Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher rep...
Saved in:
Published in | Nature communications Vol. 11; no. 1; p. 166 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
09.01.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types.
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses. |
---|---|
AbstractList | Abstract
A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types. A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types. Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses. A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene-gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types. Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses. A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types.Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses. |
ArticleNumber | 166 |
Author | Marouf, Mohamed Machart, Pierre Bansal, Vikas Kilian, Christoph Krebs, Christian F. Bonn, Stefan Magruder, Daniel S. |
Author_xml | – sequence: 1 givenname: Mohamed surname: Marouf fullname: Marouf, Mohamed organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf – sequence: 2 givenname: Pierre orcidid: 0000-0002-2646-3674 surname: Machart fullname: Machart, Pierre organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf – sequence: 3 givenname: Vikas orcidid: 0000-0002-0944-7226 surname: Bansal fullname: Bansal, Vikas organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf – sequence: 4 givenname: Christoph orcidid: 0000-0003-0933-6152 surname: Kilian fullname: Kilian, Christoph organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Center for Internal Medicine, III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf – sequence: 5 givenname: Daniel S. surname: Magruder fullname: Magruder, Daniel S. organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Genevention GmbH – sequence: 6 givenname: Christian F. surname: Krebs fullname: Krebs, Christian F. organization: Center for Internal Medicine, III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf – sequence: 7 givenname: Stefan orcidid: 0000-0003-4366-5662 surname: Bonn fullname: Bonn, Stefan email: sbonn@uke.de organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, German Center for Neurodegenerative Diseases |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31919373$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk1v1DAQhiNUREvpH-CAInHhEvBXnPiCVFVQKlUgVXC2JvYkeMnaXTvZiv76epuytBywLNmaeea1Z_S-LA588FgUryl5TwlvPyRBhWwqQlVFBaFtdfusOGJE0Io2jB88uh8WJymtSF5c0VaIF8Uhp4oq3vCjYnOFMLo0OVM6XyY3OhPKAT1GmFzwJXhbwjys0U9LIPSZ8sOIlcFxLK--nlYJN6WFCcp5l9lXb7EEu8WYIDoYS4_TTYi_0qvieQ9jwpOH87j48fnT97Mv1eW384uz08vKSCKnivdWcWxl3aLoGi5bYMYSmwN1rwgAJz0TneosVaTuJRPUUFQdgmyYUMzw4-Ji0bUBVvo6ujXE3zqA0_eBEAcNMfc9oq4FIqiG0J5LYWqpbG2toKShDUqQbdb6uGhdz90arcnTiDA-EX2a8e6nHsJWS1Uz3pAs8O5BIIbNjGnSa5d2AwSPYU6acS5ZnbfI6Nt_0FWYo8-jypRgKkOEZYotlIkhpYj9_jOU6J1B9GIQnQ2i7w2ib3PRm8dt7Ev-2CEDfAFSTvkB49-3_yN7B6weyYY |
CitedBy_id | crossref_primary_10_1186_s12859_023_05558_9 crossref_primary_10_1016_j_biopha_2023_115077 crossref_primary_10_1186_s12859_022_04778_9 crossref_primary_10_1038_s41467_021_27130_w crossref_primary_10_1186_s12859_021_04469_x crossref_primary_10_1093_bib_bbab531 crossref_primary_10_12688_f1000research_125579_1 crossref_primary_10_1038_s41586_024_07146_0 crossref_primary_10_1016_j_cbpa_2021_04_008 crossref_primary_10_3390_biomedinformatics4020073 crossref_primary_10_1038_s41746_023_00834_7 crossref_primary_10_1111_micc_12854 crossref_primary_10_1007_s00439_022_02439_8 crossref_primary_10_1093_bioinformatics_btad270 crossref_primary_10_1038_s41587_023_01772_1 crossref_primary_10_3390_pr10091796 crossref_primary_10_1016_j_patter_2021_100288 crossref_primary_10_1186_s13059_021_02367_2 crossref_primary_10_1038_s41598_024_54798_z crossref_primary_10_1093_bioinformatics_btad239 crossref_primary_10_1007_s40778_023_00228_1 crossref_primary_10_1186_s13059_024_03290_y crossref_primary_10_1016_j_cels_2020_08_003 crossref_primary_10_1016_j_jtbi_2023_111636 crossref_primary_10_1038_s43856_024_00476_0 crossref_primary_10_3390_biology12101313 crossref_primary_10_1146_annurev_biodatasci_020722_115651 crossref_primary_10_1002_cso2_1050 crossref_primary_10_1038_s42003_022_03473_y crossref_primary_10_1016_j_compbiomed_2021_104540 crossref_primary_10_1186_s12911_024_02487_2 crossref_primary_10_1371_journal_pcbi_1010962 crossref_primary_10_1364_OE_488341 crossref_primary_10_3389_fcell_2021_645276 crossref_primary_10_1016_S1474_4422_20_30308_2 crossref_primary_10_3389_fgene_2021_655536 crossref_primary_10_1016_j_jgg_2021_05_008 crossref_primary_10_1109_JBHI_2024_3349412 crossref_primary_10_3390_math11143055 crossref_primary_10_1002_cyto_a_24709 crossref_primary_10_1109_ACCESS_2021_3054894 crossref_primary_10_1016_j_coisb_2021_02_002 crossref_primary_10_1371_journal_pcbi_1008094 crossref_primary_10_1038_s42256_020_0222_1 crossref_primary_10_1007_s10142_023_01064_6 crossref_primary_10_1007_s11427_020_1804_5 crossref_primary_10_1038_s43588_021_00103_1 crossref_primary_10_1016_j_tig_2023_10_001 crossref_primary_10_1016_j_csbj_2021_10_009 crossref_primary_10_3390_cancers12092373 crossref_primary_10_3390_ijms23052481 crossref_primary_10_1021_acs_jcim_3c00355 crossref_primary_10_1089_omi_2022_0155 crossref_primary_10_1093_bioinformatics_btad363 crossref_primary_10_1126_sciimmunol_aba4163 crossref_primary_10_1093_gigascience_giab064 crossref_primary_10_1016_j_compbiomed_2023_107828 crossref_primary_10_1093_nar_gkaa506 crossref_primary_10_1007_s12559_020_09773_x crossref_primary_10_1093_bioinformatics_btac357 crossref_primary_10_1038_s43588_021_00099_8 crossref_primary_10_1063_5_0091135 crossref_primary_10_1080_10543406_2023_2208671 crossref_primary_10_1093_bib_bbac317 crossref_primary_10_1093_bib_bbad329 crossref_primary_10_1016_j_aap_2023_107192 crossref_primary_10_1186_s12864_024_10160_1 crossref_primary_10_3390_app12115434 crossref_primary_10_1016_j_jhep_2022_01_014 crossref_primary_10_1186_s12859_024_05788_5 crossref_primary_10_1016_j_ceja_2021_100154 crossref_primary_10_1002_tpg2_20122 crossref_primary_10_1038_s41586_023_06221_2 crossref_primary_10_1038_s41592_021_01283_4 crossref_primary_10_1186_s13059_023_03049_x crossref_primary_10_1093_bib_bbac590 crossref_primary_10_1093_bib_bbad040 crossref_primary_10_1038_s41467_024_48516_6 crossref_primary_10_1016_j_compbiomed_2022_105916 crossref_primary_10_1016_j_pacs_2022_100402 crossref_primary_10_1093_bioinformatics_btab035 crossref_primary_10_3389_fgene_2021_624128 crossref_primary_10_1038_s41598_021_88875_4 crossref_primary_10_15252_msb_20199198 crossref_primary_10_3389_fpubh_2020_00164 crossref_primary_10_3389_fmolb_2022_962644 crossref_primary_10_1093_bioinformatics_btac095 crossref_primary_10_1038_s41598_022_11363_w crossref_primary_10_1016_j_bioactmat_2021_11_009 crossref_primary_10_1186_s13059_021_02373_4 crossref_primary_10_1093_nar_gkad157 crossref_primary_10_1016_j_drudis_2023_103825 |
Cites_doi | 10.1186/s13059-017-1382-0 10.1109/CVPR.2017.632 10.1016/j.cell.2018.05.061 10.1038/nature09645 10.1371/journal.pone.0098679 10.1109/MSP.2017.2765202 10.1038/nrg.2018.4 10.1103/PhysRevE.92.032801 10.1038/nature21350 10.1016/j.cell.2015.11.013 10.1186/s13059-019-1663-x 10.1038/nrn3475 10.1126/science.aaa1934 10.1023/A:1010933404324 10.1038/s41562-016-0021 10.1038/nmeth.3971 10.1101/gr.110882.110 10.1186/s13059-015-0805-z 10.1038/ncomms14049 10.1093/bioinformatics/btx196 10.1186/s13059-017-1305-0 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C CGR CUY CVF ECM EIF NPM AAYXX CITATION 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PIMPY PQEST PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-14018-z |
DatabaseName | SpringerOpen Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed CrossRef ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Journals |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) CrossRef Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management Health Research Premium Collection Natural Science Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Technology Collection Technology Research Database ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 166 |
ExternalDocumentID | oai_doaj_org_article_54eea9701f364c569d5dd410717e6a68 10_1038_s41467_019_14018_z 31919373 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADRAZ AENEX AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP CGR CUY CVF ECM EIF NPM AAYXX CITATION 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PQEST PQUKI PRINS RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c606t-3fd93e8658e4b7368a2cd0d8655f90aa30f24b9bd1905f6241c1e9bea672492c3 |
IEDL.DBID | RPM |
ISSN | 2041-1723 |
IngestDate | Tue Oct 22 15:09:42 EDT 2024 Tue Sep 17 21:24:33 EDT 2024 Tue Aug 27 04:33:39 EDT 2024 Thu Oct 10 16:54:39 EDT 2024 Fri Aug 23 00:40:16 EDT 2024 Sat Nov 02 12:27:04 EDT 2024 Fri Oct 11 20:38:13 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-3fd93e8658e4b7368a2cd0d8655f90aa30f24b9bd1905f6241c1e9bea672492c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-4366-5662 0000-0002-2646-3674 0000-0002-0944-7226 0000-0003-0933-6152 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952370/ |
PMID | 31919373 |
PQID | 2342962502 |
PQPubID | 546298 |
PageCount | 1 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_54eea9701f364c569d5dd410717e6a68 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6952370 proquest_miscellaneous_2336256254 proquest_journals_2342962502 crossref_primary_10_1038_s41467_019_14018_z pubmed_primary_31919373 springer_journals_10_1038_s41467_019_14018_z |
PublicationCentury | 2000 |
PublicationDate | 2020-01-09 |
PublicationDateYYYYMMDD | 2020-01-09 |
PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-09 day: 09 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | PaulFTranscriptional heterogeneity and lineage commitment in myeloid progenitorsCell20151631663167710.1016/j.cell.2015.11.0131:CAS:528:DC%2BC2MXhvFagur7P Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. Improved training of Wasserstein GANs. in Advances in Neural Information Processing Systems (Long Beach, Florida, USA, 2017). Mirza, M. & Osindero, S. Conditional generative adversarial nets. Preprint at arXivhttps://arxiv.org/abs/1411.1784 (2014). PiersonEYauCZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysisGenome Biol.20151910.1186/s13059-015-0805-z1:CAS:528:DC%2BC28XmvFKhtrc%3D TanayARegevAScaling single-cell genomics from phenomenology to mechanismNature20175413313382017Natur.541..331T10.1038/nature213501:CAS:528:DC%2BC2sXht1Olu7k%3D ButtonKSPower failure: why small sample size undermines the reliability of neuroscienceNat. Rev. Neurosci.2013436537610.1038/nrn34751:CAS:528:DC%2BC3sXlsFSnur4%3D TraagVAFaster unfolding of communities: speeding up the Louvain algorithmPhys. Rev. E2015920328012015PhRvE..92c2801T10.1103/PhysRevE.92.0328011:CAS:528:DC%2BC28Xhslaku7g%3D Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet.19, 299–310 (2018). Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (2017). Odena, A., Olah, C. & Shlens, J. Conditional image synthesis with auxiliary classifier GANs. in Proceedings of the 34th International Conference on Machine Learning (Sydney, Australia, 2017). CreswellAGenerative Adversarial Networks: an overviewIEEE Signal Process. Mag.20173553652018ISPM...35...53C10.1109/MSP.2017.2765202 Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXivhttps://arxiv.org/abs/1312.6114 (2013). Dumoulin, V., Shlens, J. & Kudlur, M. A learned representation for artistic style. in International Conference on Learning Representations (Toulon, France, 2017). HaghverdiLBüttnerMWolfFABuettnerFTheisFJDiffusion pseudotime robustly reconstructs lineage branchingNat. Methods20161384584810.1038/nmeth.39711:CAS:528:DC%2BC28XhsVWrs7zI Kingma, D. P. et al. Improved variational inference with inverse autoregressive flow. in Advances in Neural Information Processing Systems (Barcelona, Spain, 2016). WolfFAPAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cellsGenome Biol.2019201910.1186/s13059-019-1663-x GrettonAA kernel two-sample testJ. Mach. Learn. Res.20121372377329137161283.62095 ZhengGXYMassively parallel digital transcriptional profiling of single cellsNat. Commun.201782017NatCo...814049Z10.1038/ncomms140491:CAS:528:DC%2BC2sXht1WlsLo%3D Lindenbaum, O., Stanley, J. S., Wolf, G. & Krishnaswamy, S. Geometry-based data generation. in Advances in Neural Information Processing Systems (Montreal, Canada, 2018). JacomyMVenturiniTHeymannSBastianMForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi softwarePLoS ONE20149e986792014PLoSO...998679J10.1371/journal.pone.00986791:CAS:528:DC%2BC2cXhs1ensr7M PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189 DavidsonEric H.Emerging properties of animal gene regulatory networksNature201046873269119202010Natur.468..911D10.1038/nature096451:CAS:528:DC%2BC3cXhsFKlsrvM ZeiselACell types in the mouse cortex and hippocampus revealed by single-cell RNA-seqScience2015347113811422015Sci...347.1138Z10.1126/science.aaa19341:CAS:528:DC%2BC2MXjsF2hsro%3D Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. in International Conference on Machine Learning (Lille, France, 2015). ShahamURemoval of batch effects using distribution-matching residual networksBioinformatics2017332539254610.1093/bioinformatics/btx1961:CAS:528:DC%2BC1cXitFOntLrL Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav.1, 0021 (2017). Kingma, D. P. & Ba, J. A. A method for stochastic optimization. in International Conference on Learning Representations (San Diego, USA, 2015). Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. Preprint at arXiv https://arxiv.org/abs/1710.10196 (2017). BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324 WolfFAAngererPTheisFJSCANPY: large-scale single-cell gene expression data analysisGenome Biol.20181910.1186/s13059-017-1382-0 van DijkDRecovering gene interactions from single-cell data using data diffusionCell2018174716729.e2710.1016/j.cell.2018.05.0611:CAS:528:DC%2BC1cXht1Cis7rE Mariani, G., Scheidegger, F., Istrate, R., Bekas, C. & Malossi, C. BAGAN: data augmentation with balancing GAN. Preprint at arXivhttps://arxiv.org/abs/1803.09655 (2018). IslamSCharacterization of the single-cell transcriptional landscape by highly multiplex RNA-seqGenome Res.2011211160116710.1101/gr.110882.1101:CAS:528:DC%2BC3MXovVKkurg%3D Miyato, T. & Koyama, M. cGANs with projection discriminator. Preprint at arXivhttps://arxiv.org/abs/1802.05637 (2018). Abadi, M. et al. Tensorflow: a system for large-scale machine learning. in 12th USENIX Symposium on Operating Systems Design and Implementation (Savannah, GA, USA, 2016). Goodfellow, I. et al. Generative adversarial nets. in Advances in Neural Information Processing Systems27 (Montreal, 2014). Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative adversarial networks. in International Conference on Machine Learning (Sydney, Australia, 2017). ZappiaLPhipsonBOshlackASplatter: simulation of single-cell RNA sequencing dataGenome Biol.20171810.1186/s13059-017-1305-01:CAS:528:DC%2BC1cXitVOrur%2FO AibarSSCENIC: Single-cell regulatory network inference and clusteringNat. Methods2017468911920 Ghahramani, A., Watt, F. M. & Luscombe, N. M. Generative adversarial networks uncover epidermal regulators and predict single cell perturbations. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/262501v2 (2018). Arjovsky, M. & Bottou, L. Towards principled methods for training generative adversarial networks. in International Conference on Learning Representations (Toulon, France, 2017). Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. in International Conference on Learning Representations (Vancouver, Canada, 2018). Zadrozny, B., Langford, J. & Abe, N. Cost-sensitive learning by cost-proportionate example weighting. in 3rd IEEE International Conference on Data Mining (IEEE, 2003). Theis, L., van den Oord, A. & Bethge, M. A note on the evaluation of generative models. in International Conference on Learning Representations (San Juan, Puerto Rico, 2016). van der MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20089257926051225.68219 Sonnenburg, S. et al. The SHOGUN machine learning toolbox. J. Mach. Learn. Res.11,1799–1802 (2010). Lucic, M., Kurach, K., Michalski, M., Gelly, S. & Bousquet, O. Are GANs created equal? A Large-Scale Study. in Advances in Neural Information Processing Systems (Montreal, Canada, 2018). Van Der Maaten, L., Courville, A., Fergus, R. & Manning, C. Accelerating t-SNE using Tree-based algorithms. J. Mach. Learn. Res.15, 3221−3245 (2014). FA Wolf (14018_CR28) 2019; 20 VA Traag (14018_CR30) 2015; 92 GXY Zheng (14018_CR12) 2017; 8 U Shaham (14018_CR42) 2017; 33 14018_CR17 14018_CR39 KS Button (14018_CR3) 2013; 4 L Breiman (14018_CR21) 2001; 45 L Zappia (14018_CR22) 2017; 18 14018_CR43 14018_CR44 14018_CR23 14018_CR24 A Creswell (14018_CR8) 2017; 35 S Aibar (14018_CR19) 2017; 468 A Tanay (14018_CR11) 2017; 541 14018_CR26 14018_CR48 14018_CR1 14018_CR27 14018_CR2 F Paul (14018_CR29) 2015; 163 14018_CR4 14018_CR5 14018_CR6 14018_CR7 FA Wolf (14018_CR31) 2018; 19 14018_CR9 F Pedregosa (14018_CR32) 2011; 12 D van Dijk (14018_CR25) 2018; 174 E Pierson (14018_CR40) 2015; 19 L Haghverdi (14018_CR47) 2016; 13 Eric H. Davidson (14018_CR18) 2010; 468 S Islam (14018_CR45) 2011; 21 A Zeisel (14018_CR20) 2015; 347 A Gretton (14018_CR41) 2012; 13 14018_CR10 14018_CR33 14018_CR34 14018_CR13 14018_CR35 14018_CR14 14018_CR36 14018_CR15 L van der Maaten (14018_CR16) 2008; 9 14018_CR37 14018_CR38 M Jacomy (14018_CR46) 2014; 9 |
References_xml | – ident: 14018_CR4 – ident: 14018_CR6 – ident: 14018_CR10 – ident: 14018_CR35 – ident: 14018_CR27 – volume: 19 year: 2018 ident: 14018_CR31 publication-title: Genome Biol. doi: 10.1186/s13059-017-1382-0 contributor: fullname: FA Wolf – ident: 14018_CR33 – ident: 14018_CR7 doi: 10.1109/CVPR.2017.632 – ident: 14018_CR14 – volume: 174 start-page: 716 year: 2018 ident: 14018_CR25 publication-title: Cell doi: 10.1016/j.cell.2018.05.061 contributor: fullname: D van Dijk – volume: 9 start-page: 2579 year: 2008 ident: 14018_CR16 publication-title: J. Mach. Learn. Res. contributor: fullname: L van der Maaten – ident: 14018_CR48 – volume: 468 start-page: 911 issue: 7326 year: 2010 ident: 14018_CR18 publication-title: Nature doi: 10.1038/nature09645 contributor: fullname: Eric H. Davidson – volume: 9 start-page: e98679 year: 2014 ident: 14018_CR46 publication-title: PLoS ONE doi: 10.1371/journal.pone.0098679 contributor: fullname: M Jacomy – ident: 14018_CR44 – volume: 35 start-page: 53 year: 2017 ident: 14018_CR8 publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2017.2765202 contributor: fullname: A Creswell – ident: 14018_CR2 doi: 10.1038/nrg.2018.4 – ident: 14018_CR23 – volume: 92 start-page: 032801 year: 2015 ident: 14018_CR30 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.92.032801 contributor: fullname: VA Traag – volume: 541 start-page: 331 year: 2017 ident: 14018_CR11 publication-title: Nature doi: 10.1038/nature21350 contributor: fullname: A Tanay – volume: 163 start-page: 1663 year: 2015 ident: 14018_CR29 publication-title: Cell doi: 10.1016/j.cell.2015.11.013 contributor: fullname: F Paul – ident: 14018_CR37 – volume: 20 start-page: 1 year: 2019 ident: 14018_CR28 publication-title: Genome Biol. doi: 10.1186/s13059-019-1663-x contributor: fullname: FA Wolf – ident: 14018_CR39 – volume: 4 start-page: 365 year: 2013 ident: 14018_CR3 publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3475 contributor: fullname: KS Button – volume: 13 start-page: 723 year: 2012 ident: 14018_CR41 publication-title: J. Mach. Learn. Res. contributor: fullname: A Gretton – volume: 468 start-page: 911 year: 2017 ident: 14018_CR19 publication-title: Nat. Methods contributor: fullname: S Aibar – volume: 347 start-page: 1138 year: 2015 ident: 14018_CR20 publication-title: Science doi: 10.1126/science.aaa1934 contributor: fullname: A Zeisel – ident: 14018_CR5 – volume: 45 start-page: 5 year: 2001 ident: 14018_CR21 publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 contributor: fullname: L Breiman – ident: 14018_CR1 doi: 10.1038/s41562-016-0021 – ident: 14018_CR36 – ident: 14018_CR26 – ident: 14018_CR34 – volume: 13 start-page: 845 year: 2016 ident: 14018_CR47 publication-title: Nat. Methods doi: 10.1038/nmeth.3971 contributor: fullname: L Haghverdi – ident: 14018_CR13 – ident: 14018_CR9 – volume: 21 start-page: 1160 year: 2011 ident: 14018_CR45 publication-title: Genome Res. doi: 10.1101/gr.110882.110 contributor: fullname: S Islam – volume: 19 year: 2015 ident: 14018_CR40 publication-title: Genome Biol. doi: 10.1186/s13059-015-0805-z contributor: fullname: E Pierson – volume: 8 year: 2017 ident: 14018_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms14049 contributor: fullname: GXY Zheng – volume: 33 start-page: 2539 year: 2017 ident: 14018_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx196 contributor: fullname: U Shaham – ident: 14018_CR15 – ident: 14018_CR24 – ident: 14018_CR17 – volume: 12 start-page: 2825 year: 2011 ident: 14018_CR32 publication-title: J. Mach. Learn. Res. contributor: fullname: F Pedregosa – ident: 14018_CR43 – ident: 14018_CR38 – volume: 18 year: 2017 ident: 14018_CR22 publication-title: Genome Biol. doi: 10.1186/s13059-017-1305-0 contributor: fullname: L Zappia |
SSID | ssj0000391844 |
Score | 2.653761 |
Snippet | A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or... Abstract A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive... Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data... |
SourceID | doaj pubmedcentral proquest crossref pubmed springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 166 |
SubjectTerms | 38/91 631/114/1305 631/114/2397 Algorithms Animals Augmentation Biomedical data Biomedical research Biomedical Research - methods Computer Simulation Gene expression Generative adversarial networks Humanities and Social Sciences Humans Mice Models, Theoretical multidisciplinary Neural networks Neural Networks, Computer Populations Quorum sensing Reliability analysis Ribonucleic acid RNA RNA - genetics RNA-Seq - methods Robustness Science Science (multidisciplinary) |
SummonAdditionalLinks | – databaseName: DOAJ Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB6kIPgi_na1SgTfNHRvk81uHqtYimAfioW-hWSTnAc1Z907wf71ziR7Z88f-OLrZhfCfJPM92VnJgAv2861VmnNSSJzYuBcY6DhAbm8sxiU4oyKkz-cqOMz-f68Pb921RflhJX2wMVwB60MwequnkWh5NAq7Vvv5YxkSFBWlTLfWl8TU3kPFhqli5yqZGrRH4wy7wnIaDhpip5f7USi3LD_Tyzz92TJX_6Y5kB0dAduTwySHZaZ34UbId2Dm-VOye_34fI0UE9DHGSLxMbFBULN5rm5NGHAbPLMruefp5qjxJaR0XnBReB0iM9OTw75GC4ZpY4yyoqfb7_-Fpil-5tHS17LUskgHx_A2dG7j2-P-XSvAh9Qrqy4iF6L0CP3CNJ1QvW2GXztqUQ16tpaUcdGOu08koU2KozxwyxoF6zqqL_gIB7CXlqm8BhYbwekDMI1KkbqHOgicZxWedchYFZV8GpjY_OltM8w-be36E1BxCAiJiNirip4QzBs36TW1_kBOoSZHML8yyEq2N-AaKb1OJpGYNxFqVc3FbzYDuNKIsvaFJZregeDOelBWcGjgvl2JrhRIdPtRAXdjjfsTHV3JC0-5W7dSqPW7-oKXm_85ue0_m6KJ__DFE_hVkPHA3RipPdhb_V1HZ4hh1q553m5_AD9ERd0 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lMFexr7nrRsa7G0TdSxZtp5GO1rKYGGEFfomZEvKAq3d1Mlg_et3Zysu2derJRtZJ9397nT6HcC7vKhyq7Tm5CJzQuBco6HhHrF8ZdEohSldTv4yU6dn8vN5fh4Dbl1Mq9zqxF5Ru7amGPlBJlBzIlhPs49XK05Vo-h0NZbQuAt7GXoK6QT2jo5nX-djlIX4z0sp422ZVJQHnex1AyIbTr5FyW92LFJP3P83tPln0uRvJ6e9QTp5CA8ikmSHg-gfwR3fPIZ7Q23Jn09gNffEbYiNbNmwbnmBImeLnmSaZMFs45jdLC7j3aOGtYFR3ODCcwrms_nskHd-xSiFlFF2_GJ8-4dnluo4d5ZWL2uGTPLuKZydHH_7dMpjfQVeo9uy5iI4LXyJGMTLqhCqtFntUkdXVYNOrRVpyGSlK4egIQ8KbX099bryVhXEM1iLZzBp2sa_AFbaGqGDqDIVAjEIVoGwTq5cVUyDsCqB99s5NlcDjYbpj79FaQaJGJSI6SVibhI4IjGMPYkCu3_QXi9M3FEml95bXaT4fSXrXGmXOyen5J96ZVWZwP5WiCbuy87crqIE3o7NuKNoZm3j2w31QaNOfqFM4Pkg83EkqLAQ8RYigWJnNewMdbelWX7vWbuVRp-_SBP4sF03t8P691S8_P9fvIL7GQUAKCak92Gyvt7414iS1tWbuBV-AbpmEM4 priority: 102 providerName: ProQuest – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NISRe0MZn2EBG4g0Maew48QNCG2KakNjDRKW9WXZil0olpU2L2P567pykqFAeeI2dyPLd5X4_-z4AXuaFy63SmhNF5oTAuUZHwz1ieWfRKYURJSd_vlDnY_npKr_ag6HdUb-B7U5qR_2kxsvZm5-L6_do8O-6lPHybSujuSNY4UQXSn5zC25nEpk6hfL1cD_-mYVGQiP73Jndr275p1jGfxf2_DuE8o971Oiezg7gXo8r2UmnCIew55v7cKfrNHn9ABaXniod4iCbNqydzlAB2CSWnCbJMNvUzK4n3_pMpIbNA6NThJnndLTPLi9OeOsXjAJKGcXKTzZv__DMUlfn1pIus6aLK28fwvjs45cP57zvtsArJDErLkKthS8RkXjpCqFKm1V1WlPiatCptSINmXTa1Qgh8qDQ81cjr523qqCqg5V4BPvNvPFPgJW2QiAhXKZCoHqCLhDyyVXtilEQViXwathj870rqmHiZbgoTScRgxIxUSLmJoFTEsNmJhXEjg_my4np7cvk0nurixS_r2SVK13ndS1HxFa9sqpM4HgQohmUzGQCvTESwDRL4MVmGO2LdtY2fr6mOejiiSXKBB53Mt-sBH9fiH8LkUCxpQ1bS90eaaZfYw1vpfNMFGkCrwe9-b2sf2_F0_-bfgR3MzoeoBMjfQz7q-XaP0MMtXLPo2H8Aia0F3I priority: 102 providerName: Scholars Portal – databaseName: SpringerOpen dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BERIXxHdTCjISN7DIxo4TH8uqVYVEDxWVerPs2F5WKl7a7CK1v56ZJJsqUA5cYyeyPDOZN-OZZ4D3ZeVKq7TmFCJzQuBco6PhAbG8s-iU4oyak7-eqOMz-eW8PB9ocqgXZnJ-L-pPrexMGYEIp1Cg5jf34QH64JrKt-ZqPuZTiOm8lnLoi7n71Ynv6Sj678KVf5dH_nFG2rmeoyfweMCM7KAX8lO4F9IzeNjfInn9HC5PA7EY4iBbJtYuL1C4bNHRSdOuM5s8s5vFj6HLKLFVZJQhuAic0vbs9OSAt-GSUbEoozr4xfj2r8As3djcWtJTlvqa8fYFnB0dfpsf8-EmBd5ggLLmInotQo1oI0hXCVXbovG5p6bUqHNrRR4L6bTzCA_KqNCrN7OgXbCqIkbBRryEnbRKYRdYbRsECcIVKkbiCnSRUE2pvKtmUViVwYftHpufPWGG6Q66RW16iRiUiOkkYm4y-ExiGGcS2XX3AHXADLZjShmC1VWO31eyKZX2pfdyRpFoUFbVGexvhWgGC2xNIdDTYnCXFxm8G4fRdmhnbQqrDc1B900RoMzgVS_zcSX4a0JsW4kMqok2TJY6HUnL7x0_t9IY3Vd5Bh-3enO7rH9vxd7_TX8NjwoK_SkbpPdhZ321CW8QH63d284wfgNdgwj0 priority: 102 providerName: Springer Nature |
Title | Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks |
URI | https://link.springer.com/article/10.1038/s41467-019-14018-z https://www.ncbi.nlm.nih.gov/pubmed/31919373 https://www.proquest.com/docview/2342962502 https://search.proquest.com/docview/2336256254 https://pubmed.ncbi.nlm.nih.gov/PMC6952370 https://doaj.org/article/54eea9701f364c569d5dd410717e6a68 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajo2-jH3PWxc02NumxrFs2XpMQ7MSSCjZCnkzki2ngcRp62Sw_vW7k-1s2cfLXmyw_CF0J9_vd7o7AXyIYhNpqRQniswJgXOFhoZbxPJGo1EqepScPJ7Ii6twNItmBxC1uTAuaD8zi9NyuTotF9cutvJmlXXbOLHu5XggFdKn2O8ewiEq6C8U3f1-hULWEjYJMr5IulXofgcIZjjRiYTfH8MjVD3ELrHYs0eubP_fsOafIZO_rZs6czR8Ao8bHMn6dX-fwoEtn8HDemfJ78_hdmqpsiE2skXJqsUSBc7mrsQ0SYLpMmd6O181mUclWxeMvAZLy8mVz6aTPq_sLaMAUkax8fPd098s07SLc6VJd1lZx5FXL-BqeP51cMGb3RV4hqRlw0WRK2ETRCA2NLGQiQ6y3M8pUbVQvtbCL4LQKJMjZIgKiZY-61llrJYxVRnMxEs4KtelfQ0s0RkCB2ECWRRUP9AUhHQimZu4VwgtPfjYjnF6UxfRSN3it0jSWjgpCid1wknvPTgjMezupALY7sL6bp42apBGobVaxT6-X4ZZJFUe5XnYI3ZqpZaJByetENNmVlZpIND6IuHzAw_e75pxPtHI6tKut3QPmnRihaEHr2qZ73rS6owH8Z427HV1vwVV2NXsblTWg0-t3vzs1r-H4s1_f-gtHAfkGSBnkTqBo83d1r5D-LQxHZw0sxiPyfBzBx70-6MvIzyfnU8up3h1IAcd55jA4zhMOm5y_QC8iiAY |
link.rule.ids | 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BEIIXxDeBAUbiDaylsePET2ggSoGtD9Mm7c1yYrtUGsm6tEjsr-fOSTuVr9c4rRyfffe7893vAF7nRZVbpTUnF5kTAucaDQ33iOUri0YpjKg4-XCqJifyy2l-OgTcuiGtcq0To6J2bU0x8r1MoOZEsJ5m784XnLpG0e3q0ELjOtyQAm01VYqPP21iLMR-Xko51MqkotzrZNQMiGs4eRYlv9yyR5G2_29Y88-Uyd_uTaM5Gt-FOwOOZPu94O_BNd_ch5t9Z8mfD2Bx5InZEAfZvGHd_AwFzmaRYpokwWzjmF3Nvg-VRw1rA6OowZnnFMpnR9N93vkFowRSRrnxs82vf3hmqYtzZ2nvsqbPI-8ewsn44_GHCR-6K_AanZYlF8Fp4UtEIF5WhVClzWqXOipUDTq1VqQhk5WuHEKGPCi09PXI68pbVRDLYC0ewU7TNv4JsNLWCBxElakQiD-wCoR0cuWqYhSEVQm8Wa-xOe9JNEy8_Bal6SViUCImSsRcJvCexLB5kwiw44P2YmaG82Ry6b3VRYr_r2SdK-1y5-SIvFOvrCoT2F0L0QynsjNXeyiBV5thPE-0srbx7YreQZNOXqFM4HEv881MUF0h3i1EAsXWbtia6vZIM_8WObuVRo-_SBN4u943V9P691I8_f9XvIRbk-PDA3Pwefr1GdzOKBRA0SG9CzvLi5V_jnhpWb2Ih-IXJIwSWQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCMQL4iyBAkbiDazNxo4TP6FyLOVaoYpKfbPs2F5WKkm32UWiv54Zx7vVcr3GTuR4rm_G4xlCnpWVLY1UiqGLzBCBMwWGhnnA8taAUQpjvJz8eSoPjsSH4_I45T_1Ka1yrROjonZdgzHyUcFBcwJYz4tRSGkRX95MXp4uGHaQwpPW1E7jMrkCVlEiz9eTd5t4C1ZCr4VI92ZyXo96EbUEYByGXkbNzrdsUyzh_zfc-Wf65G9nqNE0TW6SGwlT0v2BCW6RS769Ta4OXSZ_3iGLQ49VDmGQzlvaz0-A-HQWy00jVahpHTWr2fd0C6mlXaAYQTjxDMP69HC6z3q_oJhMSjFPfrZ5-4enBjs69wb5mLZDTnl_lxxN3n59fcBSpwXWgAOzZDw4xX0NaMQLW3FZm6JxucNLq0HlxvA8FMIq6wA-lEGC1W_GXllvZIUVBxt-j-y0XevvE1qbBkAEt4UMAWsJ2oCop5TOVuPAjczI8_Ue69OhoIaOB-G81gNFNFBER4ro84y8QjJsZmIx7PigO5vpJFu6FN4bVeXwfSmaUipXOifG6Kl6aWSdkb01EXWS0F5f8FNGnm6GQbZwZ03ruxXOAfOOHqLIyO5A881KQHUB9q14Rqotbtha6vZIO_8W63dLBd5_lWfkxZpvLpb176148P-_eEKugTzoT--nHx-S6wVGBTBQpPbIzvJs5R8BdFrax1EmfgEZOxaR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+in+silico+generation+and+augmentation+of+single-cell+RNA-seq+data+using+generative+adversarial+networks&rft.jtitle=Nature+communications&rft.au=Marouf%2C+Mohamed&rft.au=Machart%2C+Pierre&rft.au=Bansal%2C+Vikas&rft.au=Kilian%2C+Christoph&rft.date=2020-01-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-14018-z&rft.externalDocID=10_1038_s41467_019_14018_z |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |