Efficient assembly of nanopore reads via highly accurate and intact error correction
Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences d...
Saved in:
Published in | Nature communications Vol. 12; no. 1; pp. 60 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
04.01.2021
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-020-20236-7 |
Cover
Loading…
Abstract | Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection.
Nanopore reads have been advantageous for de novo genome assembly; however these reads have high error rates. Here, the authors develop an error correction and de novo assembly tool, NECAT, which produces efficient, high quality assemblies of nanopore reads. |
---|---|
AbstractList | Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection.Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection. Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection. Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection. Nanopore reads have been advantageous for de novo genome assembly; however these reads have high error rates. Here, the authors develop an error correction and de novo assembly tool, NECAT, which produces efficient, high quality assemblies of nanopore reads. Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate subsequences. Existing error correction tools cannot correct nanopore reads efficiently and effectively. Most methods trim high-error-rate subsequences during error correction, which reduces both the length of the reads and contiguity of the final assembly. Here, we develop an error correction, and de novo assembly tool designed to overcome complex errors in nanopore reads. We propose an adaptive read selection and two-step progressive method to quickly correct nanopore reads to high accuracy. We introduce a two-stage assembler to utilize the full length of nanopore reads. Our tool achieves superior performance in both error correction and de novo assembling nanopore reads. It requires only 8122 hours to assemble a 35X coverage human genome and achieves a 2.47-fold improvement in NG50. Furthermore, our assembly of the human WERI cell line shows an NG50 of 22 Mbp. The high-quality assembly of nanopore reads can significantly reduce false positives in structure variation detection.Nanopore reads have been advantageous for de novo genome assembly; however these reads have high error rates. Here, the authors develop an error correction and de novo assembly tool, NECAT, which produces efficient, high quality assemblies of nanopore reads. Nanopore reads have been advantageous for de novo genome assembly; however these reads have high error rates. Here, the authors develop an error correction and de novo assembly tool, NECAT, which produces efficient, high quality assemblies of nanopore reads. |
ArticleNumber | 60 |
Author | Xie, Shang-Qian Huang, Zhi-Jian Chen, Ying Wang, Jian-Xin Liu, Yi-Zhi Nie, Fan Xing, Jian-Feng He, Li-Juan Bray, Thomas Dai, Qi Wang, De-Peng Wang, Yao-Xin Xiao, Chuan-Le Luo, Feng Zheng, Ying-Feng |
Author_xml | – sequence: 1 givenname: Ying surname: Chen fullname: Chen, Ying organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 2 givenname: Fan surname: Nie fullname: Nie, Fan organization: School of Information Science and Engineering, Central South University – sequence: 3 givenname: Shang-Qian surname: Xie fullname: Xie, Shang-Qian organization: Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University – sequence: 4 givenname: Ying-Feng surname: Zheng fullname: Zheng, Ying-Feng organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 5 givenname: Qi surname: Dai fullname: Dai, Qi organization: College of Life Sciences and Medicine, Zhejiang Sci-Tech University – sequence: 6 givenname: Thomas surname: Bray fullname: Bray, Thomas organization: Oxford Nanopore Technologies – sequence: 7 givenname: Yao-Xin surname: Wang fullname: Wang, Yao-Xin organization: College of Life Sciences and Medicine, Zhejiang Sci-Tech University – sequence: 8 givenname: Jian-Feng surname: Xing fullname: Xing, Jian-Feng organization: Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Hainan University, Hainan Key Laboratory for Biology of Tropical Ornamental Plant Germplasm, College of Forestry, Hainan University – sequence: 9 givenname: Zhi-Jian orcidid: 0000-0003-1601-3802 surname: Huang fullname: Huang, Zhi-Jian organization: School of Marine Sciences, Sun Yat-sen University, State Key Laboratory of Biocontrol, Sun Yat-sen University, Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University – sequence: 10 givenname: De-Peng surname: Wang fullname: Wang, De-Peng organization: Nextomics Biosciences Co., Ltd – sequence: 11 givenname: Li-Juan surname: He fullname: He, Li-Juan organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University – sequence: 12 givenname: Feng orcidid: 0000-0002-4813-2403 surname: Luo fullname: Luo, Feng email: luofeng@clemson.edu organization: School of Computing, Clemson University – sequence: 13 givenname: Jian-Xin orcidid: 0000-0003-1516-0480 surname: Wang fullname: Wang, Jian-Xin email: jxwang@mail.csu.edu.cn organization: School of Information Science and Engineering, Central South University, Hunan Provincial Key Lab on Bioinformatics, Central South University – sequence: 14 givenname: Yi-Zhi surname: Liu fullname: Liu, Yi-Zhi email: liuyizh@mail.sysu.edu.cn organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Research Units of Ocular Development and Regeneration, Chinese Academy of Medical Sciences – sequence: 15 givenname: Chuan-Le orcidid: 0000-0002-4680-0682 surname: Xiao fullname: Xiao, Chuan-Le email: xiaochuanle@126.com organization: State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33397900$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAUjFARLaV_gAOyxIVLwF-xnQsSqgpUqsSlnK0X52XXq6y92Eml_nucppS2h_piy29mPH5v3lZHIQasqveMfmZUmC9ZMql0TTmtOeVC1fpVdcKpZDXTXBw9Oh9XZznvaFmiZUbKN9WxEKLVLaUn1fXFMHjnMUwEcsZ9N96SOJAAIR5iQpIQ-kxuPJCt32xLEZybE0xIIPTEhwncRDClmIiLKaGbfAzvqtcDjBnP7vfT6vf3i-vzn_XVrx-X59-uaqeommohgAnaN6AbZbjsAaFhrkWjhQPjFDguEQRIKrpGKCpB8lYx6MCYxiETp9XlqttH2NlD8ntItzaCt3cXMW0spMm7Ea0wHdWUNa6ISMN7o_thaLgZaOsE0rZofV21DnO3x96VjiQYn4g-rQS_tZt4Y7U2XAtdBD7dC6T4Z8Y82b3PDscRAsY5Wy51I1pDeVOgH59Bd3FOobRqQcnWMKUWRx8eO3qw8m94BcBXgEsx54TDA4RRu4TEriGxJST2LiR2sWmekZyfYJla-ZUfX6aKlZrLO2GD6b_tF1h_AT5xz9o |
CitedBy_id | crossref_primary_10_1186_s40694_025_00195_8 crossref_primary_10_3390_nano12091534 crossref_primary_10_1007_s00284_024_03807_5 crossref_primary_10_1038_s41588_023_01516_6 crossref_primary_10_1094_MPMI_06_23_0078_R crossref_primary_10_1016_j_ijbiomac_2021_12_078 crossref_primary_10_3389_ffunb_2025_1432339 crossref_primary_10_1186_s13059_021_02527_4 crossref_primary_10_1098_rstb_2020_0160 crossref_primary_10_3389_fcimb_2022_797017 crossref_primary_10_3389_fmicb_2023_1259241 crossref_primary_10_1038_s41597_024_03794_z crossref_primary_10_3389_fmicb_2023_1177078 crossref_primary_10_1016_j_molp_2022_12_009 crossref_primary_10_1186_s12915_024_02002_z crossref_primary_10_3390_jof9020266 crossref_primary_10_3390_jof8070670 crossref_primary_10_1111_pce_15088 crossref_primary_10_3389_fcimb_2021_696669 crossref_primary_10_1007_s00122_023_04262_9 crossref_primary_10_1016_j_ympev_2024_108110 crossref_primary_10_1093_gigascience_giaf007 crossref_primary_10_3389_fgene_2024_1421565 crossref_primary_10_1093_gbe_evac060 crossref_primary_10_1016_j_hpj_2023_09_001 crossref_primary_10_1038_s41597_024_03664_8 crossref_primary_10_1093_dnares_dsad014 crossref_primary_10_1007_s00425_022_04026_7 crossref_primary_10_1007_s11427_021_2131_6 crossref_primary_10_1099_mgen_0_001316 crossref_primary_10_1038_s41477_021_00941_x crossref_primary_10_1038_s41597_025_04776_5 crossref_primary_10_3390_ijms23158569 crossref_primary_10_1016_j_watres_2022_119282 crossref_primary_10_1038_s41598_024_78869_3 crossref_primary_10_1371_journal_pgen_1011369 crossref_primary_10_1186_s12896_023_00797_3 crossref_primary_10_1038_s41467_024_50748_5 crossref_primary_10_1002_ange_202316484 crossref_primary_10_46471_gigabyte_71 crossref_primary_10_1093_gbe_evac112 crossref_primary_10_1094_PHYTOFR_08_23_0110_A crossref_primary_10_1177_10406387231200178 crossref_primary_10_1093_hr_uhad111 crossref_primary_10_1128_mra_00360_24 crossref_primary_10_1093_plphys_kiad389 crossref_primary_10_1128_mra_00981_23 crossref_primary_10_1016_j_aqrep_2024_102033 crossref_primary_10_1093_plphys_kiac579 crossref_primary_10_1007_s10482_024_02010_7 crossref_primary_10_1094_PHYTOFR_08_23_0108_A crossref_primary_10_1016_j_wroa_2022_100157 crossref_primary_10_1038_s41576_024_00718_w crossref_primary_10_3724_abbs_2024152 crossref_primary_10_3389_fnano_2021_628861 crossref_primary_10_1099_mgen_0_001169 crossref_primary_10_3390_v15020587 crossref_primary_10_1128_spectrum_02928_23 crossref_primary_10_3389_fpls_2024_1413468 crossref_primary_10_1002_anie_202316484 crossref_primary_10_1038_s41592_020_01056_5 crossref_primary_10_1093_hr_uhad062 crossref_primary_10_3389_fgene_2023_1269837 crossref_primary_10_1093_gbe_evae105 crossref_primary_10_3390_biology14010069 crossref_primary_10_1094_PHYTO_04_24_0152_R crossref_primary_10_3390_cimb46100688 crossref_primary_10_1128_mra_00760_23 crossref_primary_10_3389_fbinf_2023_1157956 crossref_primary_10_1016_j_celrep_2024_113699 crossref_primary_10_1038_s41467_024_47349_7 crossref_primary_10_1094_PDIS_11_21_2584_A crossref_primary_10_1186_s12985_024_02554_0 crossref_primary_10_1371_journal_pone_0294415 crossref_primary_10_1111_ppl_70057 crossref_primary_10_1360_SSV_2023_0068 crossref_primary_10_3389_fpls_2024_1415534 crossref_primary_10_1371_journal_pbio_3001945 crossref_primary_10_1128_mra_01021_24 crossref_primary_10_1007_s12275_022_00003_7 crossref_primary_10_1186_s13059_024_03252_4 crossref_primary_10_3390_pathogens11070801 crossref_primary_10_1093_bib_bbad169 crossref_primary_10_1128_mra_00097_23 crossref_primary_10_1093_bioinformatics_btac565 crossref_primary_10_1038_s41467_024_44965_1 crossref_primary_10_1093_gbe_evae238 crossref_primary_10_1128_mra_01026_21 crossref_primary_10_1093_hr_uhae142 crossref_primary_10_1186_s13059_022_02658_2 crossref_primary_10_3390_ijms232314892 crossref_primary_10_1186_s13073_024_01412_6 crossref_primary_10_1186_s13099_025_00681_9 crossref_primary_10_3389_fmars_2022_950573 crossref_primary_10_3390_biology10080732 crossref_primary_10_1016_j_microc_2024_110176 crossref_primary_10_1270_jsbbs_23053 crossref_primary_10_24072_pcjournal_128 crossref_primary_10_3389_fgene_2022_890651 crossref_primary_10_3390_e26040324 crossref_primary_10_1007_s00253_023_12762_3 crossref_primary_10_1128_msphere_00011_24 crossref_primary_10_1186_s13059_023_03052_2 crossref_primary_10_1038_s42003_021_02559_3 crossref_primary_10_1111_pbi_14433 crossref_primary_10_1128_msphere_01002_24 crossref_primary_10_1093_bib_bbac146 crossref_primary_10_1016_j_cell_2022_04_036 crossref_primary_10_1038_s41467_023_42336_w crossref_primary_10_1128_MRA_00234_23 crossref_primary_10_1128_mra_01213_22 crossref_primary_10_1016_j_coelec_2021_100754 crossref_primary_10_1038_s41594_025_01512_w crossref_primary_10_1093_gigascience_giae075 crossref_primary_10_1101_gr_279364_124 crossref_primary_10_3389_fpls_2022_1049253 crossref_primary_10_1093_gigascience_giae115 crossref_primary_10_1101_gr_278232_123 crossref_primary_10_3390_jof8020099 crossref_primary_10_1038_s41597_024_03142_1 crossref_primary_10_1099_ijsem_0_006294 crossref_primary_10_1016_j_molp_2023_07_009 crossref_primary_10_1038_s41467_024_44914_y crossref_primary_10_1016_j_fm_2024_104584 crossref_primary_10_1186_s12870_024_05109_1 crossref_primary_10_1038_s41467_025_56329_4 crossref_primary_10_1038_s41597_024_03581_w crossref_primary_10_26508_lsa_202201719 crossref_primary_10_1292_jvms_22_0432 crossref_primary_10_1016_j_xinn_2021_100153 crossref_primary_10_1080_21501203_2024_2363620 crossref_primary_10_1186_s13020_022_00644_1 crossref_primary_10_7717_peerj_18132 crossref_primary_10_1186_s40168_024_02019_0 crossref_primary_10_12688_f1000research_149577_1 crossref_primary_10_1093_gbe_evab068 crossref_primary_10_1016_j_ygeno_2022_110400 crossref_primary_10_1111_1744_7917_13214 crossref_primary_10_1002_2211_5463_13812 crossref_primary_10_1093_gigascience_giae067 crossref_primary_10_3389_fpls_2022_993325 crossref_primary_10_1038_s41588_025_02113_5 crossref_primary_10_1016_j_jip_2024_108179 crossref_primary_10_1186_s43897_024_00101_7 crossref_primary_10_3390_biology14020138 crossref_primary_10_1270_jsbbs_23032 crossref_primary_10_1186_s12864_022_08511_x crossref_primary_10_1007_s00299_025_03439_4 crossref_primary_10_1038_s41598_024_56402_w crossref_primary_10_1111_tpj_15690 crossref_primary_10_3390_jof11030203 crossref_primary_10_1038_s41592_023_02141_1 crossref_primary_10_1080_19490976_2025_2455503 crossref_primary_10_1094_PHYTOFR_01_23_0006_A crossref_primary_10_1128_mra_00340_24 crossref_primary_10_1038_s10038_024_01275_0 crossref_primary_10_1128_mra_00430_22 crossref_primary_10_1038_s41477_023_01614_7 crossref_primary_10_3389_fpls_2021_690951 crossref_primary_10_3390_foods13172779 crossref_primary_10_1016_j_dib_2024_110704 crossref_primary_10_1111_tpj_16705 crossref_primary_10_1016_j_xplc_2022_100493 crossref_primary_10_1093_hr_uhac179 crossref_primary_10_1128_mra_01129_22 crossref_primary_10_1038_s41586_022_05325_5 crossref_primary_10_12688_openreseurope_13987_1 crossref_primary_10_12688_openreseurope_13987_2 crossref_primary_10_1128_mra_00702_23 crossref_primary_10_12688_openreseurope_13987_3 crossref_primary_10_1038_s41587_021_01108_x crossref_primary_10_1111_jipb_13748 crossref_primary_10_1128_mra_00809_22 crossref_primary_10_3390_diagnostics13030373 crossref_primary_10_1038_s41597_023_02677_z crossref_primary_10_1109_ACCESS_2022_3144113 crossref_primary_10_1007_s00425_023_04190_4 crossref_primary_10_1099_jmm_0_001914 crossref_primary_10_1016_j_isci_2023_107317 crossref_primary_10_1099_mgen_0_001375 crossref_primary_10_1093_hr_uhae185 crossref_primary_10_3389_fcell_2022_897858 crossref_primary_10_1093_g3journal_jkae172 crossref_primary_10_3389_fgene_2022_786825 crossref_primary_10_1007_s00122_024_04633_w crossref_primary_10_1371_journal_pcbi_1010905 crossref_primary_10_1128_mra_00039_24 crossref_primary_10_1093_nar_gkac586 crossref_primary_10_3390_biom15030321 crossref_primary_10_1128_spectrum_00356_23 crossref_primary_10_3114_sim_2022_102_03 |
Cites_doi | 10.1038/s41467-018-03016-2 10.1038/nbt.4060 10.1186/s13742-015-0076-3 10.1038/nmeth.4035 10.1093/bioinformatics/bty191 10.1038/nrg3367 10.1038/s41467-018-07885-5 10.1186/gb-2004-5-2-r12 10.1038/s41592-018-0001-7 10.1038/nature20098 10.1038/nbt.4109 10.1093/bioinformatics/btw152 10.1073/pnas.022644499 10.1038/nmeth.4432 10.1038/s41587-019-0072-8 10.1101/gr.215087.116 10.1093/bioinformatics/btv280 10.12688/f1000research.10571.2 10.1093/bioinformatics/btw753 10.1039/c2mb25040c 10.1186/gb-2014-15-6-r84 10.1186/s13059-018-1462-9 10.1038/s41592-019-0669-3 10.1093/bioinformatics/btn548 10.1038/nmeth.1923 10.1038/nmeth.3484 10.1093/bib/bbx147 10.1093/bioinformatics/bti1114 10.1038/s41587-020-0503-6 10.20944/preprints202009.0207.v1 10.1007/978-3-662-44753-6_5 10.1101/2020.08.07.242461 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-020-20236-7 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database (Proquest) ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_38b07015c4a4482d87dff528f09c3e09 PMC7782737 33397900 10_1038_s41467_020_20236_7 |
Genre | Research Support, U.S. Gov't, Non-P.H.S Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: National Science Foundation (NSF) grantid: ABI-1759856 funderid: https://doi.org/10.13039/100000001 – fundername: United States Department of Agriculture | National Institute of Food and Agriculture (NIFA) grantid: 2017-70016-26051 funderid: https://doi.org/10.13039/100005825 – fundername: ; grantid: ABI-1759856 – fundername: ; grantid: 2017-70016-26051 |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-33a130d5a756824daea51c9e873ca8c6ac24ea3a403b53604a42961aba885ce13 |
IEDL.DBID | DOA |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:15:28 EDT 2025 Thu Aug 21 14:05:11 EDT 2025 Thu Jul 10 23:02:51 EDT 2025 Wed Aug 13 11:12:08 EDT 2025 Wed Feb 19 02:09:57 EST 2025 Tue Jul 01 04:17:12 EDT 2025 Thu Apr 24 23:44:04 EDT 2025 Fri Feb 21 02:39:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-33a130d5a756824daea51c9e873ca8c6ac24ea3a403b53604a42961aba885ce13 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-4680-0682 0000-0002-4813-2403 0000-0003-1601-3802 0000-0003-1516-0480 |
OpenAccessLink | https://doaj.org/article/38b07015c4a4482d87dff528f09c3e09 |
PMID | 33397900 |
PQID | 2474981669 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_38b07015c4a4482d87dff528f09c3e09 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7782737 proquest_miscellaneous_2475398025 proquest_journals_2474981669 pubmed_primary_33397900 crossref_primary_10_1038_s41467_020_20236_7 crossref_citationtrail_10_1038_s41467_020_20236_7 springer_journals_10_1038_s41467_020_20236_7 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-04 |
PublicationDateYYYYMMDD | 2021-01-04 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Seo (CR4) 2016; 538 Jain (CR7) 2018; 36 CR17 CR16 Miller, Delcher, Koren (CR34) 2008; 24 Xiao (CR11) 2017; 14 Šosic, Šikic (CR31) 2017; 33 Kuderna (CR6) 2019; 10 Myers (CR33) 2005; 21 CR32 Layer, Chiang, Quinlan, Hall (CR28) 2014; 15 Li (CR22) 2018; 34 Chin (CR9) 2016; 13 Magi, Giusti, Tattini (CR20) 2016; 18 Langmead, Salzberg (CR26) 2012; 9 Li (CR12) 2015; 32 Ruan, Li (CR14) 2019; 17 Jain (CR19) 2018; 36 Rang, Kloosterman, Ridder (CR21) 2018; 19 Kolmogorov, Yuan, Lin, Pevzner (CR13) 2019; 37 Weirather (CR8) 2017; 6 Warren (CR23) 2015; 4 Suzuma (CR30) 2002; 99 Shafin (CR15) 2020; 38 Niranjan, Mihai (CR1) 2013; 14 Gagarinova, Emili (CR2) 2012; 8 Herman (CR24) 1989; 134 Sedlazeck (CR27) 2018; 15 Siepel (CR3) 2004; 50 Michael (CR5) 2018; 9 Lam, LaButti, Khalak, Tse (CR35) 2015; 31 Kurtz (CR25) 2004; 5 Koren (CR10) 2017; 27 Yang, Robinson, Wang (CR29) 2015; 12 Jayakumar, Sakakibara (CR18) 2019; 20 V Jayakumar (20236_CR18) 2019; 20 A Siepel (20236_CR3) 2004; 50 S Kurtz (20236_CR25) 2004; 5 EW Myers (20236_CR33) 2005; 21 K Suzuma (20236_CR30) 2002; 99 S Koren (20236_CR10) 2017; 27 FJ Rang (20236_CR21) 2018; 19 M Jain (20236_CR7) 2018; 36 JS Seo (20236_CR4) 2016; 538 CL Xiao (20236_CR11) 2017; 14 A Magi (20236_CR20) 2016; 18 K-K Lam (20236_CR35) 2015; 31 M Kolmogorov (20236_CR13) 2019; 37 RL Warren (20236_CR23) 2015; 4 LFK Kuderna (20236_CR6) 2019; 10 A Gagarinova (20236_CR2) 2012; 8 K Shafin (20236_CR15) 2020; 38 M Šosic (20236_CR31) 2017; 33 CS Chin (20236_CR9) 2016; 13 H Li (20236_CR12) 2015; 32 M Jain (20236_CR19) 2018; 36 MM Herman (20236_CR24) 1989; 134 H Yang (20236_CR29) 2015; 12 B Langmead (20236_CR26) 2012; 9 FJ Sedlazeck (20236_CR27) 2018; 15 N Niranjan (20236_CR1) 2013; 14 TP Michael (20236_CR5) 2018; 9 J Ruan (20236_CR14) 2019; 17 20236_CR32 JR Miller (20236_CR34) 2008; 24 RM Layer (20236_CR28) 2014; 15 20236_CR17 20236_CR16 H Li (20236_CR22) 2018; 34 JL Weirather (20236_CR8) 2017; 6 |
References_xml | – volume: 9 year: 2018 ident: CR5 article-title: High contiguity genome assembly with a single nanopore flow cell publication-title: Nat. Commun. doi: 10.1038/s41467-018-03016-2 – volume: 36 start-page: 338 year: 2018 end-page: 345 ident: CR19 article-title: Nanopore sequencing and assembly of a human genome with ultra-long reads publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4060 – volume: 4 start-page: 1 year: 2015 end-page: 11 ident: CR23 article-title: LINKS: Scalable, alignment-free scaffolding of draft genomes with long reads publication-title: Gigascience doi: 10.1186/s13742-015-0076-3 – volume: 13 start-page: 1050 year: 2016 end-page: 1054 ident: CR9 article-title: Phased diploid genome assembly with single-molecule real-time sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.4035 – volume: 34 start-page: 3094 year: 2018 end-page: 3100 ident: CR22 article-title: Minimap2: pairwise alignment for nucleotide sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 – volume: 14 start-page: 157 year: 2013 end-page: 167 ident: CR1 article-title: Sequence assembly demystified publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3367 – volume: 10 year: 2019 ident: CR6 article-title: Selective single molecule sequencing and assembly of a human Y chromosome of African origin publication-title: Nat. Commun. doi: 10.1038/s41467-018-07885-5 – ident: CR16 – volume: 50 start-page: 931 year: 2004 end-page: 945 ident: CR3 article-title: Finishing the euchromatic sequence of the human genome publication-title: Nature – volume: 5 year: 2004 ident: CR25 article-title: Versatile and open software for comparing large genomes publication-title: Genome Biol. doi: 10.1186/gb-2004-5-2-r12 – volume: 15 start-page: 461 year: 2018 end-page: 468 ident: CR27 article-title: Accurate detection of complex structural variations using single-molecule sequencing publication-title: Nat. Methods doi: 10.1038/s41592-018-0001-7 – volume: 538 start-page: 243 year: 2016 end-page: 247 ident: CR4 article-title: De novo assembly and phasing of a Korean human genome publication-title: Nature doi: 10.1038/nature20098 – volume: 36 start-page: 321 year: 2018 end-page: 323 ident: CR7 article-title: Linear assembly of a human centromere on the Y chromosome publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4109 – volume: 32 start-page: 2103 year: 2015 end-page: 2110 ident: CR12 article-title: Minimap and miniasm: fast mapping and de novo assembly for noisy long sequences publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw152 – volume: 99 start-page: 721 year: 2002 end-page: 726 ident: CR30 article-title: Characterization of protein kinase C β isoform’s action on retinoblastoma protein phosphorylation, vascular endothelial growth factor-induced endothelial cell proliferation, and retinal neovascularization publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.022644499 – volume: 14 start-page: 1072 year: 2017 end-page: 1074 ident: CR11 article-title: MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads publication-title: Nat. Methods doi: 10.1038/nmeth.4432 – volume: 37 start-page: 540 year: 2019 end-page: 546 ident: CR13 article-title: Assembly of long, error-prone reads using repeat graphs publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 27 start-page: 722 year: 2017 end-page: 736 ident: CR10 article-title: Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation publication-title: Genome Res. doi: 10.1101/gr.215087.116 – volume: 31 start-page: 3207 year: 2015 end-page: 3209 ident: CR35 article-title: FinisherSC: a repeat-aware tool for upgrading de novo assembly using long reads publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv280 – volume: 6 start-page: 100 year: 2017 ident: CR8 article-title: Comprehensive comparison of Pacific Biosciences and Oxford nanopore Technologies and their applications to transcriptome analysis publication-title: F1000research doi: 10.12688/f1000research.10571.2 – volume: 33 start-page: 1394 year: 2017 end-page: 1395 ident: CR31 article-title: Edlib: a C/C++ library for fast, exact sequence alignment using edit distance publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw753 – volume: 8 start-page: 1626 year: 2012 end-page: 1638 ident: CR2 article-title: Genome-scale genetic manipulation methods for exploring bacterial molecular biology publication-title: Mol. Biosyst. doi: 10.1039/c2mb25040c – ident: CR17 – volume: 18 start-page: 940 year: 2016 end-page: 953 ident: CR20 article-title: Characterization of MinION nanopore data for resequencing analyses publication-title: Brief. Bioinforma. – volume: 15 year: 2014 ident: CR28 article-title: LUMPY: a probabilistic framework for structural variant discovery publication-title: Genome Biol. doi: 10.1186/gb-2014-15-6-r84 – volume: 19 year: 2018 ident: CR21 article-title: From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy publication-title: Genome Biol. doi: 10.1186/s13059-018-1462-9 – ident: CR32 – volume: 17 start-page: 155 year: 2019 end-page: 158 ident: CR14 article-title: Fast and accurate long-read assembly with wtdbg2 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 24 start-page: 2818 year: 2008 end-page: 2824 ident: CR34 article-title: Eli Aggressive assembly of pyrosequencing reads with mates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn548 – volume: 9 start-page: 357 year: 2012 end-page: 359 ident: CR26 article-title: Fast gapped-read alignment with Bowtie 2 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 12 start-page: 841 year: 2015 end-page: 843 ident: CR29 article-title: Phenolyzer: phenotype-based prioritization of candidate genes for human diseases publication-title: Nat. Methods doi: 10.1038/nmeth.3484 – volume: 20 start-page: 866 year: 2019 end-page: 876 ident: CR18 article-title: Comprehensive evaluation of non-hybrid genome assembly tools for third-generation PacBio long-read sequence data publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx147 – volume: 21 start-page: ii79 year: 2005 ident: CR33 article-title: The fragment assembly string graph publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1114 – volume: 38 start-page: 1044 year: 2020 end-page: 1053 ident: CR15 article-title: Nanopore sequencing and the Shasta toolkit enable efficient de novo assembly of eleven human genomes publication-title: Nat. Biotechnol doi: 10.1038/s41587-020-0503-6 – volume: 134 start-page: 115 year: 1989 end-page: 132 ident: CR24 article-title: Neuroblastic differentiation potential of the human retinoblastoma cell lines Y-79 and WERI-Rb1 maintained in an organ culture system. An immunohistochemical, electron microscopic, and biochemical study publication-title: Am. J. Pathol. – volume: 9 year: 2018 ident: 20236_CR5 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03016-2 – volume: 8 start-page: 1626 year: 2012 ident: 20236_CR2 publication-title: Mol. Biosyst. doi: 10.1039/c2mb25040c – volume: 6 start-page: 100 year: 2017 ident: 20236_CR8 publication-title: F1000research doi: 10.12688/f1000research.10571.2 – volume: 17 start-page: 155 year: 2019 ident: 20236_CR14 publication-title: Nat. Methods doi: 10.1038/s41592-019-0669-3 – volume: 4 start-page: 1 year: 2015 ident: 20236_CR23 publication-title: Gigascience doi: 10.1186/s13742-015-0076-3 – ident: 20236_CR16 doi: 10.20944/preprints202009.0207.v1 – volume: 18 start-page: 940 year: 2016 ident: 20236_CR20 publication-title: Brief. Bioinforma. – volume: 32 start-page: 2103 year: 2015 ident: 20236_CR12 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw152 – volume: 10 year: 2019 ident: 20236_CR6 publication-title: Nat. Commun. doi: 10.1038/s41467-018-07885-5 – volume: 12 start-page: 841 year: 2015 ident: 20236_CR29 publication-title: Nat. Methods doi: 10.1038/nmeth.3484 – volume: 36 start-page: 321 year: 2018 ident: 20236_CR7 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4109 – volume: 31 start-page: 3207 year: 2015 ident: 20236_CR35 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btv280 – volume: 24 start-page: 2818 year: 2008 ident: 20236_CR34 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn548 – volume: 15 year: 2014 ident: 20236_CR28 publication-title: Genome Biol. doi: 10.1186/gb-2014-15-6-r84 – volume: 38 start-page: 1044 year: 2020 ident: 20236_CR15 publication-title: Nat. Biotechnol doi: 10.1038/s41587-020-0503-6 – volume: 19 year: 2018 ident: 20236_CR21 publication-title: Genome Biol. doi: 10.1186/s13059-018-1462-9 – volume: 9 start-page: 357 year: 2012 ident: 20236_CR26 publication-title: Nat. Methods doi: 10.1038/nmeth.1923 – volume: 27 start-page: 722 year: 2017 ident: 20236_CR10 publication-title: Genome Res. doi: 10.1101/gr.215087.116 – volume: 15 start-page: 461 year: 2018 ident: 20236_CR27 publication-title: Nat. Methods doi: 10.1038/s41592-018-0001-7 – volume: 50 start-page: 931 year: 2004 ident: 20236_CR3 publication-title: Nature – volume: 37 start-page: 540 year: 2019 ident: 20236_CR13 publication-title: Nat. Biotechnol. doi: 10.1038/s41587-019-0072-8 – volume: 134 start-page: 115 year: 1989 ident: 20236_CR24 publication-title: Am. J. Pathol. – ident: 20236_CR32 doi: 10.1007/978-3-662-44753-6_5 – volume: 21 start-page: ii79 year: 2005 ident: 20236_CR33 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti1114 – volume: 13 start-page: 1050 year: 2016 ident: 20236_CR9 publication-title: Nat. Methods doi: 10.1038/nmeth.4035 – ident: 20236_CR17 doi: 10.1101/2020.08.07.242461 – volume: 33 start-page: 1394 year: 2017 ident: 20236_CR31 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw753 – volume: 14 start-page: 1072 year: 2017 ident: 20236_CR11 publication-title: Nat. Methods doi: 10.1038/nmeth.4432 – volume: 538 start-page: 243 year: 2016 ident: 20236_CR4 publication-title: Nature doi: 10.1038/nature20098 – volume: 5 year: 2004 ident: 20236_CR25 publication-title: Genome Biol. doi: 10.1186/gb-2004-5-2-r12 – volume: 14 start-page: 157 year: 2013 ident: 20236_CR1 publication-title: Nat. Rev. Genet. doi: 10.1038/nrg3367 – volume: 20 start-page: 866 year: 2019 ident: 20236_CR18 publication-title: Brief. Bioinform. doi: 10.1093/bib/bbx147 – volume: 99 start-page: 721 year: 2002 ident: 20236_CR30 publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.022644499 – volume: 36 start-page: 338 year: 2018 ident: 20236_CR19 publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4060 – volume: 34 start-page: 3094 year: 2018 ident: 20236_CR22 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bty191 |
SSID | ssj0000391844 |
Score | 2.68811 |
Snippet | Long nanopore reads are advantageous in de novo genome assembly. However, nanopore reads usually have broad error distribution and high-error-rate... Nanopore reads have been advantageous for de novo genome assembly; however these reads have high error rates. Here, the authors develop an error correction and... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 60 |
SubjectTerms | 45/23 631/114/2397 631/208/212/2302 631/208/514/1948 Assembling Assembly Cell Line Chromosomes, Human - genetics Error correction Error correction & detection Error reduction Genome, Human Genomes Humanities and Social Sciences Humans multidisciplinary Nanopores Porosity Retinoblastoma - genetics Science Science (multidisciplinary) Sequence Analysis, DNA Software |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagCIkL4k1KQUbiBlGd2I7tEwLUqkKCUyvtzRo_Aiu1SdnNIvXf1-NkUy2PXmMnssfz8szkG0Le1Sy6VihV1tHUpTAslEY4UWoTlKo8C85hHPLb9-bkTHxdyMUUcFtPZZVbnZgVdeg9xsgPa6GEwSSX-Xj5q8SuUZhdnVpo3CX3ELoMS7rUQs0xFkQ_10JM_8owrg_XImsGvDNh3_CmVDv2KMP2_8vX_Ltk8o-8aTZHx4_Iw8mPpJ_Gg39M7sTuCbk_dpa8ekpOjzI0RPoMTd5xvHDnV7RvaQddnxzuSJOrGNb09xIo4hWnQfB-g6gRFLpAl90AfqBxtepX1GP_jvz3wzNydnx0-uWknBoolD7dS4aSc0gmKkhQstG1CBBBVt5ErbgH7RvwtYjAQTDuJG-YgGSdmgocaC19rPhzstf1XXxJKAPRBO0h8siF4q2O6S6JrcClchKEKUi1JaP1E7o4Nrk4tznLzbUdSW8T6W0mvVUFeT-_czlia9w6-zOezjwTcbHzg371w05iZrl2SYdV0qetCF0HrULbylq3zHgeWVrmwfZs7SSsa3vDWgV5Ow8nMcPcCXSx3-Q5khudPMSCvBhZYV4J55gcZawgaodJdpa6O9Itf2Yob5UcNMXT3j5s2elmWf8nxf7tu3hFHtRYeYOBInFA9obVJr5OrtPg3mT5uAbrhxTG priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3di9QwEA_nieDL4berp0TwTattkzTJg4jKHYdwPt3CvYXJR3VhbbXbPdz_3knarqyuPvnaSUoymcnMZJL5EfK8zIOtuZRZGXSZcZ37THPLM6W9lIXLvbXxHPL8U3U25x8vxeUBmeCORgau9oZ2EU9q3i1f_fi-eYsK_2Z4Mq5er3hS9xgIRTDwKpPXyHW0TDIq6vno7qedmWkMaPj4dmZ_1x37lMr47_M9_7xC-VseNZmn01vkaPQr6btBEG6Tg9DcITcGpMnNXXJxkkpF4G8oesvhq11uaFvTBpoW5x4ouo5-Ra8WQGP9YiSCc-tYRYJC4-mi6cH1NHRd21EX8TzSa4h7ZH56cvHhLBsBFTKHcUqfMQZosrwAKSpVcg8BROF0UJI5UK4CV_IADHjOrGBVzgGtVVWABaWECwW7Tw6btgkPCc2BV145CCwwLlmtAsaWERpcSCuA6xkpJjYaN1Ybj6AXS5Oy3kyZgfUGWW8S642ckRfbPt-GWhv_bP0-rs62ZayTnT603Wczqp1hyuKeVgiHU-Gq9Er6uhalqnPtWMhxmMfT2ppJ9kzJJdcxn4rkZ1syql3MpUAT2nVqI5hW6DHOyINBFLYjYSwmS_N8RuSOkOwMdZfSLL6k0t4SHTbJcG4vJ3H6Nay_s-LR_2DFY3KzjPd14vESPyaHfbcOT9Dh6u3TpEU_AbWhJIE priority: 102 providerName: Scholars Portal – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NaxUxEA-1IngRv31aJYI3Xcwmk032qI-WIuiphd7C5GP1Qd0t-_YJ_e9Nsh_ytApeN5NlMplkJpnJbwh5w1mwDShV8FDzAmrmixosFLr2SpWOeWvTPeTnL9XpOXy6kBcHhM9vYXLSfoa0zNv0nB32fgt5SafDTir4XRXqFrmdoNuTVq-r9XKvkhDPNcD0PoYJfUPXPRuUofpv8i__TJP8LVaaTdDJfXJv8h3ph5HbB-QgtA_JnbGa5PUjcnac4SDib2j0iMN3e3lNu4a22HbRyQ40uod-S39skCaM4tiIzu0SUgTF1tNNO6AbaOj7rqcu1ezILx4ek_OT47P1aTEVTShcPIsMhRAYzZKXqGSlOXgMKEtXB62EQ-0qdBwCCgQmrBQVA4wWqSrRotbShVI8IYdt14ZnhDKEymuHQQQBSjQ6xPNjKv8tlZUI9YqUsxiNmxDFU2GLS5Mj20KbUfQmit5k0Ru1Im-XPlcjnsY_qT-m2VkoExZ2_tD1X82kG0ZoG_etUro4FNDca-WbRnLdsNqJwCKbR_PcmmmBbg0HBXWKmcbm10tzXFopXoJt6HaZRopaR69wRZ6OqrBwIkQKiDK2ImpPSfZY3W9pN98yfLeKTpkScWzvZnX6xdbfRfH8_8hfkLs8Zd-kyyI4IodDvwsvo_s02Fd5vfwE2M0SYg priority: 102 providerName: Springer Nature |
Title | Efficient assembly of nanopore reads via highly accurate and intact error correction |
URI | https://link.springer.com/article/10.1038/s41467-020-20236-7 https://www.ncbi.nlm.nih.gov/pubmed/33397900 https://www.proquest.com/docview/2474981669 https://www.proquest.com/docview/2475398025 https://pubmed.ncbi.nlm.nih.gov/PMC7782737 https://doaj.org/article/38b07015c4a4482d87dff528f09c3e09 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUN9raZ2vqwpMc0JCuBlrG1kDehL7NAZ4_EKfS_30l2smafL3uRQSeb8-kk3emk3yH0lhTB1kyInARFcqYKnytmWS6VF6J0hbc27kOenVenl2y-4Itbqb7imbAeHrgX3DGVFrSy5I4Z8CSIl8LXNSeyLpSjob-6B2veLWcqzcFUgevChlsyBZXHa5bmhOgtxYzhVS72VqIE2P87K_PXw5I_RUzTQjR7hB4OFiQe95w_RndC8wTd73NK3jxFF9MECgGfwWAXh6_26ga3NW5M04KpHTAYiX6Nr5cGR6RiIBrnNhEvApvG42XTGdfhsFq1K-xi5o507-EZupxNLyan-ZA6IXfgkXQ5pQYWJ8-N4JUkzJtgeOlUkII6I11lHGHBUMMKajmtChAuUVVprJGSu1DS5-igaZvwEuHCsMpLZwINlAlaywBeZEwCzoXlhqkMlVsxajfgisf0Flc6xbep1L3oNYheJ9FrkaF3u3e-9agaf219Entn1zIiYqcK0BM96In-l55k6Gjbt3oYpmtNmGAqRk6B_GZHhgEWoyamCe0mteFUSbANM_SiV4UdJ5TGsGhRZEjsKckeq_uUZvklgXgLMM0EhX97v1WnH2z9WRSH_0MUr9ADEk_mxI0kdoQOutUmvAbTqrMjdFcsBJRy9mGE7o3H889zeJ5Mzz9-gtpJNRmlcQblGZPfAWnoIzc |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEaIXxJuFAkaCE0R1_IidA0I8Wm3p47SV9mYc24GV2qRkd0H7p_iNjJ1HtTx66zV2LHs8M_7ssedD6CUlvii5lAn1OU14TlyS84InKndSppa4ogjnkEfH2fiEf56K6Qb61b-FCdcqe58YHbWrbTgj36Fc8jwEufJ359-TwBoVoqs9hUarFgd-9RO2bPO3-59gfl9Rurc7-ThOOlaBxAJYXySMGfDbThgpMkW5M96I1OZeSWaNspmxlHvDDCesECwj3IDLzlJTGKWE9SmDdq-h67DwkmBRciqHM52QbV1x3r3NIUztzHn0RGGPFnjKs0SurX-RJuBf2PbvK5p_xGnj8rd3G93qcCt-3yraHbThq7voRstkubqHJrsxFQU0gwGN-7PidIXrElemqgHgewzQ1M3xj5nBIT8yFBprlyFLBTaVw7NqYewC-6apG2wDX0h8bXEfnVyJaB-gzaqu_COEieGZU9Z45hmXrFQexB2ox4UshOH5CKW9GLXtspkHUo1THaPqTOlW9BpEr6PotRyh18M_520uj0trfwizM9QMebjjh7r5qjuz1kwV4DNTYWEoXFGnpCtLQVVJcss8gW5u93OrO-cw1xeqPEIvhmIw6xCrMZWvl7GOYLkCRDpCD1tVGHrCWAjGEjJCck1J1rq6XlLNvsXU4RIAoWQwtje9Ol106_-ieHz5KJ6jm-PJ0aE-3D8-eIK2aLj1Ew6p-DbaXDRL_xRg26J4Fm0Foy9XbZy_AcNlUSc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEagXxJuFAkaCE0Tr-BE7B4SAdtVSqDi00t6MYzuwUpuU7C5o_xq_jrHzqJZHb73GjmWPZ8afPfZ8CD2nxBcllzKhPqcJz4lLcl7wROVOytQSVxThHPLTYbZ3zD9MxXQD_erfwoRrlb1PjI7a1TackY8plzwPQa58XHbXIj7vTN6cfU8Cg1SItPZ0Gq2KHPjVT9i-zV_v78Bcv6B0snv0fi_pGAYSC8B9kTBmwIc7YaTIFOXOeCNSm3slmTXKZsZS7g0znLBCsIxwA-47S01hlBLWpwzavYKuSibSYGNyKofznZB5XXHevdMhTI3nPHqlsF8LnOVZItfWwkgZ8C-c-_d1zT9itnEpnNxENzoMi9-2SncLbfjqNrrWslqu7qCj3ZiWAprBgMz9aXGywnWJK1PVAPY9Bpjq5vjHzOCQKxkKjbXLkLECm8rhWbUwdoF909QNtoE7JL68uIuOL0W099BmVVf-AcLE8MwpazzzjEtWKg_72EBDLmQhDM9HKO3FqG2X2TwQbJzoGGFnSrei1yB6HUWv5Qi9HP45a_N6XFj7XZidoWbIyR0_1M1X3Zm4ZqoA_5kKC0PhijolXVkKqkqSW-YJdHO7n1vdOYq5PlfrEXo2FIOJh7iNqXy9jHUEyxWg0xG636rC0BPGQmCWkBGSa0qy1tX1kmr2LaYRlwAOJYOxverV6bxb_xfFw4tH8RRdB7PUH_cPDx6hLRouAIXzKr6NNhfN0j8GBLconkRTwejLZdvmb6PUVV0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+assembly+of+nanopore+reads+via+highly+accurate+and+intact+error+correction&rft.jtitle=Nature+communications&rft.au=Ying+Chen&rft.au=Fan+Nie&rft.au=Shang-Qian+Xie&rft.au=Ying-Feng+Zheng&rft.date=2021-01-04&rft.pub=Nature+Portfolio&rft.eissn=2041-1723&rft.volume=12&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41467-020-20236-7&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_38b07015c4a4482d87dff528f09c3e09 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |