A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries
Due to the high theoretical specific energy, the lithium–oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge–charge cycling lead to the formation of side-products, and short cycle life....
Saved in:
Published in | Nature communications Vol. 10; no. 1; pp. 602 - 10 |
---|---|
Main Authors | , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
05.02.2019
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
ISSN | 2041-1723 2041-1723 |
DOI | 10.1038/s41467-019-08422-8 |
Cover
Loading…
Abstract | Due to the high theoretical specific energy, the lithium–oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge–charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its molecule facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochemical performance when operated in air.
Li-O
2
batteries are promising candidates for the next generation of rechargeable batteries, but the side reactions and poor cycling stability limit their applications. Here, the authors show a versatile ionic liquid with functional groups that can address both issues for cells operated in oxygen and air. |
---|---|
AbstractList | Due to the high theoretical specific energy, the lithium–oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge–charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its molecule facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochemical performance when operated in air.Li-O2 batteries are promising candidates for the next generation of rechargeable batteries, but the side reactions and poor cycling stability limit their applications. Here, the authors show a versatile ionic liquid with functional groups that can address both issues for cells operated in oxygen and air. Due to the high theoretical specific energy, the lithium–oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge–charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its molecule facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochemical performance when operated in air. Due to the high theoretical specific energy, the lithium–oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge–charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its molecule facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochemical performance when operated in air. Li-O 2 batteries are promising candidates for the next generation of rechargeable batteries, but the side reactions and poor cycling stability limit their applications. Here, the authors show a versatile ionic liquid with functional groups that can address both issues for cells operated in oxygen and air. Li-O2 batteries are promising candidates for the next generation of rechargeable batteries, but the side reactions and poor cycling stability limit their applications. Here, the authors show a versatile ionic liquid with functional groups that can address both issues for cells operated in oxygen and air. Due to the high theoretical specific energy, the lithium-oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge-charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its molecule facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochemical performance when operated in air.Due to the high theoretical specific energy, the lithium-oxygen battery has been heralded as a promising energy storage system for applications such as electric vehicles. However, its large over-potentials during discharge-charge cycling lead to the formation of side-products, and short cycle life. Herein, we report an ionic liquid bearing the redox active 2,2,6,6-tetramethyl-1-piperidinyloxy moiety, which serves multiple functions as redox mediator, oxygen shuttle, lithium anode protector, as well as electrolyte solvent. The additive contributes a 33-fold increase of the discharge capacity in comparison to a pure ether-based electrolyte and lowers the over-potential to an exceptionally low value of 0.9 V. Meanwhile, its molecule facilitates smooth lithium plating/stripping, and promotes the formation of a stable solid electrolyte interface to suppress side-reactions. Moreover, the proportion of ionic liquid in the electrolyte influences the reaction mechanism, and a high proportion leads to the formation of amorphous lithium peroxide and a long cycling life (> 200 cycles). In particular, it enables an outstanding electrochemical performance when operated in air. |
ArticleNumber | 602 |
Author | Tkacheva, Anastasia Armand, Michel Wang, Chengyin Zhao, Yufei Peng, Zhangquan Liu, Zhenjie Yan, Kang Rojo, Teofilo Shanmukaraj, Devaraj Guo, Xin McDonagh, Andrew M. Wang, Guoxiu Sun, Bing Zhang, Jinqiang |
Author_xml | – sequence: 1 givenname: Jinqiang orcidid: 0000-0001-5476-0134 surname: Zhang fullname: Zhang, Jinqiang organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway – sequence: 2 givenname: Bing surname: Sun fullname: Sun, Bing organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway – sequence: 3 givenname: Yufei surname: Zhao fullname: Zhao, Yufei organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway, Department of Materials Science and Engineering, Dongguan University of Technology – sequence: 4 givenname: Anastasia surname: Tkacheva fullname: Tkacheva, Anastasia organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway – sequence: 5 givenname: Zhenjie surname: Liu fullname: Liu, Zhenjie organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 6 givenname: Kang surname: Yan fullname: Yan, Kang organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway – sequence: 7 givenname: Xin surname: Guo fullname: Guo, Xin organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway – sequence: 8 givenname: Andrew M. surname: McDonagh fullname: McDonagh, Andrew M. organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway – sequence: 9 givenname: Devaraj surname: Shanmukaraj fullname: Shanmukaraj, Devaraj organization: CIC EnergiGUNE – sequence: 10 givenname: Chengyin surname: Wang fullname: Wang, Chengyin organization: College of Chemistry and Chemical Engineering, Yangzhou University – sequence: 11 givenname: Teofilo surname: Rojo fullname: Rojo, Teofilo organization: CIC EnergiGUNE – sequence: 12 givenname: Michel surname: Armand fullname: Armand, Michel email: marmand@cicenergigune.com organization: CIC EnergiGUNE – sequence: 13 givenname: Zhangquan surname: Peng fullname: Peng, Zhangquan email: zqpeng@ciac.ac.cn organization: State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences – sequence: 14 givenname: Guoxiu orcidid: 0000-0003-4295-8578 surname: Wang fullname: Wang, Guoxiu email: Guoxiu.Wang@uts.edu.au organization: Centre for Clean Energy Technology, University of Technology Sydney, Broadway |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30723193$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1TAQhSNURB_0D7BAkdiwCfjtZINUVVAqVWIDa8txxvf6KrFvbaei_HqcppS2i3pjy_7O8YzOHFcHPnioqncYfcKItp8Tw0zIBuGuQS0jpGlfVUcEMdxgSejBo_NhdZrSDpVFO9wy9qY6pKjc444eVeGsvoGYdHYj1Hb2Jrvg9ej-wFCXkzP16K5nN9Q51H0IKdd5C3UK47yAzQSD07mwe4g2xEl7A6kOtqjy1s1TE37fbsDXvc4ZooP0tnpt9Zjg9H4_qX59-_rz_Htz9ePi8vzsqjECidyQ0huXpVHdE4GBEGs46aW0yAw9WM4sAOk5py2jLR-44Bx1EmPZd8TgQdOT6nL1HYLeqX10k463Kmin7i5C3CgdszMjKKolFTBQQhFnwHirhRUDxpy3ltGOFa8vq9d-7kvDBnyOenxi-vTFu63ahBslqKCSkGLw8d4ghusZUlaTSwbGUXsIc1IEdwzzEk1b0A_P0F2YY0lkoaQgHJcYC_X-cUUPpfzLtQBkBUwMKUWwDwhGapkftc6PKvOj7uZHLX-3z0TGZb3kXLpy48tSukpT-cdvIP4v-wXVXzAg2f4 |
CitedBy_id | crossref_primary_10_1016_j_apsusc_2024_160815 crossref_primary_10_1039_D1CC04928C crossref_primary_10_1039_D2CC02501A crossref_primary_10_1155_2022_2762647 crossref_primary_10_1002_adfm_202213863 crossref_primary_10_1002_anie_202002309 crossref_primary_10_3390_en15134545 crossref_primary_10_1002_adma_202208925 crossref_primary_10_1016_j_jechem_2024_03_049 crossref_primary_10_1007_s12274_024_6592_7 crossref_primary_10_1021_acsami_9b08153 crossref_primary_10_1021_acs_nanolett_1c03207 crossref_primary_10_1016_j_ensm_2019_04_024 crossref_primary_10_1016_j_molliq_2020_114354 crossref_primary_10_1021_acs_chemrev_3c00391 crossref_primary_10_1002_anie_202418893 crossref_primary_10_1002_anie_202412035 crossref_primary_10_1007_s40820_024_01632_w crossref_primary_10_1002_admi_202001698 crossref_primary_10_1002_ange_202201416 crossref_primary_10_1021_acsaem_0c00136 crossref_primary_10_1039_D0MH01391A crossref_primary_10_1002_adfm_202010627 crossref_primary_10_1002_smll_201903854 crossref_primary_10_1016_j_cclet_2023_108469 crossref_primary_10_1021_jacs_9b09352 crossref_primary_10_1002_aenm_201903591 crossref_primary_10_1039_D3YA00483J crossref_primary_10_1007_s12274_021_3827_8 crossref_primary_10_1002_adma_202308134 crossref_primary_10_1016_j_esci_2023_100173 crossref_primary_10_1002_aenm_202300985 crossref_primary_10_1039_D0TA02689A crossref_primary_10_1002_aenm_202302325 crossref_primary_10_1016_j_cej_2020_127335 crossref_primary_10_1016_j_jcis_2023_03_017 crossref_primary_10_1016_j_jmst_2021_10_009 crossref_primary_10_1021_acsami_2c07400 crossref_primary_10_1126_sciadv_abm1899 crossref_primary_10_1002_ange_202116699 crossref_primary_10_1016_j_ccr_2025_216498 crossref_primary_10_1016_j_isci_2023_106776 crossref_primary_10_1002_eom2_12019 crossref_primary_10_1016_j_electacta_2024_144833 crossref_primary_10_1007_s12274_022_4490_4 crossref_primary_10_1016_j_cej_2022_137541 crossref_primary_10_1021_acs_jced_9b00648 crossref_primary_10_1021_acs_jpcc_0c00367 crossref_primary_10_1071_CH22126 crossref_primary_10_1002_smtd_202101280 crossref_primary_10_1016_j_matt_2019_05_008 crossref_primary_10_1002_aesr_202100045 crossref_primary_10_1016_j_jpowsour_2021_229575 crossref_primary_10_1016_j_compositesb_2022_109727 crossref_primary_10_1002_anie_202114293 crossref_primary_10_1039_D3CC02847J crossref_primary_10_1039_D4TA06184E crossref_primary_10_1002_anie_202116699 crossref_primary_10_1007_s10953_024_01371_x crossref_primary_10_1002_ange_202319529 crossref_primary_10_1039_C9CS00636B crossref_primary_10_1002_adfm_202301332 crossref_primary_10_1016_j_ensm_2025_104132 crossref_primary_10_1002_ange_202002309 crossref_primary_10_1002_smsc_202200005 crossref_primary_10_1016_j_cej_2021_133570 crossref_primary_10_1016_j_jpowsour_2022_231792 crossref_primary_10_1002_adfm_202414854 crossref_primary_10_1149_2_0072007JES crossref_primary_10_1021_acs_jpclett_0c01921 crossref_primary_10_1016_j_apcatb_2020_119792 crossref_primary_10_1002_ange_202412035 crossref_primary_10_1021_acsenergylett_2c02817 crossref_primary_10_1002_batt_201900031 crossref_primary_10_1002_batt_202000016 crossref_primary_10_1002_ange_202418893 crossref_primary_10_1002_ange_202114293 crossref_primary_10_1016_j_ensm_2021_11_038 crossref_primary_10_1016_j_ijmecsci_2025_109953 crossref_primary_10_1016_j_nxener_2024_100135 crossref_primary_10_1016_j_jcis_2023_06_169 crossref_primary_10_1039_C9TA04946K crossref_primary_10_1002_anie_202319529 crossref_primary_10_1016_j_ensm_2021_05_042 crossref_primary_10_1021_acsomega_4c02393 crossref_primary_10_1063_5_0093183 crossref_primary_10_1016_j_memsci_2022_121112 crossref_primary_10_1039_D0TA09627J crossref_primary_10_1021_acsami_2c19975 crossref_primary_10_1016_j_jece_2021_105285 crossref_primary_10_1002_sstr_202200058 crossref_primary_10_1007_s40820_025_01700_9 crossref_primary_10_1016_j_mtnano_2019_100049 crossref_primary_10_1002_eem2_12258 crossref_primary_10_1073_pnas_2202835119 crossref_primary_10_1016_j_cclet_2021_08_025 crossref_primary_10_1016_j_gee_2023_05_002 crossref_primary_10_1002_batt_202300609 crossref_primary_10_1016_j_ensm_2021_04_003 crossref_primary_10_1039_D0QM00856G crossref_primary_10_1016_j_joule_2022_10_008 crossref_primary_10_1002_cssc_202402102 crossref_primary_10_1021_acs_jpcc_0c08466 crossref_primary_10_1021_acs_nanolett_0c00797 crossref_primary_10_1002_adfm_202002927 crossref_primary_10_1021_acsami_0c05494 crossref_primary_10_1016_j_jechem_2020_12_034 crossref_primary_10_1016_j_cej_2022_138662 crossref_primary_10_1080_09506608_2021_2006968 crossref_primary_10_1016_j_ensm_2022_03_021 crossref_primary_10_1016_j_mattod_2020_09_027 crossref_primary_10_1002_adfm_202312723 crossref_primary_10_1002_anie_201903459 crossref_primary_10_1039_D2CP02212E crossref_primary_10_1039_C9TA03628H crossref_primary_10_1002_chem_202101576 crossref_primary_10_1021_acs_nanolett_1c01631 crossref_primary_10_1002_aenm_202303055 crossref_primary_10_1016_j_joule_2022_06_032 crossref_primary_10_1021_acsenergylett_0c00081 crossref_primary_10_1002_anie_202201416 crossref_primary_10_3390_ma14123259 crossref_primary_10_1016_j_ensm_2020_03_015 crossref_primary_10_3390_app12052408 crossref_primary_10_1002_adfm_202106984 crossref_primary_10_1002_batt_202100025 crossref_primary_10_1002_ange_201903459 crossref_primary_10_1021_acsami_0c00431 crossref_primary_10_1021_jacs_0c09649 crossref_primary_10_1021_acs_energyfuels_1c02844 crossref_primary_10_1093_nsr_nwac040 crossref_primary_10_1021_acsami_2c14349 crossref_primary_10_1021_acsami_0c01922 crossref_primary_10_3390_nano11051088 crossref_primary_10_1002_bte2_20220019 crossref_primary_10_1021_acsami_1c15349 crossref_primary_10_1016_j_synthmet_2024_117796 crossref_primary_10_1016_j_ensm_2020_03_007 crossref_primary_10_1002_aenm_202202568 crossref_primary_10_1002_aenm_202102242 crossref_primary_10_1002_smsc_202200048 crossref_primary_10_1016_j_jechem_2020_06_063 crossref_primary_10_54718_QBSA4106 crossref_primary_10_1002_aenm_202303192 crossref_primary_10_1039_D3CC01932B crossref_primary_10_1149_1945_7111_ad3857 crossref_primary_10_1016_j_apsusc_2020_148864 crossref_primary_10_1016_j_mcat_2020_111302 crossref_primary_10_1016_j_cej_2022_134643 crossref_primary_10_1016_j_mtadv_2019_100031 crossref_primary_10_1021_acs_nanolett_1c04445 crossref_primary_10_1021_acsami_1c22261 crossref_primary_10_1002_admi_202201057 crossref_primary_10_1021_acs_nanolett_3c03576 crossref_primary_10_1039_D3TA03002D crossref_primary_10_1002_batt_201900196 crossref_primary_10_1142_S1793604721300085 crossref_primary_10_1016_j_ensm_2020_04_032 |
Cites_doi | 10.1002/adma.201705571 10.1039/b618710b 10.1038/nenergy.2016.66 10.1002/aenm.201702258 10.1002/adma.201701568 10.1002/adma.201503169 10.1038/nchem.1646 10.1039/C5TA01399B 10.1126/sciadv.1602809 10.1016/j.ensm.2016.11.006 10.1038/ncomms12925 10.1039/C1EE02148F 10.1021/ja501877e 10.1038/nature25984 10.1021/nl500397y 10.1021/acscentsci.5b00267 10.1039/C5EE02803E 10.1021/cr400573b 10.1038/nenergy.2016.128 10.1038/nenergy.2017.118 10.1016/j.ensm.2015.10.004 10.1038/nmat4629 10.1038/nmat3191 10.1016/j.elecom.2012.10.030 10.1039/C6EE00700G 10.1002/advs.201600400 10.1038/nchem.2101 10.1002/anie.201605228 10.1002/aenm.201602417 10.1038/ncomms3383 10.1021/ja207229n 10.1149/2.086302jes 10.1021/acsami.5b10979 10.1002/anie.201102357 10.1016/j.elecom.2014.09.014 10.1126/science.aac7730 10.1021/ja208608s 10.1039/c3ta11553d 10.1063/1.3663385 10.1021/jz401659f 10.1002/anie.201400711 10.1039/C5CC04620C 10.1002/advs.201500285 10.1039/C7TA02210G 10.1002/anie.201210057 10.1021/acs.jpcc.7b01929 10.1016/j.jpowsour.2008.04.003 10.1016/j.cplett.2014.12.036 10.1002/ange.201307137 10.1038/nchem.2132 10.1016/j.tet.2005.10.022 10.1016/j.scib.2017.01.037 10.1073/pnas.1505728112 10.1002/anie.201703784 10.1002/anie.201704324 10.1021/cr500054y 10.1021/jz201070t 10.1149/1.1836378 10.1016/j.elecom.2017.02.014 10.1021/acsenergylett.7b00884 10.1039/C5CP04505C |
ContentType | Journal Article |
Copyright | The Author(s) 2019 This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2019 – notice: This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7X7 7XB 88E 8AO 8FD 8FE 8FG 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI C1K CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M1P M7P P5Z P62 P64 PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS RC3 SOI 7X8 5PM DOA |
DOI | 10.1038/s41467-019-08422-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Database ProQuest Central Technology collection Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences ProQuest Health & Medical Collection PML(ProQuest Medical Library) Biological Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts SciTech Premium Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection Chemoreception Abstracts Industrial and Applied Microbiology Abstracts (Microbiology A) ProQuest Central (New) ProQuest Medical Library (Alumni) Advanced Technologies & Aerospace Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Entomology Abstracts ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central ProQuest Health & Medical Research Collection Genetics Abstracts Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) AIDS and Cancer Research Abstracts ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Publicly Available Content Database CrossRef MEDLINE - Academic PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2041-1723 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_3a736ed323054e458a6f6d11558f4394 PMC6363722 30723193 10_1038_s41467_019_08422_8 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- 0R~ 39C 3V. 53G 5VS 70F 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ AAHBH AAJSJ ABUWG ACGFO ACGFS ACIWK ACMJI ACPRK ACSMW ADBBV ADFRT ADMLS ADRAZ AENEX AEUYN AFKRA AFRAH AHMBA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH AOIJS ARAPS ASPBG AVWKF AZFZN BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU DIK EBLON EBS EE. EMOBN F5P FEDTE FYUFA GROUPED_DOAJ HCIFZ HMCUK HVGLF HYE HZ~ KQ8 LK8 M1P M48 M7P M~E NAO O9- OK1 P2P P62 PIMPY PQQKQ PROAC PSQYO RNS RNT RNTTT RPM SNYQT SV3 TSG UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM PJZUB PPXIY PQGLB 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7T7 7TM 7TO 7XB 8FD 8FK AARCD AZQEC C1K DWQXO FR3 GNUQQ H94 K9. P64 PKEHL PQEST PQUKI PRINS RC3 SOI 7X8 PUEGO 5PM |
ID | FETCH-LOGICAL-c606t-246757103ab261e22fc52b77f0cdbef54fee2b55384385d5655097117b92c1da3 |
IEDL.DBID | M48 |
ISSN | 2041-1723 |
IngestDate | Wed Aug 27 01:02:02 EDT 2025 Thu Aug 21 18:42:32 EDT 2025 Fri Sep 05 08:14:42 EDT 2025 Wed Aug 13 11:24:56 EDT 2025 Mon Jul 21 05:50:58 EDT 2025 Tue Jul 01 02:21:23 EDT 2025 Thu Apr 24 23:09:24 EDT 2025 Fri Feb 21 02:39:00 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-246757103ab261e22fc52b77f0cdbef54fee2b55384385d5655097117b92c1da3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-4295-8578 0000-0001-5476-0134 |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.1038/s41467-019-08422-8 |
PMID | 30723193 |
PQID | 2176251003 |
PQPubID | 546298 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_3a736ed323054e458a6f6d11558f4394 pubmedcentral_primary_oai_pubmedcentral_nih_gov_6363722 proquest_miscellaneous_2194158448 proquest_journals_2176251003 pubmed_primary_30723193 crossref_primary_10_1038_s41467_019_08422_8 crossref_citationtrail_10_1038_s41467_019_08422_8 springer_journals_10_1038_s41467_019_08422_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-02-05 |
PublicationDateYYYYMMDD | 2019-02-05 |
PublicationDate_xml | – month: 02 year: 2019 text: 2019-02-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Nature communications |
PublicationTitleAbbrev | Nat Commun |
PublicationTitleAlternate | Nat Commun |
PublicationYear | 2019 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Lu, Korf, Kambe, Tu, Archer (CR58) 2014; 126 Lu, Gasteiger, Shao-Horn (CR17) 2011; 133 Lee (CR45) 2008; 184 Aurbach, McCloskey, Nazar, Bruce (CR9) 2016; 1 Ha (CR33) 2017; 5 Kundu, Black, Adams, Nazar (CR26) 2015; 1 Zhang, Sun, Xie, Zhao, Wang (CR10) 2016; 3 Luntz, McCloskey (CR4) 2014; 114 Lee, Lee, Kim, Park, Kim (CR38) 2016; 28 Xu (CR16) 2013; 52 Guo, Yin, Xin, Guo, Wan (CR46) 2012; 5 Choudhury (CR37) 2017; 3 Kwak (CR30) 2016; 9 Zhang (CR59) 2017; 7 Lim (CR19) 2016; 1 Burke, Pande, Khetan, Viswanathan, McCloskey (CR25) 2015; 112 Gao, Chen, Johnson, Jovanov, Bruce (CR39) 2017; 2 Basile, Hollenkamp, Bhatt, O'Mullane (CR56) 2013; 27 Abraham, Jiang (CR1) 1996; 143 Suga, Konishi, Nishide (CR51) 2007; 0 Bergner (CR47) 2015; 17 Li, Yin, Li, Zhang, Guo (CR57) 2017; 4 Bruce, Freunberger, Hardwick, Tarascon (CR3) 2012; 11 Zhang (CR20) 2017; 30 Lim (CR18) 2014; 53 Guo (CR5) 2017; 62 Asadi (CR61) 2018; 555 Sun (CR22) 2014; 136 Khan, Zhao (CR50) 2014; 49 Ryu (CR23) 2016; 7 Zhang (CR60) 2016; 55 Bergner (CR34) 2016; 8 Zhang (CR14) 2016; 2 McCloskey (CR13) 2011; 133 McCloskey, Burke, Nichols, Renfrew (CR8) 2015; 51 Tułodziecki, Tarascon, Taberna, Guéry (CR54) 2017; 77 Lu (CR2) 2014; 114 Liu (CR31) 2015; 350 Zheng (CR53) 2013; 1 Sun, Huang, Chen, Munroe, Wang (CR15) 2014; 14 Lu (CR12) 2013; 4 Park, Lee, Nazar, Chen (CR11) 2013; 160 McCloskey (CR52) 2013; 4 Aetukuri (CR24) 2015; 7 Chen, Freunberger, Peng, Fontaine, Bruce (CR27) 2013; 5 Lee, Park, Lim, Sun (CR35) 2017; 7 Girard (CR55) 2017; 121 Matsuda (CR28) 2015; 620 Hou (CR48) 2017; 56 Xu (CR41) 2017; 2 Kwak (CR29) 2015; 3 Gao, Chen, Johnson, Bruce (CR21) 2016; 15 Qian, Jin, Bao, Zhang (CR44) 2006; 62 Zhang, Liao, He, Zhou (CR40) 2016; 9 Zhang, Sun, Zhao, Kretschmer, Wang (CR42) 2017; 56 Viswanathan (CR7) 2011; 135 Kwak, Park, Jung, Sun (CR32) 2017; 8 Freunberger (CR43) 2011; 50 Johnson (CR6) 2014; 6 Zhou (CR36) 2017; 29 Allen, Mukerjee, Plichta, Hendrickson, Abraham (CR49) 2011; 2 Y Lu (8422_CR58) 2014; 126 TZ Hou (8422_CR48) 2017; 56 B Sun (8422_CR15) 2014; 14 A Basile (8422_CR56) 2013; 27 C Xu (8422_CR41) 2017; 2 Y Zhang (8422_CR60) 2016; 55 WJ Kwak (8422_CR29) 2015; 3 S Ha (8422_CR33) 2017; 5 M Tułodziecki (8422_CR54) 2017; 77 DJ Lee (8422_CR38) 2016; 28 SH Lee (8422_CR35) 2017; 7 J Zhang (8422_CR42) 2017; 56 T Zhang (8422_CR40) 2016; 9 WH Ryu (8422_CR23) 2016; 7 BJ Bergner (8422_CR47) 2015; 17 NB Aetukuri (8422_CR24) 2015; 7 GM Girard (8422_CR55) 2017; 121 YC Lu (8422_CR17) 2011; 133 JJ Xu (8422_CR16) 2013; 52 CJ Allen (8422_CR49) 2011; 2 Y Chen (8422_CR27) 2013; 5 X Guo (8422_CR5) 2017; 62 D Aurbach (8422_CR9) 2016; 1 M Asadi (8422_CR61) 2018; 555 J Lu (8422_CR2) 2014; 114 J Lu (8422_CR12) 2013; 4 HD Lim (8422_CR19) 2016; 1 B Zhou (8422_CR36) 2017; 29 K Abraham (8422_CR1) 1996; 143 PG Bruce (8422_CR3) 2012; 11 X Gao (8422_CR39) 2017; 2 A Khan (8422_CR50) 2014; 49 T Suga (8422_CR51) 2007; 0 WJ Kwak (8422_CR32) 2017; 8 BD McCloskey (8422_CR13) 2011; 133 W Guo (8422_CR46) 2012; 5 WJ Kwak (8422_CR30) 2016; 9 T Liu (8422_CR31) 2015; 350 BD McCloskey (8422_CR8) 2015; 51 HW Park (8422_CR11) 2013; 160 HD Lim (8422_CR18) 2014; 53 SA Freunberger (8422_CR43) 2011; 50 BD McCloskey (8422_CR52) 2013; 4 W Qian (8422_CR44) 2006; 62 S Matsuda (8422_CR28) 2015; 620 AC Luntz (8422_CR4) 2014; 114 V Viswanathan (8422_CR7) 2011; 135 L Johnson (8422_CR6) 2014; 6 X Gao (8422_CR21) 2016; 15 J Zheng (8422_CR53) 2013; 1 J Zhang (8422_CR59) 2017; 7 C Zhang (8422_CR14) 2016; 2 BJ Bergner (8422_CR34) 2016; 8 D Sun (8422_CR22) 2014; 136 CM Burke (8422_CR25) 2015; 112 D Kundu (8422_CR26) 2015; 1 J Zhang (8422_CR10) 2016; 3 SH Lee (8422_CR45) 2008; 184 NW Li (8422_CR57) 2017; 4 Y Zhang (8422_CR20) 2017; 30 S Choudhury (8422_CR37) 2017; 3 |
References_xml | – volume: 30 start-page: 1705571 year: 2017 ident: CR20 article-title: High-capacity and high-rate discharging of a coenzyme Q10-catalyzed Li-O battery publication-title: Adv. Mater. doi: 10.1002/adma.201705571 – volume: 0 start-page: 1730 year: 2007 end-page: 1732 ident: CR51 article-title: Photocrosslinked nitroxide polymer cathode-active materials for application in an organic-based paper battery publication-title: Chem. Commun. doi: 10.1039/b618710b – volume: 1 start-page: 16066 year: 2016 ident: CR19 article-title: Rational design of redox mediators for advanced Li-O batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.66 – volume: 8 start-page: 1702258 year: 2017 ident: CR32 article-title: Optimized concentration of redox mediator and surface protection of Li metal for maintenance of high energy efficiency in Li- 2batteries publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702258 – volume: 29 start-page: 1701568 year: 2017 ident: CR36 article-title: A High-performance Li-O battery with a strongly solvating hexamethylphosphoramide electrolyte and a LiPON-protected lithium anode publication-title: Adv. Mater. doi: 10.1002/adma.201701568 – volume: 28 start-page: 857 year: 2016 end-page: 863 ident: CR38 article-title: Sustainable redox mediation for lithium-oxygen batteries by a composite protective layer on the lithium-metal anode publication-title: Adv. Mater. doi: 10.1002/adma.201503169 – volume: 5 start-page: 489 year: 2013 ident: CR27 article-title: Charging a Li-O battery using a redox mediator publication-title: Nat. Chem. doi: 10.1038/nchem.1646 – volume: 3 start-page: 8855 year: 2015 end-page: 8864 ident: CR29 article-title: Understanding the behavior of Li-oxygen cells containing LiI publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01399B – volume: 3 start-page: e1602809 year: 2017 ident: CR37 article-title: Designer interphases for the lithium-oxygen electrochemical cell publication-title: Sci. Adv doi: 10.1126/sciadv.1602809 – volume: 7 start-page: 1 year: 2017 end-page: 7 ident: CR59 article-title: A multi-functional gel co-polymer bridging liquid electrolyte and solid cathode nanoparticles: An efficient route to Li-O batteries with improved performance publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.11.006 – volume: 7 year: 2016 ident: CR23 article-title: Heme biomolecule as redox mediator and oxygen shuttle for efficient charging of lithium-oxygen batteries publication-title: Nat. Commun. doi: 10.1038/ncomms12925 – volume: 5 start-page: 5221 year: 2012 end-page: 5225 ident: CR46 article-title: Superior radical polymer cathode material with a two-electron process redox reaction promoted by graphene publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02148F – volume: 136 start-page: 8941 year: 2014 end-page: 8946 ident: CR22 article-title: A solution-phase bifunctional catalyst for lithium-oxygen batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501877e – volume: 555 start-page: 502 year: 2018 end-page: 506 ident: CR61 article-title: A lithium-oxygen battery with a long cycle life in an air-like atmosphere publication-title: Nature doi: 10.1038/nature25984 – volume: 14 start-page: 3145 year: 2014 end-page: 3152 ident: CR15 article-title: Porous graphene nanoarchitectures: an efficient catalyst for low charge-overpotential, long life, and high capacity lithium-oxygen batteries publication-title: Nano Lett. doi: 10.1021/nl500397y – volume: 1 start-page: 510 year: 2015 end-page: 515 ident: CR26 article-title: A highly active low voltage redox mediator for enhanced rechargeability of lithium-oxygen batteries publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00267 – volume: 9 start-page: 1024 year: 2016 end-page: 1030 ident: CR40 article-title: A self-defense redox mediator for efficient lithium-O batteries publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02803E – volume: 114 start-page: 5611 year: 2014 end-page: 5640 ident: CR2 article-title: Aprotic and aqueous Li-O batteries publication-title: Chem. Rev. doi: 10.1021/cr400573b – volume: 1 start-page: 16128 year: 2016 ident: CR9 article-title: Advances in understanding mechanisms underpinning lithium-air batteries publication-title: Nat. Energy doi: 10.1038/nenergy.2016.128 – volume: 2 start-page: 17118 year: 2017 ident: CR39 article-title: A rechargeable lithium-oxygen battery with dual mediators stabilizing the carbon cathode publication-title: Nat. Energy doi: 10.1038/nenergy.2017.118 – volume: 2 start-page: 8 year: 2016 end-page: 13 ident: CR14 article-title: Scalable synthesis and excellent catalytic effect of hydrangea-like RuO mesoporous materials for lithium-O batteries publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.10.004 – volume: 15 start-page: 882 year: 2016 ident: CR21 article-title: Promoting solution phase discharge in Li–O batteries containing weakly solvating electrolyte solutions publication-title: Nat. Mater. doi: 10.1038/nmat4629 – volume: 11 start-page: 19 year: 2012 ident: CR3 article-title: Li-O and Li-S batteries with high energy storage publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 27 start-page: 69 year: 2013 end-page: 72 ident: CR56 article-title: Extensive charge-discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.10.030 – volume: 9 start-page: 2334 year: 2016 end-page: 2345 ident: CR30 article-title: Li-O cells with LiBr as an electrolyte and a redox mediator publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00700G – volume: 4 start-page: 1600400 year: 2017 ident: CR57 article-title: Passivation of lithium metal anode via hybrid ionic liquid electrolyte toward stable Li plating/stripping publication-title: Adv. Sci. doi: 10.1002/advs.201600400 – volume: 6 start-page: 1091 year: 2014 ident: CR6 article-title: The role of LiO solubility in O reduction in aprotic solvents and its consequences for Li-O batteries publication-title: Nat. Chem. doi: 10.1038/nchem.2101 – volume: 55 start-page: 10717 year: 2016 end-page: 10721 ident: CR60 article-title: Amorphous Li O : chemical synthesis and electrochemical properties publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605228 – volume: 7 start-page: 1602417 year: 2017 ident: CR35 article-title: An advanced separator for Li- 2batteries: maximizing the effect of redox mediators publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602417 – volume: 4 year: 2013 ident: CR12 article-title: A nanostructured cathode architecture for low charge overpotential in lithium-oxygen batteries publication-title: Nat. Commun. doi: 10.1038/ncomms3383 – volume: 133 start-page: 18038 year: 2011 end-page: 18041 ident: CR13 article-title: On the efficacy of electrocatalysis in nonaqueous Li-O batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207229n – volume: 160 start-page: A344 year: 2013 end-page: A350 ident: CR11 article-title: Oxygen reduction reaction using MnO nanotubes/nitrogen-doped exfoliated graphene hybrid catalyst for Li-O battery applications publication-title: J. Electrochem. Soc. doi: 10.1149/2.086302jes – volume: 8 start-page: 7756 year: 2016 end-page: 7765 ident: CR34 article-title: How to improve capacity and cycling stability for next generation Li-O batteries: approach with a solid electrolyte and elevated redox mediator concentrations publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10979 – volume: 50 start-page: 8609 year: 2011 end-page: 8613 ident: CR43 article-title: The lithium-oxygen battery with ether-based electrolytes publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102357 – volume: 49 start-page: 1 year: 2014 end-page: 4 ident: CR50 article-title: Enhanced performance in mixture DMSO/ionic liquid electrolytes: Toward rechargeable Li-O batteries publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.09.014 – volume: 350 start-page: 530 year: 2015 end-page: 533 ident: CR31 article-title: Cycling Li-O batteries via LiOH formation and decomposition publication-title: Science doi: 10.1126/science.aac7730 – volume: 133 start-page: 19048 year: 2011 end-page: 19051 ident: CR17 article-title: Catalytic activity trends of oxygen reduction reaction for nonaqueous Li-air batteries publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208608s – volume: 1 start-page: 8464 year: 2013 end-page: 8470 ident: CR53 article-title: Ionic liquid-enhanced solid state electrolyte interface (SEI) for lithium-sulfur batteries publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11553d – volume: 135 start-page: 214704 year: 2011 ident: CR7 article-title: Electrical conductivity in Li O and its role in determining capacity limitations in non-aqueous Li-O batteries publication-title: J. Chem. Phys. doi: 10.1063/1.3663385 – volume: 4 start-page: 2989 year: 2013 end-page: 2993 ident: CR52 article-title: Combining accurate O and Li O assays to separate discharge and charge stability limitations in nonaqueous Li-O batteries publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401659f – volume: 53 start-page: 3926 year: 2014 end-page: 3931 ident: CR18 article-title: Superior rechargeability and efficiency of lithium-oxygen batteries: hierarchical air electrode architecture combined with a soluble catalyst publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400711 – volume: 51 start-page: 12701 year: 2015 end-page: 12715 ident: CR8 article-title: Mechanistic insights for the development of Li-O battery materials: addressing Li O conductivity limitations and electrolyte and cathode instabilities publication-title: Chem. Commun. doi: 10.1039/C5CC04620C – volume: 3 start-page: 1500285 year: 2016 ident: CR10 article-title: A Bifunctional organic redox catalyst for rechargeable lithium-oxygen batteries with enhanced performances publication-title: Adv. Sci. doi: 10.1002/advs.201500285 – volume: 5 start-page: 10609 year: 2017 end-page: 10621 ident: CR33 article-title: Investigation into the stability of Li metal anodes in Li-O batteries with a redox mediator publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02210G – volume: 52 start-page: 3887 year: 2013 end-page: 3890 ident: CR16 article-title: Synthesis of perovskite-based porous La Sr MnO nanotubes as a highly efficient electrocatalyst for rechargeable lithium-oxygen batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201210057 – volume: 121 start-page: 21087 year: 2017 end-page: 21095 ident: CR55 article-title: Role of Li concentration and the SEI layer in enabling high performance Li metal electrodes using a phosphonium bis(fluorosulfonyl)imide ionic liquid publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b01929 – volume: 184 start-page: 503 year: 2008 end-page: 507 ident: CR45 article-title: Electrochemical properties of new organic radical materials for lithium secondary batteries publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.04.003 – volume: 620 start-page: 78 year: 2015 end-page: 81 ident: CR28 article-title: Cobalt phthalocyanine analogs as soluble catalysts that improve the charging performance of Li-O batteries publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.12.036 – volume: 126 start-page: 498 year: 2014 end-page: 502 ident: CR58 article-title: Ionic-liquid-nanoparticle hybrid electrolytes: Applications in lithium metal batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201307137 – volume: 7 start-page: 50 year: 2015 ident: CR24 article-title: Solvating additives drive solution-mediated electrochemistry and enhance toroid growth in non-aqueous Li-O batteries publication-title: Nat. Chem. doi: 10.1038/nchem.2132 – volume: 62 start-page: 556 year: 2006 end-page: 562 ident: CR44 article-title: Clean and selective oxidation of alcohols catalyzed by ion-supported TEMPO in water publication-title: Tetrahedron doi: 10.1016/j.tet.2005.10.022 – volume: 62 start-page: 442 year: 2017 end-page: 452 ident: CR5 article-title: Recent developments of aprotic lithium-oxygen batteries: functional materials determine the electrochemical performance publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.01.037 – volume: 112 start-page: 9293 year: 2015 end-page: 9298 ident: CR25 article-title: Enhancing electrochemical intermediate solvation through electrolyte anion selection to increase nonaqueous Li-O battery capacity publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1505728112 – volume: 56 start-page: 8505 year: 2017 end-page: 8509 ident: CR42 article-title: Modified tetrathiafulvalene as an organic conductor for improving performances of Li-O batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703784 – volume: 56 start-page: 8178 year: 2017 end-page: 8182 ident: CR48 article-title: Lithium bond chemistry in lithium-sulfur batteries publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201704324 – volume: 114 start-page: 11721 year: 2014 end-page: 11750 ident: CR4 article-title: Nonaqueous Li-air batteries: a status report publication-title: Chem. Rev. doi: 10.1021/cr500054y – volume: 2 start-page: 2420 year: 2011 end-page: 2424 ident: CR49 article-title: Oxygen electrode rechargeability in an ionic liquid for the Li-air battery publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201070t – volume: 143 start-page: 1 year: 1996 end-page: 5 ident: CR1 article-title: A polymer electrolyte-based rechargeable lithium/oxygen battery publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836378 – volume: 77 start-page: 128 year: 2017 end-page: 132 ident: CR54 article-title: Catalytic reduction of TFSI-containing ionic liquid in the presence of lithium cations publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.02.014 – volume: 2 start-page: 2659 year: 2017 end-page: 2666 ident: CR41 article-title: Bifunctional redox mediator supported by an anionic surfactant for long-cycle Li-O batteries publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00884 – volume: 17 start-page: 31769 year: 2015 end-page: 31779 ident: CR47 article-title: Understanding the fundamentals of redox mediators in Li-O batteries: a case study on nitroxides publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP04505C – volume: 2 start-page: 2420 year: 2011 ident: 8422_CR49 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz201070t – volume: 56 start-page: 8178 year: 2017 ident: 8422_CR48 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201704324 – volume: 5 start-page: 5221 year: 2012 ident: 8422_CR46 publication-title: Energy Environ. Sci. doi: 10.1039/C1EE02148F – volume: 3 start-page: 1500285 year: 2016 ident: 8422_CR10 publication-title: Adv. Sci. doi: 10.1002/advs.201500285 – volume: 7 start-page: 50 year: 2015 ident: 8422_CR24 publication-title: Nat. Chem. doi: 10.1038/nchem.2132 – volume: 160 start-page: A344 year: 2013 ident: 8422_CR11 publication-title: J. Electrochem. Soc. doi: 10.1149/2.086302jes – volume: 4 year: 2013 ident: 8422_CR12 publication-title: Nat. Commun. doi: 10.1038/ncomms3383 – volume: 0 start-page: 1730 year: 2007 ident: 8422_CR51 publication-title: Chem. Commun. doi: 10.1039/b618710b – volume: 121 start-page: 21087 year: 2017 ident: 8422_CR55 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.7b01929 – volume: 143 start-page: 1 year: 1996 ident: 8422_CR1 publication-title: J. Electrochem. Soc. doi: 10.1149/1.1836378 – volume: 133 start-page: 18038 year: 2011 ident: 8422_CR13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja207229n – volume: 2 start-page: 8 year: 2016 ident: 8422_CR14 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2015.10.004 – volume: 2 start-page: 17118 year: 2017 ident: 8422_CR39 publication-title: Nat. Energy doi: 10.1038/nenergy.2017.118 – volume: 1 start-page: 16128 year: 2016 ident: 8422_CR9 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.128 – volume: 55 start-page: 10717 year: 2016 ident: 8422_CR60 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201605228 – volume: 1 start-page: 510 year: 2015 ident: 8422_CR26 publication-title: ACS Cent. Sci. doi: 10.1021/acscentsci.5b00267 – volume: 56 start-page: 8505 year: 2017 ident: 8422_CR42 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201703784 – volume: 29 start-page: 1701568 year: 2017 ident: 8422_CR36 publication-title: Adv. Mater. doi: 10.1002/adma.201701568 – volume: 114 start-page: 11721 year: 2014 ident: 8422_CR4 publication-title: Chem. Rev. doi: 10.1021/cr500054y – volume: 8 start-page: 7756 year: 2016 ident: 8422_CR34 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b10979 – volume: 17 start-page: 31769 year: 2015 ident: 8422_CR47 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP04505C – volume: 30 start-page: 1705571 year: 2017 ident: 8422_CR20 publication-title: Adv. Mater. doi: 10.1002/adma.201705571 – volume: 6 start-page: 1091 year: 2014 ident: 8422_CR6 publication-title: Nat. Chem. doi: 10.1038/nchem.2101 – volume: 8 start-page: 1702258 year: 2017 ident: 8422_CR32 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201702258 – volume: 5 start-page: 10609 year: 2017 ident: 8422_CR33 publication-title: J. Mater. Chem. A doi: 10.1039/C7TA02210G – volume: 7 start-page: 1602417 year: 2017 ident: 8422_CR35 publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201602417 – volume: 4 start-page: 1600400 year: 2017 ident: 8422_CR57 publication-title: Adv. Sci. doi: 10.1002/advs.201600400 – volume: 7 start-page: 1 year: 2017 ident: 8422_CR59 publication-title: Energy Storage Mater. doi: 10.1016/j.ensm.2016.11.006 – volume: 9 start-page: 1024 year: 2016 ident: 8422_CR40 publication-title: Energy Environ. Sci. doi: 10.1039/C5EE02803E – volume: 53 start-page: 3926 year: 2014 ident: 8422_CR18 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201400711 – volume: 27 start-page: 69 year: 2013 ident: 8422_CR56 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2012.10.030 – volume: 3 start-page: e1602809 year: 2017 ident: 8422_CR37 publication-title: Sci. Adv doi: 10.1126/sciadv.1602809 – volume: 3 start-page: 8855 year: 2015 ident: 8422_CR29 publication-title: J. Mater. Chem. A doi: 10.1039/C5TA01399B – volume: 135 start-page: 214704 year: 2011 ident: 8422_CR7 publication-title: J. Chem. Phys. doi: 10.1063/1.3663385 – volume: 350 start-page: 530 year: 2015 ident: 8422_CR31 publication-title: Science doi: 10.1126/science.aac7730 – volume: 15 start-page: 882 year: 2016 ident: 8422_CR21 publication-title: Nat. Mater. doi: 10.1038/nmat4629 – volume: 136 start-page: 8941 year: 2014 ident: 8422_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501877e – volume: 7 year: 2016 ident: 8422_CR23 publication-title: Nat. Commun. doi: 10.1038/ncomms12925 – volume: 9 start-page: 2334 year: 2016 ident: 8422_CR30 publication-title: Energy Environ. Sci. doi: 10.1039/C6EE00700G – volume: 5 start-page: 489 year: 2013 ident: 8422_CR27 publication-title: Nat. Chem. doi: 10.1038/nchem.1646 – volume: 51 start-page: 12701 year: 2015 ident: 8422_CR8 publication-title: Chem. Commun. doi: 10.1039/C5CC04620C – volume: 11 start-page: 19 year: 2012 ident: 8422_CR3 publication-title: Nat. Mater. doi: 10.1038/nmat3191 – volume: 1 start-page: 8464 year: 2013 ident: 8422_CR53 publication-title: J. Mater. Chem. A doi: 10.1039/c3ta11553d – volume: 112 start-page: 9293 year: 2015 ident: 8422_CR25 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1505728112 – volume: 114 start-page: 5611 year: 2014 ident: 8422_CR2 publication-title: Chem. Rev. doi: 10.1021/cr400573b – volume: 184 start-page: 503 year: 2008 ident: 8422_CR45 publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2008.04.003 – volume: 555 start-page: 502 year: 2018 ident: 8422_CR61 publication-title: Nature doi: 10.1038/nature25984 – volume: 49 start-page: 1 year: 2014 ident: 8422_CR50 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2014.09.014 – volume: 1 start-page: 16066 year: 2016 ident: 8422_CR19 publication-title: Nat. Energy doi: 10.1038/nenergy.2016.66 – volume: 4 start-page: 2989 year: 2013 ident: 8422_CR52 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz401659f – volume: 50 start-page: 8609 year: 2011 ident: 8422_CR43 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201102357 – volume: 52 start-page: 3887 year: 2013 ident: 8422_CR16 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201210057 – volume: 77 start-page: 128 year: 2017 ident: 8422_CR54 publication-title: Electrochem. Commun. doi: 10.1016/j.elecom.2017.02.014 – volume: 126 start-page: 498 year: 2014 ident: 8422_CR58 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/ange.201307137 – volume: 133 start-page: 19048 year: 2011 ident: 8422_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja208608s – volume: 28 start-page: 857 year: 2016 ident: 8422_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201503169 – volume: 62 start-page: 442 year: 2017 ident: 8422_CR5 publication-title: Sci. Bull. doi: 10.1016/j.scib.2017.01.037 – volume: 62 start-page: 556 year: 2006 ident: 8422_CR44 publication-title: Tetrahedron doi: 10.1016/j.tet.2005.10.022 – volume: 620 start-page: 78 year: 2015 ident: 8422_CR28 publication-title: Chem. Phys. Lett. doi: 10.1016/j.cplett.2014.12.036 – volume: 2 start-page: 2659 year: 2017 ident: 8422_CR41 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.7b00884 – volume: 14 start-page: 3145 year: 2014 ident: 8422_CR15 publication-title: Nano Lett. doi: 10.1021/nl500397y |
SSID | ssj0000391844 |
Score | 2.6391256 |
Snippet | Due to the high theoretical specific energy, the lithium–oxygen battery has been heralded as a promising energy storage system for applications such as... Due to the high theoretical specific energy, the lithium-oxygen battery has been heralded as a promising energy storage system for applications such as... Li-O2 batteries are promising candidates for the next generation of rechargeable batteries, but the side reactions and poor cycling stability limit their... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 602 |
SubjectTerms | 140/131 147/135 639/301/299/886 639/301/299/891 639/4077/4079/891 639/638/161/891 639/638/675 Anodic protection Batteries Cycles Electric vehicles Electrochemical analysis Electrochemistry Electrolytes Energy storage Humanities and Social Sciences Ionic liquids Ions Liquid bearings Lithium Lithium batteries multidisciplinary Oxygen Peroxide Protectors Reaction mechanisms Science Science (multidisciplinary) Solid electrolytes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlEOilNEkfbtOiQm-tiK2HLR3T0hAC7amB3IRkjYhha6ddLzT99RnJ3k22z0uvlgTDzKeZbyzNiJDXLrjaxAYYUiLOJIZI5mUoGa-D4VECaJmKkz9-qk_P5dmFurjz1Fe6Eza1B54UdyRcI2oIAqmykiCVdnWsA_IYpWOq6kzeF2PenWQq-2BhMHWRc5VMKfTRUmafUKaaHS0xA9NbkSg37P8dy_z1suRPJ6Y5EJ08JA9mBkmPJ8n3yD3o98nu9Kbk9QEZjmm6aYEKXwBNUWv62df9gEDTv9eWLrqvqy7QcaDIsJcjRQpI1whkuZIEWSi9uq0oWNIh4qrxslt9YcP3a8Qc9bkvJ6bZj8j5yYfP70_Z_KoCazFZGRlHNSjkFcJ5zJ6A89gq7psmlm3wEJWMANwrdIRSaBWQ8KnUZ6pqvOFtFZx4THb6oYenhDqByU4E453yUoagy6DABBGMwW1fqYJUaw3bdm45nl6-WNh89C20naxi0So2W8XqgrzZrLmaGm78dfa7ZLjNzNQsO39ACNkZQvZfECrI4drsdt7BS4upGqaGFSKpIK82w7j30oGK62FYpTkG-Q_iDOV4MqFkIwn6TqTOBlc3W_jZEnV7pO8uc3_vWtSi4bwgb9dIuxXrz6p49j9U8Zzc53mLcFaqQ7IzflvBC2Rdo3-ZN9gNSCUmzA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbthkIvpe-6TYsKvbUith62fCpJSQiFhlIayE1YltQYNvYm9kKTX5-RLHvZPnJdS6DVfDP6ZqSZQehDZaq8dIUlQIko4XBEEs1NSmhuSuq4tZL75ORvJ_nxKf96Js5iwK2PzyonmxgMtelqHyPfA-oMVD0DEH5eXRLfNcrfrsYWGvfRDphgKRZo5-Dw5PuPOcri659LzmO2TMrkXs-DbUh97o7k4InJrRMpFO7_F9v8-9HkHzen4UA6eoweRSaJ90fRP0H3bPsUPRh7S14_Q90-9i8uYOOXFvvTawz6NTfWYB-DrfGyuVw3Bg8dBqbdDxioIJ6QSEJGCbBRvNpkFvS4czBrOG_WF6T7fQ3YwzrU5wR3-zk6PTr8-eWYxO4KpAanZSAUtkEAv2CVBi_KUupqQXVRuLQ22jrBnbVUCzCInElhgPgJX28qK3RJ68xU7AVatF1rXyFcMXB6nC11JTTnxsjUCFsaZsoS1D8TCcqmHVZ1LD3uO2AsVbgCZ1KNUlEgFRWkomSCPs5zVmPhjTtHH3jBzSN90ezwQ3f1S0UdVKwqWG4NA69LcMuFrHKXG6DEQjqfIJyg3UnsKmpyrza4S9D7-TPooL9YqVrbrf2YEngQ4AzW8XJEybwSsKFAoUuYXWzhZ2up21_a5jzU-c5ZzgpKE_RpQtpmWf_fitd3_4s36CEN4KckFbtoMVyt7VvgVYN-F5XnFlb7IOs priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxUxFA61IrgR345WieBOgzN5TbKsF0sRdGWhu5BMEjtwnWl754L113uSeZSrVXA7k8DhPHK-k-R8QeiN9VbqWAcCkIgSDimSOO5LQqXXNPIQFE_NyZ-_yOMT_ulUnO4hOvfC5Ev7mdIyL9Pz7bD3G55DukwtN4pDAaVuoduJuj3x5a_katlXSYznivOpP6Zk6oapOzkoU_XfhC__vCb521lpTkFH99G9CTviw1HaB2gvdA_RnfE1yatHqD_E6Y4FqHodcMpX4zZf-zN4nHZdG7xuL7atx0OPAVtvBgzgD8--R3IPCeBPfH7dS7DBfYRZw1m7_U76H1fgbdhlRk4osB-jk6OPX1fHZHpPgTRQpgyEghoEIApmHdRNgdLYCOrqOpaNdyEKHkOgTsASyJkSHqCeSAxTVe00bSpv2RO03_VdeIawZVDmxKCdFY5z71XpRdCeea0h4CtRoGrWsGkmsvH05sXa5ENvpsxoFQNWMdkqRhXo7TLnfKTa-OfoD8lwy8hEk50_9JffzOQ2htmayeAZ1FmCBy6UlVF6AMFCxdQSXKCD2exmit2NgSINisIKPKlAr5ffEHXpKMV2od-mMRqQD_gZyPF09JJFElg1ATRrmF3v-M-OqLt_uvYsM3tLJllNaYHezZ52LdbfVfH8_4a_QHdpDgZKSnGA9ofLbXgJyGpwr3Io_QIOFx13 priority: 102 providerName: Springer Nature |
Title | A versatile functionalized ionic liquid to boost the solution-mediated performances of lithium-oxygen batteries |
URI | https://link.springer.com/article/10.1038/s41467-019-08422-8 https://www.ncbi.nlm.nih.gov/pubmed/30723193 https://www.proquest.com/docview/2176251003 https://www.proquest.com/docview/2194158448 https://pubmed.ncbi.nlm.nih.gov/PMC6363722 https://doaj.org/article/3a736ed323054e458a6f6d11558f4394 |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9swEBf9YLCXse-57YIGe9u02fqy_DBGGpqVQMvYFsibsSx5NWR2mzjQ7K_fSbZTsmVjLzbYkjl0v5N-J_nuEHqdmUwmRWwJUCJKOCyRRHMTEipNQgtureIuOPniUp5P-WQmZnuoL3fUDeByp2vn6klNF_N3tzfrj2DwH9qQcfV-yb25hy4cR3FwrtQ-OoSVSTqUX3R038_MLAGHxh0005BHBARjXRzN7s9srVU-pf8uHvrn75S_nan6pWr8ED3oOCYetqB4hPZs9Rjda6tOrp-geojdvxigkrnFbl1rtwPLn9Zgtzub43l5syoNbmoMHHzZYCCJuMco8bEmwFPx9V3MwRLXBfRqrsrVD1LfrgGVWPvMneCIP0XT8dm30Tnp6i6QHNyZhlAYBgHMg2Ua_CtLaZELquO4CHOjbSF4YS3VAqZKzpQwQAmFy0QVxTqheWQy9gwdVHVlXyCcMXCHCpvoTGjOjVGhETYxzCQJTAyRCFDUj3Cad0nJXW2MeeoPx5lKW62koJXUayVVAXqz6XPdpuT4Z-tTp7hNS5dO2z-oF9_TzjpTlsVMWsPAHxPccqEyWUgDZFmowoUOB-ikV3vaQzQFZw6cxwhQFaBXm9dgne7IJatsvXJtEmBIgDmQ43mLko0kMLsCuU6gd7yFny1Rt99U5ZXPAC6ZZDGlAXrbI-1OrL8PxdF_iHmM7lNvAZSE4gQdNIuVfQm0q9EDtB_PYriq8acBOhwOJ18ncD89u_z8BZ6O5GjgNzQG3uZ-AVfCLYI |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZKEYIL4k2ggJHgBFYTPxLngFB5LFv6OLVSbyaJbRppSbZNVrD8KH4jY-exWh699ZrYkeP5ZvyN7ZlB6EWmszi1iSFAiSjhsESSnOuQ0Fin1HJjJHfByQeH8fSYfz4RJxvo1xAL465VDjbRG2pdF26PfBuoM1D1CED4dn5GXNUod7o6lNDoYLFnlt_BZWve7H4A-b6kdPLx6P2U9FUFSAFkvSUUTIOAdZVlOXgPhlJbCJoniQ0LnRsruDWG5gIMAWdSaCA8wuVZipI8pUWkMwbfvYKucsZSl6tfTj6Nezou27rkvI_NCZncbri3RKGLFJIc_D65tv75MgH_4rZ_X9H845zWL3-TW-hmz1vxTge022jDVHfQta6S5fIuqnewu98BYp4Z7NbKboux_Gk0dju-BZ6VZ4tS47bGwOubFgPxxAPuiY9fAe6L56s4hgbXFnq1p-XiG6l_LAHpOPfZQMG5v4eOL2XW76PNqq7MQ4QzBi6WNWmeiZxzrWWohUk102kKxiYSAYqGGVZFn-jc1duYKX_gzqTqpKJAKspLRckAvRr7zLs0Hxe2fucEN7Z0Kbr9g_r8q-o1XrEsYbHRDHw8wQ0XMottrIGAC2ldOHKAtgaxq95uNGqF8gA9H1-DxrtjnKwy9cK1SYF1Ac5gHA86lIwjAYsNhD2F3skaftaGuv6mKk99VvGYxSyhNECvB6SthvX_qXh08V88Q9enRwf7an_3cO8xukG9IlASii202Z4vzBNgdG3-1KsRRl8uW29_A9ZDWwc |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NTiBeEN90DDASPIG11B-J84DQxlZtDKoJMWlvXhLbrFLXdGsqKH8afx1nJ2lVPva218SOHN_X786-O4BXmcni1CWWIiRiVKCJpLkwEWWxSZkT1irhk5M_D-L9Y_HxRJ6swa82F8Zfq2x1YlDUpix8jHwLoTNC9Z6Pu7nmWsTRbv_95IL6DlL-pLVtp1GzyKGdf0f3bfruYBdp_Zqx_t7XD_u06TBACwTuFWWoJiTaWJ7l6ElYxlwhWZ4kLipMbp0UzlqWS1QKgitpEPxIX3Opl-QpK3om4_jdG7CeoFVUHVjf2RscfVlEeHztdSVEk6kTcbU1FUEvRT5vSAn0AtWKNQxNA_6FdP--sPnHqW0whv27cKdBsWS7Zrt7sGbH9-Fm3ddy_gDKbeJveyDRR5Z4y1kHHIc_rSE-_luQ0fBiNjSkKgmi_GlFEIaSVgpoyGZBJEwmy6yGKSkdzqrOhrNzWv6YI9-TPNQGRVf_IRxfy74_gs64HNsnQDKODpezaZ7JXAhjVGSkTQ03aYqqpye70Gt3WBdN2XPffWOkw_E7V7qmikaq6EAVrbrwZjFnUhf9uHL0jifcYqQv2B0elJffdCP_mmcJj63h6PFJYYVUWexig3BcKueTk7uw2ZJdN1pkqpc834WXi9co__5QJxvbcubHpIjBkM9wHY9rLlmsBPU3wvcUZycr_LOy1NU34-FZqDEe85gnjHXhbctpy2X9fys2rv6LF3ALZVZ_OhgcPoXbLMgBo5HchE51ObPPEN5V-fNGjgicXrfo_gYZ8mCi |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+versatile+functionalized+ionic+liquid+to+boost+the+solution-mediated+performances+of+lithium-oxygen+batteries&rft.jtitle=Nature+communications&rft.au=Zhang%2C+Jinqiang&rft.au=Sun%2C+Bing&rft.au=Zhao%2C+Yufei&rft.au=Tkacheva%2C+Anastasia&rft.date=2019-02-05&rft.issn=2041-1723&rft.eissn=2041-1723&rft.volume=10&rft.issue=1&rft.spage=602&rft_id=info:doi/10.1038%2Fs41467-019-08422-8&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-1723&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-1723&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-1723&client=summon |