Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT

Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containin...

Full description

Saved in:
Bibliographic Details
Published inCell death discovery Vol. 8; no. 1; pp. 37 - 10
Main Authors Date, Yuki, Matsuura, Akira, Itakura, Eisuke
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 25.01.2022
Springer Nature B.V
Nature Publishing Group
Subjects
Online AccessGet full text
ISSN2058-7716
2058-7716
DOI10.1038/s41420-022-00828-6

Cover

Abstract Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
AbstractList Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
Abstract Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.
ArticleNumber 37
Author Date, Yuki
Matsuura, Akira
Itakura, Eisuke
Author_xml – sequence: 1
  givenname: Yuki
  surname: Date
  fullname: Date, Yuki
  organization: Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-ku
– sequence: 2
  givenname: Akira
  surname: Matsuura
  fullname: Matsuura, Akira
  organization: Department of Biology, Graduate School of Science, Chiba University, Inage-ku
– sequence: 3
  givenname: Eisuke
  orcidid: 0000-0001-7248-9333
  surname: Itakura
  fullname: Itakura, Eisuke
  email: eitakura@chiba-u.jp
  organization: Department of Biology, Graduate School of Science, Chiba University, Inage-ku
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35079001$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1DAUhS1URB_0D7BAkdiwCfUj8WODhAKUSpWQ0LC27jjOjIeMHewEaf49zqSFtouubNnfOTq695yjEx-8RegNwR8IZvIqVaSiuMSUlhhLKkv-Ap1RXMtSCMJPHtxP0WVKO4wxqUUlJHuFTlmNhcoPZ2j12aU4DaMLvghdAWZ0vmgPHvbOpML5djI2FTCNYdjC5jAz49YWdvoF8RBGZwqzhcHG4LNu9cM1V02zeo1edtAne3l3XqCfX7-smm_l7ffrm-bTbWk45mPJKLO8XQPlAoyhnBmCcSckN6qumRAYKkkr0Vpad4IaAxYqwNy2cg1SKM4u0M3i2wbY6SG6fQ6lAzh9fAhxoyHmjL3VinWYqa6ipDaVzOpW1aa1TJh1zZWC7PVx8Rqm9d62xvoxQv_I9PGPd1u9CX-0FFJJRrLB-zuDGH5PNo1675KxfQ_ehilpyilVHGMlMvruCboLU_R5VEeKc0HETL19mOhflPvlZUAugIkhpWg7bdwI8ypzQNdrgvVcFb1UReeq6GNV9Dw5-kR67_6siC2ilGG_sfF_7GdUfwED1s-S
CitedBy_id crossref_primary_10_1111_iej_14131
crossref_primary_10_3389_fcimb_2024_1460604
crossref_primary_10_3389_fmolb_2022_1057232
crossref_primary_10_1080_15548627_2024_2379099
crossref_primary_10_3390_cells13201675
crossref_primary_10_3389_fcell_2022_906530
crossref_primary_10_1016_j_jbc_2024_107787
Cites_doi 10.1016/j.molcel.2009.09.034
10.1016/j.molcel.2015.04.023
10.1016/j.cell.2012.11.001
10.1038/nsmb.3309
10.1074/jbc.C700195200
10.1074/jbc.M001864200
10.1074/jbc.M304314200
10.1016/j.cell.2011.10.026
10.1038/ncb0910-831
10.1038/nature13148
10.1073/pnas.1920327117
10.1016/j.cell.2019.03.012
10.1083/jcb.201206119
10.1083/jcb.200809125
10.1083/jcb.200712064
10.1080/15548627.2016.1190891
10.1038/srep00241
10.1093/bioinformatics/btq287
10.1146/annurev.biochem.73.011303.073752
10.1093/nar/gkz365
10.1016/j.devcel.2017.11.024
10.1038/358249a0
10.1038/35085604
10.1074/jbc.M513235200
10.1016/0092-8674(92)90622-J
10.1002/bies.201200119
10.1038/ncb3451
10.1038/s41388-019-0754-1
10.1247/csf.07011
10.1126/science.272.5267.1497
10.1007/s10495-018-1505-4
10.1073/pnas.112075699
10.1038/s41556-018-0037-z
10.1016/j.biocel.2010.04.007
10.1074/jbc.M212260200
10.1146/annurev-cellbio-120219-035530
10.1083/jcb.201304188
10.1038/nsmb.1515
10.1074/jbc.273.43.28322
10.1146/annurev-cellbio-092910-154005
10.1371/journal.pbio.1000298
10.1126/science.aar2663
10.1074/jbc.M601590200
10.1007/s12192-015-0637-5
10.1016/j.celrep.2016.02.040
10.1074/jbc.M909107199
10.1006/bbrc.2000.2987
10.1126/science.1079474
10.1038/s41556-017-0007-x
10.1016/j.jmb.2005.10.051
10.1161/CIRCRESAHA.112.300754
10.1016/j.ydbio.2007.10.022
10.1074/jbc.M409233200
10.1016/j.bbamcr.2009.04.004
10.1080/15548627.2015.1100356
ContentType Journal Article
Copyright The Author(s) 2022
2022. The Author(s).
The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2022
– notice: 2022. The Author(s).
– notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
NPM
3V.
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41420-022-00828-6
DatabaseName Springer Nature OA Free Journals
CrossRef
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
ProQuest Health & Medical Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ - The Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
PubMed
ProQuest Central Student
CrossRef

Database_xml – sequence: 1
  dbid: C6C
  name: SpringerOpen Free (Free internet resource, activated by CARLI)
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central (New)
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2058-7716
EndPage 10
ExternalDocumentID oai_doaj_org_article_93f039f4215c48879d95cde37cb5699a
PMC8789831
35079001
10_1038_s41420_022_00828_6
Genre Journal Article
GrantInformation_xml – fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: 20351166
  funderid: https://doi.org/10.13039/501100002241
– fundername: Takeda Science Foundation
  funderid: https://doi.org/10.13039/100007449
– fundername: Terumo Foundation for Life Sciences and Arts
  funderid: https://doi.org/10.13039/501100008670
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19K22413; 20H03249; 20H05312
  funderid: https://doi.org/10.13039/501100001691
– fundername: Hamaguchi Foundation for the Advancement of Biochemistry
  funderid: https://doi.org/10.13039/501100008655
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 19K22413
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 20H05312
– fundername: MEXT | Japan Society for the Promotion of Science (JSPS)
  grantid: 20H03249
– fundername: MEXT | Japan Science and Technology Agency (JST)
  grantid: 20351166
– fundername: ;
– fundername: ;
  grantid: 20351166
– fundername: ;
  grantid: 19K22413; 20H03249; 20H05312
GroupedDBID 0R~
3V.
53G
7X7
8FE
8FH
8FI
8FJ
AAFWJ
AAJSJ
ABUWG
ACSMW
ADBBV
ADRAZ
AFKRA
AFPKN
AJTQC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
LK8
M48
M7P
M~E
NAO
OK1
PGMZT
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
NPM
7XB
8FK
AARCD
AZQEC
DWQXO
GNUQQ
K9.
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
PUEGO
5PM
ID FETCH-LOGICAL-c606t-323e6dba267acc263c100f786c9553770a48247de25f72ccaea4a06ed8ba87963
IEDL.DBID DOA
ISSN 2058-7716
IngestDate Wed Aug 27 01:26:30 EDT 2025
Thu Aug 21 14:31:58 EDT 2025
Fri Sep 05 09:57:53 EDT 2025
Wed Aug 13 06:23:29 EDT 2025
Thu Jan 02 22:55:46 EST 2025
Tue Jul 01 02:29:04 EDT 2025
Thu Apr 24 23:06:27 EDT 2025
Fri Feb 21 02:38:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2022. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-323e6dba267acc263c100f786c9553770a48247de25f72ccaea4a06ed8ba87963
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7248-9333
OpenAccessLink https://doaj.org/article/93f039f4215c48879d95cde37cb5699a
PMID 35079001
PQID 2622667177
PQPubID 2041962
PageCount 10
ParticipantIDs doaj_primary_oai_doaj_org_article_93f039f4215c48879d95cde37cb5699a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789831
proquest_miscellaneous_2622960097
proquest_journals_2622667177
pubmed_primary_35079001
crossref_citationtrail_10_1038_s41420_022_00828_6
crossref_primary_10_1038_s41420_022_00828_6
springer_journals_10_1038_s41420_022_00828_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-25
PublicationDateYYYYMMDD 2022-01-25
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-25
  day: 25
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: United States
– name: New York
PublicationTitle Cell death discovery
PublicationTitleAbbrev Cell Death Discov
PublicationTitleAlternate Cell Death Discov
PublicationYear 2022
Publisher Nature Publishing Group UK
Springer Nature B.V
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Springer Nature B.V
– name: Nature Publishing Group
References Kim, Choi (CR21) 2019; 38
Gestaut, Roh, Ma, Pintilie, Joachimiak, Leitner (CR23) 2019; 177
Frydman, Hartl (CR33) 1996; 272
Heng, Koh (CR53) 2010; 42
Katayama, Yamamoto, Mizushima, Yoshimori, Miyawaki (CR22) 2008; 33
Zhang, Ghaemmaghami (CR31) 2016; 12
Hara, Takamura, Kishi, Iemura, Natsume, Guan (CR25) 2008; 181
Helenius, Aebi (CR34) 2004; 73
Ruiz-Gómez, Humrich, Murga, Quitterer, Lohse, Mayor (CR40) 2000; 275
Raineri, Ribeca, Serrano, Maier (CR18) 2010; 26
Molinari, Calanca, Galli, Lucca, Paganetti (CR35) 2003; 299
Marshall, Li, Gemperline, Book, Vierstra (CR54) 2015; 58
Ji, Wang, Nika, Hawke, Keezer, Ge (CR44) 2009; 36
Gatica, Lahiri, Klionsky (CR49) 2018; 20
Narendra, Tanaka, Suen, Youle (CR6) 2008; 183
Svanström, Grantham (CR19) 2016; 21
Lim, Kang, Park, Lee, Chun, Sonn (CR47) 2000; 273
Zang, Jin, Wang, Cui, Kong, Liu (CR24) 2016; 23
Fujita, Morita, Itoh, Tanaka, Nakaoka, Osada (CR11) 2013; 203
Mizushima, Yoshimori, Ohsumi (CR1) 2011; 27
Stirling, Cuéllar, Alfaro, El Khadali, Beh, Valpuesta (CR37) 2006; 281
Lukov, Baker, Ludtke, Hu, Carter, Hackett (CR39) 2006; 281
Song, Dominguez, Mizuno, Kaut, Mohr, Seldin (CR42) 2003; 278
McLaughlin, Thulin, Hart, Resing, Ahn, Willardson (CR38) 2002; 99
Song, Sussman, Seldin (CR41) 2000; 275
Lewis, Hynes, Zheng, Saibil, Willison (CR16) 1992; 358
Gachet, Tournier, Millar, Hyams (CR52) 2001; 412
Klionsky, Abdelmohsen, Abe, Abedin, Abeliovich, Acevedo Arozena (CR2) 2016; 12
Lamark, Johansen (CR8) 2021; 37
Humrich, Bermel, Bünemann, Härmark, Frost, Quitterer (CR36) 2005; 280
Smith, Harley, Kemp, Wills, Lee, Arends (CR9) 2018; 44
Tsakiridis, Bergman, Somwar, Taha, Aktories, Cruz (CR48) 1998; 273
An, Harper (CR13) 2018; 20
Gao, Thomas, Chow, Lee, Cowan (CR29) 1992; 69
Reggiori, Tooze (CR26) 2012; 198
Vandamme, Lambert, Waterschoot, Cognard, Vandekerckhove, Ampe (CR30) 2009; 1793
Itakura, Kishi-Itakura, Mizushima (CR5) 2012; 151
Tooze, Yoshimori (CR4) 2010; 12
Wyant, Abu-Remaileh, Frenkel, Laqtom, Dharamdasani, Lewis (CR12) 2018; 360
Neirynck, Waterschoot, Vandekerckhove, Ampe, Rommelaere (CR28) 2006; 355
Choi, Yun, Park, Jeon, Lee, Lee (CR15) 2020; 117
Yam, Xia, Lin, Burlingame, Gerstein, Frydman (CR17) 2008; 15
Mancias, Wang, Gygi, Harper, Kimmelman (CR14) 2014; 509
Labun, Montague, Krause, Torres Cleuren, Tjeldnes, Valen (CR55) 2019; 47
Thulasiraman, Ferreyra, Frydman (CR56) 2000; 140
Jaeger, Sukseree, Zhong, Phinney, Mlitz, Buchberger (CR50) 2019; 24
Hanada, Noda, Satomi, Ichimura, Fujioka, Takao (CR27) 2007; 282
Elorza, Penela, Sarnago, Mayor (CR46) 2003; 278
Dang, Gautreau (CR51) 2012; 34
Chen, Sato, Chuprun, Peroutka, Otis, Ibetti (CR45) 2013; 112
Lundin, Srayko, Hyman, Leroux (CR20) 2008; 313
Zhang, Shen, Qu, Ghaemmaghami (CR32) 2016; 14
Mizushima, Komatsu (CR3) 2011; 147
Narendra, Jin, Tanaka, Suen, Gautier, Shen (CR7) 2010; 8
Xavier, Rastetter, Blömacher, Stumpf, Himmel, Morgan (CR43) 2012; 2
Fumagalli, Noack, Bergmann, Cebollero, Pisoni, Fasana (CR10) 2016; 19
Y Gachet (828_CR52) 2001; 412
N Mizushima (828_CR3) 2011; 147
VA Lewis (828_CR16) 1992; 358
Y Zang (828_CR24) 2016; 23
A Helenius (828_CR34) 2004; 73
SA Tooze (828_CR4) 2010; 12
JN McLaughlin (828_CR38) 2002; 99
AR Kim (828_CR21) 2019; 38
RS Marshall (828_CR54) 2015; 58
DH Song (828_CR41) 2000; 275
T Hara (828_CR25) 2008; 181
F Fumagalli (828_CR10) 2016; 19
T Tsakiridis (828_CR48) 1998; 273
DH Song (828_CR42) 2003; 278
Y Gao (828_CR29) 1992; 69
T Zhang (828_CR31) 2016; 12
GA Wyant (828_CR12) 2018; 360
A Elorza (828_CR46) 2003; 278
I Dang (828_CR51) 2012; 34
E Itakura (828_CR5) 2012; 151
DJ Klionsky (828_CR2) 2016; 12
K Jaeger (828_CR50) 2019; 24
M Molinari (828_CR35) 2003; 299
M Chen (828_CR45) 2013; 112
H Ji (828_CR44) 2009; 36
H An (828_CR13) 2018; 20
T Hanada (828_CR27) 2007; 282
T Zhang (828_CR32) 2016; 14
JD Mancias (828_CR14) 2014; 509
CP Xavier (828_CR43) 2012; 2
E Raineri (828_CR18) 2010; 26
D Vandamme (828_CR30) 2009; 1793
D Gatica (828_CR49) 2018; 20
K Labun (828_CR55) 2019; 47
WH Choi (828_CR15) 2020; 117
D Gestaut (828_CR23) 2019; 177
YW Heng (828_CR53) 2010; 42
AY Yam (828_CR17) 2008; 15
V Thulasiraman (828_CR56) 2000; 140
MD Smith (828_CR9) 2018; 44
J Frydman (828_CR33) 1996; 272
PC Stirling (828_CR37) 2006; 281
J Humrich (828_CR36) 2005; 280
DP Narendra (828_CR7) 2010; 8
H Katayama (828_CR22) 2008; 33
A Svanström (828_CR19) 2016; 21
VF Lundin (828_CR20) 2008; 313
D Narendra (828_CR6) 2008; 183
A Ruiz-Gómez (828_CR40) 2000; 275
GL Lukov (828_CR39) 2006; 281
F Reggiori (828_CR26) 2012; 198
K Neirynck (828_CR28) 2006; 355
T Lamark (828_CR8) 2021; 37
N Fujita (828_CR11) 2013; 203
YB Lim (828_CR47) 2000; 273
N Mizushima (828_CR1) 2011; 27
References_xml – volume: 36
  start-page: 547
  year: 2009
  end-page: 59
  ident: CR44
  article-title: EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.09.034
– volume: 58
  start-page: 1053
  year: 2015
  end-page: 66
  ident: CR54
  article-title: Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.023
– volume: 151
  start-page: 1256
  year: 2012
  end-page: 69
  ident: CR5
  article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 23
  start-page: 1083
  year: 2016
  end-page: 91
  ident: CR24
  article-title: Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.3309
– volume: 282
  start-page: 37298
  year: 2007
  end-page: 302
  ident: CR27
  article-title: The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C700195200
– volume: 275
  start-page: 29724
  year: 2000
  end-page: 30
  ident: CR40
  article-title: Phosphorylation of phosducin and phosducin-like protein by G protein-coupled receptor kinase 2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M001864200
– volume: 278
  start-page: 29164
  year: 2003
  end-page: 73
  ident: CR46
  article-title: MAPK-dependent degradation of G protein-coupled receptor kinase 2
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304314200
– volume: 147
  start-page: 728
  year: 2011
  end-page: 41
  ident: CR3
  article-title: Autophagy: Renovation of cells and tissues
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– volume: 12
  start-page: 831
  year: 2010
  end-page: 5
  ident: CR4
  article-title: The origin of the autophagosomal membrane
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0910-831
– volume: 509
  start-page: 105
  year: 2014
  end-page: 9
  ident: CR14
  article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy
  publication-title: Nature
  doi: 10.1038/nature13148
– volume: 117
  start-page: 19190
  year: 2020
  end-page: 19200
  ident: CR15
  article-title: Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1920327117
– volume: 177
  start-page: 751
  year: 2019
  ident: CR23
  article-title: The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.012
– volume: 198
  start-page: 151
  year: 2012
  end-page: 3
  ident: CR26
  article-title: Autophagy regulation through Atg9 traffic
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.201206119
– volume: 183
  start-page: 795
  year: 2008
  end-page: 803
  ident: CR6
  article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 181
  start-page: 497
  year: 2008
  end-page: 510
  ident: CR25
  article-title: FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200712064
– volume: 12
  start-page: 1411
  year: 2016
  end-page: 2
  ident: CR31
  article-title: Global analysis of cellular protein flux quantifies the selectivity of basal autophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1190891
– volume: 2
  year: 2012
  ident: CR43
  article-title: Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration
  publication-title: Sci Rep
  doi: 10.1038/srep00241
– volume: 26
  start-page: 1685
  year: 2010
  end-page: 9
  ident: CR18
  article-title: A more precise characterization of chaperonin substrates
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq287
– volume: 73
  start-page: 1019
  year: 2004
  end-page: 49
  ident: CR34
  article-title: Roles of N-linked glycans in the endoplasmic reticulum
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.073752
– volume: 47
  start-page: W171
  year: 2019
  end-page: W174
  ident: CR55
  article-title: CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz365
– volume: 44
  start-page: 217
  year: 2018
  end-page: 232
  ident: CR9
  article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2017.11.024
– volume: 358
  start-page: 249
  year: 1992
  end-page: 52
  ident: CR16
  article-title: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol
  publication-title: Nature
  doi: 10.1038/358249a0
– volume: 412
  start-page: 352
  year: 2001
  end-page: 5
  ident: CR52
  article-title: A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast
  publication-title: Nature
  doi: 10.1038/35085604
– volume: 281
  start-page: 7012
  year: 2006
  end-page: 21
  ident: CR37
  article-title: PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M513235200
– volume: 69
  start-page: 1043
  year: 1992
  end-page: 50
  ident: CR29
  article-title: A cytoplasmic chaperonin that catalyzes beta-actin folding
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90622-J
– volume: 34
  start-page: 1021
  year: 2012
  end-page: 4
  ident: CR51
  article-title: Evidence for a cell cycle checkpoint that senses branched actin in the lamellipodium
  publication-title: Bioessays
  doi: 10.1002/bies.201200119
– volume: 19
  start-page: 76
  year: 2016
  ident: CR10
  article-title: Corrigendum: Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3451
– volume: 38
  start-page: 4739
  year: 2019
  end-page: 54
  ident: CR21
  article-title: TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0754-1
– volume: 33
  start-page: 1
  year: 2008
  end-page: 12
  ident: CR22
  article-title: GFP-like proteins stably accumulate in lysosomes
  publication-title: Cell Struct Funct
  doi: 10.1247/csf.07011
– volume: 272
  start-page: 1497
  year: 1996
  end-page: 502
  ident: CR33
  article-title: Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms
  publication-title: Science
  doi: 10.1126/science.272.5267.1497
– volume: 24
  start-page: 62
  year: 2019
  end-page: 73
  ident: CR50
  article-title: Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton
  publication-title: Apoptosis
  doi: 10.1007/s10495-018-1505-4
– volume: 99
  start-page: 7962
  year: 2002
  end-page: 7
  ident: CR38
  article-title: Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.112075699
– volume: 20
  start-page: 233
  year: 2018
  end-page: 42
  ident: CR49
  article-title: Cargo recognition and degradation by selective autophagy
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0037-z
– volume: 42
  start-page: 1622
  year: 2010
  end-page: 33
  ident: CR53
  article-title: Actin cytoskeleton dynamics and the cell division cycle
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2010.04.007
– volume: 278
  start-page: 24018
  year: 2003
  end-page: 25
  ident: CR42
  article-title: CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212260200
– volume: 140
  start-page: 169
  year: 2000
  end-page: 77
  ident: CR56
  article-title: Folding assays. Assessing the native conformation of proteins
  publication-title: Methods Mol Biol
– volume: 37
  start-page: 143
  year: 2021
  end-page: 69
  ident: CR8
  article-title: Mechanisms of selective autophagy
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-120219-035530
– volume: 203
  start-page: 115
  year: 2013
  end-page: 28
  ident: CR11
  article-title: Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201304188
– volume: 15
  start-page: 1255
  year: 2008
  end-page: 62
  ident: CR17
  article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1515
– volume: 273
  start-page: 28322
  year: 1998
  end-page: 31
  ident: CR48
  article-title: Actin filaments facilitate insulin activation of the src and collagen homologous/mitogen-activated protein kinase pathway leading to DNA synthesis and c-fos expression
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.43.28322
– volume: 27
  start-page: 107
  year: 2011
  end-page: 32
  ident: CR1
  article-title: The role of Atg proteins in autophagosome formation
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 8
  start-page: e1000298
  year: 2010
  ident: CR7
  article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000298
– volume: 360
  start-page: 751
  year: 2018
  end-page: 8
  ident: CR12
  article-title: NUFIP1 is a ribosome receptor for starvation-induced ribophagy
  publication-title: Science
  doi: 10.1126/science.aar2663
– volume: 281
  start-page: 22261
  year: 2006
  end-page: 74
  ident: CR39
  article-title: Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601590200
– volume: 21
  start-page: 55
  year: 2016
  end-page: 62
  ident: CR19
  article-title: The molecular chaperone CCT modulates the activity of the actin filament severing and capping protein gelsolin in vitro
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-015-0637-5
– volume: 14
  start-page: 2426
  year: 2016
  end-page: 39
  ident: CR32
  article-title: Global analysis of cellular protein flux quantifies the selectivity of basal autophagy
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.02.040
– volume: 275
  start-page: 23790
  year: 2000
  end-page: 7
  ident: CR41
  article-title: Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M909107199
– volume: 273
  start-page: 609
  year: 2000
  end-page: 13
  ident: CR47
  article-title: Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-alpha signaling
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2000.2987
– volume: 299
  start-page: 1397
  year: 2003
  end-page: 1400
  ident: CR35
  article-title: Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle
  publication-title: Science
  doi: 10.1126/science.1079474
– volume: 20
  start-page: 135
  year: 2018
  end-page: 43
  ident: CR13
  article-title: Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-017-0007-x
– volume: 355
  start-page: 124
  year: 2006
  end-page: 38
  ident: CR28
  article-title: Actin interacts with CCT via discrete binding sites: a binding transition-release model for CCT-mediated actin folding
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.10.051
– volume: 112
  start-page: 1121
  year: 2013
  end-page: 34
  ident: CR45
  article-title: Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.300754
– volume: 313
  start-page: 320
  year: 2008
  end-page: 34
  ident: CR20
  article-title: Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2007.10.022
– volume: 280
  start-page: 20042
  year: 2005
  end-page: 50
  ident: CR36
  article-title: Phosducin-like protein regulates G-protein betagamma folding by interaction with tailless complex polypeptide-1alpha: Dephosphorylation or splicing of PhLP turns the switch toward regulation of Gbetagamma folding
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409233200
– volume: 1793
  start-page: 1259
  year: 2009
  end-page: 71
  ident: CR30
  article-title: Alpha-skeletal muscle actin nemaline myopathy mutants cause cell death in cultured muscle cells
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2009.04.004
– volume: 12
  start-page: 1
  year: 2016
  end-page: 222
  ident: CR2
  article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1100356
– volume: 2
  year: 2012
  ident: 828_CR43
  publication-title: Sci Rep
  doi: 10.1038/srep00241
– volume: 42
  start-page: 1622
  year: 2010
  ident: 828_CR53
  publication-title: Int J Biochem Cell Biol
  doi: 10.1016/j.biocel.2010.04.007
– volume: 37
  start-page: 143
  year: 2021
  ident: 828_CR8
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-120219-035530
– volume: 73
  start-page: 1019
  year: 2004
  ident: 828_CR34
  publication-title: Annu Rev Biochem
  doi: 10.1146/annurev.biochem.73.011303.073752
– volume: 38
  start-page: 4739
  year: 2019
  ident: 828_CR21
  publication-title: Oncogene
  doi: 10.1038/s41388-019-0754-1
– volume: 509
  start-page: 105
  year: 2014
  ident: 828_CR14
  publication-title: Nature
  doi: 10.1038/nature13148
– volume: 58
  start-page: 1053
  year: 2015
  ident: 828_CR54
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2015.04.023
– volume: 273
  start-page: 28322
  year: 1998
  ident: 828_CR48
  publication-title: J Biol Chem
  doi: 10.1074/jbc.273.43.28322
– volume: 27
  start-page: 107
  year: 2011
  ident: 828_CR1
  publication-title: Annu Rev Cell Dev Biol
  doi: 10.1146/annurev-cellbio-092910-154005
– volume: 8
  start-page: e1000298
  year: 2010
  ident: 828_CR7
  publication-title: PLoS Biol
  doi: 10.1371/journal.pbio.1000298
– volume: 275
  start-page: 23790
  year: 2000
  ident: 828_CR41
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M909107199
– volume: 273
  start-page: 609
  year: 2000
  ident: 828_CR47
  publication-title: Biochem Biophys Res Commun
  doi: 10.1006/bbrc.2000.2987
– volume: 36
  start-page: 547
  year: 2009
  ident: 828_CR44
  publication-title: Mol Cell
  doi: 10.1016/j.molcel.2009.09.034
– volume: 147
  start-page: 728
  year: 2011
  ident: 828_CR3
  publication-title: Cell
  doi: 10.1016/j.cell.2011.10.026
– volume: 278
  start-page: 24018
  year: 2003
  ident: 828_CR42
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M212260200
– volume: 20
  start-page: 233
  year: 2018
  ident: 828_CR49
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-018-0037-z
– volume: 12
  start-page: 831
  year: 2010
  ident: 828_CR4
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb0910-831
– volume: 117
  start-page: 19190
  year: 2020
  ident: 828_CR15
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1920327117
– volume: 69
  start-page: 1043
  year: 1992
  ident: 828_CR29
  publication-title: Cell
  doi: 10.1016/0092-8674(92)90622-J
– volume: 313
  start-page: 320
  year: 2008
  ident: 828_CR20
  publication-title: Dev Biol
  doi: 10.1016/j.ydbio.2007.10.022
– volume: 14
  start-page: 2426
  year: 2016
  ident: 828_CR32
  publication-title: Cell Rep
  doi: 10.1016/j.celrep.2016.02.040
– volume: 272
  start-page: 1497
  year: 1996
  ident: 828_CR33
  publication-title: Science
  doi: 10.1126/science.272.5267.1497
– volume: 23
  start-page: 1083
  year: 2016
  ident: 828_CR24
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.3309
– volume: 140
  start-page: 169
  year: 2000
  ident: 828_CR56
  publication-title: Methods Mol Biol
– volume: 358
  start-page: 249
  year: 1992
  ident: 828_CR16
  publication-title: Nature
  doi: 10.1038/358249a0
– volume: 15
  start-page: 1255
  year: 2008
  ident: 828_CR17
  publication-title: Nat Struct Mol Biol
  doi: 10.1038/nsmb.1515
– volume: 177
  start-page: 751
  year: 2019
  ident: 828_CR23
  publication-title: Cell
  doi: 10.1016/j.cell.2019.03.012
– volume: 44
  start-page: 217
  year: 2018
  ident: 828_CR9
  publication-title: Dev Cell
  doi: 10.1016/j.devcel.2017.11.024
– volume: 281
  start-page: 22261
  year: 2006
  ident: 828_CR39
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M601590200
– volume: 26
  start-page: 1685
  year: 2010
  ident: 828_CR18
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btq287
– volume: 24
  start-page: 62
  year: 2019
  ident: 828_CR50
  publication-title: Apoptosis
  doi: 10.1007/s10495-018-1505-4
– volume: 203
  start-page: 115
  year: 2013
  ident: 828_CR11
  publication-title: J Cell Biol
  doi: 10.1083/jcb.201304188
– volume: 412
  start-page: 352
  year: 2001
  ident: 828_CR52
  publication-title: Nature
  doi: 10.1038/35085604
– volume: 1793
  start-page: 1259
  year: 2009
  ident: 828_CR30
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbamcr.2009.04.004
– volume: 12
  start-page: 1411
  year: 2016
  ident: 828_CR31
  publication-title: Autophagy
  doi: 10.1080/15548627.2016.1190891
– volume: 47
  start-page: W171
  year: 2019
  ident: 828_CR55
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gkz365
– volume: 33
  start-page: 1
  year: 2008
  ident: 828_CR22
  publication-title: Cell Struct Funct
  doi: 10.1247/csf.07011
– volume: 12
  start-page: 1
  year: 2016
  ident: 828_CR2
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1100356
– volume: 299
  start-page: 1397
  year: 2003
  ident: 828_CR35
  publication-title: Science
  doi: 10.1126/science.1079474
– volume: 280
  start-page: 20042
  year: 2005
  ident: 828_CR36
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M409233200
– volume: 151
  start-page: 1256
  year: 2012
  ident: 828_CR5
  publication-title: Cell
  doi: 10.1016/j.cell.2012.11.001
– volume: 275
  start-page: 29724
  year: 2000
  ident: 828_CR40
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M001864200
– volume: 99
  start-page: 7962
  year: 2002
  ident: 828_CR38
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.112075699
– volume: 21
  start-page: 55
  year: 2016
  ident: 828_CR19
  publication-title: Cell Stress Chaperones
  doi: 10.1007/s12192-015-0637-5
– volume: 20
  start-page: 135
  year: 2018
  ident: 828_CR13
  publication-title: Nat Cell Biol
  doi: 10.1038/s41556-017-0007-x
– volume: 112
  start-page: 1121
  year: 2013
  ident: 828_CR45
  publication-title: Circ Res
  doi: 10.1161/CIRCRESAHA.112.300754
– volume: 183
  start-page: 795
  year: 2008
  ident: 828_CR6
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.200809125
– volume: 34
  start-page: 1021
  year: 2012
  ident: 828_CR51
  publication-title: Bioessays
  doi: 10.1002/bies.201200119
– volume: 19
  start-page: 76
  year: 2016
  ident: 828_CR10
  publication-title: Nat Cell Biol
  doi: 10.1038/ncb3451
– volume: 198
  start-page: 151
  year: 2012
  ident: 828_CR26
  publication-title: J Cell Biol.
  doi: 10.1083/jcb.201206119
– volume: 181
  start-page: 497
  year: 2008
  ident: 828_CR25
  publication-title: J Cell Biol
  doi: 10.1083/jcb.200712064
– volume: 355
  start-page: 124
  year: 2006
  ident: 828_CR28
  publication-title: J Mol Biol
  doi: 10.1016/j.jmb.2005.10.051
– volume: 281
  start-page: 7012
  year: 2006
  ident: 828_CR37
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M513235200
– volume: 282
  start-page: 37298
  year: 2007
  ident: 828_CR27
  publication-title: J Biol Chem
  doi: 10.1074/jbc.C700195200
– volume: 360
  start-page: 751
  year: 2018
  ident: 828_CR12
  publication-title: Science
  doi: 10.1126/science.aar2663
– volume: 278
  start-page: 29164
  year: 2003
  ident: 828_CR46
  publication-title: J Biol Chem
  doi: 10.1074/jbc.M304314200
SSID ssj0001574783
Score 2.2195363
Snippet Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein...
Abstract Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 37
SubjectTerms 631/80/39/2346
631/80/474/1768
Actin
Apoptosis
Autophagy
Biochemistry
Biomedical and Life Sciences
Cell Biology
Cell Cycle Analysis
CRISPR
Degradation
Life Sciences
Lysosomes
Organelles
Polymerization
Proteomes
Quality control
Ribosomes
Stem Cells
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJsuCwoSN7Ca-O0TgsJqhQQH1JV6s_zKbrUoWZrm0H-_YydtVR57jceRM6_MeOxvEHpHHKQ4gVusolWY6Spg7SLB3qvIva21yzjd33-Is3P2bcEX44ZbNx6r3PrE7KhD69Me-ZQICBQEJB_y4_VvnLpGperq2ELjLrqXoctAn-VC7vdYeEKHp-NdmZKqaccqBvlSOsKewduwOPgfZdj-f8Wafx-Z_KNumn9Hp4_QwzGOLD4Ngn-M7sTmCbo_dJbcPEXzL8tu1Wd3ULR1kW4vNEUYus93BeThINGusH2CFbAXm0QDkWAR-yu72rTwzsJf2oQh3sC8-c_lbDqbzZ-h89Ov89kZHhsoYA95yRpTQqMIzhIhrfdEUF-VZS2V8JpzKmVpmSJMhkh4LQnIMlpmSxGDclZJMM3n6Khpm_gSFTz6oBmviaMls65yvOY6OpbQ5wW3cYKqLRuNH9HFU5OLXyZXuakyA-sNsN5k1hsxQe93c64HbI1bqT8n6ewoEy52ftCuLsxoZkbTuqS6ZhDIeHBNUgfNfYhUeseF1naCTrayNaOxdmavWhP0djcMZpZqJ7aJbT_QQLJXaqB5MajCbiUUYmoN2jZB8kBJDpZ6ONIsLzOUt5JKKwozP2zVab-s_7Pi-PaveIUekKzhFSb8BB2tV318DaHT2r3J9nEDhbIVmQ
  priority: 102
  providerName: ProQuest
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERKXivIMFBQkbhCa-O0DQnShqpDKAe1KvVm247QrqqQkG4n994ydZNHCwolrPI6sedjzyZ5vEHqFLUCckplMeiMzqooyU9bjzDnpmTOVspGn-_wLP1vQzxfsYg9N7Y5GBXY7oV3oJ7Vor9_--L5-DwH_bigZl8cdLSiAoPAuPTKyZfwWug0nEw9g7HxM94eq4cAWT8bamd1Tt86nSOO_K_f88wnlb_eo8Xg6vYcOxrwy_TA4wiHa8_V9dGfoNLl-gOYfl13bx-0hbao0VDPUaTl0o-9SwOVg4S41faAZMJfrIAOZYer7b6ZdN_DP1F2ZwClew7z51-XseDabP0SL00_z2Vk2NlTIHOCUVUYw8by0BnNhnMOcuCLPKyG5U4wRIXJDJaai9JhVAoNtvaEm576U1kgBofoI7ddN7Z-glHlXKsoqbElOjS0sq5jylgY2es6MT1AxqVG7kW08NL241vHWm0g9qF6D6nVUveYJer2ZczNwbfxT-iRYZyMZeLLjh6a91GPYaUWqnKiKQmLjYKsSqlTMlZ4IZxlXyiToaLKtnnxPYw45KQecKxL0cjMMYRfuUkztm36QAfCXK5B5PLjCZiUEcmwF3pYgseUkW0vdHqmXV5HaWwqpJIGZbyZ3-rWsv6vi6f9QxTN0F8c4KDLMjtD-qu39c0i4VvZFjKKfr3ElhQ
  priority: 102
  providerName: Scholars Portal
– databaseName: HAS SpringerNature Open Access 2022
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVkhcEG8CBRmJG0RN_PZxWaiqleAAW6k3y3acdgVK0GZz2H_P2Em2WihIXJOZaDQPeyYef4PQW-KgxKm4zVWwKme6rHLtAsm9V4F7W2uXcLo_fxHnF2x5yS-PEJnuwqSm_QRpmZbpqTvstGMlg0In9p4n1LVc3EHHCrY_MkPH8_ny2_LmzwqPmPB0vCFTUHUL88EulMD6b8sw_2yU_O20NG1CZw_Q_TF7xPNB3ofoKDSP0N1hnuTuMVp9XHebPi0CuK1xvLPQ4GqYOd9hqL7Bjh22fQQTsFe7SAP5Hw79d7vZtfBN7K9tRA5vgG_1db04XSxWT9DF2afV4jwfxybkHqqRbU4JDaJylghpvSeC-rIoaqmE15xTKQvLFGGyCoTXkoAFg2W2EKFSzioJAfkUzZq2Cc8R5sFXmvGaOFow60rHa66DYxFzXnAbMlROajR-xBSPoy1-mHS2TZUZVG9A9Sap3ogMvdvz_BwQNf5J_SFaZ08Z0bDTg3ZzZUbvMJrWBdU1g_TFw4IkdaW5rwKV3nGhtc3QyWRbM4ZoZ4iAzFNANSsz9Gb_GoIrnpjYJrT9QAMlXqGB5tngCntJKGTSGrwtQ_LASQ5EPXzTrK8TgLeSSisKnO8nd7oR6--qePF_5C_RPZI8vswJP0Gz7aYPryCB2rrXY8T8Ahu3FJw
  priority: 102
  providerName: Springer Nature
Title Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT
URI https://link.springer.com/article/10.1038/s41420-022-00828-6
https://www.ncbi.nlm.nih.gov/pubmed/35079001
https://www.proquest.com/docview/2622667177
https://www.proquest.com/docview/2622960097
https://pubmed.ncbi.nlm.nih.gov/PMC8789831
https://doaj.org/article/93f039f4215c48879d95cde37cb5699a
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUP9raZ2PrWY-q1lEDL6FLIm5BkeQ0dzojjh_z3PclO1uzzZS82SCcjfndn3SHpdwi9xxZSnIqZTHojM6qKKlPW48w56ZkztbKRp_v8gp9d0emcze-U-gpnwnp64B64sSJ1TlRNYWlyYGxCVYq5yhPhLONKxdAoV_mdZKq_Hxx44clwSyYnctzSgkKmFA6vR9q2jO-tRJGw_3dR5q-HJX_aMY0L0ekT9HiIINNJP_On6J5vnqGHfU3JzXM0-7RoV138EaTLOg33Fpq06uvOtylk4KDLNjVdIBQwXzdBBmLA1Hc3ZrVZwjdTd20Ce3gD42aXi3JclrMX6Or0ZFaeZUPphMxBRrLOCCaeV9ZgLoxzmBNX5HktJHeKMSJEbqjEVFQes1pg0KI31OTcV9IawJiTl-igWTb-NUqZd5WirMaW5NTYwrKaKW9p4J3nzPgEFVsYtRt4xUN5i2867m8TqXvoNUCvI_SaJ-jDbsz3nlXjr9LHQTs7ycCIHRvATvRgJ_pfdpKgo61u9eCmrcYcok8OGa1I0LtdNzhY2DUxjV92vQykebkCmVe9KexmQiCaVmBtCRJ7RrI31f2eZnEdSbylkEoSGPlxa04_pvVnKA7_BxRv0CMc_aDIMDtCB-tV599CaLW2I3RfzMUIPZhMpl-m8D4-ufh8Ca0lL0fRw-B5TuUt_mEjbQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuFAUGCJ4ia-O4HhFi3aWNbhaZO2pvnOM5WgZLRtEL9U_xGjp2kVbnsba_xseUcfz4-x5fvIPQWZxDi5MzE0hkZU5Xmscocjq2VjllTqCzwdB-P-P4p_XLGzjbQr-4tjL9W2dnEYKjzyvo98gHm4ChwCD7Ep6sfsc8a5U9XuxQaDSwO3eInhGz1x4MdGN93GO_tjof7cZtVILbgrM9igonjeWYwF8ZazIlNk6QQklvFGBEiMVRiKnKHWSEw_KAz1CTc5TIzUgBeod1baJP6F609tLm9O_p6strVYZ6PnrSvcxIiBzVNKURo_tJ8oIuL-doKGBIF_Mu7_fuS5h8ntWEB3LuP7rWea_S5gdoDtOHKh-h2k8ty8QiNdyb1dB4MUFQVkX8vUUZ5k---jiDyBwzVkZl7IgNzsfAy4HtGbv7NTBcVtBnZS-NZy0uoNz6ZDAfD4fgxOr0R5T5BvbIq3TMUMWdzRVmBM5JQk6UZK5hyGfV895wZ10dpp0ZtWz5zn1bjuw7n6kTqRvUaVK-D6jXvo_fLOlcNm8e10tt-dJaSnok7fKimF7qd2FqRIiGqoOA6WTCGQuWK2dwRYTPGlTJ9tNWNrW7NQ61XYO6jN8timNj-tMaUrpo3MhBeJgpknjZQWPaEgBevAG19JNZAstbV9ZJychnIw6WQShKo-aGD06pb_1fF8-v_4jW6sz8-PtJHB6PDF-guDmhPY8y2UG82nbuX4LjNslftbInQ-U1P0N9psVOs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3CgCDBE0RNfPcDQtBSbQwmhDqpb5ljO1sFSkbTCPWv8es4dpJW5bK3vcbHlnP8nePj23cQeoFzWOJYpmPptIypSm2scodjY6RjRhcqDzzdn4_4_jH9OGOzHfSrfwvjr1X2PjE4alsZv0c-xBwCBS48WVLRXYv4Mp68Pf8R-wxS_qS1T6fRQuTQrX7C8q1-czCGsX6J8eTDdLQfdxkGYgOB-zImmDhuc4250MZgTkyaJIWQ3CjGiBCJphJTYR1mhcDws05TnXBnZa6lAOxCu1fQVUEgqgJbEjOx2d9hnpmedO90EiKHNU0prNX89flAHBfzrbkwpAz4V5z793XNP85sw1Q4uYVudjFs9K4F3W2048o76Fqb1XJ1F03H83rRBFcUVUXkX06UkW0z39fRvLSApjrSjac00KcrLwNRaOSab3qxqqDNyJxpz19eQr3p1_loOBpN76HjS1HtfbRbVqV7iCLmjFWUFTgnCdV5mrOCKZdTz3zPmXYDlPZqzEzHbO4TbHzPwgk7kVmr-gxUnwXVZ3yAXq3rnLe8HhdKv_ejs5b0nNzhQ7U4zToTzxQpEqIKCkGUAbcolFXMWEeEyRlXSg_QXj-2Weco6mwD6wF6vi4GE_fnNrp0VdPKwEIzUSDzoIXCuiceeQrQNkBiCyRbXd0uKedngUZcCqkkgZqvezhtuvV_VTy6-C-eoetgltmng6PDx-gGDmBPY8z20O5y0bgnEMEt86fBVCJ0ctm2-RtvTlZz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disruption+of+actin+dynamics+induces+autophagy+of+the+eukaryotic+chaperonin+TRiC%2FCCT&rft.jtitle=Cell+death+discovery&rft.au=Yuki+Date&rft.au=Akira+Matsuura&rft.au=Eisuke+Itakura&rft.date=2022-01-25&rft.pub=Nature+Publishing+Group&rft.eissn=2058-7716&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41420-022-00828-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93f039f4215c48879d95cde37cb5699a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7716&client=summon