Piezoelectricity in hafnia

Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 7301 - 10
Main Authors Dutta, Sangita, Buragohain, Pratyush, Glinsek, Sebastjan, Richter, Claudia, Aramberri, Hugo, Lu, Haidong, Schroeder, Uwe, Defay, Emmanuel, Gruverman, Alexei, Íñiguez, Jorge
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 15.12.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-021-27480-5

Cover

Loading…
Abstract Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. HfO 2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO 2 , predicting on how to reverse its sign by means of a biaxial strain.
AbstractList Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO ) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.HfO2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO2, predicting on how to reverse its sign by means of a biaxial strain.
HfO2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO2, predicting on how to reverse its sign by means of a biaxial strain.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. HfO 2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO 2 , predicting on how to reverse its sign by means of a biaxial strain.
Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
ArticleNumber 7301
Author Buragohain, Pratyush
Aramberri, Hugo
Schroeder, Uwe
Gruverman, Alexei
Glinsek, Sebastjan
Íñiguez, Jorge
Dutta, Sangita
Lu, Haidong
Defay, Emmanuel
Richter, Claudia
Author_xml – sequence: 1
  givenname: Sangita
  orcidid: 0000-0002-8261-3307
  surname: Dutta
  fullname: Dutta, Sangita
  email: sangita.dutta@list.lu
  organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Department of Physics and Materials Science, University of Luxembourg
– sequence: 2
  givenname: Pratyush
  orcidid: 0000-0001-6744-3082
  surname: Buragohain
  fullname: Buragohain, Pratyush
  organization: Department of Physics and Astronomy, University of Nebraska-Lincoln
– sequence: 3
  givenname: Sebastjan
  orcidid: 0000-0002-5614-0825
  surname: Glinsek
  fullname: Glinsek, Sebastjan
  organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology
– sequence: 4
  givenname: Claudia
  surname: Richter
  fullname: Richter, Claudia
  organization: NaMLab gGmbH
– sequence: 5
  givenname: Hugo
  orcidid: 0000-0003-2216-8931
  surname: Aramberri
  fullname: Aramberri, Hugo
  organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology
– sequence: 6
  givenname: Haidong
  surname: Lu
  fullname: Lu, Haidong
  organization: Department of Physics and Astronomy, University of Nebraska-Lincoln
– sequence: 7
  givenname: Uwe
  orcidid: 0000-0002-6824-2386
  surname: Schroeder
  fullname: Schroeder, Uwe
  organization: NaMLab gGmbH
– sequence: 8
  givenname: Emmanuel
  surname: Defay
  fullname: Defay, Emmanuel
  organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology
– sequence: 9
  givenname: Alexei
  orcidid: 0000-0003-0492-2750
  surname: Gruverman
  fullname: Gruverman, Alexei
  email: agruverman2@unl.edu
  organization: Department of Physics and Astronomy, University of Nebraska-Lincoln
– sequence: 10
  givenname: Jorge
  orcidid: 0000-0001-6435-3604
  surname: Íñiguez
  fullname: Íñiguez, Jorge
  email: jorge.iniguez@list.lu
  organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Department of Physics and Materials Science, University of Luxembourg
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34911930$$D View this record in MEDLINE/PubMed
BookMark eNp9kcFPHCEUxkljU-3Wf8BDY9KLl2mBxzDDpUljtDUxaQ96Jg8GVjazYGG2if3rZXesVQ9ygcD3_Xjvfe_JXkzREXLE6GdGof9SBBOyayhnDe9ET5v2DTngVLCGdRz2npz3yWEpK1oXKNYL8Y7sg1CMKaAH5OhXcH-TG52dcrBhujsO8fgGfQz4gbz1OBZ3-LAvyPX52dXpj-by5_eL02-XjZVUTo0Qg-CdQmgN-AGsHBB7GLzkEjxVilO0jAOYtmoc4OBRourQtNL36FtYkIuZOyRc6dsc1pjvdMKgdxcpLzXmKdjRaWmAcjSDsWiE5F4xzpFBpYGtRFNZX2fW7cas3WBdnDKOz6DPX2K40cv0R_eyq12wCjh5AOT0e-PKpNehWDeOGF3aFM0lo4oqqHNdkE8vpKu0ybGOaqfiINteVNXHpxU9lvIvgirgs8DmVEp2_lHCqN5GreeodY1a76LW25n1L0w1O5xC2nYVxtetMFtL_ScuXf5f9iuue1z4u3g
CitedBy_id crossref_primary_10_1016_j_mssp_2024_108558
crossref_primary_10_1021_acs_cgd_2c00854
crossref_primary_10_1039_D4TC02881C
crossref_primary_10_1021_acs_nanolett_4c06671
crossref_primary_10_1063_5_0228932
crossref_primary_10_1016_j_apmt_2022_101394
crossref_primary_10_1038_s41467_023_44207_w
crossref_primary_10_1021_acs_nanolett_4c01943
crossref_primary_10_1016_j_cocom_2024_e00933
crossref_primary_10_1063_5_0148068
crossref_primary_10_1063_5_0129546
crossref_primary_10_1039_D4NR03333G
crossref_primary_10_1038_s41524_024_01344_0
crossref_primary_10_1021_acsami_3c11141
crossref_primary_10_1155_2023_3074782
crossref_primary_10_1038_s41563_023_01507_2
crossref_primary_10_1063_5_0180064
crossref_primary_10_1038_s41467_024_44690_9
crossref_primary_10_1103_PhysRevLett_131_256801
crossref_primary_10_1007_s42765_024_00406_8
crossref_primary_10_1016_j_actamat_2024_120590
crossref_primary_10_1002_aelm_202400686
crossref_primary_10_1016_j_cjph_2024_07_023
crossref_primary_10_1073_pnas_2312571121
crossref_primary_10_1038_s41524_024_01354_y
crossref_primary_10_1103_PhysRevB_110_094306
crossref_primary_10_1002_adfm_202410675
crossref_primary_10_3390_nano12071232
crossref_primary_10_1007_s11433_023_2102_8
crossref_primary_10_1016_j_jpcs_2023_111773
crossref_primary_10_1021_acs_nanolett_3c00083
crossref_primary_10_1016_j_jmat_2024_05_012
crossref_primary_10_1103_PhysRevB_107_144107
crossref_primary_10_1063_5_0188897
crossref_primary_10_1103_PhysRevB_108_235423
crossref_primary_10_1016_j_jallcom_2024_178077
crossref_primary_10_1103_PhysRevApplied_18_054066
crossref_primary_10_1103_PhysRevLett_131_226802
crossref_primary_10_1038_s41524_024_01352_0
crossref_primary_10_1103_PhysRevB_107_094108
crossref_primary_10_1021_acsami_2c09828
crossref_primary_10_1039_D3TC01145C
crossref_primary_10_1103_PhysRevB_111_064106
crossref_primary_10_1039_D4MH00876F
crossref_primary_10_1039_D3CP01717F
crossref_primary_10_1063_5_0239212
crossref_primary_10_1016_j_cclet_2024_110533
crossref_primary_10_1002_aelm_202300522
crossref_primary_10_1016_j_ceramint_2024_03_066
crossref_primary_10_1088_1367_2630_ad2fff
crossref_primary_10_1038_s43246_023_00421_z
crossref_primary_10_1038_s41928_023_00999_9
crossref_primary_10_1002_admi_202102528
crossref_primary_10_1080_15421406_2024_2403914
crossref_primary_10_1039_D4QI01558D
crossref_primary_10_1002_adma_202206237
crossref_primary_10_1002_jnm_3273
crossref_primary_10_1360_TB_2023_0400
crossref_primary_10_1002_aelm_202201298
crossref_primary_10_1002_adfm_202303636
crossref_primary_10_1016_j_apmt_2022_101708
crossref_primary_10_1103_PhysRevB_110_184109
crossref_primary_10_3390_nano12091483
Cites_doi 10.1063/1.3634052
10.1103/PhysRevB.54.11169
10.1103/PhysRevB.88.085117
10.1038/ncomms12136
10.1007/BF01507527
10.1103/PhysRevB.13.5188
10.1103/PhysRevB.65.233106
10.1126/science.abd1212
10.1103/PhysRevB.72.035105
10.1126/science.aba0067
10.1103/PhysRevMaterials.5.064405
10.1063/1.4879283
10.1103/PhysRevB.50.17953
10.1103/PhysRevB.59.1758
10.1021/nl200221z
10.1002/pssr.202000047
10.1103/PhysRevApplied.12.034032
10.1111/j.1551-2916.2009.03061.x
10.1016/j.cpc.2019.107042
10.1038/s41578-019-0089-0
10.1103/PhysRevLett.125.197601
10.1007/s10853-005-5925-5
10.1038/nmat4423
10.1002/aelm.201900303
10.1063/1.339293
10.1021/nl302049k
10.1109/MSPEC.2007.4337663
10.1038/s41563-020-00897-x
10.1103/PhysRevB.90.064111
10.1103/PhysRevLett.100.136406
10.1063/1.2214699
10.1039/c1cs15098g
10.1021/acsaelm.8b00046
10.1103/PhysRevB.90.140103
10.1063/1.1371002
10.1021/cr900053k
10.1063/5.0038744
10.1143/JJAP.29.675
10.1021/acs.inorgchem.7b03149
10.1007/978-3-540-68683-5
10.1002/pssr.201900626
10.1007/978-3-642-60293-1
10.1038/s41467-019-09650-8
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-021-27480-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection (ProQuest)
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Proquest Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Collection (ProQuest)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database (ProQuest)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
PubMed
Publicly Available Content Database


CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_6b302abdbcab462f9122a1397a3c7abb
PMC8674271
34911930
10_1038_s41467_021_27480_5
Genre Journal Article
GrantInformation_xml – fundername: Luxembourg National Research Fund, grant PRIDE/15/10935404
– fundername: ;
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-44d4279a35b3fd3c6daa83df6263f09920ac1233b59a3e3adfa6a97ab56f8af53
IEDL.DBID DOA
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:03 EDT 2025
Thu Aug 21 14:09:52 EDT 2025
Fri Jul 11 04:19:24 EDT 2025
Wed Aug 13 09:13:38 EDT 2025
Wed Feb 19 02:27:41 EST 2025
Thu Apr 24 23:07:31 EDT 2025
Tue Jul 01 04:17:41 EDT 2025
Fri Feb 21 02:39:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-44d4279a35b3fd3c6daa83df6263f09920ac1233b59a3e3adfa6a97ab56f8af53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-6744-3082
0000-0002-8261-3307
0000-0002-5614-0825
0000-0003-2216-8931
0000-0001-6435-3604
0000-0002-6824-2386
0000-0003-0492-2750
OpenAccessLink https://doaj.org/article/6b302abdbcab462f9122a1397a3c7abb
PMID 34911930
PQID 2610236584
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_6b302abdbcab462f9122a1397a3c7abb
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8674271
proquest_miscellaneous_2610909372
proquest_journals_2610236584
pubmed_primary_34911930
crossref_primary_10_1038_s41467_021_27480_5
crossref_citationtrail_10_1038_s41467_021_27480_5
springer_journals_10_1038_s41467_021_27480_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-15
PublicationDateYYYYMMDD 2021-12-15
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-15
  day: 15
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Müller (CR3) 2012; 12
Noheda, Íñiguez (CR10) 2020; 369
Haun, Furman, Jang, McKinstry, Cross (CR23) 1987; 62
Schenk (CR34) 2019; 5
Blöchl (CR42) 1994; 50
Furukawa, Seo (CR31) 1990; 29
Jesse, Lee, Kalinin (CR30) 2006; 77
Damjanovic, Budimir, Davis, Setter (CR25) 2006; 41
Dutta, Aramberri, Schenk, Íñiguez (CR19) 2020; 14
Hamann (CR45) 2013; 88
Liu, Liu, Liu, Hanrahan, Pantelides (CR13) 2019; 12
CR11
Hong (CR28) 2021; 129
Íñiguez, Zubko, Luk’yanchuk, Cano (CR4) 2019; 4
Wu, Vanderbilt, Hamann (CR22) 2005; 72
Böscke, Müller, Bräuhaus, Schröder, Böttger (CR2) 2011; 99
Huan, Sharma, Rossetti, Ramprasad (CR18) 2014; 90
Chouprik (CR35) 2019; 1
Schroeder (CR46) 2018; 57
Kvasov (CR24) 2016; 7
Kholkin, Akdogan, Safari, Chauvy, Setter (CR29) 2001; 89
Bohr, Chau, Ghani, Mistry (CR1) 2007; 44
Xu (CR12) 2021; 20
Kresse, Joubert (CR40) 1999; 59
Kresse, Furthmüller (CR39) 1996; 54
CR5
Liu, Liu, Yang, Liu (CR14) 2020; 125
Sharma, Reece, Ducharme, Gruverman (CR16) 2011; 11
Perdew (CR41) 2008; 100
CR27
Monkhorst, Pack (CR43) 1976; 13
CR26
Brown (CR37) 2009; 109
Gonze (CR44) 2020; 248
Reyes-Lillo, Garrity, Rabe (CR7) 2014; 90
CR21
CR20
Starschich, Griesche, Schneller, Waser, Böttger (CR33) 2014; 104
Delodovici, Barone, Picozzi (CR8) 2021; 5
Katsouras (CR17) 2016; 15
Goldschmidt (CR36) 1926; 21
Lee (CR9) 2020; 369
Zhao, Vanderbilt (CR6) 2002; 65
Roedel (CR15) 2009; 92
Walsh, Payne, Egdell, Watson (CR38) 2011; 40
Böscke, Müller, Bräuhaus, Schröder, Böttger (CR32) 2011; 99
TD Huan (27480_CR18) 2014; 90
S Starschich (27480_CR33) 2014; 104
J Íñiguez (27480_CR4) 2019; 4
27480_CR26
TS Böscke (27480_CR32) 2011; 99
27480_CR27
X Zhao (27480_CR6) 2002; 65
P Sharma (27480_CR16) 2011; 11
S Jesse (27480_CR30) 2006; 77
HJ Monkhorst (27480_CR43) 1976; 13
27480_CR5
27480_CR20
J Roedel (27480_CR15) 2009; 92
27480_CR21
G Kresse (27480_CR40) 1999; 59
PE Blöchl (27480_CR42) 1994; 50
X Gonze (27480_CR44) 2020; 248
X Xu (27480_CR12) 2021; 20
D Damjanovic (27480_CR25) 2006; 41
B Noheda (27480_CR10) 2020; 369
MJ Haun (27480_CR23) 1987; 62
SE Reyes-Lillo (27480_CR7) 2014; 90
T Schenk (27480_CR34) 2019; 5
J Liu (27480_CR13) 2019; 12
A Chouprik (27480_CR35) 2019; 1
I Katsouras (27480_CR17) 2016; 15
S Hong (27480_CR28) 2021; 129
MT Bohr (27480_CR1) 2007; 44
J Perdew (27480_CR41) 2008; 100
AL Kholkin (27480_CR29) 2001; 89
J Liu (27480_CR14) 2020; 125
DR Hamann (27480_CR45) 2013; 88
U Schroeder (27480_CR46) 2018; 57
H-J Lee (27480_CR9) 2020; 369
TS Böscke (27480_CR2) 2011; 99
A Kvasov (27480_CR24) 2016; 7
J Müller (27480_CR3) 2012; 12
27480_CR11
S Dutta (27480_CR19) 2020; 14
X Wu (27480_CR22) 2005; 72
VM Goldschmidt (27480_CR36) 1926; 21
F Delodovici (27480_CR8) 2021; 5
T Furukawa (27480_CR31) 1990; 29
ID Brown (27480_CR37) 2009; 109
A Walsh (27480_CR38) 2011; 40
G Kresse (27480_CR39) 1996; 54
References_xml – volume: 99
  start-page: 102903
  year: 2011
  ident: CR2
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 54
  start-page: 11169
  year: 1996
  end-page: 11186
  ident: CR39
  article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 88
  start-page: 085117
  year: 2013
  ident: CR45
  article-title: Optimized norm-conserving Vanderbilt pseudopotentials
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085117
– volume: 7
  start-page: 1
  year: 2016
  end-page: 8
  ident: CR24
  article-title: Piezoelectric enhancement under negative pressure
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12136
– volume: 21
  start-page: 477
  year: 1926
  end-page: 485
  ident: CR36
  article-title: Die gesetze der krystallochemie
  publication-title: Die Naturwissenschaften
  doi: 10.1007/BF01507527
– volume: 13
  start-page: 5188
  year: 1976
  end-page: 5192
  ident: CR43
  article-title: Special points for Brillouin-zone integrations
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 65
  start-page: 233106
  year: 2002
  ident: CR6
  article-title: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.233106
– volume: 369
  start-page: 1300
  year: 2020
  end-page: 1301
  ident: CR10
  article-title: A key piece of the ferroelectric hafnia puzzle
  publication-title: Science
  doi: 10.1126/science.abd1212
– volume: 72
  start-page: 035105
  year: 2005
  ident: CR22
  article-title: Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.035105
– volume: 369
  start-page: 1343
  year: 2020
  end-page: 1347
  ident: CR9
  article-title: Scale-free ferroelectricity induced by flat phonon bands in HfO
  publication-title: Science
  doi: 10.1126/science.aba0067
– volume: 5
  start-page: 064405
  year: 2021
  ident: CR8
  article-title: Trilinear-coupling-driven ferroelectricity in HfO
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.064405
– volume: 104
  start-page: 1
  year: 2014
  end-page: 5
  ident: CR33
  article-title: Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4879283
– volume: 50
  start-page: 17953
  year: 1994
  end-page: 17979
  ident: CR42
  article-title: Projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– volume: 59
  start-page: 1758
  year: 1999
  end-page: 1775
  ident: CR40
  article-title: From ultrasoft pseudopotentials to the projector augmented-wave method
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 11
  start-page: 1970
  year: 2011
  end-page: 1975
  ident: CR16
  article-title: High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers
  publication-title: Nano Lett.
  doi: 10.1021/nl200221z
– volume: 14
  start-page: 2000047
  year: 2020
  ident: CR19
  article-title: Effect of dopant ordering on the stability of ferroelectric hafnia
  publication-title: Phys. Status Solidi – Rapid Res. Lett.
  doi: 10.1002/pssr.202000047
– ident: CR27
– volume: 12
  start-page: 034032
  year: 2019
  ident: CR13
  article-title: Origin of pyroelectricity in ferroelectric HfO
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.034032
– volume: 92
  start-page: 1153
  year: 2009
  end-page: 1177
  ident: CR15
  article-title: Perspective on the development of lead-free piezoceramics
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03061.x
– volume: 248
  start-page: 107042
  year: 2020
  ident: CR44
  article-title: The ABINIT project: Impact, environment and recent developments
  publication-title: Computer Phys. Commun.
  doi: 10.1016/j.cpc.2019.107042
– ident: CR21
– volume: 4
  start-page: 243
  year: 2019
  end-page: 256
  ident: CR4
  article-title: Ferroelectric negative capacitance
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0089-0
– volume: 125
  start-page: 197601
  year: 2020
  ident: CR14
  article-title: Electric auxetic effect in piezoelectrics
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.197601
– volume: 41
  start-page: 65
  year: 2006
  end-page: 76
  ident: CR25
  article-title: Piezoelectric anisotropy: Enhanced piezoelectric response along nonpolar directions in perovskite crystals
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-5925-5
– volume: 15
  start-page: 78
  year: 2016
  end-page: 84
  ident: CR17
  article-title: The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4423
– volume: 5
  start-page: 1900303
  year: 2019
  ident: CR34
  article-title: On the origin of the large remanent polarization in La:HfO
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900303
– volume: 62
  start-page: 3331
  year: 1987
  end-page: 3338
  ident: CR23
  article-title: Thermodynamic theory of PbTiO
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.339293
– volume: 12
  start-page: 4318
  year: 2012
  end-page: 4323
  ident: CR3
  article-title: Ferroelectricity in Simple Binary ZrO and HfO
  publication-title: Nano Lett.
  doi: 10.1021/nl302049k
– ident: CR11
– volume: 99
  start-page: 102903
  year: 2011
  ident: CR32
  article-title: Ferroelectricity in hafnium oxide thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 44
  start-page: 29
  year: 2007
  end-page: 35
  ident: CR1
  article-title: The high-k solution
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2007.4337663
– volume: 20
  start-page: 826
  year: 2021
  end-page: 832
  ident: CR12
  article-title: Kinetically stabilized ferroelectricity in bulk single-crystalline HfO :Y
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00897-x
– volume: 90
  start-page: 064111
  year: 2014
  ident: CR18
  article-title: Pathways towards ferroelectricity in hafnia
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.064111
– volume: 100
  start-page: 136406
  year: 2008
  ident: CR41
  article-title: Restoring the density-gradient expansion for exchange in solids and surfaces
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 77
  start-page: 0
  year: 2006
  end-page: 10
  ident: CR30
  article-title: Quantitative mapping of switching behavior in piezoresponse force microscopy
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2214699
– volume: 40
  start-page: 4455
  year: 2011
  end-page: 4463
  ident: CR38
  article-title: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15098g
– ident: CR5
– volume: 1
  start-page: 275
  year: 2019
  end-page: 287
  ident: CR35
  article-title: Wake-up in a Hf Zr O film: A cycle-by-cycle emergence of the remnant polarization via the domain depinning and the vanishing of the anomalous polarization switching
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.8b00046
– volume: 90
  start-page: 140103
  year: 2014
  ident: CR7
  article-title: Antiferroelectricity in thin-film ZrO from first principles
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.140103
– volume: 89
  start-page: 8066
  year: 2001
  end-page: 8073
  ident: CR29
  article-title: Characterization of the effective electrostriction coefficients in ferroelectric thin films
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1371002
– volume: 109
  start-page: 6858
  year: 2009
  end-page: 6919
  ident: CR37
  article-title: Recent developments in the methods and applications of the bond valence model
  publication-title: Chem. Rev.
  doi: 10.1021/cr900053k
– volume: 129
  start-page: 051101
  year: 2021
  ident: CR28
  article-title: Single frequency vertical piezoresponse force microscopy
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0038744
– ident: CR26
– ident: CR20
– volume: 29
  start-page: 675
  year: 1990
  end-page: 680
  ident: CR31
  article-title: Electrostriction as the origin of piezoelectricity in ferroelectric polymers
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.29.675
– volume: 57
  start-page: 2752
  year: 2018
  end-page: 2765
  ident: CR46
  article-title: Lanthanum-doped hafnium oxide: a robust ferroelectric material
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b03149
– volume: 72
  start-page: 035105
  year: 2005
  ident: 27480_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.72.035105
– volume: 92
  start-page: 1153
  year: 2009
  ident: 27480_CR15
  publication-title: J. Am. Ceram. Soc.
  doi: 10.1111/j.1551-2916.2009.03061.x
– ident: 27480_CR26
  doi: 10.1007/978-3-540-68683-5
– volume: 99
  start-page: 102903
  year: 2011
  ident: 27480_CR32
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 1
  start-page: 275
  year: 2019
  ident: 27480_CR35
  publication-title: ACS Appl. Electron. Mater.
  doi: 10.1021/acsaelm.8b00046
– volume: 248
  start-page: 107042
  year: 2020
  ident: 27480_CR44
  publication-title: Computer Phys. Commun.
  doi: 10.1016/j.cpc.2019.107042
– ident: 27480_CR21
– volume: 62
  start-page: 3331
  year: 1987
  ident: 27480_CR23
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.339293
– volume: 14
  start-page: 2000047
  year: 2020
  ident: 27480_CR19
  publication-title: Phys. Status Solidi – Rapid Res. Lett.
  doi: 10.1002/pssr.202000047
– volume: 21
  start-page: 477
  year: 1926
  ident: 27480_CR36
  publication-title: Die Naturwissenschaften
  doi: 10.1007/BF01507527
– volume: 13
  start-page: 5188
  year: 1976
  ident: 27480_CR43
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.13.5188
– volume: 65
  start-page: 233106
  year: 2002
  ident: 27480_CR6
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.65.233106
– volume: 5
  start-page: 1900303
  year: 2019
  ident: 27480_CR34
  publication-title: Adv. Electron. Mater.
  doi: 10.1002/aelm.201900303
– volume: 7
  start-page: 1
  year: 2016
  ident: 27480_CR24
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12136
– volume: 90
  start-page: 140103
  year: 2014
  ident: 27480_CR7
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.140103
– volume: 50
  start-page: 17953
  year: 1994
  ident: 27480_CR42
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.50.17953
– ident: 27480_CR11
  doi: 10.1002/pssr.201900626
– ident: 27480_CR5
– volume: 44
  start-page: 29
  year: 2007
  ident: 27480_CR1
  publication-title: IEEE Spectr.
  doi: 10.1109/MSPEC.2007.4337663
– volume: 5
  start-page: 064405
  year: 2021
  ident: 27480_CR8
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.5.064405
– volume: 15
  start-page: 78
  year: 2016
  ident: 27480_CR17
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4423
– volume: 12
  start-page: 4318
  year: 2012
  ident: 27480_CR3
  publication-title: Nano Lett.
  doi: 10.1021/nl302049k
– volume: 20
  start-page: 826
  year: 2021
  ident: 27480_CR12
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-020-00897-x
– volume: 77
  start-page: 0
  year: 2006
  ident: 27480_CR30
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.2214699
– volume: 11
  start-page: 1970
  year: 2011
  ident: 27480_CR16
  publication-title: Nano Lett.
  doi: 10.1021/nl200221z
– volume: 129
  start-page: 051101
  year: 2021
  ident: 27480_CR28
  publication-title: J. Appl. Phys.
  doi: 10.1063/5.0038744
– volume: 88
  start-page: 085117
  year: 2013
  ident: 27480_CR45
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.085117
– volume: 40
  start-page: 4455
  year: 2011
  ident: 27480_CR38
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c1cs15098g
– volume: 4
  start-page: 243
  year: 2019
  ident: 27480_CR4
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/s41578-019-0089-0
– volume: 104
  start-page: 1
  year: 2014
  ident: 27480_CR33
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4879283
– volume: 100
  start-page: 136406
  year: 2008
  ident: 27480_CR41
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.136406
– volume: 369
  start-page: 1343
  year: 2020
  ident: 27480_CR9
  publication-title: Science
  doi: 10.1126/science.aba0067
– ident: 27480_CR20
  doi: 10.1007/978-3-642-60293-1
– volume: 109
  start-page: 6858
  year: 2009
  ident: 27480_CR37
  publication-title: Chem. Rev.
  doi: 10.1021/cr900053k
– volume: 41
  start-page: 65
  year: 2006
  ident: 27480_CR25
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-005-5925-5
– volume: 89
  start-page: 8066
  year: 2001
  ident: 27480_CR29
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1371002
– volume: 125
  start-page: 197601
  year: 2020
  ident: 27480_CR14
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.125.197601
– volume: 57
  start-page: 2752
  year: 2018
  ident: 27480_CR46
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b03149
– volume: 29
  start-page: 675
  year: 1990
  ident: 27480_CR31
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.1143/JJAP.29.675
– volume: 54
  start-page: 11169
  year: 1996
  ident: 27480_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.54.11169
– volume: 59
  start-page: 1758
  year: 1999
  ident: 27480_CR40
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.59.1758
– volume: 99
  start-page: 102903
  year: 2011
  ident: 27480_CR2
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3634052
– volume: 12
  start-page: 034032
  year: 2019
  ident: 27480_CR13
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.12.034032
– volume: 369
  start-page: 1300
  year: 2020
  ident: 27480_CR10
  publication-title: Science
  doi: 10.1126/science.abd1212
– volume: 90
  start-page: 064111
  year: 2014
  ident: 27480_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.90.064111
– ident: 27480_CR27
  doi: 10.1038/s41467-019-09650-8
SSID ssj0000391844
Score 2.6108623
Snippet Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in...
Because of its compatibility with semiconductor-based technologies, hafnia (HfO ) is today's most promising ferroelectric material for applications in...
Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today’s most promising ferroelectric material for applications in...
Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in...
HfO2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 7301
SubjectTerms 639/301/1034/1038
639/301/119/996
Electric properties
Electronics
Ferroelectric materials
Ferroelectricity
Ferroelectrics
First principles
Hafnium oxide
Humanities and Social Sciences
multidisciplinary
Organic compounds
Oxygen
Oxygen atoms
Perovskites
Piezoelectricity
Predictive control
Science
Science (multidisciplinary)
Symmetry
Thin films
SummonAdditionalLinks – databaseName: Health & Medical Collection (ProQuest)
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIrV9bW3mCNw3N5mt3T6JiKQXFg4V3C5Mvu1B2a9_rQf96J9m8Lc-PXjezMJlJZiYzyW8IeS0inqi9VZQF3VHpFaMJCJD6Dph0QSul0tvhz1_0yZk8XaplSbityrXKjU3MhtqPLuXIjzDST2Dn6C_fXf6gqWtUqq6WFhp3yb0EXZaudDXLZs6xJPTzVsryVoaJ9mgls2VI9xLwONYyqrb8UYbt_1es-feVyT_qptkdHT8iD0scuXg_KX6X3AnDHrk_dZb8-Zjsf-3Dr3HqcdM7jLQX_bA4hzj08IScHX_69vGEljYI1OHpYk2l9JI3HQhlRfTCaQ_QCh8TjkzEAI8zcOh_hFVIEwT4CBq6BqzSsYWoxFOyM4xDeE4WrIlO2tilrL6ExlnBQoidV77mLKi6IvVGGMYVjPDUquLC5Fq1aM0kQIMCNFmARlXkzfzP5YSQcSv1hyTjmTKhW-cP49V3UzaL0cgXB-utAys1j13NOaRQFYTDedmKHGw0ZMqWW5mbBVKRV_MwbpZUAYEhjNcTTccwIuMVeTYpdOZESLT7nWAVabZUvcXq9sjQn2dA7lY3qCGU3tvNorhh6_-i2L99Fi_IA57Wac1prQ7IzvrqOhxiALS2L_Mq_w1bwgDW
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB9qRfBF_HZrlRN802g2X7t5EFGxFKHigwd9C_m0C2VPr1do-9c7ye6enJ4--bqZwOwvMzu_2SQzAM95wow6OEloVJqIICnJhQBJ0JYKH5WUMt8dPvqsDufi07E83oGp3dEI4NnW1C73k5ovT19d_Lh8iw7_Zrgy3r4-E8Xd82EDzLFaSuQ1uI6RqcmOejTS_fJl5hoTGjHendk-dSM-lTL-27jnn0cof9tHLeHp4DbcGnnl7N1gCHdgJ_Z34cbQafLyHux96eLVYuh503lk3rOun53Y1Hf2PswPPn79cEjGtgjEY7axIkIEwRptuXQ8Be5VsLblIeW6MgkJH6PWYzziTqJM5DYkq6xurJMqtTZJ_gB2-0UfH8GMNskLl3T-yy9s4x2nMSYdZKgZjbKuoJ7AMH6sGZ5bV5yasnfNWzMAaBBAUwA0soIX6znfh4oZ_5R-nzFeS-Zq1-XBYvnNjM5jFOrFrAvOWycUS7pmzGbqarnH93IV7E8rZCYLMpga5ur4SLAqeLYeRufJOyK2j4vzQUZTZGisgofDgq414QLjgOa0gmZjqTdU3Rzpu5NSoLtVDa4QovdyMopfav0dir3_AcVjuMmyNdeM1HIfdlfL8_gEadPKPS2-8BP9SBGJ
  priority: 102
  providerName: Scholars Portal
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfBFvLu1yhF802A2t9191IOlCIoPFvoWJje7IHtKe_qgv95J9iJHq-DrZgKzM5Pkm1y-AXgpE2XUwWnGo-mYCpqzTATIQodc-Wi01vnt8MdP5vhEfTjVp3sg5rcw5dJ-obQs0_R8O-zNpSpDOl8ooDyq5UzfgJuZuj1H9dqsl32VzHjeKjW9j-GyvabrzhpUqPqvw5d_XpP87ay0LEFHd-HOhB1Xb0dt78FeHO7DrbGa5PcHcPC5jz82Y12b3hO6XvXD6gzT0ONDODl6_2V9zKbSB8xTRrFlSgUlmg6ldjIF6U1AbGVImTsmEagTHD2tOdJpkokSQ0KDXYNOm9Ri0vIR7A-bIT6BFW-SVy51eSdfYeOd5DGmLuhQCx51XUE9G8P6iRc8l6f4Zsv5tGztaEBLBrTFgFZX8Grpcz6yYvxT-l228SKZGa3Lh83FVzt52BrSS6ALzqNTRqSuFgIzPEXp6b9cBYezh-w0zC4tpX-ZAZ9AVAUvlmYaIPnUA4e4uRplOk4oTFTweHTooolUNNd3klfQ7Lh6R9XdlqE_KyTcrWnIQ2S913NQ_FLr76Y4-D_xp3Bb5LitBav1IexvL67iMwJBW_e8RP1P12H-lw
  priority: 102
  providerName: Springer Nature
Title Piezoelectricity in hafnia
URI https://link.springer.com/article/10.1038/s41467-021-27480-5
https://www.ncbi.nlm.nih.gov/pubmed/34911930
https://www.proquest.com/docview/2610236584
https://www.proquest.com/docview/2610909372
https://pubmed.ncbi.nlm.nih.gov/PMC8674271
https://doaj.org/article/6b302abdbcab462f9122a1397a3c7abb
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oRfBFvDu1Liv4pqGZ3Gbmcbt0WxZailrYt5ArHZBZsdsH_fWeZGbXrlr70pcZSM5A-E5yLpPkOwDvecSM2ltJaFANEV5SkogAiW8MFS4oKWW6O3xyqo7PxXwhF9dKfaUzYT09cA_cvrKcMmO9dcYKxWJTMmZS2GK4q4y1yfqiz7uWTGUbzBtMXcRwS4byev9SZJuQTiRgIlZTIrc8USbs_1eU-fdhyT92TLMjmj2Bx0MEOZ70I38K90L3DB72NSV_PIfdszb8XPbVbVqHMfa47cYXJnateQHns8Mv02MyFEAgDvOKFRHCC1Y1hkvLo-dOeWNq7mNikIkY2jFqHHoebiXKBG58NMogMlaqWJso-UvY6ZZdeA1jWkUnbGzS_3xhKoeohhAbL33JaJBlAeUaDO0GdvBUpOKrzrvUvNY9gBoB1BlALQv4sPnmW8-N8V_pg4TxRjLxWucG1LYetK1v03YBe2sN6WGxXWpMAhMPPoZSBbzbdOMySXsfpgvLq16moRiLsQJe9QrdjIQLtPgNpwVUW6reGup2T9deZCruWlWoIUTv43pS_B7WzVDs3gUUb-ARS7O5ZKSUe7Cz-n4V3mKAtLIjuF8tKnzWs6MRPJhM5p_n-D44PD37hK1TNR3l1YLPE1H_AhpZEQM
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwEB5VRQguqKxNWyBIcAKrjpcsB4TYqle6iEMrvZvxSiOhpPS9CpUfxW9knOVVj6W3XmNHGs_62WPPADznAXfUzkhCfV4R4SQlsRAgcZWmwvpcShnfDh8c5pNj8Wkqpyvwa3wLE69Vjj6xc9SutfGMfBuRfix2jvHyzel3ErtGxezq2EKjV4s9f_EDt2yz17sfUL4vGNv5ePR-QoauAsQiWJ8TIZxgRaW5NDw4bnOndcldiGVZAuIlRrVFd86NxDmeaxd0rqtCG5mHUofYJQJd_g0MvDRaVDEtFmc6sdp6KcTwNofycnsmOk8U70Hg9q-kRC7Fv65NwL-w7d9XNP_I03bhb2cN7gy4NX3bK9pdWPHNPbjZd7K8uA8bn2v_s-176tQWkX1aN-mJDk2tH8DxtTDoIaw2bePXIaVFsMKEKmYRhC6s4dT7UDnpMka9zBLIRmYoO9Qkj60xvqkuN85L1TNQIQNVx0AlE3i5-Oe0r8hx5ex3kceLmbGadvehPfuqBuNUOdLFtHHGaiNyFqqMMR2hseYW12US2BolpAYTn6lLhUzg2WIYjTNmXHTj2_N-TkURAbIEHvUCXVDCBcaZitMEiiVRL5G6PNLUJ10B8DIvUELIvVejUlyS9X9WbFy9iqdwa3J0sK_2dw_3NuE2izqbMZLJLVidn537xwi-5uZJp_EpfLluE_sNtcg-iw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC1FQSAuiJ1OAgwSnMAat5deDggBYZQQiHIg0tyMV9IS6k4yE6HwaXwd5d6iYckt13a1ZNf67LKrAJ7zgDtqZyShPiuJcJKSWAiQuFJTYX0mpYxvhz_vZzuH4uNcztfg1_AWJl6rHHxi66hdY-MZ-RSRfix2jvFyGvprEQfbszfHJyR2kIqZ1qGdRqcie_78B27fFq93t1HWLxibffjyfof0HQaIReC-JEI4wfJSc2l4cNxmTuuCuxBLtATEToxqi66dG4k0nmsXdKbLXBuZhUKH2DEC3f-1nMs02lg-z8fznVh5vRCif6dDeTFdiNYrxTsRuBUsKJErsbBtGfAvnPv3dc0_crZtKJzdhls9hp287ZTuDqz5-i5c77pant-DjYPK_2y6_jqVRZQ_qerJkQ51pe_D4ZUw6AGs103tH8GE5sEKE8qYURA6t4ZT70PppEsZ9TJNIB2YoWxfnzy2yfiu2jw5L1THQIUMVC0DlUzg5fjPcVed41Lqd5HHI2WsrN1-aE6_qd5QVYbzYto4Y7URGQtlypiOMFlzi-syCWwNElK9uS_UhXIm8GwcRkON2Rdd--asoykpokGWwMNOoONMuMCYU3KaQL4i6pWpro7U1VFbDLzIcpQQcu_VoBQX0_o_KzYuX8VTuIHGpT7t7u9twk0WVTZlJJVbsL48PfOPEYctzZNW4Sfw9aot7DegdkLB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectricity+in+hafnia&rft.jtitle=Nature+communications&rft.au=Sangita+Dutta&rft.au=Pratyush+Buragohain&rft.au=Sebastjan+Glinsek&rft.au=Claudia+Richter&rft.date=2021-12-15&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-021-27480-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b302abdbcab462f9122a1397a3c7abb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon