Piezoelectricity in hafnia
Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 7301 - 10 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.12.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-021-27480-5 |
Cover
Loading…
Abstract | Because of its compatibility with semiconductor-based technologies, hafnia (HfO
2
) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO
2
has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO
3
) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO
2
thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.
HfO
2
is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO
2
, predicting on how to reverse its sign by means of a biaxial strain. |
---|---|
AbstractList | Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. Because of its compatibility with semiconductor-based technologies, hafnia (HfO ) is today's most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO3) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.HfO2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO2, predicting on how to reverse its sign by means of a biaxial strain. HfO2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO2, predicting on how to reverse its sign by means of a biaxial strain. Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. HfO 2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still lacking. Here, the authors demonstrate the peculiar piezoresponse of HfO 2 , predicting on how to reverse its sign by means of a biaxial strain. Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. |
ArticleNumber | 7301 |
Author | Buragohain, Pratyush Aramberri, Hugo Schroeder, Uwe Gruverman, Alexei Glinsek, Sebastjan Íñiguez, Jorge Dutta, Sangita Lu, Haidong Defay, Emmanuel Richter, Claudia |
Author_xml | – sequence: 1 givenname: Sangita orcidid: 0000-0002-8261-3307 surname: Dutta fullname: Dutta, Sangita email: sangita.dutta@list.lu organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Department of Physics and Materials Science, University of Luxembourg – sequence: 2 givenname: Pratyush orcidid: 0000-0001-6744-3082 surname: Buragohain fullname: Buragohain, Pratyush organization: Department of Physics and Astronomy, University of Nebraska-Lincoln – sequence: 3 givenname: Sebastjan orcidid: 0000-0002-5614-0825 surname: Glinsek fullname: Glinsek, Sebastjan organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology – sequence: 4 givenname: Claudia surname: Richter fullname: Richter, Claudia organization: NaMLab gGmbH – sequence: 5 givenname: Hugo orcidid: 0000-0003-2216-8931 surname: Aramberri fullname: Aramberri, Hugo organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology – sequence: 6 givenname: Haidong surname: Lu fullname: Lu, Haidong organization: Department of Physics and Astronomy, University of Nebraska-Lincoln – sequence: 7 givenname: Uwe orcidid: 0000-0002-6824-2386 surname: Schroeder fullname: Schroeder, Uwe organization: NaMLab gGmbH – sequence: 8 givenname: Emmanuel surname: Defay fullname: Defay, Emmanuel organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology – sequence: 9 givenname: Alexei orcidid: 0000-0003-0492-2750 surname: Gruverman fullname: Gruverman, Alexei email: agruverman2@unl.edu organization: Department of Physics and Astronomy, University of Nebraska-Lincoln – sequence: 10 givenname: Jorge orcidid: 0000-0001-6435-3604 surname: Íñiguez fullname: Íñiguez, Jorge email: jorge.iniguez@list.lu organization: Materials Research and Technology Department, Luxembourg Institute of Science and Technology, Department of Physics and Materials Science, University of Luxembourg |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34911930$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kcFPHCEUxkljU-3Wf8BDY9KLl2mBxzDDpUljtDUxaQ96Jg8GVjazYGG2if3rZXesVQ9ygcD3_Xjvfe_JXkzREXLE6GdGof9SBBOyayhnDe9ET5v2DTngVLCGdRz2npz3yWEpK1oXKNYL8Y7sg1CMKaAH5OhXcH-TG52dcrBhujsO8fgGfQz4gbz1OBZ3-LAvyPX52dXpj-by5_eL02-XjZVUTo0Qg-CdQmgN-AGsHBB7GLzkEjxVilO0jAOYtmoc4OBRourQtNL36FtYkIuZOyRc6dsc1pjvdMKgdxcpLzXmKdjRaWmAcjSDsWiE5F4xzpFBpYGtRFNZX2fW7cas3WBdnDKOz6DPX2K40cv0R_eyq12wCjh5AOT0e-PKpNehWDeOGF3aFM0lo4oqqHNdkE8vpKu0ybGOaqfiINteVNXHpxU9lvIvgirgs8DmVEp2_lHCqN5GreeodY1a76LW25n1L0w1O5xC2nYVxtetMFtL_ScuXf5f9iuue1z4u3g |
CitedBy_id | crossref_primary_10_1016_j_mssp_2024_108558 crossref_primary_10_1021_acs_cgd_2c00854 crossref_primary_10_1039_D4TC02881C crossref_primary_10_1021_acs_nanolett_4c06671 crossref_primary_10_1063_5_0228932 crossref_primary_10_1016_j_apmt_2022_101394 crossref_primary_10_1038_s41467_023_44207_w crossref_primary_10_1021_acs_nanolett_4c01943 crossref_primary_10_1016_j_cocom_2024_e00933 crossref_primary_10_1063_5_0148068 crossref_primary_10_1063_5_0129546 crossref_primary_10_1039_D4NR03333G crossref_primary_10_1038_s41524_024_01344_0 crossref_primary_10_1021_acsami_3c11141 crossref_primary_10_1155_2023_3074782 crossref_primary_10_1038_s41563_023_01507_2 crossref_primary_10_1063_5_0180064 crossref_primary_10_1038_s41467_024_44690_9 crossref_primary_10_1103_PhysRevLett_131_256801 crossref_primary_10_1007_s42765_024_00406_8 crossref_primary_10_1016_j_actamat_2024_120590 crossref_primary_10_1002_aelm_202400686 crossref_primary_10_1016_j_cjph_2024_07_023 crossref_primary_10_1073_pnas_2312571121 crossref_primary_10_1038_s41524_024_01354_y crossref_primary_10_1103_PhysRevB_110_094306 crossref_primary_10_1002_adfm_202410675 crossref_primary_10_3390_nano12071232 crossref_primary_10_1007_s11433_023_2102_8 crossref_primary_10_1016_j_jpcs_2023_111773 crossref_primary_10_1021_acs_nanolett_3c00083 crossref_primary_10_1016_j_jmat_2024_05_012 crossref_primary_10_1103_PhysRevB_107_144107 crossref_primary_10_1063_5_0188897 crossref_primary_10_1103_PhysRevB_108_235423 crossref_primary_10_1016_j_jallcom_2024_178077 crossref_primary_10_1103_PhysRevApplied_18_054066 crossref_primary_10_1103_PhysRevLett_131_226802 crossref_primary_10_1038_s41524_024_01352_0 crossref_primary_10_1103_PhysRevB_107_094108 crossref_primary_10_1021_acsami_2c09828 crossref_primary_10_1039_D3TC01145C crossref_primary_10_1103_PhysRevB_111_064106 crossref_primary_10_1039_D4MH00876F crossref_primary_10_1039_D3CP01717F crossref_primary_10_1063_5_0239212 crossref_primary_10_1016_j_cclet_2024_110533 crossref_primary_10_1002_aelm_202300522 crossref_primary_10_1016_j_ceramint_2024_03_066 crossref_primary_10_1088_1367_2630_ad2fff crossref_primary_10_1038_s43246_023_00421_z crossref_primary_10_1038_s41928_023_00999_9 crossref_primary_10_1002_admi_202102528 crossref_primary_10_1080_15421406_2024_2403914 crossref_primary_10_1039_D4QI01558D crossref_primary_10_1002_adma_202206237 crossref_primary_10_1002_jnm_3273 crossref_primary_10_1360_TB_2023_0400 crossref_primary_10_1002_aelm_202201298 crossref_primary_10_1002_adfm_202303636 crossref_primary_10_1016_j_apmt_2022_101708 crossref_primary_10_1103_PhysRevB_110_184109 crossref_primary_10_3390_nano12091483 |
Cites_doi | 10.1063/1.3634052 10.1103/PhysRevB.54.11169 10.1103/PhysRevB.88.085117 10.1038/ncomms12136 10.1007/BF01507527 10.1103/PhysRevB.13.5188 10.1103/PhysRevB.65.233106 10.1126/science.abd1212 10.1103/PhysRevB.72.035105 10.1126/science.aba0067 10.1103/PhysRevMaterials.5.064405 10.1063/1.4879283 10.1103/PhysRevB.50.17953 10.1103/PhysRevB.59.1758 10.1021/nl200221z 10.1002/pssr.202000047 10.1103/PhysRevApplied.12.034032 10.1111/j.1551-2916.2009.03061.x 10.1016/j.cpc.2019.107042 10.1038/s41578-019-0089-0 10.1103/PhysRevLett.125.197601 10.1007/s10853-005-5925-5 10.1038/nmat4423 10.1002/aelm.201900303 10.1063/1.339293 10.1021/nl302049k 10.1109/MSPEC.2007.4337663 10.1038/s41563-020-00897-x 10.1103/PhysRevB.90.064111 10.1103/PhysRevLett.100.136406 10.1063/1.2214699 10.1039/c1cs15098g 10.1021/acsaelm.8b00046 10.1103/PhysRevB.90.140103 10.1063/1.1371002 10.1021/cr900053k 10.1063/5.0038744 10.1143/JJAP.29.675 10.1021/acs.inorgchem.7b03149 10.1007/978-3-540-68683-5 10.1002/pssr.201900626 10.1007/978-3-642-60293-1 10.1038/s41467-019-09650-8 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-021-27480-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Collection (ProQuest) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database (ProQuest) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_6b302abdbcab462f9122a1397a3c7abb PMC8674271 34911930 10_1038_s41467_021_27480_5 |
Genre | Journal Article |
GrantInformation_xml | – fundername: Luxembourg National Research Fund, grant PRIDE/15/10935404 – fundername: ; |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-44d4279a35b3fd3c6daa83df6263f09920ac1233b59a3e3adfa6a97ab56f8af53 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:03 EDT 2025 Thu Aug 21 14:09:52 EDT 2025 Fri Jul 11 04:19:24 EDT 2025 Wed Aug 13 09:13:38 EDT 2025 Wed Feb 19 02:27:41 EST 2025 Thu Apr 24 23:07:31 EDT 2025 Tue Jul 01 04:17:41 EDT 2025 Fri Feb 21 02:39:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-44d4279a35b3fd3c6daa83df6263f09920ac1233b59a3e3adfa6a97ab56f8af53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-6744-3082 0000-0002-8261-3307 0000-0002-5614-0825 0000-0003-2216-8931 0000-0001-6435-3604 0000-0002-6824-2386 0000-0003-0492-2750 |
OpenAccessLink | https://doaj.org/article/6b302abdbcab462f9122a1397a3c7abb |
PMID | 34911930 |
PQID | 2610236584 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6b302abdbcab462f9122a1397a3c7abb pubmedcentral_primary_oai_pubmedcentral_nih_gov_8674271 proquest_miscellaneous_2610909372 proquest_journals_2610236584 pubmed_primary_34911930 crossref_primary_10_1038_s41467_021_27480_5 crossref_citationtrail_10_1038_s41467_021_27480_5 springer_journals_10_1038_s41467_021_27480_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-15 |
PublicationDateYYYYMMDD | 2021-12-15 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Müller (CR3) 2012; 12 Noheda, Íñiguez (CR10) 2020; 369 Haun, Furman, Jang, McKinstry, Cross (CR23) 1987; 62 Schenk (CR34) 2019; 5 Blöchl (CR42) 1994; 50 Furukawa, Seo (CR31) 1990; 29 Jesse, Lee, Kalinin (CR30) 2006; 77 Damjanovic, Budimir, Davis, Setter (CR25) 2006; 41 Dutta, Aramberri, Schenk, Íñiguez (CR19) 2020; 14 Hamann (CR45) 2013; 88 Liu, Liu, Liu, Hanrahan, Pantelides (CR13) 2019; 12 CR11 Hong (CR28) 2021; 129 Íñiguez, Zubko, Luk’yanchuk, Cano (CR4) 2019; 4 Wu, Vanderbilt, Hamann (CR22) 2005; 72 Böscke, Müller, Bräuhaus, Schröder, Böttger (CR2) 2011; 99 Huan, Sharma, Rossetti, Ramprasad (CR18) 2014; 90 Chouprik (CR35) 2019; 1 Schroeder (CR46) 2018; 57 Kvasov (CR24) 2016; 7 Kholkin, Akdogan, Safari, Chauvy, Setter (CR29) 2001; 89 Bohr, Chau, Ghani, Mistry (CR1) 2007; 44 Xu (CR12) 2021; 20 Kresse, Joubert (CR40) 1999; 59 Kresse, Furthmüller (CR39) 1996; 54 CR5 Liu, Liu, Yang, Liu (CR14) 2020; 125 Sharma, Reece, Ducharme, Gruverman (CR16) 2011; 11 Perdew (CR41) 2008; 100 CR27 Monkhorst, Pack (CR43) 1976; 13 CR26 Brown (CR37) 2009; 109 Gonze (CR44) 2020; 248 Reyes-Lillo, Garrity, Rabe (CR7) 2014; 90 CR21 CR20 Starschich, Griesche, Schneller, Waser, Böttger (CR33) 2014; 104 Delodovici, Barone, Picozzi (CR8) 2021; 5 Katsouras (CR17) 2016; 15 Goldschmidt (CR36) 1926; 21 Lee (CR9) 2020; 369 Zhao, Vanderbilt (CR6) 2002; 65 Roedel (CR15) 2009; 92 Walsh, Payne, Egdell, Watson (CR38) 2011; 40 Böscke, Müller, Bräuhaus, Schröder, Böttger (CR32) 2011; 99 TD Huan (27480_CR18) 2014; 90 S Starschich (27480_CR33) 2014; 104 J Íñiguez (27480_CR4) 2019; 4 27480_CR26 TS Böscke (27480_CR32) 2011; 99 27480_CR27 X Zhao (27480_CR6) 2002; 65 P Sharma (27480_CR16) 2011; 11 S Jesse (27480_CR30) 2006; 77 HJ Monkhorst (27480_CR43) 1976; 13 27480_CR5 27480_CR20 J Roedel (27480_CR15) 2009; 92 27480_CR21 G Kresse (27480_CR40) 1999; 59 PE Blöchl (27480_CR42) 1994; 50 X Gonze (27480_CR44) 2020; 248 X Xu (27480_CR12) 2021; 20 D Damjanovic (27480_CR25) 2006; 41 B Noheda (27480_CR10) 2020; 369 MJ Haun (27480_CR23) 1987; 62 SE Reyes-Lillo (27480_CR7) 2014; 90 T Schenk (27480_CR34) 2019; 5 J Liu (27480_CR13) 2019; 12 A Chouprik (27480_CR35) 2019; 1 I Katsouras (27480_CR17) 2016; 15 S Hong (27480_CR28) 2021; 129 MT Bohr (27480_CR1) 2007; 44 J Perdew (27480_CR41) 2008; 100 AL Kholkin (27480_CR29) 2001; 89 J Liu (27480_CR14) 2020; 125 DR Hamann (27480_CR45) 2013; 88 U Schroeder (27480_CR46) 2018; 57 H-J Lee (27480_CR9) 2020; 369 TS Böscke (27480_CR2) 2011; 99 A Kvasov (27480_CR24) 2016; 7 J Müller (27480_CR3) 2012; 12 27480_CR11 S Dutta (27480_CR19) 2020; 14 X Wu (27480_CR22) 2005; 72 VM Goldschmidt (27480_CR36) 1926; 21 F Delodovici (27480_CR8) 2021; 5 T Furukawa (27480_CR31) 1990; 29 ID Brown (27480_CR37) 2009; 109 A Walsh (27480_CR38) 2011; 40 G Kresse (27480_CR39) 1996; 54 |
References_xml | – volume: 99 start-page: 102903 year: 2011 ident: CR2 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 54 start-page: 11169 year: 1996 end-page: 11186 ident: CR39 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 88 start-page: 085117 year: 2013 ident: CR45 article-title: Optimized norm-conserving Vanderbilt pseudopotentials publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085117 – volume: 7 start-page: 1 year: 2016 end-page: 8 ident: CR24 article-title: Piezoelectric enhancement under negative pressure publication-title: Nat. Commun. doi: 10.1038/ncomms12136 – volume: 21 start-page: 477 year: 1926 end-page: 485 ident: CR36 article-title: Die gesetze der krystallochemie publication-title: Die Naturwissenschaften doi: 10.1007/BF01507527 – volume: 13 start-page: 5188 year: 1976 end-page: 5192 ident: CR43 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 65 start-page: 233106 year: 2002 ident: CR6 article-title: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.233106 – volume: 369 start-page: 1300 year: 2020 end-page: 1301 ident: CR10 article-title: A key piece of the ferroelectric hafnia puzzle publication-title: Science doi: 10.1126/science.abd1212 – volume: 72 start-page: 035105 year: 2005 ident: CR22 article-title: Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.035105 – volume: 369 start-page: 1343 year: 2020 end-page: 1347 ident: CR9 article-title: Scale-free ferroelectricity induced by flat phonon bands in HfO publication-title: Science doi: 10.1126/science.aba0067 – volume: 5 start-page: 064405 year: 2021 ident: CR8 article-title: Trilinear-coupling-driven ferroelectricity in HfO publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.064405 – volume: 104 start-page: 1 year: 2014 end-page: 5 ident: CR33 article-title: Chemical solution deposition of ferroelectric yttrium-doped hafnium oxide films on platinum electrodes publication-title: Appl. Phys. Lett. doi: 10.1063/1.4879283 – volume: 50 start-page: 17953 year: 1994 end-page: 17979 ident: CR42 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 59 start-page: 1758 year: 1999 end-page: 1775 ident: CR40 article-title: From ultrasoft pseudopotentials to the projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 11 start-page: 1970 year: 2011 end-page: 1975 ident: CR16 article-title: High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers publication-title: Nano Lett. doi: 10.1021/nl200221z – volume: 14 start-page: 2000047 year: 2020 ident: CR19 article-title: Effect of dopant ordering on the stability of ferroelectric hafnia publication-title: Phys. Status Solidi – Rapid Res. Lett. doi: 10.1002/pssr.202000047 – ident: CR27 – volume: 12 start-page: 034032 year: 2019 ident: CR13 article-title: Origin of pyroelectricity in ferroelectric HfO publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.034032 – volume: 92 start-page: 1153 year: 2009 end-page: 1177 ident: CR15 article-title: Perspective on the development of lead-free piezoceramics publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03061.x – volume: 248 start-page: 107042 year: 2020 ident: CR44 article-title: The ABINIT project: Impact, environment and recent developments publication-title: Computer Phys. Commun. doi: 10.1016/j.cpc.2019.107042 – ident: CR21 – volume: 4 start-page: 243 year: 2019 end-page: 256 ident: CR4 article-title: Ferroelectric negative capacitance publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0089-0 – volume: 125 start-page: 197601 year: 2020 ident: CR14 article-title: Electric auxetic effect in piezoelectrics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.197601 – volume: 41 start-page: 65 year: 2006 end-page: 76 ident: CR25 article-title: Piezoelectric anisotropy: Enhanced piezoelectric response along nonpolar directions in perovskite crystals publication-title: J. Mater. Sci. doi: 10.1007/s10853-005-5925-5 – volume: 15 start-page: 78 year: 2016 end-page: 84 ident: CR17 article-title: The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride) publication-title: Nat. Mater. doi: 10.1038/nmat4423 – volume: 5 start-page: 1900303 year: 2019 ident: CR34 article-title: On the origin of the large remanent polarization in La:HfO publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900303 – volume: 62 start-page: 3331 year: 1987 end-page: 3338 ident: CR23 article-title: Thermodynamic theory of PbTiO publication-title: J. Appl. Phys. doi: 10.1063/1.339293 – volume: 12 start-page: 4318 year: 2012 end-page: 4323 ident: CR3 article-title: Ferroelectricity in Simple Binary ZrO and HfO publication-title: Nano Lett. doi: 10.1021/nl302049k – ident: CR11 – volume: 99 start-page: 102903 year: 2011 ident: CR32 article-title: Ferroelectricity in hafnium oxide thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 44 start-page: 29 year: 2007 end-page: 35 ident: CR1 article-title: The high-k solution publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2007.4337663 – volume: 20 start-page: 826 year: 2021 end-page: 832 ident: CR12 article-title: Kinetically stabilized ferroelectricity in bulk single-crystalline HfO :Y publication-title: Nat. Mater. doi: 10.1038/s41563-020-00897-x – volume: 90 start-page: 064111 year: 2014 ident: CR18 article-title: Pathways towards ferroelectricity in hafnia publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.064111 – volume: 100 start-page: 136406 year: 2008 ident: CR41 article-title: Restoring the density-gradient expansion for exchange in solids and surfaces publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 77 start-page: 0 year: 2006 end-page: 10 ident: CR30 article-title: Quantitative mapping of switching behavior in piezoresponse force microscopy publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2214699 – volume: 40 start-page: 4455 year: 2011 end-page: 4463 ident: CR38 article-title: Stereochemistry of post-transition metal oxides: revision of the classical lone pair model publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15098g – ident: CR5 – volume: 1 start-page: 275 year: 2019 end-page: 287 ident: CR35 article-title: Wake-up in a Hf Zr O film: A cycle-by-cycle emergence of the remnant polarization via the domain depinning and the vanishing of the anomalous polarization switching publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.8b00046 – volume: 90 start-page: 140103 year: 2014 ident: CR7 article-title: Antiferroelectricity in thin-film ZrO from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.140103 – volume: 89 start-page: 8066 year: 2001 end-page: 8073 ident: CR29 article-title: Characterization of the effective electrostriction coefficients in ferroelectric thin films publication-title: J. Appl. Phys. doi: 10.1063/1.1371002 – volume: 109 start-page: 6858 year: 2009 end-page: 6919 ident: CR37 article-title: Recent developments in the methods and applications of the bond valence model publication-title: Chem. Rev. doi: 10.1021/cr900053k – volume: 129 start-page: 051101 year: 2021 ident: CR28 article-title: Single frequency vertical piezoresponse force microscopy publication-title: J. Appl. Phys. doi: 10.1063/5.0038744 – ident: CR26 – ident: CR20 – volume: 29 start-page: 675 year: 1990 end-page: 680 ident: CR31 article-title: Electrostriction as the origin of piezoelectricity in ferroelectric polymers publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.29.675 – volume: 57 start-page: 2752 year: 2018 end-page: 2765 ident: CR46 article-title: Lanthanum-doped hafnium oxide: a robust ferroelectric material publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b03149 – volume: 72 start-page: 035105 year: 2005 ident: 27480_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.72.035105 – volume: 92 start-page: 1153 year: 2009 ident: 27480_CR15 publication-title: J. Am. Ceram. Soc. doi: 10.1111/j.1551-2916.2009.03061.x – ident: 27480_CR26 doi: 10.1007/978-3-540-68683-5 – volume: 99 start-page: 102903 year: 2011 ident: 27480_CR32 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 1 start-page: 275 year: 2019 ident: 27480_CR35 publication-title: ACS Appl. Electron. Mater. doi: 10.1021/acsaelm.8b00046 – volume: 248 start-page: 107042 year: 2020 ident: 27480_CR44 publication-title: Computer Phys. Commun. doi: 10.1016/j.cpc.2019.107042 – ident: 27480_CR21 – volume: 62 start-page: 3331 year: 1987 ident: 27480_CR23 publication-title: J. Appl. Phys. doi: 10.1063/1.339293 – volume: 14 start-page: 2000047 year: 2020 ident: 27480_CR19 publication-title: Phys. Status Solidi – Rapid Res. Lett. doi: 10.1002/pssr.202000047 – volume: 21 start-page: 477 year: 1926 ident: 27480_CR36 publication-title: Die Naturwissenschaften doi: 10.1007/BF01507527 – volume: 13 start-page: 5188 year: 1976 ident: 27480_CR43 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 65 start-page: 233106 year: 2002 ident: 27480_CR6 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.65.233106 – volume: 5 start-page: 1900303 year: 2019 ident: 27480_CR34 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900303 – volume: 7 start-page: 1 year: 2016 ident: 27480_CR24 publication-title: Nat. Commun. doi: 10.1038/ncomms12136 – volume: 90 start-page: 140103 year: 2014 ident: 27480_CR7 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.140103 – volume: 50 start-page: 17953 year: 1994 ident: 27480_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – ident: 27480_CR11 doi: 10.1002/pssr.201900626 – ident: 27480_CR5 – volume: 44 start-page: 29 year: 2007 ident: 27480_CR1 publication-title: IEEE Spectr. doi: 10.1109/MSPEC.2007.4337663 – volume: 5 start-page: 064405 year: 2021 ident: 27480_CR8 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.5.064405 – volume: 15 start-page: 78 year: 2016 ident: 27480_CR17 publication-title: Nat. Mater. doi: 10.1038/nmat4423 – volume: 12 start-page: 4318 year: 2012 ident: 27480_CR3 publication-title: Nano Lett. doi: 10.1021/nl302049k – volume: 20 start-page: 826 year: 2021 ident: 27480_CR12 publication-title: Nat. Mater. doi: 10.1038/s41563-020-00897-x – volume: 77 start-page: 0 year: 2006 ident: 27480_CR30 publication-title: Rev. Sci. Instrum. doi: 10.1063/1.2214699 – volume: 11 start-page: 1970 year: 2011 ident: 27480_CR16 publication-title: Nano Lett. doi: 10.1021/nl200221z – volume: 129 start-page: 051101 year: 2021 ident: 27480_CR28 publication-title: J. Appl. Phys. doi: 10.1063/5.0038744 – volume: 88 start-page: 085117 year: 2013 ident: 27480_CR45 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.085117 – volume: 40 start-page: 4455 year: 2011 ident: 27480_CR38 publication-title: Chem. Soc. Rev. doi: 10.1039/c1cs15098g – volume: 4 start-page: 243 year: 2019 ident: 27480_CR4 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-019-0089-0 – volume: 104 start-page: 1 year: 2014 ident: 27480_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4879283 – volume: 100 start-page: 136406 year: 2008 ident: 27480_CR41 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.136406 – volume: 369 start-page: 1343 year: 2020 ident: 27480_CR9 publication-title: Science doi: 10.1126/science.aba0067 – ident: 27480_CR20 doi: 10.1007/978-3-642-60293-1 – volume: 109 start-page: 6858 year: 2009 ident: 27480_CR37 publication-title: Chem. Rev. doi: 10.1021/cr900053k – volume: 41 start-page: 65 year: 2006 ident: 27480_CR25 publication-title: J. Mater. Sci. doi: 10.1007/s10853-005-5925-5 – volume: 89 start-page: 8066 year: 2001 ident: 27480_CR29 publication-title: J. Appl. Phys. doi: 10.1063/1.1371002 – volume: 125 start-page: 197601 year: 2020 ident: 27480_CR14 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.125.197601 – volume: 57 start-page: 2752 year: 2018 ident: 27480_CR46 publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b03149 – volume: 29 start-page: 675 year: 1990 ident: 27480_CR31 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.29.675 – volume: 54 start-page: 11169 year: 1996 ident: 27480_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 59 start-page: 1758 year: 1999 ident: 27480_CR40 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.59.1758 – volume: 99 start-page: 102903 year: 2011 ident: 27480_CR2 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3634052 – volume: 12 start-page: 034032 year: 2019 ident: 27480_CR13 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.12.034032 – volume: 369 start-page: 1300 year: 2020 ident: 27480_CR10 publication-title: Science doi: 10.1126/science.abd1212 – volume: 90 start-page: 064111 year: 2014 ident: 27480_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.90.064111 – ident: 27480_CR27 doi: 10.1038/s41467-019-09650-8 |
SSID | ssj0000391844 |
Score | 2.6108623 |
Snippet | Because of its compatibility with semiconductor-based technologies, hafnia (HfO
2
) is today’s most promising ferroelectric material for applications in... Because of its compatibility with semiconductor-based technologies, hafnia (HfO ) is today's most promising ferroelectric material for applications in... Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today’s most promising ferroelectric material for applications in... Because of its compatibility with semiconductor-based technologies, hafnia (HfO2) is today's most promising ferroelectric material for applications in... HfO2 is a promising ferroelectric material for applications in electronics but knowledge on its ferroic and electromechanical response properties is still... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7301 |
SubjectTerms | 639/301/1034/1038 639/301/119/996 Electric properties Electronics Ferroelectric materials Ferroelectricity Ferroelectrics First principles Hafnium oxide Humanities and Social Sciences multidisciplinary Organic compounds Oxygen Oxygen atoms Perovskites Piezoelectricity Predictive control Science Science (multidisciplinary) Symmetry Thin films |
SummonAdditionalLinks | – databaseName: Health & Medical Collection (ProQuest) dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NaxUxEA9aEbyIrV9bW3mCNw3N5mt3T6JiKQXFg4V3C5Mvu1B2a9_rQf96J9m8Lc-PXjezMJlJZiYzyW8IeS0inqi9VZQF3VHpFaMJCJD6Dph0QSul0tvhz1_0yZk8XaplSbityrXKjU3MhtqPLuXIjzDST2Dn6C_fXf6gqWtUqq6WFhp3yb0EXZaudDXLZs6xJPTzVsryVoaJ9mgls2VI9xLwONYyqrb8UYbt_1es-feVyT_qptkdHT8iD0scuXg_KX6X3AnDHrk_dZb8-Zjsf-3Dr3HqcdM7jLQX_bA4hzj08IScHX_69vGEljYI1OHpYk2l9JI3HQhlRfTCaQ_QCh8TjkzEAI8zcOh_hFVIEwT4CBq6BqzSsYWoxFOyM4xDeE4WrIlO2tilrL6ExlnBQoidV77mLKi6IvVGGMYVjPDUquLC5Fq1aM0kQIMCNFmARlXkzfzP5YSQcSv1hyTjmTKhW-cP49V3UzaL0cgXB-utAys1j13NOaRQFYTDedmKHGw0ZMqWW5mbBVKRV_MwbpZUAYEhjNcTTccwIuMVeTYpdOZESLT7nWAVabZUvcXq9sjQn2dA7lY3qCGU3tvNorhh6_-i2L99Fi_IA57Wac1prQ7IzvrqOhxiALS2L_Mq_w1bwgDW priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB9qRfBF_HZrlRN802g2X7t5EFGxFKHigwd9C_m0C2VPr1do-9c7ye6enJ4--bqZwOwvMzu_2SQzAM95wow6OEloVJqIICnJhQBJ0JYKH5WUMt8dPvqsDufi07E83oGp3dEI4NnW1C73k5ovT19d_Lh8iw7_Zrgy3r4-E8Xd82EDzLFaSuQ1uI6RqcmOejTS_fJl5hoTGjHendk-dSM-lTL-27jnn0cof9tHLeHp4DbcGnnl7N1gCHdgJ_Z34cbQafLyHux96eLVYuh503lk3rOun53Y1Hf2PswPPn79cEjGtgjEY7axIkIEwRptuXQ8Be5VsLblIeW6MgkJH6PWYzziTqJM5DYkq6xurJMqtTZJ_gB2-0UfH8GMNskLl3T-yy9s4x2nMSYdZKgZjbKuoJ7AMH6sGZ5bV5yasnfNWzMAaBBAUwA0soIX6znfh4oZ_5R-nzFeS-Zq1-XBYvnNjM5jFOrFrAvOWycUS7pmzGbqarnH93IV7E8rZCYLMpga5ur4SLAqeLYeRufJOyK2j4vzQUZTZGisgofDgq414QLjgOa0gmZjqTdU3Rzpu5NSoLtVDa4QovdyMopfav0dir3_AcVjuMmyNdeM1HIfdlfL8_gEadPKPS2-8BP9SBGJ priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1baxUxEB5qRfBFvLu1yhF802A2t9191IOlCIoPFvoWJje7IHtKe_qgv95J9iJHq-DrZgKzM5Pkm1y-AXgpE2XUwWnGo-mYCpqzTATIQodc-Wi01vnt8MdP5vhEfTjVp3sg5rcw5dJ-obQs0_R8O-zNpSpDOl8ooDyq5UzfgJuZuj1H9dqsl32VzHjeKjW9j-GyvabrzhpUqPqvw5d_XpP87ay0LEFHd-HOhB1Xb0dt78FeHO7DrbGa5PcHcPC5jz82Y12b3hO6XvXD6gzT0ONDODl6_2V9zKbSB8xTRrFlSgUlmg6ldjIF6U1AbGVImTsmEagTHD2tOdJpkokSQ0KDXYNOm9Ri0vIR7A-bIT6BFW-SVy51eSdfYeOd5DGmLuhQCx51XUE9G8P6iRc8l6f4Zsv5tGztaEBLBrTFgFZX8Grpcz6yYvxT-l228SKZGa3Lh83FVzt52BrSS6ALzqNTRqSuFgIzPEXp6b9cBYezh-w0zC4tpX-ZAZ9AVAUvlmYaIPnUA4e4uRplOk4oTFTweHTooolUNNd3klfQ7Lh6R9XdlqE_KyTcrWnIQ2S913NQ_FLr76Y4-D_xp3Bb5LitBav1IexvL67iMwJBW_e8RP1P12H-lw priority: 102 providerName: Springer Nature |
Title | Piezoelectricity in hafnia |
URI | https://link.springer.com/article/10.1038/s41467-021-27480-5 https://www.ncbi.nlm.nih.gov/pubmed/34911930 https://www.proquest.com/docview/2610236584 https://www.proquest.com/docview/2610909372 https://pubmed.ncbi.nlm.nih.gov/PMC8674271 https://doaj.org/article/6b302abdbcab462f9122a1397a3c7abb |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1baxQxFD5oRfBFvDu1Liv4pqGZ3Gbmcbt0WxZailrYt5ArHZBZsdsH_fWeZGbXrlr70pcZSM5A-E5yLpPkOwDvecSM2ltJaFANEV5SkogAiW8MFS4oKWW6O3xyqo7PxXwhF9dKfaUzYT09cA_cvrKcMmO9dcYKxWJTMmZS2GK4q4y1yfqiz7uWTGUbzBtMXcRwS4byev9SZJuQTiRgIlZTIrc8USbs_1eU-fdhyT92TLMjmj2Bx0MEOZ70I38K90L3DB72NSV_PIfdszb8XPbVbVqHMfa47cYXJnateQHns8Mv02MyFEAgDvOKFRHCC1Y1hkvLo-dOeWNq7mNikIkY2jFqHHoebiXKBG58NMogMlaqWJso-UvY6ZZdeA1jWkUnbGzS_3xhKoeohhAbL33JaJBlAeUaDO0GdvBUpOKrzrvUvNY9gBoB1BlALQv4sPnmW8-N8V_pg4TxRjLxWucG1LYetK1v03YBe2sN6WGxXWpMAhMPPoZSBbzbdOMySXsfpgvLq16moRiLsQJe9QrdjIQLtPgNpwVUW6reGup2T9deZCruWlWoIUTv43pS_B7WzVDs3gUUb-ARS7O5ZKSUe7Cz-n4V3mKAtLIjuF8tKnzWs6MRPJhM5p_n-D44PD37hK1TNR3l1YLPE1H_AhpZEQM |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9UwEB5VRQguqKxNWyBIcAKrjpcsB4TYqle6iEMrvZvxSiOhpPS9CpUfxW9knOVVj6W3XmNHGs_62WPPADznAXfUzkhCfV4R4SQlsRAgcZWmwvpcShnfDh8c5pNj8Wkqpyvwa3wLE69Vjj6xc9SutfGMfBuRfix2jvHyzel3ErtGxezq2EKjV4s9f_EDt2yz17sfUL4vGNv5ePR-QoauAsQiWJ8TIZxgRaW5NDw4bnOndcldiGVZAuIlRrVFd86NxDmeaxd0rqtCG5mHUofYJQJd_g0MvDRaVDEtFmc6sdp6KcTwNofycnsmOk8U70Hg9q-kRC7Fv65NwL-w7d9XNP_I03bhb2cN7gy4NX3bK9pdWPHNPbjZd7K8uA8bn2v_s-176tQWkX1aN-mJDk2tH8DxtTDoIaw2bePXIaVFsMKEKmYRhC6s4dT7UDnpMka9zBLIRmYoO9Qkj60xvqkuN85L1TNQIQNVx0AlE3i5-Oe0r8hx5ex3kceLmbGadvehPfuqBuNUOdLFtHHGaiNyFqqMMR2hseYW12US2BolpAYTn6lLhUzg2WIYjTNmXHTj2_N-TkURAbIEHvUCXVDCBcaZitMEiiVRL5G6PNLUJ10B8DIvUELIvVejUlyS9X9WbFy9iqdwa3J0sK_2dw_3NuE2izqbMZLJLVidn537xwi-5uZJp_EpfLluE_sNtcg-iw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbhQxEC1FQSAuiJ1OAgwSnMAat5deDggBYZQQiHIg0tyMV9IS6k4yE6HwaXwd5d6iYckt13a1ZNf67LKrAJ7zgDtqZyShPiuJcJKSWAiQuFJTYX0mpYxvhz_vZzuH4uNcztfg1_AWJl6rHHxi66hdY-MZ-RSRfix2jvFyGvprEQfbszfHJyR2kIqZ1qGdRqcie_78B27fFq93t1HWLxibffjyfof0HQaIReC-JEI4wfJSc2l4cNxmTuuCuxBLtATEToxqi66dG4k0nmsXdKbLXBuZhUKH2DEC3f-1nMs02lg-z8fznVh5vRCif6dDeTFdiNYrxTsRuBUsKJErsbBtGfAvnPv3dc0_crZtKJzdhls9hp287ZTuDqz5-i5c77pant-DjYPK_2y6_jqVRZQ_qerJkQ51pe_D4ZUw6AGs103tH8GE5sEKE8qYURA6t4ZT70PppEsZ9TJNIB2YoWxfnzy2yfiu2jw5L1THQIUMVC0DlUzg5fjPcVed41Lqd5HHI2WsrN1-aE6_qd5QVYbzYto4Y7URGQtlypiOMFlzi-syCWwNElK9uS_UhXIm8GwcRkON2Rdd--asoykpokGWwMNOoONMuMCYU3KaQL4i6pWpro7U1VFbDLzIcpQQcu_VoBQX0_o_KzYuX8VTuIHGpT7t7u9twk0WVTZlJJVbsL48PfOPEYctzZNW4Sfw9aot7DegdkLB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Piezoelectricity+in+hafnia&rft.jtitle=Nature+communications&rft.au=Sangita+Dutta&rft.au=Pratyush+Buragohain&rft.au=Sebastjan+Glinsek&rft.au=Claudia+Richter&rft.date=2021-12-15&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-021-27480-5&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6b302abdbcab462f9122a1397a3c7abb |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |