787
10.1038/nchem.548
10.1039/C5CS00878F
10.1021/jacs.7b07457
10.1038/nchem.2352
10.1038/srep08225
10.1126/science.aad4011
10.1039/C2CS35072F
10.1021/jacs.7b06599
10.1021/jacs.5b10754
10.1021/jacs.6b12885
10.1021/acscentsci.6b00220
10.1039/C5SC00512D
10.1021/ja0751781
10.1002/anie.200705710
10.1021/jacs.6b06546
10.1039/C5CS00543D
10.1038/s41570-017-0056
10.1016/j.cplett.2016.09.071
10.1126/science.1120411
10.1021/ja409421d
10.1088/0953-8984/21/39/395502
10.1021/ja4103293
10.1021/jacs.7b02696
10.1021/ja5092936
10.1039/c2cs35157a
10.1126/science.aaa8075
10.1038/nchem.2444
10.1038/ncomms12325
10.1021/jacs.7b03352
10.1103/PhysRevLett.92.246401
10.1021/jacs.6b07714
10.1088/0953-8984/22/2/022201
10.1126/science.aan0202
ContentType Journal Article
Copyright The Author(s) 2018
2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2018
– notice: 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-018-04769-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


PubMed
MEDLINE - Academic
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 9
ExternalDocumentID oai_doaj_org_article_b3890967d69b4abbae5d307da311618b
PMC5997983
29899332
10_1038_s41467_018_04769_6
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BAPOH
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-44e9682940a8cb0343e5d8ee42709f5fb186a0e1a7b61be096fc5df2af91bbf23
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 00:37:26 EDT 2025
Thu Aug 21 13:44:00 EDT 2025
Tue Aug 05 11:09:11 EDT 2025
Wed Aug 13 06:31:41 EDT 2025
Thu Apr 03 07:08:23 EDT 2025
Tue Jul 01 02:21:13 EDT 2025
Thu Apr 24 22:53:02 EDT 2025
Fri Feb 21 02:39:52 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-44e9682940a8cb0343e5d8ee42709f5fb186a0e1a7b61be096fc5df2af91bbf23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8231-0437
0000-0002-5640-9062
0000-0002-4153-0767
0000-0003-3199-7651
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-018-04769-6
PMID 29899332
PQID 2054857734
PQPubID 546298
PageCount 9
ParticipantIDs doaj_primary_oai_doaj_org_article_b3890967d69b4abbae5d307da311618b
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5997983
proquest_miscellaneous_2055617419
proquest_journals_2054857734
pubmed_primary_29899332
crossref_primary_10_1038_s41467_018_04769_6
crossref_citationtrail_10_1038_s41467_018_04769_6
springer_journals_10_1038_s41467_018_04769_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-06-13
PublicationDateYYYYMMDD 2018-06-13
PublicationDate_xml – month: 06
  year: 2018
  text: 2018-06-13
  day: 13
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2018
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Dalapati (CR18) 2013; 135
Wang (CR28) 2016; 138
Dalapati, Jin, Addicoat, Heine, Jiang (CR19) 2016; 138
CR12
Diercks, Yaghi (CR4) 2017; 355
Liu (CR16) 2016; 351
El-Kaderi (CR14) 2007; 316
Uribe-Romo (CR15) 2009; 131
Zhuang (CR11) 2016; 7
Ning (CR31) 2017; 139
Doonan, Tranchemontagne, Glover, Hunt, Yaghi (CR23) 2010; 2
Segura, Mancheno, Zamora (CR3) 2016; 45
Crowe, Baldwin, McGrier (CR39) 2016; 138
Zhao, Ji, Chen, Guo, Yang (CR41) 2012; 14
Slater, Cooper (CR5) 2015; 348
Hayashi, Hijikata, Page, Jiang, Irle (CR47) 2016; 664
Sun (CR30) 2017; 139
Côté (CR6) 2005; 310
Bessinger, Ascherl, Auras, Bein (CR36) 2017; 139
Xu, Gao, Jiang (CR26) 2015; 7
DeBlase, Silberstein, Truong, Abruña, Dichtel (CR32) 2013; 135
Mulzer (CR33) 2016; 2
Cote, El-Kaderi, Furukawa, Hunt, Yaghi (CR7) 2007; 129
Paolo (CR43) 2009; 21
Ding, Wang (CR2) 2013; 42
Das (CR21) 2015; 6
Chen (CR25) 2015; 137
Zhao (CR17) 2017; 139
Zhou, Xu, Wen, Pang, Zhao (CR37) 2014; 136
Auras (CR38) 2016; 138
Montoro (CR35) 2017; 139
Klimeš, Michaelides (CR45) 2012; 137
Xu, Ding, An, Wu, Wang (CR27) 2016; 138
Xu (CR34) 2015; 5
Ascherl (CR10) 2016; 8
Kuhn, Antonietti, Thomas (CR9) 2008; 47
Jin, Hu, Zhang (CR13) 2017; 1
Jiří, David, Angelos (CR46) 2010; 22
Huang (CR48) 2016; 7
Feng, Ding, Jiang (CR1) 2012; 41
Ding (CR20) 2016; 138
Pratt (CR40) 1977; 6
Furukawa, Yaghi (CR24) 2009; 131
Dion, Rydberg, Schröder, Langreth, Lundqvist (CR44) 2004; 92
Spitler, Dichtel (CR8) 2010; 2
Lin, Ding, Yuan, Wang, Wang (CR22) 2016; 138
Zhang, Han, Wu, Liu, Cui (CR29) 2017; 139
Padalkar, Seki (CR42) 2016; 45
Y Zhao (4769_CR17) 2017; 139
AC Pratt (4769_CR40) 1977; 6
X Feng (4769_CR1) 2012; 41
F Auras (4769_CR38) 2016; 138
P Kuhn (4769_CR9) 2008; 47
VS Padalkar (4769_CR42) 2016; 45
JW Crowe (4769_CR39) 2016; 138
JL Segura (4769_CR3) 2016; 45
AP Cote (4769_CR7) 2007; 129
S Dalapati (4769_CR18) 2013; 135
CR DeBlase (4769_CR32) 2013; 135
HS Xu (4769_CR27) 2016; 138
GH Ning (4769_CR31) 2017; 139
CS Diercks (4769_CR4) 2017; 355
N Huang (4769_CR48) 2016; 7
C Montoro (4769_CR35) 2017; 139
Y Jin (4769_CR13) 2017; 1
M Dion (4769_CR44) 2004; 92
K Jiří (4769_CR46) 2010; 22
J Zhang (4769_CR29) 2017; 139
4769_CR12
AG Slater (4769_CR5) 2015; 348
AP Côté (4769_CR6) 2005; 310
J Klimeš (4769_CR45) 2012; 137
SY Ding (4769_CR2) 2013; 42
G Lin (4769_CR22) 2016; 138
Y Liu (4769_CR16) 2016; 351
Q Sun (4769_CR30) 2017; 139
CJ Doonan (4769_CR23) 2010; 2
H Xu (4769_CR26) 2015; 7
D Bessinger (4769_CR36) 2017; 139
X Zhuang (4769_CR11) 2016; 7
SY Ding (4769_CR20) 2016; 138
CR Mulzer (4769_CR33) 2016; 2
X Chen (4769_CR25) 2015; 137
J Zhao (4769_CR41) 2012; 14
T Hayashi (4769_CR47) 2016; 664
X Wang (4769_CR28) 2016; 138
H Furukawa (4769_CR24) 2009; 131
TY Zhou (4769_CR37) 2014; 136
HM El-Kaderi (4769_CR14) 2007; 316
G Das (4769_CR21) 2015; 6
F Xu (4769_CR34) 2015; 5
FJ Uribe-Romo (4769_CR15) 2009; 131
EL Spitler (4769_CR8) 2010; 2
L Ascherl (4769_CR10) 2016; 8
S Dalapati (4769_CR19) 2016; 138
G Paolo (4769_CR43) 2009; 21
21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201
26492011 - Nat Chem. 2015 Nov;7(11):905-12
28254887 - Science. 2017 Mar 3;355(6328)
19496589 - J Am Chem Soc. 2009 Jul 1;131(25):8875-83
22193300 - Phys Chem Chem Phys. 2012 Jul 7;14(25):8803-17
21124483 - Nat Chem. 2010 Mar;2(3):235-8
24182194 - J Am Chem Soc. 2013 Nov 20;135(46):17310-3
28669183 - J Am Chem Soc. 2017 Jul 26;139(29):10079-10086
27460607 - Nat Commun. 2016 Jul 27;7:12325
27585120 - J Am Chem Soc. 2016 Sep 14;138(36):11489-92
28222608 - J Am Chem Soc. 2017 Feb 22;139(7):2786-2793
25706112 - J Am Chem Soc. 2015 Mar 11;137(9):3241-7
17431178 - Science. 2007 Apr 13;316(5822):268-72
22821129 - Chem Soc Rev. 2012 Sep 21;41(18):6010-22
28618776 - J Am Chem Soc. 2017 Jul 5;139(26):8897-8904
23020317 - J Chem Phys. 2012 Sep 28;137(12):120901
19281246 - J Am Chem Soc. 2009 Apr 8;131(13):4570-1
25360771 - J Am Chem Soc. 2014 Nov 12;136(45):15885-8
27725966 - ACS Cent Sci. 2016 Sep 28;2(9):667-673
20651731 - Nat Chem. 2010 Aug;2(8):672-7
17918943 - J Am Chem Soc. 2007 Oct 31;129(43):12914-5
23060270 - Chem Soc Rev. 2013 Jan 21;42(2):548-68
26506465 - Chem Soc Rev. 2016 Jan 7;45(1):169-202
27341661 - Chem Soc Rev. 2016 Oct 10;45(20):5635-5671
27490336 - J Am Chem Soc. 2016 Aug 17;138(32):10120-3
26926489 - J Am Chem Soc. 2016 Mar 16;138(10):3302-5
29218164 - Chem Sci. 2015 Jul 1;6(7):3931-3939
26878337 - J Am Chem Soc. 2016 Mar 9;138(9):3031-7
28829126 - J Am Chem Soc. 2017 Aug 30;139(34):12035-12042
25650133 - Sci Rep. 2015 Feb 04;5:8225
16293756 - Science. 2005 Nov 18;310(5751):1166-70
26023142 - Science. 2015 May 29;348(6238):aaa8075
24147596 - J Am Chem Soc. 2013 Nov 13;135(45):16821-4
28537721 - J Am Chem Soc. 2017 Jun 21;139(24):8277-8285
28845988 - J Am Chem Soc. 2017 Sep 20;139(37):13166-13172
15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401
27108740 - J Am Chem Soc. 2016 May 11;138(18):5797-800
26798010 - Science. 2016 Jan 22;351(6271):365-9
18330878 - Angew Chem Int Ed Engl. 2008;47(18):3450-3
27618953 - J Am Chem Soc. 2016 Sep 28;138(38):12332-5
27992179 - J Am Chem Soc. 2016 Dec 28;138(51):16703-16710
28818940 - Science. 2017 Aug 18;357(6352):673-676
References_xml – volume: 2
  start-page: 672
  year: 2010
  end-page: 677
  ident: CR8
  article-title: Lewis acid-catalysed formation of two-dimensional phthalocyanine covalent organic frameworks
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.695
– volume: 131
  start-page: 4570
  year: 2009
  end-page: 4571
  ident: CR15
  article-title: A crystalline imine-linked 3-D porous covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8096256
– volume: 131
  start-page: 8875
  year: 2009
  end-page: 8883
  ident: CR24
  article-title: Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9015765
– volume: 137
  start-page: 120901
  year: 2012
  ident: CR45
  article-title: Perspective: advances and challenges in treating van der Waals dispersion forces in density functional theory
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4754130
– volume: 7
  start-page: 4176
  year: 2016
  end-page: 4181
  ident: CR11
  article-title: A two-dimensional conjugated polymer framework with fully sp2-bonded carbon skeleton
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY00561F
– volume: 138
  start-page: 5797
  year: 2016
  end-page: 5800
  ident: CR19
  article-title: Highly emissive covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02700
– volume: 139
  start-page: 10079
  year: 2017
  end-page: 10086
  ident: CR35
  article-title: Ionic conductivity and potential application for fuel cell of a modified imine-based covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05182
– volume: 138
  start-page: 11489
  year: 2016
  end-page: 11492
  ident: CR27
  article-title: Constructing crystalline covalent organic frameworks from chiral building blocks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07516
– ident: CR12
– volume: 316
  start-page: 268
  year: 2007
  end-page: 272
  ident: CR14
  article-title: Designed synthesis of 3D covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1139915
– volume: 14
  start-page: 8803
  year: 2012
  end-page: 8817
  ident: CR41
  article-title: Excited state intramolecular proton transfer (ESIPT): from principal photophysics to the development of new chromophores and applications in fluorescent molecular probes and luminescent materials
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP23144A
– volume: 6
  start-page: 63
  year: 1977
  end-page: 81
  ident: CR40
  article-title: The photochemistry of imines
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9770600063
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: CR4
  article-title: The atom, the molecule, and the covalent organic framework
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 138
  start-page: 3302
  year: 2016
  end-page: 3305
  ident: CR22
  article-title: A pyrene-based, fluorescent three-dimensional covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00652
– volume: 137
  start-page: 3241
  year: 2015
  end-page: 3247
  ident: CR25
  article-title: Locking covalent organic frameworks with hydrogen bonds: general and remarkable effects on crystalline structure, physical properties, and photochemical activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509602c
– volume: 138
  start-page: 16703
  year: 2016
  end-page: 16710
  ident: CR38
  article-title: Synchronized offset stacking: a concept for growing large-domain and highly crystalline 2D covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09787
– volume: 2
  start-page: 235
  year: 2010
  end-page: 238
  ident: CR23
  article-title: Exceptional ammonia uptake by a covalent organic framework
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.548
– volume: 45
  start-page: 5635
  year: 2016
  end-page: 5671
  ident: CR3
  article-title: Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00878F
– volume: 139
  start-page: 13166
  year: 2017
  end-page: 13172
  ident: CR17
  article-title: A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07457
– volume: 7
  start-page: 905
  year: 2015
  end-page: 912
  ident: CR26
  article-title: Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2352
– volume: 5
  year: 2015
  ident: CR34
  article-title: Electrochemically active, crystalline, mesoporous covalent organic frameworks on carbon nanotubes for synergistic lithium-ion battery energy storage
  publication-title: Sci. Rep.
  doi: 10.1038/srep08225
– volume: 351
  start-page: 365
  year: 2016
  end-page: 369
  ident: CR16
  article-title: Weaving of organic threads into a crystalline covalent organic framework
  publication-title: Science
  doi: 10.1126/science.aad4011
– volume: 42
  start-page: 548
  year: 2013
  end-page: 568
  ident: CR2
  article-title: Covalent organic frameworks (COFs): from design to applications
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 139
  start-page: 12035
  year: 2017
  end-page: 12042
  ident: CR36
  article-title: Spectrally switchable photodetection with near-infrared-absorbing covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06599
– volume: 138
  start-page: 3031
  year: 2016
  end-page: 3037
  ident: CR20
  article-title: Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury(II)
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10754
– volume: 139
  start-page: 2786
  year: 2017
  end-page: 2793
  ident: CR30
  article-title: Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12885
– volume: 2
  start-page: 667
  year: 2016
  end-page: 673
  ident: CR33
  article-title: Superior charge storage and power density of a conducting polymer-modified covalent organic framework
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00220
– volume: 6
  start-page: 3931
  year: 2015
  end-page: 3939
  ident: CR21
  article-title: Chemical sensing in two dimensional porous covalent organic nanosheets
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00512D
– volume: 129
  start-page: 12914
  year: 2007
  end-page: 12915
  ident: CR7
  article-title: Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0751781
– volume: 47
  start-page: 3450
  year: 2008
  end-page: 3453
  ident: CR9
  article-title: Porous, covalent triazine-based frameworks prepared by ionothermal synthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 138
  start-page: 10120
  year: 2016
  end-page: 10123
  ident: CR39
  article-title: Luminescent covalent organic frameworks containing a homogeneous and heterogeneous distribution of dehydrobenzoannulene vertex units
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06546
– volume: 45
  start-page: 169
  year: 2016
  end-page: 202
  ident: CR42
  article-title: Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00543D
– volume: 1
  start-page: 0056
  year: 2017
  ident: CR13
  article-title: Tessellated multiporous two-dimensional covalent organic frameworks
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0056
– volume: 664
  start-page: 101
  year: 2016
  end-page: 107
  ident: CR47
  article-title: Theoretical analysis of structural diversity of covalent organic framework: stacking isomer structures thermodynamics and kinetics
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.09.071
– volume: 310
  start-page: 1166
  year: 2005
  end-page: 1170
  ident: CR6
  article-title: Porous, crystalline, covalent organic frameworks
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 135
  start-page: 16821
  year: 2013
  end-page: 16824
  ident: CR32
  article-title: β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409421d
– volume: 21
  start-page: 395502
  year: 2009
  ident: CR43
  article-title: QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 135
  start-page: 17310
  year: 2013
  end-page: 17313
  ident: CR18
  article-title: An azine-linked covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4103293
– volume: 139
  start-page: 8897
  year: 2017
  end-page: 8904
  ident: CR31
  article-title: Salicylideneanilines-based covalent organic frameworks as chemoselective molecular sieves
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02696
– volume: 136
  start-page: 15885
  year: 2014
  end-page: 15888
  ident: CR37
  article-title: One-step construction of two different kinds of pores in a 2D covalent organic framework
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5092936
– volume: 41
  start-page: 6010
  year: 2012
  end-page: 6022
  ident: CR1
  article-title: Covalent organic frameworks
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 348
  start-page: aaa8075
  year: 2015
  ident: CR5
  article-title: Function-led design of new porous materials
  publication-title: Science
  doi: 10.1126/science.aaa8075
– volume: 8
  start-page: 310
  year: 2016
  end-page: 316
  ident: CR10
  article-title: Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2444
– volume: 7
  start-page: 12325
  year: 2016
  ident: CR48
  article-title: Multiple-component covalent organic frameworks
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12325
– volume: 139
  start-page: 8277
  year: 2017
  end-page: 8285
  ident: CR29
  article-title: Multivariate chiral covalent organic frameworks with controlled crystallinity and stability for asymmetric catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03352
– volume: 92
  start-page: 246401
  year: 2004
  ident: CR44
  article-title: Van der Waals density functional for general geometries
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 138
  start-page: 12332
  year: 2016
  end-page: 12335
  ident: CR28
  article-title: Homochiral 2D porous covalent organic frameworks for heterogeneous asymmetric catalysis
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07714
– volume: 22
  start-page: 022201
  year: 2010
  ident: CR46
  article-title: Chemical accuracy for the van der Waals density functional
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/2/022201
– volume: 138
  start-page: 11489
  year: 2016
  ident: 4769_CR27
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07516
– volume: 139
  start-page: 13166
  year: 2017
  ident: 4769_CR17
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07457
– volume: 139
  start-page: 2786
  year: 2017
  ident: 4769_CR30
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12885
– volume: 6
  start-page: 63
  year: 1977
  ident: 4769_CR40
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9770600063
– volume: 7
  start-page: 4176
  year: 2016
  ident: 4769_CR11
  publication-title: Polym. Chem.
  doi: 10.1039/C6PY00561F
– volume: 135
  start-page: 16821
  year: 2013
  ident: 4769_CR32
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja409421d
– volume: 45
  start-page: 169
  year: 2016
  ident: 4769_CR42
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00543D
– volume: 6
  start-page: 3931
  year: 2015
  ident: 4769_CR21
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC00512D
– volume: 310
  start-page: 1166
  year: 2005
  ident: 4769_CR6
  publication-title: Science
  doi: 10.1126/science.1120411
– volume: 348
  start-page: aaa8075
  year: 2015
  ident: 4769_CR5
  publication-title: Science
  doi: 10.1126/science.aaa8075
– volume: 22
  start-page: 022201
  year: 2010
  ident: 4769_CR46
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/22/2/022201
– volume: 21
  start-page: 395502
  year: 2009
  ident: 4769_CR43
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/0953-8984/21/39/395502
– volume: 131
  start-page: 4570
  year: 2009
  ident: 4769_CR15
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja8096256
– volume: 139
  start-page: 10079
  year: 2017
  ident: 4769_CR35
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b05182
– volume: 2
  start-page: 672
  year: 2010
  ident: 4769_CR8
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.695
– volume: 351
  start-page: 365
  year: 2016
  ident: 4769_CR16
  publication-title: Science
  doi: 10.1126/science.aad4011
– ident: 4769_CR12
  doi: 10.1126/science.aan0202
– volume: 355
  start-page: eaal1585
  year: 2017
  ident: 4769_CR4
  publication-title: Science
  doi: 10.1126/science.aal1585
– volume: 8
  start-page: 310
  year: 2016
  ident: 4769_CR10
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2444
– volume: 47
  start-page: 3450
  year: 2008
  ident: 4769_CR9
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200705710
– volume: 7
  start-page: 905
  year: 2015
  ident: 4769_CR26
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2352
– volume: 5
  year: 2015
  ident: 4769_CR34
  publication-title: Sci. Rep.
  doi: 10.1038/srep08225
– volume: 41
  start-page: 6010
  year: 2012
  ident: 4769_CR1
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35157a
– volume: 139
  start-page: 8277
  year: 2017
  ident: 4769_CR29
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b03352
– volume: 138
  start-page: 5797
  year: 2016
  ident: 4769_CR19
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b02700
– volume: 14
  start-page: 8803
  year: 2012
  ident: 4769_CR41
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C2CP23144A
– volume: 92
  start-page: 246401
  year: 2004
  ident: 4769_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.246401
– volume: 664
  start-page: 101
  year: 2016
  ident: 4769_CR47
  publication-title: Chem. Phys. Lett.
  doi: 10.1016/j.cplett.2016.09.071
– volume: 139
  start-page: 12035
  year: 2017
  ident: 4769_CR36
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b06599
– volume: 129
  start-page: 12914
  year: 2007
  ident: 4769_CR7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0751781
– volume: 2
  start-page: 667
  year: 2016
  ident: 4769_CR33
  publication-title: ACS Cent. Sci.
  doi: 10.1021/acscentsci.6b00220
– volume: 1
  start-page: 0056
  year: 2017
  ident: 4769_CR13
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-017-0056
– volume: 138
  start-page: 10120
  year: 2016
  ident: 4769_CR39
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06546
– volume: 2
  start-page: 235
  year: 2010
  ident: 4769_CR23
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.548
– volume: 42
  start-page: 548
  year: 2013
  ident: 4769_CR2
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35072F
– volume: 138
  start-page: 12332
  year: 2016
  ident: 4769_CR28
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07714
– volume: 138
  start-page: 3302
  year: 2016
  ident: 4769_CR22
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b00652
– volume: 7
  start-page: 12325
  year: 2016
  ident: 4769_CR48
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12325
– volume: 45
  start-page: 5635
  year: 2016
  ident: 4769_CR3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00878F
– volume: 138
  start-page: 3031
  year: 2016
  ident: 4769_CR20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10754
– volume: 139
  start-page: 8897
  year: 2017
  ident: 4769_CR31
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b02696
– volume: 135
  start-page: 17310
  year: 2013
  ident: 4769_CR18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4103293
– volume: 316
  start-page: 268
  year: 2007
  ident: 4769_CR14
  publication-title: Science
  doi: 10.1126/science.1139915
– volume: 137
  start-page: 120901
  year: 2012
  ident: 4769_CR45
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.4754130
– volume: 137
  start-page: 3241
  year: 2015
  ident: 4769_CR25
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja509602c
– volume: 138
  start-page: 16703
  year: 2016
  ident: 4769_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b09787
– volume: 131
  start-page: 8875
  year: 2009
  ident: 4769_CR24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja9015765
– volume: 136
  start-page: 15885
  year: 2014
  ident: 4769_CR37
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5092936
– reference: 26023142 - Science. 2015 May 29;348(6238):aaa8075
– reference: 21386245 - J Phys Condens Matter. 2010 Jan 20;22(2):022201
– reference: 28222608 - J Am Chem Soc. 2017 Feb 22;139(7):2786-2793
– reference: 27460607 - Nat Commun. 2016 Jul 27;7:12325
– reference: 20651731 - Nat Chem. 2010 Aug;2(8):672-7
– reference: 25650133 - Sci Rep. 2015 Feb 04;5:8225
– reference: 25706112 - J Am Chem Soc. 2015 Mar 11;137(9):3241-7
– reference: 28818940 - Science. 2017 Aug 18;357(6352):673-676
– reference: 25360771 - J Am Chem Soc. 2014 Nov 12;136(45):15885-8
– reference: 18330878 - Angew Chem Int Ed Engl. 2008;47(18):3450-3
– reference: 26492011 - Nat Chem. 2015 Nov;7(11):905-12
– reference: 19496589 - J Am Chem Soc. 2009 Jul 1;131(25):8875-83
– reference: 23020317 - J Chem Phys. 2012 Sep 28;137(12):120901
– reference: 27585120 - J Am Chem Soc. 2016 Sep 14;138(36):11489-92
– reference: 15245113 - Phys Rev Lett. 2004 Jun 18;92(24):246401
– reference: 23060270 - Chem Soc Rev. 2013 Jan 21;42(2):548-68
– reference: 27618953 - J Am Chem Soc. 2016 Sep 28;138(38):12332-5
– reference: 27108740 - J Am Chem Soc. 2016 May 11;138(18):5797-800
– reference: 27341661 - Chem Soc Rev. 2016 Oct 10;45(20):5635-5671
– reference: 26926489 - J Am Chem Soc. 2016 Mar 16;138(10):3302-5
– reference: 21124483 - Nat Chem. 2010 Mar;2(3):235-8
– reference: 28618776 - J Am Chem Soc. 2017 Jul 5;139(26):8897-8904
– reference: 16293756 - Science. 2005 Nov 18;310(5751):1166-70
– reference: 28669183 - J Am Chem Soc. 2017 Jul 26;139(29):10079-10086
– reference: 17431178 - Science. 2007 Apr 13;316(5822):268-72
– reference: 28254887 - Science. 2017 Mar 3;355(6328):
– reference: 26798010 - Science. 2016 Jan 22;351(6271):365-9
– reference: 24147596 - J Am Chem Soc. 2013 Nov 13;135(45):16821-4
– reference: 26878337 - J Am Chem Soc. 2016 Mar 9;138(9):3031-7
– reference: 27992179 - J Am Chem Soc. 2016 Dec 28;138(51):16703-16710
– reference: 28845988 - J Am Chem Soc. 2017 Sep 20;139(37):13166-13172
– reference: 17918943 - J Am Chem Soc. 2007 Oct 31;129(43):12914-5
– reference: 26506465 - Chem Soc Rev. 2016 Jan 7;45(1):169-202
– reference: 19281246 - J Am Chem Soc. 2009 Apr 8;131(13):4570-1
– reference: 29218164 - Chem Sci. 2015 Jul 1;6(7):3931-3939
– reference: 22193300 - Phys Chem Chem Phys. 2012 Jul 7;14(25):8803-17
– reference: 27725966 - ACS Cent Sci. 2016 Sep 28;2(9):667-673
– reference: 28829126 - J Am Chem Soc. 2017 Aug 30;139(34):12035-12042
– reference: 21832390 - J Phys Condens Matter. 2009 Sep 30;21(39):395502
– reference: 24182194 - J Am Chem Soc. 2013 Nov 20;135(46):17310-3
– reference: 22821129 - Chem Soc Rev. 2012 Sep 21;41(18):6010-22
– reference: 28537721 - J Am Chem Soc. 2017 Jun 21;139(24):8277-8285
– reference: 27490336 - J Am Chem Soc. 2016 Aug 17;138(32):10120-3
SSID ssj0000391844
Score 2.6485841
Snippet Most two-dimensional (2D) covalent organic frameworks (COFs) are non-fluorescent in the solid state even when they are constructed from emissive building...
Encoding functionalities in covalent organic frameworks (COFs) is important for widening their application field but the development of fluorescent COFs is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2335
SubjectTerms 119/118
140/131
140/58
147/135
147/143
639/301/357/537
639/301/923/3931
639/638/455/960
Chemical bonds
Emissivity
Emitters
Energy dissipation
Fluorescence
Humanities and Social Sciences
Hydrogen bonding
Hydrogen bonds
Interlayers
multidisciplinary
Photoluminescence
Photons
Rotation
Science
Science (multidisciplinary)
Solid state
Stacking
Thermal energy
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Na9wwEB1CoJBLadq0dZIWF3pLRCzr-9iWhqXQnhLITUiyRAvFW7K7hP77jiTvJtuvXHIy2LI9vBlpnpD0BuBtompA4hEIpmpBOOsp8VwoQiNXPrpEQyk28fmLnF3yT1fi6k6pr7wnrMoDV-DOPGZUpNlqkMZz572LYsC4HByjWevd59EXc96dyVQZg5nBqQufTsl0TJ8teBkTOqpJx5U0RG5loiLY_zeW-edmyd9WTEsiOn8CjycG2b6rlu_DThyfwqNaU_LnM5hdrMaYz0O1eLlub_IyAclF3fI-9XZ5MydDFvSvYhxtmGOk4S_bWt0ptGm9WWtxAJfnHy8-zMhULoEEnIUsCefRSN0b3jkdfMc4Q6h0jLxXnUkieaql6yJ1ykvqI4KaghhS75Kh3qeePYfdcT7Gl9AGhCmIrDTlAzK2ZLQwJjnJPPU0yq4BuobOhklLPJe0-G7LmjbTtsJt8Tu2wG1lAyebd35UJY3_tn6fPbJpmVWwyw2Ew06xYe-LjQaO1_60U9dc2B5JqhZKMd7Am81jdENeKXFjnK9KG-SVSLZMAy-q-zeWZMl6w1jfgNoKjC1Tt5-M374W4W4EURnNGjhdh9CtWf-G4vAhoDiCvb7EfladPIbd5fUqvkI6tfSvS8_5Bcc8Gj4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1bi9UwEB50RfBFvNt1lQq-abBp7k-i4vEg6NMu7FtI0gQFadc957D473eSXpbjZZ8KbdomM5PkS2byDcCrRFWHwCMQnKoF4aylxHOhCI1c-egSDSXZxNdvcn3Cv5yK02nDbTOFVc5jYhmouyHkPXJcpCO2Fkox_u7sF8lZo7J3dUqhcRNuUZxpckiXXn1e9lgy-7nmfDor0zD9dsPLyNBQTRqupCFybz4qtP3_wpp_h0z-4Tct09HqHtydcGT9flT8fbgR-wdwe8ws-fshrI93fcynomq8nNcX2VlAcmq3HK1eby8G0mVa_5GSow4D2hv-sh5zPIU6zSFbm0dwsvp0_HFNpqQJJOBaZEs4j0bq1vDG6eAbxlkUnY6Rt6oxSSRPtXRNpE55SX3EFUwKokutS4Z6n1r2GA76oY9PoQ4opiAy35QPiNuS0cKY5CTz1NMomwroLDobJkbxnNjipy2ebabtKG6L37FF3FZW8Hp552zk07i29IeskaVk5sIuN1Acdupa1iPmwmaoThrPnfcOG4wjV-cYzdkAfAVHsz7t1EE39sqcKni5PEY1ZH-J6-OwK2UQXSLkMhU8GdW_1CQT1xvG2grUnmHsVXX_Sf_je6HvRiEqo1kFb2YTuqrW_0VxeH0rnsGdtlh1ZpU8goPt-S4-R7i09S9Kn7gEGsYRtA
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qi-CL-O22VVbwTYObj83H4ymW40BfbKFvIckmKMhe6d1R_O-dZD_ktAo-Lewmu8nMJPllZ_IbgNeJqg6BRyC4VLdEcEaJF60iNArlo0s0lGQTnz7L5YVYXbaXB8CmszAlaL9QWpZpeooOe7cRZUg3VJNGKGmIvANHmaodbftosVh9Wc1_VjLnuRZiPCHTcH1L5b1VqJD134Yw_wyU_M1bWhahswdwf0SP9WJo70M4iP0juDvkk_zxGJbnuz7ms1A1Xq7rm-wiIDmhW45Rr7c3a9JlMv-BiKMOa7Qy_GQ9ZHYKdZoCtTZP4OLs4_mHJRlTJZCAO5AtESIaqZkRjdPBN1zw2HY6RsFUY1KbPNXSNZE65SX1EfctKbRdYi4Z6n1i_Ckc9us-Poc6oJhCm1mmfEC0loxujUlOck89jbKpgE6is2HkEc_pLL7b4s_m2g7itvgeW8RtZQVv5jpXA4vGP0u_zxqZS2YG7HIDxWFHi7AekRZ2Q3XSeOG8d9hhnK86x2nOAeArOJ30acdhubEMAapuleKiglfzY1RD9pK4Pq53pQxiSgRapoJng_rnlmS6esM5q0DtGcZeU_ef9N--FtJuFKIymlfwdjKhX836uyiO_6_4Cdxjxcozt-QpHG6vd_EFgqatfzmOkp8StBDr
  priority: 102
  providerName: Springer Nature
Title Tuneable near white-emissive two-dimensional covalent organic frameworks
URI https://link.springer.com/article/10.1038/s41467-018-04769-6
https://www.ncbi.nlm.nih.gov/pubmed/29899332
https://www.proquest.com/docview/2054857734
https://www.proquest.com/docview/2055617419
https://pubmed.ncbi.nlm.nih.gov/PMC5997983
https://doaj.org/article/b3890967d69b4abbae5d307da311618b
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1bi9QwGP3YC4Iv4t3qOlTwTaNNk-byIDI77DgM7CK6A_NWmjRBYenoXFj33_slbUdGR598aaFN2_TkS3PSJOcAvPRU1kg8LMGmuiCc5ZQYXkhCHZfGVZ7aaDZxfiEmMz6dF_MD6O2OOgBXe7t2wU9qtrx68-P7zXus8O_aJePq7YrH6p5RRTIuhSbiEI6xZZLB0eC8o_vxy8w0dmh4t3Zm_6U77VOU8d_HPf-cQvnbOGpsnsZ34U7HK9NhGwj34MA19-FW6zR58wAml5vGhVVSKe6W6XUYPCDB6i3MXk_X1wtSB5n_VqIjtQuMP3xk2no-2dT3U7hWD2E2PrscTUhnokAs9k3WhHOnhco1zyplTcY4c0WtnOO5zLQvvKFKVJmjlTSCGoc9Gm-L2ueV19QYn7NHcNQsGvcEUosw2SLoTxmLPM5rVWjtK8EMNdSJLAHaQ1faTmE8GF1clXGkm6myhbvE-5QR7lIk8Gp7zbdWX-OfqU9DiWxTBm3seADhKLuqVhrkYPgashba8MqYCl8Yv2R1xWhwBzAJnPTlWfbxVuZIXVUhJeMJvNiexmII4ydV4xabmAbZJlIwncDjtvi3OQlC9pqxPAG5Exg7Wd0903z9EuW8EUSpFUvgdR9Cv7L1dyie_g8onsHtPMZ-0KI8gaP1cuOeI8lamwEcyrnErRp_GMDxcDj9PMX96dnFx094dCRGg_j7YhBr2E-hJSi2
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwEB6tFiG4IN4EFggSnMAijh07PiDEq3TZx6kr7c3Yji2QULJsW1X7p_iNjJ2kq_LY254qNU5rz4zHXzL29wE8D1Q2CDwcwaW6IpyVlFheSUI9l9abQF0Smzg4FNMj_uW4Ot6CX-NZmLitcsyJKVE3nYvvyPEhHbF1JSXjb09-kqgaFauro4RGHxZ7_myFj2zzN7sf0b8vynLyafZhSgZVAeIQrC8I516JulS8MLWzBePMV03tPS9loUIVLK2FKTw10gpqPUL84KomlCYoam2IRAeY8q9whit5PJk--bx-pxPZ1mvOh7M5Batfz3nKRAWtScGlUERsrH9JJuBf2PbvLZp_1GnT8je5CTcG3Jq_6wPtFmz59jZc7ZUsz-7AdLZsfTyFlePHab6KxQkSpeTi7vh8sepIE2UEegqQ3HUY3_iXea8p5fIwbhGb34WjSzHnPdhuu9Y_gNyhmVwV-a2sQ5wYVF0pFYxgllrqRZEBHU2n3cBgHoU0fuhUSWe17s2t8Xd0MrcWGbxc33PS83dc2Pp99Mi6ZeTeTl-gOfQwlbVFjIfDkI1QlhtrDQ4YM2VjGI3qAzaDndGfekgIc30evhk8W19GN8T6jGl9t0xtEM0ixFMZ3O_dv-5JJMpXjJUZyI3A2Ojq5pX2-7dEF45GlKpmGbwaQ-i8W_83xcOLR_EUrk1nB_t6f_dw7xFcL1OER0bLHdhenC79Y4RqC_skzY8cvl72hPwN8ttPJg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VW4G4IN4NFAgSnMBqHDuxfUCI0q62FFYVaqXeTOzYAgklpburVf8av46xk2y1PHrraaXEydoz4_HnzHg-gJeeihqBhyW4VBeEs5wSwwtBqOPCuMpTG8kmPk_LyQn_eFqcbsCv4SxMSKscfGJ01HVrwzdy3KQjti6EYHzH92kRR3vjd2c_SWCQCpHWgU6jM5FDd7HE7dvs7cEe6vpVno_3jz9MSM8wQCwC9znh3KlS5opnlbQmY5y5opbO8VxkyhfeUFlWmaOVMCU1DuG-t0Xt88oraowPRQ_Q_W-KsCsawebu_vToy-oLT6i9LjnvT-pkTO7MePRLGZUk46JUpFxbDSNpwL-Q7t8Jm39EbeNiOL4Dt3sUm77vzO4ubLjmHtzoeC0v7sPkeNG4cCYrxZ_zdBlCFSQQy4Vc-XS-bEkdSAW6giCpbdHa8S_TjmHKpn5IGJs9gJNrEehDGDVt47YgtSgmW4RqV8YiavRKFkr5qmSGGurKLAE6iE7bvp55oNX4oWNcnUndiVvje3QUty4TeL165qyr5nFl692gkVXLUIk7XkBx6H5ia4OID4ch6lIZXhlT4YDRb9YVo4GLwCSwPehT9-5hpi-NOYEXq9uohhCtqRrXLmIbxLYI-FQCjzr1r3oSyuYrxvIExJphrHV1_U7z_VssHo5CFEqyBN4MJnTZrf-L4vHVo3gON3Ey6k8H08MncCuPBh7KW27DaH6-cE8Rt83Ns36CpPD1uufkbzatVLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tuneable+near+white-emissive+two-dimensional+covalent+organic+frameworks&rft.jtitle=Nature+communications&rft.au=Xing+Li&rft.au=Qiang+Gao&rft.au=Juefan+Wang&rft.au=Yifeng+Chen&rft.date=2018-06-13&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=9&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.1038%2Fs41467-018-04769-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b3890967d69b4abbae5d307da311618b
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon