Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT
Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containin...
Saved in:
Published in | Cell death discovery Vol. 8; no. 1; pp. 37 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
25.01.2022
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
ISSN | 2058-7716 2058-7716 |
DOI | 10.1038/s41420-022-00828-6 |
Cover
Abstract | Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system. |
---|---|
AbstractList | Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system. Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system.Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system. Abstract Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein complexes such as ribosomes. The eukaryotic chaperonin tailless complex polypeptide 1 (TCP1) ring complex (TRiC), also called chaperonin-containing TCP1 (CCT), is a 1-MDa hetero-oligomer complex comprising 16 subunits that facilitates the folding of ~10% of the cellular proteome that contains actin. However, the quality control mechanism of TRiC remains unclear. To monitor the autophagic degradation of TRiC, we generated TCP1α-RFP-GFP knock-in HeLa cells using a CRISPR/Cas9-knock-in system with an RFP-GFP donor vector. We analyzed the autophagic degradation of TRiC under several stress conditions and found that treatment with actin (de)polymerization inhibitors increased the lysosomal degradation of TRiC, which was localized in lysosomes and suppressed by deficiency of autophagy-related genes. Furthermore, we found that treatment with actin (de)polymerization inhibitors increased the association between TRiC and unfolded actin, suggesting that TRiC was inactivated. Moreover, unfolded actin mutants were degraded by autophagy. Taken together, our results indicate that autophagy eliminates inactivated TRiC, serving as a quality control system. |
ArticleNumber | 37 |
Author | Date, Yuki Matsuura, Akira Itakura, Eisuke |
Author_xml | – sequence: 1 givenname: Yuki surname: Date fullname: Date, Yuki organization: Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-ku – sequence: 2 givenname: Akira surname: Matsuura fullname: Matsuura, Akira organization: Department of Biology, Graduate School of Science, Chiba University, Inage-ku – sequence: 3 givenname: Eisuke orcidid: 0000-0001-7248-9333 surname: Itakura fullname: Itakura, Eisuke email: eitakura@chiba-u.jp organization: Department of Biology, Graduate School of Science, Chiba University, Inage-ku |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35079001$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAUhS1URB_0D7BAkdiwCfUj8WODhAKUSpWQ0LC27jjOjIeMHewEaf49zqSFtouubNnfOTq695yjEx-8RegNwR8IZvIqVaSiuMSUlhhLKkv-Ap1RXMtSCMJPHtxP0WVKO4wxqUUlJHuFTlmNhcoPZ2j12aU4DaMLvghdAWZ0vmgPHvbOpML5djI2FTCNYdjC5jAz49YWdvoF8RBGZwqzhcHG4LNu9cM1V02zeo1edtAne3l3XqCfX7-smm_l7ffrm-bTbWk45mPJKLO8XQPlAoyhnBmCcSckN6qumRAYKkkr0Vpad4IaAxYqwNy2cg1SKM4u0M3i2wbY6SG6fQ6lAzh9fAhxoyHmjL3VinWYqa6ipDaVzOpW1aa1TJh1zZWC7PVx8Rqm9d62xvoxQv_I9PGPd1u9CX-0FFJJRrLB-zuDGH5PNo1675KxfQ_ehilpyilVHGMlMvruCboLU_R5VEeKc0HETL19mOhflPvlZUAugIkhpWg7bdwI8ypzQNdrgvVcFb1UReeq6GNV9Dw5-kR67_6siC2ilGG_sfF_7GdUfwED1s-S |
CitedBy_id | crossref_primary_10_1111_iej_14131 crossref_primary_10_3389_fcimb_2024_1460604 crossref_primary_10_3389_fmolb_2022_1057232 crossref_primary_10_1080_15548627_2024_2379099 crossref_primary_10_3390_cells13201675 crossref_primary_10_3389_fcell_2022_906530 crossref_primary_10_1016_j_jbc_2024_107787 |
Cites_doi | 10.1016/j.molcel.2009.09.034 10.1016/j.molcel.2015.04.023 10.1016/j.cell.2012.11.001 10.1038/nsmb.3309 10.1074/jbc.C700195200 10.1074/jbc.M001864200 10.1074/jbc.M304314200 10.1016/j.cell.2011.10.026 10.1038/ncb0910-831 10.1038/nature13148 10.1073/pnas.1920327117 10.1016/j.cell.2019.03.012 10.1083/jcb.201206119 10.1083/jcb.200809125 10.1083/jcb.200712064 10.1080/15548627.2016.1190891 10.1038/srep00241 10.1093/bioinformatics/btq287 10.1146/annurev.biochem.73.011303.073752 10.1093/nar/gkz365 10.1016/j.devcel.2017.11.024 10.1038/358249a0 10.1038/35085604 10.1074/jbc.M513235200 10.1016/0092-8674(92)90622-J 10.1002/bies.201200119 10.1038/ncb3451 10.1038/s41388-019-0754-1 10.1247/csf.07011 10.1126/science.272.5267.1497 10.1007/s10495-018-1505-4 10.1073/pnas.112075699 10.1038/s41556-018-0037-z 10.1016/j.biocel.2010.04.007 10.1074/jbc.M212260200 10.1146/annurev-cellbio-120219-035530 10.1083/jcb.201304188 10.1038/nsmb.1515 10.1074/jbc.273.43.28322 10.1146/annurev-cellbio-092910-154005 10.1371/journal.pbio.1000298 10.1126/science.aar2663 10.1074/jbc.M601590200 10.1007/s12192-015-0637-5 10.1016/j.celrep.2016.02.040 10.1074/jbc.M909107199 10.1006/bbrc.2000.2987 10.1126/science.1079474 10.1038/s41556-017-0007-x 10.1016/j.jmb.2005.10.051 10.1161/CIRCRESAHA.112.300754 10.1016/j.ydbio.2007.10.022 10.1074/jbc.M409233200 10.1016/j.bbamcr.2009.04.004 10.1080/15548627.2015.1100356 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41420-022-00828-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ - The Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed ProQuest Central Student CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: SpringerOpen Free (Free internet resource, activated by CARLI) url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central (New) url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2058-7716 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_93f039f4215c48879d95cde37cb5699a PMC8789831 35079001 10_1038_s41420_022_00828_6 |
Genre | Journal Article |
GrantInformation_xml | – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: 20351166 funderid: https://doi.org/10.13039/501100002241 – fundername: Takeda Science Foundation funderid: https://doi.org/10.13039/100007449 – fundername: Terumo Foundation for Life Sciences and Arts funderid: https://doi.org/10.13039/501100008670 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19K22413; 20H03249; 20H05312 funderid: https://doi.org/10.13039/501100001691 – fundername: Hamaguchi Foundation for the Advancement of Biochemistry funderid: https://doi.org/10.13039/501100008655 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 19K22413 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 20H05312 – fundername: MEXT | Japan Society for the Promotion of Science (JSPS) grantid: 20H03249 – fundername: MEXT | Japan Science and Technology Agency (JST) grantid: 20351166 – fundername: ; – fundername: ; grantid: 20351166 – fundername: ; grantid: 19K22413; 20H03249; 20H05312 |
GroupedDBID | 0R~ 3V. 53G 7X7 8FE 8FH 8FI 8FJ AAFWJ AAJSJ ABUWG ACSMW ADBBV ADRAZ AFKRA AFPKN AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE LK8 M48 M7P M~E NAO OK1 PGMZT PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-323e6dba267acc263c100f786c9553770a48247de25f72ccaea4a06ed8ba87963 |
IEDL.DBID | DOA |
ISSN | 2058-7716 |
IngestDate | Wed Aug 27 01:26:30 EDT 2025 Thu Aug 21 14:31:58 EDT 2025 Fri Sep 05 09:57:53 EDT 2025 Wed Aug 13 06:23:29 EDT 2025 Thu Jan 02 22:55:46 EST 2025 Tue Jul 01 02:29:04 EDT 2025 Thu Apr 24 23:06:27 EDT 2025 Fri Feb 21 02:38:05 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-323e6dba267acc263c100f786c9553770a48247de25f72ccaea4a06ed8ba87963 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7248-9333 |
OpenAccessLink | https://doaj.org/article/93f039f4215c48879d95cde37cb5699a |
PMID | 35079001 |
PQID | 2622667177 |
PQPubID | 2041962 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_93f039f4215c48879d95cde37cb5699a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8789831 proquest_miscellaneous_2622960097 proquest_journals_2622667177 pubmed_primary_35079001 crossref_citationtrail_10_1038_s41420_022_00828_6 crossref_primary_10_1038_s41420_022_00828_6 springer_journals_10_1038_s41420_022_00828_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-25 |
PublicationDateYYYYMMDD | 2022-01-25 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-25 day: 25 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: United States – name: New York |
PublicationTitle | Cell death discovery |
PublicationTitleAbbrev | Cell Death Discov |
PublicationTitleAlternate | Cell Death Discov |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Kim, Choi (CR21) 2019; 38 Gestaut, Roh, Ma, Pintilie, Joachimiak, Leitner (CR23) 2019; 177 Frydman, Hartl (CR33) 1996; 272 Heng, Koh (CR53) 2010; 42 Katayama, Yamamoto, Mizushima, Yoshimori, Miyawaki (CR22) 2008; 33 Zhang, Ghaemmaghami (CR31) 2016; 12 Hara, Takamura, Kishi, Iemura, Natsume, Guan (CR25) 2008; 181 Helenius, Aebi (CR34) 2004; 73 Ruiz-Gómez, Humrich, Murga, Quitterer, Lohse, Mayor (CR40) 2000; 275 Raineri, Ribeca, Serrano, Maier (CR18) 2010; 26 Molinari, Calanca, Galli, Lucca, Paganetti (CR35) 2003; 299 Marshall, Li, Gemperline, Book, Vierstra (CR54) 2015; 58 Ji, Wang, Nika, Hawke, Keezer, Ge (CR44) 2009; 36 Gatica, Lahiri, Klionsky (CR49) 2018; 20 Narendra, Tanaka, Suen, Youle (CR6) 2008; 183 Svanström, Grantham (CR19) 2016; 21 Lim, Kang, Park, Lee, Chun, Sonn (CR47) 2000; 273 Zang, Jin, Wang, Cui, Kong, Liu (CR24) 2016; 23 Fujita, Morita, Itoh, Tanaka, Nakaoka, Osada (CR11) 2013; 203 Mizushima, Yoshimori, Ohsumi (CR1) 2011; 27 Stirling, Cuéllar, Alfaro, El Khadali, Beh, Valpuesta (CR37) 2006; 281 Lukov, Baker, Ludtke, Hu, Carter, Hackett (CR39) 2006; 281 Song, Dominguez, Mizuno, Kaut, Mohr, Seldin (CR42) 2003; 278 McLaughlin, Thulin, Hart, Resing, Ahn, Willardson (CR38) 2002; 99 Song, Sussman, Seldin (CR41) 2000; 275 Lewis, Hynes, Zheng, Saibil, Willison (CR16) 1992; 358 Gachet, Tournier, Millar, Hyams (CR52) 2001; 412 Klionsky, Abdelmohsen, Abe, Abedin, Abeliovich, Acevedo Arozena (CR2) 2016; 12 Lamark, Johansen (CR8) 2021; 37 Humrich, Bermel, Bünemann, Härmark, Frost, Quitterer (CR36) 2005; 280 Smith, Harley, Kemp, Wills, Lee, Arends (CR9) 2018; 44 Tsakiridis, Bergman, Somwar, Taha, Aktories, Cruz (CR48) 1998; 273 An, Harper (CR13) 2018; 20 Gao, Thomas, Chow, Lee, Cowan (CR29) 1992; 69 Reggiori, Tooze (CR26) 2012; 198 Vandamme, Lambert, Waterschoot, Cognard, Vandekerckhove, Ampe (CR30) 2009; 1793 Itakura, Kishi-Itakura, Mizushima (CR5) 2012; 151 Tooze, Yoshimori (CR4) 2010; 12 Wyant, Abu-Remaileh, Frenkel, Laqtom, Dharamdasani, Lewis (CR12) 2018; 360 Neirynck, Waterschoot, Vandekerckhove, Ampe, Rommelaere (CR28) 2006; 355 Choi, Yun, Park, Jeon, Lee, Lee (CR15) 2020; 117 Yam, Xia, Lin, Burlingame, Gerstein, Frydman (CR17) 2008; 15 Mancias, Wang, Gygi, Harper, Kimmelman (CR14) 2014; 509 Labun, Montague, Krause, Torres Cleuren, Tjeldnes, Valen (CR55) 2019; 47 Thulasiraman, Ferreyra, Frydman (CR56) 2000; 140 Jaeger, Sukseree, Zhong, Phinney, Mlitz, Buchberger (CR50) 2019; 24 Hanada, Noda, Satomi, Ichimura, Fujioka, Takao (CR27) 2007; 282 Elorza, Penela, Sarnago, Mayor (CR46) 2003; 278 Dang, Gautreau (CR51) 2012; 34 Chen, Sato, Chuprun, Peroutka, Otis, Ibetti (CR45) 2013; 112 Lundin, Srayko, Hyman, Leroux (CR20) 2008; 313 Zhang, Shen, Qu, Ghaemmaghami (CR32) 2016; 14 Mizushima, Komatsu (CR3) 2011; 147 Narendra, Jin, Tanaka, Suen, Gautier, Shen (CR7) 2010; 8 Xavier, Rastetter, Blömacher, Stumpf, Himmel, Morgan (CR43) 2012; 2 Fumagalli, Noack, Bergmann, Cebollero, Pisoni, Fasana (CR10) 2016; 19 Y Gachet (828_CR52) 2001; 412 N Mizushima (828_CR3) 2011; 147 VA Lewis (828_CR16) 1992; 358 Y Zang (828_CR24) 2016; 23 A Helenius (828_CR34) 2004; 73 SA Tooze (828_CR4) 2010; 12 JN McLaughlin (828_CR38) 2002; 99 AR Kim (828_CR21) 2019; 38 RS Marshall (828_CR54) 2015; 58 DH Song (828_CR41) 2000; 275 T Hara (828_CR25) 2008; 181 F Fumagalli (828_CR10) 2016; 19 T Tsakiridis (828_CR48) 1998; 273 DH Song (828_CR42) 2003; 278 Y Gao (828_CR29) 1992; 69 T Zhang (828_CR31) 2016; 12 GA Wyant (828_CR12) 2018; 360 A Elorza (828_CR46) 2003; 278 I Dang (828_CR51) 2012; 34 E Itakura (828_CR5) 2012; 151 DJ Klionsky (828_CR2) 2016; 12 K Jaeger (828_CR50) 2019; 24 M Molinari (828_CR35) 2003; 299 M Chen (828_CR45) 2013; 112 H Ji (828_CR44) 2009; 36 H An (828_CR13) 2018; 20 T Hanada (828_CR27) 2007; 282 T Zhang (828_CR32) 2016; 14 JD Mancias (828_CR14) 2014; 509 CP Xavier (828_CR43) 2012; 2 E Raineri (828_CR18) 2010; 26 D Vandamme (828_CR30) 2009; 1793 D Gatica (828_CR49) 2018; 20 K Labun (828_CR55) 2019; 47 WH Choi (828_CR15) 2020; 117 D Gestaut (828_CR23) 2019; 177 YW Heng (828_CR53) 2010; 42 AY Yam (828_CR17) 2008; 15 V Thulasiraman (828_CR56) 2000; 140 MD Smith (828_CR9) 2018; 44 J Frydman (828_CR33) 1996; 272 PC Stirling (828_CR37) 2006; 281 J Humrich (828_CR36) 2005; 280 DP Narendra (828_CR7) 2010; 8 H Katayama (828_CR22) 2008; 33 A Svanström (828_CR19) 2016; 21 VF Lundin (828_CR20) 2008; 313 D Narendra (828_CR6) 2008; 183 A Ruiz-Gómez (828_CR40) 2000; 275 GL Lukov (828_CR39) 2006; 281 F Reggiori (828_CR26) 2012; 198 K Neirynck (828_CR28) 2006; 355 T Lamark (828_CR8) 2021; 37 N Fujita (828_CR11) 2013; 203 YB Lim (828_CR47) 2000; 273 N Mizushima (828_CR1) 2011; 27 |
References_xml | – volume: 36 start-page: 547 year: 2009 end-page: 59 ident: CR44 article-title: EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin publication-title: Mol Cell doi: 10.1016/j.molcel.2009.09.034 – volume: 58 start-page: 1053 year: 2015 end-page: 66 ident: CR54 article-title: Autophagic degradation of the 26S proteasome is mediated by the dual ATG8/ubiquitin receptor RPN10 in arabidopsis publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.023 – volume: 151 start-page: 1256 year: 2012 end-page: 69 ident: CR5 article-title: The hairpin-type tail-anchored SNARE syntaxin 17 targets to autophagosomes for fusion with endosomes/lysosomes publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 23 start-page: 1083 year: 2016 end-page: 91 ident: CR24 article-title: Staggered ATP binding mechanism of eukaryotic chaperonin TRiC (CCT) revealed through high-resolution cryo-EM publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.3309 – volume: 282 start-page: 37298 year: 2007 end-page: 302 ident: CR27 article-title: The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy publication-title: J Biol Chem doi: 10.1074/jbc.C700195200 – volume: 275 start-page: 29724 year: 2000 end-page: 30 ident: CR40 article-title: Phosphorylation of phosducin and phosducin-like protein by G protein-coupled receptor kinase 2 publication-title: J Biol Chem doi: 10.1074/jbc.M001864200 – volume: 278 start-page: 29164 year: 2003 end-page: 73 ident: CR46 article-title: MAPK-dependent degradation of G protein-coupled receptor kinase 2 publication-title: J Biol Chem doi: 10.1074/jbc.M304314200 – volume: 147 start-page: 728 year: 2011 end-page: 41 ident: CR3 article-title: Autophagy: Renovation of cells and tissues publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – volume: 12 start-page: 831 year: 2010 end-page: 5 ident: CR4 article-title: The origin of the autophagosomal membrane publication-title: Nat Cell Biol doi: 10.1038/ncb0910-831 – volume: 509 start-page: 105 year: 2014 end-page: 9 ident: CR14 article-title: Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy publication-title: Nature doi: 10.1038/nature13148 – volume: 117 start-page: 19190 year: 2020 end-page: 19200 ident: CR15 article-title: Aggresomal sequestration and STUB1-mediated ubiquitylation during mammalian proteaphagy of inhibited proteasomes publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1920327117 – volume: 177 start-page: 751 year: 2019 ident: CR23 article-title: The chaperonin TRiC/CCT associates with prefoldin through a conserved electrostatic interface essential for cellular proteostasis publication-title: Cell doi: 10.1016/j.cell.2019.03.012 – volume: 198 start-page: 151 year: 2012 end-page: 3 ident: CR26 article-title: Autophagy regulation through Atg9 traffic publication-title: J Cell Biol. doi: 10.1083/jcb.201206119 – volume: 183 start-page: 795 year: 2008 end-page: 803 ident: CR6 article-title: Parkin is recruited selectively to impaired mitochondria and promotes their autophagy publication-title: J Cell Biol. doi: 10.1083/jcb.200809125 – volume: 181 start-page: 497 year: 2008 end-page: 510 ident: CR25 article-title: FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells publication-title: J Cell Biol doi: 10.1083/jcb.200712064 – volume: 12 start-page: 1411 year: 2016 end-page: 2 ident: CR31 article-title: Global analysis of cellular protein flux quantifies the selectivity of basal autophagy publication-title: Autophagy doi: 10.1080/15548627.2016.1190891 – volume: 2 year: 2012 ident: CR43 article-title: Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration publication-title: Sci Rep doi: 10.1038/srep00241 – volume: 26 start-page: 1685 year: 2010 end-page: 9 ident: CR18 article-title: A more precise characterization of chaperonin substrates publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq287 – volume: 73 start-page: 1019 year: 2004 end-page: 49 ident: CR34 article-title: Roles of N-linked glycans in the endoplasmic reticulum publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073752 – volume: 47 start-page: W171 year: 2019 end-page: W174 ident: CR55 article-title: CHOPCHOP v3: Expanding the CRISPR web toolbox beyond genome editing publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz365 – volume: 44 start-page: 217 year: 2018 end-page: 232 ident: CR9 article-title: CCPG1 is a non-canonical autophagy cargo receptor essential for ER-phagy and pancreatic ER proteostasis publication-title: Dev Cell doi: 10.1016/j.devcel.2017.11.024 – volume: 358 start-page: 249 year: 1992 end-page: 52 ident: CR16 article-title: T-complex polypeptide-1 is a subunit of a heteromeric particle in the eukaryotic cytosol publication-title: Nature doi: 10.1038/358249a0 – volume: 412 start-page: 352 year: 2001 end-page: 5 ident: CR52 article-title: A MAP kinase-dependent actin checkpoint ensures proper spindle orientation in fission yeast publication-title: Nature doi: 10.1038/35085604 – volume: 281 start-page: 7012 year: 2006 end-page: 21 ident: CR37 article-title: PhLP3 modulates CCT-mediated actin and tubulin folding via ternary complexes with substrates publication-title: J Biol Chem doi: 10.1074/jbc.M513235200 – volume: 69 start-page: 1043 year: 1992 end-page: 50 ident: CR29 article-title: A cytoplasmic chaperonin that catalyzes beta-actin folding publication-title: Cell doi: 10.1016/0092-8674(92)90622-J – volume: 34 start-page: 1021 year: 2012 end-page: 4 ident: CR51 article-title: Evidence for a cell cycle checkpoint that senses branched actin in the lamellipodium publication-title: Bioessays doi: 10.1002/bies.201200119 – volume: 19 start-page: 76 year: 2016 ident: CR10 article-title: Corrigendum: Translocon component Sec62 acts in endoplasmic reticulum turnover during stress recovery publication-title: Nat Cell Biol doi: 10.1038/ncb3451 – volume: 38 start-page: 4739 year: 2019 end-page: 54 ident: CR21 article-title: TRiC/CCT chaperonins are essential for organ growth by interacting with insulin/TOR signaling in Drosophila publication-title: Oncogene doi: 10.1038/s41388-019-0754-1 – volume: 33 start-page: 1 year: 2008 end-page: 12 ident: CR22 article-title: GFP-like proteins stably accumulate in lysosomes publication-title: Cell Struct Funct doi: 10.1247/csf.07011 – volume: 272 start-page: 1497 year: 1996 end-page: 502 ident: CR33 article-title: Principles of chaperone-assisted protein folding: differences between in vitro and in vivo mechanisms publication-title: Science doi: 10.1126/science.272.5267.1497 – volume: 24 start-page: 62 year: 2019 end-page: 73 ident: CR50 article-title: Cornification of nail keratinocytes requires autophagy for bulk degradation of intracellular proteins while sparing components of the cytoskeleton publication-title: Apoptosis doi: 10.1007/s10495-018-1505-4 – volume: 99 start-page: 7962 year: 2002 end-page: 7 ident: CR38 article-title: Regulatory interaction of phosducin-like protein with the cytosolic chaperonin complex publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.112075699 – volume: 20 start-page: 233 year: 2018 end-page: 42 ident: CR49 article-title: Cargo recognition and degradation by selective autophagy publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0037-z – volume: 42 start-page: 1622 year: 2010 end-page: 33 ident: CR53 article-title: Actin cytoskeleton dynamics and the cell division cycle publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2010.04.007 – volume: 278 start-page: 24018 year: 2003 end-page: 25 ident: CR42 article-title: CK2 phosphorylation of the armadillo repeat region of beta-catenin potentiates Wnt signaling publication-title: J Biol Chem doi: 10.1074/jbc.M212260200 – volume: 140 start-page: 169 year: 2000 end-page: 77 ident: CR56 article-title: Folding assays. Assessing the native conformation of proteins publication-title: Methods Mol Biol – volume: 37 start-page: 143 year: 2021 end-page: 69 ident: CR8 article-title: Mechanisms of selective autophagy publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-120219-035530 – volume: 203 start-page: 115 year: 2013 end-page: 28 ident: CR11 article-title: Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin publication-title: J Cell Biol doi: 10.1083/jcb.201304188 – volume: 15 start-page: 1255 year: 2008 end-page: 62 ident: CR17 article-title: Defining the TRiC/CCT interactome links chaperonin function to stabilization of newly made proteins with complex topologies publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1515 – volume: 273 start-page: 28322 year: 1998 end-page: 31 ident: CR48 article-title: Actin filaments facilitate insulin activation of the src and collagen homologous/mitogen-activated protein kinase pathway leading to DNA synthesis and c-fos expression publication-title: J Biol Chem doi: 10.1074/jbc.273.43.28322 – volume: 27 start-page: 107 year: 2011 end-page: 32 ident: CR1 article-title: The role of Atg proteins in autophagosome formation publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154005 – volume: 8 start-page: e1000298 year: 2010 ident: CR7 article-title: PINK1 is selectively stabilized on impaired mitochondria to activate Parkin publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000298 – volume: 360 start-page: 751 year: 2018 end-page: 8 ident: CR12 article-title: NUFIP1 is a ribosome receptor for starvation-induced ribophagy publication-title: Science doi: 10.1126/science.aar2663 – volume: 281 start-page: 22261 year: 2006 end-page: 74 ident: CR39 article-title: Mechanism of assembly of G protein betagamma subunits by protein kinase CK2-phosphorylated phosducin-like protein and the cytosolic chaperonin complex publication-title: J Biol Chem doi: 10.1074/jbc.M601590200 – volume: 21 start-page: 55 year: 2016 end-page: 62 ident: CR19 article-title: The molecular chaperone CCT modulates the activity of the actin filament severing and capping protein gelsolin in vitro publication-title: Cell Stress Chaperones doi: 10.1007/s12192-015-0637-5 – volume: 14 start-page: 2426 year: 2016 end-page: 39 ident: CR32 article-title: Global analysis of cellular protein flux quantifies the selectivity of basal autophagy publication-title: Cell Rep doi: 10.1016/j.celrep.2016.02.040 – volume: 275 start-page: 23790 year: 2000 end-page: 7 ident: CR41 article-title: Endogenous protein kinase CK2 participates in Wnt signaling in mammary epithelial cells publication-title: J Biol Chem doi: 10.1074/jbc.M909107199 – volume: 273 start-page: 609 year: 2000 end-page: 13 ident: CR47 article-title: Disruption of actin cytoskeleton induces chondrogenesis of mesenchymal cells by activating protein kinase C-alpha signaling publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2000.2987 – volume: 299 start-page: 1397 year: 2003 end-page: 1400 ident: CR35 article-title: Role of EDEM in the release of misfolded glycoproteins from the calnexin cycle publication-title: Science doi: 10.1126/science.1079474 – volume: 20 start-page: 135 year: 2018 end-page: 43 ident: CR13 article-title: Systematic analysis of ribophagy in human cells reveals bystander flux during selective autophagy publication-title: Nat Cell Biol doi: 10.1038/s41556-017-0007-x – volume: 355 start-page: 124 year: 2006 end-page: 38 ident: CR28 article-title: Actin interacts with CCT via discrete binding sites: a binding transition-release model for CCT-mediated actin folding publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.10.051 – volume: 112 start-page: 1121 year: 2013 end-page: 34 ident: CR45 article-title: Prodeath signaling of G protein-coupled receptor kinase 2 in cardiac myocytes after ischemic stress occurs via extracellular signal-regulated kinase-dependent heat shock protein 90-mediated mitochondrial targeting publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.300754 – volume: 313 start-page: 320 year: 2008 end-page: 34 ident: CR20 article-title: Efficient chaperone-mediated tubulin biogenesis is essential for cell division and cell migration in C. elegans publication-title: Dev Biol doi: 10.1016/j.ydbio.2007.10.022 – volume: 280 start-page: 20042 year: 2005 end-page: 50 ident: CR36 article-title: Phosducin-like protein regulates G-protein betagamma folding by interaction with tailless complex polypeptide-1alpha: Dephosphorylation or splicing of PhLP turns the switch toward regulation of Gbetagamma folding publication-title: J Biol Chem doi: 10.1074/jbc.M409233200 – volume: 1793 start-page: 1259 year: 2009 end-page: 71 ident: CR30 article-title: Alpha-skeletal muscle actin nemaline myopathy mutants cause cell death in cultured muscle cells publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2009.04.004 – volume: 12 start-page: 1 year: 2016 end-page: 222 ident: CR2 article-title: Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 – volume: 2 year: 2012 ident: 828_CR43 publication-title: Sci Rep doi: 10.1038/srep00241 – volume: 42 start-page: 1622 year: 2010 ident: 828_CR53 publication-title: Int J Biochem Cell Biol doi: 10.1016/j.biocel.2010.04.007 – volume: 37 start-page: 143 year: 2021 ident: 828_CR8 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-120219-035530 – volume: 73 start-page: 1019 year: 2004 ident: 828_CR34 publication-title: Annu Rev Biochem doi: 10.1146/annurev.biochem.73.011303.073752 – volume: 38 start-page: 4739 year: 2019 ident: 828_CR21 publication-title: Oncogene doi: 10.1038/s41388-019-0754-1 – volume: 509 start-page: 105 year: 2014 ident: 828_CR14 publication-title: Nature doi: 10.1038/nature13148 – volume: 58 start-page: 1053 year: 2015 ident: 828_CR54 publication-title: Mol Cell doi: 10.1016/j.molcel.2015.04.023 – volume: 273 start-page: 28322 year: 1998 ident: 828_CR48 publication-title: J Biol Chem doi: 10.1074/jbc.273.43.28322 – volume: 27 start-page: 107 year: 2011 ident: 828_CR1 publication-title: Annu Rev Cell Dev Biol doi: 10.1146/annurev-cellbio-092910-154005 – volume: 8 start-page: e1000298 year: 2010 ident: 828_CR7 publication-title: PLoS Biol doi: 10.1371/journal.pbio.1000298 – volume: 275 start-page: 23790 year: 2000 ident: 828_CR41 publication-title: J Biol Chem doi: 10.1074/jbc.M909107199 – volume: 273 start-page: 609 year: 2000 ident: 828_CR47 publication-title: Biochem Biophys Res Commun doi: 10.1006/bbrc.2000.2987 – volume: 36 start-page: 547 year: 2009 ident: 828_CR44 publication-title: Mol Cell doi: 10.1016/j.molcel.2009.09.034 – volume: 147 start-page: 728 year: 2011 ident: 828_CR3 publication-title: Cell doi: 10.1016/j.cell.2011.10.026 – volume: 278 start-page: 24018 year: 2003 ident: 828_CR42 publication-title: J Biol Chem doi: 10.1074/jbc.M212260200 – volume: 20 start-page: 233 year: 2018 ident: 828_CR49 publication-title: Nat Cell Biol doi: 10.1038/s41556-018-0037-z – volume: 12 start-page: 831 year: 2010 ident: 828_CR4 publication-title: Nat Cell Biol doi: 10.1038/ncb0910-831 – volume: 117 start-page: 19190 year: 2020 ident: 828_CR15 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1920327117 – volume: 69 start-page: 1043 year: 1992 ident: 828_CR29 publication-title: Cell doi: 10.1016/0092-8674(92)90622-J – volume: 313 start-page: 320 year: 2008 ident: 828_CR20 publication-title: Dev Biol doi: 10.1016/j.ydbio.2007.10.022 – volume: 14 start-page: 2426 year: 2016 ident: 828_CR32 publication-title: Cell Rep doi: 10.1016/j.celrep.2016.02.040 – volume: 272 start-page: 1497 year: 1996 ident: 828_CR33 publication-title: Science doi: 10.1126/science.272.5267.1497 – volume: 23 start-page: 1083 year: 2016 ident: 828_CR24 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.3309 – volume: 140 start-page: 169 year: 2000 ident: 828_CR56 publication-title: Methods Mol Biol – volume: 358 start-page: 249 year: 1992 ident: 828_CR16 publication-title: Nature doi: 10.1038/358249a0 – volume: 15 start-page: 1255 year: 2008 ident: 828_CR17 publication-title: Nat Struct Mol Biol doi: 10.1038/nsmb.1515 – volume: 177 start-page: 751 year: 2019 ident: 828_CR23 publication-title: Cell doi: 10.1016/j.cell.2019.03.012 – volume: 44 start-page: 217 year: 2018 ident: 828_CR9 publication-title: Dev Cell doi: 10.1016/j.devcel.2017.11.024 – volume: 281 start-page: 22261 year: 2006 ident: 828_CR39 publication-title: J Biol Chem doi: 10.1074/jbc.M601590200 – volume: 26 start-page: 1685 year: 2010 ident: 828_CR18 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btq287 – volume: 24 start-page: 62 year: 2019 ident: 828_CR50 publication-title: Apoptosis doi: 10.1007/s10495-018-1505-4 – volume: 203 start-page: 115 year: 2013 ident: 828_CR11 publication-title: J Cell Biol doi: 10.1083/jcb.201304188 – volume: 412 start-page: 352 year: 2001 ident: 828_CR52 publication-title: Nature doi: 10.1038/35085604 – volume: 1793 start-page: 1259 year: 2009 ident: 828_CR30 publication-title: Biochim Biophys Acta doi: 10.1016/j.bbamcr.2009.04.004 – volume: 12 start-page: 1411 year: 2016 ident: 828_CR31 publication-title: Autophagy doi: 10.1080/15548627.2016.1190891 – volume: 47 start-page: W171 year: 2019 ident: 828_CR55 publication-title: Nucleic Acids Res doi: 10.1093/nar/gkz365 – volume: 33 start-page: 1 year: 2008 ident: 828_CR22 publication-title: Cell Struct Funct doi: 10.1247/csf.07011 – volume: 12 start-page: 1 year: 2016 ident: 828_CR2 publication-title: Autophagy doi: 10.1080/15548627.2015.1100356 – volume: 299 start-page: 1397 year: 2003 ident: 828_CR35 publication-title: Science doi: 10.1126/science.1079474 – volume: 280 start-page: 20042 year: 2005 ident: 828_CR36 publication-title: J Biol Chem doi: 10.1074/jbc.M409233200 – volume: 151 start-page: 1256 year: 2012 ident: 828_CR5 publication-title: Cell doi: 10.1016/j.cell.2012.11.001 – volume: 275 start-page: 29724 year: 2000 ident: 828_CR40 publication-title: J Biol Chem doi: 10.1074/jbc.M001864200 – volume: 99 start-page: 7962 year: 2002 ident: 828_CR38 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.112075699 – volume: 21 start-page: 55 year: 2016 ident: 828_CR19 publication-title: Cell Stress Chaperones doi: 10.1007/s12192-015-0637-5 – volume: 20 start-page: 135 year: 2018 ident: 828_CR13 publication-title: Nat Cell Biol doi: 10.1038/s41556-017-0007-x – volume: 112 start-page: 1121 year: 2013 ident: 828_CR45 publication-title: Circ Res doi: 10.1161/CIRCRESAHA.112.300754 – volume: 183 start-page: 795 year: 2008 ident: 828_CR6 publication-title: J Cell Biol. doi: 10.1083/jcb.200809125 – volume: 34 start-page: 1021 year: 2012 ident: 828_CR51 publication-title: Bioessays doi: 10.1002/bies.201200119 – volume: 19 start-page: 76 year: 2016 ident: 828_CR10 publication-title: Nat Cell Biol doi: 10.1038/ncb3451 – volume: 198 start-page: 151 year: 2012 ident: 828_CR26 publication-title: J Cell Biol. doi: 10.1083/jcb.201206119 – volume: 181 start-page: 497 year: 2008 ident: 828_CR25 publication-title: J Cell Biol doi: 10.1083/jcb.200712064 – volume: 355 start-page: 124 year: 2006 ident: 828_CR28 publication-title: J Mol Biol doi: 10.1016/j.jmb.2005.10.051 – volume: 281 start-page: 7012 year: 2006 ident: 828_CR37 publication-title: J Biol Chem doi: 10.1074/jbc.M513235200 – volume: 282 start-page: 37298 year: 2007 ident: 828_CR27 publication-title: J Biol Chem doi: 10.1074/jbc.C700195200 – volume: 360 start-page: 751 year: 2018 ident: 828_CR12 publication-title: Science doi: 10.1126/science.aar2663 – volume: 278 start-page: 29164 year: 2003 ident: 828_CR46 publication-title: J Biol Chem doi: 10.1074/jbc.M304314200 |
SSID | ssj0001574783 |
Score | 2.2195363 |
Snippet | Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large protein... Abstract Autophagy plays important role in the intracellular protein quality control system by degrading abnormal organelles and proteins, including large... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 37 |
SubjectTerms | 631/80/39/2346 631/80/474/1768 Actin Apoptosis Autophagy Biochemistry Biomedical and Life Sciences Cell Biology Cell Cycle Analysis CRISPR Degradation Life Sciences Lysosomes Organelles Polymerization Proteomes Quality control Ribosomes Stem Cells |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lj9MwELZgERIXxJsuCwoSN7Ca-O0TgsJqhQQH1JV6s_zKbrUoWZrm0H-_YydtVR57jceRM6_MeOxvEHpHHKQ4gVusolWY6Spg7SLB3qvIva21yzjd33-Is3P2bcEX44ZbNx6r3PrE7KhD69Me-ZQICBQEJB_y4_VvnLpGperq2ELjLrqXoctAn-VC7vdYeEKHp-NdmZKqaccqBvlSOsKewduwOPgfZdj-f8Wafx-Z_KNumn9Hp4_QwzGOLD4Ngn-M7sTmCbo_dJbcPEXzL8tu1Wd3ULR1kW4vNEUYus93BeThINGusH2CFbAXm0QDkWAR-yu72rTwzsJf2oQh3sC8-c_lbDqbzZ-h89Ov89kZHhsoYA95yRpTQqMIzhIhrfdEUF-VZS2V8JpzKmVpmSJMhkh4LQnIMlpmSxGDclZJMM3n6Khpm_gSFTz6oBmviaMls65yvOY6OpbQ5wW3cYKqLRuNH9HFU5OLXyZXuakyA-sNsN5k1hsxQe93c64HbI1bqT8n6ewoEy52ftCuLsxoZkbTuqS6ZhDIeHBNUgfNfYhUeseF1naCTrayNaOxdmavWhP0djcMZpZqJ7aJbT_QQLJXaqB5MajCbiUUYmoN2jZB8kBJDpZ6ONIsLzOUt5JKKwozP2zVab-s_7Pi-PaveIUekKzhFSb8BB2tV318DaHT2r3J9nEDhbIVmQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZKERKXivIMFBQkbhCa-O0DQnShqpDKAe1KvVm247QrqqQkG4n994ydZNHCwolrPI6sedjzyZ5vEHqFLUCckplMeiMzqooyU9bjzDnpmTOVspGn-_wLP1vQzxfsYg9N7Y5GBXY7oV3oJ7Vor9_--L5-DwH_bigZl8cdLSiAoPAuPTKyZfwWug0nEw9g7HxM94eq4cAWT8bamd1Tt86nSOO_K_f88wnlb_eo8Xg6vYcOxrwy_TA4wiHa8_V9dGfoNLl-gOYfl13bx-0hbao0VDPUaTl0o-9SwOVg4S41faAZMJfrIAOZYer7b6ZdN_DP1F2ZwClew7z51-XseDabP0SL00_z2Vk2NlTIHOCUVUYw8by0BnNhnMOcuCLPKyG5U4wRIXJDJaai9JhVAoNtvaEm576U1kgBofoI7ddN7Z-glHlXKsoqbElOjS0sq5jylgY2es6MT1AxqVG7kW08NL241vHWm0g9qF6D6nVUveYJer2ZczNwbfxT-iRYZyMZeLLjh6a91GPYaUWqnKiKQmLjYKsSqlTMlZ4IZxlXyiToaLKtnnxPYw45KQecKxL0cjMMYRfuUkztm36QAfCXK5B5PLjCZiUEcmwF3pYgseUkW0vdHqmXV5HaWwqpJIGZbyZ3-rWsv6vi6f9QxTN0F8c4KDLMjtD-qu39c0i4VvZFjKKfr3ElhQ priority: 102 providerName: Scholars Portal – databaseName: HAS SpringerNature Open Access 2022 dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELbKVkhcEG8CBRmJG0RN_PZxWaiqleAAW6k3y3acdgVK0GZz2H_P2Em2WihIXJOZaDQPeyYef4PQW-KgxKm4zVWwKme6rHLtAsm9V4F7W2uXcLo_fxHnF2x5yS-PEJnuwqSm_QRpmZbpqTvstGMlg0In9p4n1LVc3EHHCrY_MkPH8_ny2_LmzwqPmPB0vCFTUHUL88EulMD6b8sw_2yU_O20NG1CZw_Q_TF7xPNB3ofoKDSP0N1hnuTuMVp9XHebPi0CuK1xvLPQ4GqYOd9hqL7Bjh22fQQTsFe7SAP5Hw79d7vZtfBN7K9tRA5vgG_1db04XSxWT9DF2afV4jwfxybkHqqRbU4JDaJylghpvSeC-rIoaqmE15xTKQvLFGGyCoTXkoAFg2W2EKFSzioJAfkUzZq2Cc8R5sFXmvGaOFow60rHa66DYxFzXnAbMlROajR-xBSPoy1-mHS2TZUZVG9A9Sap3ogMvdvz_BwQNf5J_SFaZ08Z0bDTg3ZzZUbvMJrWBdU1g_TFw4IkdaW5rwKV3nGhtc3QyWRbM4ZoZ4iAzFNANSsz9Gb_GoIrnpjYJrT9QAMlXqGB5tngCntJKGTSGrwtQ_LASQ5EPXzTrK8TgLeSSisKnO8nd7oR6--qePF_5C_RPZI8vswJP0Gz7aYPryCB2rrXY8T8Ahu3FJw priority: 102 providerName: Springer Nature |
Title | Disruption of actin dynamics induces autophagy of the eukaryotic chaperonin TRiC/CCT |
URI | https://link.springer.com/article/10.1038/s41420-022-00828-6 https://www.ncbi.nlm.nih.gov/pubmed/35079001 https://www.proquest.com/docview/2622667177 https://www.proquest.com/docview/2622960097 https://pubmed.ncbi.nlm.nih.gov/PMC8789831 https://doaj.org/article/93f039f4215c48879d95cde37cb5699a |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swEBdbx2AvY99z1wUP9raZ2PrWY-q1lEDL6FLIm5BkeQ0dzojjh_z3PclO1uzzZS82SCcjfndn3SHpdwi9xxZSnIqZTHojM6qKKlPW48w56ZkztbKRp_v8gp9d0emcze-U-gpnwnp64B64sSJ1TlRNYWlyYGxCVYq5yhPhLONKxdAoV_mdZKq_Hxx44clwSyYnctzSgkKmFA6vR9q2jO-tRJGw_3dR5q-HJX_aMY0L0ekT9HiIINNJP_On6J5vnqGHfU3JzXM0-7RoV138EaTLOg33Fpq06uvOtylk4KDLNjVdIBQwXzdBBmLA1Hc3ZrVZwjdTd20Ce3gD42aXi3JclrMX6Or0ZFaeZUPphMxBRrLOCCaeV9ZgLoxzmBNX5HktJHeKMSJEbqjEVFQes1pg0KI31OTcV9IawJiTl-igWTb-NUqZd5WirMaW5NTYwrKaKW9p4J3nzPgEFVsYtRt4xUN5i2867m8TqXvoNUCvI_SaJ-jDbsz3nlXjr9LHQTs7ycCIHRvATvRgJ_pfdpKgo61u9eCmrcYcok8OGa1I0LtdNzhY2DUxjV92vQykebkCmVe9KexmQiCaVmBtCRJ7RrI31f2eZnEdSbylkEoSGPlxa04_pvVnKA7_BxRv0CMc_aDIMDtCB-tV599CaLW2I3RfzMUIPZhMpl-m8D4-ufh8Ca0lL0fRw-B5TuUt_mEjbQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJwQviDuFAUGCJ4ia-O4HhFi3aWNbhaZO2pvnOM5WgZLRtEL9U_xGjp2kVbnsba_xseUcfz4-x5fvIPQWZxDi5MzE0hkZU5Xmscocjq2VjllTqCzwdB-P-P4p_XLGzjbQr-4tjL9W2dnEYKjzyvo98gHm4ChwCD7Ep6sfsc8a5U9XuxQaDSwO3eInhGz1x4MdGN93GO_tjof7cZtVILbgrM9igonjeWYwF8ZazIlNk6QQklvFGBEiMVRiKnKHWSEw_KAz1CTc5TIzUgBeod1baJP6F609tLm9O_p6strVYZ6PnrSvcxIiBzVNKURo_tJ8oIuL-doKGBIF_Mu7_fuS5h8ntWEB3LuP7rWea_S5gdoDtOHKh-h2k8ty8QiNdyb1dB4MUFQVkX8vUUZ5k---jiDyBwzVkZl7IgNzsfAy4HtGbv7NTBcVtBnZS-NZy0uoNz6ZDAfD4fgxOr0R5T5BvbIq3TMUMWdzRVmBM5JQk6UZK5hyGfV895wZ10dpp0ZtWz5zn1bjuw7n6kTqRvUaVK-D6jXvo_fLOlcNm8e10tt-dJaSnok7fKimF7qd2FqRIiGqoOA6WTCGQuWK2dwRYTPGlTJ9tNWNrW7NQ61XYO6jN8timNj-tMaUrpo3MhBeJgpknjZQWPaEgBevAG19JNZAstbV9ZJychnIw6WQShKo-aGD06pb_1fF8-v_4jW6sz8-PtJHB6PDF-guDmhPY8y2UG82nbuX4LjNslftbInQ-U1P0N9psVOs |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGEIgXxJ3CgCDBE0RNfPcDQtBSbQwmhDqpb5ljO1sFSkbTCPWv8es4dpJW5bK3vcbHlnP8nePj23cQeoFzWOJYpmPptIypSm2scodjY6RjRhcqDzzdn4_4_jH9OGOzHfSrfwvjr1X2PjE4alsZv0c-xBwCBS48WVLRXYv4Mp68Pf8R-wxS_qS1T6fRQuTQrX7C8q1-czCGsX6J8eTDdLQfdxkGYgOB-zImmDhuc4250MZgTkyaJIWQ3CjGiBCJphJTYR1mhcDws05TnXBnZa6lAOxCu1fQVUEgqgJbEjOx2d9hnpmedO90EiKHNU0prNX89flAHBfzrbkwpAz4V5z793XNP85sw1Q4uYVudjFs9K4F3W2048o76Fqb1XJ1F03H83rRBFcUVUXkX06UkW0z39fRvLSApjrSjac00KcrLwNRaOSab3qxqqDNyJxpz19eQr3p1_loOBpN76HjS1HtfbRbVqV7iCLmjFWUFTgnCdV5mrOCKZdTz3zPmXYDlPZqzEzHbO4TbHzPwgk7kVmr-gxUnwXVZ3yAXq3rnLe8HhdKv_ejs5b0nNzhQ7U4zToTzxQpEqIKCkGUAbcolFXMWEeEyRlXSg_QXj-2Weco6mwD6wF6vi4GE_fnNrp0VdPKwEIzUSDzoIXCuiceeQrQNkBiCyRbXd0uKedngUZcCqkkgZqvezhtuvV_VTy6-C-eoetgltmng6PDx-gGDmBPY8z20O5y0bgnEMEt86fBVCJ0ctm2-RtvTlZz |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Disruption+of+actin+dynamics+induces+autophagy+of+the+eukaryotic+chaperonin+TRiC%2FCCT&rft.jtitle=Cell+death+discovery&rft.au=Yuki+Date&rft.au=Akira+Matsuura&rft.au=Eisuke+Itakura&rft.date=2022-01-25&rft.pub=Nature+Publishing+Group&rft.eissn=2058-7716&rft.volume=8&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41420-022-00828-6&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_93f039f4215c48879d95cde37cb5699a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2058-7716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2058-7716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2058-7716&client=summon |