3D printing of inherently nanoporous polymers via polymerization-induced phase separation
3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects w...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 247 - 12 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
11.01.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-020-20498-1 |
Cover
Loading…
Abstract | 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.
3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity. |
---|---|
AbstractList | 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity. 3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity. 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications. 3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity. 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications. 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications. |
ArticleNumber | 247 |
Author | Cui, Haijun Wang, Fei Mayer, Frederik Zhang, Haodong Zhan, Xiang Nestler, Britta Wegener, Martin Levkin, Pavel A. Dong, Zheqin |
Author_xml | – sequence: 1 givenname: Zheqin orcidid: 0000-0003-3589-5433 surname: Dong fullname: Dong, Zheqin organization: Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology – sequence: 2 givenname: Haijun surname: Cui fullname: Cui, Haijun organization: Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology – sequence: 3 givenname: Haodong surname: Zhang fullname: Zhang, Haodong organization: Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology – sequence: 4 givenname: Fei surname: Wang fullname: Wang, Fei organization: Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology – sequence: 5 givenname: Xiang orcidid: 0000-0002-2843-3604 surname: Zhan fullname: Zhan, Xiang organization: Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology – sequence: 6 givenname: Frederik surname: Mayer fullname: Mayer, Frederik organization: Institute of Nanotechnology and Institute of Applied Physics, Karlsruhe Institute of Technology – sequence: 7 givenname: Britta surname: Nestler fullname: Nestler, Britta organization: Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology – sequence: 8 givenname: Martin surname: Wegener fullname: Wegener, Martin organization: Institute of Nanotechnology and Institute of Applied Physics, Karlsruhe Institute of Technology – sequence: 9 givenname: Pavel A. surname: Levkin fullname: Levkin, Pavel A. email: levkin@kit.edu organization: Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33431911$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Ustu1DAUtVARLUN_gAWKxIZNwNd24niDhMqrUiU2sGBlOX7MeJSxg51UGr4ez6QtbRf1xte-5xzdx3mJTkIMFqHXgN8Dpt2HzIC1vMYE1wQz0dXwDJ2VCGrghJ7ci0_Rec5bXA4V0DH2Ap1SyigIgDP0m36uxuTD5MO6iq7yYWOTDdOwr4IKcYwpzrka47Df2ZSra69uH_6vmnwMtQ9m1tZU40ZlW2U7qnRMvELPnRqyPb-5V-jX1y8_L77XVz--XV58uqp1i9upppwZzbURRlkhiBZgOuGsbrjgAnDXYwpUEUZMDz13umVOKaCkUa6xHXZ0hS4XXRPVVpZedirtZVReHj9iWkuVJq8HK3nPrME9F8pxJlQvhANHOHemgTJNKFofF61x7nfW6DKIpIYHog8zwW_kOl5L3mFguCsC724EUvwz2zzJnc_aDoMKtgxSEsY5aRsgvEDfPoJu45xCGdUB1RZFWja2Qm_uV3RXyu0GC4AsAJ1izsm6OwhgeXCKXJwii1Pk0SnyQOoekbSfjlsrXfnhaSpdqPlgm7VN_8t-gvUPccrTcg |
CitedBy_id | crossref_primary_10_1002_adom_202203134 crossref_primary_10_1002_pen_26505 crossref_primary_10_1002_adhm_202102810 crossref_primary_10_1002_admt_202300611 crossref_primary_10_1016_j_talanta_2022_123237 crossref_primary_10_1002_mame_202300041 crossref_primary_10_1021_acsapm_1c01674 crossref_primary_10_1002_adfm_202403794 crossref_primary_10_1002_app_54694 crossref_primary_10_3390_mi13040642 crossref_primary_10_1021_acsaenm_4c00438 crossref_primary_10_1021_acsapm_1c00744 crossref_primary_10_1002_adfm_202300950 crossref_primary_10_1021_acsami_4c10858 crossref_primary_10_3390_membranes12111137 crossref_primary_10_1039_D3MH01812A crossref_primary_10_1016_j_xcrp_2023_101504 crossref_primary_10_1002_anbr_202100068 crossref_primary_10_1002_adfm_202110580 crossref_primary_10_1016_j_cej_2024_155356 crossref_primary_10_1038_s41467_021_23170_4 crossref_primary_10_1039_D1TA03352B crossref_primary_10_1016_j_mtchem_2023_101818 crossref_primary_10_1021_acsnano_3c05413 crossref_primary_10_1016_j_apmt_2025_102646 crossref_primary_10_1002_adma_202305099 crossref_primary_10_1016_j_aca_2024_342507 crossref_primary_10_1016_j_carpta_2022_100262 crossref_primary_10_1016_j_eurpolymj_2023_112298 crossref_primary_10_1016_j_eml_2024_102284 crossref_primary_10_1002_adma_202203878 crossref_primary_10_3390_micro4020016 crossref_primary_10_1007_s10853_023_09041_x crossref_primary_10_3390_polym14235265 crossref_primary_10_1002_adfm_202423739 crossref_primary_10_1002_admt_202201268 crossref_primary_10_1039_D4BM00674G crossref_primary_10_1002_adma_202307686 crossref_primary_10_1002_adfm_202213916 crossref_primary_10_1002_ange_202206272 crossref_primary_10_1002_mame_202300060 crossref_primary_10_1016_j_chroma_2024_464873 crossref_primary_10_1021_acsami_4c04719 crossref_primary_10_1002_marc_202400576 crossref_primary_10_1002_mame_202200497 crossref_primary_10_1016_j_mser_2023_100734 crossref_primary_10_1021_acs_analchem_4c05587 crossref_primary_10_1109_TDEI_2024_3382256 crossref_primary_10_1021_acs_macromol_2c01838 crossref_primary_10_1016_j_eurpolymj_2021_110901 crossref_primary_10_1002_sstr_202200314 crossref_primary_10_1016_j_seppur_2025_131669 crossref_primary_10_1039_D4MH01160K crossref_primary_10_1016_j_progpolymsci_2023_101755 crossref_primary_10_1016_j_slast_2023_04_004 crossref_primary_10_1002_admt_202300801 crossref_primary_10_3390_ma15227903 crossref_primary_10_1002_admt_202300408 crossref_primary_10_1021_acs_biomac_3c00418 crossref_primary_10_1002_adma_202106068 crossref_primary_10_1021_acschemneuro_3c00166 crossref_primary_10_1002_smll_202403405 crossref_primary_10_1002_agt2_409 crossref_primary_10_1016_j_cej_2023_146968 crossref_primary_10_3390_foods11070913 crossref_primary_10_1021_acsami_3c03421 crossref_primary_10_1016_j_actbio_2021_12_007 crossref_primary_10_1021_acsami_3c02176 crossref_primary_10_1016_j_matt_2022_05_015 crossref_primary_10_1002_marc_202300236 crossref_primary_10_1021_acs_biomac_4c01212 crossref_primary_10_3390_polym16141992 crossref_primary_10_1002_marc_202400293 crossref_primary_10_1016_j_matdes_2024_113166 crossref_primary_10_1021_acsapm_3c01295 crossref_primary_10_1021_acsaenm_3c00558 crossref_primary_10_3390_polym13224007 crossref_primary_10_3390_ma14040800 crossref_primary_10_1016_j_progpolymsci_2023_101691 crossref_primary_10_1016_j_addma_2021_102405 crossref_primary_10_1002_pol_20240079 crossref_primary_10_1016_j_oceram_2023_100536 crossref_primary_10_1039_D1CS00871D crossref_primary_10_1007_s12274_023_6330_6 crossref_primary_10_1021_acsapm_1c00262 crossref_primary_10_1080_07388551_2024_2344577 crossref_primary_10_1038_s41467_022_31644_2 crossref_primary_10_1016_j_addma_2025_104713 crossref_primary_10_1002_admt_202201857 crossref_primary_10_1021_acsapm_4c00261 crossref_primary_10_1038_s41467_022_31095_9 crossref_primary_10_15237_gida_GD21112 crossref_primary_10_1016_j_aca_2024_342429 crossref_primary_10_1039_D4SM01077A crossref_primary_10_1557_s43579_021_00062_8 crossref_primary_10_1016_j_pnsc_2024_07_013 crossref_primary_10_1021_acsnano_1c10728 crossref_primary_10_1039_D4CC00466C crossref_primary_10_1016_j_polymer_2024_126833 crossref_primary_10_1016_j_pmatsci_2023_101072 crossref_primary_10_1016_j_carbpol_2022_120296 crossref_primary_10_1002_adfm_202414242 crossref_primary_10_1016_j_polymer_2023_125880 crossref_primary_10_1016_j_cej_2022_140989 crossref_primary_10_1016_j_cej_2025_160913 crossref_primary_10_1002_adma_202314204 crossref_primary_10_34133_bmr_0146 crossref_primary_10_1002_adma_202400102 crossref_primary_10_1002_admt_202200492 crossref_primary_10_1021_acs_macromol_1c01208 crossref_primary_10_3389_frsus_2023_1093911 crossref_primary_10_3390_ma15062111 crossref_primary_10_1016_j_progpolymsci_2023_101743 crossref_primary_10_1002_adfm_202315035 crossref_primary_10_1016_j_cej_2023_144078 crossref_primary_10_1002_admt_202401178 crossref_primary_10_1002_adem_202401806 crossref_primary_10_1016_j_compositesb_2023_110926 crossref_primary_10_1016_j_addma_2023_103514 crossref_primary_10_1002_admt_202301400 crossref_primary_10_1016_j_cej_2024_157272 crossref_primary_10_1002_adma_202300903 crossref_primary_10_1002_anie_202206272 crossref_primary_10_1021_acsomega_4c07193 crossref_primary_10_1002_smtd_202301121 crossref_primary_10_1557_s43579_024_00594_9 crossref_primary_10_1021_acs_macromol_1c02129 crossref_primary_10_1002_adhm_202200977 crossref_primary_10_1021_acs_chemmater_4c03295 crossref_primary_10_1016_j_jmst_2022_01_042 crossref_primary_10_1002_smll_202311092 crossref_primary_10_3390_biomimetics8080598 crossref_primary_10_1039_D3SM01411H crossref_primary_10_1007_s42247_024_00903_x crossref_primary_10_1016_j_device_2023_100067 crossref_primary_10_1039_D4TB00759J crossref_primary_10_1002_adfm_202406635 crossref_primary_10_1016_j_cej_2023_147972 crossref_primary_10_1021_acsmaterialsau_1c00017 crossref_primary_10_1021_jacs_3c12635 crossref_primary_10_1002_asia_202400568 crossref_primary_10_1016_j_copbio_2021_10_016 crossref_primary_10_1016_j_biopha_2024_117448 crossref_primary_10_1016_j_porgcoat_2024_108689 crossref_primary_10_1039_D4NR04636F crossref_primary_10_1021_acsapm_3c02744 crossref_primary_10_1016_j_seppur_2024_128399 crossref_primary_10_1021_acs_macromol_3c01915 crossref_primary_10_1039_D2SM00485B crossref_primary_10_1002_advs_202302756 crossref_primary_10_1002_admi_202400396 |
Cites_doi | 10.1016/j.pmatsci.2016.02.002 10.1038/s41598-018-36789-z 10.1002/adma.201806733 10.1016/0014-3057(96)00045-6 10.1021/cm950437j 10.1364/OL.37.000710 10.1002/jbm.a.32061 10.1126/science.1226340 10.1038/s42254-018-0018-y 10.1002/anie.201307825 10.1038/srep22898 10.1002/adma.202001646 10.1038/s41570-019-0097-z 10.1002/marc.201800274 10.1016/j.actbio.2010.11.003 10.1016/0142-9612(95)98856-9 10.1002/adfm.201805372 10.1021/acs.chemrev.7b00074 10.1038/s41467-018-06685-1 10.1016/j.seppur.2009.10.004 10.1038/nmat3980 10.1002/adfm.200801916 10.1039/C9PY00999J 10.1016/j.biomaterials.2004.05.031 10.1021/acsami.7b11626 10.1039/C6LC00284F 10.1021/jacs.5b08978 10.1115/1.2823079 10.1126/science.1070821 10.1016/j.memsci.2011.11.051 10.1126/science.aaa2397 10.1038/nature16185 10.1016/j.biomaterials.2004.11.026 10.1089/ten.tea.2008.0146 10.1016/j.jmps.2017.11.018 10.1016/j.sna.2004.12.011 10.1002/mats.200500056 10.1088/0957-4484/21/12/125104 10.1002/jbm.a.10098 10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V 10.1016/j.supflu.2012.02.026 10.1038/nature21003 10.1016/j.biomaterials.2007.01.019 10.1039/C2TB00195K 10.1021/acsami.0c01172 10.1126/science.1221383 10.1002/adma.201802922 10.1016/j.chroma.2009.09.073 10.1038/s41563-019-0525-y 10.1073/pnas.1315147111 10.1002/adfm.201907795 10.1002/adma.202002044 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-20498-1 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection (UHCL Subscription) ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ (Directory of Open Access Journals) |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 12 |
ExternalDocumentID | oai_doaj_org_article_7b4ed0b79af749ab99f1f277fd511461 PMC7801408 33431911 10_1038_s41467_020_20498_1 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-374dc7cd9dae992c91d89fec57979108b0313a242db1b7fc64faa1325af5e80f3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:32:04 EDT 2025 Thu Aug 21 13:23:59 EDT 2025 Fri Jul 11 10:58:45 EDT 2025 Wed Aug 13 03:26:21 EDT 2025 Wed Feb 19 02:30:03 EST 2025 Tue Jul 01 04:17:12 EDT 2025 Thu Apr 24 23:06:36 EDT 2025 Fri Feb 21 02:39:15 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-374dc7cd9dae992c91d89fec57979108b0313a242db1b7fc64faa1325af5e80f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-2843-3604 0000-0003-3589-5433 |
OpenAccessLink | https://doaj.org/article/7b4ed0b79af749ab99f1f277fd511461 |
PMID | 33431911 |
PQID | 2476780300 |
PQPubID | 546298 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_7b4ed0b79af749ab99f1f277fd511461 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7801408 proquest_miscellaneous_2477265127 proquest_journals_2476780300 pubmed_primary_33431911 crossref_primary_10_1038_s41467_020_20498_1 crossref_citationtrail_10_1038_s41467_020_20498_1 springer_journals_10_1038_s41467_020_20498_1 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-11 |
PublicationDateYYYYMMDD | 2021-01-11 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-11 day: 11 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Dalby, Gadegaard, Oreffo (CR4) 2014; 13 Warner (CR45) 2019; 10 Wang (CR10) 2019; 31 Notario, Pinto, Rodriguez-Perez (CR3) 2016; 78-79 Guadarrama Bello, Fouillen, Badia, Nanci (CR52) 2020; 12 Popat (CR48) 2005; 26 Waheed (CR21) 2016; 16 Moore, Barbera, Masania, Studart (CR8) 2020; 19 Sobral, Caridade, Sousa, Mano, Reis (CR34) 2011; 7 Leong, Chian, Mhaisalkar, Ong, Ratner (CR49) 2009; 89A O’Brien, Bowman (CR24) 2006; 15 Woo, Chen, Ma (CR51) 2003; 89A Sultan, Abdelhamid, Zou, Mathew (CR43) 2019; 29 CR5 Han, Mapili, Chen, Roy (CR46) 2008; 130 Kadic, Milton, van Hecke, Wegener (CR1) 2019; 1 Di Luca (CR35) 2016; 6 Sun, Ueno, Misawa (CR27) 2012; 37 Kunzler, Drobek, Schuler, Spencer (CR36) 2007; 28 Zhang, Ma, Liao, Breedveld, Lively (CR7) 2018; 39 Tumbleston (CR23) 2015; 347 Yin, Ding, Zhai, Tan, Yin (CR26) 2018; 9 Quinn, Pathak, Heller, Hubbell (CR18) 1995; 16 Encinas, Lissi, Martinez (CR33) 1996; 32 Bauer, Hengsbach, Tesari, Schwaiger, Kraft (CR29) 2014; 111 CR14 Ligon, Liska, Stampfl, Gurr, Mülhaupt (CR2) 2017; 117 Alison (CR6) 2019; 9 Levkin, Svec, Fréchet (CR13) 2009; 19 García-González, Camino-Rey, Alnaief, Zetzl, Smirnova (CR28) 2012; 66 Hartings, Ahmed (CR41) 2019; 3 Wang, Feng, Leach, Wu, Jiang (CR50) 2013; 1 Buback, Kurz (CR17) 1998; 199 Mai (CR38) 2015; 137 Yue (CR39) 2013; 52 Truby, Lewis (CR15) 2016; 540 Svec (CR32) 2010; 1217 Chung, Son, Min (CR31) 2010; 21 Viklund, Svec, Fréchet, Irgum (CR12) 1996; 8 Belkas, Munro, Shoichet, Johnston, Midha (CR19) 2005; 26 Sun, Fang, Wu, Zhang (CR22) 2005; 121 Alsbaiee (CR37) 2016; 529 Campillo-Fernández (CR47) 2008; 15 Wang (CR20) 2020; 32 Wu (CR16) 2019; 31 Whitesides, Grzybowski (CR9) 2002; 295 Ando, Akamatsu, Nakao, Fujita (CR30) 2012; 392-393 Rezaei, Webley (CR40) 2010; 70 Thakkar, Eastman, Al-Naddaf, Rownaghi, Rezaei (CR42) 2017; 9 Derby (CR44) 2012; 338 Seo, Hillmyer (CR11) 2012; 336 Wu (CR25) 2018; 112 CA García-González (20498_CR28) 2012; 66 PA Levkin (20498_CR13) 2009; 19 C Sun (20498_CR22) 2005; 121 SC Ligon (20498_CR2) 2017; 117 JJ Warner (20498_CR45) 2019; 10 K Wang (20498_CR20) 2020; 32 MR Hartings (20498_CR41) 2019; 3 MF Leong (20498_CR49) 2009; 89A F Zhang (20498_CR7) 2018; 39 H Yin (20498_CR26) 2018; 9 JS Belkas (20498_CR19) 2005; 26 F Wang (20498_CR10) 2019; 31 RL Truby (20498_CR15) 2016; 540 S Waheed (20498_CR21) 2016; 16 Q Sun (20498_CR27) 2012; 37 T Ando (20498_CR30) 2012; 392-393 B Derby (20498_CR44) 2012; 338 GM Whitesides (20498_CR9) 2002; 295 DG Moore (20498_CR8) 2020; 19 MV Encinas (20498_CR33) 1996; 32 Y Yue (20498_CR39) 2013; 52 SH Chung (20498_CR31) 2010; 21 CP Quinn (20498_CR18) 1995; 16 JM Sobral (20498_CR34) 2011; 7 TP Kunzler (20498_CR36) 2007; 28 L Alison (20498_CR6) 2019; 9 KM Woo (20498_CR51) 2003; 89A H Thakkar (20498_CR42) 2017; 9 MJ Dalby (20498_CR4) 2014; 13 B Notario (20498_CR3) 2016; 78-79 F Rezaei (20498_CR40) 2010; 70 T Wang (20498_CR50) 2013; 1 J Wu (20498_CR16) 2019; 31 20498_CR5 AJ Campillo-Fernández (20498_CR47) 2008; 15 M Kadic (20498_CR1) 2019; 1 AK O’Brien (20498_CR24) 2006; 15 W Mai (20498_CR38) 2015; 137 20498_CR14 A Di Luca (20498_CR35) 2016; 6 J Wu (20498_CR25) 2018; 112 D Guadarrama Bello (20498_CR52) 2020; 12 JR Tumbleston (20498_CR23) 2015; 347 L-H Han (20498_CR46) 2008; 130 C Viklund (20498_CR12) 1996; 8 M Seo (20498_CR11) 2012; 336 S Sultan (20498_CR43) 2019; 29 KC Popat (20498_CR48) 2005; 26 F Svec (20498_CR32) 2010; 1217 J Bauer (20498_CR29) 2014; 111 M Buback (20498_CR17) 1998; 199 A Alsbaiee (20498_CR37) 2016; 529 |
References_xml | – volume: 78-79 start-page: 93 year: 2016 end-page: 139 ident: CR3 article-title: Nanoporous polymeric materials: a new class of materials with enhanced properties publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2016.02.002 – volume: 9 year: 2019 ident: CR6 article-title: 3D printing of sacrificial templates into hierarchical porous materials publication-title: Sci. Rep. doi: 10.1038/s41598-018-36789-z – volume: 31 start-page: 1806733 year: 2019 ident: CR10 article-title: Progress report on phase separation in polymer solutions publication-title: Adv. Mater. doi: 10.1002/adma.201806733 – volume: 32 start-page: 1151 year: 1996 end-page: 1154 ident: CR33 article-title: Polymerization of 2-hydroxyethyl methacrylate induced by azo compounds: Solvent effects publication-title: Eur. Polym. J. doi: 10.1016/0014-3057(96)00045-6 – volume: 8 start-page: 744 year: 1996 end-page: 750 ident: CR12 article-title: Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization publication-title: Chem. Mater. doi: 10.1021/cm950437j – volume: 37 start-page: 710 year: 2012 end-page: 712 ident: CR27 article-title: In situ investigation of the shrinkage of photopolymerized micro/nanostructures: The effect of the drying process publication-title: Opt. Lett. doi: 10.1364/OL.37.000710 – volume: 89A start-page: 1040 year: 2009 end-page: 1048 ident: CR49 article-title: Effect of electrospun poly(d,l-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32061 – volume: 338 start-page: 921 year: 2012 ident: CR44 article-title: Printing and prototyping of tissues and scaffolds publication-title: Science doi: 10.1126/science.1226340 – volume: 1 start-page: 198 year: 2019 end-page: 210 ident: CR1 article-title: 3D metamaterials publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0018-y – volume: 52 start-page: 13458 year: 2013 end-page: 13462 ident: CR39 article-title: Seawater uranium sorbents: Preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201307825 – volume: 6 year: 2016 ident: CR35 article-title: Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds publication-title: Sci. Rep. doi: 10.1038/srep22898 – volume: 32 start-page: 2001646 year: 2020 ident: CR20 article-title: 3D printing of viscoelastic suspensions via digital light synthesis for tough nanoparticle–elastomer composites publication-title: Adv. Mater. doi: 10.1002/adma.202001646 – volume: 3 start-page: 305 year: 2019 end-page: 314 ident: CR41 article-title: Chemistry from 3D printed objects publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0097-z – volume: 39 start-page: 1800274 year: 2018 ident: CR7 article-title: Solution-based 3D printing of polymers of intrinsic microporosity publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800274 – volume: 7 start-page: 1009 year: 2011 end-page: 1018 ident: CR34 article-title: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.11.003 – volume: 16 start-page: 389 year: 1995 end-page: 396 ident: CR18 article-title: Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors publication-title: Biomaterials doi: 10.1016/0142-9612(95)98856-9 – volume: 29 start-page: 1805372 year: 2019 ident: CR43 article-title: Cellomof: Nanocellulose enabled 3D printing of metal–organic frameworks publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805372 – volume: 117 start-page: 10212 year: 2017 end-page: 10290 ident: CR2 article-title: Polymers for 3D printing and customized additive manufacturing publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00074 – volume: 9 year: 2018 ident: CR26 article-title: Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography publication-title: Nat. Commun. doi: 10.1038/s41467-018-06685-1 – volume: 70 start-page: 243 year: 2010 end-page: 256 ident: CR40 article-title: Structured adsorbents in gas separation processes publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.10.004 – ident: CR5 – volume: 13 start-page: 558 year: 2014 end-page: 569 ident: CR4 article-title: Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate publication-title: Nat. Mater. doi: 10.1038/nmat3980 – volume: 19 start-page: 1993 year: 2009 end-page: 1998 ident: CR13 article-title: Porous polymer coatings: a versatile approach to superhydrophobic surfaces publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801916 – volume: 10 start-page: 4665 year: 2019 end-page: 4674 ident: CR45 article-title: 3D printable non-isocyanate polyurethanes with tunable material properties publication-title: Polym. Chem. doi: 10.1039/C9PY00999J – volume: 26 start-page: 1741 year: 2005 end-page: 1749 ident: CR19 article-title: Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.05.031 – volume: 9 start-page: 35908 year: 2017 end-page: 35916 ident: CR42 article-title: 3D-printed metal–organic framework monoliths for gas adsorption processes publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11626 – volume: 16 start-page: 1993 year: 2016 end-page: 2013 ident: CR21 article-title: 3D printed microfluidic devices: enablers and barriers publication-title: Lab Chip doi: 10.1039/C6LC00284F – volume: 137 start-page: 13256 year: 2015 end-page: 13259 ident: CR38 article-title: Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08978 – volume: 130 start-page: 021005 year: 2008 ident: CR46 article-title: Projection microfabrication of three-dimensional scaffolds for tissue engineering publication-title: J. Manuf. Sci. E doi: 10.1115/1.2823079 – volume: 295 start-page: 2418 year: 2002 ident: CR9 article-title: Self-assembly at all scales publication-title: Science doi: 10.1126/science.1070821 – volume: 392-393 start-page: 48 year: 2012 end-page: 57 ident: CR30 article-title: Simulation of fouling and backwash dynamics in dead-end microfiltration: effect of pore size publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.051 – volume: 347 start-page: 1349 year: 2015 ident: CR23 article-title: Continuous liquid interface production of 3D objects publication-title: Science doi: 10.1126/science.aaa2397 – volume: 529 start-page: 190 year: 2016 end-page: 194 ident: CR37 article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer publication-title: Nature doi: 10.1038/nature16185 – ident: CR14 – volume: 26 start-page: 4516 year: 2005 end-page: 4522 ident: CR48 article-title: Influence of nanoporous alumina membranes on long-term osteoblast response publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.11.026 – volume: 15 start-page: 1331 year: 2008 end-page: 1341 ident: CR47 article-title: Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: Influence of fibronectin adsorption and conformation publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2008.0146 – volume: 112 start-page: 25 year: 2018 end-page: 49 ident: CR25 article-title: Evolution of material properties during free radical photopolymerization publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.11.018 – volume: 121 start-page: 113 year: 2005 end-page: 120 ident: CR22 article-title: Projection micro-stereolithography using digital micro-mirror dynamic mask publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2004.12.011 – volume: 15 start-page: 176 year: 2006 end-page: 182 ident: CR24 article-title: Modeling the effect of oxygen on photopolymerization kinetics publication-title: Macromol. Theory Simul. doi: 10.1002/mats.200500056 – volume: 21 start-page: 125104 year: 2010 ident: CR31 article-title: The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates publication-title: Nanotechnology doi: 10.1088/0957-4484/21/12/125104 – volume: 89A start-page: 531 year: 2003 end-page: 537 ident: CR51 article-title: Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.10098 – volume: 199 start-page: 2301 year: 1998 end-page: 2310 ident: CR17 article-title: Free-radical propagation rate coefficients for cyclohexyl methacrylate, glycidyl methacrylate and 2-hydroxyethyl methacrylate homopolymerizations publication-title: Macromol. Chem. Phys. doi: 10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V – volume: 66 start-page: 297 year: 2012 end-page: 306 ident: CR28 article-title: Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2012.02.026 – volume: 540 start-page: 371 year: 2016 end-page: 378 ident: CR15 article-title: Printing soft matter in three dimensions publication-title: Nature doi: 10.1038/nature21003 – volume: 28 start-page: 2175 year: 2007 end-page: 2182 ident: CR36 article-title: Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.01.019 – volume: 1 start-page: 339 year: 2013 end-page: 346 ident: CR50 article-title: Nanoporous fibers of type-i collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function publication-title: J. Mater. Chem. B doi: 10.1039/C2TB00195K – volume: 12 start-page: 14924 year: 2020 end-page: 14932 ident: CR52 article-title: Nanoporosity stimulates cell spreading and focal adhesion formation in cells with mutated paxillin publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01172 – volume: 336 start-page: 1422 year: 2012 ident: CR11 article-title: Reticulated nanoporous polymers by controlled polymerization-induced microphase separation publication-title: Science doi: 10.1126/science.1221383 – volume: 31 start-page: 1802922 year: 2019 ident: CR16 article-title: Porous polymers as multifunctional material platforms toward task-specific applications publication-title: Adv. Mater. doi: 10.1002/adma.201802922 – volume: 1217 start-page: 902 year: 2010 end-page: 924 ident: CR32 article-title: Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2009.09.073 – volume: 19 start-page: 212 year: 2020 end-page: 217 ident: CR8 article-title: Three-dimensional printing of multicomponent glasses using phase-separating resins publication-title: Nat. Mater. doi: 10.1038/s41563-019-0525-y – volume: 111 start-page: 2453 year: 2014 ident: CR29 article-title: High-strength cellular ceramic composites with 3D microarchitecture publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1315147111 – volume: 9 start-page: 35908 year: 2017 ident: 20498_CR42 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b11626 – volume: 121 start-page: 113 year: 2005 ident: 20498_CR22 publication-title: Sens. Actuators, A doi: 10.1016/j.sna.2004.12.011 – volume: 70 start-page: 243 year: 2010 ident: 20498_CR40 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2009.10.004 – volume: 26 start-page: 1741 year: 2005 ident: 20498_CR19 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.05.031 – volume: 392-393 start-page: 48 year: 2012 ident: 20498_CR30 publication-title: J. Membr. Sci. doi: 10.1016/j.memsci.2011.11.051 – volume: 26 start-page: 4516 year: 2005 ident: 20498_CR48 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2004.11.026 – volume: 336 start-page: 1422 year: 2012 ident: 20498_CR11 publication-title: Science doi: 10.1126/science.1221383 – volume: 78-79 start-page: 93 year: 2016 ident: 20498_CR3 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2016.02.002 – volume: 10 start-page: 4665 year: 2019 ident: 20498_CR45 publication-title: Polym. Chem. doi: 10.1039/C9PY00999J – volume: 130 start-page: 021005 year: 2008 ident: 20498_CR46 publication-title: J. Manuf. Sci. E doi: 10.1115/1.2823079 – volume: 1217 start-page: 902 year: 2010 ident: 20498_CR32 publication-title: J. Chromatogr. A doi: 10.1016/j.chroma.2009.09.073 – volume: 89A start-page: 1040 year: 2009 ident: 20498_CR49 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.32061 – volume: 117 start-page: 10212 year: 2017 ident: 20498_CR2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00074 – volume: 15 start-page: 176 year: 2006 ident: 20498_CR24 publication-title: Macromol. Theory Simul. doi: 10.1002/mats.200500056 – volume: 199 start-page: 2301 year: 1998 ident: 20498_CR17 publication-title: Macromol. Chem. Phys. doi: 10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V – volume: 3 start-page: 305 year: 2019 ident: 20498_CR41 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-019-0097-z – volume: 39 start-page: 1800274 year: 2018 ident: 20498_CR7 publication-title: Macromol. Rapid Commun. doi: 10.1002/marc.201800274 – volume: 338 start-page: 921 year: 2012 ident: 20498_CR44 publication-title: Science doi: 10.1126/science.1226340 – ident: 20498_CR5 doi: 10.1002/adfm.201907795 – volume: 37 start-page: 710 year: 2012 ident: 20498_CR27 publication-title: Opt. Lett. doi: 10.1364/OL.37.000710 – volume: 29 start-page: 1805372 year: 2019 ident: 20498_CR43 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201805372 – volume: 32 start-page: 1151 year: 1996 ident: 20498_CR33 publication-title: Eur. Polym. J. doi: 10.1016/0014-3057(96)00045-6 – volume: 7 start-page: 1009 year: 2011 ident: 20498_CR34 publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.11.003 – volume: 13 start-page: 558 year: 2014 ident: 20498_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat3980 – volume: 1 start-page: 339 year: 2013 ident: 20498_CR50 publication-title: J. Mater. Chem. B doi: 10.1039/C2TB00195K – volume: 21 start-page: 125104 year: 2010 ident: 20498_CR31 publication-title: Nanotechnology doi: 10.1088/0957-4484/21/12/125104 – volume: 31 start-page: 1806733 year: 2019 ident: 20498_CR10 publication-title: Adv. Mater. doi: 10.1002/adma.201806733 – volume: 529 start-page: 190 year: 2016 ident: 20498_CR37 publication-title: Nature doi: 10.1038/nature16185 – volume: 89A start-page: 531 year: 2003 ident: 20498_CR51 publication-title: J. Biomed. Mater. Res. A doi: 10.1002/jbm.a.10098 – volume: 112 start-page: 25 year: 2018 ident: 20498_CR25 publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2017.11.018 – volume: 28 start-page: 2175 year: 2007 ident: 20498_CR36 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2007.01.019 – volume: 6 year: 2016 ident: 20498_CR35 publication-title: Sci. Rep. doi: 10.1038/srep22898 – volume: 8 start-page: 744 year: 1996 ident: 20498_CR12 publication-title: Chem. Mater. doi: 10.1021/cm950437j – volume: 52 start-page: 13458 year: 2013 ident: 20498_CR39 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201307825 – volume: 9 year: 2019 ident: 20498_CR6 publication-title: Sci. Rep. doi: 10.1038/s41598-018-36789-z – volume: 347 start-page: 1349 year: 2015 ident: 20498_CR23 publication-title: Science doi: 10.1126/science.aaa2397 – volume: 16 start-page: 1993 year: 2016 ident: 20498_CR21 publication-title: Lab Chip doi: 10.1039/C6LC00284F – ident: 20498_CR14 doi: 10.1002/adma.202002044 – volume: 32 start-page: 2001646 year: 2020 ident: 20498_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.202001646 – volume: 66 start-page: 297 year: 2012 ident: 20498_CR28 publication-title: J. Supercrit. Fluids doi: 10.1016/j.supflu.2012.02.026 – volume: 295 start-page: 2418 year: 2002 ident: 20498_CR9 publication-title: Science doi: 10.1126/science.1070821 – volume: 137 start-page: 13256 year: 2015 ident: 20498_CR38 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b08978 – volume: 19 start-page: 212 year: 2020 ident: 20498_CR8 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0525-y – volume: 1 start-page: 198 year: 2019 ident: 20498_CR1 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-018-0018-y – volume: 31 start-page: 1802922 year: 2019 ident: 20498_CR16 publication-title: Adv. Mater. doi: 10.1002/adma.201802922 – volume: 9 year: 2018 ident: 20498_CR26 publication-title: Nat. Commun. doi: 10.1038/s41467-018-06685-1 – volume: 540 start-page: 371 year: 2016 ident: 20498_CR15 publication-title: Nature doi: 10.1038/nature21003 – volume: 111 start-page: 2453 year: 2014 ident: 20498_CR29 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1315147111 – volume: 15 start-page: 1331 year: 2008 ident: 20498_CR47 publication-title: Tissue Eng. A doi: 10.1089/ten.tea.2008.0146 – volume: 19 start-page: 1993 year: 2009 ident: 20498_CR13 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200801916 – volume: 12 start-page: 14924 year: 2020 ident: 20498_CR52 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c01172 – volume: 16 start-page: 389 year: 1995 ident: 20498_CR18 publication-title: Biomaterials doi: 10.1016/0142-9612(95)98856-9 |
SSID | ssj0000391844 |
Score | 2.6669366 |
Snippet | 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer... 3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 247 |
SubjectTerms | 14/19 147/135 3-D printers 639/301/923/1028 639/301/930/1032 639/638/298/54/2295 Adsorption Biological properties Biomedical materials Cell adhesion Cell adhesion & migration Cell culture Fabrication Flexibility Humanities and Social Sciences Interfaces multidisciplinary Permeability Phase separation Polymerization Polymers Porosity Printing Science Science (multidisciplinary) Stability Surface chemistry Three dimensional printing |
SummonAdditionalLinks | – databaseName: DOAJ (Directory of Open Access Journals) dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFL1IQfBFrJ9jW4ngmw6dZJLJ5LFVSxH0yUJ9CvlkF5bM4q7C_vveZGbXrp8vPs5MAuHmJuecSXIC8Mox00VmRW0QPmtOI69VtF0tVDSNEd5xl_93fPzUXV7xD9fi-tZVX3lP2GgPPAbuVFoefGOlMlFyZaxSkUYmZfQiH6gtwgcx75aYKnNwq1C68OmUTNP2pyte5oSslhiyYpROe0hUDPt_xzJ_3Sz504ppAaKLB3B_YpDkbGz5IdwJ6SHcHe-U3DyCL-07kmvm7cxkiGSeZvlE33qxIcmkAek2an2yHBab_MeafJ-b7cN0IrNGlY797clyhghHVmF0Bx_SY7i6eP_57WU93Z9QO5Qla5w7uHfSeeVNUIo5RX2vYnBCKoksobfZt9EgRntLrYyu49EYVKfCRBH6JrZP4CANKTwDIh3jpkeuKFrOve1sYBHxj5o-NpErWgHdxlK7yVw833Gx0GWRu-31GH-N8dcl_hrrvN7VWY7WGn8tfZ67aFcy22KXF5gsekoW_a9kqeB428F6GqsrzbhExMbJrqng5e4zjrK8dGJSwF7JZSTrkBzJCp6O-bBrSdsiCUPMqEDuZcpeU_e_pPmsOHnL7N3T9BW82ebUj2b9ORTP_0cojuAey9tzGlpTegwH66_fwgnyq7V9UYbSDSNvIX4 priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t2UgozEDaLGjhPbJ8RrqZDgRKVysvxkV1olS3dB2n_fmcTZann0mNiOnJnxvGx_Q8hLz22buGtKC-azFCyJUifXlo1OtrJN8MJjvuPL1_b0THw-b85zwm2dj1VOOnFQ1KH3mCM_4UKCXgWRrN6sfpZYNQp3V3MJjZvkFgNLgxKuZp92ORZEP1dC5LsyVa1O1mLQDBgzcfCNIYDas0cDbP-_fM2_j0z-sW86mKPZPXI3-5H07cj4--RG7B6Q22Nlye1D8r3-QHEkHmqmfaKLbo73-jbLLe1s14PTDRE_XfXLLeat6e-FnR7yvcwSYnXgeqCrOdg5uo4jRnjfPSJns4_f3p-WuYpC6SE42YAGEcFLH3SwUWvuNQtKp-gbqSX4CsoheqMFSx0cczL5ViRrIUZtbGqiqlL9mBx0fRcPCZWeC6vAY2xqIYJrXeQJrCCzKlVJaFYQNtHS-AwxjpUulmbY6q6VGelvgP5moL-BMa92Y1YjwMa1vd8hi3Y9ERx7eNFf_DB5rRnpRAyVk9omKbR1WieWuJQpNHgHGz5yPDHY5BW7NlfyVZAXu2ZYa7iBYrsIXME-krfgIsmCPBnlYTeTugZXDCxHQeSepOxNdb-lW8wHPG-JCD6VKsjrSaaupvV_Uhxd_xdPyR2Ox28qVjJ2TA42F7_iM_CfNu75sEguAUTnGLw priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7riuBFfG_rKhG8aWMnnXSSo44ui6AnF9ZTyNMZGNLDzijMv7eSfsjoKnjs7lQTKqnUV0nVF4ReOmq6SC2vDbjPmpHIahVtV3MVTWO4d8zl_Y5Pn7vzC_bxkl8eITrVwpSk_UJpWZbpKTvszZYVk87BDgVQC5HPDXQzU7fnNL5Ft5j3VTLjuWRsrI9pWnmN6IEPKlT91-HLP9MkfzsrLS7o7C66M2JH_Hbo7T10FNJ9dGu4TXL_AH1t3-MsmROZcR_xKi1zLd9uvcfJpB6ANkT5eNOv93mvGv9YmelhrMWsIT6HkfZ4swTfhrdh4AXv00N0cfbhy-K8Hm9OqB0EJDtYNZh3wnnlTVCKOkW8VDE4LpQAfCBtZmw04J29JVZE17FoDMSl3EQeZBPbR-g49SmcICwcZUYCSuQtY952NtAIno8YGZvIFKkQmXSp3Ugrnm-3WOtyvN1KPehfg_510b8GmVezzGYg1fhn63d5iOaWmRC7vOivvulxgmhhWfCNFcpEwZSxSkUSqRDR81x3DT85nQZYj1a61ZQJ8NWwzDUVejF_BvvKhyYmBRiV3EbQDmCRqNDjYT7MPWlbgF_gLSokDmbKQVcPv6TVsnB4i8za08gKvZ7m1K9u_V0VT_6v-VN0m-YUnIbUhJyi493V9_AMMNTOPi9G8xOmBBaK priority: 102 providerName: Springer Nature |
Title | 3D printing of inherently nanoporous polymers via polymerization-induced phase separation |
URI | https://link.springer.com/article/10.1038/s41467-020-20498-1 https://www.ncbi.nlm.nih.gov/pubmed/33431911 https://www.proquest.com/docview/2476780300 https://www.proquest.com/docview/2477265127 https://pubmed.ncbi.nlm.nih.gov/PMC7801408 https://doaj.org/article/7b4ed0b79af749ab99f1f277fd511461 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiDfZXSojcYNA4jhxfECoW7asKu0KAZXKyfKTVqqS0nYR_feMnaSoUBCXRHFsyxrP-JuxPTMIPddEFo6oPJYAnzFNHY25U0WccycTmRtNtd_vuLouLsd0NMknB6hLd9QScLXXtPP5pMbL-asf3zZvQeDfNC7j5esVDeLuDSECCi9YRYfoGJCJ-VQOV626H1bmjINB4w-aoV4aA3ZnrR_N_m52sCqE9N-nh_55nfK3M9UAVcO76E6rY-J-wxT30IGt7qNbTdbJzQP0JXuHfUt_4RnXDs-qqff5W883uJJVDbSob1Z4Uc83fk8bf5_J7qP12YzBjgeOMHgxBQzEK9vED6-rh2g8vPg8uIzbDAuxBsNlDasLNZppw420nBPNU1NyZ3XOOAM9olQ-sqMEFDcqVczpgjopwX7NpcttmbjsETqq6so-QZhpQmUJ2mSeUWpUoSxxgJCpLF3iKE8jlHa0FLoNP-6zYMxFOAbPStHQXwD9RaC_gDYvtm0WTfCNf9Y-91O0rekDZ4eCevlVtHIomKLWJIpx6RjlUnHuUkcYcyb3_tnQyVk3waJjRkEoA0yH5TCJ0LPtb5BDf7giKwuz4uswUoD6xCL0uOGH7UiyDNQ0QJUIsR1O2Rnq7p9qNg2xvpmP7pOUEXrZ8dSvYf2dFCf_McxTdJv4-zkJCEJ6ho7Wyxv7FBSsteqhQzZh8CyH73vouN8ffRrB-_zi-sNHKB0Ug17YuugF6foJEh0mkQ |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi2BAkaCE0RNHCeODwgBpZrS5dRKw8l4ZUYaJUMzBc2f4jfyXpaphqW3HpPYlvP8vcX2Wwh5aZkuAjN5rEF9xjwNPJbBFHEug0507iy3eN5xdFyMTvnncT7eIL-GWBh0qxxkYiuoXW3xjHyHcQFyFSCZvJt_j7FqFN6uDiU0Olgc-OVP2LI1b_d3YX1fMbb36eTjKO6rCsQWjPUFcBR3VlgnnfZSMitTV8rgbS6kAN1ZGsxmqEFzOZMaEWzBg9awZ8t1yH2ZhAzGvUaug-JN0IVQjMXqTAezrZec97E5SVbuNLyVRLhHY2CLw4ZtTf-1ZQL-Zdv-7aL5xz1tq_727pDbvd1K33dAu0s2fHWP3OgqWS7vky_ZLsWe6ERN60Cn1QTjCBezJa10VYORX583dF7PlnhOTn9M9fDQx4HG08oByhydT0Cv0sZ3Ocnr6gE5vRL6PiSbVV35R4QKy7guwULNM86dKYxnAbRuqsuQBC7TiKQDLZXtU5pjZY2Zaq_Ws1J19FdAf9XSX0Gf16s-8y6hx6WtP-ASrVpiMu72RX32TfW8rYTh3iVGSB0El9pIGdLAhAgux5hvGGR7WGDVS4hGXeA5Ii9Wn4G38cJGVx5WBdsIVoBJJiKy1eFhNZMsAwSCpoqIWEPK2lTXv1TTSZs_XGDGoKSMyJsBUxfT-j8pHl_-F8_JzdHJ0aE63D8-eEJuMXT9SdI4TbfJ5uLs3D8F221hnrUMQ8nXq-bQ38-VVjM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k1KASPBCaKNHSeODwgBy6qlUHGg0nJy_WRXWiXbZgvav8avY5xXtTx66zGJbTnjmfnG9jwQem6oyj3VWawAPmNGPIuF13mcCa8SlVnDTDjv-HyY7x2xj9NsuoV-9bEwwa2y14mNoraVCWfkI8o46FVgyWTkO7eIL-PJm-VJHCpIhZvWvpxGyyIHbv0Ttm_16_0xrPULSicfvr7fi7sKA7EBw30F0sWs4cYKq5wQ1AhiC-GdybjggKOFDpkNFaCY1URzb3LmlYL9W6Z85orEpzDuFXSVpwCbIEt8yofznZB5vWCsi9NJ0mJUs0Yrhf0aBbscNm8bWNiUDPiXnfu3u-Yfd7YNFE5uoZudDYvftkx3G2258g661la1XN9F39IxDj2DQzWuPJ6XsxBTuFqscanKCgz-6qzGy2qxDmfm-Mdc9Q9dTGg8Ly1wnMXLGWAsrl2bn7wq76GjS6HvfbRdVqV7iDA3lKkCrNUsZczqXDvqAYGJKnzimSARIj0tpenSm4cqGwvZXLOnhWzpL4H-sqG_hD4vhz7LNrnHha3fhSUaWobE3M2L6vS77ORccs2cTTQXynMmlBbCE0859zYL8d8wyG6_wLLTFrU85-0IPRs-g5yHyxtVOliV0IbTHPiMR-hByw_DTNIUzEBArQjxDU7ZmOrml3I-a3KJ85A9KCki9KrnqfNp_Z8UOxf_xVN0HWRTfto_PHiEbtDgBZSQmJBdtL06PXOPwYxb6SeNvGB0fNkC-hvHgVpp |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printing+of+inherently+nanoporous+polymers+via+polymerization-induced+phase+separation&rft.jtitle=Nature+communications&rft.au=Dong%2C+Zheqin&rft.au=Cui%2C+Haijun&rft.au=Zhang%2C+Haodong&rft.au=Wang%2C+Fei&rft.date=2021-01-11&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=247&rft_id=info:doi/10.1038%2Fs41467-020-20498-1&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |