Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases
Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consumi...
Saved in:
Published in | Nature communications Vol. 8; no. 1; pp. 727 - 8 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
28.09.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.
Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties. |
---|---|
AbstractList | Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.
Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties. Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties. Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties.Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties. Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation.Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes, the authors report the fabrication of monocrystalline blue phase liquid crystals that exhibit three-dimensional photonic-crystalline properties. Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies developed so far are still beset with various material processing and cost issues. Conventional top-down fabrications are costly and time-consuming, whereas natural self-assembly and bottom-up fabrications often result in high defect density and limited dimensions. Here we report the fabrication of extraordinarily large monocrystalline photonic crystals by controlling the self-assembly processes which occur in unique phases of liquid crystals that exhibit three-dimensional photonic-crystalline properties called liquid-crystal blue phases. In particular, we have developed a gradient-temperature technique that enables three-dimensional photonic crystals to grow to lateral dimensions of ~1 cm (~30,000 of unit cells) and thickness of ~100 μm (~ 300 unit cells). These giant single crystals exhibit extraordinarily sharp photonic bandgaps with high reflectivity, long-range periodicity in all dimensions and well-defined lattice orientation. |
ArticleNumber | 727 |
Author | Li, Cheng-Chang Jau, Hung-Chang Wang, Chun-Ta Guo, Duan-Yi Hou, Chien-Tsung Khoo, Iam-Choon Chen, Chun-Wei Hong, Ching-Lang Wang, Cheng-Yu Chiang, Sheng-Ping Bunning, Timothy J. Lin, Tsung-Hsien |
Author_xml | – sequence: 1 givenname: Chun-Wei surname: Chen fullname: Chen, Chun-Wei organization: Department of Photonics, National Sun Yat-sen University, Department of Electrical Engineering, The Pennsylvania State University – sequence: 2 givenname: Chien-Tsung surname: Hou fullname: Hou, Chien-Tsung organization: Department of Photonics, National Sun Yat-sen University – sequence: 3 givenname: Cheng-Chang surname: Li fullname: Li, Cheng-Chang organization: Department of Photonics, National Sun Yat-sen University – sequence: 4 givenname: Hung-Chang surname: Jau fullname: Jau, Hung-Chang organization: Department of Photonics, National Sun Yat-sen University – sequence: 5 givenname: Chun-Ta surname: Wang fullname: Wang, Chun-Ta organization: Department of Photonics, National Sun Yat-sen University – sequence: 6 givenname: Ching-Lang surname: Hong fullname: Hong, Ching-Lang organization: Department of Photonics, National Sun Yat-sen University – sequence: 7 givenname: Duan-Yi surname: Guo fullname: Guo, Duan-Yi organization: Department of Photonics, National Sun Yat-sen University – sequence: 8 givenname: Cheng-Yu surname: Wang fullname: Wang, Cheng-Yu organization: Department of Photonics, National Sun Yat-sen University, Department of Electrical Engineering, The Pennsylvania State University – sequence: 9 givenname: Sheng-Ping surname: Chiang fullname: Chiang, Sheng-Ping organization: Department of Photonics, National Sun Yat-sen University – sequence: 10 givenname: Timothy J. surname: Bunning fullname: Bunning, Timothy J. organization: Materials and Manufacturing Directorate, Air Force Research Laboratory – sequence: 11 givenname: Iam-Choon surname: Khoo fullname: Khoo, Iam-Choon email: ick1@psu.edu organization: Department of Electrical Engineering, The Pennsylvania State University – sequence: 12 givenname: Tsung-Hsien surname: Lin fullname: Lin, Tsung-Hsien email: jameslin@faculty.nsysu.edu.tw organization: Department of Photonics, National Sun Yat-sen University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28959009$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kk2LHCEQhiVsyG4m-wdyCA255NKJX63tJRCWfCwM5JIcg9h29YyDrbPaHZh_HzM9u8wuJIIo-rxvlVa9RBchBkDoNcHvCWbth8wJF7LGpEzcUlofnqErijmpiaTs4mx_ia5z3uEymCIt5y_QJW1VozBWV-jX2qQNVNM2AdS9GyFkF4Px1X4bpxicrWw65Mn4XHUmQ1_FUI0xxNOpdwEq7-5m19-DVednKPJC51fo-VCkcH1aV-jnl88_br7V6-9fb28-rWsrsJhqKohkjTEYVC-5GogRvOdN3wvOVbkRwlCBhwEk5UxS2lpirVGd7Ac2CKrYCt0uvn00O71PbjTpoKNx-ngQ00abNDnrQVMFALaRcpCWNy3ruJWCE1kigOHla1fo4-K1n7sRegthSsY_Mn18E9xWb-Jv3QiKsSTF4N3JIMW7GfKkR5cteG8CxDlronhDS3UYK-jbJ-guzql8_5HiVHLS8EK9Oc_oIZX7KhaALoBNMecEwwNCsP7bLXrpFl26RR-7RR-KqH0ism4yU6l-eZXz_5eyRZpLnLCBdJb2v1V_ABYp1Ms |
CitedBy_id | crossref_primary_10_1021_acsnano_3c12381 crossref_primary_10_1002_adma_201903665 crossref_primary_10_1002_smsc_202100007 crossref_primary_10_1080_02678292_2019_1710868 crossref_primary_10_1126_sciadv_adh9393 crossref_primary_10_3390_sym13091584 crossref_primary_10_1021_acsami_1c11711 crossref_primary_10_3390_e24111683 crossref_primary_10_1364_OME_459038 crossref_primary_10_1002_adma_202411988 crossref_primary_10_1002_lpor_202301283 crossref_primary_10_1002_adom_202402581 crossref_primary_10_1038_s41467_021_21564_y crossref_primary_10_3390_math10234484 crossref_primary_10_1002_anie_202211030 crossref_primary_10_1109_JSEN_2024_3367963 crossref_primary_10_1002_adfm_202110985 crossref_primary_10_1080_15421406_2024_2405265 crossref_primary_10_1002_sdtp_14287 crossref_primary_10_1039_D3TC02749J crossref_primary_10_1038_s41598_024_72266_6 crossref_primary_10_1002_adma_201905318 crossref_primary_10_3762_bjnano_13_67 crossref_primary_10_3390_nano12010048 crossref_primary_10_1016_j_molliq_2024_123963 crossref_primary_10_1038_s43246_021_00146_x crossref_primary_10_1021_acsami_0c11138 crossref_primary_10_1080_02678292_2018_1491068 crossref_primary_10_1177_10812865221108373 crossref_primary_10_1016_j_rinp_2020_103298 crossref_primary_10_1039_C9RA07460K crossref_primary_10_1364_OE_393197 crossref_primary_10_1002_adfm_202311510 crossref_primary_10_1021_acsami_8b04732 crossref_primary_10_1002_adfm_202421280 crossref_primary_10_1364_OME_540824 crossref_primary_10_1364_OE_27_014270 crossref_primary_10_1039_D2SM00093H crossref_primary_10_35848_1882_0786_ad38fc crossref_primary_10_1002_adma_202108330 crossref_primary_10_1364_OE_26_018310 crossref_primary_10_1038_s41598_020_67083_6 crossref_primary_10_1364_OME_491580 crossref_primary_10_1002_adhm_202403868 crossref_primary_10_1002_smll_202310048 crossref_primary_10_1039_C9TC02938A crossref_primary_10_1063_5_0139168 crossref_primary_10_3390_ma16010194 crossref_primary_10_1038_s41467_021_25112_6 crossref_primary_10_1039_D2TC01333A crossref_primary_10_1002_adma_201801335 crossref_primary_10_1002_adom_202200711 crossref_primary_10_1002_adom_202402844 crossref_primary_10_1038_s41467_024_51408_4 crossref_primary_10_1007_s40820_022_00925_2 crossref_primary_10_1016_j_optmat_2022_111977 crossref_primary_10_1063_5_0142383 crossref_primary_10_1002_adfm_202210664 crossref_primary_10_1002_lpor_202401635 crossref_primary_10_1021_acsami_8b18078 crossref_primary_10_1021_acsnano_2c02799 crossref_primary_10_3390_bios13050568 crossref_primary_10_1038_s41427_020_0225_8 crossref_primary_10_1080_02678292_2020_1791984 crossref_primary_10_1063_5_0236609 crossref_primary_10_1017_S1551929520001558 crossref_primary_10_1039_C9TC05052C crossref_primary_10_1515_bmt_2022_0482 crossref_primary_10_1039_C8TC02712A crossref_primary_10_1002_ange_202211030 crossref_primary_10_1080_02678292_2021_1921866 crossref_primary_10_1038_s41377_022_00930_5 crossref_primary_10_35848_1882_0786_ac75aa crossref_primary_10_1038_s41467_021_23631_w crossref_primary_10_1002_adfm_202412439 crossref_primary_10_1021_acsami_4c14574 crossref_primary_10_1002_adom_202102475 crossref_primary_10_1016_j_optmat_2024_115229 crossref_primary_10_1021_acsami_1c06873 crossref_primary_10_1002_adom_202403124 crossref_primary_10_3390_cryst9090451 crossref_primary_10_1039_C9TC04380B |
Cites_doi | 10.1103/PhysRevE.53.4107 10.1038/nmat1097 10.1364/OME.2.001149 10.1038/35013024 10.1117/12.813372 10.1038/ncomms12002 10.1039/B314305H 10.1038/nphoton.2010.286 10.1002/adfm.200700140 10.1080/02678298608086486 10.1038/nphoton.2016.66 10.1889/JSID20.6.318 10.1038/nphoton.2007.252 10.1364/OE.21.004319 10.1063/1.4803922 10.1080/00268949108035659 10.1073/pnas.1015831108 10.1002/adma.201300798 10.1038/nphoton.2008.146 10.1038/nmat4421 10.1002/adma.201204591 10.1021/acsami.7b01502 10.1038/nmat712 10.1063/1.1661499 10.1038/nmat3330 10.1021/acsphotonics.5b00314 10.1038/srep16180 10.1038/ncomms8180 10.1038/386143a0 10.1038/nmat727 10.1038/srep36148 10.1515/zna-1981-1010 10.1103/RevModPhys.61.385 10.1039/C4NJ02199A 10.1038/nphoton.2013.233 10.1103/PhysRevE.94.042703 10.1038/nmat3993 10.1039/C5TC00420A 10.1039/c0sm00979b 10.1002/adfm.200901838 10.1038/nature03932 10.1038/nphys3611 10.1016/B978-0-444-56369-9.00001-0 10.1002/9781118751992 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-017-00822-y |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest SciTech Premium Collection Technology Collection Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest SciTech Premium Collection Natural Science Collection Biological Science Collection ProQuest Central Technology Collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection Medical Database Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 8 |
ExternalDocumentID | oai_doaj_org_article_29eeec577f7c4583b4c76417a26ea410 PMC5620071 28959009 10_1038_s41467_017_00822_y |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BAPOH BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PJZUB PKEHL PPXIY PQEST PQGLB PQUKI RC3 SOI 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-261735aa0e9d749f1a64d45dd644973566a260ffe72437228c1cca9b7df3f6293 |
IEDL.DBID | C6C |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:19:03 EDT 2025 Thu Aug 21 13:47:07 EDT 2025 Fri Jul 11 01:22:22 EDT 2025 Wed Aug 13 04:50:17 EDT 2025 Thu Apr 03 07:04:52 EDT 2025 Thu Apr 24 23:02:29 EDT 2025 Tue Jul 01 02:21:05 EDT 2025 Fri Feb 21 02:39:44 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-261735aa0e9d749f1a64d45dd644973566a260ffe72437228c1cca9b7df3f6293 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
OpenAccessLink | https://www.nature.com/articles/s41467-017-00822-y |
PMID | 28959009 |
PQID | 1944274154 |
PQPubID | 546298 |
PageCount | 8 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_29eeec577f7c4583b4c76417a26ea410 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5620071 proquest_miscellaneous_1945220433 proquest_journals_1944274154 pubmed_primary_28959009 crossref_primary_10_1038_s41467_017_00822_y crossref_citationtrail_10_1038_s41467_017_00822_y springer_journals_10_1038_s41467_017_00822_y |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-28 |
PublicationDateYYYYMMDD | 2017-09-28 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-28 day: 28 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | von Freymann (CR6) 2010; 20 Coles, Pivnenko (CR15) 2005; 436 Khoo, Hong, Zhao, Ma, Lin (CR19) 2013; 21 Chen (CR21) 2015; 2 Kim (CR28) 2015; 3 Wright, Mermin (CR11) 1989; 61 Yoshida (CR45) 2016; 94 Hur (CR18) 2013; 25 Onusseit, Stegemeyer (CR34) 1981; 36 Shi, Mo, Wei, Guo (CR39) 2015; 39 Arsenault (CR3) 2004; 14 Joannopoulos, Villeneuve, Fan (CR1) 1997; 386 Montelongo, Yetisen, Butt, Yun (CR9) 2016; 7 CR13 Bendickson, Dowling, Scalora (CR35) 1996; 53 Tiribocchi, Gonnella, Marenduzzo, Orlandini (CR43) 2011; 7 Yoshida, Asakura, Fukuda, Ozaki (CR40) 2015; 6 Cao, Munoz, Palffy-Muhoray, Taheri (CR23) 2002; 1 Kitzerow (CR25) 1991; 202 Stegemeyer, Blümel, Hiltrop, Onusseit, Porsch (CR44) 1986; 1 Jo (CR29) 2017; 9 Rinne, Garcia-Santamaria, Braun (CR5) 2008; 2 Kitzerow (CR12) 2009; 7232 Lin (CR17) 2013; 25 Lu (CR42) 2016; 12 Chen, Lin, Wu, Chen, Hsu (CR33) 2012; 2 Kogelnik, Shank (CR36) 1972; 43 Kikuchi, Yokota, Hisakado, Yang, Kajiyama (CR14) 2002; 1 Baba (CR37) 2008; 2 Tanaka (CR27) 2015; 5 Wang, Miller, Bukusoglu, de Pablo, Abbott (CR41) 2016; 15 Khoo, Chen, Ho (CR22) 2016; 6 Soljacić, Joannopoulos (CR4) 2004; 3 Jang (CR10) 2007; 17 Chen, Wu (CR24) 2014; 131 Belyakov, Demikhov, Dmitrienko, Dolganov (CR31) 1985; 89 CR46 Ravnik, Alexander, Yeomans, Žumer (CR38) 2011; 108 Nayek (CR32) 2012; 20 Turner (CR8) 2013; 7 Castles (CR16) 2012; 11 Kobashi, Yoshida, Ozaki (CR30) 2016; 10 Castles (CR20) 2014; 13 Blanco (CR2) 2000; 405 Chen, Wu (CR26) 2013; 102 Tandaechanurat (CR7) 2011; 5 HS Kitzerow (822_CR12) 2009; 7232 A Tiribocchi (822_CR43) 2011; 7 T-H Lin (822_CR17) 2013; 25 S-Y Jo (822_CR29) 2017; 9 H-S Chen (822_CR33) 2012; 2 G von Freymann (822_CR6) 2010; 20 A Tandaechanurat (822_CR7) 2011; 5 H Onusseit (822_CR34) 1981; 36 H Yoshida (822_CR45) 2016; 94 HS Kitzerow (822_CR25) 1991; 202 A Arsenault (822_CR3) 2004; 14 H Yoshida (822_CR40) 2015; 6 JD Joannopoulos (822_CR1) 1997; 386 Y Chen (822_CR26) 2013; 102 W Cao (822_CR23) 2002; 1 H Stegemeyer (822_CR44) 1986; 1 Y Chen (822_CR24) 2014; 131 P Nayek (822_CR32) 2012; 20 Y Montelongo (822_CR9) 2016; 7 X Wang (822_CR41) 2016; 15 D Wright (822_CR11) 1989; 61 822_CR13 IC Khoo (822_CR19) 2013; 21 Y Shi (822_CR39) 2015; 39 S Tanaka (822_CR27) 2015; 5 K Kim (822_CR28) 2015; 3 JM Bendickson (822_CR35) 1996; 53 HJ Coles (822_CR15) 2005; 436 H Kikuchi (822_CR14) 2002; 1 C-W Chen (822_CR21) 2015; 2 A Blanco (822_CR2) 2000; 405 F Castles (822_CR20) 2014; 13 T Baba (822_CR37) 2008; 2 H Kogelnik (822_CR36) 1972; 43 M Ravnik (822_CR38) 2011; 108 JH Jang (822_CR10) 2007; 17 MD Turner (822_CR8) 2013; 7 V Belyakov (822_CR31) 1985; 89 L Lu (822_CR42) 2016; 12 SA Rinne (822_CR5) 2008; 2 S-T Hur (822_CR18) 2013; 25 J Kobashi (822_CR30) 2016; 10 M Soljacić (822_CR4) 2004; 3 F Castles (822_CR16) 2012; 11 IC Khoo (822_CR22) 2016; 6 822_CR46 24880732 - Nat Mater. 2014 Aug;13(8):817-21 27337216 - Nat Commun. 2016 Jun 23;7:12002 15034564 - Nat Mater. 2004 Apr;3(4):211-9 23913627 - Adv Mater. 2013 Sep 25;25(36):5050-4 23483707 - Adv Mater. 2013 Jun 4;25(21):3002-6 26390324 - Nat Mater. 2016 Jan;15(1):106-12 25994837 - Nat Commun. 2015 May 21;6:7180 23481965 - Opt Express. 2013 Feb 25;21(4):4319-27 12618825 - Nat Mater. 2002 Oct;1(2):111-3 10839534 - Nature. 2000 May 25;405(6785):437-40 27782197 - Sci Rep. 2016 Oct 26;6:36148 9964724 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):4107-4121 27841625 - Phys Rev E. 2016 Oct;94(4-1):042703 22581313 - Nat Mater. 2012 May 13;11(7):599-603 12618852 - Nat Mater. 2002 Sep;1(1):64-8 16107843 - Nature. 2005 Aug 18;436(7053):997-1000 26530779 - Sci Rep. 2015 Nov 04;5:16180 21368186 - Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5188-92 28215076 - ACS Appl Mater Interfaces. 2017 Mar 15;9(10 ):8941-8947 |
References_xml | – volume: 53 year: 1996 ident: CR35 article-title: Analytic expressions for the electromagnetic mode density in finite, one-dimensional, photonic band-gap structures publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.4107 – volume: 3 start-page: 211 year: 2004 end-page: 219 ident: CR4 article-title: Enhancement of nonlinear effects using photonic crystals publication-title: Nat. Mater. doi: 10.1038/nmat1097 – volume: 2 start-page: 1149 year: 2012 end-page: 1155 ident: CR33 article-title: Hysteresis-free polymer-stabilized blue phase liquid crystals using thermal recycles publication-title: Opt. Mater. Express doi: 10.1364/OME.2.001149 – volume: 405 start-page: 437 year: 2000 end-page: 440 ident: CR2 article-title: Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 µm publication-title: Nature doi: 10.1038/35013024 – volume: 7232 start-page: 723205 year: 2009 ident: CR12 article-title: Blue phases come of age: a review publication-title: Proc. SPIE doi: 10.1117/12.813372 – volume: 7 year: 2016 ident: CR9 article-title: Reconfigurable optical assembly of nanostructures publication-title: Nat. Commun. doi: 10.1038/ncomms12002 – volume: 14 start-page: 781 year: 2004 end-page: 794 ident: CR3 article-title: Towards the synthetic all-optical computer: science fiction or reality? publication-title: J. Mater. Chem. doi: 10.1039/B314305H – volume: 5 start-page: 91 year: 2011 end-page: 94 ident: CR7 article-title: Lasing oscillation in a three-dimensional photonic crystal nanocavity with a complete bandgap publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.286 – volume: 17 start-page: 3027 year: 2007 end-page: 3041 ident: CR10 article-title: 3D micro- and nanostructures via interference lithography publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700140 – volume: 1 start-page: 3 year: 1986 end-page: 28 ident: CR44 article-title: Thermodynamic, structural and morphological studies on liquid-crystalline blue phases publication-title: Liq. Cryst. doi: 10.1080/02678298608086486 – volume: 10 start-page: 389 year: 2016 end-page: 392 ident: CR30 article-title: Planar optics with patterned chiral liquid crystals publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.66 – volume: 20 start-page: 318 year: 2012 end-page: 325 ident: CR32 article-title: Effect of the grain size on hysteresis of liquid-crystalline blue phase I publication-title: J. Soc. Inf. Disp. doi: 10.1889/JSID20.6.318 – volume: 2 start-page: 52 year: 2008 end-page: 56 ident: CR5 article-title: Embedded cavities and waveguides in three-dimensional silicon photonic crystals publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.252 – volume: 21 start-page: 4319 year: 2013 end-page: 4327 ident: CR19 article-title: Blue-phase liquid crystal cored optical fiber array with photonic bandgaps and nonlinear transmission properties publication-title: Opt. Express doi: 10.1364/OE.21.004319 – volume: 102 year: 2013 ident: CR26 article-title: Electric field-induced monodomain blue phase liquid crystals publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803922 – volume: 202 start-page: 51 year: 1991 end-page: 83 ident: CR25 article-title: The effect of electric fields on blue phases publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/00268949108035659 – volume: 131 year: 2014 ident: CR24 article-title: Recent advances on polymer-stabilized blue phase liquid crystal materials and devices publication-title: J. Appl. Polym. Sci.. – volume: 108 start-page: 5188 year: 2011 end-page: 5192 ident: CR38 article-title: Three-dimensional colloidal crystals in liquid crystalline blue phases publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1015831108 – ident: CR46 – volume: 25 start-page: 5050 year: 2013 end-page: 5054 ident: CR17 article-title: Red, green and blue reflections enabled in an optically tunable self-organized 3D cubic nanostructured thin film publication-title: Adv. Mater. doi: 10.1002/adma.201300798 – volume: 2 year: 2008 ident: CR37 article-title: Slow light in photonic crystals publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.146 – volume: 15 start-page: 106 year: 2016 end-page: 112 ident: CR41 article-title: Topological defects in liquid crystals as templates for molecular self-assembly publication-title: Nat. Mater. doi: 10.1038/nmat4421 – volume: 25 start-page: 3002 year: 2013 end-page: 3006 ident: CR18 article-title: Liquid-crystalline blue phase laser with widely tunable wavelength publication-title: Adv. Mater. doi: 10.1002/adma.201204591 – volume: 9 start-page: 8941 year: 2017 end-page: 8947 ident: CR29 article-title: Polymer stabilization of liquid-crystal blue phase II toward photonic crystals publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01502 – volume: 89 start-page: 2035 year: 1985 end-page: 2051 ident: CR31 article-title: Optical activity, transmission spectra, and structure of blue phases of liquid crystals publication-title: Zh. Eksp. Teor. Fiz. – volume: 1 start-page: 64 year: 2002 end-page: 68 ident: CR14 article-title: Polymer-stabilized liquid crystal blue phases publication-title: Nat. Mater. doi: 10.1038/nmat712 – volume: 43 start-page: 2327 year: 1972 end-page: 2335 ident: CR36 article-title: Coupled‐wave theory of distributed feedback lasers publication-title: J. Appl. Phys. doi: 10.1063/1.1661499 – volume: 11 start-page: 599 year: 2012 end-page: 603 ident: CR16 article-title: Blue-phase templated fabrication of three-dimensional nanostructures for photonic applications publication-title: Nat. Mater. doi: 10.1038/nmat3330 – volume: 2 start-page: 1524 year: 2015 end-page: 1531 ident: CR21 article-title: Electric field-driven shifting and expansion of photonic band gaps in 3D liquid photonic crystals publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00314 – volume: 5 year: 2015 ident: CR27 article-title: Double-twist cylinders in liquid crystalline cholesteric blue phases observed by transmission electron microscopy publication-title: Sci. Rep. doi: 10.1038/srep16180 – volume: 6 year: 2015 ident: CR40 article-title: Three-dimensional positioning and control of colloidal objects utilizing engineered liquid crystalline defect networks publication-title: Nat. Commun. doi: 10.1038/ncomms8180 – volume: 386 start-page: 143 year: 1997 end-page: 149 ident: CR1 article-title: Photonic crystals: putting a new twist on light publication-title: Nature doi: 10.1038/386143a0 – ident: CR13 – volume: 1 start-page: 111 year: 2002 end-page: 113 ident: CR23 article-title: Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II publication-title: Nat. Mater. doi: 10.1038/nmat727 – volume: 6 year: 2016 ident: CR22 article-title: High efficiency holographic bragg grating with optically prolonged memory publication-title: Sci. Rep. doi: 10.1038/srep36148 – volume: 36 start-page: 1083 year: 1981 end-page: 1085 ident: CR34 article-title: Liquid single crystals of cholesteric blue phases publication-title: Z. Naturforsch. A doi: 10.1515/zna-1981-1010 – volume: 61 start-page: 385 year: 1989 end-page: 432 ident: CR11 article-title: Crystalline liquids: the blue phases publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.385 – volume: 39 start-page: 1899 year: 2015 end-page: 1904 ident: CR39 article-title: Chiral assembly and plasmonic response of silver nanoparticles in a three-dimensional blue-phase nanostructure template publication-title: New J. Chem. doi: 10.1039/C4NJ02199A – volume: 7 start-page: 801 year: 2013 end-page: 805 ident: CR8 article-title: Miniature chiral beamsplitter based on gyroid photonic crystals publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.233 – volume: 94 year: 2016 ident: CR45 article-title: Bragg reflection band width and optical rotatory dispersion of cubic blue-phase liquid crystals publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042703 – volume: 13 start-page: 817 year: 2014 end-page: 821 ident: CR20 article-title: Stretchable liquid-crystal blue-phase gels publication-title: Nat. Mater. doi: 10.1038/nmat3993 – volume: 3 start-page: 5383 year: 2015 end-page: 5388 ident: CR28 article-title: A well-aligned simple cubic blue phase for a liquid crystal laser publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00420A – volume: 7 start-page: 3295 year: 2011 end-page: 3306 ident: CR43 article-title: Switching dynamics in cholesteric blue phases publication-title: Soft Matter doi: 10.1039/c0sm00979b – volume: 20 start-page: 1038 year: 2010 end-page: 1052 ident: CR6 article-title: Three-dimensional nanostructures for photonics publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901838 – volume: 436 start-page: 997 year: 2005 end-page: 1000 ident: CR15 article-title: Liquid crystal ‘blue phases’ with a wide temperature range publication-title: Nature doi: 10.1038/nature03932 – volume: 12 start-page: 337 year: 2016 end-page: 340 ident: CR42 article-title: Symmetry-protected topological photonic crystal in three dimensions publication-title: Nat. Phys. doi: 10.1038/nphys3611 – volume: 12 start-page: 337 year: 2016 ident: 822_CR42 publication-title: Nat. Phys. doi: 10.1038/nphys3611 – volume: 7232 start-page: 723205 year: 2009 ident: 822_CR12 publication-title: Proc. SPIE doi: 10.1117/12.813372 – volume: 25 start-page: 5050 year: 2013 ident: 822_CR17 publication-title: Adv. Mater. doi: 10.1002/adma.201300798 – volume: 39 start-page: 1899 year: 2015 ident: 822_CR39 publication-title: New J. Chem. doi: 10.1039/C4NJ02199A – volume: 131 year: 2014 ident: 822_CR24 publication-title: J. Appl. Polym. Sci.. – volume: 3 start-page: 211 year: 2004 ident: 822_CR4 publication-title: Nat. Mater. doi: 10.1038/nmat1097 – volume: 102 year: 2013 ident: 822_CR26 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4803922 – volume: 6 year: 2016 ident: 822_CR22 publication-title: Sci. Rep. doi: 10.1038/srep36148 – volume: 9 start-page: 8941 year: 2017 ident: 822_CR29 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b01502 – volume: 7 start-page: 801 year: 2013 ident: 822_CR8 publication-title: Nat. Photonics doi: 10.1038/nphoton.2013.233 – volume: 202 start-page: 51 year: 1991 ident: 822_CR25 publication-title: Mol. Cryst. Liq. Cryst. doi: 10.1080/00268949108035659 – volume: 5 year: 2015 ident: 822_CR27 publication-title: Sci. Rep. doi: 10.1038/srep16180 – volume: 2 start-page: 1524 year: 2015 ident: 822_CR21 publication-title: ACS Photonics doi: 10.1021/acsphotonics.5b00314 – volume: 36 start-page: 1083 year: 1981 ident: 822_CR34 publication-title: Z. Naturforsch. A doi: 10.1515/zna-1981-1010 – volume: 6 year: 2015 ident: 822_CR40 publication-title: Nat. Commun. doi: 10.1038/ncomms8180 – volume: 2 start-page: 52 year: 2008 ident: 822_CR5 publication-title: Nat. Photonics doi: 10.1038/nphoton.2007.252 – volume: 20 start-page: 1038 year: 2010 ident: 822_CR6 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200901838 – volume: 2 year: 2008 ident: 822_CR37 publication-title: Nat. Photonics doi: 10.1038/nphoton.2008.146 – volume: 1 start-page: 3 year: 1986 ident: 822_CR44 publication-title: Liq. Cryst. doi: 10.1080/02678298608086486 – volume: 43 start-page: 2327 year: 1972 ident: 822_CR36 publication-title: J. Appl. Phys. doi: 10.1063/1.1661499 – volume: 7 start-page: 3295 year: 2011 ident: 822_CR43 publication-title: Soft Matter doi: 10.1039/c0sm00979b – volume: 386 start-page: 143 year: 1997 ident: 822_CR1 publication-title: Nature doi: 10.1038/386143a0 – volume: 61 start-page: 385 year: 1989 ident: 822_CR11 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.61.385 – volume: 89 start-page: 2035 year: 1985 ident: 822_CR31 publication-title: Zh. Eksp. Teor. Fiz. – volume: 108 start-page: 5188 year: 2011 ident: 822_CR38 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1015831108 – volume: 20 start-page: 318 year: 2012 ident: 822_CR32 publication-title: J. Soc. Inf. Disp. doi: 10.1889/JSID20.6.318 – volume: 405 start-page: 437 year: 2000 ident: 822_CR2 publication-title: Nature doi: 10.1038/35013024 – volume: 17 start-page: 3027 year: 2007 ident: 822_CR10 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.200700140 – volume: 10 start-page: 389 year: 2016 ident: 822_CR30 publication-title: Nat. Photonics doi: 10.1038/nphoton.2016.66 – volume: 5 start-page: 91 year: 2011 ident: 822_CR7 publication-title: Nat. Photonics doi: 10.1038/nphoton.2010.286 – volume: 436 start-page: 997 year: 2005 ident: 822_CR15 publication-title: Nature doi: 10.1038/nature03932 – volume: 11 start-page: 599 year: 2012 ident: 822_CR16 publication-title: Nat. Mater. doi: 10.1038/nmat3330 – volume: 21 start-page: 4319 year: 2013 ident: 822_CR19 publication-title: Opt. Express doi: 10.1364/OE.21.004319 – volume: 1 start-page: 111 year: 2002 ident: 822_CR23 publication-title: Nat. Mater. doi: 10.1038/nmat727 – volume: 94 year: 2016 ident: 822_CR45 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.94.042703 – volume: 3 start-page: 5383 year: 2015 ident: 822_CR28 publication-title: J. Mater. Chem. C doi: 10.1039/C5TC00420A – volume: 13 start-page: 817 year: 2014 ident: 822_CR20 publication-title: Nat. Mater. doi: 10.1038/nmat3993 – volume: 53 year: 1996 ident: 822_CR35 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.53.4107 – volume: 14 start-page: 781 year: 2004 ident: 822_CR3 publication-title: J. Mater. Chem. doi: 10.1039/B314305H – volume: 1 start-page: 64 year: 2002 ident: 822_CR14 publication-title: Nat. Mater. doi: 10.1038/nmat712 – volume: 2 start-page: 1149 year: 2012 ident: 822_CR33 publication-title: Opt. Mater. Express doi: 10.1364/OME.2.001149 – volume: 15 start-page: 106 year: 2016 ident: 822_CR41 publication-title: Nat. Mater. doi: 10.1038/nmat4421 – ident: 822_CR46 doi: 10.1016/B978-0-444-56369-9.00001-0 – volume: 25 start-page: 3002 year: 2013 ident: 822_CR18 publication-title: Adv. Mater. doi: 10.1002/adma.201204591 – volume: 7 year: 2016 ident: 822_CR9 publication-title: Nat. Commun. doi: 10.1038/ncomms12002 – ident: 822_CR13 doi: 10.1002/9781118751992 – reference: 26530779 - Sci Rep. 2015 Nov 04;5:16180 – reference: 16107843 - Nature. 2005 Aug 18;436(7053):997-1000 – reference: 9964724 - Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1996 Apr;53(4):4107-4121 – reference: 21368186 - Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5188-92 – reference: 23913627 - Adv Mater. 2013 Sep 25;25(36):5050-4 – reference: 12618852 - Nat Mater. 2002 Sep;1(1):64-8 – reference: 28215076 - ACS Appl Mater Interfaces. 2017 Mar 15;9(10 ):8941-8947 – reference: 26390324 - Nat Mater. 2016 Jan;15(1):106-12 – reference: 12618825 - Nat Mater. 2002 Oct;1(2):111-3 – reference: 24880732 - Nat Mater. 2014 Aug;13(8):817-21 – reference: 22581313 - Nat Mater. 2012 May 13;11(7):599-603 – reference: 23481965 - Opt Express. 2013 Feb 25;21(4):4319-27 – reference: 25994837 - Nat Commun. 2015 May 21;6:7180 – reference: 27841625 - Phys Rev E. 2016 Oct;94(4-1):042703 – reference: 10839534 - Nature. 2000 May 25;405(6785):437-40 – reference: 27782197 - Sci Rep. 2016 Oct 26;6:36148 – reference: 15034564 - Nat Mater. 2004 Apr;3(4):211-9 – reference: 27337216 - Nat Commun. 2016 Jun 23;7:12002 – reference: 23483707 - Adv Mater. 2013 Jun 4;25(21):3002-6 |
SSID | ssj0000391844 |
Score | 2.5444608 |
Snippet | Although there have been intense efforts to fabricate large three-dimensional photonic crystals in order to realize their full potential, the technologies... Conventional fabrication approaches for large-size three-dimensional photonic crystals are problematic. By properly controlling the self-assembly processes,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 727 |
SubjectTerms | 639/301/1019/1022 639/624/399/919 Crystal growth Crystal structure Crystals Energy gap Fabrication Humanities and Social Sciences Liquid crystals multidisciplinary Periodicity Phases Photonic band gaps Photonic crystals Science Science (multidisciplinary) Self-assembly Single crystals |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYhEMil9JG2btOiQm6tyFrWwzomoSGUNqcEcilCkmWysNhJ1nvYf98ZybvsJn1cepVGWJ6H9ImRviHkqNXamyqWLEgpmeBeM6ecZ0IHI2NwoUyPwn5cqotr8e1G3myU-sI7YZkeOCvumJsYY5Batzpgjs-LoJUoteMqOpEfV8Get3GYSmtwZeDoIsZXMpOqPp6LtCbgopxYztlyaydKhP2_Q5lPL0s-ypimjej8OXk2Ikh6kmf-guzE7iXZyzUll6_Iz-94t5sOYKPIGuTuz7wb9O62H5AHl4aHJUDC2ZziDtbQvqPgiv3YiqiTzqb3i2mzEqR-togwHKTnB-T6_OvV2QUbayiwAEeTgSHheiWdm0TTaGHa0inRCNk0gIMM9CgFipy0bdTITMh5HUqwqfG6aatWARZ4TXa7votvCeV-UsfAayedFxDoPhjFg_Hcw5dCFAUpV_q0YSQYxzoXM5sS3VVtsw0s2MAmG9hlQT6vx9xleo2_Sp-imdaSSI2dGsBh7Ogw9l8OU5DDlZHtGK9zWxohkMhHwl98WndDpGH6xHWxXyQZAKtI-FaQN9kn1jOBYyuWXzUF0VvesjXV7Z5uepvYvAGAIs4ryJeVX21M64-qePc_VPGe7PMUEIbx-pDsDg-L-AEw1uA_pnD6BS7bItA priority: 102 providerName: Directory of Open Access Journals – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dj9QgECd6xsQX4_dVT4OJb0puS6GUJ6PGy8WoT16yL4YApd4mm3Zv233Y_94ZSqvrx72WIQVmBn4w8BtCXjVKOV2EnHkpJRPcKWZL65hQXsvgrc_jo7AvX8vzC_FpKZfpwK1P1yqnOTFO1HXn8Yz8FDbbAqlWpHi7uWKYNQqjqymFxk1yC6nL8EqXWqr5jAXZzysh0luZRVGd9iLODDg1R65ztj9YjyJt_7-w5t9XJv-Im8bl6OweuZtwJH03Kv4-uRHaB-T2mFly_5B8_4w3vOkAmgqsRgb_kX2Dbi67Adlwqd_uARiue4rrWE27lkIPu_QVsSddr652q3oSpG69C1AdpPtH5OLs47cP5yxlUmAeNigDQ9r1Qlq7CLpWQje5LUUtZF0DGtJQUpYW9jVNExTyE3Je-Rw0q52qm6IpARE8Jkdt14ZjQrlbVMHzykrrBLi787rkXjvu4E8-iIzk03gan2jGMdvF2sRwd1GZUQcGdGCiDsw-I6_nOpuRZONa6feoplkSCbLjh277wyR_M1yHELxUqlEeQ8NOeFWKXEE_gxX5IiMnk5JN8tre_LKxjLyci8HfMIhi29DtogxAVqR9y8iT0SbmlsDmFZOw6oyoA2s5aOphSbu6jJzeAEMR7WXkzWRXvzXrv0Px9PpePCN3eDR1zXh1Qo6G7S48Bww1uBfRUX4CBj8aiQ priority: 102 providerName: ProQuest – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fi9QwEB7OE8EX8fxZvTsi-KbRbZo0zYOIischnk8u3IuEJE3vFkp7t9sF-987SdvF1fXA12RC08xM8g2TfAPwspLSqsyn1AkhKGdWUpMbS7l0SnhnXBofhZ19y0_n_Mu5ON-DqdzRuICrnaFdqCc1X9Zvfl7379Hh3w1Pxou3Kx7dPey3kcCc9rfgNp5MMjjq2Qj3486cKQxo-Ph2ZvfQrfMp0vjvwp5_X6H8I48aj6eT-3BvxJXkw2AIB7DnmwdwZ6g02T-EH1_DjW_SoeY8LQOj_8DGQa4u2y6w4xK37BEo1isSzrWStA1BA23H1oBFSb24Xi_KSZDYeu1xOEqvHsH85PP3T6d0rKxAHQYsHQ007JkwZuZVKbmqUpPzkouyRHSksCfPDcY5VeVl4CtkrHApalpZWVZZlSNCeAz7Tdv4p0CYnRXescIIYzm6v3UqZ05ZZvFLzvME0mk9tRtpx0P1i1rH9HdW6EEHGnWgow50n8CrzZirgXTjRumPQU0byUCYHRva5YUe_U8z5b13QspKupAqttzJHE0E_9Mbns4SOJyUrCcj1KniPND7CPyLF5tu9L-QVDGNb9dRBiFsoIFL4MlgE5uZYDAbirKqBOSWtWxNdbunWVxGjm-EpQH9JfB6sqvfpvXPpXj2f-LP4S6Lpq8oKw5hv1uu_RFirM4eR8f5BdysIm8 priority: 102 providerName: Scholars Portal |
Title | Large three-dimensional photonic crystals based on monocrystalline liquid crystal blue phases |
URI | https://link.springer.com/article/10.1038/s41467-017-00822-y https://www.ncbi.nlm.nih.gov/pubmed/28959009 https://www.proquest.com/docview/1944274154 https://www.proquest.com/docview/1945220433 https://pubmed.ncbi.nlm.nih.gov/PMC5620071 https://doaj.org/article/29eeec577f7c4583b4c76417a26ea410 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9QwFD7sBcEX8W51HSL4psVpmjTN4-yw4zK4i6gL8yIhSdPdgaFdZzoP8-89SS84ugq-pJCc0CTnnOTL7QvA21III1OXxJZzHjNqRKwzbWImrOTOapuES2EXl9n5FZsv-OIAaH8XJhzaD5SWoZvuT4d92LDg0r5PDSTl8e4Qjj11u7fqaTYd1lU843nOWHc_Zpzmd2TdG4MCVf9d-PLPY5K_7ZWGIWj2EB502JFM2tI-ggNXPYZ77WuSuyfw_ZM_1U0a1I6LC8_a3zJukNubuvEMuMSudwgGVxvix66C1BVBI6y7WI83yWr5Y7ssekFiVluH2VF68xSuZmffpudx93pCbHFS0sSeaj3lWo-dLASTZaIzVjBeFIiAJKZkmca5TFk64TkJKc1tgtqURhRlWmaIAp7BUVVX7gUQasa5szTXXBuGLm6szKiVhhr8k3UsgqRvT2U7anH_wsVKhS3uNFetDhTqQAUdqF0E74Y8ty2xxj-lT72aBklPih0i6vW16oxEUemcs1yIUli_HWyYFRlLBNbTaZaMIzjplaw6T92oRDLmKXw41uLNkIw-5jdOdOXqbZBBmOqp3iJ43trEUBKcsPqHV2UEYs9a9oq6n1ItbwKPN0JPj_AieN_b1S_F-mtTvPw_8VdwnwbTlzHNT-CoWW_da8RRjRnBoVgIDPPZxxEcTybzr3P8np5dfv4yCk41CisUGF6w_CehgR-T |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqVgguqKwNFDASnMDqxHHi-IAQWzWl055aaS7I2I5DRxol01mE8qf4jbznJAPD0luvsaPYftvnPPt7hLwopbQq8TFzaZoywa1kJjOWCelU6p1xcbgUdnKaDc_F53E63iI_-rsweKyy94nBURe1w3_kB7DZFki1koq3s0uGVaMwu9qX0GjV4tg332HLtnhz9BHk-5Lzw09nH4asqyrAHID1JUMK8iQ1ZuBVIYUqY5OJQqRFAchAQUuWGcD4ZeklcvVxnrsYZqmsLMqkzDiSL4HL34HAO0CLkmO5_qeDbOu5EN3dnEGSHyxE8EQYCgK3Oms24l8oE_AvbPv3Ec0_8rQh_B3uktsdbqXvWkW7Q7Z8dZfcaCtZNvfIlxGeKKdL0AzPCqwY0LJ90NlFvUT2XermDQDR6YJi3CxoXVFY0bp7iliXTieXq0nRd6R2uvLwOvRe3Cfn17LGD8h2VVd-j1BuB7l3PDepsQLci3Uq405ZbuFLzouIxP16atfRmmN1jakO6fUk160MNMhABxnoJiKv1u_MWlKPK3u_RzGteyIhd3hQz7_pzr41V957l0pZSoepaCuczEQsYZ7eiHgQkf1eyLrzEgv9S6cj8nzdDPaNSRtT-XoV-gBERpq5iDxsdWI9EtgsY9FXFRG5oS0bQ91sqSYXgUMcYC-iy4i87vXqt2H9dykeXT2LZ-Tm8OxkpEdHp8ePyS0e1F4xnu-T7eV85Z8Aflvap8FoKPl63Vb6ExX_Viw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaqViAuqDwbKGAkOIG1G8eJ4wNCQFm1tFQcqLQXZGzHoSutku0-hPLX-HXMOMnC8uit13ii2J6HP2fsbwh5VkppVeJj5tI0ZYJbyUxmLBPSqdQ74-JwKezjaXZ4Jj6M0_EW-dHfhcFjlX1MDIG6qB3-Ix_AZlsg1UoqBmV3LOLTwej17IJhBSnMtPblNFoTOfbNd9i-LV4dHYCun3M-ev_53SHrKgwwB8B9yZCOPEmNGXpVSKHK2GSiEGlRAEpQ0JJlBvB-WXqJvH2c5y6GESsrizIpM45ETBD-d0AyRh-TY7n-v4PM67kQ3T2dYZIPFiJEJVwWAs86azbWwlAy4F849-_jmn_kbMNSONolNzsMS9-0RneLbPnqNrnWVrVs7pAvJ3i6nC7BSjwrsHpAy_xBZ-f1Epl4qZs3AEqnC4praEHrisKM1t1TxL10OrlYTYpekNrpysPrIL24S86uZI7vke2qrvweodwOc-94blJjBYQa61TGnbLcwpecFxGJ-_nUrqM4x0obUx1S7UmuWx1o0IEOOtBNRF6s35m1BB-XSr9FNa0lkZw7PKjn33Tn65or771LpSylw7S0FU5mIpYwTm9EPIzIfq9k3UWMhf5l3xF5um4GX8cEjql8vQoyAJeRci4i91ubWPcENs5YAFZFRG5Yy0ZXN1uqyXngEwcIjEgzIi97u_qtW_-digeXj-IJuQ7-qU-OTo8fkhs8WL1iPN8n28v5yj8CKLe0j4PPUPL1qp30Jx3bWmI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+three-dimensional+photonic+crystals+based+on+monocrystalline+liquid+crystal+blue+phases&rft.jtitle=Nature+communications&rft.au=Chen%2C+Chun-Wei&rft.au=Hou%2C+Chien-Tsung&rft.au=Li%2C+Cheng-Chang&rft.au=Jau%2C+Hung-Chang&rft.date=2017-09-28&rft.pub=Nature+Publishing+Group+UK&rft.eissn=2041-1723&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41467-017-00822-y&rft.externalDocID=10_1038_s41467_017_00822_y |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |