Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature
Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on...
Saved in:
Published in | Nature communications Vol. 11; no. 1; pp. 2308 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.05.2020
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.
Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 10
2
A/W, detectivity of ~3.01 × 10
9
Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging. |
---|---|
AbstractList | Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology. Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology. Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 10 2 A/W, detectivity of ~3.01 × 10 9 Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging. Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 102 A/W, detectivity of ~3.01 × 109 Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging. Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 102 A/W, detectivity of ~3.01 × 109 Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging. Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology. |
ArticleNumber | 2308 |
Author | Wang, Peng Peng, Meng Li, Zheng Cheng, Gary J. Yang, Guoming Wu, Wenzhuo Zhong, Fang Tong, Lei Wang, Fang An, Licong Ye, Lei Wang, Yixiu Sun, Qiaodong Hu, Weida Motlag, Maithilee Huang, Xinyu Zhang, Yong |
Author_xml | – sequence: 1 givenname: Lei surname: Tong fullname: Tong, Lei organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 2 givenname: Xinyu surname: Huang fullname: Huang, Xinyu organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 3 givenname: Peng surname: Wang fullname: Wang, Peng organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences – sequence: 4 givenname: Lei surname: Ye fullname: Ye, Lei email: leiye@hust.edu.cn organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 5 givenname: Meng surname: Peng fullname: Peng, Meng organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences – sequence: 6 givenname: Licong surname: An fullname: An, Licong organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 7 givenname: Qiaodong surname: Sun fullname: Sun, Qiaodong organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 8 givenname: Yong surname: Zhang fullname: Zhang, Yong organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 9 givenname: Guoming surname: Yang fullname: Yang, Guoming organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 10 givenname: Zheng surname: Li fullname: Li, Zheng organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology – sequence: 11 givenname: Fang surname: Zhong fullname: Zhong, Fang organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences – sequence: 12 givenname: Fang surname: Wang fullname: Wang, Fang organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences – sequence: 13 givenname: Yixiu surname: Wang fullname: Wang, Yixiu organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 14 givenname: Maithilee surname: Motlag fullname: Motlag, Maithilee organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 15 givenname: Wenzhuo orcidid: 0000-0003-0362-6650 surname: Wu fullname: Wu, Wenzhuo email: wenzhuowu@purdue.edu organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 16 givenname: Gary J. orcidid: 0000-0002-1184-2946 surname: Cheng fullname: Cheng, Gary J. email: gjcheng@purdue.edu organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University – sequence: 17 givenname: Weida orcidid: 0000-0001-5278-8969 surname: Hu fullname: Hu, Weida email: wdhu@mail.sitp.ac.cn organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32385242$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustq3TAQFSWlSdP8QBfF0E03bvW0pE2hpK9AIIu00J0Y27Kriy3dSHKh-foo13kvos2ImXMOh5nzGu354C1Cbwn-SDBTnxInvJE1prgmDaGiVi_QAcWc1ERStvfgv4-OUtrg8pgmivNXaJ9RpgTl9AD9Oc_QTraaXV87P0SItq-2YYLoLiG74Cs3w-j8WLWQyqg0LhZIrqZfq2ynaYlumSvIVQxhLp15ayPkJdo36OUAU7JHN_UQ_f7-7dfxz_r07MfJ8ZfTumtwk2sGQja6B9JJJbQUMLR6wJT1LVCpiVA9KaNmYFgQbpmgRDeKdT3VbdsRrdkhOll1-wAbs43FbvxvAjiza4Q4GojZdZM1ILGkXHFtleLEDi1XPSNksJoyKhQuWp9Xre3SzrbvrM8Rpkeijyfe_TVj-GckJVizpgh8uBGI4WKxKZvZpa6sCbwNSzKUYyyYFFIU6Psn0E1Yoi-r2qGwbrS4Rr176OjOyu0BC0CtgC6GlKIdTOfy7nDFoJsMweY6LmaNiylxMbu4GFWo9An1Vv1ZEltJqYD9aOO97WdYV0H60CE |
CitedBy_id | crossref_primary_10_1002_aelm_202200668 crossref_primary_10_1063_5_0061825 crossref_primary_10_1088_2040_8986_ac47b3 crossref_primary_10_1002_adfm_202204230 crossref_primary_10_1002_adfm_202316863 crossref_primary_10_1002_smtd_202300933 crossref_primary_10_1039_D4TC05204H crossref_primary_10_1021_acs_jpcc_2c03325 crossref_primary_10_1002_aelm_202300392 crossref_primary_10_1103_PhysRevB_108_245409 crossref_primary_10_1021_acsnano_0c04329 crossref_primary_10_1021_acs_nanolett_4c01543 crossref_primary_10_1021_acsami_1c11277 crossref_primary_10_1021_acsanm_4c07065 crossref_primary_10_1109_LED_2021_3061705 crossref_primary_10_1002_adom_202001215 crossref_primary_10_1021_acsami_2c20400 crossref_primary_10_1063_5_0061390 crossref_primary_10_1002_lpor_202200338 crossref_primary_10_1002_pssb_202100625 crossref_primary_10_1002_lpor_202300501 crossref_primary_10_1364_AO_457717 crossref_primary_10_1002_adom_202402226 crossref_primary_10_1021_acsami_0c21675 crossref_primary_10_1007_s12274_020_3247_1 crossref_primary_10_1002_adom_202201902 crossref_primary_10_1038_s41377_024_01634_8 crossref_primary_10_26599_NRE_2023_9120058 crossref_primary_10_1021_acsnano_1c02007 crossref_primary_10_1002_aelm_202200653 crossref_primary_10_1016_j_apsusc_2023_158860 crossref_primary_10_1002_adom_202301508 crossref_primary_10_1002_adpr_202300045 crossref_primary_10_1021_acsnano_1c06286 crossref_primary_10_1016_j_micrna_2023_207627 crossref_primary_10_1021_acsnano_4c03973 crossref_primary_10_1186_s10033_023_00943_0 crossref_primary_10_1063_5_0240325 crossref_primary_10_1063_5_0209710 crossref_primary_10_1038_s41467_022_33716_9 crossref_primary_10_1002_adom_202401122 crossref_primary_10_1007_s11664_025_11812_y crossref_primary_10_1002_aelm_202001168 crossref_primary_10_1088_1361_6528_ac10e6 crossref_primary_10_3389_fmats_2020_00235 crossref_primary_10_1002_advs_202103873 crossref_primary_10_1007_s00340_022_07900_0 crossref_primary_10_1038_s41467_023_38090_8 crossref_primary_10_1063_5_0166668 crossref_primary_10_1002_adfm_202315194 crossref_primary_10_1002_smll_202401216 crossref_primary_10_1016_j_physrep_2024_06_001 crossref_primary_10_1002_adma_202002628 crossref_primary_10_1063_5_0088724 crossref_primary_10_1038_s41467_021_26919_z crossref_primary_10_1002_smtd_202300595 crossref_primary_10_1016_j_vacuum_2024_113245 crossref_primary_10_1016_j_vacuum_2023_112794 crossref_primary_10_1002_adfm_202111970 crossref_primary_10_1103_PhysRevApplied_20_034035 crossref_primary_10_1016_j_scib_2020_07_037 crossref_primary_10_1007_s11432_022_3695_1 crossref_primary_10_1063_5_0152814 crossref_primary_10_1109_TITS_2023_3286541 crossref_primary_10_1007_s11432_024_4033_8 crossref_primary_10_1063_5_0085464 crossref_primary_10_1002_inf2_12470 crossref_primary_10_1002_adma_202105665 crossref_primary_10_1002_adma_202211598 crossref_primary_10_1103_PhysRevB_103_235421 crossref_primary_10_1007_s12274_022_4330_6 crossref_primary_10_1016_j_jallcom_2024_174312 crossref_primary_10_1002_adma_202301197 crossref_primary_10_1002_adom_202101052 crossref_primary_10_1016_j_cplett_2023_140849 crossref_primary_10_1515_nanoph_2020_0261 crossref_primary_10_1016_j_coco_2021_100650 crossref_primary_10_1021_acsnano_4c13870 crossref_primary_10_1039_D4TC02656J crossref_primary_10_1002_adom_202201443 crossref_primary_10_1002_adfm_202305380 crossref_primary_10_1002_smll_202311606 crossref_primary_10_1002_adom_202300319 crossref_primary_10_1088_1402_4896_acf89f crossref_primary_10_1088_1674_4926_24080044 crossref_primary_10_1002_adom_202301410 crossref_primary_10_1038_s41467_022_34421_3 crossref_primary_10_2139_ssrn_4352201 crossref_primary_10_1039_D1TC01837J crossref_primary_10_1088_2053_1583_ac36b7 crossref_primary_10_1002_lpor_202300854 crossref_primary_10_1016_j_jallcom_2023_171899 crossref_primary_10_1364_OE_547382 crossref_primary_10_1038_s41699_021_00280_7 crossref_primary_10_1039_D4MA00572D crossref_primary_10_1002_adma_202306772 crossref_primary_10_1088_1361_6463_ac9988 crossref_primary_10_1364_AO_503943 crossref_primary_10_1039_D3QI01116J crossref_primary_10_1039_D1TC02936C crossref_primary_10_1021_acsnano_2c04704 crossref_primary_10_1088_1361_6463_adb3b7 crossref_primary_10_1039_D1NR08268J crossref_primary_10_1002_smll_202311317 crossref_primary_10_1016_j_physleta_2024_129528 crossref_primary_10_1016_j_mssp_2024_108474 crossref_primary_10_1002_adfm_202006278 crossref_primary_10_1021_acsanm_2c01303 crossref_primary_10_1002_app_55907 crossref_primary_10_1002_adom_202300593 crossref_primary_10_1016_j_nanoen_2021_106177 crossref_primary_10_1038_s43246_022_00292_w crossref_primary_10_1039_D4CS00987H crossref_primary_10_1002_adom_202402668 crossref_primary_10_1007_s40843_024_3196_3 crossref_primary_10_1021_acsnano_1c10181 crossref_primary_10_1016_j_optlastec_2023_109717 crossref_primary_10_1002_adfm_202423770 crossref_primary_10_1038_s41467_022_28716_8 crossref_primary_10_1063_5_0224623 crossref_primary_10_1002_adom_202200173 crossref_primary_10_1126_sciadv_abq1781 crossref_primary_10_1002_aelm_202300243 crossref_primary_10_1016_j_cej_2021_128610 crossref_primary_10_1016_j_optmat_2022_113341 crossref_primary_10_1088_1361_6528_ab8e75 crossref_primary_10_1038_s41377_024_01697_7 crossref_primary_10_1038_s41467_025_58155_0 crossref_primary_10_1021_acsphotonics_2c00246 crossref_primary_10_1126_science_abg3161 crossref_primary_10_1021_acsphotonics_4c00370 crossref_primary_10_1002_adom_202100198 crossref_primary_10_1016_j_scib_2022_07_005 crossref_primary_10_1002_adom_202001708 crossref_primary_10_1039_D1NR08134A crossref_primary_10_1002_cjoc_202100229 crossref_primary_10_1021_acsnano_2c01455 crossref_primary_10_1021_acsanm_3c06308 crossref_primary_10_1002_adma_202203766 crossref_primary_10_1016_j_mattod_2021_09_021 crossref_primary_10_1002_smll_202406148 crossref_primary_10_1016_j_vacuum_2023_112475 crossref_primary_10_1515_nanoph_2024_0613 crossref_primary_10_1021_acsami_2c17331 crossref_primary_10_1038_s41377_025_01744_x crossref_primary_10_1021_acsami_3c18673 crossref_primary_10_1002_adfm_202314972 crossref_primary_10_1002_adom_202101256 crossref_primary_10_1360_SSPMA_2022_0443 crossref_primary_10_1002_smll_202303114 crossref_primary_10_1002_adma_202305594 crossref_primary_10_1016_j_device_2023_100069 crossref_primary_10_1016_j_mtphys_2022_100776 crossref_primary_10_1002_smll_202207615 crossref_primary_10_1021_acsaelm_2c00875 crossref_primary_10_1021_acsmaterialslett_3c00539 crossref_primary_10_1007_s12274_022_5190_9 crossref_primary_10_1038_s41586_022_04548_w crossref_primary_10_1016_j_apsusc_2024_159630 crossref_primary_10_1063_5_0228402 crossref_primary_10_1002_adma_202418405 crossref_primary_10_1021_acsaelm_3c00620 crossref_primary_10_1021_acsami_1c18576 crossref_primary_10_1002_adfm_202308298 crossref_primary_10_1038_s41598_025_92229_9 crossref_primary_10_3390_nano13071169 crossref_primary_10_1016_j_ijheatmasstransfer_2022_122908 crossref_primary_10_1002_smll_202005801 crossref_primary_10_1021_acsnano_4c02662 crossref_primary_10_1038_s41467_023_39071_7 crossref_primary_10_1021_acsami_2c21958 crossref_primary_10_1515_nanoph_2022_0660 crossref_primary_10_1016_j_compscitech_2022_109889 crossref_primary_10_1063_5_0133326 crossref_primary_10_1002_adma_202408969 crossref_primary_10_1021_acsami_3c17572 crossref_primary_10_1002_adom_202102436 crossref_primary_10_1126_sciadv_adn0560 crossref_primary_10_1002_inf2_12618 crossref_primary_10_1016_j_sse_2023_108765 crossref_primary_10_1039_D2NR02822K crossref_primary_10_7498_aps_71_20220859 crossref_primary_10_1088_2053_1583_acb1c3 crossref_primary_10_1088_2752_5724_acf9ba crossref_primary_10_1093_nsr_nwab098 crossref_primary_10_1002_adfm_202314838 crossref_primary_10_1021_accountsmr_2c00146 crossref_primary_10_1002_adom_202201627 crossref_primary_10_1016_j_nanoen_2023_108552 crossref_primary_10_1016_j_matdes_2022_111446 crossref_primary_10_1063_5_0191019 crossref_primary_10_1002_adom_202202396 crossref_primary_10_3788_IRLA20240410 crossref_primary_10_3390_nano14231935 crossref_primary_10_1002_adfm_202008790 crossref_primary_10_1002_adom_202101919 crossref_primary_10_1038_s41699_022_00293_w crossref_primary_10_1002_inf2_12625 crossref_primary_10_1002_lpor_202100322 crossref_primary_10_1002_smsc_202100051 crossref_primary_10_1002_adfm_202104359 crossref_primary_10_1063_5_0241260 crossref_primary_10_1016_j_jallcom_2024_173830 crossref_primary_10_1038_s41377_021_00694_4 crossref_primary_10_1063_5_0252741 crossref_primary_10_1002_adom_202301350 crossref_primary_10_1002_adma_202211522 crossref_primary_10_1002_adfm_202110119 crossref_primary_10_1002_apxr_202400079 crossref_primary_10_1126_science_ade1220 crossref_primary_10_1002_adom_202401625 crossref_primary_10_1016_j_jmat_2022_09_002 crossref_primary_10_1021_acsmaterialslett_0c00252 crossref_primary_10_1126_sciadv_adr5375 crossref_primary_10_1002_adfm_202407812 crossref_primary_10_1039_D2NR03226K crossref_primary_10_1038_s41566_021_00819_6 crossref_primary_10_1557_s43578_024_01379_5 crossref_primary_10_1016_j_mtquan_2025_100034 crossref_primary_10_1039_D3TC03679K crossref_primary_10_1002_aenm_202400674 crossref_primary_10_1063_5_0191145 crossref_primary_10_1039_D2CS00657J crossref_primary_10_1039_D1MH01287H crossref_primary_10_1109_TNANO_2022_3223371 crossref_primary_10_1016_j_nanoen_2024_110452 crossref_primary_10_1039_D2TA09517C crossref_primary_10_1016_j_ensm_2023_102780 crossref_primary_10_2478_amns_2024_3099 crossref_primary_10_1002_adfm_202108174 crossref_primary_10_1039_D2NA00609J crossref_primary_10_1016_j_nantod_2021_101287 crossref_primary_10_1134_S1064226922090133 crossref_primary_10_1039_D3TC04333A crossref_primary_10_1016_j_mtcomm_2022_104190 crossref_primary_10_1007_s40820_022_00923_4 crossref_primary_10_1021_acsanm_1c03132 crossref_primary_10_1103_PhysRevLett_133_236201 crossref_primary_10_1002_adma_202107206 crossref_primary_10_1038_s41467_020_20115_1 crossref_primary_10_1002_advs_202100075 crossref_primary_10_1021_acsphotonics_3c00453 crossref_primary_10_3390_cryst13020308 crossref_primary_10_1002_adom_202201960 crossref_primary_10_1039_D1NR03243G crossref_primary_10_1126_sciadv_adm9322 crossref_primary_10_3390_s23177564 crossref_primary_10_3389_fchem_2022_1046010 crossref_primary_10_1021_acsnano_3c03559 crossref_primary_10_1021_acs_nanolett_4c06629 crossref_primary_10_1364_PRJ_402108 crossref_primary_10_1002_aelm_202400268 crossref_primary_10_1002_smll_202407830 crossref_primary_10_1016_j_optmat_2024_115264 crossref_primary_10_1002_adom_202300720 crossref_primary_10_1002_adsu_202400100 crossref_primary_10_1002_aelm_202400269 crossref_primary_10_1038_s41377_022_00930_5 crossref_primary_10_1126_sciadv_abf7358 crossref_primary_10_1007_s12613_022_2426_3 crossref_primary_10_1002_nano_202000237 crossref_primary_10_1088_1361_6463_ad7a85 crossref_primary_10_1021_acsnano_2c10816 crossref_primary_10_1002_adfm_202007559 crossref_primary_10_1088_1361_6463_ac6635 crossref_primary_10_1007_s11249_023_01786_5 crossref_primary_10_1016_j_optlastec_2022_108069 crossref_primary_10_1007_s12274_020_3128_7 crossref_primary_10_1063_5_0200488 crossref_primary_10_1002_adma_202005037 crossref_primary_10_1002_adfm_202211527 crossref_primary_10_1016_j_coco_2020_100601 crossref_primary_10_1016_j_optmat_2022_113297 crossref_primary_10_1002_adom_202202080 crossref_primary_10_1002_adom_202302804 crossref_primary_10_1109_JLT_2021_3121311 crossref_primary_10_1021_acsnano_3c02617 crossref_primary_10_1002_smll_202401194 crossref_primary_10_1063_5_0226193 crossref_primary_10_1016_j_isci_2021_103594 crossref_primary_10_1021_acsanm_3c02559 crossref_primary_10_1007_s12274_021_3505_x crossref_primary_10_1002_lpor_202400561 crossref_primary_10_1021_acs_chemmater_1c03275 crossref_primary_10_1002_adom_202300192 crossref_primary_10_1002_aelm_202000962 crossref_primary_10_1021_acsmaterialslett_4c00719 crossref_primary_10_1103_PhysRevB_110_014311 crossref_primary_10_1002_advs_202306344 crossref_primary_10_1016_j_molliq_2021_117303 crossref_primary_10_1088_1674_4926_45_5_051701 crossref_primary_10_1364_OE_489029 crossref_primary_10_3390_nano14100845 crossref_primary_10_1002_lpor_202402069 crossref_primary_10_1007_s11467_022_1156_3 crossref_primary_10_1039_D4TC00530A crossref_primary_10_1002_adma_202407010 crossref_primary_10_1021_acsami_2c22876 crossref_primary_10_1016_j_mtphys_2023_101069 crossref_primary_10_1364_OE_533014 crossref_primary_10_1007_s12274_022_4971_5 crossref_primary_10_1109_JPHOT_2023_3246167 crossref_primary_10_1002_adom_202202867 crossref_primary_10_1002_aelm_202001125 crossref_primary_10_1063_5_0142575 crossref_primary_10_1016_j_mee_2023_111980 crossref_primary_10_1007_s12598_024_02644_6 crossref_primary_10_1002_adma_202404309 crossref_primary_10_1088_1674_4926_24090020 crossref_primary_10_1016_j_jcis_2022_01_169 crossref_primary_10_2139_ssrn_3917174 crossref_primary_10_3390_photonics11111014 crossref_primary_10_1088_1361_6528_ab9867 crossref_primary_10_1002_adfm_202306281 crossref_primary_10_1039_D1TC02502C crossref_primary_10_1039_C9CS00821G crossref_primary_10_1002_adfm_202104327 crossref_primary_10_1002_adma_202204697 crossref_primary_10_1002_advs_202417428 crossref_primary_10_1002_advs_202204727 crossref_primary_10_1007_s11432_021_3252_2 crossref_primary_10_1021_acsami_3c17868 crossref_primary_10_1002_smll_202303638 crossref_primary_10_1016_j_bioactmat_2021_11_010 crossref_primary_10_1002_adfm_202007987 crossref_primary_10_1016_j_mattod_2021_06_014 crossref_primary_10_1002_adpr_202000187 crossref_primary_10_1002_advs_202302886 crossref_primary_10_1021_acsnano_2c07968 crossref_primary_10_1126_sciadv_abo0375 crossref_primary_10_1038_s41598_021_86056_x crossref_primary_10_1088_1361_6528_ac1b53 crossref_primary_10_1063_5_0238164 crossref_primary_10_1039_D4NR05034G crossref_primary_10_1002_adma_202407476 crossref_primary_10_1021_acsnano_4c15453 crossref_primary_10_1007_s11467_022_1231_9 crossref_primary_10_1002_adsr_202200079 crossref_primary_10_1021_acsami_3c08118 crossref_primary_10_1002_lpor_202100189 crossref_primary_10_1021_acsnano_3c01977 crossref_primary_10_1063_5_0189292 crossref_primary_10_1021_acsami_2c04204 crossref_primary_10_1002_adma_202313134 crossref_primary_10_1364_OE_536855 crossref_primary_10_1021_acs_nanolett_4c03959 crossref_primary_10_1109_TED_2022_3208854 crossref_primary_10_1002_adma_202415530 crossref_primary_10_1002_lpor_202300936 crossref_primary_10_1117_1_AP_6_2_024001 |
Cites_doi | 10.1038/nmat3687 10.1038/s41467-018-07643-7 10.1002/adma.201503340 10.1103/PhysRevB.4.356 10.1038/nnano.2015.112 10.1002/adma.201801164 10.1021/acsphotonics.6b00079 10.1021/acsnano.6b04165 10.1021/nl502339q 10.1002/adma.201804945 10.1038/nnano.2012.193 10.1038/s41563-018-0187-1 10.1016/j.infrared.2010.12.003 10.1038/nnano.2014.215 10.1038/nnano.2015.71 10.1002/adfm.201601346 10.1063/1.4904841 10.1002/adma.201803109 10.1021/acsnano.7b07028 10.1039/C8CS00598B 10.1364/OPEX.12.000208 10.1002/anie.200906927 10.1002/adma.201902039 10.1002/adma.201804629 10.1364/OE.20.027393 10.1038/s41566-019-0399-1 10.1086/301146 10.1103/PhysRevB.22.2968 10.1038/s42254-018-0016-0 10.1002/adma.201604439 10.1038/s41928-018-0058-4 10.1021/nn503521c 10.1002/adfm.201802011 10.1038/nphoton.2015.282 10.1002/adfm.201803807 10.1021/acsnano.8b06629 10.1016/j.nanoen.2018.12.065 10.1021/acs.nanolett.5b02523 10.1002/adma.201506352 10.1016/j.nanoen.2017.05.004 10.1021/acs.nanolett.7b01717 10.1021/acsnano.8b03424 10.1021/acs.nanolett.6b01977 10.1364/OE.18.019087 10.1002/advs.201600018 10.1364/AO.45.005453 10.1364/AO.36.000150 10.1002/admi.201800960 10.1021/acs.nanolett.5b04538 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-16125-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | PubMed Publicly Available Content Database MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_a70724849e8841efb48d311fe9232580 PMC7210936 32385242 10_1038_s41467_020_16125_8 |
Genre | Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-3a5769da1c785975afb9f023dba279158d11c76f30514e35219683cd29bbc1993 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:20:45 EDT 2025 Thu Aug 21 18:26:15 EDT 2025 Thu Jul 10 17:49:15 EDT 2025 Wed Aug 13 07:16:47 EDT 2025 Wed Feb 19 02:28:11 EST 2025 Thu Apr 24 23:04:15 EDT 2025 Tue Jul 01 04:08:56 EDT 2025 Fri Feb 21 02:39:58 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-3a5769da1c785975afb9f023dba279158d11c76f30514e35219683cd29bbc1993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5278-8969 0000-0002-1184-2946 0000-0003-0362-6650 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-16125-8 |
PMID | 32385242 |
PQID | 2400096955 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a70724849e8841efb48d311fe9232580 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7210936 proquest_miscellaneous_2400537575 proquest_journals_2400096955 pubmed_primary_32385242 crossref_citationtrail_10_1038_s41467_020_16125_8 crossref_primary_10_1038_s41467_020_16125_8 springer_journals_10_1038_s41467_020_16125_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-08 |
PublicationDateYYYYMMDD | 2020-05-08 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2020 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Huo, Konstantatos (CR12) 2018; 30 Amani (CR49) 2017; 11 Wang (CR3) 2017; 29 Amani (CR26) 2018; 12 Luo (CR46) 2015; 6 Tyo, Goldstein, Chenault, Shaw (CR52) 2006; 45 Du (CR30) 2017; 17 Yuan (CR17) 2015; 10 Island, Blanter, Buscema, Van Der Zant, Castellanos-Gomez (CR40) 2015; 15 Guo (CR24) 2016; 16 Liang (CR11) 2019; 31 Radisavljevic, Kis (CR10) 2013; 12 Konstantatos (CR13) 2018; 9 Irmer, Röder, Himcinschi, Kortus (CR34) 2014; 116 Long (CR9) 2019; 13 Gruev, Perkins, York (CR51) 2010; 18 Hu (CR56) 2019; 13 Zhang (CR21) 2016; 10 Long (CR8) 2019; 29 Amani, Regan, Bullock, Ahn, Javey (CR18) 2017; 11 Chen (CR25) 2017; 8 Li (CR50) 2018; 5 Guo (CR2) 2004; 12 Zhou (CR16) 2018; 12 Liu (CR20) 2018; 17 Kuo (CR4) 2010; 49 Mak, Shan (CR55) 2016; 10 Coker, Lee, Das (CR29) 1980; 22 Wang (CR23) 2015; 10 Xia, Wang, Xiao, Dubey, Ramasubramaniam (CR15) 2014; 8 Fu (CR45) 2018; 31 Zhou (CR28) 2018; 30 Wang (CR35) 2015; 27 Mao (CR39) 2016; 3 Yankowitz, Ma, JarillooHerrero, LeRoy (CR57) 2019; 1 Ye (CR38) 2017; 37 Wang (CR27) 2018; 1 Long (CR42) 2016; 16 Rigopoulou (CR1) 1999; 118 CR53 Furchi, Polyushkin, Pospischil, Mueller (CR44) 2014; 14 Demos, Alfano (CR7) 1997; 36 Wang (CR32) 2019; 57 Zhang (CR36) 2014; 8 Rogalski (CR5) 2011; 54 Ye (CR19) 2016; 3 Huang (CR37) 2016; 28 Zhou (CR48) 2018; 31 Wang, Kalantar-zadeh, Kis, Coleman, Strano (CR54) 2012; 7 Qiao, Kong, Hu, Yang, Ji (CR22) 2014; 5 Gong (CR41) 2016; 26 Tong (CR43) 2019; 15 Koppens (CR14) 2014; 9 Myhre (CR6) 2012; 20 Pine, Dresselhaus (CR33) 1971; 4 Zhao (CR47) 2018; 22 Wu (CR31) 2018; 47 F Xia (16125_CR15) 2014; 8 F Gong (16125_CR41) 2016; 26 X Chen (16125_CR25) 2017; 8 KF Mak (16125_CR55) 2016; 10 Y Du (16125_CR30) 2017; 17 FHL Koppens (16125_CR14) 2014; 9 Y Wang (16125_CR27) 2018; 1 Z Luo (16125_CR46) 2015; 6 X Li (16125_CR50) 2018; 5 M Amani (16125_CR18) 2017; 11 QH Wang (16125_CR54) 2012; 7 E Zhang (16125_CR21) 2016; 10 M Yankowitz (16125_CR57) 2019; 1 G Irmer (16125_CR34) 2014; 116 A Coker (16125_CR29) 1980; 22 V Gruev (16125_CR51) 2010; 18 W Wu (16125_CR31) 2018; 47 P Wang (16125_CR3) 2017; 29 AS Pine (16125_CR33) 1971; 4 G Zhou (16125_CR28) 2018; 30 JO Island (16125_CR40) 2015; 15 Y Wang (16125_CR32) 2019; 57 L Ye (16125_CR19) 2016; 3 L Liu (16125_CR20) 2018; 17 Q Liang (16125_CR11) 2019; 31 B Radisavljevic (16125_CR10) 2013; 12 L Ye (16125_CR38) 2017; 37 J Mao (16125_CR39) 2016; 3 G Konstantatos (16125_CR13) 2018; 9 M Huang (16125_CR37) 2016; 28 B Guo (16125_CR2) 2004; 12 16125_CR53 Z Zhou (16125_CR16) 2018; 12 A Rogalski (16125_CR5) 2011; 54 Q Fu (16125_CR45) 2018; 31 L Tong (16125_CR43) 2019; 15 WS Kuo (16125_CR4) 2010; 49 M Long (16125_CR9) 2019; 13 SG Demos (16125_CR7) 1997; 36 MM Furchi (16125_CR44) 2014; 14 M Long (16125_CR8) 2019; 29 G Hu (16125_CR56) 2019; 13 N Huo (16125_CR12) 2018; 30 X Wang (16125_CR23) 2015; 10 X Wang (16125_CR35) 2015; 27 W Zhou (16125_CR48) 2018; 31 J Qiao (16125_CR22) 2014; 5 JS Tyo (16125_CR52) 2006; 45 M Amani (16125_CR26) 2018; 12 G Myhre (16125_CR6) 2012; 20 H Yuan (16125_CR17) 2015; 10 S Zhao (16125_CR47) 2018; 22 Q Guo (16125_CR24) 2016; 16 W Zhang (16125_CR36) 2014; 8 M Long (16125_CR42) 2016; 16 M Amani (16125_CR49) 2017; 11 D Rigopoulou (16125_CR1) 1999; 118 |
References_xml | – volume: 49 start-page: 2711 year: 2010 end-page: 2715 ident: CR4 article-title: Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging publication-title: Angew. Chem. - Int. Ed. – volume: 8 year: 2017 ident: CR25 article-title: Widely tunable black phosphorus mid-infrared photodetector publication-title: Nat. Commun. – volume: 57 start-page: 480 year: 2019 end-page: 491 ident: CR32 article-title: Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics publication-title: Nano Energy – volume: 10 start-page: 517 year: 2015 end-page: 521 ident: CR23 article-title: Highly anisotropic and robust excitons in monolayer black phosphorus publication-title: Nat. Nanotechnol. – volume: 22 start-page: 1802011 year: 2018 ident: CR47 article-title: Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions publication-title: Adv. Funct. Mater. – volume: 31 start-page: 11807609 year: 2019 ident: CR11 article-title: High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe publication-title: Adv. Mater. – volume: 12 start-page: 12416 year: 2018 end-page: 12423 ident: CR16 article-title: Perpendicular Optical reversal of the linear dichroism and polarized photodetection in 2D GeAs publication-title: ACS Nano – volume: 29 start-page: 1604439 year: 2017 ident: CR3 article-title: Arrayed Van Der Waals broadband detectors for dual-band detection publication-title: Adv. Mater. – volume: 54 start-page: 136 year: 2011 end-page: 154 ident: CR5 article-title: Recent progress in infrared detector technologies publication-title: Infrared Phys. Technol. – volume: 11 start-page: 11724 year: 2017 end-page: 11731 ident: CR18 article-title: Mid-wave infrared photodetectors based on black phosphorus-arsentic alloys publication-title: ACS Nano – volume: 26 start-page: 6084 year: 2016 end-page: 6090 ident: CR41 article-title: High-sensitivity floating-gate phototransistors based on WS and MoS publication-title: Adv. Funct. Mater. – volume: 10 start-page: 216 year: 2016 end-page: 226 ident: CR55 article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides publication-title: Nat. Photonics – volume: 1 start-page: 228 year: 2018 end-page: 236 ident: CR27 article-title: Field-effect transistors made from solution-grown two-dimensional tellurene publication-title: Nat. Electron. – volume: 14 start-page: 6165 year: 2014 end-page: 6170 ident: CR44 article-title: Mechanisms of photoconductivity in atomically thin MoS publication-title: Nano Lett. – volume: 13 start-page: 467 year: 2019 end-page: 472 ident: CR56 article-title: Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS metasurface publication-title: Nat. Photonics – volume: 29 start-page: 1803807 year: 2019 ident: CR8 article-title: Progress, challenges, and opportunities for 2D material based photodetectors publication-title: Adv. Funct. Mater. – volume: 12 start-page: 208 year: 2004 end-page: 219 ident: CR2 article-title: Laser-based mid-infrared reflectance imaging of biological tissues publication-title: Opt. Express – volume: 5 year: 2014 ident: CR22 article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus publication-title: Nat. Commun. – volume: 22 start-page: 2968 year: 1980 end-page: 2975 ident: CR29 article-title: Investigation of the electronic properties of tellurium energy-band structure publication-title: Phys. Rev. B – volume: 18 start-page: 19087 year: 2010 end-page: 19094 ident: CR51 article-title: CCD polarization imaging sensor with aluminum nanowire optical filters publication-title: Opt. Express – volume: 10 start-page: 707 year: 2015 end-page: 713 ident: CR17 article-title: Polarisation-sensitive broadband photodetector using a black phosphorus vertical p-n junction publication-title: Nat. Nanotechnol. – volume: 31 start-page: 1804629 year: 2018 ident: CR48 article-title: Anomalous and polarization-sensitive photoresponse of Td-WTe from visible to infrared light publication-title: Adv. Mater. – volume: 30 start-page: 1803109 year: 2018 ident: CR28 article-title: High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth publication-title: Adv. Mater. – volume: 11 start-page: 11724 year: 2017 end-page: 11731 ident: CR49 article-title: Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys publication-title: ACS Nano – volume: 8 start-page: 899 year: 2014 end-page: 907 ident: CR15 publication-title: Two-dimensional Mater. Nanophotonics. Nat. Photon – volume: 10 start-page: 8067 year: 2016 end-page: 8077 ident: CR21 article-title: Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe nanosheets publication-title: ACS Nano – volume: 5 start-page: 1800960 year: 2018 ident: CR50 article-title: Polarization-dependent photocurrent of black phosphorus/rhenium disulfide heterojunctions publication-title: Adv. Mater. Interfaces – volume: 12 start-page: 815 year: 2013 end-page: 820 ident: CR10 article-title: Mobility engineering and a metal-insulator transition in monolayer MoS2 publication-title: Nat. Mater. – volume: 13 start-page: 2511 year: 2019 end-page: 2519 ident: CR9 article-title: Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability publication-title: ACS Nano – volume: 1 start-page: 112 year: 2019 end-page: 125 ident: CR57 article-title: van der Waals heterostructures combing graphene and hexagonal boron nitride publication-title: Nat. Rev. Phys. – volume: 16 start-page: 2254 year: 2016 end-page: 2259 ident: CR42 article-title: Broadband photovoltaic detectors based on an atomically thin heterostructure publication-title: Nano Lett. – volume: 4 start-page: 356 year: 1971 end-page: 371 ident: CR33 article-title: Raman spectra and lattice dynamics of tellurium publication-title: Phys. Rev. B – volume: 47 start-page: 7203 year: 2018 end-page: 7212 ident: CR31 article-title: Tellurene: its physical properties, scalable nanomanufacturing, and device applications publication-title: Chem. Soc. Rev. – ident: CR53 – volume: 17 start-page: 1108 year: 2018 end-page: 1114 ident: CR20 article-title: Phase-selective synthesis of 1T’ MoS monolayers and heterophase bilayers publication-title: Nat. Mater. – volume: 118 start-page: 2625 year: 1999 end-page: 2645 ident: CR1 article-title: A large mid-infrared spectroscopic and near-infrared imaging survey of ultraluminous infrared galaxies: their nature and evolution publication-title: Astron. J. – volume: 15 start-page: 7853 year: 2015 end-page: 7858 ident: CR40 article-title: Gate controlled photocurrent generation mechanisms in high-gain In Se phototransistors publication-title: Nano Lett. – volume: 15 start-page: 203 year: 2019 end-page: 211 ident: CR43 article-title: Artificial control of in-plane anisotropic photoelectricity in monolayer MoS . Appl publication-title: Mater. Today – volume: 3 start-page: 692 year: 2016 end-page: 699 ident: CR19 article-title: Near-Infrared photodetector based on MoS2/black phosphorus heterojunction publication-title: ACS Photon – volume: 16 start-page: 4648 year: 2016 end-page: 4655 ident: CR24 article-title: Black phosphorus mid-infrared photodetectors with high gain publication-title: Nano Lett. – volume: 36 start-page: 150 year: 1997 end-page: 155 ident: CR7 article-title: Optical polarization imaging publication-title: Appl. Opt. – volume: 31 start-page: 1804945 year: 2018 ident: CR45 article-title: Ultrasensitive 2D Bi O Se phototransistors on silicon substrate publication-title: Adv. Mater. – volume: 28 start-page: 3481 year: 2016 end-page: 3485 ident: CR37 article-title: Broadband black-phosphorus photodetectors with high responsivity publication-title: Adv. Mater. – volume: 9 start-page: 780 year: 2014 end-page: 793 ident: CR14 article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems publication-title: Nat. Nanotechnol. – volume: 45 start-page: 5453 year: 2006 end-page: 5469 ident: CR52 article-title: Review of passive imaging polarimetry for remote sensing applications publication-title: Appl. Opt. – volume: 30 start-page: 1801164 year: 2018 ident: CR12 article-title: Recent progress and future prospects of 2D-based photodetectors publication-title: Adv. Mater. – volume: 37 start-page: 53 year: 2017 end-page: 60 ident: CR38 article-title: Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe photogate vertical heterostructure publication-title: Nano Energy – volume: 3 start-page: 1600018 year: 2016 ident: CR39 article-title: Ultrafast, broadband photodetector based on MoSe /silicon heterojunction with vertically standing layered structure using graphene as transparent electrode publication-title: Adv. Sci. – volume: 20 start-page: 27393 year: 2012 ident: CR6 article-title: Liquid crystal polymer full-stokes division of focal plane polarimeter publication-title: Opt. Express – volume: 17 start-page: 3965 year: 2017 end-page: 3973 ident: CR30 article-title: One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport publication-title: Nano Lett. – volume: 116 start-page: 245702 year: 2014 ident: CR34 article-title: Raman tensor elements and Faust-Henry coefficients of wurtzite-type -GaN: How to overcome the dilemma of the sign of Faust-Henry coefficients in -GaN? publication-title: J. Appl. Phys. – volume: 8 start-page: 8653 year: 2014 end-page: 8661 ident: CR36 article-title: Role of metal contacts in high-performance phototransistors based on WSe monolayers publication-title: ACS Nano – volume: 7 start-page: 699 year: 2012 end-page: 712 ident: CR54 article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides publication-title: Nat. Nanotechnol. – volume: 12 start-page: 7253 year: 2018 end-page: 7263 ident: CR26 article-title: Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors publication-title: ACS Nano – volume: 27 start-page: 6575 year: 2015 end-page: 6581 ident: CR35 article-title: Ultrasensitive and broadband MoS photodetector driven by ferroelectrics publication-title: Adv. Mater. – volume: 9 year: 2018 ident: CR13 article-title: Current status and technological prospect of photodetectors based on two-dimensional materials publication-title: Nat. Commun. – volume: 6 year: 2015 ident: CR46 article-title: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus publication-title: Nat. Commun. – volume: 12 start-page: 815 year: 2013 ident: 16125_CR10 publication-title: Nat. Mater. doi: 10.1038/nmat3687 – volume: 9 year: 2018 ident: 16125_CR13 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07643-7 – volume: 27 start-page: 6575 year: 2015 ident: 16125_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201503340 – volume: 4 start-page: 356 year: 1971 ident: 16125_CR33 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.4.356 – volume: 10 start-page: 707 year: 2015 ident: 16125_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.112 – volume: 30 start-page: 1801164 year: 2018 ident: 16125_CR12 publication-title: Adv. Mater. doi: 10.1002/adma.201801164 – volume: 3 start-page: 692 year: 2016 ident: 16125_CR19 publication-title: ACS Photon doi: 10.1021/acsphotonics.6b00079 – volume: 10 start-page: 8067 year: 2016 ident: 16125_CR21 publication-title: ACS Nano doi: 10.1021/acsnano.6b04165 – volume: 14 start-page: 6165 year: 2014 ident: 16125_CR44 publication-title: Nano Lett. doi: 10.1021/nl502339q – volume: 31 start-page: 1804945 year: 2018 ident: 16125_CR45 publication-title: Adv. Mater. doi: 10.1002/adma.201804945 – volume: 7 start-page: 699 year: 2012 ident: 16125_CR54 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.193 – volume: 31 start-page: 11807609 year: 2019 ident: 16125_CR11 publication-title: Adv. Mater. – volume: 17 start-page: 1108 year: 2018 ident: 16125_CR20 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0187-1 – volume: 54 start-page: 136 year: 2011 ident: 16125_CR5 publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2010.12.003 – volume: 9 start-page: 780 year: 2014 ident: 16125_CR14 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.215 – volume: 10 start-page: 517 year: 2015 ident: 16125_CR23 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.71 – volume: 26 start-page: 6084 year: 2016 ident: 16125_CR41 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201601346 – volume: 116 start-page: 245702 year: 2014 ident: 16125_CR34 publication-title: J. Appl. Phys. doi: 10.1063/1.4904841 – volume: 30 start-page: 1803109 year: 2018 ident: 16125_CR28 publication-title: Adv. Mater. doi: 10.1002/adma.201803109 – volume: 11 start-page: 11724 year: 2017 ident: 16125_CR18 publication-title: ACS Nano doi: 10.1021/acsnano.7b07028 – volume: 13 start-page: 2511 year: 2019 ident: 16125_CR9 publication-title: ACS Nano – volume: 47 start-page: 7203 year: 2018 ident: 16125_CR31 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00598B – volume: 12 start-page: 208 year: 2004 ident: 16125_CR2 publication-title: Opt. Express doi: 10.1364/OPEX.12.000208 – volume: 49 start-page: 2711 year: 2010 ident: 16125_CR4 publication-title: Angew. Chem. - Int. Ed. doi: 10.1002/anie.200906927 – ident: 16125_CR53 doi: 10.1002/adma.201902039 – volume: 31 start-page: 1804629 year: 2018 ident: 16125_CR48 publication-title: Adv. Mater. doi: 10.1002/adma.201804629 – volume: 20 start-page: 27393 year: 2012 ident: 16125_CR6 publication-title: Opt. Express doi: 10.1364/OE.20.027393 – volume: 13 start-page: 467 year: 2019 ident: 16125_CR56 publication-title: Nat. Photonics doi: 10.1038/s41566-019-0399-1 – volume: 118 start-page: 2625 year: 1999 ident: 16125_CR1 publication-title: Astron. J. doi: 10.1086/301146 – volume: 22 start-page: 2968 year: 1980 ident: 16125_CR29 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.22.2968 – volume: 11 start-page: 11724 year: 2017 ident: 16125_CR49 publication-title: ACS Nano doi: 10.1021/acsnano.7b07028 – volume: 1 start-page: 112 year: 2019 ident: 16125_CR57 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0016-0 – volume: 29 start-page: 1604439 year: 2017 ident: 16125_CR3 publication-title: Adv. Mater. doi: 10.1002/adma.201604439 – volume: 1 start-page: 228 year: 2018 ident: 16125_CR27 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0058-4 – volume: 8 start-page: 8653 year: 2014 ident: 16125_CR36 publication-title: ACS Nano doi: 10.1021/nn503521c – volume: 22 start-page: 1802011 year: 2018 ident: 16125_CR47 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201802011 – volume: 10 start-page: 216 year: 2016 ident: 16125_CR55 publication-title: Nat. Photonics doi: 10.1038/nphoton.2015.282 – volume: 29 start-page: 1803807 year: 2019 ident: 16125_CR8 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201803807 – volume: 6 year: 2015 ident: 16125_CR46 publication-title: Nat. Commun. – volume: 12 start-page: 12416 year: 2018 ident: 16125_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.8b06629 – volume: 57 start-page: 480 year: 2019 ident: 16125_CR32 publication-title: Nano Energy doi: 10.1016/j.nanoen.2018.12.065 – volume: 15 start-page: 7853 year: 2015 ident: 16125_CR40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b02523 – volume: 28 start-page: 3481 year: 2016 ident: 16125_CR37 publication-title: Adv. Mater. doi: 10.1002/adma.201506352 – volume: 37 start-page: 53 year: 2017 ident: 16125_CR38 publication-title: Nano Energy doi: 10.1016/j.nanoen.2017.05.004 – volume: 17 start-page: 3965 year: 2017 ident: 16125_CR30 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01717 – volume: 5 year: 2014 ident: 16125_CR22 publication-title: Nat. Commun. – volume: 8 year: 2017 ident: 16125_CR25 publication-title: Nat. Commun. – volume: 12 start-page: 7253 year: 2018 ident: 16125_CR26 publication-title: ACS Nano doi: 10.1021/acsnano.8b03424 – volume: 16 start-page: 4648 year: 2016 ident: 16125_CR24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01977 – volume: 18 start-page: 19087 year: 2010 ident: 16125_CR51 publication-title: Opt. Express doi: 10.1364/OE.18.019087 – volume: 3 start-page: 1600018 year: 2016 ident: 16125_CR39 publication-title: Adv. Sci. doi: 10.1002/advs.201600018 – volume: 15 start-page: 203 year: 2019 ident: 16125_CR43 publication-title: Mater. Today – volume: 45 start-page: 5453 year: 2006 ident: 16125_CR52 publication-title: Appl. Opt. doi: 10.1364/AO.45.005453 – volume: 36 start-page: 150 year: 1997 ident: 16125_CR7 publication-title: Appl. Opt. doi: 10.1364/AO.36.000150 – volume: 5 start-page: 1800960 year: 2018 ident: 16125_CR50 publication-title: Adv. Mater. Interfaces doi: 10.1002/admi.201800960 – volume: 8 start-page: 899 year: 2014 ident: 16125_CR15 publication-title: Two-dimensional Mater. Nanophotonics. Nat. Photon – volume: 16 start-page: 2254 year: 2016 ident: 16125_CR42 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04538 |
SSID | ssj0000391844 |
Score | 2.696672 |
Snippet | Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature... Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and... Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2308 |
SubjectTerms | 639/301/357/1018 639/925/927/1021 Anisotropy Atmospheric conditions Broadband Crystal structure Humanities and Social Sciences Infrared imaging Infrared imaging systems Linear polarization Miniaturization multidisciplinary Photometers Photoresponse Photosensitivity Polarization Quantum confinement Room temperature Scattering Science Science (multidisciplinary) Tellurium Temperature requirements Two dimensional materials Workability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmB1_drYx_KoKiQ4UWlvlp8iUjdtdzcH_j0zTnbp8rxwjR3JGs9kvi8ef0PIKxMjoNqcGWJdprKyLERemBKi2BS0ihH_Q376PD87Vx8XenGj1RfWhI3ywKPhjn07a4UyymZjFM8lKJMk5yUDMhHaVLYOOe8GmarfYGmBuqjplsxMmuO1qt8EZEscszoze5moCvb_DmX-Wiz504lpTUSn98jdCUHSk3Hlh-RW7u-T22NPyW8PyALgY7jIdNklBt6zwgJzeoUEdrpxSbtl7UxEMYElCg-uB7_umHhP8UbJsOqGJfUbipCaonLVJLv8kJyffvjy7oxN7RNYBFayYdIDl7DJ89gaoA3al2ALpOgUvGgt1yZxGJoXiRLoGYAYBKORMQkbYLsAtzwiB_1ln58QWiCJ2ySylbCziZcgoo864mlyKhDGDeFbU7o4aYtji4sLV8-4pXGj-R2Y31XzO9OQ17t3rkZljb_Ofos7tJuJqtj1AfiKm3zF_ctXGnK03V83heraYREt8DirdUNe7oYhyPDkxPf5chjnaNkCtG3I49EddiuRAHo0AJ2GtHuOsrfU_ZG--1qFvIF9z6ycN-TN1qV-LOvPpnj6P0zxjNwRGAtYummOyMFmNeTnAK824UWNpO-o1x0Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxHsDCzISN7C2fjX2CfEqKyQ4sVJvVuIHVNqm3bY58O-ZcdysymOvtiM58_B84xnPEPLKeA-oNkaGWJepqCxrPU9MCZFsaLXyHu8hv36bnp2rL3M9Lxdu25JWuT8T80EdVh7vyE8x1xHgttX67fqSYdcojK6WFho3yS0OlgZTuszs83jHgtXPjVLlrcxEmtOtyicD-kwcbTszB_Yol-3_F9b8O2Xyj7hpNkeze-RuwZH03cD4--RG7B6Q20NnyV8PyRxAZHsR6XIRGMjQBtPM6Rrd2PLuki6WuT8RRTMWKAxc9s12wcRHiu9K-s2iX9JmRxFYU6xfVYovPyLns0_fP5yx0kSBefBNdkw24FHY0HBfG3AedJNam8BQh7YRteXaBA5T0ySxEHoEOAYqaaQPwrbANEAvj8lRt-riMaEJTLkNIloJ_A08tcI3XnuMKYcEylwRviel86XCODa6uHA50i2NG8jvgPwuk9-Zirwev1kP9TWuXf0eOTSuxNrYeWC1-eGKqrmmntRCGWWjMYrH1CoTJOcpApYV2kwqcrLnrysKu3VX4lWRl-M0qBrGT5ourvphjZY1ANyKPBnEYdyJBOijAe5UpD4QlIOtHs50i5-5nDf44BMrpxV5sxepq239nxRPr_-LZ-SOQCnH1ExzQo52mz4-B_i0a19kHfkNDiAV3A priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JixQxFA7jDIIXcbd0lAjeNNjZupJjuwxDg150oG-hKosWTFeP3V0H_73vpRZpHQWvWeDxlnrfq7x8IeSl8R5QbYwMsS5TUVlWe56YEiLZUGvlPf6H_Phpfn6hliu9OiJivAuTm_YzpWX-TI_dYW92Koc0FjsckzIzN8gJUrWDb58sFsvPy-nPCnKeG6WGGzIzaa7ZfJCFMln_dQjzz0bJ305LcxI6u0NuD-iRLnp575Kj2N4jN_v3JH_cJyuAjvVlpOsmMPCcLTaX0yssXofblrRZ51eJKCavQGHge1ftGibeU7xN0m2bbk2rPUU4TZG1aqBcfkAuzj58eXfOhqcTmIeKZM9kBXWEDRX3pYGSQVeptgnSc6grUVquTeAwNU8S6c8jgDAIRCN9ELYGUwFmeUiO200bHxOaIIHbIKKVYNXAUy185bXHk-SQIIQLwkdVOj_wiuPzFpcun29L43r1O1C_y-p3piCvpj1XPavGP1e_RQtNK5EROw9stl_d4CGuKmelUEbZaIziMdXKBMl5ioBghTazgpyO9nVDmO4cNtBCDWe1LsiLaRoCDE9NqjZuun6NliXA2oI86t1hkkQC4NEAcgpSHjjKgaiHM23zLZN4Q-U9s3JekNejS_0S6--qePJ_y5-SWwK9Hhs0zSk53m-7-AxA1L5-PkTNT8oWFP0 priority: 102 providerName: Springer Nature |
Title | Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature |
URI | https://link.springer.com/article/10.1038/s41467-020-16125-8 https://www.ncbi.nlm.nih.gov/pubmed/32385242 https://www.proquest.com/docview/2400096955 https://www.proquest.com/docview/2400537575 https://pubmed.ncbi.nlm.nih.gov/PMC7210936 https://doaj.org/article/a70724849e8841efb48d311fe9232580 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9MwDLfuQ0i8IL4pHFOQeIPA2qRr8oDQbtw4TboTAibtrWqTFCpt3V23Sdx_j522Q4NxL62UpFLi2PXPsWMDvFbGIKp1jhPW5dJJzXMTFlxGUaFtHktj6Bzy4nJwPpWTWTw7gK7cUUvA1V7TjupJTev5u1_XNx9R4D80V8bV-5X04k6GUEgKm6tDOEbNlFBFg4sW7vs_s9Bo0Mj27sz-T3f0k0_jvw97_htC-Zcf1aun8X241-JKNmwY4QEcuOoh3GkqTd48ghmCynzu2KK0HFdZU9g5u6K1t_cwWbnw9YoYqTXLsOF6k61KHn1idM9kU5ebBcvWjIA2o3xWbTLmxzAdn30fnfO2qAI3aKusucjQwtA2C02i0JiIsyLXBSpum2dRosNY2RC7BoWgxOgO4RmKqBLGRjrHTUQ08wSOqmXlngErULVrGzktcL9tWOSRyUxsyMdsCxTuAMKOlKlpM45T4Yt56j3fQqUN-VMkf-rJn6oA3my_uWrybdw6-pR2aDuScmX7hmX9I21FL82SfhJJJbVTSoauyKWyIgwLh9g2ilU_gJNuf9OO_1IKrUXrTsdxAK-23Sh65E_JKrfcNGNikSDgDeBpww7bmQiEQjHCnwCSHUbZmepuT1X-9Om90SbvazEI4G3HUn-m9X9SPL99FS_gbkRcTqGa6gSO1vXGvUQ4tc57cJjMEnyq8eceHA-Hk28TfJ-eXX75iq2jwajnDyp6XpZ-A0ZWH8w |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguqDwbWsBIcAKrG9vZ2AeEgLJs6ePUSnszie3ASt3sdh9C_VP8RmbyqpZHb73ajuSMP898tucB8Eo7h6w2BE5cl6ugDM9dXHAlRGF8nijn6B7y-KQ_PFNfR8loA361sTDkVtnqxEpR-6mjO_I98nVEum2S5P3sglPVKHpdbUto1LA4DJc_8ci2eHewj-v7WojB59NPQ95UFeAOyfqSywwptvFZ7FKNbDrJitwUaLl8nonUxIn2MXb1C0mZwQPyE8Sols4Lk-NfGEq-hCr_lpJoySkyffClu9OhbOtaqSY2pyf13kJVmojOaDFxCa7X7F9VJuBf3PZvF80_3mkr8zfYgnsNb2UfaqDdh41QPoDbdSXLy4cwQtKanwc2GXuOmJ2TWzub0bG5ifNk40lVD4mR2fQMGy5W2WLMxT6jOJbVfLyasGzJiMgzypfVJHt-BGc3It7HsFlOy7ANrEDqYLwIRiKefFzkwmUucfSG7QtUHhHErSitazKaU2GNc1u9rEtta_FbFL-txG91BG-6b2Z1Po9rR3-kFepGUi7uqmE6_26brW2ztJcKpZUJWqs4FLnSXsZxEZA7i0T3Itht19c2CmJhr-AcwcuuG7c2vddkZZiu6jGJTJFQR_CkhkM3E4lUK0F6FUG6BpS1qa73lOMfVfpwPPP3jOxH8LaF1NW0_i-Kp9f_xQu4Mzw9PrJHByeHO3BXEOLJLVTvwuZyvgrPkLot8-fVfmHw7aY36G8EuFEm |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB5VqUC8oHJ2aQEjwRNYyXq9WfsBIUoatRSiClEpb2bXB0RqjuYQ6l_j1zGzR6pw9K2vtlfyjmfGnz3jbwBeKmsR1XrPCety6aXmhY0Dl0IE7YpUWkv3kJ8H3aMz-XGYDrfgV_MWhtIqG59YOmo3tXRH3qZcR4TbOk3boU6LOO31380uOFWQokhrU06jUpETf_kTj2-Lt8c9XOtXQvQPv3444nWFAW4RuC95kiPc1i6PbaYQWad5KHTAXcwVuch0nCoXY1c3JMQS7hGroL6qxDqhC_wjTURM6P63MzoVtWD74HBw-mV9w0Pc60rK-qVOJ1HthSz9Ep3YYkIWXG3shmXRgH8h3b8TNv-I2pabYX8H7tYolr2v1O4ebPnJfbhV1bW8fABDhLDFuWfjkeOowXNKcmczOkTXrz7ZaFxWR2K0iTqGDRerfDHiosfoVctqPlqNWb5kBOsZsWfV1M8P4exGBPwIWpPpxO8CCwgktBNeJ6hdLg6FsLlNLUW0XUBXEkHciNLYmt-cymycmzLOnihTid-g-E0pfqMieL3-Zlaxe1w7-oBWaD2SmLnLhun8u6kN3eRZJxNSSe2VkrEPhVQuiePgEUmLVHUi2G_W19TuYmGulDuCF-tuNHSK3uQTP11VY9IkQ3gdweNKHdYzSRB4pQi2Isg2FGVjqps9k9GPkkw8E0Qo1o3gTaNSV9P6vyieXP8Xz-E2Gqf5dDw42YM7ghSeckTVPrSW85V_ijhuWTyrDYbBt5u20d-l-1a4 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+mid-infrared+polarization+imaging+based+on+quasi-2D+tellurium+at+room+temperature&rft.jtitle=Nature+communications&rft.au=Tong%2C+Lei&rft.au=Huang%2C+Xinyu&rft.au=Wang%2C+Peng&rft.au=Ye+Lei&rft.date=2020-05-08&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-16125-8&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |