Chaos-assisted two-octave-spanning microcombs
Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectrosc...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 2336 - 6 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.05.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through
χ
(2)
and
χ
(3)
nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.
Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies. |
---|---|
AbstractList | Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ(2) and χ(3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies. Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ (2) and χ (3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies. Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies. Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ (2) and χ (3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ(2) and χ(3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ(2) and χ(3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ and χ nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. |
ArticleNumber | 2336 |
Author | Wang, Heming Yang, Qi-Fan Xiao, Yun-Feng Chen, Hao-Jing Cao, Qi-Tao Yi, Xu Ji, Qing-Xin Gong, Qihuang |
Author_xml | – sequence: 1 givenname: Hao-Jing orcidid: 0000-0001-8907-3908 surname: Chen fullname: Chen, Hao-Jing organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University – sequence: 2 givenname: Qing-Xin surname: Ji fullname: Ji, Qing-Xin organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Department of Electrical and Computer Engineering, University of Virginia, T. J. Watson Laboratory of Applied Physics, California Institute of Technology – sequence: 3 givenname: Heming orcidid: 0000-0003-3861-0624 surname: Wang fullname: Wang, Heming organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology – sequence: 4 givenname: Qi-Fan orcidid: 0000-0002-7036-1712 surname: Yang fullname: Yang, Qi-Fan organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology – sequence: 5 givenname: Qi-Tao surname: Cao fullname: Cao, Qi-Tao organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University – sequence: 6 givenname: Qihuang surname: Gong fullname: Gong, Qihuang organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Collaborative Innovation Center of Extreme Optics, Shanxi University, Peking University Yangtze Delta Institute of Optoelectronics – sequence: 7 givenname: Xu orcidid: 0000-0002-2485-1104 surname: Yi fullname: Yi, Xu email: yi@virginia.edu organization: Department of Electrical and Computer Engineering, University of Virginia, Department of Physics, University of Virginia – sequence: 8 givenname: Yun-Feng orcidid: 0000-0002-0296-7130 surname: Xiao fullname: Xiao, Yun-Feng email: yfxiao@pku.edu.cn organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Collaborative Innovation Center of Extreme Optics, Shanxi University, Peking University Yangtze Delta Institute of Optoelectronics |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32393765$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1vFSEYhYmpsR_2D7gwTdy4Qfl4YWY2JuZGa5MmbnRN3gHmlpsZuMLcGv-93Duttl2UDQSec3KAc0qOYoqekDecfeBMth8LcNANZYJRrjoOVL0gJ4IBp7wR8ujB-picl7JhdciOtwCvyLEUspONVieErm4wFYqlhDJ7dzH_TjTZGW89LVuMMcT1xRRsTjZNfXlNXg44Fn9-N5-Rn1-__Fh9o9ffL69Wn6-p1UzPFISVTml02AjoRW8F6zpw3LoBBufQghTCyQa5bHnTNR0I7AffdUJLobyVZ-Rq8XUJN2abw4T5j0kYzGEj5bXBPAc7euNBAWfKA9MDcIU9esE0bwZ0vLWSV69Pi9d210_eWR_njOMj08cnMdyYdbo1jeAAem_w_s4gp187X2YzhWL9OGL0aVeMAMZbppRmFX33BN2kXY71qQ4UA6gXrtTbh4n-Rbn_lQq0C1DfvZTsB2PDjHNI-4BhNJyZfQfM0gFTO2AOHTB7qXgivXd_ViQXUalwXPv8P_Yzqr9BuMGz |
CitedBy_id | crossref_primary_10_29026_oea_2024_240061 crossref_primary_10_1364_OL_511339 crossref_primary_10_1002_lpor_202401688 crossref_primary_10_1109_JPHOT_2021_3104934 crossref_primary_10_1364_AO_457471 crossref_primary_10_1364_OL_416460 crossref_primary_10_1364_PRJ_459478 crossref_primary_10_1103_PhysRevA_102_053508 crossref_primary_10_1515_nanoph_2022_0575 crossref_primary_10_1038_s41377_023_01076_8 crossref_primary_10_1186_s43593_024_00071_9 crossref_primary_10_1364_PRJ_397619 crossref_primary_10_3390_math9111194 crossref_primary_10_1364_OE_469599 crossref_primary_10_1002_lpor_202100184 crossref_primary_10_1109_JSTQE_2022_3157924 crossref_primary_10_1103_PhysRevLett_128_073901 crossref_primary_10_1364_AOP_479017 crossref_primary_10_1364_OPTICA_400994 crossref_primary_10_1021_acs_nanolett_0c04090 crossref_primary_10_1109_JPHOT_2022_3227173 crossref_primary_10_1103_PhysRevLett_127_273902 crossref_primary_10_1364_OE_486794 crossref_primary_10_1021_acsphotonics_3c01247 crossref_primary_10_1109_LPT_2021_3096645 crossref_primary_10_1103_PhysRevA_108_013520 crossref_primary_10_1364_OL_514893 crossref_primary_10_1364_OL_463317 crossref_primary_10_3788_LOP241576 crossref_primary_10_1109_JSTQE_2024_3398419 crossref_primary_10_1088_1674_4926_42_4_041301 crossref_primary_10_1364_OL_486221 crossref_primary_10_1364_OE_478863 crossref_primary_10_1002_lpor_202301329 crossref_primary_10_1007_s11433_024_2585_x crossref_primary_10_1088_1674_1056_abd15f crossref_primary_10_1038_s41598_024_83747_z crossref_primary_10_1364_OE_412157 crossref_primary_10_1364_PRJ_414785 crossref_primary_10_1364_OPTICA_487008 crossref_primary_10_1109_JPHOT_2022_3203731 crossref_primary_10_3389_fphy_2021_786028 crossref_primary_10_1364_OL_479251 crossref_primary_10_1063_5_0151013 crossref_primary_10_1364_OL_555498 crossref_primary_10_1038_s41377_021_00656_w crossref_primary_10_1364_AOP_470264 crossref_primary_10_1364_OE_450100 crossref_primary_10_1364_PRJ_473559 crossref_primary_10_1002_lpor_202200510 crossref_primary_10_1364_PRJ_435837 crossref_primary_10_1007_s11433_024_2557_6 crossref_primary_10_1016_j_neurot_2023_10_009 crossref_primary_10_1364_PRJ_459561 crossref_primary_10_1007_s11433_024_2380_6 crossref_primary_10_1364_OE_544085 crossref_primary_10_1103_PhysRevLett_130_153802 crossref_primary_10_1007_s11433_023_2234_6 crossref_primary_10_1007_s11082_021_02988_8 crossref_primary_10_1016_j_cej_2024_158195 crossref_primary_10_1364_PRJ_408612 crossref_primary_10_1103_PhysRevLett_126_110601 crossref_primary_10_1364_OPTICA_509239 crossref_primary_10_1038_s41377_020_00438_w crossref_primary_10_1103_PhysRevA_105_033509 crossref_primary_10_1109_JLT_2024_3411590 crossref_primary_10_1109_JLT_2024_3486720 crossref_primary_10_1038_s41467_021_27469_0 crossref_primary_10_1109_JLT_2023_3300191 crossref_primary_10_1002_lpor_202200724 crossref_primary_10_1063_5_0180672 crossref_primary_10_1038_s41377_021_00578_7 crossref_primary_10_1088_1367_2630_ac6530 crossref_primary_10_1103_PhysRevA_103_023515 crossref_primary_10_1103_PhysRevE_102_062208 |
Cites_doi | 10.1103/RevModPhys.87.61 10.1038/nphoton.2009.259 10.1364/OL.38.002810 10.1038/nphoton.2009.236 10.1038/lsa.2016.253 10.1364/OE.24.010890 10.1038/s41566-018-0312-3 10.1364/OL.41.002565 10.1038/nature01371 10.1126/science.aao1968 10.1038/s41566-018-0309-y 10.1038/nphoton.2014.72 10.1364/OPTICA.4.000193 10.1002/adma201302572 10.1038/nature22387 10.1038/s41467-018-06031-5 10.1038/s41467-018-07882-8 10.1103/PhysRevLett.121.063902 10.1364/OE.22.026517 10.1364/OL.36.002290 10.1038/s41566-018-0297-y 10.1126/science.aah6516 10.1038/385045a0 10.1038/nphys3875 10.1038/nature06401 10.1364/OPTICA.2.001078 10.1364/OL.44.004737 10.1038/s41377-019-0161-y 10.1364/OPTICA.6.001138 10.1126/science.aad4811 10.1002/lpor.201600006 10.1364/OL.42.002010 10.1038/nphoton.2013.343 10.1038/nphoton.2013.108 10.1126/science.aao0763 10.1364/OPTICA.1.000396 10.1126/science.1193968 10.1364/OL.43.004366 10.1126/science.aaw2317 10.1038/s41586-018-0065-7 10.1364/OPTICA.6.000206 10.1103/PhysRevLett.101.093902 10.1103/PhysRevLett.104.163902 10.1038/s41566-017-0009-z 10.1364/OPTICA.3.001126 10.1103/PhysRevLett.104.243601 10.1126/science.aas9437 10.1364/OL.41.002037 10.1126/science.aao3924 10.1126/science.aan8083 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-15914-5 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Medical Database Biological Science Database ProQuest Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Directory of Open Access Journals (DOAJ) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 6 |
ExternalDocumentID | oai_doaj_org_article_e454105e406f415abae20617fad18c31 PMC7214461 32393765 10_1038_s41467_020_15914_5 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: 1842641 funderid: https://doi.org/10.13039/100000001 – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11825402; 11654003; 12041602 funderid: https://doi.org/10.13039/501100001809 – fundername: ; grantid: 11825402; 11654003; 12041602 – fundername: ; grantid: 1842641 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-42c3d56ada724b2bc20994d1cdf4fddac4322d37a1381797942abfe9926325ec3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:20:08 EDT 2025 Thu Aug 21 13:52:16 EDT 2025 Fri Jul 11 01:06:02 EDT 2025 Wed Aug 13 06:12:40 EDT 2025 Thu Apr 03 07:02:13 EDT 2025 Thu Apr 24 23:08:45 EDT 2025 Tue Jul 01 04:08:56 EDT 2025 Fri Feb 21 02:40:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-42c3d56ada724b2bc20994d1cdf4fddac4322d37a1381797942abfe9926325ec3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8907-3908 0000-0002-0296-7130 0000-0003-3861-0624 0000-0002-2485-1104 0000-0002-7036-1712 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15914-5 |
PMID | 32393765 |
PQID | 2401044381 |
PQPubID | 546298 |
PageCount | 6 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_e454105e406f415abae20617fad18c31 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214461 proquest_miscellaneous_2401805560 proquest_journals_2401044381 pubmed_primary_32393765 crossref_citationtrail_10_1038_s41467_020_15914_5 crossref_primary_10_1038_s41467_020_15914_5 springer_journals_10_1038_s41467_020_15914_5 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-11 |
PublicationDateYYYYMMDD | 2020-05-11 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Levy (CR6) 2010; 4 Del’Haye (CR2) 2007; 450 Liang (CR4) 2011; 36 Cao, Wiersig (CR37) 2015; 87 Zhang (CR49) 2019; 6 Joshi (CR14) 2016; 41 Savchenkov (CR3) 2008; 101 Kippenberg, Holzwarth, Diddams (CR1) 2011; 332 He (CR17) 2019; 6 Jung, Xiong, Fong, Zhang, Tang (CR7) 2013; 38 Yi, Yang, Yang, Suh, Vahala (CR11) 2015; 2 Moille (CR31) 2019; 44 Zhou (CR50) 2019; 8 Miller (CR41) 2014; 22 Yang, Yi, Yang, Vahala (CR26) 2017; 13 Wang (CR9) 2019; 10 Xue (CR43) 2017; 6 Brasch (CR12) 2016; 351 Suh, Vahala (CR20) 2018; 359 Wang (CR13) 2016; 24 Guo, Zou, Tang (CR29) 2016; 3 Gong (CR15) 2018; 43 Wang (CR42) 2016; 10 Nöckel, Stone (CR32) 1997; 385 Yang (CR38) 2010; 104 Liu (CR35) 2013; 7 Bittner (CR34) 2018; 361 Shinohara (CR33) 2010; 104 Li (CR30) 2017; 4 CR16 Armani, Kippenberg, Spillane, Vahala (CR46) 2003; 421 Zhang (CR45) 2019; 13 Suh, Yang, Yang, Yi, Vahala (CR18) 2016; 354 Trocha (CR21) 2018; 359 Yang (CR23) 2019; 363 Razzari (CR5) 2010; 4 Yi, Yang, Yang, Vahala (CR28) 2018; 9 Herr (CR10) 2014; 8 Spencer (CR22) 2018; 557 Cole, Lamb, Del’Haye, Diddams, Papp (CR27) 2017; 11 Stone (CR48) 2018; 121 Obrzud (CR25) 2019; 13 Hausmann, Bulu, Venkataraman, Deotare, Lončar (CR8) 2014; 8 Suh (CR24) 2019; 13 Jung, Stoll, Guo, Fischer, Tang (CR40) 2014; 1 Yi, Yang, Youl, Vahala (CR47) 2016; 41 Marin-Palomo (CR19) 2017; 546 Shao (CR36) 2013; 25 Jiang (CR39) 2017; 358 Fujii, Kato, Suzuki, Tanabe (CR44) 2017; 42 X Xue (15914_CR43) 2017; 6 X Jiang (15914_CR39) 2017; 358 V Brasch (15914_CR12) 2016; 351 DT Spencer (15914_CR22) 2018; 557 TJ Kippenberg (15914_CR1) 2011; 332 S Shinohara (15914_CR33) 2010; 104 W Liang (15914_CR4) 2011; 36 S Zhang (15914_CR49) 2019; 6 C Wang (15914_CR9) 2019; 10 L Shao (15914_CR36) 2013; 25 L Wang (15914_CR42) 2016; 10 L Razzari (15914_CR5) 2010; 4 JS Levy (15914_CR6) 2010; 4 B Hausmann (15914_CR8) 2014; 8 S Bittner (15914_CR34) 2018; 361 E Obrzud (15914_CR25) 2019; 13 JR Stone (15914_CR48) 2018; 121 H Jung (15914_CR40) 2014; 1 X Yi (15914_CR47) 2016; 41 Q-F Yang (15914_CR26) 2017; 13 P Marin-Palomo (15914_CR19) 2017; 546 AA Savchenkov (15914_CR3) 2008; 101 15914_CR16 M-G Suh (15914_CR20) 2018; 359 JU Nöckel (15914_CR32) 1997; 385 P-H Wang (15914_CR13) 2016; 24 T Herr (15914_CR10) 2014; 8 D Armani (15914_CR46) 2003; 421 M-G Suh (15914_CR24) 2019; 13 Z Gong (15914_CR15) 2018; 43 M-G Suh (15914_CR18) 2016; 354 X Yi (15914_CR28) 2018; 9 H Jung (15914_CR7) 2013; 38 P Trocha (15914_CR21) 2018; 359 H Cao (15914_CR37) 2015; 87 G Moille (15914_CR31) 2019; 44 DC Cole (15914_CR27) 2017; 11 S Miller (15914_CR41) 2014; 22 C Joshi (15914_CR14) 2016; 41 S Fujii (15914_CR44) 2017; 42 Q-F Yang (15914_CR23) 2019; 363 P Del’Haye (15914_CR2) 2007; 450 C Liu (15914_CR35) 2013; 7 H Zhou (15914_CR50) 2019; 8 X Yi (15914_CR11) 2015; 2 X Zhang (15914_CR45) 2019; 13 Y He (15914_CR17) 2019; 6 Q Li (15914_CR30) 2017; 4 X Guo (15914_CR29) 2016; 3 J Yang (15914_CR38) 2010; 104 |
References_xml | – volume: 87 start-page: 61 year: 2015 ident: CR37 article-title: Dielectric microcavities: model systems for wave chaos and non-hermitian physics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.61 – volume: 4 start-page: 37 year: 2010 end-page: 40 ident: CR6 article-title: CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.259 – volume: 38 start-page: 2810 year: 2013 end-page: 2813 ident: CR7 article-title: Optical frequency comb generation from aluminum nitride microring resonator publication-title: Opt. Lett. doi: 10.1364/OL.38.002810 – volume: 4 start-page: 41 year: 2010 end-page: 45 ident: CR5 article-title: CMOS-compatible integrated optical hyper-parametric oscillator publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.236 – ident: CR16 – volume: 6 year: 2017 ident: CR43 article-title: Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.253 – volume: 24 start-page: 10890 year: 2016 end-page: 10897 ident: CR13 article-title: Intracavity characterization of micro-comb generation in the single-soliton regime publication-title: Opt. Express doi: 10.1364/OE.24.010890 – volume: 13 start-page: 25 year: 2019 end-page: 30 ident: CR24 article-title: Searching for exoplanets using a microresonator astrocomb publication-title: Nat. Photonics doi: 10.1038/s41566-018-0312-3 – volume: 41 start-page: 2565 year: 2016 end-page: 2568 ident: CR14 article-title: Thermally controlled comb generation and soliton modelocking in microresonators publication-title: Opt. Lett. doi: 10.1364/OL.41.002565 – volume: 421 start-page: 925 year: 2003 ident: CR46 article-title: Ultra-high- toroid microcavity on a chip publication-title: Nature doi: 10.1038/nature01371 – volume: 359 start-page: 884 year: 2018 end-page: 887 ident: CR20 article-title: Soliton microcomb range measurement publication-title: Science doi: 10.1126/science.aao1968 – volume: 13 start-page: 31 year: 2019 ident: CR25 article-title: A microphotonic astrocomb publication-title: Nat. Photonics doi: 10.1038/s41566-018-0309-y – volume: 8 start-page: 369 year: 2014 end-page: 374 ident: CR8 article-title: Diamond nonlinear photonics publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.72 – volume: 4 start-page: 193 year: 2017 end-page: 203 ident: CR30 article-title: Stably accessing octave-spanning microresonator frequency combs in the soliton regime publication-title: Optica doi: 10.1364/OPTICA.4.000193 – volume: 25 start-page: 5616 year: 2013 end-page: 5620 ident: CR36 article-title: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening publication-title: Adv. Mater. doi: 10.1002/adma201302572 – volume: 546 start-page: 274 year: 2017 end-page: 279 ident: CR19 article-title: Microresonator-based solitons for massively parallel coherent optical communications publication-title: Nature doi: 10.1038/nature22387 – volume: 9 year: 2018 ident: CR28 article-title: Imaging soliton dynamics in optical microcavities publication-title: Nat. Commun. doi: 10.1038/s41467-018-06031-5 – volume: 10 start-page: 1 year: 2019 end-page: 6 ident: CR9 article-title: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 121 start-page: 063902 year: 2018 ident: CR48 article-title: Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.063902 – volume: 22 start-page: 26517 year: 2014 end-page: 26525 ident: CR41 article-title: On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities publication-title: Opt. Express doi: 10.1364/OE.22.026517 – volume: 36 start-page: 2290 year: 2011 end-page: 2292 ident: CR4 article-title: Generation of near-infrared frequency combs from a MgF whispering gallery mode resonator publication-title: Opt. Lett. doi: 10.1364/OL.36.002290 – volume: 13 start-page: 21 year: 2019 ident: CR45 article-title: Symmetry-breaking-induced nonlinear optics at a microcavity surface publication-title: Nat. Photonics doi: 10.1038/s41566-018-0297-y – volume: 354 start-page: 600 year: 2016 end-page: 603 ident: CR18 article-title: Microresonator soliton dual-comb spectroscopy publication-title: Science doi: 10.1126/science.aah6516 – volume: 385 start-page: 45 year: 1997 ident: CR32 article-title: Ray and wave chaos in asymmetric resonant optical cavities publication-title: Nature doi: 10.1038/385045a0 – volume: 13 start-page: 53 year: 2017 end-page: 57 ident: CR26 article-title: Stokes solitons in optical microcavities publication-title: Nat. Phys. doi: 10.1038/nphys3875 – volume: 450 start-page: 1214 year: 2007 end-page: 1217 ident: CR2 article-title: Optical frequency comb generation from a monolithic microresonator publication-title: Nature doi: 10.1038/nature06401 – volume: 2 start-page: 1078 year: 2015 end-page: 1085 ident: CR11 article-title: Soliton frequency comb at microwave rates in a high- silica microresonator publication-title: Optica doi: 10.1364/OPTICA.2.001078 – volume: 44 start-page: 4737 year: 2019 end-page: 4740 ident: CR31 article-title: Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs publication-title: Opt. Lett. doi: 10.1364/OL.44.004737 – volume: 8 year: 2019 ident: CR50 article-title: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0161-y – volume: 6 start-page: 1138 year: 2019 end-page: 1144 ident: CR17 article-title: Self-starting bi-chromatic LiNbO soliton microcomb publication-title: Optica doi: 10.1364/OPTICA.6.001138 – volume: 351 start-page: 357 year: 2016 end-page: 360 ident: CR12 article-title: Photonic chip–based optical frequency comb using soliton Cherenkov radiation publication-title: Science doi: 10.1126/science.aad4811 – volume: 10 start-page: 631 year: 2016 end-page: 638 ident: CR42 article-title: Frequency comb generation in the green using silicon nitride microresonators publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201600006 – volume: 42 start-page: 2010 year: 2017 end-page: 2013 ident: CR44 article-title: Third-harmonic blue light generation from Kerr clustered combs and dispersive waves publication-title: Opt. Lett. doi: 10.1364/OL.42.002010 – volume: 8 start-page: 145 year: 2014 end-page: 152 ident: CR10 article-title: Temporal solitons in optical microresonators publication-title: Nat. Photonics. doi: 10.1038/nphoton.2013.343 – volume: 7 start-page: 473 year: 2013 ident: CR35 article-title: Enhanced energy storage in chaotic optical resonators publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.108 – volume: 358 start-page: 344 year: 2017 end-page: 347 ident: CR39 article-title: Chaos-assisted broadband momentum transformation in optical microresonators publication-title: Science doi: 10.1126/science.aao0763 – volume: 1 start-page: 396 year: 2014 end-page: 399 ident: CR40 article-title: Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator publication-title: Optica doi: 10.1364/OPTICA.1.000396 – volume: 332 start-page: 555 year: 2011 end-page: 559 ident: CR1 article-title: Microresonator-based optical frequency combs publication-title: Science doi: 10.1126/science.1193968 – volume: 43 start-page: 4366 year: 2018 end-page: 4369 ident: CR15 article-title: High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators publication-title: Opt. Lett. doi: 10.1364/OL.43.004366 – volume: 363 start-page: 965 year: 2019 end-page: 968 ident: CR23 article-title: Vernier spectrometer using counterpropagating soliton microcombs publication-title: Science doi: 10.1126/science.aaw2317 – volume: 557 start-page: 81 year: 2018 end-page: 85 ident: CR22 article-title: An optical-frequency synthesizer using integrated photonics publication-title: Nature doi: 10.1038/s41586-018-0065-7 – volume: 6 start-page: 206 year: 2019 end-page: 212 ident: CR49 article-title: Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser publication-title: Optica doi: 10.1364/OPTICA.6.000206 – volume: 101 start-page: 093902 year: 2008 ident: CR3 article-title: Tunable optical frequency comb with a crystalline whispering gallery mode resonator publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.093902 – volume: 104 start-page: 163902 year: 2010 ident: CR33 article-title: Chaos-assisted directional light emission from microcavity lasers publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.163902 – volume: 11 start-page: 671 year: 2017 ident: CR27 article-title: Soliton crystals in Kerr resonators publication-title: Nat. Photonics doi: 10.1038/s41566-017-0009-z – volume: 3 start-page: 1126 year: 2016 end-page: 1131 ident: CR29 article-title: Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency publication-title: Optica doi: 10.1364/OPTICA.3.001126 – volume: 104 start-page: 243601 year: 2010 ident: CR38 article-title: Pump-induced dynamical tunneling in a deformed microcavity laser publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.243601 – volume: 361 start-page: 1225 year: 2018 end-page: 1231 ident: CR34 article-title: Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities publication-title: Science doi: 10.1126/science.aas9437 – volume: 41 start-page: 2037 year: 2016 end-page: 2040 ident: CR47 article-title: Active capture and stabilization of temporal solitons in microresonators publication-title: Opt. Lett. doi: 10.1364/OL.41.002037 – volume: 359 start-page: 887 year: 2018 end-page: 891 ident: CR21 article-title: Ultrafast optical ranging using microresonator soliton frequency combs publication-title: Science doi: 10.1126/science.aao3924 – volume: 10 start-page: 1 year: 2019 ident: 15914_CR9 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07882-8 – volume: 6 start-page: 1138 year: 2019 ident: 15914_CR17 publication-title: Optica doi: 10.1364/OPTICA.6.001138 – volume: 87 start-page: 61 year: 2015 ident: 15914_CR37 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.87.61 – volume: 7 start-page: 473 year: 2013 ident: 15914_CR35 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.108 – volume: 2 start-page: 1078 year: 2015 ident: 15914_CR11 publication-title: Optica doi: 10.1364/OPTICA.2.001078 – volume: 385 start-page: 45 year: 1997 ident: 15914_CR32 publication-title: Nature doi: 10.1038/385045a0 – volume: 8 start-page: 145 year: 2014 ident: 15914_CR10 publication-title: Nat. Photonics. doi: 10.1038/nphoton.2013.343 – volume: 121 start-page: 063902 year: 2018 ident: 15914_CR48 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.063902 – volume: 11 start-page: 671 year: 2017 ident: 15914_CR27 publication-title: Nat. Photonics doi: 10.1038/s41566-017-0009-z – volume: 9 year: 2018 ident: 15914_CR28 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06031-5 – volume: 36 start-page: 2290 year: 2011 ident: 15914_CR4 publication-title: Opt. Lett. doi: 10.1364/OL.36.002290 – volume: 24 start-page: 10890 year: 2016 ident: 15914_CR13 publication-title: Opt. Express doi: 10.1364/OE.24.010890 – volume: 101 start-page: 093902 year: 2008 ident: 15914_CR3 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.101.093902 – volume: 4 start-page: 41 year: 2010 ident: 15914_CR5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.236 – volume: 546 start-page: 274 year: 2017 ident: 15914_CR19 publication-title: Nature doi: 10.1038/nature22387 – volume: 6 start-page: 206 year: 2019 ident: 15914_CR49 publication-title: Optica doi: 10.1364/OPTICA.6.000206 – volume: 42 start-page: 2010 year: 2017 ident: 15914_CR44 publication-title: Opt. Lett. doi: 10.1364/OL.42.002010 – ident: 15914_CR16 doi: 10.1126/science.aan8083 – volume: 354 start-page: 600 year: 2016 ident: 15914_CR18 publication-title: Science doi: 10.1126/science.aah6516 – volume: 557 start-page: 81 year: 2018 ident: 15914_CR22 publication-title: Nature doi: 10.1038/s41586-018-0065-7 – volume: 13 start-page: 21 year: 2019 ident: 15914_CR45 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0297-y – volume: 104 start-page: 163902 year: 2010 ident: 15914_CR33 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.163902 – volume: 41 start-page: 2037 year: 2016 ident: 15914_CR47 publication-title: Opt. Lett. doi: 10.1364/OL.41.002037 – volume: 13 start-page: 31 year: 2019 ident: 15914_CR25 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0309-y – volume: 361 start-page: 1225 year: 2018 ident: 15914_CR34 publication-title: Science doi: 10.1126/science.aas9437 – volume: 43 start-page: 4366 year: 2018 ident: 15914_CR15 publication-title: Opt. Lett. doi: 10.1364/OL.43.004366 – volume: 4 start-page: 193 year: 2017 ident: 15914_CR30 publication-title: Optica doi: 10.1364/OPTICA.4.000193 – volume: 38 start-page: 2810 year: 2013 ident: 15914_CR7 publication-title: Opt. Lett. doi: 10.1364/OL.38.002810 – volume: 3 start-page: 1126 year: 2016 ident: 15914_CR29 publication-title: Optica doi: 10.1364/OPTICA.3.001126 – volume: 1 start-page: 396 year: 2014 ident: 15914_CR40 publication-title: Optica doi: 10.1364/OPTICA.1.000396 – volume: 332 start-page: 555 year: 2011 ident: 15914_CR1 publication-title: Science doi: 10.1126/science.1193968 – volume: 363 start-page: 965 year: 2019 ident: 15914_CR23 publication-title: Science doi: 10.1126/science.aaw2317 – volume: 22 start-page: 26517 year: 2014 ident: 15914_CR41 publication-title: Opt. Express doi: 10.1364/OE.22.026517 – volume: 104 start-page: 243601 year: 2010 ident: 15914_CR38 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.104.243601 – volume: 8 year: 2019 ident: 15914_CR50 publication-title: Light Sci. Appl. doi: 10.1038/s41377-019-0161-y – volume: 44 start-page: 4737 year: 2019 ident: 15914_CR31 publication-title: Opt. Lett. doi: 10.1364/OL.44.004737 – volume: 351 start-page: 357 year: 2016 ident: 15914_CR12 publication-title: Science doi: 10.1126/science.aad4811 – volume: 13 start-page: 53 year: 2017 ident: 15914_CR26 publication-title: Nat. Phys. doi: 10.1038/nphys3875 – volume: 8 start-page: 369 year: 2014 ident: 15914_CR8 publication-title: Nat. Photonics doi: 10.1038/nphoton.2014.72 – volume: 10 start-page: 631 year: 2016 ident: 15914_CR42 publication-title: Laser Photon. Rev. doi: 10.1002/lpor.201600006 – volume: 358 start-page: 344 year: 2017 ident: 15914_CR39 publication-title: Science doi: 10.1126/science.aao0763 – volume: 4 start-page: 37 year: 2010 ident: 15914_CR6 publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.259 – volume: 359 start-page: 884 year: 2018 ident: 15914_CR20 publication-title: Science doi: 10.1126/science.aao1968 – volume: 25 start-page: 5616 year: 2013 ident: 15914_CR36 publication-title: Adv. Mater. doi: 10.1002/adma201302572 – volume: 359 start-page: 887 year: 2018 ident: 15914_CR21 publication-title: Science doi: 10.1126/science.aao3924 – volume: 450 start-page: 1214 year: 2007 ident: 15914_CR2 publication-title: Nature doi: 10.1038/nature06401 – volume: 6 year: 2017 ident: 15914_CR43 publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.253 – volume: 13 start-page: 25 year: 2019 ident: 15914_CR24 publication-title: Nat. Photonics doi: 10.1038/s41566-018-0312-3 – volume: 41 start-page: 2565 year: 2016 ident: 15914_CR14 publication-title: Opt. Lett. doi: 10.1364/OL.41.002565 – volume: 421 start-page: 925 year: 2003 ident: 15914_CR46 publication-title: Nature doi: 10.1038/nature01371 |
SSID | ssj0000391844 |
Score | 2.6107895 |
Snippet | Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of... Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2336 |
SubjectTerms | 639/624/1111/1112 639/624/399/1097 639/624/400/1118 639/766/400/385 Broadband Channels Collection Deformation Degrees of freedom Emissions Humanities and Social Sciences Lifts multidisciplinary Optical frequency Science Science (multidisciplinary) Silica Silicon dioxide Spectroscopy Spectrum analysis Symmetry Waveguides |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals (DOAJ) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR39YXK3jT4DZNm_Soi7IIenJhbyFNUlbQVmxV_PfOpN111-fFa5PSYR75ZprkG0KOrGSC6dBSKH8shYxY0FTngoJvSGkQIP0Pt-ubZDDkV6N4NNPqC8-ENfTAjeJOHY_xJKID4MkBbHSmHUPYzbUNpfE3qBlg3kwx5dfgKIXShbe3ZHqRPK24XxOwWgIEDzmN55DIE_Z_l2V-PSz5acfUA9HlClluM8juWSP5KllwxRpZbHpKvq0T2h_rsqKQE6MBbbd-LWlpav3iKCwevkFR9wFP4YGrZdUGGV5e3PYHtO2JQA2UGjXlzEQ2TrTVgvGMZQavvnIbGpvz3FptOESojYQOkXovhWhjOstdmiIve-xMtEk6RVm4bdJNEi6dlIkNY8tdnmcyBUQzwonUZamMAhJO9KNMSxiOfSvuld-4jqRqdKpAp8rrVMUBOZ6-89jQZfw6-xzVPp2JVNf-ATiAah1A_eUAAdmbGE218VcpyFOgzkT6soAcTochcnA7RBeufG7mSOQS6gVkq7HxVJIImeFEAhKKOevPiTo_UtyNPTu38CR08N2TiZ98iPWzKnb-QxW7ZImhgyO5bLhHOvXTs9uHnKnODnx4vAO0Fg5C priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9UwFD8BDAkvRAV1eDXXhDdooFu3dk9GCdcbEnmChLemazsxgQ3ZgPjfe07XO3JVeF277Ox8tz39HYBdp1KZGu4YLn8cw4xYstLUkqFuKGUpQIYNt--nxfxcnFzkF3HDrYtllQufGBy1ay3tkR9g5MGVAwFSfb75xahrFJ2uxhYaq_CCY6Shki41-zbusRD6uRIi3pU5zNRBJ4JnoDUTxnEuWL4UjwJs__9yzX9LJv86Nw3haPYSNmMeOf0yCP4VrPjmNawPnSV_bwE7ujRtxzAzJjG6af_Qstb25t4zdCGhTdH0mmrx8OerbhvOZ8dnR3MWOyMwiwuOnonUZi4vjDMyFVVaWboAKxy3rha1c8YKtFOXScMJgK9Em0tNVfuyJHT23NvsDaw1bePfwbQohPJKFY7nTvi6rlSJcc1KL0tflSpLgC_4o22EDafuFVc6HF9nSg881chTHXiq8wT2xnduBtCMZ2d_JbaPMwnwOjxob3_oaD_ai5wKUj3mHzXmHKYyPqXsqzaOK5vxBCYLoelohZ1-1JkEPo3DaD90KGIa394NcxQhCh0m8HaQ8UhJRvhwskAK5ZL0l0hdHml-XgaMbhmg6PC7-ws9eSTraVbsPP8X72EjJdUl8Fg-gbX-9s5_wJyorz4Gxf8D7dkGGg priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS90wFD84ZbAXmbrN-sUd-KZhJk2b9PEqilzQFyf4FtIknYOtHd664X_vOenHuM4JvjYJPT0fPb8kJ78A7HstlLDcM5z-eIaIWLHCVoqhb2jtKEHGBbeLy_z8Ws5uspslEMNZmFi0Hykt4296qA77MpcxpGmygwmYS5a9gRWiakffXplOZ1ezcWWFOM-1lP0JmaNUPzN4IQtFsv7nEOa_hZJPdktjEjp7D6s9epxMO3nXYCnU6_C2u0_yYQPYya1t5gzxMBnPT9o_DWtca38Hhj-OeDnR5CdV4OFHl_MPcH12-vXknPX3ITCH04yWSeFSn-XWWyVkKUpHx16l585XsvLeOonR6VNlOdHuFRhpwpZVKAriZM-CSz_Cct3UYRMmeS510Dr3PPMyVFWpC8xmTgVVhLLQaQJ80I9xPVk43Vnxw8RN61SbTqcGdWqiTk2WwME45ldHlfFi72NS-9iTaK7jg-bum-nNboLMqAw1IOqoEGnY0gZBmKuynmuX8gR2BqOZPvbmBjEKzjGJuiyBz2MzRg1thdg6NPddH008QkcJfOpsPEqSEiucylFCtWD9BVEXW-rvt5GZW0UCOnzv4eAnf8X6vyq2Xtd9G94JcmWikOU7sNze3YddREZtudeHwiPCPgVZ priority: 102 providerName: Springer Nature |
Title | Chaos-assisted two-octave-spanning microcombs |
URI | https://link.springer.com/article/10.1038/s41467-020-15914-5 https://www.ncbi.nlm.nih.gov/pubmed/32393765 https://www.proquest.com/docview/2401044381 https://www.proquest.com/docview/2401805560 https://pubmed.ncbi.nlm.nih.gov/PMC7214461 https://doaj.org/article/e454105e406f415abae20617fad18c31 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0i8oI3PsFEViTcw4MSJnQeEumplqrQJAZX6Zjm2syGNBNoM2H_PnZN0KpS9JJLjKM75zvc7f_wO4IVTsYwNdwzDH8cQEUuWm1Iy1A2lLDnIMOF2epadzMR0ns63oE931AlwuTG0o3xSs8Xl698_rt-jwb9rj4yrN0sRzJ0CIXTOXLB0G3bRM0nKaHDawf0wMic5BjSiOzuz-dU1_xRo_Ddhz3-3UP61jhrc02QP7nW4cjhqFWEftnx1H-60mSavHwAbX5h6yRApU7e6YfOrZrVtzE_PcEgJaYuG32hvHipgsXwIs8nxl_EJ6zIlMIsBSMNEbBOXZsYZGYsiLiwdiBWOW1eK0jljBdqtS6ThRMiXow3Gpih9nhNbe-pt8gh2qrryT2CYZUJ5pTLHUyd8WRYqRz9npZe5L3KVRMB7-Wjb0YhTNotLHZazE6VbmWqUqQ4y1WkEL1fvfG9JNG6tfURiX9UkAuxQUC_OdWdP2ouUNqh6xCMlYhBTGB8TGiuN48omPILDvtN0r1Qa0QtGn0RqFsHz1WO0J1okMZWvr9o6ihiG3kbwuO3jVUsS4ouTGbZQrvX-WlPXn1RfLwJntwzUdPjdV72e3DTr_6J4evtfHMDdmFSXyGT5Iew0iyv_DDFSUwxgW84lXtXkwwB2R6Pp5ynej47PPn7C0nE2HoTZh0EwkD9GbhAZ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VIgQbxLMECgQJVmC1cZzYWSAEhcstfaxaqTvj2A5FgqQ0KVV_im9kxnlUl0d33SZO4ozPeI5fZwCeO8UlN4ljOPxxDBmxZIWpJENsKGUpQIYJt53dfL4vPh1kB0vwazwLQ9sqxz4xdNSusTRHvoaRB0cOJEj15ugHo6xRtLo6ptDoYbHlz05xyNa-3nyP7fuC89mHvY05G7IKMItkvWOC29RluXFGclHy0tLhUeES6ypROWesQIy7VJqExOsKxCs3ZeWLgpTNM29TfO8VuCpSjOR0Mn32cZrTIbV1JcRwNmc9VWutCD0RjdGQNySCZQvxL6QJ-Be3_XuL5h_rtCH8zW7BzYG3xm97oN2GJV_fgWt9Jsuzu8A2Dk3TMmTiBBsXd6cNa2xnfnqGXVZIixR_p71_aOyyvQf7l2Kz-7BcN7V_AHGeC-WVyl2SOeGrqlQFxlErvSx8Wag0gmS0j7aDTDlly_imw3J5qnRvU4021cGmOovg5fTMUS_ScWHpd2T2qSQJbIcLzfEXPfir9iKjDbAe-U6FHMeUxnNie5VxibJpEsHq2Gh68PpWn2M0gmfTbfRXWoQxtW9O-jKKFIzWI1jp23iqSUp6dDLHGsqF1l-o6uKd-uth0ASXQfoOv_tqxMl5tf5viocX_8VTuD7f29nW25u7W4_gBicYk3BtsgrL3fGJf4x8rCufBCeI4fNle91vkaBDGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4ECgQJTmBtkzixc0CIPlYthVWFqNSbcWyHVoKkNClV_xq_jhnnUS2P3nrdeHed8Ty-scffALywMhaxjizD9McyRMSC5boUDHVDSkMB0m-4fZxn2_v8_UF6sAS_hrswVFY5-ETvqG1taI98ipEHMwcipJqWfVnE3ubs7fEPRh2k6KR1aKfRqciuOz_D9K15s7OJa_0yjmdbnze2Wd9hgBkE7i3jsUlsmmmrRcyLuDB0kZTbyNiSl9Zqw1HfbSJ0RER2OepurIvS5TmxnKfOJPi712BZUFY0geX1rfnep3GHh7jXJef9TZ21RE4b7v0SZWyIIiLO0oVo6JsG_Avp_l2w-ceprQ-Gs1tws0ex4btO7W7DkqvuwPWur-X5XWAbh7puGOJyUiIbtmc1q02rfzqGDsw3SQq_UyUgir5o7sH-lUjtPkyqunIPIcwyLp2UmY1Sy11ZFjLHqGqEE7krcpkEEA3yUaYnLafeGd-UPzxPpOpkqlCmystUpQG8Gr9z3FF2XDp6ncQ-jiS6bf9BffJV9darHE-pHNYh-ikR8ehCu5iwX6ltJE0SBbA6LJrqfUCjLjQ2gOfjY7ReOpLRlatPuzGS-IzWAnjQrfE4k4TY6USGMxQLq78w1cUn1dGhZwgXnggP__f1oCcX0_q_KB5d_hbP4AZanPqwM999DCsxaTGx2EarMGlPTt0TBGdt8bS3ghC-XLXh_QY2Q0iq |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaos-assisted+two-octave-spanning+microcombs&rft.jtitle=Nature+communications&rft.au=Hao-Jing%2C+Chen&rft.au=Qing-Xin%2C+Ji&rft.au=Wang%2C+Heming&rft.au=Qi-Fan%2C+Yang&rft.date=2020-05-11&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-15914-5&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |