3D printing of inherently nanoporous polymers via polymerization-induced phase separation

3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects w...

Full description

Saved in:
Bibliographic Details
Published inNature communications Vol. 12; no. 1; pp. 247 - 12
Main Authors Dong, Zheqin, Cui, Haijun, Zhang, Haodong, Wang, Fei, Zhan, Xiang, Mayer, Frederik, Nestler, Britta, Wegener, Martin, Levkin, Pavel A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 11.01.2021
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text
ISSN2041-1723
2041-1723
DOI10.1038/s41467-020-20498-1

Cover

Loading…
Abstract 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications. 3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity.
AbstractList 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity.
3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity.
3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications. 3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are challenging. Here, the authors introduce a method combining advantages of 3D printing and polymerization-induced phase separation, which enables formation of 3D polymer structures with controllable inherent porosity.
3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.
3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer structures with geometrical features at the sub-micrometer scale. Porous structure at the sub-micrometer scale can render macroscopic objects with unique properties, including similarities with biological interfaces, permeability and extremely large surface area, imperative inter alia for adsorption, separation, sensing or biomedical applications. Here, we introduce a method combining advantages of 3D printing via digital light processing and polymerization-induced phase separation, which enables formation of 3D polymer structures of digitally defined macroscopic geometry with controllable inherent porosity at the sub-micrometer scale. We demonstrate the possibility to create 3D polymer structures of highly complex geometries and spatially controlled pore sizes from 10 nm to 1000 µm. Produced hierarchical polymers combining nanoporosity with micrometer-sized pores demonstrate improved adsorption performance due to better pore accessibility and favored cell adhesion and growth for 3D cell culture due to surface porosity. This method extends the scope of applications of 3D printing to hierarchical inherently porous 3D objects combining structural features ranging from 10 nm up to cm, making them available for a wide variety of applications.
ArticleNumber 247
Author Cui, Haijun
Wang, Fei
Mayer, Frederik
Zhang, Haodong
Zhan, Xiang
Nestler, Britta
Wegener, Martin
Levkin, Pavel A.
Dong, Zheqin
Author_xml – sequence: 1
  givenname: Zheqin
  orcidid: 0000-0003-3589-5433
  surname: Dong
  fullname: Dong, Zheqin
  organization: Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology
– sequence: 2
  givenname: Haijun
  surname: Cui
  fullname: Cui, Haijun
  organization: Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology
– sequence: 3
  givenname: Haodong
  surname: Zhang
  fullname: Zhang, Haodong
  organization: Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology
– sequence: 4
  givenname: Fei
  surname: Wang
  fullname: Wang, Fei
  organization: Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology
– sequence: 5
  givenname: Xiang
  orcidid: 0000-0002-2843-3604
  surname: Zhan
  fullname: Zhan, Xiang
  organization: Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology
– sequence: 6
  givenname: Frederik
  surname: Mayer
  fullname: Mayer, Frederik
  organization: Institute of Nanotechnology and Institute of Applied Physics, Karlsruhe Institute of Technology
– sequence: 7
  givenname: Britta
  surname: Nestler
  fullname: Nestler, Britta
  organization: Institute of Applied Materials - Computational Materials Scsience (IAM-CMS), Karlsruhe Institute of Technology
– sequence: 8
  givenname: Martin
  surname: Wegener
  fullname: Wegener, Martin
  organization: Institute of Nanotechnology and Institute of Applied Physics, Karlsruhe Institute of Technology
– sequence: 9
  givenname: Pavel A.
  surname: Levkin
  fullname: Levkin, Pavel A.
  email: levkin@kit.edu
  organization: Institute of Biological and Chemical Systems-Functional Molecular Systems (IBCS-FMS) Karlsruhe Institute of Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33431911$$D View this record in MEDLINE/PubMed
BookMark eNp9Ustu1DAUtVARLUN_gAWKxIZNwNd24niDhMqrUiU2sGBlOX7MeJSxg51UGr4ez6QtbRf1xte-5xzdx3mJTkIMFqHXgN8Dpt2HzIC1vMYE1wQz0dXwDJ2VCGrghJ7ci0_Rec5bXA4V0DH2Ap1SyigIgDP0m36uxuTD5MO6iq7yYWOTDdOwr4IKcYwpzrka47Df2ZSra69uH_6vmnwMtQ9m1tZU40ZlW2U7qnRMvELPnRqyPb-5V-jX1y8_L77XVz--XV58uqp1i9upppwZzbURRlkhiBZgOuGsbrjgAnDXYwpUEUZMDz13umVOKaCkUa6xHXZ0hS4XXRPVVpZedirtZVReHj9iWkuVJq8HK3nPrME9F8pxJlQvhANHOHemgTJNKFofF61x7nfW6DKIpIYHog8zwW_kOl5L3mFguCsC724EUvwz2zzJnc_aDoMKtgxSEsY5aRsgvEDfPoJu45xCGdUB1RZFWja2Qm_uV3RXyu0GC4AsAJ1izsm6OwhgeXCKXJwii1Pk0SnyQOoekbSfjlsrXfnhaSpdqPlgm7VN_8t-gvUPccrTcg
CitedBy_id crossref_primary_10_1002_adom_202203134
crossref_primary_10_1002_pen_26505
crossref_primary_10_1002_adhm_202102810
crossref_primary_10_1002_admt_202300611
crossref_primary_10_1016_j_talanta_2022_123237
crossref_primary_10_1002_mame_202300041
crossref_primary_10_1021_acsapm_1c01674
crossref_primary_10_1002_adfm_202403794
crossref_primary_10_1002_app_54694
crossref_primary_10_3390_mi13040642
crossref_primary_10_1021_acsaenm_4c00438
crossref_primary_10_1021_acsapm_1c00744
crossref_primary_10_1002_adfm_202300950
crossref_primary_10_1021_acsami_4c10858
crossref_primary_10_3390_membranes12111137
crossref_primary_10_1039_D3MH01812A
crossref_primary_10_1016_j_xcrp_2023_101504
crossref_primary_10_1002_anbr_202100068
crossref_primary_10_1002_adfm_202110580
crossref_primary_10_1016_j_cej_2024_155356
crossref_primary_10_1038_s41467_021_23170_4
crossref_primary_10_1039_D1TA03352B
crossref_primary_10_1016_j_mtchem_2023_101818
crossref_primary_10_1021_acsnano_3c05413
crossref_primary_10_1016_j_apmt_2025_102646
crossref_primary_10_1002_adma_202305099
crossref_primary_10_1016_j_aca_2024_342507
crossref_primary_10_1016_j_carpta_2022_100262
crossref_primary_10_1016_j_eurpolymj_2023_112298
crossref_primary_10_1016_j_eml_2024_102284
crossref_primary_10_1002_adma_202203878
crossref_primary_10_3390_micro4020016
crossref_primary_10_1007_s10853_023_09041_x
crossref_primary_10_3390_polym14235265
crossref_primary_10_1002_adfm_202423739
crossref_primary_10_1002_admt_202201268
crossref_primary_10_1039_D4BM00674G
crossref_primary_10_1002_adma_202307686
crossref_primary_10_1002_adfm_202213916
crossref_primary_10_1002_ange_202206272
crossref_primary_10_1002_mame_202300060
crossref_primary_10_1016_j_chroma_2024_464873
crossref_primary_10_1021_acsami_4c04719
crossref_primary_10_1002_marc_202400576
crossref_primary_10_1002_mame_202200497
crossref_primary_10_1016_j_mser_2023_100734
crossref_primary_10_1021_acs_analchem_4c05587
crossref_primary_10_1109_TDEI_2024_3382256
crossref_primary_10_1021_acs_macromol_2c01838
crossref_primary_10_1016_j_eurpolymj_2021_110901
crossref_primary_10_1002_sstr_202200314
crossref_primary_10_1016_j_seppur_2025_131669
crossref_primary_10_1039_D4MH01160K
crossref_primary_10_1016_j_progpolymsci_2023_101755
crossref_primary_10_1016_j_slast_2023_04_004
crossref_primary_10_1002_admt_202300801
crossref_primary_10_3390_ma15227903
crossref_primary_10_1002_admt_202300408
crossref_primary_10_1021_acs_biomac_3c00418
crossref_primary_10_1002_adma_202106068
crossref_primary_10_1021_acschemneuro_3c00166
crossref_primary_10_1002_smll_202403405
crossref_primary_10_1002_agt2_409
crossref_primary_10_1016_j_cej_2023_146968
crossref_primary_10_3390_foods11070913
crossref_primary_10_1021_acsami_3c03421
crossref_primary_10_1016_j_actbio_2021_12_007
crossref_primary_10_1021_acsami_3c02176
crossref_primary_10_1016_j_matt_2022_05_015
crossref_primary_10_1002_marc_202300236
crossref_primary_10_1021_acs_biomac_4c01212
crossref_primary_10_3390_polym16141992
crossref_primary_10_1002_marc_202400293
crossref_primary_10_1016_j_matdes_2024_113166
crossref_primary_10_1021_acsapm_3c01295
crossref_primary_10_1021_acsaenm_3c00558
crossref_primary_10_3390_polym13224007
crossref_primary_10_3390_ma14040800
crossref_primary_10_1016_j_progpolymsci_2023_101691
crossref_primary_10_1016_j_addma_2021_102405
crossref_primary_10_1002_pol_20240079
crossref_primary_10_1016_j_oceram_2023_100536
crossref_primary_10_1039_D1CS00871D
crossref_primary_10_1007_s12274_023_6330_6
crossref_primary_10_1021_acsapm_1c00262
crossref_primary_10_1080_07388551_2024_2344577
crossref_primary_10_1038_s41467_022_31644_2
crossref_primary_10_1016_j_addma_2025_104713
crossref_primary_10_1002_admt_202201857
crossref_primary_10_1021_acsapm_4c00261
crossref_primary_10_1038_s41467_022_31095_9
crossref_primary_10_15237_gida_GD21112
crossref_primary_10_1016_j_aca_2024_342429
crossref_primary_10_1039_D4SM01077A
crossref_primary_10_1557_s43579_021_00062_8
crossref_primary_10_1016_j_pnsc_2024_07_013
crossref_primary_10_1021_acsnano_1c10728
crossref_primary_10_1039_D4CC00466C
crossref_primary_10_1016_j_polymer_2024_126833
crossref_primary_10_1016_j_pmatsci_2023_101072
crossref_primary_10_1016_j_carbpol_2022_120296
crossref_primary_10_1002_adfm_202414242
crossref_primary_10_1016_j_polymer_2023_125880
crossref_primary_10_1016_j_cej_2022_140989
crossref_primary_10_1016_j_cej_2025_160913
crossref_primary_10_1002_adma_202314204
crossref_primary_10_34133_bmr_0146
crossref_primary_10_1002_adma_202400102
crossref_primary_10_1002_admt_202200492
crossref_primary_10_1021_acs_macromol_1c01208
crossref_primary_10_3389_frsus_2023_1093911
crossref_primary_10_3390_ma15062111
crossref_primary_10_1016_j_progpolymsci_2023_101743
crossref_primary_10_1002_adfm_202315035
crossref_primary_10_1016_j_cej_2023_144078
crossref_primary_10_1002_admt_202401178
crossref_primary_10_1002_adem_202401806
crossref_primary_10_1016_j_compositesb_2023_110926
crossref_primary_10_1016_j_addma_2023_103514
crossref_primary_10_1002_admt_202301400
crossref_primary_10_1016_j_cej_2024_157272
crossref_primary_10_1002_adma_202300903
crossref_primary_10_1002_anie_202206272
crossref_primary_10_1021_acsomega_4c07193
crossref_primary_10_1002_smtd_202301121
crossref_primary_10_1557_s43579_024_00594_9
crossref_primary_10_1021_acs_macromol_1c02129
crossref_primary_10_1002_adhm_202200977
crossref_primary_10_1021_acs_chemmater_4c03295
crossref_primary_10_1016_j_jmst_2022_01_042
crossref_primary_10_1002_smll_202311092
crossref_primary_10_3390_biomimetics8080598
crossref_primary_10_1039_D3SM01411H
crossref_primary_10_1007_s42247_024_00903_x
crossref_primary_10_1016_j_device_2023_100067
crossref_primary_10_1039_D4TB00759J
crossref_primary_10_1002_adfm_202406635
crossref_primary_10_1016_j_cej_2023_147972
crossref_primary_10_1021_acsmaterialsau_1c00017
crossref_primary_10_1021_jacs_3c12635
crossref_primary_10_1002_asia_202400568
crossref_primary_10_1016_j_copbio_2021_10_016
crossref_primary_10_1016_j_biopha_2024_117448
crossref_primary_10_1016_j_porgcoat_2024_108689
crossref_primary_10_1039_D4NR04636F
crossref_primary_10_1021_acsapm_3c02744
crossref_primary_10_1016_j_seppur_2024_128399
crossref_primary_10_1021_acs_macromol_3c01915
crossref_primary_10_1039_D2SM00485B
crossref_primary_10_1002_advs_202302756
crossref_primary_10_1002_admi_202400396
Cites_doi 10.1016/j.pmatsci.2016.02.002
10.1038/s41598-018-36789-z
10.1002/adma.201806733
10.1016/0014-3057(96)00045-6
10.1021/cm950437j
10.1364/OL.37.000710
10.1002/jbm.a.32061
10.1126/science.1226340
10.1038/s42254-018-0018-y
10.1002/anie.201307825
10.1038/srep22898
10.1002/adma.202001646
10.1038/s41570-019-0097-z
10.1002/marc.201800274
10.1016/j.actbio.2010.11.003
10.1016/0142-9612(95)98856-9
10.1002/adfm.201805372
10.1021/acs.chemrev.7b00074
10.1038/s41467-018-06685-1
10.1016/j.seppur.2009.10.004
10.1038/nmat3980
10.1002/adfm.200801916
10.1039/C9PY00999J
10.1016/j.biomaterials.2004.05.031
10.1021/acsami.7b11626
10.1039/C6LC00284F
10.1021/jacs.5b08978
10.1115/1.2823079
10.1126/science.1070821
10.1016/j.memsci.2011.11.051
10.1126/science.aaa2397
10.1038/nature16185
10.1016/j.biomaterials.2004.11.026
10.1089/ten.tea.2008.0146
10.1016/j.jmps.2017.11.018
10.1016/j.sna.2004.12.011
10.1002/mats.200500056
10.1088/0957-4484/21/12/125104
10.1002/jbm.a.10098
10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V
10.1016/j.supflu.2012.02.026
10.1038/nature21003
10.1016/j.biomaterials.2007.01.019
10.1039/C2TB00195K
10.1021/acsami.0c01172
10.1126/science.1221383
10.1002/adma.201802922
10.1016/j.chroma.2009.09.073
10.1038/s41563-019-0525-y
10.1073/pnas.1315147111
10.1002/adfm.201907795
10.1002/adma.202002044
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7X7
7XB
88E
8AO
8FD
8FE
8FG
8FH
8FI
8FJ
8FK
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
C1K
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M1P
M7P
P5Z
P62
P64
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
RC3
SOI
7X8
5PM
DOA
DOI 10.1038/s41467-020-20498-1
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology collection
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection (UHCL Subscription)
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
PML(ProQuest Medical Library)
Biological Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Oncogenes and Growth Factors Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Nucleic Acids Abstracts
SciTech Premium Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
Chemoreception Abstracts
Industrial and Applied Microbiology Abstracts (Microbiology A)
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Advanced Technologies & Aerospace Collection
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
Ecology Abstracts
ProQuest Hospital Collection (Alumni)
Biotechnology and BioEngineering Abstracts
Entomology Abstracts
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central
ProQuest Health & Medical Research Collection
Genetics Abstracts
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Bacteriology Abstracts (Microbiology B)
AIDS and Cancer Research Abstracts
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Immunology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database


MEDLINE - Academic
CrossRef
PubMed

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2041-1723
EndPage 12
ExternalDocumentID oai_doaj_org_article_7b4ed0b79af749ab99f1f277fd511461
PMC7801408
33431911
10_1038_s41467_020_20498_1
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
0R~
39C
3V.
53G
5VS
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
AAHBH
AAJSJ
ABUWG
ACGFO
ACGFS
ACIWK
ACMJI
ACPRK
ACSMW
ADBBV
ADFRT
ADMLS
ADRAZ
AENEX
AEUYN
AFKRA
AFRAH
AHMBA
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMTXH
AOIJS
ARAPS
ASPBG
AVWKF
AZFZN
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
DIK
EBLON
EBS
EE.
EMOBN
F5P
FEDTE
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HVGLF
HYE
HZ~
KQ8
LK8
M1P
M48
M7P
M~E
NAO
O9-
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RNT
RNTTT
RPM
SNYQT
SV3
TSG
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7T7
7TM
7TO
7XB
8FD
8FK
AARCD
AZQEC
C1K
DWQXO
FR3
GNUQQ
H94
K9.
P64
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
RC3
SOI
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-374dc7cd9dae992c91d89fec57979108b0313a242db1b7fc64faa1325af5e80f3
IEDL.DBID M48
ISSN 2041-1723
IngestDate Wed Aug 27 01:32:04 EDT 2025
Thu Aug 21 13:23:59 EDT 2025
Fri Jul 11 10:58:45 EDT 2025
Wed Aug 13 03:26:21 EDT 2025
Wed Feb 19 02:30:03 EST 2025
Tue Jul 01 04:17:12 EDT 2025
Thu Apr 24 23:06:36 EDT 2025
Fri Feb 21 02:39:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-374dc7cd9dae992c91d89fec57979108b0313a242db1b7fc64faa1325af5e80f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2843-3604
0000-0003-3589-5433
OpenAccessLink https://doaj.org/article/7b4ed0b79af749ab99f1f277fd511461
PMID 33431911
PQID 2476780300
PQPubID 546298
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_7b4ed0b79af749ab99f1f277fd511461
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7801408
proquest_miscellaneous_2477265127
proquest_journals_2476780300
pubmed_primary_33431911
crossref_primary_10_1038_s41467_020_20498_1
crossref_citationtrail_10_1038_s41467_020_20498_1
springer_journals_10_1038_s41467_020_20498_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-11
PublicationDateYYYYMMDD 2021-01-11
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-11
  day: 11
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature communications
PublicationTitleAbbrev Nat Commun
PublicationTitleAlternate Nat Commun
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Nature Portfolio
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
– name: Nature Portfolio
References Dalby, Gadegaard, Oreffo (CR4) 2014; 13
Warner (CR45) 2019; 10
Wang (CR10) 2019; 31
Notario, Pinto, Rodriguez-Perez (CR3) 2016; 78-79
Guadarrama Bello, Fouillen, Badia, Nanci (CR52) 2020; 12
Popat (CR48) 2005; 26
Waheed (CR21) 2016; 16
Moore, Barbera, Masania, Studart (CR8) 2020; 19
Sobral, Caridade, Sousa, Mano, Reis (CR34) 2011; 7
Leong, Chian, Mhaisalkar, Ong, Ratner (CR49) 2009; 89A
O’Brien, Bowman (CR24) 2006; 15
Woo, Chen, Ma (CR51) 2003; 89A
Sultan, Abdelhamid, Zou, Mathew (CR43) 2019; 29
CR5
Han, Mapili, Chen, Roy (CR46) 2008; 130
Kadic, Milton, van Hecke, Wegener (CR1) 2019; 1
Di Luca (CR35) 2016; 6
Sun, Ueno, Misawa (CR27) 2012; 37
Kunzler, Drobek, Schuler, Spencer (CR36) 2007; 28
Zhang, Ma, Liao, Breedveld, Lively (CR7) 2018; 39
Tumbleston (CR23) 2015; 347
Yin, Ding, Zhai, Tan, Yin (CR26) 2018; 9
Quinn, Pathak, Heller, Hubbell (CR18) 1995; 16
Encinas, Lissi, Martinez (CR33) 1996; 32
Bauer, Hengsbach, Tesari, Schwaiger, Kraft (CR29) 2014; 111
CR14
Ligon, Liska, Stampfl, Gurr, Mülhaupt (CR2) 2017; 117
Alison (CR6) 2019; 9
Levkin, Svec, Fréchet (CR13) 2009; 19
García-González, Camino-Rey, Alnaief, Zetzl, Smirnova (CR28) 2012; 66
Hartings, Ahmed (CR41) 2019; 3
Wang, Feng, Leach, Wu, Jiang (CR50) 2013; 1
Buback, Kurz (CR17) 1998; 199
Mai (CR38) 2015; 137
Yue (CR39) 2013; 52
Truby, Lewis (CR15) 2016; 540
Svec (CR32) 2010; 1217
Chung, Son, Min (CR31) 2010; 21
Viklund, Svec, Fréchet, Irgum (CR12) 1996; 8
Belkas, Munro, Shoichet, Johnston, Midha (CR19) 2005; 26
Sun, Fang, Wu, Zhang (CR22) 2005; 121
Alsbaiee (CR37) 2016; 529
Campillo-Fernández (CR47) 2008; 15
Wang (CR20) 2020; 32
Wu (CR16) 2019; 31
Whitesides, Grzybowski (CR9) 2002; 295
Ando, Akamatsu, Nakao, Fujita (CR30) 2012; 392-393
Rezaei, Webley (CR40) 2010; 70
Thakkar, Eastman, Al-Naddaf, Rownaghi, Rezaei (CR42) 2017; 9
Derby (CR44) 2012; 338
Seo, Hillmyer (CR11) 2012; 336
Wu (CR25) 2018; 112
CA García-González (20498_CR28) 2012; 66
PA Levkin (20498_CR13) 2009; 19
C Sun (20498_CR22) 2005; 121
SC Ligon (20498_CR2) 2017; 117
JJ Warner (20498_CR45) 2019; 10
K Wang (20498_CR20) 2020; 32
MR Hartings (20498_CR41) 2019; 3
MF Leong (20498_CR49) 2009; 89A
F Zhang (20498_CR7) 2018; 39
H Yin (20498_CR26) 2018; 9
JS Belkas (20498_CR19) 2005; 26
F Wang (20498_CR10) 2019; 31
RL Truby (20498_CR15) 2016; 540
S Waheed (20498_CR21) 2016; 16
Q Sun (20498_CR27) 2012; 37
T Ando (20498_CR30) 2012; 392-393
B Derby (20498_CR44) 2012; 338
GM Whitesides (20498_CR9) 2002; 295
DG Moore (20498_CR8) 2020; 19
MV Encinas (20498_CR33) 1996; 32
Y Yue (20498_CR39) 2013; 52
SH Chung (20498_CR31) 2010; 21
CP Quinn (20498_CR18) 1995; 16
JM Sobral (20498_CR34) 2011; 7
TP Kunzler (20498_CR36) 2007; 28
L Alison (20498_CR6) 2019; 9
KM Woo (20498_CR51) 2003; 89A
H Thakkar (20498_CR42) 2017; 9
MJ Dalby (20498_CR4) 2014; 13
B Notario (20498_CR3) 2016; 78-79
F Rezaei (20498_CR40) 2010; 70
T Wang (20498_CR50) 2013; 1
J Wu (20498_CR16) 2019; 31
20498_CR5
AJ Campillo-Fernández (20498_CR47) 2008; 15
M Kadic (20498_CR1) 2019; 1
AK O’Brien (20498_CR24) 2006; 15
W Mai (20498_CR38) 2015; 137
20498_CR14
A Di Luca (20498_CR35) 2016; 6
J Wu (20498_CR25) 2018; 112
D Guadarrama Bello (20498_CR52) 2020; 12
JR Tumbleston (20498_CR23) 2015; 347
L-H Han (20498_CR46) 2008; 130
C Viklund (20498_CR12) 1996; 8
M Seo (20498_CR11) 2012; 336
S Sultan (20498_CR43) 2019; 29
KC Popat (20498_CR48) 2005; 26
F Svec (20498_CR32) 2010; 1217
J Bauer (20498_CR29) 2014; 111
M Buback (20498_CR17) 1998; 199
A Alsbaiee (20498_CR37) 2016; 529
References_xml – volume: 78-79
  start-page: 93
  year: 2016
  end-page: 139
  ident: CR3
  article-title: Nanoporous polymeric materials: a new class of materials with enhanced properties
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2016.02.002
– volume: 9
  year: 2019
  ident: CR6
  article-title: 3D printing of sacrificial templates into hierarchical porous materials
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36789-z
– volume: 31
  start-page: 1806733
  year: 2019
  ident: CR10
  article-title: Progress report on phase separation in polymer solutions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806733
– volume: 32
  start-page: 1151
  year: 1996
  end-page: 1154
  ident: CR33
  article-title: Polymerization of 2-hydroxyethyl methacrylate induced by azo compounds: Solvent effects
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(96)00045-6
– volume: 8
  start-page: 744
  year: 1996
  end-page: 750
  ident: CR12
  article-title: Monolithic, “molded”, porous materials with high flow characteristics for separations, catalysis, or solid-phase chemistry: control of porous properties during polymerization
  publication-title: Chem. Mater.
  doi: 10.1021/cm950437j
– volume: 37
  start-page: 710
  year: 2012
  end-page: 712
  ident: CR27
  article-title: In situ investigation of the shrinkage of photopolymerized micro/nanostructures: The effect of the drying process
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000710
– volume: 89A
  start-page: 1040
  year: 2009
  end-page: 1048
  ident: CR49
  article-title: Effect of electrospun poly(d,l-lactide) fibrous scaffold with nanoporous surface on attachment of porcine esophageal epithelial cells and protein adsorption
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32061
– volume: 338
  start-page: 921
  year: 2012
  ident: CR44
  article-title: Printing and prototyping of tissues and scaffolds
  publication-title: Science
  doi: 10.1126/science.1226340
– volume: 1
  start-page: 198
  year: 2019
  end-page: 210
  ident: CR1
  article-title: 3D metamaterials
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0018-y
– volume: 52
  start-page: 13458
  year: 2013
  end-page: 13462
  ident: CR39
  article-title: Seawater uranium sorbents: Preparation from a mesoporous copolymer initiator by atom-transfer radical polymerization
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201307825
– volume: 6
  year: 2016
  ident: CR35
  article-title: Gradients in pore size enhance the osteogenic differentiation of human mesenchymal stromal cells in three-dimensional scaffolds
  publication-title: Sci. Rep.
  doi: 10.1038/srep22898
– volume: 32
  start-page: 2001646
  year: 2020
  ident: CR20
  article-title: 3D printing of viscoelastic suspensions via digital light synthesis for tough nanoparticle–elastomer composites
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001646
– volume: 3
  start-page: 305
  year: 2019
  end-page: 314
  ident: CR41
  article-title: Chemistry from 3D printed objects
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0097-z
– volume: 39
  start-page: 1800274
  year: 2018
  ident: CR7
  article-title: Solution-based 3D printing of polymers of intrinsic microporosity
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800274
– volume: 7
  start-page: 1009
  year: 2011
  end-page: 1018
  ident: CR34
  article-title: Three-dimensional plotted scaffolds with controlled pore size gradients: effect of scaffold geometry on mechanical performance and cell seeding efficiency
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.11.003
– volume: 16
  start-page: 389
  year: 1995
  end-page: 396
  ident: CR18
  article-title: Photo-crosslinked copolymers of 2-hydroxyethyl methacrylate, poly(ethylene glycol) tetra-acrylate and ethylene dimethacrylate for improving biocompatibility of biosensors
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)98856-9
– volume: 29
  start-page: 1805372
  year: 2019
  ident: CR43
  article-title: Cellomof: Nanocellulose enabled 3D printing of metal–organic frameworks
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805372
– volume: 117
  start-page: 10212
  year: 2017
  end-page: 10290
  ident: CR2
  article-title: Polymers for 3D printing and customized additive manufacturing
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00074
– volume: 9
  year: 2018
  ident: CR26
  article-title: Orthogonal programming of heterogeneous micro-mechano-environments and geometries in three-dimensional bio-stereolithography
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06685-1
– volume: 70
  start-page: 243
  year: 2010
  end-page: 256
  ident: CR40
  article-title: Structured adsorbents in gas separation processes
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.10.004
– ident: CR5
– volume: 13
  start-page: 558
  year: 2014
  end-page: 569
  ident: CR4
  article-title: Harnessing nanotopography and integrin–matrix interactions to influence stem cell fate
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3980
– volume: 19
  start-page: 1993
  year: 2009
  end-page: 1998
  ident: CR13
  article-title: Porous polymer coatings: a versatile approach to superhydrophobic surfaces
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801916
– volume: 10
  start-page: 4665
  year: 2019
  end-page: 4674
  ident: CR45
  article-title: 3D printable non-isocyanate polyurethanes with tunable material properties
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00999J
– volume: 26
  start-page: 1741
  year: 2005
  end-page: 1749
  ident: CR19
  article-title: Long-term in vivo biomechanical properties and biocompatibility of poly(2-hydroxyethyl methacrylate-co-methyl methacrylate) nerve conduits
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.05.031
– volume: 9
  start-page: 35908
  year: 2017
  end-page: 35916
  ident: CR42
  article-title: 3D-printed metal–organic framework monoliths for gas adsorption processes
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11626
– volume: 16
  start-page: 1993
  year: 2016
  end-page: 2013
  ident: CR21
  article-title: 3D printed microfluidic devices: enablers and barriers
  publication-title: Lab Chip
  doi: 10.1039/C6LC00284F
– volume: 137
  start-page: 13256
  year: 2015
  end-page: 13259
  ident: CR38
  article-title: Water-dispersible, responsive, and carbonizable hairy microporous polymeric nanospheres
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08978
– volume: 130
  start-page: 021005
  year: 2008
  ident: CR46
  article-title: Projection microfabrication of three-dimensional scaffolds for tissue engineering
  publication-title: J. Manuf. Sci. E
  doi: 10.1115/1.2823079
– volume: 295
  start-page: 2418
  year: 2002
  ident: CR9
  article-title: Self-assembly at all scales
  publication-title: Science
  doi: 10.1126/science.1070821
– volume: 392-393
  start-page: 48
  year: 2012
  end-page: 57
  ident: CR30
  article-title: Simulation of fouling and backwash dynamics in dead-end microfiltration: effect of pore size
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.11.051
– volume: 347
  start-page: 1349
  year: 2015
  ident: CR23
  article-title: Continuous liquid interface production of 3D objects
  publication-title: Science
  doi: 10.1126/science.aaa2397
– volume: 529
  start-page: 190
  year: 2016
  end-page: 194
  ident: CR37
  article-title: Rapid removal of organic micropollutants from water by a porous β-cyclodextrin polymer
  publication-title: Nature
  doi: 10.1038/nature16185
– ident: CR14
– volume: 26
  start-page: 4516
  year: 2005
  end-page: 4522
  ident: CR48
  article-title: Influence of nanoporous alumina membranes on long-term osteoblast response
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.11.026
– volume: 15
  start-page: 1331
  year: 2008
  end-page: 1341
  ident: CR47
  article-title: Analysis of the biological response of endothelial and fibroblast cells cultured on synthetic scaffolds with various hydrophilic/hydrophobic ratios: Influence of fibronectin adsorption and conformation
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2008.0146
– volume: 112
  start-page: 25
  year: 2018
  end-page: 49
  ident: CR25
  article-title: Evolution of material properties during free radical photopolymerization
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.11.018
– volume: 121
  start-page: 113
  year: 2005
  end-page: 120
  ident: CR22
  article-title: Projection micro-stereolithography using digital micro-mirror dynamic mask
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2004.12.011
– volume: 15
  start-page: 176
  year: 2006
  end-page: 182
  ident: CR24
  article-title: Modeling the effect of oxygen on photopolymerization kinetics
  publication-title: Macromol. Theory Simul.
  doi: 10.1002/mats.200500056
– volume: 21
  start-page: 125104
  year: 2010
  ident: CR31
  article-title: The nanostructure effect on the adhesion and growth rates of epithelial cells with well-defined nanoporous alumina substrates
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/12/125104
– volume: 89A
  start-page: 531
  year: 2003
  end-page: 537
  ident: CR51
  article-title: Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.10098
– volume: 199
  start-page: 2301
  year: 1998
  end-page: 2310
  ident: CR17
  article-title: Free-radical propagation rate coefficients for cyclohexyl methacrylate, glycidyl methacrylate and 2-hydroxyethyl methacrylate homopolymerizations
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V
– volume: 66
  start-page: 297
  year: 2012
  end-page: 306
  ident: CR28
  article-title: Supercritical drying of aerogels using CO2: Effect of extraction time on the end material textural properties
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2012.02.026
– volume: 540
  start-page: 371
  year: 2016
  end-page: 378
  ident: CR15
  article-title: Printing soft matter in three dimensions
  publication-title: Nature
  doi: 10.1038/nature21003
– volume: 28
  start-page: 2175
  year: 2007
  end-page: 2182
  ident: CR36
  article-title: Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.01.019
– volume: 1
  start-page: 339
  year: 2013
  end-page: 346
  ident: CR50
  article-title: Nanoporous fibers of type-i collagen coated poly(l-lactic acid) for enhancing primary hepatocyte growth and function
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00195K
– volume: 12
  start-page: 14924
  year: 2020
  end-page: 14932
  ident: CR52
  article-title: Nanoporosity stimulates cell spreading and focal adhesion formation in cells with mutated paxillin
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01172
– volume: 336
  start-page: 1422
  year: 2012
  ident: CR11
  article-title: Reticulated nanoporous polymers by controlled polymerization-induced microphase separation
  publication-title: Science
  doi: 10.1126/science.1221383
– volume: 31
  start-page: 1802922
  year: 2019
  ident: CR16
  article-title: Porous polymers as multifunctional material platforms toward task-specific applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802922
– volume: 1217
  start-page: 902
  year: 2010
  end-page: 924
  ident: CR32
  article-title: Porous polymer monoliths: Amazingly wide variety of techniques enabling their preparation
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.09.073
– volume: 19
  start-page: 212
  year: 2020
  end-page: 217
  ident: CR8
  article-title: Three-dimensional printing of multicomponent glasses using phase-separating resins
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0525-y
– volume: 111
  start-page: 2453
  year: 2014
  ident: CR29
  article-title: High-strength cellular ceramic composites with 3D microarchitecture
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1315147111
– volume: 9
  start-page: 35908
  year: 2017
  ident: 20498_CR42
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b11626
– volume: 121
  start-page: 113
  year: 2005
  ident: 20498_CR22
  publication-title: Sens. Actuators, A
  doi: 10.1016/j.sna.2004.12.011
– volume: 70
  start-page: 243
  year: 2010
  ident: 20498_CR40
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2009.10.004
– volume: 26
  start-page: 1741
  year: 2005
  ident: 20498_CR19
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.05.031
– volume: 392-393
  start-page: 48
  year: 2012
  ident: 20498_CR30
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2011.11.051
– volume: 26
  start-page: 4516
  year: 2005
  ident: 20498_CR48
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2004.11.026
– volume: 336
  start-page: 1422
  year: 2012
  ident: 20498_CR11
  publication-title: Science
  doi: 10.1126/science.1221383
– volume: 78-79
  start-page: 93
  year: 2016
  ident: 20498_CR3
  publication-title: Prog. Mater. Sci.
  doi: 10.1016/j.pmatsci.2016.02.002
– volume: 10
  start-page: 4665
  year: 2019
  ident: 20498_CR45
  publication-title: Polym. Chem.
  doi: 10.1039/C9PY00999J
– volume: 130
  start-page: 021005
  year: 2008
  ident: 20498_CR46
  publication-title: J. Manuf. Sci. E
  doi: 10.1115/1.2823079
– volume: 1217
  start-page: 902
  year: 2010
  ident: 20498_CR32
  publication-title: J. Chromatogr. A
  doi: 10.1016/j.chroma.2009.09.073
– volume: 89A
  start-page: 1040
  year: 2009
  ident: 20498_CR49
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.32061
– volume: 117
  start-page: 10212
  year: 2017
  ident: 20498_CR2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00074
– volume: 15
  start-page: 176
  year: 2006
  ident: 20498_CR24
  publication-title: Macromol. Theory Simul.
  doi: 10.1002/mats.200500056
– volume: 199
  start-page: 2301
  year: 1998
  ident: 20498_CR17
  publication-title: Macromol. Chem. Phys.
  doi: 10.1002/(SICI)1521-3935(19981001)199:10<2301::AID-MACP2301>3.0.CO;2-V
– volume: 3
  start-page: 305
  year: 2019
  ident: 20498_CR41
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-019-0097-z
– volume: 39
  start-page: 1800274
  year: 2018
  ident: 20498_CR7
  publication-title: Macromol. Rapid Commun.
  doi: 10.1002/marc.201800274
– volume: 338
  start-page: 921
  year: 2012
  ident: 20498_CR44
  publication-title: Science
  doi: 10.1126/science.1226340
– ident: 20498_CR5
  doi: 10.1002/adfm.201907795
– volume: 37
  start-page: 710
  year: 2012
  ident: 20498_CR27
  publication-title: Opt. Lett.
  doi: 10.1364/OL.37.000710
– volume: 29
  start-page: 1805372
  year: 2019
  ident: 20498_CR43
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201805372
– volume: 32
  start-page: 1151
  year: 1996
  ident: 20498_CR33
  publication-title: Eur. Polym. J.
  doi: 10.1016/0014-3057(96)00045-6
– volume: 7
  start-page: 1009
  year: 2011
  ident: 20498_CR34
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.11.003
– volume: 13
  start-page: 558
  year: 2014
  ident: 20498_CR4
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3980
– volume: 1
  start-page: 339
  year: 2013
  ident: 20498_CR50
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C2TB00195K
– volume: 21
  start-page: 125104
  year: 2010
  ident: 20498_CR31
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/12/125104
– volume: 31
  start-page: 1806733
  year: 2019
  ident: 20498_CR10
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201806733
– volume: 529
  start-page: 190
  year: 2016
  ident: 20498_CR37
  publication-title: Nature
  doi: 10.1038/nature16185
– volume: 89A
  start-page: 531
  year: 2003
  ident: 20498_CR51
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/jbm.a.10098
– volume: 112
  start-page: 25
  year: 2018
  ident: 20498_CR25
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2017.11.018
– volume: 28
  start-page: 2175
  year: 2007
  ident: 20498_CR36
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2007.01.019
– volume: 6
  year: 2016
  ident: 20498_CR35
  publication-title: Sci. Rep.
  doi: 10.1038/srep22898
– volume: 8
  start-page: 744
  year: 1996
  ident: 20498_CR12
  publication-title: Chem. Mater.
  doi: 10.1021/cm950437j
– volume: 52
  start-page: 13458
  year: 2013
  ident: 20498_CR39
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201307825
– volume: 9
  year: 2019
  ident: 20498_CR6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-36789-z
– volume: 347
  start-page: 1349
  year: 2015
  ident: 20498_CR23
  publication-title: Science
  doi: 10.1126/science.aaa2397
– volume: 16
  start-page: 1993
  year: 2016
  ident: 20498_CR21
  publication-title: Lab Chip
  doi: 10.1039/C6LC00284F
– ident: 20498_CR14
  doi: 10.1002/adma.202002044
– volume: 32
  start-page: 2001646
  year: 2020
  ident: 20498_CR20
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202001646
– volume: 66
  start-page: 297
  year: 2012
  ident: 20498_CR28
  publication-title: J. Supercrit. Fluids
  doi: 10.1016/j.supflu.2012.02.026
– volume: 295
  start-page: 2418
  year: 2002
  ident: 20498_CR9
  publication-title: Science
  doi: 10.1126/science.1070821
– volume: 137
  start-page: 13256
  year: 2015
  ident: 20498_CR38
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b08978
– volume: 19
  start-page: 212
  year: 2020
  ident: 20498_CR8
  publication-title: Nat. Mater.
  doi: 10.1038/s41563-019-0525-y
– volume: 1
  start-page: 198
  year: 2019
  ident: 20498_CR1
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-018-0018-y
– volume: 31
  start-page: 1802922
  year: 2019
  ident: 20498_CR16
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201802922
– volume: 9
  year: 2018
  ident: 20498_CR26
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-06685-1
– volume: 540
  start-page: 371
  year: 2016
  ident: 20498_CR15
  publication-title: Nature
  doi: 10.1038/nature21003
– volume: 111
  start-page: 2453
  year: 2014
  ident: 20498_CR29
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1315147111
– volume: 15
  start-page: 1331
  year: 2008
  ident: 20498_CR47
  publication-title: Tissue Eng. A
  doi: 10.1089/ten.tea.2008.0146
– volume: 19
  start-page: 1993
  year: 2009
  ident: 20498_CR13
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.200801916
– volume: 12
  start-page: 14924
  year: 2020
  ident: 20498_CR52
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.0c01172
– volume: 16
  start-page: 389
  year: 1995
  ident: 20498_CR18
  publication-title: Biomaterials
  doi: 10.1016/0142-9612(95)98856-9
SSID ssj0000391844
Score 2.6669366
Snippet 3D printing offers enormous flexibility in fabrication of polymer objects with complex geometries. However, it is not suitable for fabricating large polymer...
3D printing offers flexibility in fabrication of polymer objects but fabrication of large polymer structures with micrometer-sized geometrical features are...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 247
SubjectTerms 14/19
147/135
3-D printers
639/301/923/1028
639/301/930/1032
639/638/298/54/2295
Adsorption
Biological properties
Biomedical materials
Cell adhesion
Cell adhesion & migration
Cell culture
Fabrication
Flexibility
Humanities and Social Sciences
Interfaces
multidisciplinary
Permeability
Phase separation
Polymerization
Polymers
Porosity
Printing
Science
Science (multidisciplinary)
Stability
Surface chemistry
Three dimensional printing
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1daxQxFL1IQfBFrJ9jW4ngmw6dZJLJ5LFVSxH0yUJ9CvlkF5bM4q7C_vveZGbXrp8vPs5MAuHmJuecSXIC8Mox00VmRW0QPmtOI69VtF0tVDSNEd5xl_93fPzUXV7xD9fi-tZVX3lP2GgPPAbuVFoefGOlMlFyZaxSkUYmZfQiH6gtwgcx75aYKnNwq1C68OmUTNP2pyte5oSslhiyYpROe0hUDPt_xzJ_3Sz504ppAaKLB3B_YpDkbGz5IdwJ6SHcHe-U3DyCL-07kmvm7cxkiGSeZvlE33qxIcmkAek2an2yHBab_MeafJ-b7cN0IrNGlY797clyhghHVmF0Bx_SY7i6eP_57WU93Z9QO5Qla5w7uHfSeeVNUIo5RX2vYnBCKoksobfZt9EgRntLrYyu49EYVKfCRBH6JrZP4CANKTwDIh3jpkeuKFrOve1sYBHxj5o-NpErWgHdxlK7yVw833Gx0GWRu-31GH-N8dcl_hrrvN7VWY7WGn8tfZ67aFcy22KXF5gsekoW_a9kqeB428F6GqsrzbhExMbJrqng5e4zjrK8dGJSwF7JZSTrkBzJCp6O-bBrSdsiCUPMqEDuZcpeU_e_pPmsOHnL7N3T9BW82ebUj2b9ORTP_0cojuAey9tzGlpTegwH66_fwgnyq7V9UYbSDSNvIX4
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4t2UgozEDaLGjhPbJ8RrqZDgRKVysvxkV1olS3dB2n_fmcTZann0mNiOnJnxvGx_Q8hLz22buGtKC-azFCyJUifXlo1OtrJN8MJjvuPL1_b0THw-b85zwm2dj1VOOnFQ1KH3mCM_4UKCXgWRrN6sfpZYNQp3V3MJjZvkFgNLgxKuZp92ORZEP1dC5LsyVa1O1mLQDBgzcfCNIYDas0cDbP-_fM2_j0z-sW86mKPZPXI3-5H07cj4--RG7B6Q22Nlye1D8r3-QHEkHmqmfaKLbo73-jbLLe1s14PTDRE_XfXLLeat6e-FnR7yvcwSYnXgeqCrOdg5uo4jRnjfPSJns4_f3p-WuYpC6SE42YAGEcFLH3SwUWvuNQtKp-gbqSX4CsoheqMFSx0cczL5ViRrIUZtbGqiqlL9mBx0fRcPCZWeC6vAY2xqIYJrXeQJrCCzKlVJaFYQNtHS-AwxjpUulmbY6q6VGelvgP5moL-BMa92Y1YjwMa1vd8hi3Y9ERx7eNFf_DB5rRnpRAyVk9omKbR1WieWuJQpNHgHGz5yPDHY5BW7NlfyVZAXu2ZYa7iBYrsIXME-krfgIsmCPBnlYTeTugZXDCxHQeSepOxNdb-lW8wHPG-JCD6VKsjrSaaupvV_Uhxd_xdPyR2Ox28qVjJ2TA42F7_iM_CfNu75sEguAUTnGLw
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C6C
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LixQxEA7riuBFfG_rKhG8aWMnnXSSo44ui6AnF9ZTyNMZGNLDzijMv7eSfsjoKnjs7lQTKqnUV0nVF4ReOmq6SC2vDbjPmpHIahVtV3MVTWO4d8zl_Y5Pn7vzC_bxkl8eITrVwpSk_UJpWZbpKTvszZYVk87BDgVQC5HPDXQzU7fnNL5Ft5j3VTLjuWRsrI9pWnmN6IEPKlT91-HLP9MkfzsrLS7o7C66M2JH_Hbo7T10FNJ9dGu4TXL_AH1t3-MsmROZcR_xKi1zLd9uvcfJpB6ANkT5eNOv93mvGv9YmelhrMWsIT6HkfZ4swTfhrdh4AXv00N0cfbhy-K8Hm9OqB0EJDtYNZh3wnnlTVCKOkW8VDE4LpQAfCBtZmw04J29JVZE17FoDMSl3EQeZBPbR-g49SmcICwcZUYCSuQtY952NtAIno8YGZvIFKkQmXSp3Ugrnm-3WOtyvN1KPehfg_510b8GmVezzGYg1fhn63d5iOaWmRC7vOivvulxgmhhWfCNFcpEwZSxSkUSqRDR81x3DT85nQZYj1a61ZQJ8NWwzDUVejF_BvvKhyYmBRiV3EbQDmCRqNDjYT7MPWlbgF_gLSokDmbKQVcPv6TVsnB4i8za08gKvZ7m1K9u_V0VT_6v-VN0m-YUnIbUhJyi493V9_AMMNTOPi9G8xOmBBaK
  priority: 102
  providerName: Springer Nature
Title 3D printing of inherently nanoporous polymers via polymerization-induced phase separation
URI https://link.springer.com/article/10.1038/s41467-020-20498-1
https://www.ncbi.nlm.nih.gov/pubmed/33431911
https://www.proquest.com/docview/2476780300
https://www.proquest.com/docview/2477265127
https://pubmed.ncbi.nlm.nih.gov/PMC7801408
https://doaj.org/article/7b4ed0b79af749ab99f1f277fd511461
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELb2ISQuiDfZXSojcYNA4jhxfECoW7asKu0KAZXKyfKTVqqS0nYR_feMnaSoUBCXRHFsyxrP-JuxPTMIPddEFo6oPJYAnzFNHY25U0WccycTmRtNtd_vuLouLsd0NMknB6hLd9QScLXXtPP5pMbL-asf3zZvQeDfNC7j5esVDeLuDSECCi9YRYfoGJCJ-VQOV626H1bmjINB4w-aoV4aA3ZnrR_N_m52sCqE9N-nh_55nfK3M9UAVcO76E6rY-J-wxT30IGt7qNbTdbJzQP0JXuHfUt_4RnXDs-qqff5W883uJJVDbSob1Z4Uc83fk8bf5_J7qP12YzBjgeOMHgxBQzEK9vED6-rh2g8vPg8uIzbDAuxBsNlDasLNZppw420nBPNU1NyZ3XOOAM9olQ-sqMEFDcqVczpgjopwX7NpcttmbjsETqq6so-QZhpQmUJ2mSeUWpUoSxxgJCpLF3iKE8jlHa0FLoNP-6zYMxFOAbPStHQXwD9RaC_gDYvtm0WTfCNf9Y-91O0rekDZ4eCevlVtHIomKLWJIpx6RjlUnHuUkcYcyb3_tnQyVk3waJjRkEoA0yH5TCJ0LPtb5BDf7giKwuz4uswUoD6xCL0uOGH7UiyDNQ0QJUIsR1O2Rnq7p9qNg2xvpmP7pOUEXrZ8dSvYf2dFCf_McxTdJv4-zkJCEJ6ho7Wyxv7FBSsteqhQzZh8CyH73vouN8ffRrB-_zi-sNHKB0Ug17YuugF6foJEh0mkQ
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKEYILYi2BAkaCE0RNHCeODwgBpZrS5dRKw8l4ZUYaJUMzBc2f4jfyXpaphqW3HpPYlvP8vcX2Wwh5aZkuAjN5rEF9xjwNPJbBFHEug0507iy3eN5xdFyMTvnncT7eIL-GWBh0qxxkYiuoXW3xjHyHcQFyFSCZvJt_j7FqFN6uDiU0Olgc-OVP2LI1b_d3YX1fMbb36eTjKO6rCsQWjPUFcBR3VlgnnfZSMitTV8rgbS6kAN1ZGsxmqEFzOZMaEWzBg9awZ8t1yH2ZhAzGvUaug-JN0IVQjMXqTAezrZec97E5SVbuNLyVRLhHY2CLw4ZtTf-1ZQL-Zdv-7aL5xz1tq_727pDbvd1K33dAu0s2fHWP3OgqWS7vky_ZLsWe6ERN60Cn1QTjCBezJa10VYORX583dF7PlnhOTn9M9fDQx4HG08oByhydT0Cv0sZ3Ocnr6gE5vRL6PiSbVV35R4QKy7guwULNM86dKYxnAbRuqsuQBC7TiKQDLZXtU5pjZY2Zaq_Ws1J19FdAf9XSX0Gf16s-8y6hx6WtP-ASrVpiMu72RX32TfW8rYTh3iVGSB0El9pIGdLAhAgux5hvGGR7WGDVS4hGXeA5Ii9Wn4G38cJGVx5WBdsIVoBJJiKy1eFhNZMsAwSCpoqIWEPK2lTXv1TTSZs_XGDGoKSMyJsBUxfT-j8pHl_-F8_JzdHJ0aE63D8-eEJuMXT9SdI4TbfJ5uLs3D8F221hnrUMQ8nXq-bQ38-VVjM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYgL4k1KASPBCaKNHSeODwgBy6qlUHGg0nJy_WRXWiXbZgvav8avY5xXtTx66zGJbTnjmfnG9jwQem6oyj3VWawAPmNGPIuF13mcCa8SlVnDTDjv-HyY7x2xj9NsuoV-9bEwwa2y14mNoraVCWfkI8o46FVgyWTkO7eIL-PJm-VJHCpIhZvWvpxGyyIHbv0Ttm_16_0xrPULSicfvr7fi7sKA7EBw30F0sWs4cYKq5wQ1AhiC-GdybjggKOFDpkNFaCY1URzb3LmlYL9W6Z85orEpzDuFXSVpwCbIEt8yofznZB5vWCsi9NJ0mJUs0Yrhf0aBbscNm8bWNiUDPiXnfu3u-Yfd7YNFE5uoZudDYvftkx3G2258g661la1XN9F39IxDj2DQzWuPJ6XsxBTuFqscanKCgz-6qzGy2qxDmfm-Mdc9Q9dTGg8Ly1wnMXLGWAsrl2bn7wq76GjS6HvfbRdVqV7iDA3lKkCrNUsZczqXDvqAYGJKnzimSARIj0tpenSm4cqGwvZXLOnhWzpL4H-sqG_hD4vhz7LNrnHha3fhSUaWobE3M2L6vS77ORccs2cTTQXynMmlBbCE0859zYL8d8wyG6_wLLTFrU85-0IPRs-g5yHyxtVOliV0IbTHPiMR-hByw_DTNIUzEBArQjxDU7ZmOrml3I-a3KJ85A9KCki9KrnqfNp_Z8UOxf_xVN0HWRTfto_PHiEbtDgBZSQmJBdtL06PXOPwYxb6SeNvGB0fNkC-hvHgVpp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=3D+printing+of+inherently+nanoporous+polymers+via+polymerization-induced+phase+separation&rft.jtitle=Nature+communications&rft.au=Dong%2C+Zheqin&rft.au=Cui%2C+Haijun&rft.au=Zhang%2C+Haodong&rft.au=Wang%2C+Fei&rft.date=2021-01-11&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=247&rft_id=info:doi/10.1038%2Fs41467-020-20498-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon