Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature

Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 11; no. 1; pp. 2308 - 10
Main Authors Tong, Lei, Huang, Xinyu, Wang, Peng, Ye, Lei, Peng, Meng, An, Licong, Sun, Qiaodong, Zhang, Yong, Yang, Guoming, Li, Zheng, Zhong, Fang, Wang, Fang, Wang, Yixiu, Motlag, Maithilee, Wu, Wenzhuo, Cheng, Gary J., Hu, Weida
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.05.2020
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology. Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 10 2  A/W, detectivity of ~3.01 × 10 9  Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging.
AbstractList Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.
Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology. Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 10 2  A/W, detectivity of ~3.01 × 10 9  Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging.
Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 102 A/W, detectivity of ~3.01 × 109 Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging.
Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive photodetectors based on thin tellurium nanosheets with high photoresponsivity of 3.54 × 102 A/W, detectivity of ~3.01 × 109 Jones in the mid-infrared range and an anisotropic ratio of ∼8 for 2.3 μm illumination to ensure polarized imaging.
Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and in severe environments, etc. Emerging two-dimensional materials provide another route to meet these demands, due to the ease of integrating on complex structures, their native in-plane anisotropy crystal structure for high polarization photosensitivity, and strong quantum confinement for excellent photodetecting performances at room temperature. However, polarized infrared imaging under scattering based on 2D materials has yet to be realized. Here we report the systematic investigation of polarized infrared imaging for a designed target obscured by scattering media using an anisotropic tellurium photodetector. Broadband sensitive photoresponse is realized at room temperature, with excellent stability without degradation under ambient atmospheric conditions. Significantly, a large anisotropic ratio of tellurium ensures polarized imaging in a scattering environment, with the degree of linear polarization over 0.8, opening up possibilities for developing next-generation polarized mid-infrared imaging technology.
ArticleNumber 2308
Author Wang, Peng
Peng, Meng
Li, Zheng
Cheng, Gary J.
Yang, Guoming
Wu, Wenzhuo
Zhong, Fang
Tong, Lei
Wang, Fang
An, Licong
Ye, Lei
Wang, Yixiu
Sun, Qiaodong
Hu, Weida
Motlag, Maithilee
Huang, Xinyu
Zhang, Yong
Author_xml – sequence: 1
  givenname: Lei
  surname: Tong
  fullname: Tong, Lei
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 2
  givenname: Xinyu
  surname: Huang
  fullname: Huang, Xinyu
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 3
  givenname: Peng
  surname: Wang
  fullname: Wang, Peng
  organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences
– sequence: 4
  givenname: Lei
  surname: Ye
  fullname: Ye, Lei
  email: leiye@hust.edu.cn
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 5
  givenname: Meng
  surname: Peng
  fullname: Peng, Meng
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences
– sequence: 6
  givenname: Licong
  surname: An
  fullname: An, Licong
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 7
  givenname: Qiaodong
  surname: Sun
  fullname: Sun, Qiaodong
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 8
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 9
  givenname: Guoming
  surname: Yang
  fullname: Yang, Guoming
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 10
  givenname: Zheng
  surname: Li
  fullname: Li, Zheng
  organization: School of Optical and Electronic Information and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology
– sequence: 11
  givenname: Fang
  surname: Zhong
  fullname: Zhong, Fang
  organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences
– sequence: 12
  givenname: Fang
  surname: Wang
  fullname: Wang, Fang
  organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences
– sequence: 13
  givenname: Yixiu
  surname: Wang
  fullname: Wang, Yixiu
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 14
  givenname: Maithilee
  surname: Motlag
  fullname: Motlag, Maithilee
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 15
  givenname: Wenzhuo
  orcidid: 0000-0003-0362-6650
  surname: Wu
  fullname: Wu, Wenzhuo
  email: wenzhuowu@purdue.edu
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 16
  givenname: Gary J.
  orcidid: 0000-0002-1184-2946
  surname: Cheng
  fullname: Cheng, Gary J.
  email: gjcheng@purdue.edu
  organization: School of Industrial Engineering and Birck Nanotechnology Centre, Purdue University
– sequence: 17
  givenname: Weida
  orcidid: 0000-0001-5278-8969
  surname: Hu
  fullname: Hu, Weida
  email: wdhu@mail.sitp.ac.cn
  organization: State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32385242$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustq3TAQFSWlSdP8QBfF0E03bvW0pE2hpK9AIIu00J0Y27Kriy3dSHKh-foo13kvos2ImXMOh5nzGu354C1Cbwn-SDBTnxInvJE1prgmDaGiVi_QAcWc1ERStvfgv4-OUtrg8pgmivNXaJ9RpgTl9AD9Oc_QTraaXV87P0SItq-2YYLoLiG74Cs3w-j8WLWQyqg0LhZIrqZfq2ynaYlumSvIVQxhLp15ayPkJdo36OUAU7JHN_UQ_f7-7dfxz_r07MfJ8ZfTumtwk2sGQja6B9JJJbQUMLR6wJT1LVCpiVA9KaNmYFgQbpmgRDeKdT3VbdsRrdkhOll1-wAbs43FbvxvAjiza4Q4GojZdZM1ILGkXHFtleLEDi1XPSNksJoyKhQuWp9Xre3SzrbvrM8Rpkeijyfe_TVj-GckJVizpgh8uBGI4WKxKZvZpa6sCbwNSzKUYyyYFFIU6Psn0E1Yoi-r2qGwbrS4Rr176OjOyu0BC0CtgC6GlKIdTOfy7nDFoJsMweY6LmaNiylxMbu4GFWo9An1Vv1ZEltJqYD9aOO97WdYV0H60CE
CitedBy_id crossref_primary_10_1002_aelm_202200668
crossref_primary_10_1063_5_0061825
crossref_primary_10_1088_2040_8986_ac47b3
crossref_primary_10_1002_adfm_202204230
crossref_primary_10_1002_adfm_202316863
crossref_primary_10_1002_smtd_202300933
crossref_primary_10_1039_D4TC05204H
crossref_primary_10_1021_acs_jpcc_2c03325
crossref_primary_10_1002_aelm_202300392
crossref_primary_10_1103_PhysRevB_108_245409
crossref_primary_10_1021_acsnano_0c04329
crossref_primary_10_1021_acs_nanolett_4c01543
crossref_primary_10_1021_acsami_1c11277
crossref_primary_10_1021_acsanm_4c07065
crossref_primary_10_1109_LED_2021_3061705
crossref_primary_10_1002_adom_202001215
crossref_primary_10_1021_acsami_2c20400
crossref_primary_10_1063_5_0061390
crossref_primary_10_1002_lpor_202200338
crossref_primary_10_1002_pssb_202100625
crossref_primary_10_1002_lpor_202300501
crossref_primary_10_1364_AO_457717
crossref_primary_10_1002_adom_202402226
crossref_primary_10_1021_acsami_0c21675
crossref_primary_10_1007_s12274_020_3247_1
crossref_primary_10_1002_adom_202201902
crossref_primary_10_1038_s41377_024_01634_8
crossref_primary_10_26599_NRE_2023_9120058
crossref_primary_10_1021_acsnano_1c02007
crossref_primary_10_1002_aelm_202200653
crossref_primary_10_1016_j_apsusc_2023_158860
crossref_primary_10_1002_adom_202301508
crossref_primary_10_1002_adpr_202300045
crossref_primary_10_1021_acsnano_1c06286
crossref_primary_10_1016_j_micrna_2023_207627
crossref_primary_10_1021_acsnano_4c03973
crossref_primary_10_1186_s10033_023_00943_0
crossref_primary_10_1063_5_0240325
crossref_primary_10_1063_5_0209710
crossref_primary_10_1038_s41467_022_33716_9
crossref_primary_10_1002_adom_202401122
crossref_primary_10_1007_s11664_025_11812_y
crossref_primary_10_1002_aelm_202001168
crossref_primary_10_1088_1361_6528_ac10e6
crossref_primary_10_3389_fmats_2020_00235
crossref_primary_10_1002_advs_202103873
crossref_primary_10_1007_s00340_022_07900_0
crossref_primary_10_1038_s41467_023_38090_8
crossref_primary_10_1063_5_0166668
crossref_primary_10_1002_adfm_202315194
crossref_primary_10_1002_smll_202401216
crossref_primary_10_1016_j_physrep_2024_06_001
crossref_primary_10_1002_adma_202002628
crossref_primary_10_1063_5_0088724
crossref_primary_10_1038_s41467_021_26919_z
crossref_primary_10_1002_smtd_202300595
crossref_primary_10_1016_j_vacuum_2024_113245
crossref_primary_10_1016_j_vacuum_2023_112794
crossref_primary_10_1002_adfm_202111970
crossref_primary_10_1103_PhysRevApplied_20_034035
crossref_primary_10_1016_j_scib_2020_07_037
crossref_primary_10_1007_s11432_022_3695_1
crossref_primary_10_1063_5_0152814
crossref_primary_10_1109_TITS_2023_3286541
crossref_primary_10_1007_s11432_024_4033_8
crossref_primary_10_1063_5_0085464
crossref_primary_10_1002_inf2_12470
crossref_primary_10_1002_adma_202105665
crossref_primary_10_1002_adma_202211598
crossref_primary_10_1103_PhysRevB_103_235421
crossref_primary_10_1007_s12274_022_4330_6
crossref_primary_10_1016_j_jallcom_2024_174312
crossref_primary_10_1002_adma_202301197
crossref_primary_10_1002_adom_202101052
crossref_primary_10_1016_j_cplett_2023_140849
crossref_primary_10_1515_nanoph_2020_0261
crossref_primary_10_1016_j_coco_2021_100650
crossref_primary_10_1021_acsnano_4c13870
crossref_primary_10_1039_D4TC02656J
crossref_primary_10_1002_adom_202201443
crossref_primary_10_1002_adfm_202305380
crossref_primary_10_1002_smll_202311606
crossref_primary_10_1002_adom_202300319
crossref_primary_10_1088_1402_4896_acf89f
crossref_primary_10_1088_1674_4926_24080044
crossref_primary_10_1002_adom_202301410
crossref_primary_10_1038_s41467_022_34421_3
crossref_primary_10_2139_ssrn_4352201
crossref_primary_10_1039_D1TC01837J
crossref_primary_10_1088_2053_1583_ac36b7
crossref_primary_10_1002_lpor_202300854
crossref_primary_10_1016_j_jallcom_2023_171899
crossref_primary_10_1364_OE_547382
crossref_primary_10_1038_s41699_021_00280_7
crossref_primary_10_1039_D4MA00572D
crossref_primary_10_1002_adma_202306772
crossref_primary_10_1088_1361_6463_ac9988
crossref_primary_10_1364_AO_503943
crossref_primary_10_1039_D3QI01116J
crossref_primary_10_1039_D1TC02936C
crossref_primary_10_1021_acsnano_2c04704
crossref_primary_10_1088_1361_6463_adb3b7
crossref_primary_10_1039_D1NR08268J
crossref_primary_10_1002_smll_202311317
crossref_primary_10_1016_j_physleta_2024_129528
crossref_primary_10_1016_j_mssp_2024_108474
crossref_primary_10_1002_adfm_202006278
crossref_primary_10_1021_acsanm_2c01303
crossref_primary_10_1002_app_55907
crossref_primary_10_1002_adom_202300593
crossref_primary_10_1016_j_nanoen_2021_106177
crossref_primary_10_1038_s43246_022_00292_w
crossref_primary_10_1039_D4CS00987H
crossref_primary_10_1002_adom_202402668
crossref_primary_10_1007_s40843_024_3196_3
crossref_primary_10_1021_acsnano_1c10181
crossref_primary_10_1016_j_optlastec_2023_109717
crossref_primary_10_1002_adfm_202423770
crossref_primary_10_1038_s41467_022_28716_8
crossref_primary_10_1063_5_0224623
crossref_primary_10_1002_adom_202200173
crossref_primary_10_1126_sciadv_abq1781
crossref_primary_10_1002_aelm_202300243
crossref_primary_10_1016_j_cej_2021_128610
crossref_primary_10_1016_j_optmat_2022_113341
crossref_primary_10_1088_1361_6528_ab8e75
crossref_primary_10_1038_s41377_024_01697_7
crossref_primary_10_1038_s41467_025_58155_0
crossref_primary_10_1021_acsphotonics_2c00246
crossref_primary_10_1126_science_abg3161
crossref_primary_10_1021_acsphotonics_4c00370
crossref_primary_10_1002_adom_202100198
crossref_primary_10_1016_j_scib_2022_07_005
crossref_primary_10_1002_adom_202001708
crossref_primary_10_1039_D1NR08134A
crossref_primary_10_1002_cjoc_202100229
crossref_primary_10_1021_acsnano_2c01455
crossref_primary_10_1021_acsanm_3c06308
crossref_primary_10_1002_adma_202203766
crossref_primary_10_1016_j_mattod_2021_09_021
crossref_primary_10_1002_smll_202406148
crossref_primary_10_1016_j_vacuum_2023_112475
crossref_primary_10_1515_nanoph_2024_0613
crossref_primary_10_1021_acsami_2c17331
crossref_primary_10_1038_s41377_025_01744_x
crossref_primary_10_1021_acsami_3c18673
crossref_primary_10_1002_adfm_202314972
crossref_primary_10_1002_adom_202101256
crossref_primary_10_1360_SSPMA_2022_0443
crossref_primary_10_1002_smll_202303114
crossref_primary_10_1002_adma_202305594
crossref_primary_10_1016_j_device_2023_100069
crossref_primary_10_1016_j_mtphys_2022_100776
crossref_primary_10_1002_smll_202207615
crossref_primary_10_1021_acsaelm_2c00875
crossref_primary_10_1021_acsmaterialslett_3c00539
crossref_primary_10_1007_s12274_022_5190_9
crossref_primary_10_1038_s41586_022_04548_w
crossref_primary_10_1016_j_apsusc_2024_159630
crossref_primary_10_1063_5_0228402
crossref_primary_10_1002_adma_202418405
crossref_primary_10_1021_acsaelm_3c00620
crossref_primary_10_1021_acsami_1c18576
crossref_primary_10_1002_adfm_202308298
crossref_primary_10_1038_s41598_025_92229_9
crossref_primary_10_3390_nano13071169
crossref_primary_10_1016_j_ijheatmasstransfer_2022_122908
crossref_primary_10_1002_smll_202005801
crossref_primary_10_1021_acsnano_4c02662
crossref_primary_10_1038_s41467_023_39071_7
crossref_primary_10_1021_acsami_2c21958
crossref_primary_10_1515_nanoph_2022_0660
crossref_primary_10_1016_j_compscitech_2022_109889
crossref_primary_10_1063_5_0133326
crossref_primary_10_1002_adma_202408969
crossref_primary_10_1021_acsami_3c17572
crossref_primary_10_1002_adom_202102436
crossref_primary_10_1126_sciadv_adn0560
crossref_primary_10_1002_inf2_12618
crossref_primary_10_1016_j_sse_2023_108765
crossref_primary_10_1039_D2NR02822K
crossref_primary_10_7498_aps_71_20220859
crossref_primary_10_1088_2053_1583_acb1c3
crossref_primary_10_1088_2752_5724_acf9ba
crossref_primary_10_1093_nsr_nwab098
crossref_primary_10_1002_adfm_202314838
crossref_primary_10_1021_accountsmr_2c00146
crossref_primary_10_1002_adom_202201627
crossref_primary_10_1016_j_nanoen_2023_108552
crossref_primary_10_1016_j_matdes_2022_111446
crossref_primary_10_1063_5_0191019
crossref_primary_10_1002_adom_202202396
crossref_primary_10_3788_IRLA20240410
crossref_primary_10_3390_nano14231935
crossref_primary_10_1002_adfm_202008790
crossref_primary_10_1002_adom_202101919
crossref_primary_10_1038_s41699_022_00293_w
crossref_primary_10_1002_inf2_12625
crossref_primary_10_1002_lpor_202100322
crossref_primary_10_1002_smsc_202100051
crossref_primary_10_1002_adfm_202104359
crossref_primary_10_1063_5_0241260
crossref_primary_10_1016_j_jallcom_2024_173830
crossref_primary_10_1038_s41377_021_00694_4
crossref_primary_10_1063_5_0252741
crossref_primary_10_1002_adom_202301350
crossref_primary_10_1002_adma_202211522
crossref_primary_10_1002_adfm_202110119
crossref_primary_10_1002_apxr_202400079
crossref_primary_10_1126_science_ade1220
crossref_primary_10_1002_adom_202401625
crossref_primary_10_1016_j_jmat_2022_09_002
crossref_primary_10_1021_acsmaterialslett_0c00252
crossref_primary_10_1126_sciadv_adr5375
crossref_primary_10_1002_adfm_202407812
crossref_primary_10_1039_D2NR03226K
crossref_primary_10_1038_s41566_021_00819_6
crossref_primary_10_1557_s43578_024_01379_5
crossref_primary_10_1016_j_mtquan_2025_100034
crossref_primary_10_1039_D3TC03679K
crossref_primary_10_1002_aenm_202400674
crossref_primary_10_1063_5_0191145
crossref_primary_10_1039_D2CS00657J
crossref_primary_10_1039_D1MH01287H
crossref_primary_10_1109_TNANO_2022_3223371
crossref_primary_10_1016_j_nanoen_2024_110452
crossref_primary_10_1039_D2TA09517C
crossref_primary_10_1016_j_ensm_2023_102780
crossref_primary_10_2478_amns_2024_3099
crossref_primary_10_1002_adfm_202108174
crossref_primary_10_1039_D2NA00609J
crossref_primary_10_1016_j_nantod_2021_101287
crossref_primary_10_1134_S1064226922090133
crossref_primary_10_1039_D3TC04333A
crossref_primary_10_1016_j_mtcomm_2022_104190
crossref_primary_10_1007_s40820_022_00923_4
crossref_primary_10_1021_acsanm_1c03132
crossref_primary_10_1103_PhysRevLett_133_236201
crossref_primary_10_1002_adma_202107206
crossref_primary_10_1038_s41467_020_20115_1
crossref_primary_10_1002_advs_202100075
crossref_primary_10_1021_acsphotonics_3c00453
crossref_primary_10_3390_cryst13020308
crossref_primary_10_1002_adom_202201960
crossref_primary_10_1039_D1NR03243G
crossref_primary_10_1126_sciadv_adm9322
crossref_primary_10_3390_s23177564
crossref_primary_10_3389_fchem_2022_1046010
crossref_primary_10_1021_acsnano_3c03559
crossref_primary_10_1021_acs_nanolett_4c06629
crossref_primary_10_1364_PRJ_402108
crossref_primary_10_1002_aelm_202400268
crossref_primary_10_1002_smll_202407830
crossref_primary_10_1016_j_optmat_2024_115264
crossref_primary_10_1002_adom_202300720
crossref_primary_10_1002_adsu_202400100
crossref_primary_10_1002_aelm_202400269
crossref_primary_10_1038_s41377_022_00930_5
crossref_primary_10_1126_sciadv_abf7358
crossref_primary_10_1007_s12613_022_2426_3
crossref_primary_10_1002_nano_202000237
crossref_primary_10_1088_1361_6463_ad7a85
crossref_primary_10_1021_acsnano_2c10816
crossref_primary_10_1002_adfm_202007559
crossref_primary_10_1088_1361_6463_ac6635
crossref_primary_10_1007_s11249_023_01786_5
crossref_primary_10_1016_j_optlastec_2022_108069
crossref_primary_10_1007_s12274_020_3128_7
crossref_primary_10_1063_5_0200488
crossref_primary_10_1002_adma_202005037
crossref_primary_10_1002_adfm_202211527
crossref_primary_10_1016_j_coco_2020_100601
crossref_primary_10_1016_j_optmat_2022_113297
crossref_primary_10_1002_adom_202202080
crossref_primary_10_1002_adom_202302804
crossref_primary_10_1109_JLT_2021_3121311
crossref_primary_10_1021_acsnano_3c02617
crossref_primary_10_1002_smll_202401194
crossref_primary_10_1063_5_0226193
crossref_primary_10_1016_j_isci_2021_103594
crossref_primary_10_1021_acsanm_3c02559
crossref_primary_10_1007_s12274_021_3505_x
crossref_primary_10_1002_lpor_202400561
crossref_primary_10_1021_acs_chemmater_1c03275
crossref_primary_10_1002_adom_202300192
crossref_primary_10_1002_aelm_202000962
crossref_primary_10_1021_acsmaterialslett_4c00719
crossref_primary_10_1103_PhysRevB_110_014311
crossref_primary_10_1002_advs_202306344
crossref_primary_10_1016_j_molliq_2021_117303
crossref_primary_10_1088_1674_4926_45_5_051701
crossref_primary_10_1364_OE_489029
crossref_primary_10_3390_nano14100845
crossref_primary_10_1002_lpor_202402069
crossref_primary_10_1007_s11467_022_1156_3
crossref_primary_10_1039_D4TC00530A
crossref_primary_10_1002_adma_202407010
crossref_primary_10_1021_acsami_2c22876
crossref_primary_10_1016_j_mtphys_2023_101069
crossref_primary_10_1364_OE_533014
crossref_primary_10_1007_s12274_022_4971_5
crossref_primary_10_1109_JPHOT_2023_3246167
crossref_primary_10_1002_adom_202202867
crossref_primary_10_1002_aelm_202001125
crossref_primary_10_1063_5_0142575
crossref_primary_10_1016_j_mee_2023_111980
crossref_primary_10_1007_s12598_024_02644_6
crossref_primary_10_1002_adma_202404309
crossref_primary_10_1088_1674_4926_24090020
crossref_primary_10_1016_j_jcis_2022_01_169
crossref_primary_10_2139_ssrn_3917174
crossref_primary_10_3390_photonics11111014
crossref_primary_10_1088_1361_6528_ab9867
crossref_primary_10_1002_adfm_202306281
crossref_primary_10_1039_D1TC02502C
crossref_primary_10_1039_C9CS00821G
crossref_primary_10_1002_adfm_202104327
crossref_primary_10_1002_adma_202204697
crossref_primary_10_1002_advs_202417428
crossref_primary_10_1002_advs_202204727
crossref_primary_10_1007_s11432_021_3252_2
crossref_primary_10_1021_acsami_3c17868
crossref_primary_10_1002_smll_202303638
crossref_primary_10_1016_j_bioactmat_2021_11_010
crossref_primary_10_1002_adfm_202007987
crossref_primary_10_1016_j_mattod_2021_06_014
crossref_primary_10_1002_adpr_202000187
crossref_primary_10_1002_advs_202302886
crossref_primary_10_1021_acsnano_2c07968
crossref_primary_10_1126_sciadv_abo0375
crossref_primary_10_1038_s41598_021_86056_x
crossref_primary_10_1088_1361_6528_ac1b53
crossref_primary_10_1063_5_0238164
crossref_primary_10_1039_D4NR05034G
crossref_primary_10_1002_adma_202407476
crossref_primary_10_1021_acsnano_4c15453
crossref_primary_10_1007_s11467_022_1231_9
crossref_primary_10_1002_adsr_202200079
crossref_primary_10_1021_acsami_3c08118
crossref_primary_10_1002_lpor_202100189
crossref_primary_10_1021_acsnano_3c01977
crossref_primary_10_1063_5_0189292
crossref_primary_10_1021_acsami_2c04204
crossref_primary_10_1002_adma_202313134
crossref_primary_10_1364_OE_536855
crossref_primary_10_1021_acs_nanolett_4c03959
crossref_primary_10_1109_TED_2022_3208854
crossref_primary_10_1002_adma_202415530
crossref_primary_10_1002_lpor_202300936
crossref_primary_10_1117_1_AP_6_2_024001
Cites_doi 10.1038/nmat3687
10.1038/s41467-018-07643-7
10.1002/adma.201503340
10.1103/PhysRevB.4.356
10.1038/nnano.2015.112
10.1002/adma.201801164
10.1021/acsphotonics.6b00079
10.1021/acsnano.6b04165
10.1021/nl502339q
10.1002/adma.201804945
10.1038/nnano.2012.193
10.1038/s41563-018-0187-1
10.1016/j.infrared.2010.12.003
10.1038/nnano.2014.215
10.1038/nnano.2015.71
10.1002/adfm.201601346
10.1063/1.4904841
10.1002/adma.201803109
10.1021/acsnano.7b07028
10.1039/C8CS00598B
10.1364/OPEX.12.000208
10.1002/anie.200906927
10.1002/adma.201902039
10.1002/adma.201804629
10.1364/OE.20.027393
10.1038/s41566-019-0399-1
10.1086/301146
10.1103/PhysRevB.22.2968
10.1038/s42254-018-0016-0
10.1002/adma.201604439
10.1038/s41928-018-0058-4
10.1021/nn503521c
10.1002/adfm.201802011
10.1038/nphoton.2015.282
10.1002/adfm.201803807
10.1021/acsnano.8b06629
10.1016/j.nanoen.2018.12.065
10.1021/acs.nanolett.5b02523
10.1002/adma.201506352
10.1016/j.nanoen.2017.05.004
10.1021/acs.nanolett.7b01717
10.1021/acsnano.8b03424
10.1021/acs.nanolett.6b01977
10.1364/OE.18.019087
10.1002/advs.201600018
10.1364/AO.45.005453
10.1364/AO.36.000150
10.1002/admi.201800960
10.1021/acs.nanolett.5b04538
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-16125-8
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList PubMed

Publicly Available Content Database


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 10
ExternalDocumentID oai_doaj_org_article_a70724849e8841efb48d311fe9232580
PMC7210936
32385242
10_1038_s41467_020_16125_8
Genre Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-3a5769da1c785975afb9f023dba279158d11c76f30514e35219683cd29bbc1993
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:20:45 EDT 2025
Thu Aug 21 18:26:15 EDT 2025
Thu Jul 10 17:49:15 EDT 2025
Wed Aug 13 07:16:47 EDT 2025
Wed Feb 19 02:28:11 EST 2025
Thu Apr 24 23:04:15 EDT 2025
Tue Jul 01 04:08:56 EDT 2025
Fri Feb 21 02:39:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-3a5769da1c785975afb9f023dba279158d11c76f30514e35219683cd29bbc1993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5278-8969
0000-0002-1184-2946
0000-0003-0362-6650
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-020-16125-8
PMID 32385242
PQID 2400096955
PQPubID 546298
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_a70724849e8841efb48d311fe9232580
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7210936
proquest_miscellaneous_2400537575
proquest_journals_2400096955
pubmed_primary_32385242
crossref_citationtrail_10_1038_s41467_020_16125_8
crossref_primary_10_1038_s41467_020_16125_8
springer_journals_10_1038_s41467_020_16125_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-08
PublicationDateYYYYMMDD 2020-05-08
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2020
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Huo, Konstantatos (CR12) 2018; 30
Amani (CR49) 2017; 11
Wang (CR3) 2017; 29
Amani (CR26) 2018; 12
Luo (CR46) 2015; 6
Tyo, Goldstein, Chenault, Shaw (CR52) 2006; 45
Du (CR30) 2017; 17
Yuan (CR17) 2015; 10
Island, Blanter, Buscema, Van Der Zant, Castellanos-Gomez (CR40) 2015; 15
Guo (CR24) 2016; 16
Liang (CR11) 2019; 31
Radisavljevic, Kis (CR10) 2013; 12
Konstantatos (CR13) 2018; 9
Irmer, Röder, Himcinschi, Kortus (CR34) 2014; 116
Long (CR9) 2019; 13
Gruev, Perkins, York (CR51) 2010; 18
Hu (CR56) 2019; 13
Zhang (CR21) 2016; 10
Long (CR8) 2019; 29
Amani, Regan, Bullock, Ahn, Javey (CR18) 2017; 11
Chen (CR25) 2017; 8
Li (CR50) 2018; 5
Guo (CR2) 2004; 12
Zhou (CR16) 2018; 12
Liu (CR20) 2018; 17
Kuo (CR4) 2010; 49
Mak, Shan (CR55) 2016; 10
Coker, Lee, Das (CR29) 1980; 22
Wang (CR23) 2015; 10
Xia, Wang, Xiao, Dubey, Ramasubramaniam (CR15) 2014; 8
Fu (CR45) 2018; 31
Zhou (CR28) 2018; 30
Wang (CR35) 2015; 27
Mao (CR39) 2016; 3
Yankowitz, Ma, JarillooHerrero, LeRoy (CR57) 2019; 1
Ye (CR38) 2017; 37
Wang (CR27) 2018; 1
Long (CR42) 2016; 16
Rigopoulou (CR1) 1999; 118
CR53
Furchi, Polyushkin, Pospischil, Mueller (CR44) 2014; 14
Demos, Alfano (CR7) 1997; 36
Wang (CR32) 2019; 57
Zhang (CR36) 2014; 8
Rogalski (CR5) 2011; 54
Ye (CR19) 2016; 3
Huang (CR37) 2016; 28
Zhou (CR48) 2018; 31
Wang, Kalantar-zadeh, Kis, Coleman, Strano (CR54) 2012; 7
Qiao, Kong, Hu, Yang, Ji (CR22) 2014; 5
Gong (CR41) 2016; 26
Tong (CR43) 2019; 15
Koppens (CR14) 2014; 9
Myhre (CR6) 2012; 20
Pine, Dresselhaus (CR33) 1971; 4
Zhao (CR47) 2018; 22
Wu (CR31) 2018; 47
F Xia (16125_CR15) 2014; 8
F Gong (16125_CR41) 2016; 26
X Chen (16125_CR25) 2017; 8
KF Mak (16125_CR55) 2016; 10
Y Du (16125_CR30) 2017; 17
FHL Koppens (16125_CR14) 2014; 9
Y Wang (16125_CR27) 2018; 1
Z Luo (16125_CR46) 2015; 6
X Li (16125_CR50) 2018; 5
M Amani (16125_CR18) 2017; 11
QH Wang (16125_CR54) 2012; 7
E Zhang (16125_CR21) 2016; 10
M Yankowitz (16125_CR57) 2019; 1
G Irmer (16125_CR34) 2014; 116
A Coker (16125_CR29) 1980; 22
V Gruev (16125_CR51) 2010; 18
W Wu (16125_CR31) 2018; 47
P Wang (16125_CR3) 2017; 29
AS Pine (16125_CR33) 1971; 4
G Zhou (16125_CR28) 2018; 30
JO Island (16125_CR40) 2015; 15
Y Wang (16125_CR32) 2019; 57
L Ye (16125_CR19) 2016; 3
L Liu (16125_CR20) 2018; 17
Q Liang (16125_CR11) 2019; 31
B Radisavljevic (16125_CR10) 2013; 12
L Ye (16125_CR38) 2017; 37
J Mao (16125_CR39) 2016; 3
G Konstantatos (16125_CR13) 2018; 9
M Huang (16125_CR37) 2016; 28
B Guo (16125_CR2) 2004; 12
16125_CR53
Z Zhou (16125_CR16) 2018; 12
A Rogalski (16125_CR5) 2011; 54
Q Fu (16125_CR45) 2018; 31
L Tong (16125_CR43) 2019; 15
WS Kuo (16125_CR4) 2010; 49
M Long (16125_CR9) 2019; 13
SG Demos (16125_CR7) 1997; 36
MM Furchi (16125_CR44) 2014; 14
M Long (16125_CR8) 2019; 29
G Hu (16125_CR56) 2019; 13
N Huo (16125_CR12) 2018; 30
X Wang (16125_CR23) 2015; 10
X Wang (16125_CR35) 2015; 27
W Zhou (16125_CR48) 2018; 31
J Qiao (16125_CR22) 2014; 5
JS Tyo (16125_CR52) 2006; 45
M Amani (16125_CR26) 2018; 12
G Myhre (16125_CR6) 2012; 20
H Yuan (16125_CR17) 2015; 10
S Zhao (16125_CR47) 2018; 22
Q Guo (16125_CR24) 2016; 16
W Zhang (16125_CR36) 2014; 8
M Long (16125_CR42) 2016; 16
M Amani (16125_CR49) 2017; 11
D Rigopoulou (16125_CR1) 1999; 118
References_xml – volume: 49
  start-page: 2711
  year: 2010
  end-page: 2715
  ident: CR4
  article-title: Gold nanorods in photodynamic therapy, as hyperthermia agents, and in near-infrared optical imaging
  publication-title: Angew. Chem. - Int. Ed.
– volume: 8
  year: 2017
  ident: CR25
  article-title: Widely tunable black phosphorus mid-infrared photodetector
  publication-title: Nat. Commun.
– volume: 57
  start-page: 480
  year: 2019
  end-page: 491
  ident: CR32
  article-title: Data-driven and probabilistic learning of the process-structure-property relationship in solution-grown tellurene for optimized nanomanufacturing of high-performance nanoelectronics
  publication-title: Nano Energy
– volume: 10
  start-page: 517
  year: 2015
  end-page: 521
  ident: CR23
  article-title: Highly anisotropic and robust excitons in monolayer black phosphorus
  publication-title: Nat. Nanotechnol.
– volume: 22
  start-page: 1802011
  year: 2018
  ident: CR47
  article-title: Highly polarized and fast photoresponse of black phosphorus-InSe vertical p-n heterojunctions
  publication-title: Adv. Funct. Mater.
– volume: 31
  start-page: 11807609
  year: 2019
  ident: CR11
  article-title: High-performance, room temperature, ultra-broadband photodetectors based on air-stable PdSe
  publication-title: Adv. Mater.
– volume: 12
  start-page: 12416
  year: 2018
  end-page: 12423
  ident: CR16
  article-title: Perpendicular Optical reversal of the linear dichroism and polarized photodetection in 2D GeAs
  publication-title: ACS Nano
– volume: 29
  start-page: 1604439
  year: 2017
  ident: CR3
  article-title: Arrayed Van Der Waals broadband detectors for dual-band detection
  publication-title: Adv. Mater.
– volume: 54
  start-page: 136
  year: 2011
  end-page: 154
  ident: CR5
  article-title: Recent progress in infrared detector technologies
  publication-title: Infrared Phys. Technol.
– volume: 11
  start-page: 11724
  year: 2017
  end-page: 11731
  ident: CR18
  article-title: Mid-wave infrared photodetectors based on black phosphorus-arsentic alloys
  publication-title: ACS Nano
– volume: 26
  start-page: 6084
  year: 2016
  end-page: 6090
  ident: CR41
  article-title: High-sensitivity floating-gate phototransistors based on WS and MoS
  publication-title: Adv. Funct. Mater.
– volume: 10
  start-page: 216
  year: 2016
  end-page: 226
  ident: CR55
  article-title: Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides
  publication-title: Nat. Photonics
– volume: 1
  start-page: 228
  year: 2018
  end-page: 236
  ident: CR27
  article-title: Field-effect transistors made from solution-grown two-dimensional tellurene
  publication-title: Nat. Electron.
– volume: 14
  start-page: 6165
  year: 2014
  end-page: 6170
  ident: CR44
  article-title: Mechanisms of photoconductivity in atomically thin MoS
  publication-title: Nano Lett.
– volume: 13
  start-page: 467
  year: 2019
  end-page: 472
  ident: CR56
  article-title: Coherent steering of nonlinear chiral valley photons with a synthetic Au-WS metasurface
  publication-title: Nat. Photonics
– volume: 29
  start-page: 1803807
  year: 2019
  ident: CR8
  article-title: Progress, challenges, and opportunities for 2D material based photodetectors
  publication-title: Adv. Funct. Mater.
– volume: 12
  start-page: 208
  year: 2004
  end-page: 219
  ident: CR2
  article-title: Laser-based mid-infrared reflectance imaging of biological tissues
  publication-title: Opt. Express
– volume: 5
  year: 2014
  ident: CR22
  article-title: High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus
  publication-title: Nat. Commun.
– volume: 22
  start-page: 2968
  year: 1980
  end-page: 2975
  ident: CR29
  article-title: Investigation of the electronic properties of tellurium energy-band structure
  publication-title: Phys. Rev. B
– volume: 18
  start-page: 19087
  year: 2010
  end-page: 19094
  ident: CR51
  article-title: CCD polarization imaging sensor with aluminum nanowire optical filters
  publication-title: Opt. Express
– volume: 10
  start-page: 707
  year: 2015
  end-page: 713
  ident: CR17
  article-title: Polarisation-sensitive broadband photodetector using a black phosphorus vertical p-n junction
  publication-title: Nat. Nanotechnol.
– volume: 31
  start-page: 1804629
  year: 2018
  ident: CR48
  article-title: Anomalous and polarization-sensitive photoresponse of Td-WTe from visible to infrared light
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1803109
  year: 2018
  ident: CR28
  article-title: High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth
  publication-title: Adv. Mater.
– volume: 11
  start-page: 11724
  year: 2017
  end-page: 11731
  ident: CR49
  article-title: Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys
  publication-title: ACS Nano
– volume: 8
  start-page: 899
  year: 2014
  end-page: 907
  ident: CR15
  publication-title: Two-dimensional Mater. Nanophotonics. Nat. Photon
– volume: 10
  start-page: 8067
  year: 2016
  end-page: 8077
  ident: CR21
  article-title: Tunable ambipolar polarization-sensitive photodetectors based on high-anisotropy ReSe nanosheets
  publication-title: ACS Nano
– volume: 5
  start-page: 1800960
  year: 2018
  ident: CR50
  article-title: Polarization-dependent photocurrent of black phosphorus/rhenium disulfide heterojunctions
  publication-title: Adv. Mater. Interfaces
– volume: 12
  start-page: 815
  year: 2013
  end-page: 820
  ident: CR10
  article-title: Mobility engineering and a metal-insulator transition in monolayer MoS2
  publication-title: Nat. Mater.
– volume: 13
  start-page: 2511
  year: 2019
  end-page: 2519
  ident: CR9
  article-title: Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability
  publication-title: ACS Nano
– volume: 1
  start-page: 112
  year: 2019
  end-page: 125
  ident: CR57
  article-title: van der Waals heterostructures combing graphene and hexagonal boron nitride
  publication-title: Nat. Rev. Phys.
– volume: 16
  start-page: 2254
  year: 2016
  end-page: 2259
  ident: CR42
  article-title: Broadband photovoltaic detectors based on an atomically thin heterostructure
  publication-title: Nano Lett.
– volume: 4
  start-page: 356
  year: 1971
  end-page: 371
  ident: CR33
  article-title: Raman spectra and lattice dynamics of tellurium
  publication-title: Phys. Rev. B
– volume: 47
  start-page: 7203
  year: 2018
  end-page: 7212
  ident: CR31
  article-title: Tellurene: its physical properties, scalable nanomanufacturing, and device applications
  publication-title: Chem. Soc. Rev.
– ident: CR53
– volume: 17
  start-page: 1108
  year: 2018
  end-page: 1114
  ident: CR20
  article-title: Phase-selective synthesis of 1T’ MoS monolayers and heterophase bilayers
  publication-title: Nat. Mater.
– volume: 118
  start-page: 2625
  year: 1999
  end-page: 2645
  ident: CR1
  article-title: A large mid-infrared spectroscopic and near-infrared imaging survey of ultraluminous infrared galaxies: their nature and evolution
  publication-title: Astron. J.
– volume: 15
  start-page: 7853
  year: 2015
  end-page: 7858
  ident: CR40
  article-title: Gate controlled photocurrent generation mechanisms in high-gain In Se phototransistors
  publication-title: Nano Lett.
– volume: 15
  start-page: 203
  year: 2019
  end-page: 211
  ident: CR43
  article-title: Artificial control of in-plane anisotropic photoelectricity in monolayer MoS . Appl
  publication-title: Mater. Today
– volume: 3
  start-page: 692
  year: 2016
  end-page: 699
  ident: CR19
  article-title: Near-Infrared photodetector based on MoS2/black phosphorus heterojunction
  publication-title: ACS Photon
– volume: 16
  start-page: 4648
  year: 2016
  end-page: 4655
  ident: CR24
  article-title: Black phosphorus mid-infrared photodetectors with high gain
  publication-title: Nano Lett.
– volume: 36
  start-page: 150
  year: 1997
  end-page: 155
  ident: CR7
  article-title: Optical polarization imaging
  publication-title: Appl. Opt.
– volume: 31
  start-page: 1804945
  year: 2018
  ident: CR45
  article-title: Ultrasensitive 2D Bi O Se phototransistors on silicon substrate
  publication-title: Adv. Mater.
– volume: 28
  start-page: 3481
  year: 2016
  end-page: 3485
  ident: CR37
  article-title: Broadband black-phosphorus photodetectors with high responsivity
  publication-title: Adv. Mater.
– volume: 9
  start-page: 780
  year: 2014
  end-page: 793
  ident: CR14
  article-title: Photodetectors based on graphene, other two-dimensional materials and hybrid systems
  publication-title: Nat. Nanotechnol.
– volume: 45
  start-page: 5453
  year: 2006
  end-page: 5469
  ident: CR52
  article-title: Review of passive imaging polarimetry for remote sensing applications
  publication-title: Appl. Opt.
– volume: 30
  start-page: 1801164
  year: 2018
  ident: CR12
  article-title: Recent progress and future prospects of 2D-based photodetectors
  publication-title: Adv. Mater.
– volume: 37
  start-page: 53
  year: 2017
  end-page: 60
  ident: CR38
  article-title: Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe photogate vertical heterostructure
  publication-title: Nano Energy
– volume: 3
  start-page: 1600018
  year: 2016
  ident: CR39
  article-title: Ultrafast, broadband photodetector based on MoSe /silicon heterojunction with vertically standing layered structure using graphene as transparent electrode
  publication-title: Adv. Sci.
– volume: 20
  start-page: 27393
  year: 2012
  ident: CR6
  article-title: Liquid crystal polymer full-stokes division of focal plane polarimeter
  publication-title: Opt. Express
– volume: 17
  start-page: 3965
  year: 2017
  end-page: 3973
  ident: CR30
  article-title: One-dimensional van der Waals material tellurium: Raman spectroscopy under strain and magneto-transport
  publication-title: Nano Lett.
– volume: 116
  start-page: 245702
  year: 2014
  ident: CR34
  article-title: Raman tensor elements and Faust-Henry coefficients of wurtzite-type -GaN: How to overcome the dilemma of the sign of Faust-Henry coefficients in -GaN?
  publication-title: J. Appl. Phys.
– volume: 8
  start-page: 8653
  year: 2014
  end-page: 8661
  ident: CR36
  article-title: Role of metal contacts in high-performance phototransistors based on WSe monolayers
  publication-title: ACS Nano
– volume: 7
  start-page: 699
  year: 2012
  end-page: 712
  ident: CR54
  article-title: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides
  publication-title: Nat. Nanotechnol.
– volume: 12
  start-page: 7253
  year: 2018
  end-page: 7263
  ident: CR26
  article-title: Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors
  publication-title: ACS Nano
– volume: 27
  start-page: 6575
  year: 2015
  end-page: 6581
  ident: CR35
  article-title: Ultrasensitive and broadband MoS photodetector driven by ferroelectrics
  publication-title: Adv. Mater.
– volume: 9
  year: 2018
  ident: CR13
  article-title: Current status and technological prospect of photodetectors based on two-dimensional materials
  publication-title: Nat. Commun.
– volume: 6
  year: 2015
  ident: CR46
  article-title: Anisotropic in-plane thermal conductivity observed in few-layer black phosphorus
  publication-title: Nat. Commun.
– volume: 12
  start-page: 815
  year: 2013
  ident: 16125_CR10
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3687
– volume: 9
  year: 2018
  ident: 16125_CR13
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-07643-7
– volume: 27
  start-page: 6575
  year: 2015
  ident: 16125_CR35
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503340
– volume: 4
  start-page: 356
  year: 1971
  ident: 16125_CR33
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.4.356
– volume: 10
  start-page: 707
  year: 2015
  ident: 16125_CR17
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.112
– volume: 30
  start-page: 1801164
  year: 2018
  ident: 16125_CR12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201801164
– volume: 3
  start-page: 692
  year: 2016
  ident: 16125_CR19
  publication-title: ACS Photon
  doi: 10.1021/acsphotonics.6b00079
– volume: 10
  start-page: 8067
  year: 2016
  ident: 16125_CR21
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b04165
– volume: 14
  start-page: 6165
  year: 2014
  ident: 16125_CR44
  publication-title: Nano Lett.
  doi: 10.1021/nl502339q
– volume: 31
  start-page: 1804945
  year: 2018
  ident: 16125_CR45
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804945
– volume: 7
  start-page: 699
  year: 2012
  ident: 16125_CR54
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.193
– volume: 31
  start-page: 11807609
  year: 2019
  ident: 16125_CR11
  publication-title: Adv. Mater.
– volume: 17
  start-page: 1108
  year: 2018
  ident: 16125_CR20
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-018-0187-1
– volume: 54
  start-page: 136
  year: 2011
  ident: 16125_CR5
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2010.12.003
– volume: 9
  start-page: 780
  year: 2014
  ident: 16125_CR14
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2014.215
– volume: 10
  start-page: 517
  year: 2015
  ident: 16125_CR23
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2015.71
– volume: 26
  start-page: 6084
  year: 2016
  ident: 16125_CR41
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201601346
– volume: 116
  start-page: 245702
  year: 2014
  ident: 16125_CR34
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4904841
– volume: 30
  start-page: 1803109
  year: 2018
  ident: 16125_CR28
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201803109
– volume: 11
  start-page: 11724
  year: 2017
  ident: 16125_CR18
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07028
– volume: 13
  start-page: 2511
  year: 2019
  ident: 16125_CR9
  publication-title: ACS Nano
– volume: 47
  start-page: 7203
  year: 2018
  ident: 16125_CR31
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00598B
– volume: 12
  start-page: 208
  year: 2004
  ident: 16125_CR2
  publication-title: Opt. Express
  doi: 10.1364/OPEX.12.000208
– volume: 49
  start-page: 2711
  year: 2010
  ident: 16125_CR4
  publication-title: Angew. Chem. - Int. Ed.
  doi: 10.1002/anie.200906927
– ident: 16125_CR53
  doi: 10.1002/adma.201902039
– volume: 31
  start-page: 1804629
  year: 2018
  ident: 16125_CR48
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201804629
– volume: 20
  start-page: 27393
  year: 2012
  ident: 16125_CR6
  publication-title: Opt. Express
  doi: 10.1364/OE.20.027393
– volume: 13
  start-page: 467
  year: 2019
  ident: 16125_CR56
  publication-title: Nat. Photonics
  doi: 10.1038/s41566-019-0399-1
– volume: 118
  start-page: 2625
  year: 1999
  ident: 16125_CR1
  publication-title: Astron. J.
  doi: 10.1086/301146
– volume: 22
  start-page: 2968
  year: 1980
  ident: 16125_CR29
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.22.2968
– volume: 11
  start-page: 11724
  year: 2017
  ident: 16125_CR49
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07028
– volume: 1
  start-page: 112
  year: 2019
  ident: 16125_CR57
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0016-0
– volume: 29
  start-page: 1604439
  year: 2017
  ident: 16125_CR3
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201604439
– volume: 1
  start-page: 228
  year: 2018
  ident: 16125_CR27
  publication-title: Nat. Electron.
  doi: 10.1038/s41928-018-0058-4
– volume: 8
  start-page: 8653
  year: 2014
  ident: 16125_CR36
  publication-title: ACS Nano
  doi: 10.1021/nn503521c
– volume: 22
  start-page: 1802011
  year: 2018
  ident: 16125_CR47
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201802011
– volume: 10
  start-page: 216
  year: 2016
  ident: 16125_CR55
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2015.282
– volume: 29
  start-page: 1803807
  year: 2019
  ident: 16125_CR8
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201803807
– volume: 6
  year: 2015
  ident: 16125_CR46
  publication-title: Nat. Commun.
– volume: 12
  start-page: 12416
  year: 2018
  ident: 16125_CR16
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b06629
– volume: 57
  start-page: 480
  year: 2019
  ident: 16125_CR32
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2018.12.065
– volume: 15
  start-page: 7853
  year: 2015
  ident: 16125_CR40
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b02523
– volume: 28
  start-page: 3481
  year: 2016
  ident: 16125_CR37
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506352
– volume: 37
  start-page: 53
  year: 2017
  ident: 16125_CR38
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2017.05.004
– volume: 17
  start-page: 3965
  year: 2017
  ident: 16125_CR30
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b01717
– volume: 5
  year: 2014
  ident: 16125_CR22
  publication-title: Nat. Commun.
– volume: 8
  year: 2017
  ident: 16125_CR25
  publication-title: Nat. Commun.
– volume: 12
  start-page: 7253
  year: 2018
  ident: 16125_CR26
  publication-title: ACS Nano
  doi: 10.1021/acsnano.8b03424
– volume: 16
  start-page: 4648
  year: 2016
  ident: 16125_CR24
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01977
– volume: 18
  start-page: 19087
  year: 2010
  ident: 16125_CR51
  publication-title: Opt. Express
  doi: 10.1364/OE.18.019087
– volume: 3
  start-page: 1600018
  year: 2016
  ident: 16125_CR39
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600018
– volume: 15
  start-page: 203
  year: 2019
  ident: 16125_CR43
  publication-title: Mater. Today
– volume: 45
  start-page: 5453
  year: 2006
  ident: 16125_CR52
  publication-title: Appl. Opt.
  doi: 10.1364/AO.45.005453
– volume: 36
  start-page: 150
  year: 1997
  ident: 16125_CR7
  publication-title: Appl. Opt.
  doi: 10.1364/AO.36.000150
– volume: 5
  start-page: 1800960
  year: 2018
  ident: 16125_CR50
  publication-title: Adv. Mater. Interfaces
  doi: 10.1002/admi.201800960
– volume: 8
  start-page: 899
  year: 2014
  ident: 16125_CR15
  publication-title: Two-dimensional Mater. Nanophotonics. Nat. Photon
– volume: 16
  start-page: 2254
  year: 2016
  ident: 16125_CR42
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.5b04538
SSID ssj0000391844
Score 2.696672
Snippet Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature...
Next-generation polarized mid-infrared imaging systems generally requires miniaturization, integration, flexibility, good workability at room temperature and...
Photodetectors operating within scattering environment can be realized with anisotropic materials. Here, the authors report polarization sensitive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2308
SubjectTerms 639/301/357/1018
639/925/927/1021
Anisotropy
Atmospheric conditions
Broadband
Crystal structure
Humanities and Social Sciences
Infrared imaging
Infrared imaging systems
Linear polarization
Miniaturization
multidisciplinary
Photometers
Photoresponse
Photosensitivity
Polarization
Quantum confinement
Room temperature
Scattering
Science
Science (multidisciplinary)
Tellurium
Temperature requirements
Two dimensional materials
Workability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJSQuiPIMFGQkbmB1_drYx_KoKiQ4UWlvlp8iUjdtdzcH_j0zTnbp8rxwjR3JGs9kvi8ef0PIKxMjoNqcGWJdprKyLERemBKi2BS0ihH_Q376PD87Vx8XenGj1RfWhI3ywKPhjn07a4UyymZjFM8lKJMk5yUDMhHaVLYOOe8GmarfYGmBuqjplsxMmuO1qt8EZEscszoze5moCvb_DmX-Wiz504lpTUSn98jdCUHSk3Hlh-RW7u-T22NPyW8PyALgY7jIdNklBt6zwgJzeoUEdrpxSbtl7UxEMYElCg-uB7_umHhP8UbJsOqGJfUbipCaonLVJLv8kJyffvjy7oxN7RNYBFayYdIDl7DJ89gaoA3al2ALpOgUvGgt1yZxGJoXiRLoGYAYBKORMQkbYLsAtzwiB_1ln58QWiCJ2ySylbCziZcgoo864mlyKhDGDeFbU7o4aYtji4sLV8-4pXGj-R2Y31XzO9OQ17t3rkZljb_Ofos7tJuJqtj1AfiKm3zF_ctXGnK03V83heraYREt8DirdUNe7oYhyPDkxPf5chjnaNkCtG3I49EddiuRAHo0AJ2GtHuOsrfU_ZG--1qFvIF9z6ycN-TN1qV-LOvPpnj6P0zxjNwRGAtYummOyMFmNeTnAK824UWNpO-o1x0Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxHsDCzISN7C2fjX2CfEqKyQ4sVJvVuIHVNqm3bY58O-ZcdysymOvtiM58_B84xnPEPLKeA-oNkaGWJepqCxrPU9MCZFsaLXyHu8hv36bnp2rL3M9Lxdu25JWuT8T80EdVh7vyE8x1xHgttX67fqSYdcojK6WFho3yS0OlgZTuszs83jHgtXPjVLlrcxEmtOtyicD-kwcbTszB_Yol-3_F9b8O2Xyj7hpNkeze-RuwZH03cD4--RG7B6Q20NnyV8PyRxAZHsR6XIRGMjQBtPM6Rrd2PLuki6WuT8RRTMWKAxc9s12wcRHiu9K-s2iX9JmRxFYU6xfVYovPyLns0_fP5yx0kSBefBNdkw24FHY0HBfG3AedJNam8BQh7YRteXaBA5T0ySxEHoEOAYqaaQPwrbANEAvj8lRt-riMaEJTLkNIloJ_A08tcI3XnuMKYcEylwRviel86XCODa6uHA50i2NG8jvgPwuk9-Zirwev1kP9TWuXf0eOTSuxNrYeWC1-eGKqrmmntRCGWWjMYrH1CoTJOcpApYV2kwqcrLnrysKu3VX4lWRl-M0qBrGT5ourvphjZY1ANyKPBnEYdyJBOijAe5UpD4QlIOtHs50i5-5nDf44BMrpxV5sxepq239nxRPr_-LZ-SOQCnH1ExzQo52mz4-B_i0a19kHfkNDiAV3A
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JixQxFA7jDIIXcbd0lAjeNNjZupJjuwxDg150oG-hKosWTFeP3V0H_73vpRZpHQWvWeDxlnrfq7x8IeSl8R5QbYwMsS5TUVlWe56YEiLZUGvlPf6H_Phpfn6hliu9OiJivAuTm_YzpWX-TI_dYW92Koc0FjsckzIzN8gJUrWDb58sFsvPy-nPCnKeG6WGGzIzaa7ZfJCFMln_dQjzz0bJ305LcxI6u0NuD-iRLnp575Kj2N4jN_v3JH_cJyuAjvVlpOsmMPCcLTaX0yssXofblrRZ51eJKCavQGHge1ftGibeU7xN0m2bbk2rPUU4TZG1aqBcfkAuzj58eXfOhqcTmIeKZM9kBXWEDRX3pYGSQVeptgnSc6grUVquTeAwNU8S6c8jgDAIRCN9ELYGUwFmeUiO200bHxOaIIHbIKKVYNXAUy185bXHk-SQIIQLwkdVOj_wiuPzFpcun29L43r1O1C_y-p3piCvpj1XPavGP1e_RQtNK5EROw9stl_d4CGuKmelUEbZaIziMdXKBMl5ioBghTazgpyO9nVDmO4cNtBCDWe1LsiLaRoCDE9NqjZuun6NliXA2oI86t1hkkQC4NEAcgpSHjjKgaiHM23zLZN4Q-U9s3JekNejS_0S6--qePJ_y5-SWwK9Hhs0zSk53m-7-AxA1L5-PkTNT8oWFP0
  priority: 102
  providerName: Springer Nature
Title Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature
URI https://link.springer.com/article/10.1038/s41467-020-16125-8
https://www.ncbi.nlm.nih.gov/pubmed/32385242
https://www.proquest.com/docview/2400096955
https://www.proquest.com/docview/2400537575
https://pubmed.ncbi.nlm.nih.gov/PMC7210936
https://doaj.org/article/a70724849e8841efb48d311fe9232580
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9MwDLfuQ0i8IL4pHFOQeIPA2qRr8oDQbtw4TboTAibtrWqTFCpt3V23Sdx_j522Q4NxL62UpFLi2PXPsWMDvFbGIKp1jhPW5dJJzXMTFlxGUaFtHktj6Bzy4nJwPpWTWTw7gK7cUUvA1V7TjupJTev5u1_XNx9R4D80V8bV-5X04k6GUEgKm6tDOEbNlFBFg4sW7vs_s9Bo0Mj27sz-T3f0k0_jvw97_htC-Zcf1aun8X241-JKNmwY4QEcuOoh3GkqTd48ghmCynzu2KK0HFdZU9g5u6K1t_cwWbnw9YoYqTXLsOF6k61KHn1idM9kU5ebBcvWjIA2o3xWbTLmxzAdn30fnfO2qAI3aKusucjQwtA2C02i0JiIsyLXBSpum2dRosNY2RC7BoWgxOgO4RmKqBLGRjrHTUQ08wSOqmXlngErULVrGzktcL9tWOSRyUxsyMdsCxTuAMKOlKlpM45T4Yt56j3fQqUN-VMkf-rJn6oA3my_uWrybdw6-pR2aDuScmX7hmX9I21FL82SfhJJJbVTSoauyKWyIgwLh9g2ilU_gJNuf9OO_1IKrUXrTsdxAK-23Sh65E_JKrfcNGNikSDgDeBpww7bmQiEQjHCnwCSHUbZmepuT1X-9Om90SbvazEI4G3HUn-m9X9SPL99FS_gbkRcTqGa6gSO1vXGvUQ4tc57cJjMEnyq8eceHA-Hk28TfJ-eXX75iq2jwajnDyp6XpZ-A0ZWH8w
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VRQguqDwbWsBIcAKrG9vZ2AeEgLJs6ePUSnszie3ASt3sdh9C_VP8RmbyqpZHb73ajuSMP898tucB8Eo7h6w2BE5cl6ugDM9dXHAlRGF8nijn6B7y-KQ_PFNfR8loA361sTDkVtnqxEpR-6mjO_I98nVEum2S5P3sglPVKHpdbUto1LA4DJc_8ci2eHewj-v7WojB59NPQ95UFeAOyfqSywwptvFZ7FKNbDrJitwUaLl8nonUxIn2MXb1C0mZwQPyE8Sols4Lk-NfGEq-hCr_lpJoySkyffClu9OhbOtaqSY2pyf13kJVmojOaDFxCa7X7F9VJuBf3PZvF80_3mkr8zfYgnsNb2UfaqDdh41QPoDbdSXLy4cwQtKanwc2GXuOmJ2TWzub0bG5ifNk40lVD4mR2fQMGy5W2WLMxT6jOJbVfLyasGzJiMgzypfVJHt-BGc3It7HsFlOy7ANrEDqYLwIRiKefFzkwmUucfSG7QtUHhHErSitazKaU2GNc1u9rEtta_FbFL-txG91BG-6b2Z1Po9rR3-kFepGUi7uqmE6_26brW2ztJcKpZUJWqs4FLnSXsZxEZA7i0T3Itht19c2CmJhr-AcwcuuG7c2vddkZZiu6jGJTJFQR_CkhkM3E4lUK0F6FUG6BpS1qa73lOMfVfpwPPP3jOxH8LaF1NW0_i-Kp9f_xQu4Mzw9PrJHByeHO3BXEOLJLVTvwuZyvgrPkLot8-fVfmHw7aY36G8EuFEm
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ZbxMxEB5VqUC8oHJ2aQEjwRNYyXq9WfsBIUoatRSiClEpb2bXB0RqjuYQ6l_j1zGzR6pw9K2vtlfyjmfGnz3jbwBeKmsR1XrPCety6aXmhY0Dl0IE7YpUWkv3kJ8H3aMz-XGYDrfgV_MWhtIqG59YOmo3tXRH3qZcR4TbOk3boU6LOO31380uOFWQokhrU06jUpETf_kTj2-Lt8c9XOtXQvQPv3444nWFAW4RuC95kiPc1i6PbaYQWad5KHTAXcwVuch0nCoXY1c3JMQS7hGroL6qxDqhC_wjTURM6P63MzoVtWD74HBw-mV9w0Pc60rK-qVOJ1HthSz9Ep3YYkIWXG3shmXRgH8h3b8TNv-I2pabYX8H7tYolr2v1O4ebPnJfbhV1bW8fABDhLDFuWfjkeOowXNKcmczOkTXrz7ZaFxWR2K0iTqGDRerfDHiosfoVctqPlqNWb5kBOsZsWfV1M8P4exGBPwIWpPpxO8CCwgktBNeJ6hdLg6FsLlNLUW0XUBXEkHciNLYmt-cymycmzLOnihTid-g-E0pfqMieL3-Zlaxe1w7-oBWaD2SmLnLhun8u6kN3eRZJxNSSe2VkrEPhVQuiePgEUmLVHUi2G_W19TuYmGulDuCF-tuNHSK3uQTP11VY9IkQ3gdweNKHdYzSRB4pQi2Isg2FGVjqps9k9GPkkw8E0Qo1o3gTaNSV9P6vyieXP8Xz-E2Gqf5dDw42YM7ghSeckTVPrSW85V_ijhuWTyrDYbBt5u20d-l-1a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stable+mid-infrared+polarization+imaging+based+on+quasi-2D+tellurium+at+room+temperature&rft.jtitle=Nature+communications&rft.au=Tong%2C+Lei&rft.au=Huang%2C+Xinyu&rft.au=Wang%2C+Peng&rft.au=Ye+Lei&rft.date=2020-05-08&rft.pub=Nature+Publishing+Group&rft.eissn=2041-1723&rft.volume=11&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-020-16125-8&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon