Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks

A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher rep...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; p. 166
Main Authors Marouf, Mohamed, Machart, Pierre, Bansal, Vikas, Kilian, Christoph, Magruder, Daniel S., Krebs, Christian F., Bonn, Stefan
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 09.01.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types. Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.
AbstractList Abstract A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types.
A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types. Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.
A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene-gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types.
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.
A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or ethical reasons. Augmenting few real observations with generated in silico samples could lead to more robust analysis results and a higher reproducibility rate. Here, we propose the use of conditional single-cell generative adversarial neural networks (cscGAN) for the realistic generation of single-cell RNA-seq data. cscGAN learns non-linear gene–gene dependencies from complex, multiple cell type samples and uses this information to generate realistic cells of defined types. Augmenting sparse cell populations with cscGAN generated cells improves downstream analyses such as the detection of marker genes, the robustness and reliability of classifiers, the assessment of novel analysis algorithms, and might reduce the number of animal experiments and costs in consequence. cscGAN outperforms existing methods for single-cell RNA-seq data generation in quality and hold great promise for the realistic generation and augmentation of other biomedical data types.Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data using GANs that learn gene expression dependencies from complex samples, and show that augmenting spare cell populations improves downstream analyses.
ArticleNumber 166
Author Marouf, Mohamed
Machart, Pierre
Bansal, Vikas
Kilian, Christoph
Krebs, Christian F.
Bonn, Stefan
Magruder, Daniel S.
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Marouf
  fullname: Marouf, Mohamed
  organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf
– sequence: 2
  givenname: Pierre
  orcidid: 0000-0002-2646-3674
  surname: Machart
  fullname: Machart, Pierre
  organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf
– sequence: 3
  givenname: Vikas
  orcidid: 0000-0002-0944-7226
  surname: Bansal
  fullname: Bansal, Vikas
  organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf
– sequence: 4
  givenname: Christoph
  orcidid: 0000-0003-0933-6152
  surname: Kilian
  fullname: Kilian, Christoph
  organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Center for Internal Medicine, III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf
– sequence: 5
  givenname: Daniel S.
  surname: Magruder
  fullname: Magruder, Daniel S.
  organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Genevention GmbH
– sequence: 6
  givenname: Christian F.
  surname: Krebs
  fullname: Krebs, Christian F.
  organization: Center for Internal Medicine, III. Medical Clinic and Polyclinic, University Medical Center Hamburg-Eppendorf
– sequence: 7
  givenname: Stefan
  orcidid: 0000-0003-4366-5662
  surname: Bonn
  fullname: Bonn, Stefan
  email: sbonn@uke.de
  organization: Institute of Medical Systems Biology, University Medical Center Hamburg-Eppendorf, German Center for Neurodegenerative Diseases
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31919373$$D View this record in MEDLINE/PubMed
BookMark eNp9kk1v1DAQhiNUREvpH-CAInHhEvBXnPiCVFVQKlUgVXC2JvYkeMnaXTvZiv76epuytBywLNmaeea1Z_S-LA588FgUryl5TwlvPyRBhWwqQlVFBaFtdfusOGJE0Io2jB88uh8WJymtSF5c0VaIF8Uhp4oq3vCjYnOFMLo0OVM6XyY3OhPKAT1GmFzwJXhbwjys0U9LIPSZ8sOIlcFxLK--nlYJN6WFCcp5l9lXb7EEu8WYIDoYS4_TTYi_0qvieQ9jwpOH87j48fnT97Mv1eW384uz08vKSCKnivdWcWxl3aLoGi5bYMYSmwN1rwgAJz0TneosVaTuJRPUUFQdgmyYUMzw4-Ji0bUBVvo6ujXE3zqA0_eBEAcNMfc9oq4FIqiG0J5LYWqpbG2toKShDUqQbdb6uGhdz90arcnTiDA-EX2a8e6nHsJWS1Uz3pAs8O5BIIbNjGnSa5d2AwSPYU6acS5ZnbfI6Nt_0FWYo8-jypRgKkOEZYotlIkhpYj9_jOU6J1B9GIQnQ2i7w2ib3PRm8dt7Ev-2CEDfAFSTvkB49-3_yN7B6weyYY
CitedBy_id crossref_primary_10_1186_s12859_023_05558_9
crossref_primary_10_1016_j_biopha_2023_115077
crossref_primary_10_1186_s12859_022_04778_9
crossref_primary_10_1038_s41467_021_27130_w
crossref_primary_10_1186_s12859_021_04469_x
crossref_primary_10_1093_bib_bbab531
crossref_primary_10_12688_f1000research_125579_1
crossref_primary_10_1038_s41586_024_07146_0
crossref_primary_10_1016_j_cbpa_2021_04_008
crossref_primary_10_3390_biomedinformatics4020073
crossref_primary_10_1038_s41746_023_00834_7
crossref_primary_10_1111_micc_12854
crossref_primary_10_1007_s00439_022_02439_8
crossref_primary_10_1093_bioinformatics_btad270
crossref_primary_10_1038_s41587_023_01772_1
crossref_primary_10_3390_pr10091796
crossref_primary_10_1016_j_patter_2021_100288
crossref_primary_10_1186_s13059_021_02367_2
crossref_primary_10_1038_s41598_024_54798_z
crossref_primary_10_1093_bioinformatics_btad239
crossref_primary_10_1007_s40778_023_00228_1
crossref_primary_10_1186_s13059_024_03290_y
crossref_primary_10_1016_j_cels_2020_08_003
crossref_primary_10_1016_j_jtbi_2023_111636
crossref_primary_10_1038_s43856_024_00476_0
crossref_primary_10_3390_biology12101313
crossref_primary_10_1146_annurev_biodatasci_020722_115651
crossref_primary_10_1002_cso2_1050
crossref_primary_10_1038_s42003_022_03473_y
crossref_primary_10_1016_j_compbiomed_2021_104540
crossref_primary_10_1186_s12911_024_02487_2
crossref_primary_10_1371_journal_pcbi_1010962
crossref_primary_10_1364_OE_488341
crossref_primary_10_3389_fcell_2021_645276
crossref_primary_10_1016_S1474_4422_20_30308_2
crossref_primary_10_3389_fgene_2021_655536
crossref_primary_10_1016_j_jgg_2021_05_008
crossref_primary_10_1109_JBHI_2024_3349412
crossref_primary_10_3390_math11143055
crossref_primary_10_1002_cyto_a_24709
crossref_primary_10_1109_ACCESS_2021_3054894
crossref_primary_10_1016_j_coisb_2021_02_002
crossref_primary_10_1371_journal_pcbi_1008094
crossref_primary_10_1038_s42256_020_0222_1
crossref_primary_10_1007_s10142_023_01064_6
crossref_primary_10_1007_s11427_020_1804_5
crossref_primary_10_1038_s43588_021_00103_1
crossref_primary_10_1016_j_tig_2023_10_001
crossref_primary_10_1016_j_csbj_2021_10_009
crossref_primary_10_3390_cancers12092373
crossref_primary_10_3390_ijms23052481
crossref_primary_10_1021_acs_jcim_3c00355
crossref_primary_10_1089_omi_2022_0155
crossref_primary_10_1093_bioinformatics_btad363
crossref_primary_10_1126_sciimmunol_aba4163
crossref_primary_10_1093_gigascience_giab064
crossref_primary_10_1016_j_compbiomed_2023_107828
crossref_primary_10_1093_nar_gkaa506
crossref_primary_10_1007_s12559_020_09773_x
crossref_primary_10_1093_bioinformatics_btac357
crossref_primary_10_1038_s43588_021_00099_8
crossref_primary_10_1063_5_0091135
crossref_primary_10_1080_10543406_2023_2208671
crossref_primary_10_1093_bib_bbac317
crossref_primary_10_1093_bib_bbad329
crossref_primary_10_1016_j_aap_2023_107192
crossref_primary_10_1186_s12864_024_10160_1
crossref_primary_10_3390_app12115434
crossref_primary_10_1016_j_jhep_2022_01_014
crossref_primary_10_1186_s12859_024_05788_5
crossref_primary_10_1016_j_ceja_2021_100154
crossref_primary_10_1002_tpg2_20122
crossref_primary_10_1038_s41586_023_06221_2
crossref_primary_10_1038_s41592_021_01283_4
crossref_primary_10_1186_s13059_023_03049_x
crossref_primary_10_1093_bib_bbac590
crossref_primary_10_1093_bib_bbad040
crossref_primary_10_1038_s41467_024_48516_6
crossref_primary_10_1016_j_compbiomed_2022_105916
crossref_primary_10_1016_j_pacs_2022_100402
crossref_primary_10_1093_bioinformatics_btab035
crossref_primary_10_3389_fgene_2021_624128
crossref_primary_10_1038_s41598_021_88875_4
crossref_primary_10_15252_msb_20199198
crossref_primary_10_3389_fpubh_2020_00164
crossref_primary_10_3389_fmolb_2022_962644
crossref_primary_10_1093_bioinformatics_btac095
crossref_primary_10_1038_s41598_022_11363_w
crossref_primary_10_1016_j_bioactmat_2021_11_009
crossref_primary_10_1186_s13059_021_02373_4
crossref_primary_10_1093_nar_gkad157
crossref_primary_10_1016_j_drudis_2023_103825
Cites_doi 10.1186/s13059-017-1382-0
10.1109/CVPR.2017.632
10.1016/j.cell.2018.05.061
10.1038/nature09645
10.1371/journal.pone.0098679
10.1109/MSP.2017.2765202
10.1038/nrg.2018.4
10.1103/PhysRevE.92.032801
10.1038/nature21350
10.1016/j.cell.2015.11.013
10.1186/s13059-019-1663-x
10.1038/nrn3475
10.1126/science.aaa1934
10.1023/A:1010933404324
10.1038/s41562-016-0021
10.1038/nmeth.3971
10.1101/gr.110882.110
10.1186/s13059-015-0805-z
10.1038/ncomms14049
10.1093/bioinformatics/btx196
10.1186/s13059-017-1305-0
ContentType Journal Article
Copyright The Author(s) 2020
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-019-14018-z
DatabaseName SpringerOpen
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni Edition)
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Open Access Journals
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Health Research Premium Collection
Natural Science Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
Technology Collection
Technology Research Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic

Publicly Available Content Database
MEDLINE
Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 166
ExternalDocumentID oai_doaj_org_article_54eea9701f364c569d5dd410717e6a68
10_1038_s41467_019_14018_z
31919373
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADRAZ
AENEX
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PQEST
PQUKI
PRINS
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c606t-3fd93e8658e4b7368a2cd0d8655f90aa30f24b9bd1905f6241c1e9bea672492c3
IEDL.DBID RPM
ISSN 2041-1723
IngestDate Tue Oct 22 15:09:42 EDT 2024
Tue Sep 17 21:24:33 EDT 2024
Tue Aug 27 04:33:39 EDT 2024
Thu Oct 10 16:54:39 EDT 2024
Fri Aug 23 00:40:16 EDT 2024
Sat Nov 02 12:27:04 EDT 2024
Fri Oct 11 20:38:13 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-3fd93e8658e4b7368a2cd0d8655f90aa30f24b9bd1905f6241c1e9bea672492c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4366-5662
0000-0002-2646-3674
0000-0002-0944-7226
0000-0003-0933-6152
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6952370/
PMID 31919373
PQID 2342962502
PQPubID 546298
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_54eea9701f364c569d5dd410717e6a68
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6952370
proquest_miscellaneous_2336256254
proquest_journals_2342962502
crossref_primary_10_1038_s41467_019_14018_z
pubmed_primary_31919373
springer_journals_10_1038_s41467_019_14018_z
PublicationCentury 2000
PublicationDate 2020-01-09
PublicationDateYYYYMMDD 2020-01-09
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-09
  day: 09
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References PaulFTranscriptional heterogeneity and lineage commitment in myeloid progenitorsCell20151631663167710.1016/j.cell.2015.11.0131:CAS:528:DC%2BC2MXhvFagur7P
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V. & Courville, A. Improved training of Wasserstein GANs. in Advances in Neural Information Processing Systems (Long Beach, Florida, USA, 2017).
Mirza, M. & Osindero, S. Conditional generative adversarial nets. Preprint at arXivhttps://arxiv.org/abs/1411.1784 (2014).
PiersonEYauCZIFA: dimensionality reduction for zero-inflated single-cell gene expression analysisGenome Biol.20151910.1186/s13059-015-0805-z1:CAS:528:DC%2BC28XmvFKhtrc%3D
TanayARegevAScaling single-cell genomics from phenomenology to mechanismNature20175413313382017Natur.541..331T10.1038/nature213501:CAS:528:DC%2BC2sXht1Olu7k%3D
ButtonKSPower failure: why small sample size undermines the reliability of neuroscienceNat. Rev. Neurosci.2013436537610.1038/nrn34751:CAS:528:DC%2BC3sXlsFSnur4%3D
TraagVAFaster unfolding of communities: speeding up the Louvain algorithmPhys. Rev. E2015920328012015PhRvE..92c2801T10.1103/PhysRevE.92.0328011:CAS:528:DC%2BC28Xhslaku7g%3D
Karczewski, K. J. & Snyder, M. P. Integrative omics for health and disease. Nat. Rev. Genet.19, 299–310 (2018).
Isola, P., Zhu, J.-Y., Zhou, T. & Efros, A. A. Image-to-image translation with conditional adversarial networks. in 2017 IEEE Conference on Computer Vision and Pattern Recognition (2017).
Odena, A., Olah, C. & Shlens, J. Conditional image synthesis with auxiliary classifier GANs. in Proceedings of the 34th International Conference on Machine Learning (Sydney, Australia, 2017).
CreswellAGenerative Adversarial Networks: an overviewIEEE Signal Process. Mag.20173553652018ISPM...35...53C10.1109/MSP.2017.2765202
Kingma, D. P. & Welling, M. Auto-encoding variational Bayes. Preprint at arXivhttps://arxiv.org/abs/1312.6114 (2013).
Dumoulin, V., Shlens, J. & Kudlur, M. A learned representation for artistic style. in International Conference on Learning Representations (Toulon, France, 2017).
HaghverdiLBüttnerMWolfFABuettnerFTheisFJDiffusion pseudotime robustly reconstructs lineage branchingNat. Methods20161384584810.1038/nmeth.39711:CAS:528:DC%2BC28XhsVWrs7zI
Kingma, D. P. et al. Improved variational inference with inverse autoregressive flow. in Advances in Neural Information Processing Systems (Barcelona, Spain, 2016).
WolfFAPAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cellsGenome Biol.2019201910.1186/s13059-019-1663-x
GrettonAA kernel two-sample testJ. Mach. Learn. Res.20121372377329137161283.62095
ZhengGXYMassively parallel digital transcriptional profiling of single cellsNat. Commun.201782017NatCo...814049Z10.1038/ncomms140491:CAS:528:DC%2BC2sXht1WlsLo%3D
Lindenbaum, O., Stanley, J. S., Wolf, G. & Krishnaswamy, S. Geometry-based data generation. in Advances in Neural Information Processing Systems (Montreal, Canada, 2018).
JacomyMVenturiniTHeymannSBastianMForceAtlas2, a continuous graph layout algorithm for handy network visualization designed for the Gephi softwarePLoS ONE20149e986792014PLoSO...998679J10.1371/journal.pone.00986791:CAS:528:DC%2BC2cXhs1ensr7M
PedregosaFScikit-learn: Machine learning in PythonJ. Mach. Learn. Res.2011122825283028543481280.68189
DavidsonEric H.Emerging properties of animal gene regulatory networksNature201046873269119202010Natur.468..911D10.1038/nature096451:CAS:528:DC%2BC3cXhsFKlsrvM
ZeiselACell types in the mouse cortex and hippocampus revealed by single-cell RNA-seqScience2015347113811422015Sci...347.1138Z10.1126/science.aaa19341:CAS:528:DC%2BC2MXjsF2hsro%3D
Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by reducing internal covariate shift. in International Conference on Machine Learning (Lille, France, 2015).
ShahamURemoval of batch effects using distribution-matching residual networksBioinformatics2017332539254610.1093/bioinformatics/btx1961:CAS:528:DC%2BC1cXitFOntLrL
Munafò, M. R. et al. A manifesto for reproducible science. Nat. Hum. Behav.1, 0021 (2017).
Kingma, D. P. & Ba, J. A. A method for stochastic optimization. in International Conference on Learning Representations (San Diego, USA, 2015).
Karras, T., Aila, T., Laine, S. & Lehtinen, J. Progressive growing of GANs for improved quality, stability, and variation. Preprint at arXiv https://arxiv.org/abs/1710.10196 (2017).
BreimanLRandom forestsMach. Learn.20014553210.1023/A:1010933404324
WolfFAAngererPTheisFJSCANPY: large-scale single-cell gene expression data analysisGenome Biol.20181910.1186/s13059-017-1382-0
van DijkDRecovering gene interactions from single-cell data using data diffusionCell2018174716729.e2710.1016/j.cell.2018.05.0611:CAS:528:DC%2BC1cXht1Cis7rE
Mariani, G., Scheidegger, F., Istrate, R., Bekas, C. & Malossi, C. BAGAN: data augmentation with balancing GAN. Preprint at arXivhttps://arxiv.org/abs/1803.09655 (2018).
IslamSCharacterization of the single-cell transcriptional landscape by highly multiplex RNA-seqGenome Res.2011211160116710.1101/gr.110882.1101:CAS:528:DC%2BC3MXovVKkurg%3D
Miyato, T. & Koyama, M. cGANs with projection discriminator. Preprint at arXivhttps://arxiv.org/abs/1802.05637 (2018).
Abadi, M. et al. Tensorflow: a system for large-scale machine learning. in 12th USENIX Symposium on Operating Systems Design  and Implementation (Savannah, GA, USA, 2016).
Goodfellow, I. et al. Generative adversarial nets. in Advances in Neural Information Processing Systems27 (Montreal, 2014).
Arjovsky, M., Chintala, S. & Bottou, L. Wasserstein generative adversarial networks. in International Conference on Machine Learning (Sydney, Australia, 2017).
ZappiaLPhipsonBOshlackASplatter: simulation of single-cell RNA sequencing dataGenome Biol.20171810.1186/s13059-017-1305-01:CAS:528:DC%2BC1cXitVOrur%2FO
AibarSSCENIC: Single-cell regulatory network inference and clusteringNat. Methods2017468911920
Ghahramani, A., Watt, F. M. & Luscombe, N. M. Generative adversarial networks uncover epidermal regulators and predict single cell perturbations. Preprint at bioRxivhttps://www.biorxiv.org/content/10.1101/262501v2 (2018).
Arjovsky, M. & Bottou, L. Towards principled methods for training generative adversarial networks. in International Conference on Learning Representations (Toulon, France, 2017).
Reddi, S. J., Kale, S. & Kumar, S. On the convergence of adam and beyond. in International Conference on Learning Representations (Vancouver, Canada, 2018).
Zadrozny, B., Langford, J. & Abe, N. Cost-sensitive learning by cost-proportionate example weighting. in 3rd IEEE International Conference on Data Mining (IEEE, 2003).
Theis, L., van den Oord, A. & Bethge, M. A note on the evaluation of generative models. in International Conference on Learning Representations (San Juan, Puerto Rico, 2016).
van der MaatenLHintonGVisualizing data using t-SNEJ. Mach. Learn. Res.20089257926051225.68219
Sonnenburg, S. et al. The SHOGUN machine learning toolbox. J. Mach. Learn. Res.11,1799–1802 (2010).
Lucic, M., Kurach, K., Michalski, M., Gelly, S. & Bousquet, O. Are GANs created equal? A Large-Scale Study. in Advances in Neural Information Processing Systems (Montreal, Canada, 2018).
Van Der Maaten, L., Courville, A., Fergus, R. & Manning, C. Accelerating t-SNE using Tree-based algorithms. J. Mach. Learn. Res.15, 3221−3245 (2014).
FA Wolf (14018_CR28) 2019; 20
VA Traag (14018_CR30) 2015; 92
GXY Zheng (14018_CR12) 2017; 8
U Shaham (14018_CR42) 2017; 33
14018_CR17
14018_CR39
KS Button (14018_CR3) 2013; 4
L Breiman (14018_CR21) 2001; 45
L Zappia (14018_CR22) 2017; 18
14018_CR43
14018_CR44
14018_CR23
14018_CR24
A Creswell (14018_CR8) 2017; 35
S Aibar (14018_CR19) 2017; 468
A Tanay (14018_CR11) 2017; 541
14018_CR26
14018_CR48
14018_CR1
14018_CR27
14018_CR2
F Paul (14018_CR29) 2015; 163
14018_CR4
14018_CR5
14018_CR6
14018_CR7
FA Wolf (14018_CR31) 2018; 19
14018_CR9
F Pedregosa (14018_CR32) 2011; 12
D van Dijk (14018_CR25) 2018; 174
E Pierson (14018_CR40) 2015; 19
L Haghverdi (14018_CR47) 2016; 13
Eric H. Davidson (14018_CR18) 2010; 468
S Islam (14018_CR45) 2011; 21
A Zeisel (14018_CR20) 2015; 347
A Gretton (14018_CR41) 2012; 13
14018_CR10
14018_CR33
14018_CR34
14018_CR13
14018_CR35
14018_CR14
14018_CR36
14018_CR15
L van der Maaten (14018_CR16) 2008; 9
14018_CR37
14018_CR38
M Jacomy (14018_CR46) 2014; 9
References_xml – ident: 14018_CR4
– ident: 14018_CR6
– ident: 14018_CR10
– ident: 14018_CR35
– ident: 14018_CR27
– volume: 19
  year: 2018
  ident: 14018_CR31
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1382-0
  contributor:
    fullname: FA Wolf
– ident: 14018_CR33
– ident: 14018_CR7
  doi: 10.1109/CVPR.2017.632
– ident: 14018_CR14
– volume: 174
  start-page: 716
  year: 2018
  ident: 14018_CR25
  publication-title: Cell
  doi: 10.1016/j.cell.2018.05.061
  contributor:
    fullname: D van Dijk
– volume: 9
  start-page: 2579
  year: 2008
  ident: 14018_CR16
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: L van der Maaten
– ident: 14018_CR48
– volume: 468
  start-page: 911
  issue: 7326
  year: 2010
  ident: 14018_CR18
  publication-title: Nature
  doi: 10.1038/nature09645
  contributor:
    fullname: Eric H. Davidson
– volume: 9
  start-page: e98679
  year: 2014
  ident: 14018_CR46
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0098679
  contributor:
    fullname: M Jacomy
– ident: 14018_CR44
– volume: 35
  start-page: 53
  year: 2017
  ident: 14018_CR8
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765202
  contributor:
    fullname: A Creswell
– ident: 14018_CR2
  doi: 10.1038/nrg.2018.4
– ident: 14018_CR23
– volume: 92
  start-page: 032801
  year: 2015
  ident: 14018_CR30
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.032801
  contributor:
    fullname: VA Traag
– volume: 541
  start-page: 331
  year: 2017
  ident: 14018_CR11
  publication-title: Nature
  doi: 10.1038/nature21350
  contributor:
    fullname: A Tanay
– volume: 163
  start-page: 1663
  year: 2015
  ident: 14018_CR29
  publication-title: Cell
  doi: 10.1016/j.cell.2015.11.013
  contributor:
    fullname: F Paul
– ident: 14018_CR37
– volume: 20
  start-page: 1
  year: 2019
  ident: 14018_CR28
  publication-title: Genome Biol.
  doi: 10.1186/s13059-019-1663-x
  contributor:
    fullname: FA Wolf
– ident: 14018_CR39
– volume: 4
  start-page: 365
  year: 2013
  ident: 14018_CR3
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3475
  contributor:
    fullname: KS Button
– volume: 13
  start-page: 723
  year: 2012
  ident: 14018_CR41
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: A Gretton
– volume: 468
  start-page: 911
  year: 2017
  ident: 14018_CR19
  publication-title: Nat. Methods
  contributor:
    fullname: S Aibar
– volume: 347
  start-page: 1138
  year: 2015
  ident: 14018_CR20
  publication-title: Science
  doi: 10.1126/science.aaa1934
  contributor:
    fullname: A Zeisel
– ident: 14018_CR5
– volume: 45
  start-page: 5
  year: 2001
  ident: 14018_CR21
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
  contributor:
    fullname: L Breiman
– ident: 14018_CR1
  doi: 10.1038/s41562-016-0021
– ident: 14018_CR36
– ident: 14018_CR26
– ident: 14018_CR34
– volume: 13
  start-page: 845
  year: 2016
  ident: 14018_CR47
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.3971
  contributor:
    fullname: L Haghverdi
– ident: 14018_CR13
– ident: 14018_CR9
– volume: 21
  start-page: 1160
  year: 2011
  ident: 14018_CR45
  publication-title: Genome Res.
  doi: 10.1101/gr.110882.110
  contributor:
    fullname: S Islam
– volume: 19
  year: 2015
  ident: 14018_CR40
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0805-z
  contributor:
    fullname: E Pierson
– volume: 8
  year: 2017
  ident: 14018_CR12
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14049
  contributor:
    fullname: GXY Zheng
– volume: 33
  start-page: 2539
  year: 2017
  ident: 14018_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx196
  contributor:
    fullname: U Shaham
– ident: 14018_CR15
– ident: 14018_CR24
– ident: 14018_CR17
– volume: 12
  start-page: 2825
  year: 2011
  ident: 14018_CR32
  publication-title: J. Mach. Learn. Res.
  contributor:
    fullname: F Pedregosa
– ident: 14018_CR43
– ident: 14018_CR38
– volume: 18
  year: 2017
  ident: 14018_CR22
  publication-title: Genome Biol.
  doi: 10.1186/s13059-017-1305-0
  contributor:
    fullname: L Zappia
SSID ssj0000391844
Score 2.653761
Snippet A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive costs, or...
Abstract A fundamental problem in biomedical research is the low number of observations available, mostly due to a lack of available biosamples, prohibitive...
Low sample numbers often limit the robustness of analyses in biomedical research. Here, the authors introduce a method to generate realistic scRNA-seq data...
SourceID doaj
pubmedcentral
proquest
crossref
pubmed
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 166
SubjectTerms 38/91
631/114/1305
631/114/2397
Algorithms
Animals
Augmentation
Biomedical data
Biomedical research
Biomedical Research - methods
Computer Simulation
Gene expression
Generative adversarial networks
Humanities and Social Sciences
Humans
Mice
Models, Theoretical
multidisciplinary
Neural networks
Neural Networks, Computer
Populations
Quorum sensing
Reliability analysis
Ribonucleic acid
RNA
RNA - genetics
RNA-Seq - methods
Robustness
Science
Science (multidisciplinary)
SummonAdditionalLinks – databaseName: DOAJ Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3faxQxEB6kIPgi_na1SgTfNHRvk81uHqtYimAfioW-hWSTnAc1Z907wf71ziR7Z88f-OLrZhfCfJPM92VnJgAv2861VmnNSSJzYuBcY6DhAbm8sxiU4oyKkz-cqOMz-f68Pb921RflhJX2wMVwB60MwequnkWh5NAq7Vvv5YxkSFBWlTLfWl8TU3kPFhqli5yqZGrRH4wy7wnIaDhpip5f7USi3LD_Tyzz92TJX_6Y5kB0dAduTwySHZaZ34UbId2Dm-VOye_34fI0UE9DHGSLxMbFBULN5rm5NGHAbPLMruefp5qjxJaR0XnBReB0iM9OTw75GC4ZpY4yyoqfb7_-Fpil-5tHS17LUskgHx_A2dG7j2-P-XSvAh9Qrqy4iF6L0CP3CNJ1QvW2GXztqUQ16tpaUcdGOu08koU2KozxwyxoF6zqqL_gIB7CXlqm8BhYbwekDMI1KkbqHOgicZxWedchYFZV8GpjY_OltM8w-be36E1BxCAiJiNirip4QzBs36TW1_kBOoSZHML8yyEq2N-AaKb1OJpGYNxFqVc3FbzYDuNKIsvaFJZregeDOelBWcGjgvl2JrhRIdPtRAXdjjfsTHV3JC0-5W7dSqPW7-oKXm_85ue0_m6KJ__DFE_hVkPHA3RipPdhb_V1HZ4hh1q553m5_AD9ERd0
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED-2lMFexr7nrRsa7G0TdSxZtp5GO1rKYGGEFfomZEvKAq3d1Mlg_et3Zysu2derJRtZJ9397nT6HcC7vKhyq7Tm5CJzQuBco6HhHrF8ZdEohSldTv4yU6dn8vN5fh4Dbl1Mq9zqxF5Ru7amGPlBJlBzIlhPs49XK05Vo-h0NZbQuAt7GXoK6QT2jo5nX-djlIX4z0sp422ZVJQHnex1AyIbTr5FyW92LFJP3P83tPln0uRvJ6e9QTp5CA8ikmSHg-gfwR3fPIZ7Q23Jn09gNffEbYiNbNmwbnmBImeLnmSaZMFs45jdLC7j3aOGtYFR3ODCcwrms_nskHd-xSiFlFF2_GJ8-4dnluo4d5ZWL2uGTPLuKZydHH_7dMpjfQVeo9uy5iI4LXyJGMTLqhCqtFntUkdXVYNOrRVpyGSlK4egIQ8KbX099bryVhXEM1iLZzBp2sa_AFbaGqGDqDIVAjEIVoGwTq5cVUyDsCqB99s5NlcDjYbpj79FaQaJGJSI6SVibhI4IjGMPYkCu3_QXi9M3FEml95bXaT4fSXrXGmXOyen5J96ZVWZwP5WiCbuy87crqIE3o7NuKNoZm3j2w31QaNOfqFM4Pkg83EkqLAQ8RYigWJnNewMdbelWX7vWbuVRp-_SBP4sF03t8P691S8_P9fvIL7GQUAKCak92Gyvt7414iS1tWbuBV-AbpmEM4
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NISRe0MZn2EBG4g0Maew48QNCG2KakNjDRKW9WXZil0olpU2L2P567pykqFAeeI2dyPLd5X4_-z4AXuaFy63SmhNF5oTAuUZHwz1ieWfRKYURJSd_vlDnY_npKr_ag6HdUb-B7U5qR_2kxsvZm5-L6_do8O-6lPHybSujuSNY4UQXSn5zC25nEpk6hfL1cD_-mYVGQiP73Jndr275p1jGfxf2_DuE8o971Oiezg7gXo8r2UmnCIew55v7cKfrNHn9ABaXniod4iCbNqydzlAB2CSWnCbJMNvUzK4n3_pMpIbNA6NThJnndLTPLi9OeOsXjAJKGcXKTzZv__DMUlfn1pIus6aLK28fwvjs45cP57zvtsArJDErLkKthS8RkXjpCqFKm1V1WlPiatCptSINmXTa1Qgh8qDQ81cjr523qqCqg5V4BPvNvPFPgJW2QiAhXKZCoHqCLhDyyVXtilEQViXwathj870rqmHiZbgoTScRgxIxUSLmJoFTEsNmJhXEjg_my4np7cvk0nurixS_r2SVK13ndS1HxFa9sqpM4HgQohmUzGQCvTESwDRL4MVmGO2LdtY2fr6mOejiiSXKBB53Mt-sBH9fiH8LkUCxpQ1bS90eaaZfYw1vpfNMFGkCrwe9-b2sf2_F0_-bfgR3MzoeoBMjfQz7q-XaP0MMtXLPo2H8Aia0F3I
  priority: 102
  providerName: Scholars Portal
– databaseName: SpringerOpen
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1BERIXxHdTCjISN7DIxo4TH8uqVYVEDxWVerPs2F5WKl7a7CK1v56ZJJsqUA5cYyeyPDOZN-OZZ4D3ZeVKq7TmFCJzQuBco6PhAbG8s-iU4oyak7-eqOMz-eW8PB9ocqgXZnJ-L-pPrexMGYEIp1Cg5jf34QH64JrKt-ZqPuZTiOm8lnLoi7n71Ynv6Sj678KVf5dH_nFG2rmeoyfweMCM7KAX8lO4F9IzeNjfInn9HC5PA7EY4iBbJtYuL1C4bNHRSdOuM5s8s5vFj6HLKLFVZJQhuAic0vbs9OSAt-GSUbEoozr4xfj2r8As3djcWtJTlvqa8fYFnB0dfpsf8-EmBd5ggLLmInotQo1oI0hXCVXbovG5p6bUqHNrRR4L6bTzCA_KqNCrN7OgXbCqIkbBRryEnbRKYRdYbRsECcIVKkbiCnSRUE2pvKtmUViVwYftHpufPWGG6Q66RW16iRiUiOkkYm4y-ExiGGcS2XX3AHXADLZjShmC1VWO31eyKZX2pfdyRpFoUFbVGexvhWgGC2xNIdDTYnCXFxm8G4fRdmhnbQqrDc1B900RoMzgVS_zcSX4a0JsW4kMqok2TJY6HUnL7x0_t9IY3Vd5Bh-3enO7rH9vxd7_TX8NjwoK_SkbpPdhZ321CW8QH63d284wfgNdgwj0
  priority: 102
  providerName: Springer Nature
Title Realistic in silico generation and augmentation of single-cell RNA-seq data using generative adversarial networks
URI https://link.springer.com/article/10.1038/s41467-019-14018-z
https://www.ncbi.nlm.nih.gov/pubmed/31919373
https://www.proquest.com/docview/2342962502
https://search.proquest.com/docview/2336256254
https://pubmed.ncbi.nlm.nih.gov/PMC6952370
https://doaj.org/article/54eea9701f364c569d5dd410717e6a68
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_ajo2-jH3PWxc02NumxrFs2XpMQ7MSSCjZCnkzki2ngcRp62Sw_vW7k-1s2cfLXmyw_CF0J9_vd7o7AXyIYhNpqRQniswJgXOFhoZbxPJGo1EqepScPJ7Ii6twNItmBxC1uTAuaD8zi9NyuTotF9cutvJmlXXbOLHu5XggFdKn2O8ewiEq6C8U3f1-hULWEjYJMr5IulXofgcIZjjRiYTfH8MjVD3ELrHYs0eubP_fsOafIZO_rZs6czR8Ao8bHMn6dX-fwoEtn8HDemfJ78_hdmqpsiE2skXJqsUSBc7mrsQ0SYLpMmd6O181mUclWxeMvAZLy8mVz6aTPq_sLaMAUkax8fPd098s07SLc6VJd1lZx5FXL-BqeP51cMGb3RV4hqRlw0WRK2ETRCA2NLGQiQ6y3M8pUbVQvtbCL4LQKJMjZIgKiZY-61llrJYxVRnMxEs4KtelfQ0s0RkCB2ECWRRUP9AUhHQimZu4VwgtPfjYjnF6UxfRSN3it0jSWjgpCid1wknvPTgjMezupALY7sL6bp42apBGobVaxT6-X4ZZJFUe5XnYI3ZqpZaJByetENNmVlZpIND6IuHzAw_e75pxPtHI6tKut3QPmnRihaEHr2qZ73rS6owH8Z427HV1vwVV2NXsblTWg0-t3vzs1r-H4s1_f-gtHAfkGSBnkTqBo83d1r5D-LQxHZw0sxiPyfBzBx70-6MvIzyfnU8up3h1IAcd55jA4zhMOm5y_QC8iiAY
link.rule.ids 230,315,730,783,787,867,888,2109,12068,12777,21400,24330,27936,27937,31731,31732,33385,33386,33756,33757,41132,42201,43322,43612,43817,51588,53804,53806,74073,74363,74630
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwED_BEIIXxDeBAUbiDaylsePET2ggSoGtD9Mm7c1yYrtUGsm6tEjsr-fOSTuVr9c4rRyfffe7893vAF7nRZVbpTUnF5kTAucaDQ33iOUri0YpjKg4-XCqJifyy2l-OgTcuiGtcq0To6J2bU0x8r1MoOZEsJ5m784XnLpG0e3q0ELjOtyQAm01VYqPP21iLMR-Xko51MqkotzrZNQMiGs4eRYlv9yyR5G2_29Y88-Uyd_uTaM5Gt-FOwOOZPu94O_BNd_ch5t9Z8mfD2Bx5InZEAfZvGHd_AwFzmaRYpokwWzjmF3Nvg-VRw1rA6OowZnnFMpnR9N93vkFowRSRrnxs82vf3hmqYtzZ2nvsqbPI-8ewsn44_GHCR-6K_AanZYlF8Fp4UtEIF5WhVClzWqXOipUDTq1VqQhk5WuHEKGPCi09PXI68pbVRDLYC0ewU7TNv4JsNLWCBxElakQiD-wCoR0cuWqYhSEVQm8Wa-xOe9JNEy8_Bal6SViUCImSsRcJvCexLB5kwiw44P2YmaG82Ry6b3VRYr_r2SdK-1y5-SIvFOvrCoT2F0L0QynsjNXeyiBV5thPE-0srbx7YreQZNOXqFM4HEv881MUF0h3i1EAsXWbtia6vZIM_8WObuVRo-_SBN4u943V9P691I8_f9XvIRbk-PDA3Pwefr1GdzOKBRA0SG9CzvLi5V_jnhpWb2Ih-IXJIwSWQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Zb9QwELagCMQL4iyBAkbiDazNxo4TP6FyLOVaoYpKfbPs2F5WKkm32UWiv54Zx7vVcr3GTuR4rm_G4xlCnpWVLY1UiqGLzBCBMwWGhnnA8taAUQpjvJz8eSoPjsSH4_I45T_1Ka1yrROjonZdgzHyUcFBcwJYz4tRSGkRX95MXp4uGHaQwpPW1E7jMrkCVlEiz9eTd5t4C1ZCr4VI92ZyXo96EbUEYByGXkbNzrdsUyzh_zfc-Wf65G9nqNE0TW6SGwlT0v2BCW6RS769Ta4OXSZ_3iGLQ49VDmGQzlvaz0-A-HQWy00jVahpHTWr2fd0C6mlXaAYQTjxDMP69HC6z3q_oJhMSjFPfrZ5-4enBjs69wb5mLZDTnl_lxxN3n59fcBSpwXWgAOzZDw4xX0NaMQLW3FZm6JxucNLq0HlxvA8FMIq6wA-lEGC1W_GXllvZIUVBxt-j-y0XevvE1qbBkAEt4UMAWsJ2oCop5TOVuPAjczI8_Ue69OhoIaOB-G81gNFNFBER4ro84y8QjJsZmIx7PigO5vpJFu6FN4bVeXwfSmaUipXOifG6Kl6aWSdkb01EXWS0F5f8FNGnm6GQbZwZ03ruxXOAfOOHqLIyO5A881KQHUB9q14Rqotbtha6vZIO_8W63dLBd5_lWfkxZpvLpb176148P-_eEKugTzoT--nHx-S6wVGBTBQpPbIzvJs5R8BdFrax1EmfgEZOxaR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Realistic+in+silico+generation+and+augmentation+of+single-cell+RNA-seq+data+using+generative+adversarial+networks&rft.jtitle=Nature+communications&rft.au=Marouf%2C+Mohamed&rft.au=Machart%2C+Pierre&rft.au=Bansal%2C+Vikas&rft.au=Kilian%2C+Christoph&rft.date=2020-01-09&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-019-14018-z&rft.externalDocID=10_1038_s41467_019_14018_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon