Chaos-assisted two-octave-spanning microcombs

Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectrosc...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 2336 - 6
Main Authors Chen, Hao-Jing, Ji, Qing-Xin, Wang, Heming, Yang, Qi-Fan, Cao, Qi-Tao, Gong, Qihuang, Yi, Xu, Xiao, Yun-Feng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.05.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ (2) and χ (3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies.
AbstractList Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ(2) and χ(3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies.
Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ (2) and χ (3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging. Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies.
Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide, introducing a new degree of freedom to microcomb studies.
Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ (2) and χ (3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.
Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ(2) and χ(3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ(2) and χ(3) nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.
Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of microresonator-based frequency combs (microcombs) provides a unique pathway to create frequency comb systems on a chip. Indeed, microcomb-based spectroscopy, ranging, optical synthesizer, telecommunications and astronomical calibrations have been reported recently. Critical to many of the integrated comb systems is the broad coverage of comb spectra. Here, microcombs of more than two-octave span (450 nm to 2,008 nm) is demonstrated through χ and χ nonlinearities in a deformed silica microcavity. The deformation lifts the circular symmetry and creates chaotic tunneling channels that enable broadband collection of intracavity emission with a single waveguide. Our demonstration introduces a new degree of freedom, cavity deformation, to the microcomb studies, and our microcomb spectral range is useful for applications in optical clock, astronomical calibration and biological imaging.
ArticleNumber 2336
Author Wang, Heming
Yang, Qi-Fan
Xiao, Yun-Feng
Chen, Hao-Jing
Cao, Qi-Tao
Yi, Xu
Ji, Qing-Xin
Gong, Qihuang
Author_xml – sequence: 1
  givenname: Hao-Jing
  orcidid: 0000-0001-8907-3908
  surname: Chen
  fullname: Chen, Hao-Jing
  organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University
– sequence: 2
  givenname: Qing-Xin
  surname: Ji
  fullname: Ji, Qing-Xin
  organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Department of Electrical and Computer Engineering, University of Virginia, T. J. Watson Laboratory of Applied Physics, California Institute of Technology
– sequence: 3
  givenname: Heming
  orcidid: 0000-0003-3861-0624
  surname: Wang
  fullname: Wang, Heming
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology
– sequence: 4
  givenname: Qi-Fan
  orcidid: 0000-0002-7036-1712
  surname: Yang
  fullname: Yang, Qi-Fan
  organization: T. J. Watson Laboratory of Applied Physics, California Institute of Technology
– sequence: 5
  givenname: Qi-Tao
  surname: Cao
  fullname: Cao, Qi-Tao
  organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University
– sequence: 6
  givenname: Qihuang
  surname: Gong
  fullname: Gong, Qihuang
  organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Collaborative Innovation Center of Extreme Optics, Shanxi University, Peking University Yangtze Delta Institute of Optoelectronics
– sequence: 7
  givenname: Xu
  orcidid: 0000-0002-2485-1104
  surname: Yi
  fullname: Yi, Xu
  email: yi@virginia.edu
  organization: Department of Electrical and Computer Engineering, University of Virginia, Department of Physics, University of Virginia
– sequence: 8
  givenname: Yun-Feng
  orcidid: 0000-0002-0296-7130
  surname: Xiao
  fullname: Xiao, Yun-Feng
  email: yfxiao@pku.edu.cn
  organization: State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Collaborative Innovation Center of Quantum Matter, Collaborative Innovation Center of Extreme Optics, Shanxi University, Peking University Yangtze Delta Institute of Optoelectronics
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32393765$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1vFSEYhYmpsR_2D7gwTdy4Qfl4YWY2JuZGa5MmbnRN3gHmlpsZuMLcGv-93Duttl2UDQSec3KAc0qOYoqekDecfeBMth8LcNANZYJRrjoOVL0gJ4IBp7wR8ujB-picl7JhdciOtwCvyLEUspONVieErm4wFYqlhDJ7dzH_TjTZGW89LVuMMcT1xRRsTjZNfXlNXg44Fn9-N5-Rn1-__Fh9o9ffL69Wn6-p1UzPFISVTml02AjoRW8F6zpw3LoBBufQghTCyQa5bHnTNR0I7AffdUJLobyVZ-Rq8XUJN2abw4T5j0kYzGEj5bXBPAc7euNBAWfKA9MDcIU9esE0bwZ0vLWSV69Pi9d210_eWR_njOMj08cnMdyYdbo1jeAAem_w_s4gp187X2YzhWL9OGL0aVeMAMZbppRmFX33BN2kXY71qQ4UA6gXrtTbh4n-Rbn_lQq0C1DfvZTsB2PDjHNI-4BhNJyZfQfM0gFTO2AOHTB7qXgivXd_ViQXUalwXPv8P_Yzqr9BuMGz
CitedBy_id crossref_primary_10_29026_oea_2024_240061
crossref_primary_10_1364_OL_511339
crossref_primary_10_1002_lpor_202401688
crossref_primary_10_1109_JPHOT_2021_3104934
crossref_primary_10_1364_AO_457471
crossref_primary_10_1364_OL_416460
crossref_primary_10_1364_PRJ_459478
crossref_primary_10_1103_PhysRevA_102_053508
crossref_primary_10_1515_nanoph_2022_0575
crossref_primary_10_1038_s41377_023_01076_8
crossref_primary_10_1186_s43593_024_00071_9
crossref_primary_10_1364_PRJ_397619
crossref_primary_10_3390_math9111194
crossref_primary_10_1364_OE_469599
crossref_primary_10_1002_lpor_202100184
crossref_primary_10_1109_JSTQE_2022_3157924
crossref_primary_10_1103_PhysRevLett_128_073901
crossref_primary_10_1364_AOP_479017
crossref_primary_10_1364_OPTICA_400994
crossref_primary_10_1021_acs_nanolett_0c04090
crossref_primary_10_1109_JPHOT_2022_3227173
crossref_primary_10_1103_PhysRevLett_127_273902
crossref_primary_10_1364_OE_486794
crossref_primary_10_1021_acsphotonics_3c01247
crossref_primary_10_1109_LPT_2021_3096645
crossref_primary_10_1103_PhysRevA_108_013520
crossref_primary_10_1364_OL_514893
crossref_primary_10_1364_OL_463317
crossref_primary_10_3788_LOP241576
crossref_primary_10_1109_JSTQE_2024_3398419
crossref_primary_10_1088_1674_4926_42_4_041301
crossref_primary_10_1364_OL_486221
crossref_primary_10_1364_OE_478863
crossref_primary_10_1002_lpor_202301329
crossref_primary_10_1007_s11433_024_2585_x
crossref_primary_10_1088_1674_1056_abd15f
crossref_primary_10_1038_s41598_024_83747_z
crossref_primary_10_1364_OE_412157
crossref_primary_10_1364_PRJ_414785
crossref_primary_10_1364_OPTICA_487008
crossref_primary_10_1109_JPHOT_2022_3203731
crossref_primary_10_3389_fphy_2021_786028
crossref_primary_10_1364_OL_479251
crossref_primary_10_1063_5_0151013
crossref_primary_10_1364_OL_555498
crossref_primary_10_1038_s41377_021_00656_w
crossref_primary_10_1364_AOP_470264
crossref_primary_10_1364_OE_450100
crossref_primary_10_1364_PRJ_473559
crossref_primary_10_1002_lpor_202200510
crossref_primary_10_1364_PRJ_435837
crossref_primary_10_1007_s11433_024_2557_6
crossref_primary_10_1016_j_neurot_2023_10_009
crossref_primary_10_1364_PRJ_459561
crossref_primary_10_1007_s11433_024_2380_6
crossref_primary_10_1364_OE_544085
crossref_primary_10_1103_PhysRevLett_130_153802
crossref_primary_10_1007_s11433_023_2234_6
crossref_primary_10_1007_s11082_021_02988_8
crossref_primary_10_1016_j_cej_2024_158195
crossref_primary_10_1364_PRJ_408612
crossref_primary_10_1103_PhysRevLett_126_110601
crossref_primary_10_1364_OPTICA_509239
crossref_primary_10_1038_s41377_020_00438_w
crossref_primary_10_1103_PhysRevA_105_033509
crossref_primary_10_1109_JLT_2024_3411590
crossref_primary_10_1109_JLT_2024_3486720
crossref_primary_10_1038_s41467_021_27469_0
crossref_primary_10_1109_JLT_2023_3300191
crossref_primary_10_1002_lpor_202200724
crossref_primary_10_1063_5_0180672
crossref_primary_10_1038_s41377_021_00578_7
crossref_primary_10_1088_1367_2630_ac6530
crossref_primary_10_1103_PhysRevA_103_023515
crossref_primary_10_1103_PhysRevE_102_062208
Cites_doi 10.1103/RevModPhys.87.61
10.1038/nphoton.2009.259
10.1364/OL.38.002810
10.1038/nphoton.2009.236
10.1038/lsa.2016.253
10.1364/OE.24.010890
10.1038/s41566-018-0312-3
10.1364/OL.41.002565
10.1038/nature01371
10.1126/science.aao1968
10.1038/s41566-018-0309-y
10.1038/nphoton.2014.72
10.1364/OPTICA.4.000193
10.1002/adma201302572
10.1038/nature22387
10.1038/s41467-018-06031-5
10.1038/s41467-018-07882-8
10.1103/PhysRevLett.121.063902
10.1364/OE.22.026517
10.1364/OL.36.002290
10.1038/s41566-018-0297-y
10.1126/science.aah6516
10.1038/385045a0
10.1038/nphys3875
10.1038/nature06401
10.1364/OPTICA.2.001078
10.1364/OL.44.004737
10.1038/s41377-019-0161-y
10.1364/OPTICA.6.001138
10.1126/science.aad4811
10.1002/lpor.201600006
10.1364/OL.42.002010
10.1038/nphoton.2013.343
10.1038/nphoton.2013.108
10.1126/science.aao0763
10.1364/OPTICA.1.000396
10.1126/science.1193968
10.1364/OL.43.004366
10.1126/science.aaw2317
10.1038/s41586-018-0065-7
10.1364/OPTICA.6.000206
10.1103/PhysRevLett.101.093902
10.1103/PhysRevLett.104.163902
10.1038/s41566-017-0009-z
10.1364/OPTICA.3.001126
10.1103/PhysRevLett.104.243601
10.1126/science.aas9437
10.1364/OL.41.002037
10.1126/science.aao3924
10.1126/science.aan8083
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-15914-5
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Medical Database
Biological Science Database
ProQuest Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals (DOAJ)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database



CrossRef
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 6
ExternalDocumentID oai_doaj_org_article_e454105e406f415abae20617fad18c31
PMC7214461
32393765
10_1038_s41467_020_15914_5
Genre Research Support, U.S. Gov't, Non-P.H.S
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Science Foundation (NSF)
  grantid: 1842641
  funderid: https://doi.org/10.13039/100000001
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 11825402; 11654003; 12041602
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
  grantid: 11825402; 11654003; 12041602
– fundername: ;
  grantid: 1842641
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-42c3d56ada724b2bc20994d1cdf4fddac4322d37a1381797942abfe9926325ec3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:20:08 EDT 2025
Thu Aug 21 13:52:16 EDT 2025
Fri Jul 11 01:06:02 EDT 2025
Wed Aug 13 06:12:40 EDT 2025
Thu Apr 03 07:02:13 EDT 2025
Thu Apr 24 23:08:45 EDT 2025
Tue Jul 01 04:08:56 EDT 2025
Fri Feb 21 02:40:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-42c3d56ada724b2bc20994d1cdf4fddac4322d37a1381797942abfe9926325ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8907-3908
0000-0002-0296-7130
0000-0003-3861-0624
0000-0002-2485-1104
0000-0002-7036-1712
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-15914-5
PMID 32393765
PQID 2401044381
PQPubID 546298
PageCount 6
ParticipantIDs doaj_primary_oai_doaj_org_article_e454105e406f415abae20617fad18c31
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7214461
proquest_miscellaneous_2401805560
proquest_journals_2401044381
pubmed_primary_32393765
crossref_citationtrail_10_1038_s41467_020_15914_5
crossref_primary_10_1038_s41467_020_15914_5
springer_journals_10_1038_s41467_020_15914_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-11
PublicationDateYYYYMMDD 2020-05-11
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Levy (CR6) 2010; 4
Del’Haye (CR2) 2007; 450
Liang (CR4) 2011; 36
Cao, Wiersig (CR37) 2015; 87
Zhang (CR49) 2019; 6
Joshi (CR14) 2016; 41
Savchenkov (CR3) 2008; 101
Kippenberg, Holzwarth, Diddams (CR1) 2011; 332
He (CR17) 2019; 6
Jung, Xiong, Fong, Zhang, Tang (CR7) 2013; 38
Yi, Yang, Yang, Suh, Vahala (CR11) 2015; 2
Moille (CR31) 2019; 44
Zhou (CR50) 2019; 8
Miller (CR41) 2014; 22
Yang, Yi, Yang, Vahala (CR26) 2017; 13
Wang (CR9) 2019; 10
Xue (CR43) 2017; 6
Brasch (CR12) 2016; 351
Suh, Vahala (CR20) 2018; 359
Wang (CR13) 2016; 24
Guo, Zou, Tang (CR29) 2016; 3
Gong (CR15) 2018; 43
Wang (CR42) 2016; 10
Nöckel, Stone (CR32) 1997; 385
Yang (CR38) 2010; 104
Liu (CR35) 2013; 7
Bittner (CR34) 2018; 361
Shinohara (CR33) 2010; 104
Li (CR30) 2017; 4
CR16
Armani, Kippenberg, Spillane, Vahala (CR46) 2003; 421
Zhang (CR45) 2019; 13
Suh, Yang, Yang, Yi, Vahala (CR18) 2016; 354
Trocha (CR21) 2018; 359
Yang (CR23) 2019; 363
Razzari (CR5) 2010; 4
Yi, Yang, Yang, Vahala (CR28) 2018; 9
Herr (CR10) 2014; 8
Spencer (CR22) 2018; 557
Cole, Lamb, Del’Haye, Diddams, Papp (CR27) 2017; 11
Stone (CR48) 2018; 121
Obrzud (CR25) 2019; 13
Hausmann, Bulu, Venkataraman, Deotare, Lončar (CR8) 2014; 8
Suh (CR24) 2019; 13
Jung, Stoll, Guo, Fischer, Tang (CR40) 2014; 1
Yi, Yang, Youl, Vahala (CR47) 2016; 41
Marin-Palomo (CR19) 2017; 546
Shao (CR36) 2013; 25
Jiang (CR39) 2017; 358
Fujii, Kato, Suzuki, Tanabe (CR44) 2017; 42
X Xue (15914_CR43) 2017; 6
X Jiang (15914_CR39) 2017; 358
V Brasch (15914_CR12) 2016; 351
DT Spencer (15914_CR22) 2018; 557
TJ Kippenberg (15914_CR1) 2011; 332
S Shinohara (15914_CR33) 2010; 104
W Liang (15914_CR4) 2011; 36
S Zhang (15914_CR49) 2019; 6
C Wang (15914_CR9) 2019; 10
L Shao (15914_CR36) 2013; 25
L Wang (15914_CR42) 2016; 10
L Razzari (15914_CR5) 2010; 4
JS Levy (15914_CR6) 2010; 4
B Hausmann (15914_CR8) 2014; 8
S Bittner (15914_CR34) 2018; 361
E Obrzud (15914_CR25) 2019; 13
JR Stone (15914_CR48) 2018; 121
H Jung (15914_CR40) 2014; 1
X Yi (15914_CR47) 2016; 41
Q-F Yang (15914_CR26) 2017; 13
P Marin-Palomo (15914_CR19) 2017; 546
AA Savchenkov (15914_CR3) 2008; 101
15914_CR16
M-G Suh (15914_CR20) 2018; 359
JU Nöckel (15914_CR32) 1997; 385
P-H Wang (15914_CR13) 2016; 24
T Herr (15914_CR10) 2014; 8
D Armani (15914_CR46) 2003; 421
M-G Suh (15914_CR24) 2019; 13
Z Gong (15914_CR15) 2018; 43
M-G Suh (15914_CR18) 2016; 354
X Yi (15914_CR28) 2018; 9
H Jung (15914_CR7) 2013; 38
P Trocha (15914_CR21) 2018; 359
H Cao (15914_CR37) 2015; 87
G Moille (15914_CR31) 2019; 44
DC Cole (15914_CR27) 2017; 11
S Miller (15914_CR41) 2014; 22
C Joshi (15914_CR14) 2016; 41
S Fujii (15914_CR44) 2017; 42
Q-F Yang (15914_CR23) 2019; 363
P Del’Haye (15914_CR2) 2007; 450
C Liu (15914_CR35) 2013; 7
H Zhou (15914_CR50) 2019; 8
X Yi (15914_CR11) 2015; 2
X Zhang (15914_CR45) 2019; 13
Y He (15914_CR17) 2019; 6
Q Li (15914_CR30) 2017; 4
X Guo (15914_CR29) 2016; 3
J Yang (15914_CR38) 2010; 104
References_xml – volume: 87
  start-page: 61
  year: 2015
  ident: CR37
  article-title: Dielectric microcavities: model systems for wave chaos and non-hermitian physics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.61
– volume: 4
  start-page: 37
  year: 2010
  end-page: 40
  ident: CR6
  article-title: CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.259
– volume: 38
  start-page: 2810
  year: 2013
  end-page: 2813
  ident: CR7
  article-title: Optical frequency comb generation from aluminum nitride microring resonator
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.002810
– volume: 4
  start-page: 41
  year: 2010
  end-page: 45
  ident: CR5
  article-title: CMOS-compatible integrated optical hyper-parametric oscillator
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.236
– ident: CR16
– volume: 6
  year: 2017
  ident: CR43
  article-title: Second-harmonic-assisted four-wave mixing in chip-based microresonator frequency comb generation
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.253
– volume: 24
  start-page: 10890
  year: 2016
  end-page: 10897
  ident: CR13
  article-title: Intracavity characterization of micro-comb generation in the single-soliton regime
  publication-title: Opt. Express
  doi: 10.1364/OE.24.010890
– volume: 13
  start-page: 25
  year: 2019
  end-page: 30
  ident: CR24
  article-title: Searching for exoplanets using a microresonator astrocomb
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0312-3
– volume: 41
  start-page: 2565
  year: 2016
  end-page: 2568
  ident: CR14
  article-title: Thermally controlled comb generation and soliton modelocking in microresonators
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002565
– volume: 421
  start-page: 925
  year: 2003
  ident: CR46
  article-title: Ultra-high- toroid microcavity on a chip
  publication-title: Nature
  doi: 10.1038/nature01371
– volume: 359
  start-page: 884
  year: 2018
  end-page: 887
  ident: CR20
  article-title: Soliton microcomb range measurement
  publication-title: Science
  doi: 10.1126/science.aao1968
– volume: 13
  start-page: 31
  year: 2019
  ident: CR25
  article-title: A microphotonic astrocomb
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0309-y
– volume: 8
  start-page: 369
  year: 2014
  end-page: 374
  ident: CR8
  article-title: Diamond nonlinear photonics
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.72
– volume: 4
  start-page: 193
  year: 2017
  end-page: 203
  ident: CR30
  article-title: Stably accessing octave-spanning microresonator frequency combs in the soliton regime
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000193
– volume: 25
  start-page: 5616
  year: 2013
  end-page: 5620
  ident: CR36
  article-title: Detection of single nanoparticles and lentiviruses using microcavity resonance broadening
  publication-title: Adv. Mater.
  doi: 10.1002/adma201302572
– volume: 546
  start-page: 274
  year: 2017
  end-page: 279
  ident: CR19
  article-title: Microresonator-based solitons for massively parallel coherent optical communications
  publication-title: Nature
  doi: 10.1038/nature22387
– volume: 9
  year: 2018
  ident: CR28
  article-title: Imaging soliton dynamics in optical microcavities
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06031-5
– volume: 10
  start-page: 1
  year: 2019
  end-page: 6
  ident: CR9
  article-title: Monolithic lithium niobate photonic circuits for Kerr frequency comb generation and modulation
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 121
  start-page: 063902
  year: 2018
  ident: CR48
  article-title: Thermal and nonlinear dissipative-soliton dynamics in Kerr-microresonator frequency combs
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.063902
– volume: 22
  start-page: 26517
  year: 2014
  end-page: 26525
  ident: CR41
  article-title: On-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities
  publication-title: Opt. Express
  doi: 10.1364/OE.22.026517
– volume: 36
  start-page: 2290
  year: 2011
  end-page: 2292
  ident: CR4
  article-title: Generation of near-infrared frequency combs from a MgF whispering gallery mode resonator
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.002290
– volume: 13
  start-page: 21
  year: 2019
  ident: CR45
  article-title: Symmetry-breaking-induced nonlinear optics at a microcavity surface
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0297-y
– volume: 354
  start-page: 600
  year: 2016
  end-page: 603
  ident: CR18
  article-title: Microresonator soliton dual-comb spectroscopy
  publication-title: Science
  doi: 10.1126/science.aah6516
– volume: 385
  start-page: 45
  year: 1997
  ident: CR32
  article-title: Ray and wave chaos in asymmetric resonant optical cavities
  publication-title: Nature
  doi: 10.1038/385045a0
– volume: 13
  start-page: 53
  year: 2017
  end-page: 57
  ident: CR26
  article-title: Stokes solitons in optical microcavities
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3875
– volume: 450
  start-page: 1214
  year: 2007
  end-page: 1217
  ident: CR2
  article-title: Optical frequency comb generation from a monolithic microresonator
  publication-title: Nature
  doi: 10.1038/nature06401
– volume: 2
  start-page: 1078
  year: 2015
  end-page: 1085
  ident: CR11
  article-title: Soliton frequency comb at microwave rates in a high- silica microresonator
  publication-title: Optica
  doi: 10.1364/OPTICA.2.001078
– volume: 44
  start-page: 4737
  year: 2019
  end-page: 4740
  ident: CR31
  article-title: Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.004737
– volume: 8
  year: 2019
  ident: CR50
  article-title: Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-019-0161-y
– volume: 6
  start-page: 1138
  year: 2019
  end-page: 1144
  ident: CR17
  article-title: Self-starting bi-chromatic LiNbO soliton microcomb
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001138
– volume: 351
  start-page: 357
  year: 2016
  end-page: 360
  ident: CR12
  article-title: Photonic chip–based optical frequency comb using soliton Cherenkov radiation
  publication-title: Science
  doi: 10.1126/science.aad4811
– volume: 10
  start-page: 631
  year: 2016
  end-page: 638
  ident: CR42
  article-title: Frequency comb generation in the green using silicon nitride microresonators
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201600006
– volume: 42
  start-page: 2010
  year: 2017
  end-page: 2013
  ident: CR44
  article-title: Third-harmonic blue light generation from Kerr clustered combs and dispersive waves
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002010
– volume: 8
  start-page: 145
  year: 2014
  end-page: 152
  ident: CR10
  article-title: Temporal solitons in optical microresonators
  publication-title: Nat. Photonics.
  doi: 10.1038/nphoton.2013.343
– volume: 7
  start-page: 473
  year: 2013
  ident: CR35
  article-title: Enhanced energy storage in chaotic optical resonators
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.108
– volume: 358
  start-page: 344
  year: 2017
  end-page: 347
  ident: CR39
  article-title: Chaos-assisted broadband momentum transformation in optical microresonators
  publication-title: Science
  doi: 10.1126/science.aao0763
– volume: 1
  start-page: 396
  year: 2014
  end-page: 399
  ident: CR40
  article-title: Green, red, and IR frequency comb line generation from single IR pump in AlN microring resonator
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000396
– volume: 332
  start-page: 555
  year: 2011
  end-page: 559
  ident: CR1
  article-title: Microresonator-based optical frequency combs
  publication-title: Science
  doi: 10.1126/science.1193968
– volume: 43
  start-page: 4366
  year: 2018
  end-page: 4369
  ident: CR15
  article-title: High-fidelity cavity soliton generation in crystalline AlN micro-ring resonators
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.004366
– volume: 363
  start-page: 965
  year: 2019
  end-page: 968
  ident: CR23
  article-title: Vernier spectrometer using counterpropagating soliton microcombs
  publication-title: Science
  doi: 10.1126/science.aaw2317
– volume: 557
  start-page: 81
  year: 2018
  end-page: 85
  ident: CR22
  article-title: An optical-frequency synthesizer using integrated photonics
  publication-title: Nature
  doi: 10.1038/s41586-018-0065-7
– volume: 6
  start-page: 206
  year: 2019
  end-page: 212
  ident: CR49
  article-title: Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000206
– volume: 101
  start-page: 093902
  year: 2008
  ident: CR3
  article-title: Tunable optical frequency comb with a crystalline whispering gallery mode resonator
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.093902
– volume: 104
  start-page: 163902
  year: 2010
  ident: CR33
  article-title: Chaos-assisted directional light emission from microcavity lasers
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.163902
– volume: 11
  start-page: 671
  year: 2017
  ident: CR27
  article-title: Soliton crystals in Kerr resonators
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-017-0009-z
– volume: 3
  start-page: 1126
  year: 2016
  end-page: 1131
  ident: CR29
  article-title: Second-harmonic generation in aluminum nitride microrings with 2500%/W conversion efficiency
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001126
– volume: 104
  start-page: 243601
  year: 2010
  ident: CR38
  article-title: Pump-induced dynamical tunneling in a deformed microcavity laser
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.243601
– volume: 361
  start-page: 1225
  year: 2018
  end-page: 1231
  ident: CR34
  article-title: Suppressing spatiotemporal lasing instabilities with wave-chaotic microcavities
  publication-title: Science
  doi: 10.1126/science.aas9437
– volume: 41
  start-page: 2037
  year: 2016
  end-page: 2040
  ident: CR47
  article-title: Active capture and stabilization of temporal solitons in microresonators
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002037
– volume: 359
  start-page: 887
  year: 2018
  end-page: 891
  ident: CR21
  article-title: Ultrafast optical ranging using microresonator soliton frequency combs
  publication-title: Science
  doi: 10.1126/science.aao3924
– volume: 10
  start-page: 1
  year: 2019
  ident: 15914_CR9
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07882-8
– volume: 6
  start-page: 1138
  year: 2019
  ident: 15914_CR17
  publication-title: Optica
  doi: 10.1364/OPTICA.6.001138
– volume: 87
  start-page: 61
  year: 2015
  ident: 15914_CR37
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.87.61
– volume: 7
  start-page: 473
  year: 2013
  ident: 15914_CR35
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2013.108
– volume: 2
  start-page: 1078
  year: 2015
  ident: 15914_CR11
  publication-title: Optica
  doi: 10.1364/OPTICA.2.001078
– volume: 385
  start-page: 45
  year: 1997
  ident: 15914_CR32
  publication-title: Nature
  doi: 10.1038/385045a0
– volume: 8
  start-page: 145
  year: 2014
  ident: 15914_CR10
  publication-title: Nat. Photonics.
  doi: 10.1038/nphoton.2013.343
– volume: 121
  start-page: 063902
  year: 2018
  ident: 15914_CR48
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.063902
– volume: 11
  start-page: 671
  year: 2017
  ident: 15914_CR27
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-017-0009-z
– volume: 9
  year: 2018
  ident: 15914_CR28
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06031-5
– volume: 36
  start-page: 2290
  year: 2011
  ident: 15914_CR4
  publication-title: Opt. Lett.
  doi: 10.1364/OL.36.002290
– volume: 24
  start-page: 10890
  year: 2016
  ident: 15914_CR13
  publication-title: Opt. Express
  doi: 10.1364/OE.24.010890
– volume: 101
  start-page: 093902
  year: 2008
  ident: 15914_CR3
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.101.093902
– volume: 4
  start-page: 41
  year: 2010
  ident: 15914_CR5
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.236
– volume: 546
  start-page: 274
  year: 2017
  ident: 15914_CR19
  publication-title: Nature
  doi: 10.1038/nature22387
– volume: 6
  start-page: 206
  year: 2019
  ident: 15914_CR49
  publication-title: Optica
  doi: 10.1364/OPTICA.6.000206
– volume: 42
  start-page: 2010
  year: 2017
  ident: 15914_CR44
  publication-title: Opt. Lett.
  doi: 10.1364/OL.42.002010
– ident: 15914_CR16
  doi: 10.1126/science.aan8083
– volume: 354
  start-page: 600
  year: 2016
  ident: 15914_CR18
  publication-title: Science
  doi: 10.1126/science.aah6516
– volume: 557
  start-page: 81
  year: 2018
  ident: 15914_CR22
  publication-title: Nature
  doi: 10.1038/s41586-018-0065-7
– volume: 13
  start-page: 21
  year: 2019
  ident: 15914_CR45
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0297-y
– volume: 104
  start-page: 163902
  year: 2010
  ident: 15914_CR33
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.163902
– volume: 41
  start-page: 2037
  year: 2016
  ident: 15914_CR47
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002037
– volume: 13
  start-page: 31
  year: 2019
  ident: 15914_CR25
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0309-y
– volume: 361
  start-page: 1225
  year: 2018
  ident: 15914_CR34
  publication-title: Science
  doi: 10.1126/science.aas9437
– volume: 43
  start-page: 4366
  year: 2018
  ident: 15914_CR15
  publication-title: Opt. Lett.
  doi: 10.1364/OL.43.004366
– volume: 4
  start-page: 193
  year: 2017
  ident: 15914_CR30
  publication-title: Optica
  doi: 10.1364/OPTICA.4.000193
– volume: 38
  start-page: 2810
  year: 2013
  ident: 15914_CR7
  publication-title: Opt. Lett.
  doi: 10.1364/OL.38.002810
– volume: 3
  start-page: 1126
  year: 2016
  ident: 15914_CR29
  publication-title: Optica
  doi: 10.1364/OPTICA.3.001126
– volume: 1
  start-page: 396
  year: 2014
  ident: 15914_CR40
  publication-title: Optica
  doi: 10.1364/OPTICA.1.000396
– volume: 332
  start-page: 555
  year: 2011
  ident: 15914_CR1
  publication-title: Science
  doi: 10.1126/science.1193968
– volume: 363
  start-page: 965
  year: 2019
  ident: 15914_CR23
  publication-title: Science
  doi: 10.1126/science.aaw2317
– volume: 22
  start-page: 26517
  year: 2014
  ident: 15914_CR41
  publication-title: Opt. Express
  doi: 10.1364/OE.22.026517
– volume: 104
  start-page: 243601
  year: 2010
  ident: 15914_CR38
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.243601
– volume: 8
  year: 2019
  ident: 15914_CR50
  publication-title: Light Sci. Appl.
  doi: 10.1038/s41377-019-0161-y
– volume: 44
  start-page: 4737
  year: 2019
  ident: 15914_CR31
  publication-title: Opt. Lett.
  doi: 10.1364/OL.44.004737
– volume: 351
  start-page: 357
  year: 2016
  ident: 15914_CR12
  publication-title: Science
  doi: 10.1126/science.aad4811
– volume: 13
  start-page: 53
  year: 2017
  ident: 15914_CR26
  publication-title: Nat. Phys.
  doi: 10.1038/nphys3875
– volume: 8
  start-page: 369
  year: 2014
  ident: 15914_CR8
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2014.72
– volume: 10
  start-page: 631
  year: 2016
  ident: 15914_CR42
  publication-title: Laser Photon. Rev.
  doi: 10.1002/lpor.201600006
– volume: 358
  start-page: 344
  year: 2017
  ident: 15914_CR39
  publication-title: Science
  doi: 10.1126/science.aao0763
– volume: 4
  start-page: 37
  year: 2010
  ident: 15914_CR6
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.259
– volume: 359
  start-page: 884
  year: 2018
  ident: 15914_CR20
  publication-title: Science
  doi: 10.1126/science.aao1968
– volume: 25
  start-page: 5616
  year: 2013
  ident: 15914_CR36
  publication-title: Adv. Mater.
  doi: 10.1002/adma201302572
– volume: 359
  start-page: 887
  year: 2018
  ident: 15914_CR21
  publication-title: Science
  doi: 10.1126/science.aao3924
– volume: 450
  start-page: 1214
  year: 2007
  ident: 15914_CR2
  publication-title: Nature
  doi: 10.1038/nature06401
– volume: 6
  year: 2017
  ident: 15914_CR43
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.253
– volume: 13
  start-page: 25
  year: 2019
  ident: 15914_CR24
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-018-0312-3
– volume: 41
  start-page: 2565
  year: 2016
  ident: 15914_CR14
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.002565
– volume: 421
  start-page: 925
  year: 2003
  ident: 15914_CR46
  publication-title: Nature
  doi: 10.1038/nature01371
SSID ssj0000391844
Score 2.6107895
Snippet Since its invention, optical frequency comb has revolutionized a broad range of subjects from metrology to spectroscopy. The recent development of...
Here, the authors demonstrate the use of chaos to obtain 2-octave comb generation. The deformation lifts the circular symmetry and creates chaotic tunneling...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2336
SubjectTerms 639/624/1111/1112
639/624/399/1097
639/624/400/1118
639/766/400/385
Broadband
Channels
Collection
Deformation
Degrees of freedom
Emissions
Humanities and Social Sciences
Lifts
multidisciplinary
Optical frequency
Science
Science (multidisciplinary)
Silica
Silicon dioxide
Spectroscopy
Spectrum analysis
Symmetry
Waveguides
SummonAdditionalLinks – databaseName: Directory of Open Access Journals (DOAJ)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6yIHgR39YXK3jT4DZNm_Soi7IIenJhbyFNUlbQVmxV_PfOpN111-fFa5PSYR75ZprkG0KOrGSC6dBSKH8shYxY0FTngoJvSGkQIP0Pt-ubZDDkV6N4NNPqC8-ENfTAjeJOHY_xJKID4MkBbHSmHUPYzbUNpfE3qBlg3kwx5dfgKIXShbe3ZHqRPK24XxOwWgIEDzmN55DIE_Z_l2V-PSz5acfUA9HlClluM8juWSP5KllwxRpZbHpKvq0T2h_rsqKQE6MBbbd-LWlpav3iKCwevkFR9wFP4YGrZdUGGV5e3PYHtO2JQA2UGjXlzEQ2TrTVgvGMZQavvnIbGpvz3FptOESojYQOkXovhWhjOstdmiIve-xMtEk6RVm4bdJNEi6dlIkNY8tdnmcyBUQzwonUZamMAhJO9KNMSxiOfSvuld-4jqRqdKpAp8rrVMUBOZ6-89jQZfw6-xzVPp2JVNf-ATiAah1A_eUAAdmbGE218VcpyFOgzkT6soAcTochcnA7RBeufG7mSOQS6gVkq7HxVJIImeFEAhKKOevPiTo_UtyNPTu38CR08N2TiZ98iPWzKnb-QxW7ZImhgyO5bLhHOvXTs9uHnKnODnx4vAO0Fg5C
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dT9UwFD8BDAkvRAV1eDXXhDdooFu3dk9GCdcbEnmChLemazsxgQ3ZgPjfe07XO3JVeF277Ox8tz39HYBdp1KZGu4YLn8cw4xYstLUkqFuKGUpQIYNt--nxfxcnFzkF3HDrYtllQufGBy1ay3tkR9g5MGVAwFSfb75xahrFJ2uxhYaq_CCY6Shki41-zbusRD6uRIi3pU5zNRBJ4JnoDUTxnEuWL4UjwJs__9yzX9LJv86Nw3haPYSNmMeOf0yCP4VrPjmNawPnSV_bwE7ujRtxzAzJjG6af_Qstb25t4zdCGhTdH0mmrx8OerbhvOZ8dnR3MWOyMwiwuOnonUZi4vjDMyFVVaWboAKxy3rha1c8YKtFOXScMJgK9Em0tNVfuyJHT23NvsDaw1bePfwbQohPJKFY7nTvi6rlSJcc1KL0tflSpLgC_4o22EDafuFVc6HF9nSg881chTHXiq8wT2xnduBtCMZ2d_JbaPMwnwOjxob3_oaD_ai5wKUj3mHzXmHKYyPqXsqzaOK5vxBCYLoelohZ1-1JkEPo3DaD90KGIa394NcxQhCh0m8HaQ8UhJRvhwskAK5ZL0l0hdHml-XgaMbhmg6PC7-ws9eSTraVbsPP8X72EjJdUl8Fg-gbX-9s5_wJyorz4Gxf8D7dkGGg
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS90wFD84ZbAXmbrN-sUd-KZhJk2b9PEqilzQFyf4FtIknYOtHd664X_vOenHuM4JvjYJPT0fPb8kJ78A7HstlLDcM5z-eIaIWLHCVoqhb2jtKEHGBbeLy_z8Ws5uspslEMNZmFi0Hykt4296qA77MpcxpGmygwmYS5a9gRWiakffXplOZ1ezcWWFOM-1lP0JmaNUPzN4IQtFsv7nEOa_hZJPdktjEjp7D6s9epxMO3nXYCnU6_C2u0_yYQPYya1t5gzxMBnPT9o_DWtca38Hhj-OeDnR5CdV4OFHl_MPcH12-vXknPX3ITCH04yWSeFSn-XWWyVkKUpHx16l585XsvLeOonR6VNlOdHuFRhpwpZVKAriZM-CSz_Cct3UYRMmeS510Dr3PPMyVFWpC8xmTgVVhLLQaQJ80I9xPVk43Vnxw8RN61SbTqcGdWqiTk2WwME45ldHlfFi72NS-9iTaK7jg-bum-nNboLMqAw1IOqoEGnY0gZBmKuynmuX8gR2BqOZPvbmBjEKzjGJuiyBz2MzRg1thdg6NPddH008QkcJfOpsPEqSEiucylFCtWD9BVEXW-rvt5GZW0UCOnzv4eAnf8X6vyq2Xtd9G94JcmWikOU7sNze3YddREZtudeHwiPCPgVZ
  priority: 102
  providerName: Springer Nature
Title Chaos-assisted two-octave-spanning microcombs
URI https://link.springer.com/article/10.1038/s41467-020-15914-5
https://www.ncbi.nlm.nih.gov/pubmed/32393765
https://www.proquest.com/docview/2401044381
https://www.proquest.com/docview/2401805560
https://pubmed.ncbi.nlm.nih.gov/PMC7214461
https://doaj.org/article/e454105e406f415abae20617fad18c31
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_tQ0i8oI3PsFEViTcw4MSJnQeEumplqrQJAZX6Zjm2syGNBNoM2H_PnZN0KpS9JJLjKM75zvc7f_wO4IVTsYwNdwzDH8cQEUuWm1Iy1A2lLDnIMOF2epadzMR0ns63oE931AlwuTG0o3xSs8Xl698_rt-jwb9rj4yrN0sRzJ0CIXTOXLB0G3bRM0nKaHDawf0wMic5BjSiOzuz-dU1_xRo_Ddhz3-3UP61jhrc02QP7nW4cjhqFWEftnx1H-60mSavHwAbX5h6yRApU7e6YfOrZrVtzE_PcEgJaYuG32hvHipgsXwIs8nxl_EJ6zIlMIsBSMNEbBOXZsYZGYsiLiwdiBWOW1eK0jljBdqtS6ThRMiXow3Gpih9nhNbe-pt8gh2qrryT2CYZUJ5pTLHUyd8WRYqRz9npZe5L3KVRMB7-Wjb0YhTNotLHZazE6VbmWqUqQ4y1WkEL1fvfG9JNG6tfURiX9UkAuxQUC_OdWdP2ouUNqh6xCMlYhBTGB8TGiuN48omPILDvtN0r1Qa0QtGn0RqFsHz1WO0J1okMZWvr9o6ihiG3kbwuO3jVUsS4ouTGbZQrvX-WlPXn1RfLwJntwzUdPjdV72e3DTr_6J4evtfHMDdmFSXyGT5Iew0iyv_DDFSUwxgW84lXtXkwwB2R6Pp5ynej47PPn7C0nE2HoTZh0EwkD9GbhAZ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtUwEB2VIgQbxLMECgQJVmC1cZzYWSAEhcstfaxaqTvj2A5FgqQ0KVV_im9kxnlUl0d33SZO4ozPeI5fZwCeO8UlN4ljOPxxDBmxZIWpJENsKGUpQIYJt53dfL4vPh1kB0vwazwLQ9sqxz4xdNSusTRHvoaRB0cOJEj15ugHo6xRtLo6ptDoYbHlz05xyNa-3nyP7fuC89mHvY05G7IKMItkvWOC29RluXFGclHy0tLhUeES6ypROWesQIy7VJqExOsKxCs3ZeWLgpTNM29TfO8VuCpSjOR0Mn32cZrTIbV1JcRwNmc9VWutCD0RjdGQNySCZQvxL6QJ-Be3_XuL5h_rtCH8zW7BzYG3xm97oN2GJV_fgWt9Jsuzu8A2Dk3TMmTiBBsXd6cNa2xnfnqGXVZIixR_p71_aOyyvQf7l2Kz-7BcN7V_AHGeC-WVyl2SOeGrqlQFxlErvSx8Wag0gmS0j7aDTDlly_imw3J5qnRvU4021cGmOovg5fTMUS_ScWHpd2T2qSQJbIcLzfEXPfir9iKjDbAe-U6FHMeUxnNie5VxibJpEsHq2Gh68PpWn2M0gmfTbfRXWoQxtW9O-jKKFIzWI1jp23iqSUp6dDLHGsqF1l-o6uKd-uth0ASXQfoOv_tqxMl5tf5viocX_8VTuD7f29nW25u7W4_gBicYk3BtsgrL3fGJf4x8rCufBCeI4fNle91vkaBDGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrUC9IN4ECgQJTmBtkzixc0CIPlYthVWFqNSbcWyHVoKkNClV_xq_jhnnUS2P3nrdeHed8Ty-scffALywMhaxjizD9McyRMSC5boUDHVDSkMB0m-4fZxn2_v8_UF6sAS_hrswVFY5-ETvqG1taI98ipEHMwcipJqWfVnE3ubs7fEPRh2k6KR1aKfRqciuOz_D9K15s7OJa_0yjmdbnze2Wd9hgBkE7i3jsUlsmmmrRcyLuDB0kZTbyNiSl9Zqw1HfbSJ0RER2OepurIvS5TmxnKfOJPi712BZUFY0geX1rfnep3GHh7jXJef9TZ21RE4b7v0SZWyIIiLO0oVo6JsG_Avp_l2w-ceprQ-Gs1tws0ex4btO7W7DkqvuwPWur-X5XWAbh7puGOJyUiIbtmc1q02rfzqGDsw3SQq_UyUgir5o7sH-lUjtPkyqunIPIcwyLp2UmY1Sy11ZFjLHqGqEE7krcpkEEA3yUaYnLafeGd-UPzxPpOpkqlCmystUpQG8Gr9z3FF2XDp6ncQ-jiS6bf9BffJV9darHE-pHNYh-ikR8ehCu5iwX6ltJE0SBbA6LJrqfUCjLjQ2gOfjY7ReOpLRlatPuzGS-IzWAnjQrfE4k4TY6USGMxQLq78w1cUn1dGhZwgXnggP__f1oCcX0_q_KB5d_hbP4AZanPqwM999DCsxaTGx2EarMGlPTt0TBGdt8bS3ghC-XLXh_QY2Q0iq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaos-assisted+two-octave-spanning+microcombs&rft.jtitle=Nature+communications&rft.au=Hao-Jing%2C+Chen&rft.au=Qing-Xin%2C+Ji&rft.au=Wang%2C+Heming&rft.au=Qi-Fan%2C+Yang&rft.date=2020-05-11&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-15914-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon