Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence
Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhan...
Saved in:
Published in | Light, science & applications Vol. 11; no. 1; pp. 223 - 29 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.07.2022
Springer Nature B.V Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.
This review focuses on liquid crystal-templated chiral functional nanomaterials, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, introducing their underlying mechanisms, chiroptical properties, and potential applications. |
---|---|
AbstractList | Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond. Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond. Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond. This review focuses on liquid crystal-templated chiral functional nanomaterials, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, introducing their underlying mechanisms, chiroptical properties, and potential applications. This review focuses on liquid crystal-templated chiral functional nanomaterials, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, introducing their underlying mechanisms, chiroptical properties, and potential applications. Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse important technological applications due to their unprecedented physicochemical characteristics such as intense light-matter interactions, enhanced circular dichroism, and strong circularly polarized luminescence. Herein, we provide a comprehensive overview of the state-of-the-art advances in liquid crystal-templated chiral nanomaterials. The chiroptical properties of chiral nanomaterials are touched, and their fundamental design principles and bottom-up synthesis strategies are discussed. Different chiral functional nanomaterials based on liquid-crystalline soft templates, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, are systematically introduced, and their underlying mechanisms, properties, and potential applications are emphasized. This review concludes with a perspective on the emerging applications, challenges, and future opportunities of such fascinating chiral nanomaterials. This review can not only deepen our understanding of the fundamentals of soft-matter chirality, but also shine light on the development of advanced chiral functional nanomaterials toward their versatile applications in optics, biology, catalysis, electronics, and beyond.This review focuses on liquid crystal-templated chiral functional nanomaterials, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials, introducing their underlying mechanisms, chiroptical properties, and potential applications. |
ArticleNumber | 223 |
Author | Xu, Yiyi Li, Quan Zhang, Xuan Feng, Wei Valenzuela, Cristian Zhang, Xinfang Wang, Ling |
Author_xml | – sequence: 1 givenname: Xuan surname: Zhang fullname: Zhang, Xuan organization: School of Materials Science and Engineering, Tianjin University – sequence: 2 givenname: Yiyi surname: Xu fullname: Xu, Yiyi organization: Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University – sequence: 3 givenname: Cristian surname: Valenzuela fullname: Valenzuela, Cristian organization: School of Materials Science and Engineering, Tianjin University – sequence: 4 givenname: Xinfang surname: Zhang fullname: Zhang, Xinfang organization: Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University – sequence: 5 givenname: Ling orcidid: 0000-0003-1035-5633 surname: Wang fullname: Wang, Ling email: lwang17@tju.edu.cn organization: School of Materials Science and Engineering, Tianjin University – sequence: 6 givenname: Wei orcidid: 0000-0002-5816-7343 surname: Feng fullname: Feng, Wei email: weifeng@tju.edu.cn organization: School of Materials Science and Engineering, Tianjin University – sequence: 7 givenname: Quan orcidid: 0000-0002-9042-360X surname: Li fullname: Li, Quan email: quanli3273@gmail.com organization: Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Advanced Materials and Liquid Crystal Institute and Chemical Physics Interdisciplinary Program, Kent State University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35835737$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktv1DAURiNUREvpH2CBIrFhE_Arsc0CCVU8Ko3EBtbWjeNMPXLsqe0gDb8ep-lA20WzcXR97tFn-76sTnzwpqpeY_QeIyo-JIYp5w0ipEFIYtp0z6ozghhveEvFyb3_0-oipR0qn2QYCf6iOqWtoC2n_KzabezNbIdax0PK4Jpspr2DbErl2kZwtQcfplKIFlz6WI8xTMetAqYpeKtTnUOtbdSzg-gO9T6U1f4pEjdP1pukjdfmVfV8LA5zcbeeV7--fvl5-b3Z_Ph2dfl50-gOdbkhVIu-FwyDGKQWwoDGwoyMA8caS5ByHDDhBlEj255hJjgSDC0YBTkCPa-uVu8QYKf20U4QDyqAVbeFELcKYrbaGQUM67ZlRCJArEdSGsLpKAWnkvdkoMX1aXXt534yQzlHLid_IH244-212obfShJBGVoE7-4EMdzMJmU12XIdzoE3YU6KdBKjlnakK-jbR-guzNGXqyqUWN4OI1KoN_cT_YtyfNICiBXQMaQUzai0zZBtWAJapzBSywCpdYBUGSB1O0BqSUAetR7tTzbRtSkV2G9N_B_7ia6_n3LZLQ |
CitedBy_id | crossref_primary_10_1002_slct_202405895 crossref_primary_10_1002_adma_202206580 crossref_primary_10_1038_s41467_024_48353_7 crossref_primary_10_1002_smll_202408874 crossref_primary_10_1002_adom_202402581 crossref_primary_10_1021_acs_langmuir_3c00864 crossref_primary_10_1021_jacs_3c13244 crossref_primary_10_1002_chem_202400059 crossref_primary_10_1002_anie_202211030 crossref_primary_10_1039_D3MH01386C crossref_primary_10_1002_smsc_202300052 crossref_primary_10_1021_acsami_3c03947 crossref_primary_10_1360_SSC_2024_0050 crossref_primary_10_1016_j_cclet_2024_110791 crossref_primary_10_1016_j_progpolymsci_2024_101899 crossref_primary_10_1109_JLT_2024_3362694 crossref_primary_10_1002_ange_202312159 crossref_primary_10_1038_s41377_023_01360_7 crossref_primary_10_1002_ange_202401208 crossref_primary_10_1021_acs_jpclett_3c02719 crossref_primary_10_1021_acs_langmuir_4c01531 crossref_primary_10_1002_adfm_202419610 crossref_primary_10_1016_j_optmat_2024_115170 crossref_primary_10_1002_advs_202205707 crossref_primary_10_1038_s41467_024_45674_5 crossref_primary_10_1002_anie_202403898 crossref_primary_10_1039_D3TC01777J crossref_primary_10_1002_adma_202211521 crossref_primary_10_1002_smll_202410021 crossref_primary_10_1007_s10570_024_05893_x crossref_primary_10_1002_adma_202301060 crossref_primary_10_1002_adfm_202304506 crossref_primary_10_1002_adom_202402177 crossref_primary_10_1002_anie_202213229 crossref_primary_10_1021_jacs_4c13604 crossref_primary_10_1002_adom_202400312 crossref_primary_10_1038_s41467_023_38801_1 crossref_primary_10_1021_acsphotonics_4c01406 crossref_primary_10_1002_macp_202400496 crossref_primary_10_1002_adom_202202787 crossref_primary_10_1002_rpm_20250010 crossref_primary_10_1039_D3NR05003C crossref_primary_10_1002_adfm_202402124 crossref_primary_10_1021_acsami_3c04187 crossref_primary_10_1002_ange_202312185 crossref_primary_10_1002_rpm_20230009 crossref_primary_10_1002_anie_202312159 crossref_primary_10_34133_ultrafastscience_0065 crossref_primary_10_1016_j_molliq_2024_124187 crossref_primary_10_1016_j_molliq_2025_127413 crossref_primary_10_1021_acsanm_2c05129 crossref_primary_10_1002_rpm_20230005 crossref_primary_10_1039_D2TC04444G crossref_primary_10_3788_COL202321_041603 crossref_primary_10_1021_acsnano_4c03147 crossref_primary_10_3390_inorganics13030072 crossref_primary_10_1016_j_jmat_2023_01_009 crossref_primary_10_1002_ange_202213229 crossref_primary_10_1021_acsami_3c18353 crossref_primary_10_1360_SSC_2024_0073 crossref_primary_10_1002_adma_202307330 crossref_primary_10_1021_acsphotonics_4c00205 crossref_primary_10_1039_D4TC04638B crossref_primary_10_1007_s11468_023_02140_0 crossref_primary_10_1002_anie_202415363 crossref_primary_10_1039_D4SC05007J crossref_primary_10_1016_j_nantod_2024_102197 crossref_primary_10_1002_chem_202303198 crossref_primary_10_1002_adom_202202531 crossref_primary_10_1080_21680396_2025_2472163 crossref_primary_10_1002_rpm_20230017 crossref_primary_10_26599_NR_2025_94907150 crossref_primary_10_1016_j_infrared_2024_105164 crossref_primary_10_1021_acsaom_3c00282 crossref_primary_10_1021_acs_jpcc_4c00543 crossref_primary_10_1021_jacs_4c04125 crossref_primary_10_1002_adfm_202413098 crossref_primary_10_1007_s11426_024_2031_0 crossref_primary_10_1021_acsami_2c21888 crossref_primary_10_1002_ange_202211030 crossref_primary_10_1007_s40820_022_00977_4 crossref_primary_10_1002_smll_202305725 crossref_primary_10_1016_j_cej_2024_149053 crossref_primary_10_1039_D4TC00726C crossref_primary_10_1016_j_jallcom_2025_178805 crossref_primary_10_1038_s41377_024_01541_y crossref_primary_10_1016_j_jcis_2024_07_001 crossref_primary_10_1016_j_matt_2023_07_027 crossref_primary_10_1021_jacs_2c08505 crossref_primary_10_1080_10408347_2024_2376233 crossref_primary_10_1021_jacsau_2c00653 crossref_primary_10_1360_SSC_2024_0065 crossref_primary_10_1002_ange_202415363 crossref_primary_10_1080_02678292_2025_2452588 crossref_primary_10_1021_acs_nanolett_4c04295 crossref_primary_10_1039_D4SC05781C crossref_primary_10_59717_j_xinn_mater_2024_100096 crossref_primary_10_1002_adom_202300503 crossref_primary_10_1002_rpm_20230026 crossref_primary_10_1016_j_matt_2024_06_012 crossref_primary_10_1002_adma_202206700 crossref_primary_10_1039_D4EE03010A crossref_primary_10_1002_anie_202312185 crossref_primary_10_1002_adfm_202409982 crossref_primary_10_1002_ange_202403898 crossref_primary_10_1002_anie_202401208 crossref_primary_10_1002_anie_202217971 crossref_primary_10_1007_s11237_025_09818_y crossref_primary_10_1002_smll_202306646 crossref_primary_10_1007_s11664_024_11469_z crossref_primary_10_1002_adom_202401714 crossref_primary_10_1021_acsanm_3c03086 crossref_primary_10_1002_anie_202412752 crossref_primary_10_1002_rpm_20230030 crossref_primary_10_1002_smll_202404913 crossref_primary_10_1002_adfm_202403629 crossref_primary_10_1002_adfm_202414086 crossref_primary_10_1007_s40843_024_2928_y crossref_primary_10_1073_pnas_2419113122 crossref_primary_10_1364_OE_557318 crossref_primary_10_1002_cplu_202300213 crossref_primary_10_1021_acsami_3c07287 crossref_primary_10_1364_OME_491678 crossref_primary_10_1002_cptc_202300224 crossref_primary_10_1021_acs_jpcc_3c04812 crossref_primary_10_1002_adom_202300337 crossref_primary_10_1021_acsapm_3c02486 crossref_primary_10_1002_adma_202416122 crossref_primary_10_1021_acsnano_2c10955 crossref_primary_10_1002_advs_202306979 crossref_primary_10_1002_asia_202300936 crossref_primary_10_1039_D4NR03998J crossref_primary_10_1002_asia_202300770 crossref_primary_10_1039_D4NA00431K crossref_primary_10_1021_acsomega_3c02969 crossref_primary_10_1038_s41563_024_01897_x crossref_primary_10_3390_ma17030618 crossref_primary_10_1021_acs_chemmater_3c01267 crossref_primary_10_1002_rpm_20240009 crossref_primary_10_1016_j_snb_2024_136879 crossref_primary_10_3390_nano14231921 crossref_primary_10_1002_adfm_202300731 crossref_primary_10_1515_nanoph_2023_0768 crossref_primary_10_1039_D2TC03952D crossref_primary_10_1039_D3MH00392B crossref_primary_10_1016_j_physb_2023_415593 crossref_primary_10_1002_chem_202303667 crossref_primary_10_1038_s41377_024_01479_1 crossref_primary_10_1002_adom_202300645 crossref_primary_10_1002_adma_202312331 crossref_primary_10_1016_j_giant_2024_100244 crossref_primary_10_1002_ange_202404202 crossref_primary_10_1039_D4NR03743J crossref_primary_10_1002_adom_202402128 crossref_primary_10_1021_acs_macromol_4c01615 crossref_primary_10_1002_adom_202400862 crossref_primary_10_1016_j_molliq_2024_125926 crossref_primary_10_1002_adom_202401934 crossref_primary_10_1002_lpor_202400621 crossref_primary_10_1002_adma_202308912 crossref_primary_10_1126_sciadv_adi9944 crossref_primary_10_1021_acsnano_4c08246 crossref_primary_10_1002_aesr_202300289 crossref_primary_10_1002_anie_202404202 crossref_primary_10_1021_acsami_4c08331 crossref_primary_10_1002_ange_202217971 crossref_primary_10_1002_ange_202412752 crossref_primary_10_1002_adom_202400213 |
Cites_doi | 10.3390/ma7043021 10.1021/acsami.9b05941 10.1039/D0NR04809G 10.1038/s41377-021-00516-7 10.1002/adma.200803403 10.1126/sciadv.aax9501 10.3389/fchem.2020.557650 10.1021/acsnano.0c02060 10.1021/acsphotonics.8b01584 10.1038/s41467-021-21564-y 10.1021/acs.chemrev.9b00234 10.1016/j.mattod.2017.04.028 10.1039/C9QM00415G 10.1002/adom.201500533 10.1021/la9021432 10.1021/jacs.7b07143 10.1038/nnano.2015.251 10.1038/nprot.2015.028 10.1039/C5NH00072F 10.1021/acsnano.5b07379 10.1039/C9NH00525K 10.1038/s41467-022-28220-z 10.1002/adma.202005506 10.1038/s41467-018-04813-5 10.1002/smll.201702990 10.1038/423031a 10.1039/D1NR01458G 10.1126/science.aaz7949 10.1039/D0MH01274B 10.1038/s41467-018-04811-7 10.1038/s41557-020-0453-0 10.1038/s41467-020-15016-2 10.1038/s41467-019-10383-x 10.1002/smsc.202100007 10.1039/D1MH00623A 10.1039/C9QM00332K 10.1039/D0CS01583K 10.1002/adma.201405690 10.1038/s42254-021-00391-6 10.1016/j.giant.2021.100077 10.1080/02678292.2016.1155771 10.1021/nn404832f 10.1002/adom.202101142 10.1002/adfm.201702261 10.1002/adma.201904581 10.1002/adma.201906319 10.1002/agt2.148 10.1021/acs.jpcc.0c11512 10.1002/adma.202104418 10.1126/science.aax5415 10.1126/science.abf5291 10.1038/nature09540 10.1080/21680396.2021.1930596 10.1039/C9TC07022B 10.1002/adfm.201903155 10.1002/adma.201600940 10.1002/anie.201007536 10.1039/C9TC07090G 10.1021/nl304638a 10.1039/C7SM00384F 10.1002/adma.201908175 10.1021/cr500671p 10.1002/adma.201700676 10.1002/smll.201200052 10.1039/C6TC02629J 10.1002/adma.202007668 10.1002/adma.202110170 10.1126/sciadv.aat4436 10.1016/j.nantod.2022.101419 10.1039/D1CC00201E 10.1021/acsnano.0c09231 10.1002/adma.201906738 10.1073/pnas.1210105109 10.1073/pnas.1906511116 10.1080/02678292.2016.1196506 10.1146/annurev-physchem-040214-121554 10.1126/science.1218764 10.1021/acs.analchem.9b05442 10.1002/anie.201005159 10.1021/acs.chemrev.6b00415 10.1021/acsnano.0c09802 10.1021/ja511333q 10.1126/science.1172051 10.1002/anie.200901206 10.1039/C8CS01007B 10.1021/jp903394r 10.1021/acs.nanolett.1c00596 10.1002/adma.201900818 10.1039/D0CC05878E 10.1126/sciadv.aas9819 10.1002/anie.201505520 10.1002/adma.201602737 10.1021/acsnano.1c06959 10.1126/sciadv.1602735 10.1021/ja805683r 10.1002/smll.202103241 10.1021/acs.langmuir.5b00728 10.1038/s41586-021-04243-2 10.1002/cphc.201301194 10.1039/C7CS00500H 10.1002/cptc.202200032 10.1002/anie.202008564 10.1021/la3041902 10.1021/acs.chemrev.0c00195 10.1016/j.cocis.2017.01.003 10.1126/science.aba0980 10.1002/anie.201300872 10.1002/adfm.201302521 10.1002/adom.201801246 10.1038/nchem.2280 10.1002/anie.201712453 10.1126/science.1177031 10.1038/s41377-022-00764-1 10.1002/chem.201801186 10.1002/adom.201700182 10.2174/156802611795165098 10.1021/acsnano.0c08539 10.1039/c1sm05590a 10.1021/acs.chemrev.8b00359 10.1038/s41467-021-23631-w 10.1039/C8SC03806F 10.1039/D1MA00915J 10.1002/adma.201900110 10.1021/acs.chemrev.1c00761 10.1002/adma.201905975 10.1002/adma.201502843 10.1039/C9CC09067C 10.1002/anie.201911468 10.1002/anie.201916729 10.1246/cl.200771 10.1039/C7CS00630F 10.1002/agt2.141 10.1038/s41570-020-00235-4 10.1021/acs.chemrev.1c00740 10.1021/acs.jpclett.9b01224 10.1002/adma.202000820 10.1021/ar400243m 10.1021/nl5048779 10.1080/026782998207334 10.1039/C5CC06146F 10.1002/adma.201202227 10.1038/nmat1619 10.1021/ja5018199 10.1021/acsnano.6b03288 10.1016/j.nantod.2019.100824 10.1021/acs.nanolett.0c03445 10.1038/ncomms7590 10.1002/adma.201402699 10.1002/adom.201500646 10.1002/ijch.202100076 10.1088/0953-8984/16/19/010 10.1038/nmat4031 10.1023/A:1016624330458 10.1038/nature10889 10.1039/C5CC02127H 10.1088/2053-1583/ab0581 10.1002/adma.201801335 10.1073/pnas.1015831108 10.1038/ncomms14180 10.1080/1358314X.2017.1398307 10.1016/j.pmatsci.2019.03.005 10.1021/acsami.1c11711 10.1021/ja500933h 10.1038/s41565-019-0606-8 10.1021/acsami.5b01478 10.1021/ja110369d 10.1038/s41586-018-0034-1 10.1002/adom.201901911 10.1039/C9CC02253H 10.1039/C8CS00740C 10.1039/D1MA00368B 10.1002/cptc.202000077 10.1039/C4CC07596J 10.1021/acsphotonics.0c01747 10.1002/adom.201600956 10.1021/acsnano.8b08273 10.1126/science.abd8576 10.1021/jacs.5b05059 10.1021/acs.macromol.7b01364 10.1021/acsami.0c15955 10.1016/j.nantod.2020.100953 10.1038/nmat772 10.1146/annurev-physchem-050317-021332 10.1039/C9TC04144C 10.1002/adma.201905585 10.1038/ncomms7484 10.1021/acs.chemrev.1c00330 10.1021/acsnano.0c03964 10.1002/adma.201805683 10.1038/nature17141 10.1002/adma.202005900 10.1002/adma.201603560 10.1073/pnas.1219476110 10.1016/j.compscitech.2019.04.028 10.1002/adma.201203182 10.1021/cr400478f 10.1038/ncomms9379 10.1126/science.281.5377.672 10.1039/C9CS00765B 10.1002/adfm.202104991 10.1038/s41467-019-08351-6 10.1002/anie.201706308 10.1038/nnano.2015.2 10.1002/anie.202006486 10.3390/nano7100305 10.1038/s41578-020-0181-5 10.1002/adma.201203965 10.34133/2020/6452123 10.1002/adma.201705011 10.1039/C7RA10611D 10.1021/acsnano.5b04552 10.1080/02678292.2016.1225834 10.1002/adma.202105958 10.1021/acsami.5b05645 10.3390/ma4010001 10.1002/adom.201500403 10.1021/acsnano.9b01573 10.1002/anie.201606895 10.1038/ncomms9241 10.1016/j.nantod.2011.06.003 10.1002/adma.202103309 10.1039/D0SC05100D 10.1002/adom.202100378 10.1039/c1sm05628j 10.1039/C7MH00197E 10.1021/ma062296k 10.1515/nanoph-2020-0473 10.1021/ma201649f 10.1364/PRJ.449284 10.1021/acs.langmuir.0c01513 10.1039/cc9960000321 10.1107/S1600536803010985 10.1021/acsnano.5b06369 10.1039/D0SM02109A 10.1021/ja501642p 10.1038/s41467-020-19479-1 10.1021/acs.nanolett.0c04948 10.3390/sym6020444 10.1002/anie.202002904 10.1021/cr400425h 10.1039/D0NR04239K 10.1002/adfm.201502071 10.1021/nl4013776 10.1002/adom.202102475 10.1039/C9TC05751J 10.1021/jacs.7b04611 10.1002/adma.201705948 10.1002/adma.202101797 10.1016/j.nantod.2019.02.007 10.1002/adma.200305243 10.1038/s41467-019-12506-w 10.1038/17343 10.1002/anie.201404250 10.1021/acs.chemrev.5b00091 10.3390/cryst10070604 10.1002/adfm.202111280 10.1039/D0CC05910B 10.1038/s42254-021-00302-9 10.1021/acsnano.1c08374 10.1002/adma.202008785 10.1002/adom.202002133 10.1080/02678292.2011.570796 10.1038/s41570-021-00350-w 10.1039/D1QM00335F 10.1038/natrevmats.2016.6 10.1021/acsnano.9b03305 10.1126/science.1170028 10.1016/j.trechm.2020.01.008 10.1039/C8NA00216A 10.1002/adom.201700040 10.1002/adma.202005888 10.1021/acs.chemmater.9b04143 10.1039/D0SC03245J 10.1021/jacs.6b07322 10.1073/pnas.1721690115 10.1039/D1SC03327A 10.1038/s41377-020-00367-8 10.1002/anie.201709827 10.1039/C4CS00163J 10.1039/D1TA02748D 10.1021/acssuschemeng.9b04875 10.1007/s11426-021-1146-6 10.1039/D0NR04510A 10.1002/adfm.202104596 10.1039/D0NA01039A 10.1038/s41565-018-0071-9 10.1021/jp5025813 10.1002/anie.201403408 10.1039/D0NA01070G 10.1021/ja800868a 10.1063/1.3003869 10.1021/ja010610e 10.1016/j.biotechadv.2013.11.006 10.1126/science.aao4640 10.1021/acsami.0c21044 10.1039/D1NR06036H 10.1021/acs.jpclett.9b03408 10.1039/C9CC01678C 10.1126/science.1165831 10.1039/B606987H 10.1021/acs.nanolett.0c02013 10.1039/C9NR08433A 10.1038/s41566-022-00957-5 10.1002/0471238961.1209172103151212.a01.pub3 10.1002/9783527682782 10.1002/9783527816774.ch3 10.1201/9781315372723 10.1002/anie.202201674 10.1007/978-3-319-04867-3_4 10.1081/E-ESCS3-120051438 10.1016/j.matt.2022.05.012 10.1002/adma.202108431 10.1002/agt2.10 10.1002/9781118680469.ch9 10.1201/9781315120539-2 10.1007/978-3-319-16580-6_18 10.1007/978-3-319-18293-3_6 10.1002/9781118680469 10.1002/9783527816774 10.1002/9781118259993 10.1007/978-3-319-18293-3_3 10.1002/adma.202109063 10.1007/978-981-15-2309-0 10.1007/978-3-319-18293-3 10.1002/adfm.202201884 10.1002/anie.202116219 10.1002/9783527807369 10.1007/978-3-319-04867-3 10.1002/9783527807369.ch3 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 2022. The Author(s). The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: 2022. The Author(s). – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION NPM 3V. 7X7 7XB 88A 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M2P M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41377-022-00913-6 |
DatabaseName | Springer Nature OA Free Journals CrossRef PubMed ProQuest Central (Corporate) ProQuest Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection ProQuest Health & Medical Collection Science Database Biological Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Open Access Full Text |
DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic PubMed CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2047-7538 |
EndPage | 29 |
ExternalDocumentID | oai_doaj_org_article_a41c554290a04b099e273f987397b2d3 PMC9283403 35835737 10_1038_s41377_022_00913_6 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: National Natural Science Foundation of China (National Science Foundation of China) funderid: https://doi.org/10.13039/501100001809 – fundername: ; |
GroupedDBID | 0R~ 3V. 5VS 7X7 88A 88I 8FE 8FH 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS AZQEC BBNVY BENPR BHPHI BPHCQ BVXVI C6C CCPQU DWQXO EBLON EBS FYUFA GNUQQ GROUPED_DOAJ HCIFZ HMCUK HYE KQ8 LK8 M0L M2P M7P M~E NAO OK1 PIMPY PQQKQ PROAC RNT RNTTT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT NPM 7XB 8FK AARCD K9. PKEHL PQEST PQGLB PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-23c8bb841a8d9c88eac18ef47a71c19a99fd127e03e95b414870840eac13a9fa3 |
IEDL.DBID | DOA |
ISSN | 2047-7538 2095-5545 |
IngestDate | Wed Aug 27 01:31:58 EDT 2025 Thu Aug 21 18:45:16 EDT 2025 Thu Jul 10 17:28:21 EDT 2025 Wed Aug 13 03:27:31 EDT 2025 Thu Apr 03 07:04:38 EDT 2025 Thu Apr 24 23:08:44 EDT 2025 Tue Jul 01 03:45:17 EDT 2025 Fri Feb 21 02:38:08 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2022. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-23c8bb841a8d9c88eac18ef47a71c19a99fd127e03e95b414870840eac13a9fa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-9042-360X 0000-0003-1035-5633 0000-0002-5816-7343 |
OpenAccessLink | https://doaj.org/article/a41c554290a04b099e273f987397b2d3 |
PMID | 35835737 |
PQID | 2689410102 |
PQPubID | 2041947 |
PageCount | 29 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_a41c554290a04b099e273f987397b2d3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9283403 proquest_miscellaneous_2691053626 proquest_journals_2689410102 pubmed_primary_35835737 crossref_citationtrail_10_1038_s41377_022_00913_6 crossref_primary_10_1038_s41377_022_00913_6 springer_journals_10_1038_s41377_022_00913_6 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-14 |
PublicationDateYYYYMMDD | 2022-07-14 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Light, science & applications |
PublicationTitleAbbrev | Light Sci Appl |
PublicationTitleAlternate | Light Sci Appl |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Springer Nature B.V Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Springer Nature B.V – name: Nature Publishing Group |
References | Zhang (CR27) 2019; 365 Prins, Timmerman, Reinhoudt (CR173) 2001; 123 Zhao (CR317) 2016; 4 Nguyen, Hamad, MacLachlan (CR253) 2014; 24 Hu (CR97) 2021; 12 Zhou (CR286) 2015; 115 Xiao (CR9) 2020; 30 Zhang, Chen, Zhang (CR282) 2022; 18 Mokashi-Punekar (CR161) 2020; 32 Lv (CR78) 2021; 8 Le, Takezoe, Araoka (CR181) 2017; 29 Lu, Xue, Kotov (CR14) 2021; 61 Wang (CR199) 2011; 7 Guan (CR12) 2020; 12 Yang (CR230) 2021; 8 Zheng (CR321) 2022; 16 Zhang (CR291) 2019; 10 Li (CR254) 2019; 3 CR274 Sharma (CR85) 2009; 325 Wu, Pauly (CR45) 2022; 3 Guo (CR128) 2009; 113 Yang (CR304) 2020; 32 Wen (CR55) 2015; 6 Zheng (CR56) 2015; 10 CR294 Li (CR311) 2020; 59 Ma, Wang, Li (CR263) 2021; 33 Juan (CR306) 2021; 17 Lee (CR17) 2018; 556 Li (CR303) 2019; 11 Dierking (CR156) 2014; 6 Liu (CR330) 2021; 33 Wang, Urbas, Li (CR1) 2020; 32 Han (CR58) 2022; 3 Vila-Liarte, Kotov, Liz-Marzán (CR44) 2022; 13 Li (CR262) 2020; 11 Wang, Liu (CR292) 2008; 130 Brotchie (CR237) 2016; 1 Kang (CR250) 2021; 31 Gansel (CR139) 2009; 325 Pour (CR177) 2015; 7 Yuan (CR320) 2019; 5 Yu (CR168) 2021; 12 Wen (CR276) 2018; 9 Luo (CR43) 2017; 5 Mejía-Salazar, Oliveira (CR131) 2018; 118 Saadat (CR194) 2021; 9 CR137 CR138 CR135 Liu (CR157) 2021; 12 Chen (CR196) 2019; 6 CR136 CR134 Cheng (CR30) 2019; 13 Zhao (CR50) 2017; 8 Zeng (CR193) 2019; 116 Lee (CR49) 2020; 12 Schlesinger (CR215) 2015; 51 Qi (CR216) 2011; 133 Gutierrez-Cuevas (CR71) 2016; 55 Liu (CR210) 2014; 26 Chen (CR225) 2022; 6 Shi (CR247) 2020; 8 Zheng (CR257) 2018; 6 Liu (CR269) 2020; 20 Weaver (CR88) 2012; 336 Ru (CR10) 2020; 34 Wang (CR151) 2015; 51 Zhou (CR295) 2021; 15 CR152 Lv (CR197) 2021; 31 Li (CR243) 2018; 57 Zhu (CR24) 2021; 21 Merg (CR26) 2016; 138 Suzuki (CR240) 2016; 10 Bagiński (CR166) 2016; 43 Kose (CR252) 2019; 10 Kumar (CR222) 2018; 115 Wang (CR308) 2014; 136 Bisoyi, Li (CR155) 2019; 104 Gharbi (CR324) 2016; 10 Bhat (CR169) 2021; 3 Rodier (CR51) 2020; 5 Qiu (CR310) 2022; 10 He (CR28) 2021; 2 Matuschek (CR48) 2018; 14 Li (CR314) 2018; 24 Dong (CR281) 2015; 115 Yang (CR98) 2021; 13 Billing, Lemmerer (CR266) 2006; 8 Bisoyi, Li (CR153) 2022; 122 Deka, Chowdhury (CR241) 2017; 7 Wang (CR162) 2016; 43 Burkett, Mann (CR143) 1996; 3 Zhuang (CR329) 2020; 15 Maniappan, Jadhav, Kumar (CR40) 2021; 8 Baral (CR122) 2020; 4 Han (CR66) 2020; 11 Ahn (CR267) 2017; 4 Song (CR147) 2013; 13 CR110 Kim (CR64) 2021; 371 Majoinen (CR214) 2016; 28 Maoz (CR175) 2013; 13 Protesescu (CR264) 2015; 15 Fan, Kotov (CR8) 2020; 32 Bailey (CR3) 1998; 281 Albano, Pescitelli, Di Bari (CR39) 2020; 120 Moloney (CR235) 2015; 10 Mitov, Bourgerette, De Guerville (CR158) 2004; 16 Li (CR229) 2019; 1 Deng (CR223) 2021; 10 Urban (CR47) 2019; 70 Wang (CR174) 2014; 118 Hentschel (CR46) 2017; 3 Perera (CR180) 2021; 13 Liu (CR141) 2018; 4 Lewandowski (CR184) 2015; 6 Brooks, Guida, Daniel (CR4) 2011; 11 Zhang (CR148) 2022; 14 Gao (CR315) 2019; 55 Sharma (CR144) 2009; 323 Jung (CR37) 2014; 136 Zheng (CR16) 2021; 50 Lu (CR31) 2017; 50 Wang, Li (CR72) 2018; 47 Li, Zhang, Zhao (CR289) 2015; 44 Li (CR233) 2020; 56 Chen (CR280) 2014; 114 Gonçalves (CR29) 2021; 9 Li (CR121) 2021; 2 Chen, Zhang, Rosi (CR145) 2008; 130 Ma (CR323) 2015; 3 Li (CR34) 2020; 36 Kuzyk (CR25) 2014; 13 Ma (CR77) 2022; 61 Wang (CR91) 2017; 20 Bhardwaj (CR170) 2021; 3 Jiang (CR20) 2018; 4 Meng (CR172) 2021; 13 Jakšić (CR130) 2011; 4 Cheng (CR290) 2020; 56 Milton (CR238) 2016; 1 Campbell (CR211) 2014; 7 MacKenzie, Pal (CR67) 2021; 5 Wang (CR150) 2016; 4 Zhang (CR11) 2020; 11 Dintinger (CR159) 2013; 25 Kelly (CR217) 2012; 28 Wu (CR124) 2016; 4 Xiong (CR259) 2019; 13 Ha (CR7) 2019; 119 Al-Bustami (CR65) 2020; 20 CR104 Bitar, Agez, Mitov (CR165) 2011; 7 Mitov (CR89) 2002; 1 CR102 Zheng (CR248) 2018; 30 CR103 CR100 Fernandes (CR125) 2017; 29 CR101 Shi (CR119) 1998; 24 Hu (CR322) 2022; 34 Stachelek (CR62) 2022; 13 Gong (CR327) 2022; 122 Zhao (CR300) 2020; 11 Li, Duan (CR293) 2021; 50 Grzelak (CR190) 2022; 32 Chen, Wang (CR275) 2020; 2 Ravnik (CR325) 2011; 108 Ye (CR307) 2017; 5 Dierking, Al-Zangana (CR200) 2017; 7 Edgar, Gray (CR249) 2001; 8 Lin (CR113) 2014; 32 Song (CR231) 2019; 3 Yang (CR296) 2019; 31 Schulz (CR115) 2018; 9 Chu (CR212) 2015; 7 Li (CR242) 2020; 59 Mitov, Dessaud (CR127) 2006; 5 Goerlitzer (CR42) 2021; 9 Sol (CR82) 2021; 33 Vignolini (CR86) 2012; 109 Xu (CR258) 2020; 14 Wang (CR96) 2017; 27 Chu (CR209) 2015; 7 Lan (CR22) 2015; 137 Gong (CR61) 2021; 64 Collins (CR106) 2017; 5 Wang (CR132) 2021; 21 Zheng (CR92) 2016; 531 Fu (CR176) 2020; 12 Tschierske (CR183) 2013; 52 Kotov, Liz-Marzán, Weiss (CR6) 2021; 15 Huo (CR33) 2017; 56 Mun (CR107) 2020; 9 Ureña-Benavides (CR202) 2011; 44 De Camillis (CR283) 2020; 12 Wang, Li (CR93) 2016; 26 Liu, Zhang, Wang (CR2) 2015; 115 Lee (CR41) 2021; 33 Yang (CR234) 2019; 10 Liu (CR53) 2020; 59 Jin (CR36) 2019; 13 Shopsowitz (CR204) 2010; 468 CR326 Fitzpatrick (CR218) 2013; 110 Yang (CR332) 2021; 3 Zhao (CR301) 2021; 33 Xiong (CR123) 2020; 49 Wei (CR133) 2020; 12 Zhang (CR70) 2017; 29 Yang (CR75) 2022; 43 Li (CR38) 2020; 32 Shinde (CR195) 2019; 13 Szustakiewicz (CR189) 2020; 14 Wang (CR279) 2019; 25 CR57 Guerrero-Martinez (CR179) 2011; 50 Kuzyk (CR23) 2012; 483 Zhou (CR297) 2015; 10 Bisoyi, Li (CR73) 2016; 55 Querejeta-Fernández (CR206) 2014; 136 Bai (CR273) 2022; 34 Nyström, Arcari, Mezzenga (CR221) 2018; 13 Yu (CR164) 2020; 7 Lukach (CR208) 2015; 31 San Jose, Yan, Akagi (CR118) 2014; 53 Boott (CR251) 2020; 59 Wei, Cheng, Lin (CR271) 2019; 48 Jiang (CR18) 2020; 368 Lugger (CR81) 2022; 122 Goto (CR116) 2007; 40 Ma (CR319) 2022; 10 Li (CR52) 2015; 6 Chen (CR120) 1999; 397 Ni (CR316) 2021; 57 Zhang, Zhu, Zhang (CR285) 2021; 15 Han (CR277) 2014; 53 Gutierrez-Cuevas (CR149) 2015; 51 Mitov (CR201) 2017; 13 Yan (CR13) 2020; 32 Juan (CR305) 2020; 56 Li (CR255) 2019; 179 Kuznetsova (CR227) 2021; 10 Xu (CR236) 2018; 47 Yang (CR59) 2021; 5 Craig (CR114) 2003; 15 Wu, Butt (CR278) 2016; 28 Shao (CR228) 2021; 9 Chen (CR108) 2022; 4 CR79 Han (CR298) 2017; 139 CR76 Jung, Mezzenga (CR220) 2010; 26 Yang (CR90) 2021; 1 Wang (CR270) 2019; 29 Kumar, Raina (CR246) 2016; 43 Mokashi-Punekar, Merg, Rosi (CR146) 2017; 139 Döring, Ushakova, Rogach (CR256) 2022; 11 Liang (CR272) 2021; 33 Feng (CR213) 2019; 7 Naaman, Waldeck (CR331) 2015; 66 Lewandowski, Wójcik, Górecka (CR185) 2014; 15 Zhao (CR312) 2020; 59 Zeng (CR160) 2009; 21 Chakraborty (CR198) 2021; 125 Lan (CR69) 2020; 32 Wojcik (CR186) 2009; 48 Xia (CR171) 2021; 15 Park (CR219) 2021; 15 CR5 Esposito (CR140) 2015; 6 Atorf (CR163) 2017; 44 Hao (CR226) 2021; 9 Shi (CR232) 2017; 56 Levy (CR287) 2016; 10 Guerrero-Martínez (CR178) 2011; 6 Chiu (CR32) 2021; 9 Bagiński (CR188) 2020; 32 Jiang (CR19) 2019; 10 Long (CR261) 2020; 5 Mezzenga (CR192) 2019; 31 Haase, Schäfer (CR284) 2011; 50 Xu (CR68) 2019; 7 CR84 Hough (CR182) 2009; 325 CR83 Cseh (CR167) 2015; 137 Bobrovsky (CR245) 2011; 38 Chen (CR288) 2021; 8 Bisoyi, Li (CR74) 2016; 116 CR80 Matranga (CR126) 2013; 25 Han (CR224) 2020; 92 Wang (CR154) 2017; 26 Meseck, Terpstra, MacLachlan (CR203) 2017; 29 Zhao (CR302) 2020; 2020 Wang (CR309) 2015; 27 Chen (CR268) 2019; 10 Lv (CR15) 2022; 6 CR99 Song (CR313) 2020; 8 Chen (CR60) 2020; 12 Nizar (CR105) 2021; 50 CR95 Sang (CR111) 2020; 32 Querejeta-Fernández (CR207) 2015; 9 Billing, Lemmerer (CR265) 2003; 59 Lu (CR117) 2021; 371 Chekini (CR260) 2020; 8 Guo (CR129) 2008; 93 Frenzel, Kadic, Wegener (CR328) 2017; 358 Zhan (CR63) 2021; 33 Sweeney, Jiggins, Johnsen (CR87) 2003; 423 Dierking, Neto (CR191) 2020; 10 Tohgha (CR239) 2013; 7 Bobrovsky (CR244) 2012; 24 González-Rubio (CR21) 2020; 368 Kelly (CR205) 2014; 47 Zhang (CR54) 2021; 33 Lin, Perkinson, Baldo (CR299) 2020; 32 Rajaei (CR142) 2019; 6 Li (CR318) 2019; 55 Wang (CR94) 2012; 8 CR187 Xu (CR109) 2022; 601 Shi (CR35) 2018; 30 Zhang (CR112) 2021; 2 L Protesescu (913_CR264) 2015; 15 WG Jiang (913_CR20) 2018; 4 SL Burkett (913_CR143) 1996; 3 WJ Chen (913_CR60) 2020; 12 SM Park (913_CR219) 2021; 15 M Bagiński (913_CR188) 2020; 32 N Suzuki (913_CR240) 2016; 10 HE Lee (913_CR17) 2018; 556 CE Boott (913_CR251) 2020; 59 A Bobrovsky (913_CR244) 2012; 24 DPN Gonçalves (913_CR29) 2021; 9 M Wojcik (913_CR186) 2009; 48 HQ Shi (913_CR119) 1998; 24 R Naaman (913_CR331) 2015; 66 JJ Liu (913_CR330) 2021; 33 J Yan (913_CR13) 2020; 32 DD Wen (913_CR55) 2015; 6 YH Xu (913_CR236) 2018; 47 M Ravnik (913_CR325) 2011; 108 W Gong (913_CR327) 2022; 122 A Querejeta-Fernández (913_CR207) 2015; 9 S Wu (913_CR278) 2016; 28 J Zhou (913_CR286) 2015; 115 L Wang (913_CR91) 2017; 20 H Al-Bustami (913_CR65) 2020; 20 M Mitov (913_CR89) 2002; 1 S Kang (913_CR250) 2021; 31 KG Gutierrez-Cuevas (913_CR149) 2015; 51 I Dierking (913_CR156) 2014; 6 JB Guo (913_CR128) 2009; 113 SW Huo (913_CR33) 2017; 56 Z Zhang (913_CR282) 2022; 18 W Lewandowski (913_CR185) 2014; 15 A Guerrero-Martínez (913_CR178) 2011; 6 YY Lee (913_CR49) 2020; 12 A Shinde (913_CR195) 2019; 13 P Szustakiewicz (913_CR189) 2020; 14 B Atorf (913_CR163) 2017; 44 GQ Cheng (913_CR30) 2019; 13 XJ Li (913_CR318) 2019; 55 J Kumar (913_CR222) 2018; 115 SN Fernandes (913_CR125) 2017; 29 S Liang (913_CR272) 2021; 33 M Esposito (913_CR140) 2015; 6 M Schlesinger (913_CR215) 2015; 51 913_CR5 A Juan (913_CR306) 2021; 17 F Wang (913_CR292) 2008; 130 A Bhardwaj (913_CR170) 2021; 3 SH Chen (913_CR120) 1999; 397 M Schulz (913_CR115) 2018; 9 I Dierking (913_CR191) 2020; 10 XF Yang (913_CR234) 2019; 10 ZH Li (913_CR255) 2019; 179 W Li (913_CR52) 2015; 6 GR Meseck (913_CR203) 2017; 29 TH Zhao (913_CR301) 2021; 33 K Perera (913_CR180) 2021; 13 YR He (913_CR28) 2021; 2 S De Camillis (913_CR283) 2020; 12 L Wang (913_CR93) 2016; 26 CX Li (913_CR229) 2019; 1 SH Yang (913_CR332) 2021; 3 ZL Gong (913_CR61) 2021; 64 EE Ureña-Benavides (913_CR202) 2011; 44 TA Lin (913_CR299) 2020; 32 L Wang (913_CR162) 2016; 43 YH Kim (913_CR64) 2021; 371 Y Wei (913_CR271) 2019; 48 HN Yu (913_CR164) 2020; 7 HL Hu (913_CR322) 2022; 34 JT Collins (913_CR106) 2017; 5 P Stachelek (913_CR62) 2022; 13 MP Moloney (913_CR235) 2015; 10 HK Bisoyi (913_CR74) 2016; 116 JJ Hao (913_CR226) 2021; 9 S Lee (913_CR41) 2021; 33 MH Zhou (913_CR295) 2021; 15 J Sharma (913_CR144) 2009; 323 MC Xu (913_CR258) 2020; 14 A Guerrero-Martinez (913_CR179) 2011; 50 KE Shopsowitz (913_CR204) 2010; 468 FY Song (913_CR313) 2020; 8 JC Fan (913_CR8) 2020; 32 MJ Zhang (913_CR148) 2022; 14 CY Song (913_CR147) 2013; 13 H Dong (913_CR281) 2015; 115 YD Guan (913_CR12) 2020; 12 Y Li (913_CR233) 2020; 56 ESA Goerlitzer (913_CR42) 2021; 9 913_CR79 XM Li (913_CR289) 2015; 44 CX Li (913_CR293) 2021; 50 Q Xia (913_CR171) 2021; 15 K Feng (913_CR213) 2019; 7 913_CR76 M Mitov (913_CR158) 2004; 16 A Bobrovsky (913_CR245) 2011; 38 LJ Prins (913_CR173) 2001; 123 K Fu (913_CR176) 2020; 12 CD Edgar (913_CR249) 2001; 8 R Xiong (913_CR123) 2020; 49 MJ Deka (913_CR241) 2017; 7 C Tschierske (913_CR183) 2013; 52 J Lu (913_CR14) 2021; 61 L Yang (913_CR230) 2021; 8 YQ Qiu (913_CR310) 2022; 10 SA Bhat (913_CR169) 2021; 3 PZ Liu (913_CR269) 2020; 20 M Wang (913_CR96) 2017; 27 Y Bai (913_CR273) 2022; 34 XF Yang (913_CR59) 2021; 5 JK Gansel (913_CR139) 2009; 325 Y Shi (913_CR247) 2020; 8 NA Kotov (913_CR6) 2021; 15 XF Yang (913_CR304) 2020; 32 RY Wang (913_CR174) 2014; 118 A Lukach (913_CR208) 2015; 31 V Sharma (913_CR85) 2009; 325 S Mokashi-Punekar (913_CR146) 2017; 139 LL Ma (913_CR323) 2015; 3 MJ Urban (913_CR47) 2019; 70 A Querejeta-Fernández (913_CR206) 2014; 136 GX Zheng (913_CR56) 2015; 10 HZ Zheng (913_CR248) 2018; 30 L Wang (913_CR1) 2020; 32 XM Chen (913_CR225) 2022; 6 L Shi (913_CR232) 2017; 56 SQ Li (913_CR262) 2020; 11 913_CR100 U Tohgha (913_CR239) 2013; 7 913_CR101 913_CR84 913_CR83 913_CR80 M Chekini (913_CR260) 2020; 8 913_CR326 YT Sang (913_CR111) 2020; 32 L Wang (913_CR72) 2018; 47 CT Wang (913_CR270) 2019; 29 DX Han (913_CR58) 2022; 3 913_CR99 W Lewandowski (913_CR184) 2015; 6 CL Yuan (913_CR320) 2019; 5 MC Xu (913_CR68) 2019; 7 A Chakraborty (913_CR198) 2021; 125 LL Zhang (913_CR70) 2017; 29 JB Guo (913_CR129) 2008; 93 G Albano (913_CR39) 2020; 120 Y Zhang (913_CR285) 2021; 15 G Nyström (913_CR221) 2018; 13 YX Han (913_CR224) 2020; 92 TH Zhao (913_CR300) 2020; 11 Y Luo (913_CR43) 2017; 5 JL Han (913_CR298) 2017; 139 PF Lv (913_CR78) 2021; 8 JZ Ma (913_CR77) 2022; 61 913_CR95 A Kuzyk (913_CR23) 2012; 483 J Dintinger (913_CR159) 2013; 25 KV Le (913_CR181) 2017; 29 YH Wang (913_CR279) 2019; 25 M Baral (913_CR122) 2020; 4 DY Zhao (913_CR317) 2016; 4 JJ Zhu (913_CR24) 2021; 21 LL Ma (913_CR319) 2022; 10 KG Gutierrez-Cuevas (913_CR71) 2016; 55 ES Levy (913_CR287) 2016; 10 XJ Li (913_CR314) 2018; 24 SO Pour (913_CR177) 2015; 7 HZ Zheng (913_CR257) 2018; 6 YH Shi (913_CR35) 2018; 30 X Jin (913_CR36) 2019; 13 BM Maoz (913_CR175) 2013; 13 XW Cheng (913_CR290) 2020; 56 A Döring (913_CR256) 2022; 11 GK Long (913_CR261) 2020; 5 WJ Chen (913_CR268) 2019; 10 MH Liu (913_CR2) 2015; 115 SJD Lugger (913_CR81) 2022; 122 L Wang (913_CR309) 2015; 27 LG Xu (913_CR109) 2022; 601 L Wang (913_CR154) 2017; 26 XQ Wei (913_CR133) 2020; 12 ZG Liu (913_CR141) 2018; 4 SM Ye (913_CR307) 2017; 5 JW Lv (913_CR15) 2022; 6 D Vila-Liarte (913_CR44) 2022; 13 SY Han (913_CR277) 2014; 53 X Lan (913_CR22) 2015; 137 MA Gharbi (913_CR324) 2016; 10 913_CR104 913_CR102 Z Zhang (913_CR291) 2019; 10 913_CR103 JA Kelly (913_CR217) 2012; 28 YJ Zhang (913_CR54) 2021; 33 J Mun (913_CR107) 2020; 9 M Bagiński (913_CR166) 2016; 43 FP Milton (913_CR238) 2016; 1 X Yang (913_CR75) 2022; 43 A Kuzyk (913_CR25) 2014; 13 X Shao (913_CR228) 2021; 9 M Mitov (913_CR127) 2006; 5 AZ Li (913_CR34) 2020; 36 ZY Li (913_CR254) 2019; 3 JC Weaver (913_CR88) 2012; 336 913_CR110 Y Saadat (913_CR194) 2021; 9 SH Wen (913_CR276) 2018; 9 R Xiong (913_CR259) 2019; 13 Z Jakšić (913_CR130) 2011; 4 Z Zhao (913_CR312) 2020; 59 B Zhou (913_CR297) 2015; 10 BN Ni (913_CR316) 2021; 57 HY Zhang (913_CR11) 2020; 11 913_CR137 913_CR138 RY Wang (913_CR199) 2011; 7 913_CR135 913_CR136 H Chen (913_CR288) 2021; 8 TH Wu (913_CR124) 2016; 4 M Haase (913_CR284) 2011; 50 L Xiao (913_CR9) 2020; 30 YZ Yang (913_CR98) 2021; 13 XM Lu (913_CR31) 2017; 50 AD Merg (913_CR26) 2016; 138 A Juan (913_CR305) 2020; 56 M Rajaei (913_CR142) 2019; 6 J Bailey (913_CR3) 1998; 281 W Hu (913_CR97) 2021; 12 TH Zhao (913_CR302) 2020; 2020 PC Lin (913_CR113) 2014; 32 H Qi (913_CR216) 2011; 133 T Frenzel (913_CR328) 2017; 358 L Wang (913_CR94) 2012; 8 M Rodier (913_CR51) 2020; 5 L Wang (913_CR151) 2015; 51 913_CR57 B Chen (913_CR275) 2020; 2 PT Chiu (913_CR32) 2021; 9 C Zhang (913_CR112) 2021; 2 QK Liu (913_CR210) 2014; 26 G González-Rubio (913_CR21) 2020; 368 SH Jung (913_CR37) 2014; 136 XQ Zhan (913_CR63) 2021; 33 Y Zhao (913_CR50) 2017; 8 M Mitov (913_CR201) 2017; 13 DG Billing (913_CR266) 2006; 8 XH Gao (913_CR315) 2019; 55 TT Zhuang (913_CR329) 2020; 15 J Majoinen (913_CR214) 2016; 28 JR Mejía-Salazar (913_CR131) 2018; 118 R Bitar (913_CR165) 2011; 7 913_CR134 LE Hough (913_CR182) 2009; 325 L Wang (913_CR150) 2016; 4 GY Chen (913_CR280) 2014; 114 YJ Deng (913_CR223) 2021; 10 R Mezzenga (913_CR192) 2019; 31 WG Jiang (913_CR19) 2019; 10 D Grzelak (913_CR190) 2022; 32 JM Jung (913_CR220) 2010; 26 DX Han (913_CR66) 2020; 11 D Yang (913_CR296) 2019; 31 S Vignolini (913_CR86) 2012; 109 TD Nguyen (913_CR253) 2014; 24 L Cseh (913_CR167) 2015; 137 M Matuschek (913_CR48) 2018; 14 MJ Ha (913_CR7) 2019; 119 MR Craig (913_CR114) 2003; 15 AWP Fitzpatrick (913_CR218) 2013; 110 QF Zhang (913_CR27) 2019; 365 JAHP Sol (913_CR82) 2021; 33 BA San Jose (913_CR118) 2014; 53 S Mokashi-Punekar (913_CR161) 2020; 32 A Brotchie (913_CR237) 2016; 1 WB Wu (913_CR45) 2022; 3 WH Brooks (913_CR4) 2011; 11 A Sweeney (913_CR87) 2003; 423 G Chu (913_CR209) 2015; 7 F Li (913_CR243) 2018; 57 JQ Ma (913_CR263) 2021; 33 Y Chen (913_CR108) 2022; 4 MG Campbell (913_CR211) 2014; 7 ZG Zheng (913_CR92) 2016; 531 HK Bisoyi (913_CR73) 2016; 55 JA Kelly (913_CR205) 2014; 47 MF Chen (913_CR196) 2019; 6 I Dierking (913_CR200) 2017; 7 W Li (913_CR303) 2019; 11 LE MacKenzie (913_CR67) 2021; 5 H Goto (913_CR116) 2007; 40 CX Li (913_CR121) 2021; 2 XB Zeng (913_CR160) 2009; 21 913_CR274 913_CR152 NSS Nizar (913_CR105) 2021; 50 A Matranga (913_CR126) 2013; 25 Y Ru (913_CR10) 2020; 34 CL Chen (913_CR145) 2008; 130 RC Lan (913_CR69) 2020; 32 PF Lv (913_CR197) 2021; 31 J Ahn (913_CR267) 2017; 4 L Wang (913_CR308) 2014; 136 YZ Yang (913_CR90) 2021; 1 HK Bisoyi (913_CR153) 2022; 122 O Kose (913_CR252) 2019; 10 F Li (913_CR242) 2020; 59 YW Li (913_CR38) 2020; 32 HN Yu (913_CR168) 2021; 12 XY Li (913_CR311) 2020; 59 913_CR187 V Kuznetsova (913_CR227) 2021; 10 J Liu (913_CR157) 2021; 12 MJ Wang (913_CR132) 2021; 21 MX Zeng (913_CR193) 2019; 116 HK Bisoyi (913_CR155) 2019; 104 G Chu (913_CR212) 2015; 7 ZG Zheng (913_CR321) 2022; 16 DG Billing (913_CR265) 2003; 59 FY Song (913_CR231) 2019; 3 ZX Liu (913_CR53) 2020; 59 WF Jiang (913_CR18) 2020; 368 R Kumar (913_CR246) 2016; 43 S Maniappan (913_CR40) 2021; 8 DJ Meng (913_CR172) 2021; 13 GC Zheng (913_CR16) 2021; 50 913_CR294 M Hentschel (913_CR46) 2017; 3 J Lu (913_CR117) 2021; 371 |
References_xml | – volume: 7 start-page: 3021 year: 2014 end-page: 3033 ident: CR211 article-title: Preparation of nanocomposite plasmonic films made from cellulose nanocrystals or mesoporous silica decorated with unidirectionally aligned gold nanorods publication-title: Materials doi: 10.3390/ma7043021 – volume: 11 start-page: 23512 year: 2019 end-page: 23519 ident: CR303 article-title: Tunable upconverted circularly polarized luminescence in cellulose nanocrystal based chiral photonic films publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05941 – volume: 12 start-page: 20347 year: 2020 end-page: 20355 ident: CR283 article-title: Controlling the non-linear emission of upconversion nanoparticles to enhance super-resolution imaging performance publication-title: Nanoscale doi: 10.1039/D0NR04809G – volume: 10 start-page: 76 year: 2021 ident: CR223 article-title: Circularly polarized luminescence from organic micro-/nano-structures publication-title: Light. Sci. Appl. doi: 10.1038/s41377-021-00516-7 – volume: 21 start-page: 1746 year: 2009 end-page: 1750 ident: CR160 article-title: 3D ordered gold strings by coating nanoparticles with mesogens publication-title: Adv. Mater. doi: 10.1002/adma.200803403 – volume: 5 start-page: eaax9501 year: 2019 ident: CR320 article-title: Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9501 – volume: 8 start-page: 557650 year: 2021 ident: CR40 article-title: Template assisted generation of chiral luminescence in organic fluorophores publication-title: Front. Chem. doi: 10.3389/fchem.2020.557650 – volume: 14 start-page: 11130 year: 2020 end-page: 11139 ident: CR258 article-title: Designing hybrid chiral photonic films with circularly polarized room-temperature phosphorescence publication-title: ACS Nano doi: 10.1021/acsnano.0c02060 – ident: CR138 – volume: 6 start-page: 924 year: 2019 end-page: 931 ident: CR142 article-title: Giant circular dichroism at visible frequencies enabled by plasmonic ramp-shaped nanostructures publication-title: ACS Photon. doi: 10.1021/acsphotonics.8b01584 – volume: 12 year: 2021 ident: CR97 article-title: Ultrastable liquid crystalline blue phase from molecular synergistic self-assembly publication-title: Nat. Commun. doi: 10.1038/s41467-021-21564-y – ident: CR80 – volume: 119 start-page: 12208 year: 2019 end-page: 12278 ident: CR7 article-title: Multicomponent plasmonic nanoparticles: from heterostructured nanoparticles to colloidal composite nanostructures publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00234 – volume: 20 start-page: 230 year: 2017 end-page: 237 ident: CR91 article-title: Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene publication-title: Mater. Today doi: 10.1016/j.mattod.2017.04.028 – volume: 3 start-page: 2571 year: 2019 end-page: 2601 ident: CR254 article-title: Frontiers in carbon dots: design, properties and applications publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00415G – volume: 4 start-page: 247 year: 2016 end-page: 251 ident: CR150 article-title: Near-infrared light-directed handedness inversion in plasmonic nanorod-embedded helical superstructure publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500533 – volume: 26 start-page: 504 year: 2010 end-page: 514 ident: CR220 article-title: Liquid crystalline phase behavior of protein fibers in water: experiments versus theory publication-title: Langmuir doi: 10.1021/la9021432 – volume: 139 start-page: 15043 year: 2017 end-page: 15048 ident: CR146 article-title: Systematic adjustment of pitch and particle dimensions within a family of chiral plasmonic gold nanoparticle single helices publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07143 – volume: 10 start-page: 924 year: 2015 end-page: 936 ident: CR297 article-title: Controlling upconversion nanocrystals for emerging applications publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.251 – volume: 10 start-page: 558 year: 2015 end-page: 573 ident: CR235 article-title: Preparation of chiral quantum dots publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.028 – volume: 1 start-page: 14 year: 2016 end-page: 26 ident: CR238 article-title: The chiral nano-world: chiroptically active quantum nanostructures publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00072F – volume: 44 start-page: 1929 year: 2017 end-page: 1947 ident: CR163 article-title: Liquid crystals and precious metal: from nanoparticle dispersions to functional plasmonic nanostructures publication-title: Liq. Cryst. – volume: 10 start-page: 3410 year: 2016 end-page: 3415 ident: CR324 article-title: Reversible nanoparticle cubic lattices in blue phase liquid crystals publication-title: ACS Nano doi: 10.1021/acsnano.5b07379 – volume: 5 start-page: 336 year: 2020 end-page: 344 ident: CR51 article-title: Biomacromolecular charge chirality detected using chiral plasmonic nanostructures publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00525K – volume: 13 year: 2022 ident: CR62 article-title: Circularly polarised luminescence laser scanning confocal microscopy to study live cell chiral molecular interactions publication-title: Nat. Commun. doi: 10.1038/s41467-022-28220-z – volume: 33 start-page: 2005506 year: 2021 ident: CR330 article-title: Recent advances in inorganic chiral nanomaterials publication-title: Adv. Mater. doi: 10.1002/adma.202005506 – ident: CR57 – volume: 9 year: 2018 ident: CR276 article-title: Advances in highly doped upconversion nanoparticles publication-title: Nat. Commun. doi: 10.1038/s41467-018-04813-5 – ident: CR294 – volume: 14 start-page: 1702990 year: 2018 ident: CR48 article-title: Chiral plasmonic hydrogen sensors publication-title: Small doi: 10.1002/smll.201702990 – volume: 423 start-page: 31 year: 2003 end-page: 32 ident: CR87 article-title: Polarized light as a butterfly mating signal publication-title: Nature doi: 10.1038/423031a – volume: 13 start-page: 9678 year: 2021 end-page: 9685 ident: CR172 article-title: Constructing chiral gold nanorod oligomers using a spatially separated sergeants-and-soldiers effect publication-title: Nanoscale doi: 10.1039/D1NR01458G – volume: 368 start-page: 642 year: 2020 end-page: 648 ident: CR18 article-title: Emergence of complexity in hierarchically organized chiral particles publication-title: Science doi: 10.1126/science.aaz7949 – volume: 7 start-page: 3021 year: 2020 end-page: 3027 ident: CR164 article-title: Chirality enhancement in macro-chiral liquid crystal nanoparticles publication-title: Mater. Horiz. doi: 10.1039/D0MH01274B – ident: CR5 – volume: 9 year: 2018 ident: CR115 article-title: Giant intrinsic circular dichroism of prolinol-derived squaraine thin films publication-title: Nat. Commun. doi: 10.1038/s41467-018-04811-7 – volume: 12 start-page: 551 year: 2020 end-page: 559 ident: CR133 article-title: Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures publication-title: Nat. Chem. doi: 10.1038/s41557-020-0453-0 – volume: 11 year: 2020 ident: CR262 article-title: Water-resistant perovskite nanodots enable robust two-photon lasing in aqueous environment publication-title: Nat. Commun. doi: 10.1038/s41467-020-15016-2 – volume: 10 year: 2019 ident: CR19 article-title: Homochirality in biomineral suprastructures induced by assembly of single-enantiomer amino acids from a nonracemic mixture publication-title: Nat. Commun. doi: 10.1038/s41467-019-10383-x – volume: 1 start-page: 2100007 year: 2021 ident: CR90 article-title: 3D chiral photonic nanostructures based on blue-phase liquid crystals publication-title: Small Sci. doi: 10.1002/smsc.202100007 – volume: 8 start-page: 2475 year: 2021 end-page: 2484 ident: CR78 article-title: Stimulus-driven liquid metal and liquid crystal network actuators for programmable soft robotics publication-title: Mater. Horiz. doi: 10.1039/D1MH00623A – volume: 3 start-page: 1768 year: 2019 end-page: 1778 ident: CR231 article-title: Tunable circularly polarized luminescence from molecular assemblies of chiral AIEgens publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00332K – volume: 50 start-page: 11208 year: 2021 end-page: 11226 ident: CR105 article-title: Emergent chiroptical properties in supramolecular and plasmonic assemblies publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01583K – volume: 27 start-page: 2065 year: 2015 end-page: 2069 ident: CR309 article-title: Luminescence-driven reversible handedness inversion of self-organized helical superstructures enabled by a novel near-infrared light nanotransducer publication-title: Adv. Mater. doi: 10.1002/adma.201405690 – volume: 4 start-page: 113 year: 2022 end-page: 124 ident: CR108 article-title: Multidimensional nanoscopic chiroptics publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00391-6 – volume: 8 start-page: 100077 year: 2021 ident: CR230 article-title: Chiral helical supramolecular hydrogels with adjustable pitch and diameter towards high-performance chiroptical detecting publication-title: Giant doi: 10.1016/j.giant.2021.100077 – volume: 43 start-page: 994 year: 2016 end-page: 1001 ident: CR246 article-title: Optical and electrical control of circularly polarised fluorescence in CdSe quantum dots dispersed polymer stabilised cholesteric liquid crystal shutter publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1155771 – volume: 7 start-page: 11094 year: 2013 end-page: 11102 ident: CR239 article-title: Ligand induced circular dichroism and circularly polarized luminescence in CdSe quantum dots publication-title: ACS Nano doi: 10.1021/nn404832f – volume: 9 start-page: 2101142 year: 2021 ident: CR226 article-title: Optically active CdSe/CdS nanoplatelets exhibiting both circular dichroism and circularly polarized luminescence publication-title: Adv. Optical Mater. doi: 10.1002/adom.202101142 – volume: 27 start-page: 1702261 year: 2017 ident: CR96 article-title: Asymmetric tunable photonic bandgaps in self-organized 3D nanostructure of polymer-stabilized blue phase I modulated by voltage polarity publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702261 – volume: 32 start-page: 1904581 year: 2020 ident: CR188 article-title: Shaping liquid crystals with gold nanoparticles: helical assemblies with tunable and hierarchical structures via thin-film cooperative interactions publication-title: Adv. Mater. doi: 10.1002/adma.201904581 – volume: 32 start-page: 1906319 year: 2020 ident: CR69 article-title: Near-infrared photodriven self-sustained oscillation of liquid-crystalline network film with predesignated polydopamine coating publication-title: Adv. Mater. doi: 10.1002/adma.201906319 – ident: CR137 – volume: 3 start-page: e148 year: 2022 ident: CR58 article-title: Endowing inorganic nanomaterials with circularly polarized luminescence publication-title: Aggregate doi: 10.1002/agt2.148 – ident: CR326 – volume: 125 start-page: 3256 year: 2021 end-page: 3267 ident: CR198 article-title: Near-infrared chiral plasmonic microwires through precision assembly of gold nanorods on soft biotemplates publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c11512 – volume: 33 start-page: 2104418 year: 2021 ident: CR63 article-title: 3D laser displays based on circularly polarized lasing from cholesteric liquid crystal arrays publication-title: Adv. Mater. doi: 10.1002/adma.202104418 – volume: 365 start-page: 1475 year: 2019 end-page: 1478 ident: CR27 article-title: Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes publication-title: Science doi: 10.1126/science.aax5415 – volume: 371 start-page: 1129 year: 2021 end-page: 1133 ident: CR64 article-title: Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode publication-title: Science doi: 10.1126/science.abf5291 – volume: 468 start-page: 422 year: 2010 end-page: 425 ident: CR204 article-title: Free-standing mesoporous silica films with tunable chiral nematic structures publication-title: Nature doi: 10.1038/nature09540 – volume: 9 start-page: 1 year: 2021 end-page: 34 ident: CR29 article-title: Recent progress at the interface between nanomaterial chirality and liquid crystals publication-title: Liq. Cryst. Rev. doi: 10.1080/21680396.2021.1930596 – volume: 8 start-page: 3284 year: 2020 end-page: 3301 ident: CR313 article-title: Circularly polarized luminescence from AIEgens publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC07022B – ident: CR103 – volume: 29 start-page: 1903155 year: 2019 ident: CR270 article-title: Fully chiral light emission from CsPbX perovskite nanocrystals enabled by cholesteric superstructure stacks publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903155 – volume: 28 start-page: 5262 year: 2016 end-page: 5267 ident: CR214 article-title: Chiral plasmonics using twisting along cellulose nanocrystals as a template for gold nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201600940 – volume: 50 start-page: 5499 year: 2011 end-page: 5503 ident: CR179 article-title: Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201007536 – volume: 9 start-page: 555 year: 2021 end-page: 561 ident: CR228 article-title: Impact of native achiral ligands on the chirality of enantiopure cysteine stabilized CdSe nanocrystals publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC07090G – volume: 13 start-page: 1203 year: 2013 end-page: 1209 ident: CR175 article-title: Amplification of chiroptical activity of chiral biomolecules by surface plasmons publication-title: Nano Lett. doi: 10.1021/nl304638a – volume: 13 start-page: 4176 year: 2017 end-page: 4209 ident: CR201 article-title: Cholesteric liquid crystals in living matter publication-title: Soft Matter doi: 10.1039/C7SM00384F – volume: 32 start-page: 1908175 year: 2020 ident: CR299 article-title: Strategies for high-performance solid-state triplet-triplet-annihilation-based photon upconversion publication-title: Adv. Mater. doi: 10.1002/adma.201908175 – volume: 115 start-page: 7304 year: 2015 end-page: 7397 ident: CR2 article-title: Supramolecular chirality in self-assembled systems publication-title: Chem. Rev. doi: 10.1021/cr500671p – volume: 29 start-page: 1700676 year: 2017 ident: CR70 article-title: Dynamic orthogonal switching of a thermoresponsive self-organized helical superstructure publication-title: Adv. Mater. doi: 10.1002/adma.201700676 – volume: 8 start-page: 2189 year: 2012 end-page: 2193 ident: CR94 article-title: Hysteresis-free blue phase liquid-crystal-stabilized by ZnS nanoparticles publication-title: Small doi: 10.1002/smll.201200052 – volume: 4 start-page: 9687 year: 2016 end-page: 9696 ident: CR124 article-title: A bio-inspired cellulose nanocrystal-based nanocomposite photonic film with hyper-reflection and humidity-responsive actuator properties publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC02629J – volume: 33 start-page: 2007668 year: 2021 ident: CR41 article-title: Controlled assembly of plasmonic nanoparticles: from static to dynamic nanostructures publication-title: Adv. Mater. doi: 10.1002/adma.202007668 – volume: 34 start-page: 2110170 year: 2022 ident: CR322 article-title: A quadri-dimensional manipulable laser with an intrinsic chiral photoswitch publication-title: Adv. Mater. doi: 10.1002/adma.202110170 – volume: 4 start-page: eaat4436 year: 2018 ident: CR141 article-title: Nano-kirigami with giant optical chirality publication-title: Sci. Adv. doi: 10.1126/sciadv.aat4436 – volume: 43 start-page: 101419 year: 2022 ident: CR75 article-title: Bioinspired light-fueled water-walking soft robots based on liquid crystal network actuators with polymerizable miniaturized gold nanorods publication-title: Nano Today doi: 10.1016/j.nantod.2022.101419 – volume: 57 start-page: 2796 year: 2021 end-page: 2799 ident: CR316 article-title: Circularly polarized luminescence from structurally coloured polymer films publication-title: Chem. Commun. doi: 10.1039/D1CC00201E – volume: 15 start-page: 3709 year: 2021 end-page: 3735 ident: CR285 article-title: Exploring heterostructured upconversion nanoparticles: from rational engineering to diverse applications publication-title: ACS Nano doi: 10.1021/acsnano.0c09231 – volume: 32 start-page: 1906738 year: 2020 ident: CR8 article-title: Chiral nanoceramics publication-title: Adv. Mater. doi: 10.1002/adma.201906738 – volume: 109 start-page: 15712 year: 2012 end-page: 15715 ident: CR86 article-title: Pointillist structural color in fruit publication-title: Proc. Natl Acad. Sci. U.S.A doi: 10.1073/pnas.1210105109 – volume: 116 start-page: 18322 year: 2019 end-page: 18327 ident: CR193 article-title: Iridescence in nematics: photonic liquid crystals of nanoplates in absence of long-range periodicity publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1906511116 – volume: 43 start-page: 2062 year: 2016 end-page: 2078 ident: CR162 article-title: Self-activating liquid crystal devices for smart laser protection publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1196506 – volume: 66 start-page: 263 year: 2015 end-page: 281 ident: CR331 article-title: Spintronics and chirality: spin selectivity in electron transport through chiral molecules publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040214-121554 – volume: 336 start-page: 1275 year: 2012 end-page: 1280 ident: CR88 article-title: The stomatopod dactyl club: a formidable damage-tolerant biological hammer publication-title: Science doi: 10.1126/science.1218764 – volume: 92 start-page: 3949 year: 2020 end-page: 3957 ident: CR224 article-title: Chiral fluorescent silicon nanoparticles for aminopropanol enantiomer: fluorescence discrimination and mechanism identification publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05442 – volume: 50 start-page: 5808 year: 2011 end-page: 5829 ident: CR284 article-title: Upconverting nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005159 – volume: 116 start-page: 15089 year: 2016 end-page: 15166 ident: CR74 article-title: Light-driven liquid crystalline materials: from photo-induced phase transitions and property modulations to applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00415 – volume: 15 start-page: 4956 year: 2021 end-page: 4966 ident: CR171 article-title: Direct visualization of chiral amplification of chiral aggregation induced emission molecules in nematic liquid crystals publication-title: ACS Nano doi: 10.1021/acsnano.0c09802 – volume: 137 start-page: 457 year: 2015 end-page: 462 ident: CR22 article-title: Au nanorod helical superstructures with designed chirality publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511333q – volume: 325 start-page: 449 year: 2009 end-page: 451 ident: CR85 article-title: Structural origin of circularly polarized iridescence in jeweled beetles publication-title: Science doi: 10.1126/science.1172051 – volume: 48 start-page: 5167 year: 2009 end-page: 5169 ident: CR186 article-title: Liquid-crystalline phases made of gold nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901206 – volume: 49 start-page: 983 year: 2020 end-page: 1031 ident: CR123 article-title: Biopolymeric photonic structures: design, fabrication, and emerging applications publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS01007B – volume: 113 start-page: 16538 year: 2009 end-page: 16543 ident: CR128 article-title: Effect of network concentration on the performance of polymer-stabilized cholesteric liquid crystals with a double-handed circularly polarized light reflection band publication-title: J. Phys. Chem. C. doi: 10.1021/jp903394r – volume: 21 start-page: 3573 year: 2021 end-page: 3580 ident: CR24 article-title: Strong light-matter interactions in chiral plasmonic-excitonic systems assembled on DNA origami publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00596 – volume: 31 start-page: 1900818 year: 2019 ident: CR192 article-title: Nature-inspired design and application of lipidic lyotropic liquid crystals publication-title: Adv. Mater. doi: 10.1002/adma.201900818 – volume: 56 start-page: 15118 year: 2020 end-page: 15132 ident: CR290 article-title: Energy transfer designing in lanthanide-doped upconversion nanoparticles publication-title: Chem. Commun. doi: 10.1039/D0CC05878E – volume: 4 start-page: eaas9819 year: 2018 ident: CR20 article-title: Chiral switching in biomineral suprastructures induced by homochiral -amino acid publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9819 – volume: 55 start-page: 2994 year: 2016 end-page: 3010 ident: CR73 article-title: Light-directed dynamic chirality inversion in functional self-organized helical superstructures publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505520 – volume: 29 start-page: 1602737 year: 2017 ident: CR181 article-title: Chiral superstructure mesophases of achiral bent-shaped molecules-hierarchical chirality amplification and physical properties publication-title: Adv. Mater. doi: 10.1002/adma.201602737 – volume: 15 start-page: 12457 year: 2021 end-page: 12460 ident: CR6 article-title: Chiral nanostructures: new twists publication-title: ACS Nano doi: 10.1021/acsnano.1c06959 – volume: 3 start-page: e1602735 year: 2017 ident: CR46 article-title: Chiral plasmonics publication-title: Sci. Adv. doi: 10.1126/sciadv.1602735 – volume: 130 start-page: 13555 year: 2008 end-page: 13557 ident: CR145 article-title: A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805683r – volume: 18 start-page: 2103241 year: 2022 ident: CR282 article-title: Self-assembly of upconversion nanoparticles based materials and their emerging applications publication-title: Small doi: 10.1002/smll.202103241 – volume: 31 start-page: 5033 year: 2015 end-page: 5041 ident: CR208 article-title: Coassembly of gold nanoparticles and cellulose nanocrystals in composite films publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00728 – volume: 601 start-page: 366 year: 2022 end-page: 373 ident: CR109 article-title: Enantiomer-dependent immunological response to chiral nanoparticles publication-title: Nature doi: 10.1038/s41586-021-04243-2 – volume: 15 start-page: 1283 year: 2014 end-page: 1295 ident: CR185 article-title: Metal nanoparticles with liquid-crystalline ligands: controlling nanoparticle superlattice structure and properties publication-title: ChemPhysChem doi: 10.1002/cphc.201301194 – volume: 47 start-page: 586 year: 2018 end-page: 625 ident: CR236 article-title: Recent progress in two-dimensional inorganic quantum dots publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00500H – volume: 6 start-page: e202100256 year: 2022 ident: CR225 article-title: Tunable circularly polarized luminescent supramolecular systems: approaches and applications publication-title: ChemPhotoChem doi: 10.1002/cptc.202200032 – volume: 59 start-page: 21899 year: 2020 end-page: 21903 ident: CR311 article-title: Sub-10 nm aggregation-induced emission quantum dots assembled by microfluidics for enhanced tumor targeting and reduced retention in the liver publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008564 – volume: 28 start-page: 17256 year: 2012 end-page: 17262 ident: CR217 article-title: Chiral nematic stained glass: controlling the optical properties of nanocrystalline cellulose-templated materials publication-title: Langmuir doi: 10.1021/la3041902 – volume: 120 start-page: 10145 year: 2020 end-page: 10243 ident: CR39 article-title: Chiroptical properties in thin films of π-conjugated systems publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00195 – ident: CR99 – volume: 29 start-page: 9 year: 2017 end-page: 20 ident: CR203 article-title: Liquid crystal templating of nanomaterials with nature’s toolbox publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.01.003 – volume: 368 start-page: 1472 year: 2020 end-page: 1477 ident: CR21 article-title: Micelle-directed chiral seeded growth on anisotropic gold nanocrystals publication-title: Science doi: 10.1126/science.aba0980 – volume: 52 start-page: 8828 year: 2013 end-page: 8878 ident: CR183 article-title: Development of structural complexity by liquid-crystal self-assembly publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300872 – volume: 24 start-page: 777 year: 2014 end-page: 783 ident: CR253 article-title: CdS quantum dots encapsulated in chiral nematic mesoporous silica: new iridescent and luminescent materials publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302521 – volume: 6 start-page: 1801246 year: 2018 ident: CR257 article-title: Circularly polarized luminescent carbon dot nanomaterials of helical superstructures for circularly polarized light detection publication-title: Adv. Optical Mater. doi: 10.1002/adom.201801246 – volume: 7 start-page: 591 year: 2015 end-page: 596 ident: CR177 article-title: Through-space transfer of chiral information mediated by a plasmonic nanomaterial publication-title: Nat. Chem. doi: 10.1038/nchem.2280 – volume: 57 start-page: 2377 year: 2018 end-page: 2382 ident: CR243 article-title: Highly fluorescent chiral N-S-doped carbon dots from cysteine: affecting cellular energy metabolism publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712453 – volume: 325 start-page: 1513 year: 2009 end-page: 1515 ident: CR139 article-title: Gold helix photonic metamaterial as broadband circular polarizer publication-title: Science doi: 10.1126/science.1177031 – volume: 11 start-page: 75 year: 2022 ident: CR256 article-title: Chiral carbon dots: synthesis, optical properties, and emerging applications publication-title: Light. Sci. Appl. doi: 10.1038/s41377-022-00764-1 – volume: 24 start-page: 12607 year: 2018 end-page: 12612 ident: CR314 article-title: Strong aggregation-induced CPL response promoted by chiral emissive nematic liquid crystals (N*-LCs) publication-title: Chem. A Eur. J. doi: 10.1002/chem.201801186 – volume: 5 start-page: 1700182 year: 2017 ident: CR106 article-title: Chirality and chiroptical effects in metal nanostructures: fundamentals and current trends publication-title: Adv. Optical Mater. doi: 10.1002/adom.201700182 – volume: 11 start-page: 760 year: 2011 end-page: 770 ident: CR4 article-title: The significance of chirality in drug design and development publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802611795165098 – volume: 15 start-page: 2753 year: 2021 end-page: 2761 ident: CR295 article-title: Steering nanohelix and upconverted circularly polarized luminescence by using completely achiral components publication-title: ACS Nano doi: 10.1021/acsnano.0c08539 – volume: 7 start-page: 8370 year: 2011 end-page: 8375 ident: CR199 article-title: Chiral assembly of gold nanorods with collective plasmonic circular dichroism response publication-title: Soft Matter doi: 10.1039/c1sm05590a – volume: 118 start-page: 10617 year: 2018 end-page: 10625 ident: CR131 article-title: Plasmonic biosensing: focus review publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00359 – volume: 12 year: 2021 ident: CR157 article-title: Diffusionless transformation of soft cubic superstructure from amorphous to simple cubic and body-centered cubic phases publication-title: Nat. Commun. doi: 10.1038/s41467-021-23631-w – volume: 10 start-page: 172 year: 2019 end-page: 178 ident: CR234 article-title: Photon-upconverting chiral liquid crystal: significantly amplified upconverted circularly polarized luminescence publication-title: Chem. Sci. doi: 10.1039/C8SC03806F – volume: 3 start-page: 186 year: 2022 end-page: 215 ident: CR45 article-title: Chiral plasmonic nanostructures: recent advances in their synthesis and applications publication-title: Mater. Adv. doi: 10.1039/D1MA00915J – volume: 32 start-page: 1900110 year: 2020 ident: CR111 article-title: Circularly polarized luminescence in nanoassemblies: generation, amplification, and application publication-title: Adv. Mater. doi: 10.1002/adma.201900110 – volume: 122 start-page: 4887 year: 2022 end-page: 4926 ident: CR153 article-title: Liquid crystals: versatile self-organized smart soft materials publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00761 – volume: 32 start-page: 1905975 year: 2020 ident: CR161 article-title: Construction of chiral, helical nanoparticle superstructures: progress and prospects publication-title: Adv. Mater. doi: 10.1002/adma.201905975 – ident: CR104 – volume: 28 start-page: 1208 year: 2016 end-page: 1226 ident: CR278 article-title: Near-infrared-sensitive materials based on upconverting nanoparticles publication-title: Adv. Mater. doi: 10.1002/adma.201502843 – volume: 56 start-page: 1117 year: 2020 end-page: 1120 ident: CR233 article-title: The amplified circularly polarized luminescence regulated from D-A type AIE-active chiral emitters liquid crystals system publication-title: Chem. Commun. doi: 10.1039/C9CC09067C – volume: 59 start-page: 226 year: 2020 end-page: 231 ident: CR251 article-title: Cellulose nanocrystal elastomers with reversible visible color publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911468 – volume: 59 start-page: 9888 year: 2020 end-page: 9907 ident: CR312 article-title: Aggregation-induced emission: new vistas at the aggregate level publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916729 – volume: 50 start-page: 546 year: 2021 end-page: 552 ident: CR293 article-title: Recent advances of circularly polarized luminescence in photon upconversion systems publication-title: Chem. Lett. doi: 10.1246/cl.200771 – volume: 47 start-page: 1044 year: 2018 end-page: 1097 ident: CR72 article-title: Photochromism into nanosystems: towards lighting up the future nanoworld publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00630F – volume: 2 start-page: e141 year: 2021 ident: CR28 article-title: Circularly polarized luminescent self-organized helical superstructures: from materials and stimulus-responsiveness to applications publication-title: Aggregate doi: 10.1002/agt2.141 – volume: 5 start-page: 109 year: 2021 end-page: 124 ident: CR67 article-title: Circularly polarized lanthanide luminescence for advanced security inks publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-00235-4 – volume: 122 start-page: 9078 year: 2022 end-page: 9144 ident: CR327 article-title: Chiral metal-organic frameworks publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00740 – volume: 10 start-page: 3290 year: 2019 end-page: 3295 ident: CR268 article-title: Two-photon absorption-based upconverted circularly polarized luminescence generated in chiral perovskite nanocrystals publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01224 – volume: 32 start-page: 2000820 year: 2020 ident: CR304 article-title: Electric-field-regulated energy transfer in chiral liquid crystals for enhancing upconverted circularly polarized luminescence through steering the photonic bandgap publication-title: Adv. Mater. doi: 10.1002/adma.202000820 – volume: 47 start-page: 1088 year: 2014 end-page: 1096 ident: CR205 article-title: The development of chiral nematic mesoporous materials publication-title: Acc. Chem. Res. doi: 10.1021/ar400243m – volume: 15 start-page: 3692 year: 2015 end-page: 3696 ident: CR264 article-title: Nanocrystals of cesium lead halide perovskites (CsPbX , X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut publication-title: Nano Lett. doi: 10.1021/nl5048779 – volume: 24 start-page: 163 year: 1998 end-page: 172 ident: CR119 article-title: Circularly polarized fluorescence from chiral nematic liquid crystalline films: theory and experiment publication-title: Liq. Cryst. doi: 10.1080/026782998207334 – volume: 51 start-page: 15039 year: 2015 end-page: 15042 ident: CR151 article-title: NIR light-directing self-organized 3D photonic superstructures loaded with anisotropic plasmonic hybrid nanorods publication-title: Chem. Commun. doi: 10.1039/C5CC06146F – volume: 24 start-page: 6216 year: 2012 end-page: 6222 ident: CR244 article-title: Optically and electrically controlled circularly polarized emission from cholesteric liquid crystal materials doped with semiconductor quantum dots publication-title: Adv. Mater. doi: 10.1002/adma.201202227 – ident: CR110 – volume: 5 start-page: 361 year: 2006 end-page: 364 ident: CR127 article-title: Going beyond the reflectance limit of cholesteric liquid crystals publication-title: Nat. Mater. doi: 10.1038/nmat1619 – volume: 136 start-page: 6446 year: 2014 end-page: 6452 ident: CR37 article-title: Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5018199 – volume: 10 start-page: 8423 year: 2016 end-page: 8433 ident: CR287 article-title: Energy-looping nanoparticles: harnessing excited-state absorption for deep-tissue imaging publication-title: ACS Nano doi: 10.1021/acsnano.6b03288 – volume: 30 start-page: 100824 year: 2020 ident: CR9 article-title: Novel properties and applications of chiral inorganic nanostructures publication-title: Nano Today doi: 10.1016/j.nantod.2019.100824 – volume: 20 start-page: 8675 year: 2020 end-page: 8681 ident: CR65 article-title: Optical multilevel spin bit device using chiral quantum dots publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03445 – ident: CR76 – volume: 6 year: 2015 ident: CR184 article-title: Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial publication-title: Nat. Commun. doi: 10.1038/ncomms7590 – volume: 26 start-page: 7178 year: 2014 end-page: 7184 ident: CR210 article-title: Orientationally ordered colloidal co-dispersions of gold nanorods and cellulose nanocrystals publication-title: Adv. Mater. doi: 10.1002/adma.201402699 – volume: 4 start-page: 534 year: 2016 end-page: 539 ident: CR317 article-title: Circularly polarized luminescence and a reflective photoluminescent chiral nematic liquid crystal display based on an aggregation-induced emission luminogen publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500646 – volume: 61 start-page: 851 year: 2021 end-page: 862 ident: CR14 article-title: Emerging trends in chiral inorganic nanostructures publication-title: Isr. J. Chem. doi: 10.1002/ijch.202100076 – volume: 16 start-page: S1981 year: 2004 end-page: S1988 ident: CR158 article-title: Fingerprint patterning of solid nanoparticles embedded in a cholesteric liquid crystal publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/19/010 – volume: 13 start-page: 862 year: 2014 end-page: 866 ident: CR25 article-title: Reconfigurable 3D plasmonic metamolecules publication-title: Nat. Mater. doi: 10.1038/nmat4031 – volume: 8 start-page: 5 year: 2001 end-page: 12 ident: CR249 article-title: Induced circular dichroism of chiral nematic cellulose films publication-title: Cellulose doi: 10.1023/A:1016624330458 – volume: 483 start-page: 311 year: 2012 end-page: 314 ident: CR23 article-title: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response publication-title: Nature doi: 10.1038/nature10889 – volume: 51 start-page: 9845 year: 2015 end-page: 9848 ident: CR149 article-title: Near infrared light-driven liquid crystal phase transition enabled by hydrophobic mesogen grafted plasmonic gold nanorods publication-title: Chem. Commun. doi: 10.1039/C5CC02127H – volume: 6 start-page: 025031 year: 2019 ident: CR196 article-title: Rainbows in a vial: controlled assembly of 2D colloids in two perpendicular external fields publication-title: 2D Mater. doi: 10.1088/2053-1583/ab0581 – volume: 32 start-page: 1801335 year: 2020 ident: CR1 article-title: Nature-inspired emerging chiral liquid crystal nanostructures: from molecular self-assembly to DNA mesophase and nanocolloids publication-title: Adv. Mater. doi: 10.1002/adma.201801335 – volume: 108 start-page: 5188 year: 2011 end-page: 5192 ident: CR325 article-title: Three-dimensional colloidal crystals in liquid crystalline blue phases publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1015831108 – volume: 8 year: 2017 ident: CR50 article-title: Chirality detection of enantiomers using twisted optical metamaterials publication-title: Nat. Commun. doi: 10.1038/ncomms14180 – ident: CR135 – volume: 26 start-page: 85 year: 2017 end-page: 111 ident: CR154 article-title: Bowlics: history, advances and applications publication-title: Liq. Cryst. Today doi: 10.1080/1358314X.2017.1398307 – volume: 104 start-page: 1 year: 2019 end-page: 52 ident: CR155 article-title: Stimuli directed alignment of self-organized one-dimensional semiconducting columnar liquid crystal nanostructures for organic electronics publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.03.005 – volume: 13 start-page: 41102 year: 2021 end-page: 41111 ident: CR98 article-title: Bioinspired color-changing photonic polymer coatings based on three-dimensional blue phase liquid crystal networks publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11711 – volume: 136 start-page: 4480 year: 2014 end-page: 4483 ident: CR308 article-title: Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500933h – volume: 15 start-page: 192 year: 2020 end-page: 197 ident: CR329 article-title: Regioselective magnetization in semiconducting nanorods publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0606-8 – volume: 7 start-page: 11863 year: 2015 end-page: 11870 ident: CR212 article-title: Optically tunable chiral plasmonic guest–host cellulose films weaved with long-range ordered silver nanowires publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01478 – volume: 133 start-page: 3728 year: 2011 end-page: 3731 ident: CR216 article-title: Chiral nematic assemblies of silver nanoparticles in mesoporous silica thin films publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110369d – volume: 556 start-page: 360 year: 2018 end-page: 365 ident: CR17 article-title: Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles publication-title: Nature doi: 10.1038/s41586-018-0034-1 – volume: 8 start-page: 1901911 year: 2020 ident: CR260 article-title: Chiral carbon dots synthesized on cellulose nanocrystals publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901911 – volume: 55 start-page: 5914 year: 2019 end-page: 5917 ident: CR315 article-title: ( )-binaphthyl derivatives as chiral dopants: substituent position controlled circularly polarized luminescence in liquid crystals publication-title: Chem. Commun. doi: 10.1039/C9CC02253H – volume: 48 start-page: 310 year: 2019 end-page: 350 ident: CR271 article-title: An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00740C – volume: 2 start-page: 3851 year: 2021 end-page: 3855 ident: CR121 article-title: Signal transmission encryption based on dye-doped chiral liquid crystals via tunable and efficient circularly polarized luminescence publication-title: Mater. Adv. doi: 10.1039/D1MA00368B – volume: 4 start-page: 582 year: 2020 end-page: 591 ident: CR122 article-title: Conjunctive photoluminescence enhancement through plasmonic and photonic band-gap pathways in a chiral self-assembled system publication-title: ChemPhotoChem doi: 10.1002/cptc.202000077 – volume: 51 start-page: 530 year: 2015 end-page: 533 ident: CR215 article-title: Chiral nematic cellulose-gold nanoparticle composites from mesoporous photonic cellulose publication-title: Chem. Commun. doi: 10.1039/C4CC07596J – ident: CR101 – volume: 8 start-page: 1335 year: 2021 end-page: 1343 ident: CR288 article-title: Multiplasmons-pumped excited-state absorption and energy transfer upconversion of rare-earth-doped luminescence beyond the diffraction limit publication-title: ACS Photon. doi: 10.1021/acsphotonics.0c01747 – volume: 5 start-page: 1600956 year: 2017 ident: CR307 article-title: Modulated visible light upconversion for luminescence patterns in liquid crystal polymer networks loaded with upconverting nanoparticles publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600956 – volume: 13 start-page: 2804 year: 2019 end-page: 2811 ident: CR36 article-title: Optically active upconverting nanoparticles with induced circularly polarized luminescence and enantioselectively triggered photopolymerization publication-title: ACS Nano doi: 10.1021/acsnano.8b08273 – volume: 371 start-page: 1368 year: 2021 end-page: 1374 ident: CR117 article-title: Enhanced optical asymmetry in supramolecular chiroplasmonic assemblies with long-range order publication-title: Science doi: 10.1126/science.abd8576 – volume: 137 start-page: 12736 year: 2015 end-page: 12739 ident: CR167 article-title: Helically twisted chiral arrays of gold nanoparticles coated with a cholesterol mesogen publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05059 – volume: 50 start-page: 5293 year: 2017 end-page: 5300 ident: CR31 article-title: Chiral arrangements of Au nanoparticles with prescribed handedness templated by helical pores in block copolymer films publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01364 – volume: 12 start-page: 50192 year: 2020 end-page: 50202 ident: CR12 article-title: Chiral plasmonic metamaterials with tunable chirality publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15955 – volume: 34 start-page: 100953 year: 2020 ident: CR10 article-title: Recent advances in chiral carbonized polymer dots: from synthesis and properties to applications publication-title: Nano Today doi: 10.1016/j.nantod.2020.100953 – volume: 1 start-page: 229 year: 2002 end-page: 231 ident: CR89 article-title: Long-range structuring of nanoparticles by mimicry of a cholesteric liquid crystal publication-title: Nat. Mater. doi: 10.1038/nmat772 – volume: 13 start-page: 1479 year: 2019 end-page: 1489 ident: CR30 article-title: Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization publication-title: ACS Nano – volume: 70 start-page: 275 year: 2019 end-page: 299 ident: CR47 article-title: Chiral plasmonic nanostructures enabled by bottom-up approaches publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-050317-021332 – volume: 7 start-page: 13794 year: 2019 end-page: 13802 ident: CR68 article-title: Assembling semiconductor quantum dots in hierarchical photonic cellulose nanocrystal films: circularly polarized luminescent nanomaterials as optical coding labels publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04144C – volume: 32 start-page: 1905585 year: 2020 ident: CR38 article-title: Chiral transition metal oxides: synthesis, chiral origins, and perspectives publication-title: Adv. Mater. doi: 10.1002/adma.201905585 – volume: 6 year: 2015 ident: CR140 article-title: Triple-helical nanowires by tomographic rotatory growth for chiral photonics publication-title: Nat. Commun. doi: 10.1038/ncomms7484 – volume: 122 start-page: 4946 year: 2022 end-page: 4975 ident: CR81 article-title: Hydrogen-bonded supramolecular liquid crystal polymers: smart materials with stimuli-responsive, self-healing, and recyclable properties publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00330 – volume: 14 start-page: 12918 year: 2020 end-page: 12928 ident: CR189 article-title: Supramolecular chirality synchronization in thin films of plasmonic nanocomposites publication-title: ACS Nano doi: 10.1021/acsnano.0c03964 – volume: 31 start-page: 1805683 year: 2019 ident: CR296 article-title: Photon upconverted circularly polarized luminescence via triplet–triplet annihilation publication-title: Adv. Mater. doi: 10.1002/adma.201805683 – volume: 531 start-page: 352 year: 2016 end-page: 356 ident: CR92 article-title: Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light publication-title: Nature doi: 10.1038/nature17141 – ident: CR100 – volume: 33 start-page: 2005900 year: 2021 ident: CR54 article-title: Plasmonic core–shell nanomaterials and their applications in spectroscopies publication-title: Adv. Mater. doi: 10.1002/adma.202005900 – volume: 29 start-page: 1603560 year: 2017 ident: CR125 article-title: Mind the microgap in iridescent cellulose nanocrystal films publication-title: Adv. Mater. doi: 10.1002/adma.201603560 – volume: 110 start-page: 5468 year: 2013 end-page: 5473 ident: CR218 article-title: Atomic structure and hierarchical assembly of a cross-β amyloid fibril publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1219476110 – volume: 179 start-page: 10 year: 2019 end-page: 40 ident: CR255 article-title: Carbon-based functional nanomaterials: preparation, properties and applications publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.028 – volume: 25 start-page: 520 year: 2013 end-page: 523 ident: CR126 article-title: Biomimetic reflectors fabricated using self-organising, self-aligning liquid crystal polymers publication-title: Adv. Mater. doi: 10.1002/adma.201203182 – volume: 115 start-page: 395 year: 2015 end-page: 465 ident: CR286 article-title: Upconversion luminescent materials: advances and applications publication-title: Chem. Rev. doi: 10.1021/cr400478f – volume: 6 year: 2015 ident: CR52 article-title: Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials publication-title: Nat. Commun. doi: 10.1038/ncomms9379 – volume: 281 start-page: 672 year: 1998 end-page: 674 ident: CR3 article-title: Circular polarization in star- formation regions: implications for biomolecular homochirality publication-title: Science doi: 10.1126/science.281.5377.672 – volume: 50 start-page: 3738 year: 2021 end-page: 3754 ident: CR16 article-title: Discrete metal nanoparticles with plasmonic chirality publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00765B – volume: 31 start-page: 2104991 year: 2021 ident: CR197 article-title: Nanocellulose-based functional materials: from chiral photonics to soft actuator and energy storage publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104991 – volume: 10 year: 2019 ident: CR252 article-title: Unwinding a spiral of cellulose nanocrystals for stimuli-responsive stretchable optics publication-title: Nat. Commun. doi: 10.1038/s41467-019-08351-6 – volume: 56 start-page: 12174 year: 2017 end-page: 12178 ident: CR33 article-title: Self-assembled luminescent quantum dots to generate full-color and white circularly polarized light publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706308 – volume: 10 start-page: 308 year: 2015 end-page: 312 ident: CR56 article-title: Metasurface holograms reaching 80% efficiency publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.2 – volume: 59 start-page: 15226 year: 2020 end-page: 15231 ident: CR53 article-title: Enantiomeric discrimination by surface-enhanced Raman scattering-chiral anisotropy of chiral nanostructured gold films publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006486 – volume: 7 start-page: 305 year: 2017 ident: CR200 article-title: Lyotropic liquid crystal phases from anisotropic nanomaterials publication-title: Nanomaterials doi: 10.3390/nano7100305 – volume: 5 start-page: 423 year: 2020 end-page: 439 ident: CR261 article-title: Chiral-perovskite optoelectronics publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0181-5 – volume: 25 start-page: 1999 year: 2013 end-page: 2004 ident: CR159 article-title: A self-organized anisotropic liquid-crystal plasmonic metamaterial publication-title: Adv. Mater. doi: 10.1002/adma.201203965 – volume: 2020 start-page: 6452123 year: 2020 ident: CR302 article-title: Dual-mode induction of tunable circularly polarized luminescence from chiral metal-organic frameworks publication-title: Research doi: 10.34133/2020/6452123 – volume: 30 start-page: 1705011 year: 2018 ident: CR35 article-title: Endowing perovskite nanocrystals with circularly polarized luminescence publication-title: Adv. Mater. doi: 10.1002/adma.201705011 – volume: 7 start-page: 53057 year: 2017 end-page: 53063 ident: CR241 article-title: Chiral carbon dots and their effect on the optical properties of photosensitizers publication-title: RSC Adv. doi: 10.1039/C7RA10611D – volume: 9 start-page: 10377 year: 2015 end-page: 10385 ident: CR207 article-title: Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles publication-title: ACS Nano doi: 10.1021/acsnano.5b04552 – volume: 61 start-page: e202116219 year: 2022 ident: CR77 article-title: Mechanochromic, shape-programmable and self-healable cholesteric liquid crystal elastomers enabled by dynamic covalent boronic ester bonds publication-title: Angew. Chem. Int. Ed. – volume: 43 start-page: 2391 year: 2016 end-page: 2409 ident: CR166 article-title: Dynamic self-assembly of nanoparticles using thermotropic liquid crystals publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1225834 – volume: 34 start-page: 2105958 year: 2022 ident: CR273 article-title: Surface chemistry engineering of perovskite quantum dots: strategies, applications, and perspectives publication-title: Adv. Mater. doi: 10.1002/adma.202105958 – volume: 7 start-page: 21797 year: 2015 end-page: 21806 ident: CR209 article-title: Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05645 – volume: 4 start-page: 1 year: 2011 end-page: 36 ident: CR130 article-title: Negative refractive index metasurfaces for enhanced biosensing publication-title: Materials doi: 10.3390/ma4010001 – ident: CR134 – volume: 3 start-page: 1691 year: 2015 end-page: 1696 ident: CR323 article-title: Rationally designed dynamic superstructures enabled by photoaligning cholesteric liquid crystals publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500403 – volume: 13 start-page: 12461 year: 2019 end-page: 12469 ident: CR195 article-title: Growth of colloidal nanoplate liquid crystals using temperature gradients publication-title: ACS Nano doi: 10.1021/acsnano.9b01573 – volume: 55 start-page: 13090 year: 2016 end-page: 13094 ident: CR71 article-title: Frequency-driven self-organized helical superstructures loaded with mesogen-grafted silica nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606895 – volume: 6 year: 2015 ident: CR55 article-title: Helicity multiplexed broadband metasurface holograms publication-title: Nat. Commun. doi: 10.1038/ncomms9241 – ident: CR187 – volume: 6 start-page: 381 year: 2011 end-page: 400 ident: CR178 article-title: From individual to collective chirality in metal nanoparticles publication-title: Nano Today doi: 10.1016/j.nantod.2011.06.003 – volume: 33 start-page: 2103309 year: 2021 ident: CR82 article-title: Anisotropic iridescence and polarization patterns in a direct ink written chiral photonic polymer publication-title: Adv. Mater. doi: 10.1002/adma.202103309 – ident: CR83 – volume: 12 start-page: 1778 year: 2021 end-page: 1782 ident: CR168 article-title: Two helices from one chiral centre-self organization of disc shaped chiral nanoparticles publication-title: Chem. Sci. doi: 10.1039/D0SC05100D – volume: 9 start-page: 2100378 year: 2021 ident: CR42 article-title: The beginner’s guide to chiral plasmonics: mostly harmless theory and the design of large-area substrates publication-title: Adv. Optical Mater. doi: 10.1002/adom.202100378 – volume: 7 start-page: 8198 year: 2011 end-page: 8206 ident: CR165 article-title: Cholesteric liquid crystal self-organization of gold nanoparticles publication-title: Soft Matter doi: 10.1039/c1sm05628j – volume: 4 start-page: 851 year: 2017 end-page: 856 ident: CR267 article-title: A new class of chiral semiconductors: chiral-organic-molecule-incorporating organic–inorganic hybrid perovskites publication-title: Mater. Horiz. doi: 10.1039/C7MH00197E – volume: 40 start-page: 1377 year: 2007 end-page: 1385 ident: CR116 article-title: Cholesteric liquid crystal inductive asymmetric polymerization: synthesis of chiral polythiophene derivatives from achiral monomers in a cholesteric liquid crystal publication-title: Macromolecules doi: 10.1021/ma062296k – volume: 10 start-page: 797 year: 2021 end-page: 824 ident: CR227 article-title: Ligand-induced chirality and optical activity in semiconductor nanocrystals: theory and applications publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0473 – ident: CR102 – volume: 44 start-page: 8990 year: 2011 end-page: 8998 ident: CR202 article-title: Rheology and phase behavior of lyotropic cellulose nanocrystal suspensions publication-title: Macromolecules doi: 10.1021/ma201649f – volume: 10 start-page: 786 year: 2022 end-page: 792 ident: CR319 article-title: Submicrosecond electro-optical switching of one-dimensional soft photonic crystals publication-title: Photon. Res. doi: 10.1364/PRJ.449284 – volume: 36 start-page: 8965 year: 2020 end-page: 8970 ident: CR34 article-title: Chirality transfer in carbon dot-composited sol-gel systems for excitation-dependent circularly polarized luminescence publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01513 – volume: 3 start-page: 321 year: 1996 end-page: 322 ident: CR143 article-title: Spatial organization and patterning of gold nanoparticles on self-assembled biolipid tubular templates publication-title: Chem. Commun. doi: 10.1039/cc9960000321 – volume: 59 start-page: m381 year: 2003 end-page: m383 ident: CR265 article-title: Bis[( )-β-phenethylammonium] tribromoplumbate (II) publication-title: Acta Crystallogr. Sect. E doi: 10.1107/S1600536803010985 – volume: 10 start-page: 1744 year: 2016 end-page: 1755 ident: CR240 article-title: Chiral graphene quantum dots publication-title: ACS Nano doi: 10.1021/acsnano.5b06369 – volume: 17 start-page: 1404 year: 2021 end-page: 1408 ident: CR306 article-title: Near-infrared light-induced photoisomerization and photodissociation of a chiral fluorescent photoswitch in cholesteric liquid crystals assisted by upconversion nanoparticles publication-title: Soft Matter doi: 10.1039/D0SM02109A – volume: 136 start-page: 4788 year: 2014 end-page: 4793 ident: CR206 article-title: Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501642p – volume: 11 year: 2020 ident: CR66 article-title: Sequentially amplified circularly polarized ultraviolet luminescence for enantioselective photopolymerization publication-title: Nat. Commun. doi: 10.1038/s41467-020-19479-1 – volume: 21 start-page: 3410 year: 2021 end-page: 3417 ident: CR132 article-title: Plasmonic helical nanoantenna as a converter between longitudinal fields and circularly polarized waves publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04948 – volume: 6 start-page: 444 year: 2014 end-page: 472 ident: CR156 article-title: Chiral liquid crystals: structures, phases, effects publication-title: Symmetry doi: 10.3390/sym6020444 – ident: CR84 – volume: 59 start-page: 11087 year: 2020 end-page: 11092 ident: CR242 article-title: Chiral carbon dots mimicking topoisomerase I to mediate the topological rearrangement of supercoiled DNA enantioselectively publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002904 – volume: 114 start-page: 5161 year: 2014 end-page: 5214 ident: CR280 article-title: Upconversion nanoparticles: design, nanochemistry, and applications in theranostics publication-title: Chem. Rev. doi: 10.1021/cr400425h – volume: 12 start-page: 19497 year: 2020 end-page: 19515 ident: CR60 article-title: Circularly polarized luminescence of nanoassemblies multi-dimensional chiral architecture control publication-title: Nanoscale doi: 10.1039/D0NR04239K – volume: 26 start-page: 10 year: 2016 end-page: 28 ident: CR93 article-title: Stimuli-directing self-organized 3D liquid-crystalline nanostructures: from materials design to photonic applications publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502071 – volume: 13 start-page: 3256 year: 2013 end-page: 3261 ident: CR147 article-title: Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures publication-title: Nano Lett. doi: 10.1021/nl4013776 – volume: 10 start-page: 2102475 year: 2022 ident: CR310 article-title: Near-infrared light-driven three-dimensional soft photonic crystals loaded with upconversion nanoparticles publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102475 – volume: 8 start-page: 1048 year: 2020 end-page: 1053 ident: CR247 article-title: Circularly polarized luminescence from semiconductor quantum rods templated by self-assembled cellulose nanocrystals publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC05751J – volume: 139 start-page: 9783 year: 2017 end-page: 9786 ident: CR298 article-title: Amplification of circularly polarized luminescence through triplet–triplet annihilation-based photon upconversion publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04611 – volume: 30 start-page: 1705948 year: 2018 ident: CR248 article-title: Uncovering the circular polarization potential of chiral photonic cellulose films for photonic applications publication-title: Adv. Mater. doi: 10.1002/adma.201705948 – volume: 33 start-page: 2101797 year: 2021 ident: CR301 article-title: Multi-light-responsive upconversion-and-downshifting-based circularly polarized luminescent switches in chiral metal-organic frameworks publication-title: Adv. Mater. doi: 10.1002/adma.202101797 – ident: CR136 – volume: 25 start-page: 38 year: 2019 end-page: 67 ident: CR279 article-title: Stimuli-responsive nanotheranostics based on lanthanide-doped upconversion nanoparticles for cancer imaging and therapy: current advances and future challenges publication-title: Nano Today doi: 10.1016/j.nantod.2019.02.007 – volume: 15 start-page: 1435 year: 2003 end-page: 1438 ident: CR114 article-title: The chiroptical properties of a thermally annealed film of chiral substituted polyfluorene depend on film thickness publication-title: Adv. Mater. doi: 10.1002/adma.200305243 – volume: 10 year: 2019 ident: CR291 article-title: Upconversion superballs for programmable photoactivation of therapeutics publication-title: Nat. Commun. doi: 10.1038/s41467-019-12506-w – volume: 397 start-page: 506 year: 1999 end-page: 508 ident: CR120 article-title: Circularly polarized light generated by photoexcitation of luminophores in glassy liquid-crystal films publication-title: Nature doi: 10.1038/17343 – volume: 53 start-page: 10641 year: 2014 end-page: 10644 ident: CR118 article-title: Dynamic switching of the circularly polarized luminescence of disubstituted polyacetylene by selective transmission through a thermotropic chiral nematic liquid crystal publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404250 – volume: 115 start-page: 10725 year: 2015 end-page: 10815 ident: CR281 article-title: Lanthanide nanoparticles: from design toward bioimaging and therapy publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00091 – volume: 10 start-page: 604 year: 2020 ident: CR191 article-title: Novel trends in lyotropic liquid crystals publication-title: Crystals doi: 10.3390/cryst10070604 – volume: 32 start-page: 2111280 year: 2022 ident: CR190 article-title: Liquid crystal templated chiral plasmonic films with dynamic tunability and moldability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111280 – volume: 56 start-page: 13649 year: 2020 end-page: 13652 ident: CR305 article-title: Near-infrared light-controlled circularly polarized luminescence of self-organized emissive helical superstructures assisted by upconversion nanoparticles publication-title: Chem. Commun. doi: 10.1039/D0CC05910B – volume: 3 start-page: 328 year: 2021 end-page: 343 ident: CR332 article-title: Chiral spintronics publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00302-9 – volume: 15 start-page: 20261 year: 2021 end-page: 20266 ident: CR219 article-title: Hierarchically fabricated amyloid fibers evaporation-induced self-assembly publication-title: ACS Nano doi: 10.1021/acsnano.1c08374 – volume: 33 start-page: 2008785 year: 2021 ident: CR263 article-title: Recent progress of chiral perovskites: materials, synthesis, and properties publication-title: Adv. Mater. doi: 10.1002/adma.202008785 – volume: 2 start-page: e48 year: 2021 ident: CR112 article-title: Circularly polarized luminescence of agglomerate emitters publication-title: Aggregate – ident: CR95 – volume: 9 start-page: 2002133 year: 2021 ident: CR32 article-title: Gold nanohelices for chiral plasmonic films by templated electroless plating publication-title: Adv. Optical Mater. doi: 10.1002/adom.202002133 – volume: 38 start-page: 737 year: 2011 end-page: 742 ident: CR245 article-title: Glass-forming photoactive cholesteric oligomers doped with quantum dots: novel materials with phototunable circularly polarised emission publication-title: Liq. Cryst. doi: 10.1080/02678292.2011.570796 – volume: 6 start-page: 125 year: 2022 end-page: 145 ident: CR15 article-title: Self-assembled inorganic chiral superstructures publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-021-00350-w – volume: 5 start-page: 4821 year: 2021 end-page: 4832 ident: CR59 article-title: Circularly polarized luminescence in chiral nematic liquid crystals: generation and amplification publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00335F – volume: 1 start-page: 16006 year: 2016 ident: CR237 article-title: Graphene quantum dots: it’s all in the twist publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.6 – volume: 13 start-page: 9074 year: 2019 end-page: 9081 ident: CR259 article-title: Self-assembly of emissive nanocellulose/quantum dot nanostructures for chiral fluorescent materials publication-title: ACS Nano doi: 10.1021/acsnano.9b03305 – volume: 325 start-page: 452 year: 2009 end-page: 456 ident: CR182 article-title: Chiral isotropic liquids from achiral molecules publication-title: Science doi: 10.1126/science.1170028 – volume: 2 start-page: 427 year: 2020 end-page: 439 ident: CR275 article-title: Emerging frontiers of upconversion nanoparticles publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.01.008 – volume: 1 start-page: 508 year: 2019 end-page: 512 ident: CR229 article-title: Optically active quantum dots with induced circularly polarized luminescence in amphiphilic peptide dendron hydrogel publication-title: Nanoscale Adv. doi: 10.1039/C8NA00216A – ident: CR152 – volume: 5 start-page: 1700040 year: 2017 ident: CR43 article-title: Plasmonic chiral nanostructures: chiroptical effects and applications publication-title: Adv. Optical Mater. doi: 10.1002/adom.201700040 – volume: 33 start-page: 2005888 year: 2021 ident: CR272 article-title: Recent advances in synthesis, properties, and applications of metal halide perovskite nanocrystals/polymer nanocomposites publication-title: Adv. Mater. doi: 10.1002/adma.202005888 – volume: 32 start-page: 476 year: 2020 end-page: 488 ident: CR13 article-title: Self-assembly of chiral nanoparticles into semiconductor helices with tunable near-infrared optical activity publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04143 – volume: 11 start-page: 12937 year: 2020 end-page: 12954 ident: CR11 article-title: Engineering of chiral nanomaterials for biomimetic catalysis publication-title: Chem. Sci. doi: 10.1039/D0SC03245J – volume: 138 start-page: 13655 year: 2016 end-page: 13663 ident: CR26 article-title: Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07322 – ident: CR79 – volume: 115 start-page: 3225 year: 2018 end-page: 3230 ident: CR222 article-title: Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1721690115 – volume: 13 start-page: 595 year: 2022 end-page: 610 ident: CR44 article-title: Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures publication-title: Chem. Sci. doi: 10.1039/D1SC03327A – volume: 9 start-page: 139 year: 2020 ident: CR107 article-title: Electromagnetic chirality: from fundamentals to nontraditional chiroptical phenomena publication-title: Light.: Sci. Appl. doi: 10.1038/s41377-020-00367-8 – volume: 56 start-page: 15397 year: 2017 end-page: 15401 ident: CR232 article-title: Self-assembly of chiral gold clusters into crystalline nanocubes of exceptional optical activity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709827 – volume: 44 start-page: 1346 year: 2015 end-page: 1378 ident: CR289 article-title: Lab on upconversion nanoparticles: optical properties and applications engineering designed nanostructure publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00163J – volume: 9 start-page: 21607 year: 2021 end-page: 21658 ident: CR194 article-title: Lyotropic liquid crystals as templates for advanced materials publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02748D – volume: 7 start-page: 19062 year: 2019 end-page: 19071 ident: CR213 article-title: Improving homogeneity of iridescent cellulose nanocrystal films by surfactant-assisted spreading self-assembly publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04875 – volume: 64 start-page: 2060 year: 2021 end-page: 2104 ident: CR61 article-title: Frontiers in circularly polarized luminescence: molecular design, self-assembly, nanomaterials, and applications publication-title: Sci. China Chem. doi: 10.1007/s11426-021-1146-6 – volume: 12 start-page: 19760 year: 2020 end-page: 19767 ident: CR176 article-title: Amplifying the excited state chirality through self-assembly and subsequent enhancement via plasmonic silver nanowires publication-title: Nanoscale doi: 10.1039/D0NR04510A – volume: 31 start-page: 2104596 year: 2021 ident: CR250 article-title: Dynamic chiro-optics of bio-inorganic nanomaterials via seamless co-assembly of semiconducting nanorods and polysaccharide nanocrystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104596 – volume: 3 start-page: 2508 year: 2021 end-page: 2515 ident: CR170 article-title: Photo-tunable epsilon-near-zero behavior in a self-assembled liquid crystal – nanoparticle hybrid material publication-title: Nanoscale Adv. doi: 10.1039/D0NA01039A – ident: CR274 – volume: 13 start-page: 330 year: 2018 end-page: 336 ident: CR221 article-title: Confinement-induced liquid crystalline transitions in amyloid fibril cholesteric tactoids publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0071-9 – volume: 118 start-page: 9690 year: 2014 end-page: 9695 ident: CR174 article-title: Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters publication-title: J. Phys. Chem. C. doi: 10.1021/jp5025813 – volume: 53 start-page: 11702 year: 2014 end-page: 11715 ident: CR277 article-title: Enhancing luminescence in lanthanide-doped upconversion nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403408 – volume: 3 start-page: 2269 year: 2021 end-page: 2279 ident: CR169 article-title: Chiral plasmonic liquid crystal gold nanoparticles: self-assembly into a circular dichroism responsive helical lamellar superstructure publication-title: Nanoscale Adv. doi: 10.1039/D0NA01070G – volume: 130 start-page: 5642 year: 2008 end-page: 5643 ident: CR292 article-title: Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF nanoparticles publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800868a – volume: 93 start-page: 201901 year: 2008 ident: CR129 article-title: Polymer stabilized liquid crystal films reflecting both right- and left-circularly polarized light publication-title: Appl. Phys. Lett. doi: 10.1063/1.3003869 – volume: 123 start-page: 10153 year: 2001 end-page: 10163 ident: CR173 article-title: Amplification of chirality: the “sergeants and soldiers” principle applied to dynamic hydrogen-bonded assemblies publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010610e – volume: 32 start-page: 711 year: 2014 end-page: 726 ident: CR113 article-title: Techniques for physicochemical characterization of nanomaterials publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.11.006 – volume: 358 start-page: 1072 year: 2017 end-page: 1074 ident: CR328 article-title: Three-dimensional mechanical metamaterials with a twist publication-title: Science doi: 10.1126/science.aao4640 – volume: 13 start-page: 4574 year: 2021 end-page: 4582 ident: CR180 article-title: Converging microlens array using nematic liquid crystals doped with chiral nanoparticles publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21044 – volume: 14 start-page: 592 year: 2022 end-page: 601 ident: CR148 article-title: Amplifying inorganic chirality using liquid crystals publication-title: Nanoscale doi: 10.1039/D1NR06036H – volume: 11 start-page: 311 year: 2020 end-page: 317 ident: CR300 article-title: Amplifying dissymmetry factor of upconverted circularly polarized luminescence through chirality-induced spin polarization in the photon upconversion process publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03408 – volume: 55 start-page: 5179 year: 2019 end-page: 5182 ident: CR318 article-title: Strong CPL of achiral AIE-active dyes induced by supramolecular self-assembly in chiral nematic liquid crystals (AIE-N*-LCs) publication-title: Chem. Commun. doi: 10.1039/C9CC01678C – volume: 323 start-page: 112 year: 2009 end-page: 116 ident: CR144 article-title: Control of self-assembly of DNA tubules through integration of gold nanoparticles publication-title: Science doi: 10.1126/science.1165831 – volume: 8 start-page: 686 year: 2006 end-page: 695 ident: CR266 article-title: Synthesis and crystal structures of inorganic–organic hybrids incorporating an aromatic amine with a chiral functional group publication-title: CrystEngComm doi: 10.1039/B606987H – volume: 20 start-page: 8453 year: 2020 end-page: 8460 ident: CR269 article-title: Optically active perovskite CsPbBr nanocrystals helically arranged on inorganic silica nanohelices publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02013 – volume: 12 start-page: 58 year: 2020 end-page: 66 ident: CR49 article-title: Plasmonic metamaterials for chiral sensing applications publication-title: Nanoscale doi: 10.1039/C9NR08433A – volume: 16 start-page: 226 year: 2022 end-page: 234 ident: CR321 article-title: Digital photoprogramming of liquid-crystal superstructures featuring intrinsic chiral photoswitches publication-title: Nat. Photon. doi: 10.1038/s41566-022-00957-5 – volume: 10 start-page: 924 year: 2015 ident: 913_CR297 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.251 – volume: 15 start-page: 3709 year: 2021 ident: 913_CR285 publication-title: ACS Nano doi: 10.1021/acsnano.0c09231 – volume: 64 start-page: 2060 year: 2021 ident: 913_CR61 publication-title: Sci. China Chem. doi: 10.1007/s11426-021-1146-6 – volume: 122 start-page: 9078 year: 2022 ident: 913_CR327 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00740 – volume: 9 start-page: 10377 year: 2015 ident: 913_CR207 publication-title: ACS Nano doi: 10.1021/acsnano.5b04552 – volume: 34 start-page: 100953 year: 2020 ident: 913_CR10 publication-title: Nano Today doi: 10.1016/j.nantod.2020.100953 – volume: 1 start-page: 508 year: 2019 ident: 913_CR229 publication-title: Nanoscale Adv. doi: 10.1039/C8NA00216A – volume: 4 start-page: 851 year: 2017 ident: 913_CR267 publication-title: Mater. Horiz. doi: 10.1039/C7MH00197E – volume: 32 start-page: 1905975 year: 2020 ident: 913_CR161 publication-title: Adv. Mater. doi: 10.1002/adma.201905975 – volume: 130 start-page: 5642 year: 2008 ident: 913_CR292 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja800868a – volume: 1 start-page: 16006 year: 2016 ident: 913_CR237 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.6 – volume: 53 start-page: 10641 year: 2014 ident: 913_CR118 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201404250 – volume: 6 year: 2015 ident: 913_CR52 publication-title: Nat. Commun. doi: 10.1038/ncomms9379 – volume: 5 start-page: 109 year: 2021 ident: 913_CR67 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-020-00235-4 – volume: 24 start-page: 163 year: 1998 ident: 913_CR119 publication-title: Liq. Cryst. doi: 10.1080/026782998207334 – volume: 13 start-page: 595 year: 2022 ident: 913_CR44 publication-title: Chem. Sci. doi: 10.1039/D1SC03327A – volume: 7 start-page: 53057 year: 2017 ident: 913_CR241 publication-title: RSC Adv. doi: 10.1039/C7RA10611D – ident: 913_CR80 doi: 10.1002/0471238961.1209172103151212.a01.pub3 – volume: 10 start-page: 604 year: 2020 ident: 913_CR191 publication-title: Crystals doi: 10.3390/cryst10070604 – volume: 139 start-page: 9783 year: 2017 ident: 913_CR298 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04611 – volume: 33 start-page: 2005888 year: 2021 ident: 913_CR272 publication-title: Adv. Mater. doi: 10.1002/adma.202005888 – volume: 2 start-page: e141 year: 2021 ident: 913_CR28 publication-title: Aggregate doi: 10.1002/agt2.141 – volume: 28 start-page: 1208 year: 2016 ident: 913_CR278 publication-title: Adv. Mater. doi: 10.1002/adma.201502843 – volume: 5 start-page: 1700040 year: 2017 ident: 913_CR43 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201700040 – volume: 15 start-page: 4956 year: 2021 ident: 913_CR171 publication-title: ACS Nano doi: 10.1021/acsnano.0c09802 – volume: 4 start-page: 534 year: 2016 ident: 913_CR317 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500646 – volume: 55 start-page: 5179 year: 2019 ident: 913_CR318 publication-title: Chem. Commun. doi: 10.1039/C9CC01678C – volume: 119 start-page: 12208 year: 2019 ident: 913_CR7 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00234 – volume: 32 start-page: 1905585 year: 2020 ident: 913_CR38 publication-title: Adv. Mater. doi: 10.1002/adma.201905585 – volume: 6 start-page: 444 year: 2014 ident: 913_CR156 publication-title: Symmetry doi: 10.3390/sym6020444 – volume: 32 start-page: 1904581 year: 2020 ident: 913_CR188 publication-title: Adv. Mater. doi: 10.1002/adma.201904581 – volume: 11 year: 2020 ident: 913_CR66 publication-title: Nat. Commun. doi: 10.1038/s41467-020-19479-1 – volume: 30 start-page: 1705948 year: 2018 ident: 913_CR248 publication-title: Adv. Mater. doi: 10.1002/adma.201705948 – ident: 913_CR5 doi: 10.1002/9783527682782 – volume: 113 start-page: 16538 year: 2009 ident: 913_CR128 publication-title: J. Phys. Chem. C. doi: 10.1021/jp903394r – volume: 33 start-page: 2007668 year: 2021 ident: 913_CR41 publication-title: Adv. Mater. doi: 10.1002/adma.202007668 – volume: 12 start-page: 20347 year: 2020 ident: 913_CR283 publication-title: Nanoscale doi: 10.1039/D0NR04809G – volume: 6 start-page: 025031 year: 2019 ident: 913_CR196 publication-title: 2D Mater. doi: 10.1088/2053-1583/ab0581 – volume: 10 start-page: 308 year: 2015 ident: 913_CR56 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2015.2 – volume: 137 start-page: 12736 year: 2015 ident: 913_CR167 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05059 – volume: 51 start-page: 530 year: 2015 ident: 913_CR215 publication-title: Chem. Commun. doi: 10.1039/C4CC07596J – volume: 17 start-page: 1404 year: 2021 ident: 913_CR306 publication-title: Soft Matter doi: 10.1039/D0SM02109A – volume: 27 start-page: 2065 year: 2015 ident: 913_CR309 publication-title: Adv. Mater. doi: 10.1002/adma.201405690 – volume: 10 start-page: 558 year: 2015 ident: 913_CR235 publication-title: Nat. Protoc. doi: 10.1038/nprot.2015.028 – volume: 371 start-page: 1129 year: 2021 ident: 913_CR64 publication-title: Science doi: 10.1126/science.abf5291 – volume: 116 start-page: 15089 year: 2016 ident: 913_CR74 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00415 – volume: 11 year: 2020 ident: 913_CR262 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15016-2 – volume: 13 start-page: 3256 year: 2013 ident: 913_CR147 publication-title: Nano Lett. doi: 10.1021/nl4013776 – volume: 12 year: 2021 ident: 913_CR157 publication-title: Nat. Commun. doi: 10.1038/s41467-021-23631-w – volume: 10 start-page: 3410 year: 2016 ident: 913_CR324 publication-title: ACS Nano doi: 10.1021/acsnano.5b07379 – volume: 6 start-page: 381 year: 2011 ident: 913_CR178 publication-title: Nano Today doi: 10.1016/j.nantod.2011.06.003 – volume: 281 start-page: 672 year: 1998 ident: 913_CR3 publication-title: Science doi: 10.1126/science.281.5377.672 – ident: 913_CR84 doi: 10.1002/9783527816774.ch3 – volume: 4 start-page: 247 year: 2016 ident: 913_CR150 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201500533 – volume: 32 start-page: 1801335 year: 2020 ident: 913_CR1 publication-title: Adv. Mater. doi: 10.1002/adma.201801335 – volume: 5 start-page: 4821 year: 2021 ident: 913_CR59 publication-title: Mater. Chem. Front. doi: 10.1039/D1QM00335F – volume: 7 start-page: 3021 year: 2014 ident: 913_CR211 publication-title: Materials doi: 10.3390/ma7043021 – volume: 14 start-page: 11130 year: 2020 ident: 913_CR258 publication-title: ACS Nano doi: 10.1021/acsnano.0c02060 – volume: 6 start-page: 125 year: 2022 ident: 913_CR15 publication-title: Nat. Rev. Chem. doi: 10.1038/s41570-021-00350-w – volume: 13 start-page: 1203 year: 2013 ident: 913_CR175 publication-title: Nano Lett. doi: 10.1021/nl304638a – volume: 9 start-page: 2100378 year: 2021 ident: 913_CR42 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202100378 – volume: 531 start-page: 352 year: 2016 ident: 913_CR92 publication-title: Nature doi: 10.1038/nature17141 – volume: 10 start-page: 1744 year: 2016 ident: 913_CR240 publication-title: ACS Nano doi: 10.1021/acsnano.5b06369 – volume: 25 start-page: 520 year: 2013 ident: 913_CR126 publication-title: Adv. Mater. doi: 10.1002/adma.201203182 – volume: 7 start-page: 13794 year: 2019 ident: 913_CR68 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC04144C – volume: 7 start-page: 3021 year: 2020 ident: 913_CR164 publication-title: Mater. Horiz. doi: 10.1039/D0MH01274B – volume: 5 start-page: 336 year: 2020 ident: 913_CR51 publication-title: Nanoscale Horiz. doi: 10.1039/C9NH00525K – volume: 15 start-page: 2753 year: 2021 ident: 913_CR295 publication-title: ACS Nano doi: 10.1021/acsnano.0c08539 – volume: 5 start-page: eaax9501 year: 2019 ident: 913_CR320 publication-title: Sci. Adv. doi: 10.1126/sciadv.aax9501 – volume: 3 start-page: e1602735 year: 2017 ident: 913_CR46 publication-title: Sci. Adv. doi: 10.1126/sciadv.1602735 – volume: 21 start-page: 3410 year: 2021 ident: 913_CR132 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c04948 – volume: 11 start-page: 311 year: 2020 ident: 913_CR300 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b03408 – volume: 116 start-page: 18322 year: 2019 ident: 913_CR193 publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1906511116 – volume: 13 start-page: 2804 year: 2019 ident: 913_CR36 publication-title: ACS Nano doi: 10.1021/acsnano.8b08273 – volume: 104 start-page: 1 year: 2019 ident: 913_CR155 publication-title: Prog. Mater. Sci. doi: 10.1016/j.pmatsci.2019.03.005 – volume: 15 start-page: 1283 year: 2014 ident: 913_CR185 publication-title: ChemPhysChem doi: 10.1002/cphc.201301194 – volume: 7 start-page: 21797 year: 2015 ident: 913_CR209 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b05645 – volume: 8 start-page: 686 year: 2006 ident: 913_CR266 publication-title: CrystEngComm doi: 10.1039/B606987H – volume: 4 start-page: eaat4436 year: 2018 ident: 913_CR141 publication-title: Sci. Adv. doi: 10.1126/sciadv.aat4436 – volume: 66 start-page: 263 year: 2015 ident: 913_CR331 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-040214-121554 – volume: 30 start-page: 1705011 year: 2018 ident: 913_CR35 publication-title: Adv. Mater. doi: 10.1002/adma.201705011 – volume: 8 start-page: 2475 year: 2021 ident: 913_CR78 publication-title: Mater. Horiz. doi: 10.1039/D1MH00623A – volume: 423 start-page: 31 year: 2003 ident: 913_CR87 publication-title: Nature doi: 10.1038/423031a – volume: 40 start-page: 1377 year: 2007 ident: 913_CR116 publication-title: Macromolecules doi: 10.1021/ma062296k – volume: 32 start-page: 476 year: 2020 ident: 913_CR13 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b04143 – volume: 3 start-page: e148 year: 2022 ident: 913_CR58 publication-title: Aggregate doi: 10.1002/agt2.148 – volume: 26 start-page: 7178 year: 2014 ident: 913_CR210 publication-title: Adv. Mater. doi: 10.1002/adma.201402699 – volume: 13 start-page: 4176 year: 2017 ident: 913_CR201 publication-title: Soft Matter doi: 10.1039/C7SM00384F – volume: 31 start-page: 1805683 year: 2019 ident: 913_CR296 publication-title: Adv. Mater. doi: 10.1002/adma.201805683 – volume: 130 start-page: 13555 year: 2008 ident: 913_CR145 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805683r – volume: 139 start-page: 15043 year: 2017 ident: 913_CR146 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07143 – volume: 115 start-page: 7304 year: 2015 ident: 913_CR2 publication-title: Chem. Rev. doi: 10.1021/cr500671p – volume: 8 start-page: 5 year: 2001 ident: 913_CR249 publication-title: Cellulose doi: 10.1023/A:1016624330458 – volume: 9 start-page: 1 year: 2021 ident: 913_CR29 publication-title: Liq. Cryst. Rev. doi: 10.1080/21680396.2021.1930596 – volume: 115 start-page: 10725 year: 2015 ident: 913_CR281 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00091 – volume: 30 start-page: 100824 year: 2020 ident: 913_CR9 publication-title: Nano Today doi: 10.1016/j.nantod.2019.100824 – volume: 36 start-page: 8965 year: 2020 ident: 913_CR34 publication-title: Langmuir doi: 10.1021/acs.langmuir.0c01513 – volume: 20 start-page: 8675 year: 2020 ident: 913_CR65 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c03445 – volume: 29 start-page: 1700676 year: 2017 ident: 913_CR70 publication-title: Adv. Mater. doi: 10.1002/adma.201700676 – volume: 10 year: 2019 ident: 913_CR252 publication-title: Nat. Commun. doi: 10.1038/s41467-019-08351-6 – volume: 2 start-page: 427 year: 2020 ident: 913_CR275 publication-title: Trends Chem. doi: 10.1016/j.trechm.2020.01.008 – volume: 26 start-page: 10 year: 2016 ident: 913_CR93 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502071 – volume: 108 start-page: 5188 year: 2011 ident: 913_CR325 publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1015831108 – volume: 43 start-page: 2062 year: 2016 ident: 913_CR162 publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1196506 – volume: 12 start-page: 19760 year: 2020 ident: 913_CR176 publication-title: Nanoscale doi: 10.1039/D0NR04510A – volume: 9 start-page: 2002133 year: 2021 ident: 913_CR32 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202002133 – volume: 7 start-page: 11863 year: 2015 ident: 913_CR212 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b01478 – volume: 59 start-page: 21899 year: 2020 ident: 913_CR311 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202008564 – volume: 137 start-page: 457 year: 2015 ident: 913_CR22 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja511333q – volume: 4 start-page: 9687 year: 2016 ident: 913_CR124 publication-title: J. Mater. Chem. C. doi: 10.1039/C6TC02629J – volume: 50 start-page: 3738 year: 2021 ident: 913_CR16 publication-title: Chem. Soc. Rev. doi: 10.1039/C9CS00765B – volume: 3 start-page: 2269 year: 2021 ident: 913_CR169 publication-title: Nanoscale Adv. doi: 10.1039/D0NA01070G – volume: 51 start-page: 9845 year: 2015 ident: 913_CR149 publication-title: Chem. Commun. doi: 10.1039/C5CC02127H – volume: 56 start-page: 15397 year: 2017 ident: 913_CR232 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201709827 – volume: 114 start-page: 5161 year: 2014 ident: 913_CR280 publication-title: Chem. Rev. doi: 10.1021/cr400425h – volume: 118 start-page: 9690 year: 2014 ident: 913_CR174 publication-title: J. Phys. Chem. C. doi: 10.1021/jp5025813 – volume: 32 start-page: 2000820 year: 2020 ident: 913_CR304 publication-title: Adv. Mater. doi: 10.1002/adma.202000820 – ident: 913_CR187 doi: 10.1201/9781315372723 – volume: 55 start-page: 13090 year: 2016 ident: 913_CR71 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201606895 – volume: 125 start-page: 3256 year: 2021 ident: 913_CR198 publication-title: J. Phys. Chem. C. doi: 10.1021/acs.jpcc.0c11512 – volume: 13 start-page: 1479 year: 2019 ident: 913_CR30 publication-title: ACS Nano – volume: 49 start-page: 983 year: 2020 ident: 913_CR123 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS01007B – volume: 5 start-page: 423 year: 2020 ident: 913_CR261 publication-title: Nat. Rev. Mater. doi: 10.1038/s41578-020-0181-5 – volume: 136 start-page: 4480 year: 2014 ident: 913_CR308 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja500933h – volume: 120 start-page: 10145 year: 2020 ident: 913_CR39 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c00195 – volume: 28 start-page: 17256 year: 2012 ident: 913_CR217 publication-title: Langmuir doi: 10.1021/la3041902 – volume: 31 start-page: 2104596 year: 2021 ident: 913_CR250 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104596 – volume: 10 start-page: 8423 year: 2016 ident: 913_CR287 publication-title: ACS Nano doi: 10.1021/acsnano.6b03288 – volume: 6 year: 2015 ident: 913_CR55 publication-title: Nat. Commun. doi: 10.1038/ncomms9241 – volume: 33 start-page: 2008785 year: 2021 ident: 913_CR263 publication-title: Adv. Mater. doi: 10.1002/adma.202008785 – volume: 3 start-page: 1691 year: 2015 ident: 913_CR323 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500403 – volume: 13 start-page: 9678 year: 2021 ident: 913_CR172 publication-title: Nanoscale doi: 10.1039/D1NR01458G – volume: 8 start-page: 557650 year: 2021 ident: 913_CR40 publication-title: Front. Chem. doi: 10.3389/fchem.2020.557650 – volume: 5 start-page: 361 year: 2006 ident: 913_CR127 publication-title: Nat. Mater. doi: 10.1038/nmat1619 – volume: 8 start-page: 1335 year: 2021 ident: 913_CR288 publication-title: ACS Photon. doi: 10.1021/acsphotonics.0c01747 – volume: 365 start-page: 1475 year: 2019 ident: 913_CR27 publication-title: Science doi: 10.1126/science.aax5415 – volume: 56 start-page: 1117 year: 2020 ident: 913_CR233 publication-title: Chem. Commun. doi: 10.1039/C9CC09067C – ident: 913_CR110 – volume: 6 year: 2015 ident: 913_CR184 publication-title: Nat. Commun. doi: 10.1038/ncomms7590 – volume: 92 start-page: 3949 year: 2020 ident: 913_CR224 publication-title: Anal. Chem. doi: 10.1021/acs.analchem.9b05442 – volume: 8 start-page: 1901911 year: 2020 ident: 913_CR260 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201901911 – volume: 16 start-page: S1981 year: 2004 ident: 913_CR158 publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/16/19/010 – volume: 122 start-page: 4887 year: 2022 ident: 913_CR153 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00761 – volume: 50 start-page: 5808 year: 2011 ident: 913_CR284 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005159 – volume: 28 start-page: 5262 year: 2016 ident: 913_CR214 publication-title: Adv. Mater. doi: 10.1002/adma.201600940 – volume: 11 start-page: 12937 year: 2020 ident: 913_CR11 publication-title: Chem. Sci. doi: 10.1039/D0SC03245J – volume: 10 start-page: 172 year: 2019 ident: 913_CR234 publication-title: Chem. Sci. doi: 10.1039/C8SC03806F – volume: 13 start-page: 4574 year: 2021 ident: 913_CR180 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c21044 – volume: 7 start-page: 591 year: 2015 ident: 913_CR177 publication-title: Nat. Chem. doi: 10.1038/nchem.2280 – volume: 138 start-page: 13655 year: 2016 ident: 913_CR26 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07322 – ident: 913_CR326 doi: 10.1002/anie.202201674 – volume: 9 start-page: 139 year: 2020 ident: 913_CR107 publication-title: Light.: Sci. Appl. doi: 10.1038/s41377-020-00367-8 – volume: 6 start-page: 1801246 year: 2018 ident: 913_CR257 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201801246 – volume: 31 start-page: 1900818 year: 2019 ident: 913_CR192 publication-title: Adv. Mater. doi: 10.1002/adma.201900818 – volume: 57 start-page: 2796 year: 2021 ident: 913_CR316 publication-title: Chem. Commun. doi: 10.1039/D1CC00201E – volume: 33 start-page: 2104418 year: 2021 ident: 913_CR63 publication-title: Adv. Mater. doi: 10.1002/adma.202104418 – ident: 913_CR137 doi: 10.1007/978-3-319-04867-3_4 – volume: 15 start-page: 1435 year: 2003 ident: 913_CR114 publication-title: Adv. Mater. doi: 10.1002/adma.200305243 – volume: 14 start-page: 12918 year: 2020 ident: 913_CR189 publication-title: ACS Nano doi: 10.1021/acsnano.0c03964 – volume: 32 start-page: 711 year: 2014 ident: 913_CR113 publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2013.11.006 – volume: 3 start-page: 1768 year: 2019 ident: 913_CR231 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00332K – volume: 9 year: 2018 ident: 913_CR276 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04813-5 – volume: 33 start-page: 2101797 year: 2021 ident: 913_CR301 publication-title: Adv. Mater. doi: 10.1002/adma.202101797 – volume: 10 start-page: 2102475 year: 2022 ident: 913_CR310 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.202102475 – ident: 913_CR134 doi: 10.1081/E-ESCS3-120051438 – volume: 323 start-page: 112 year: 2009 ident: 913_CR144 publication-title: Science doi: 10.1126/science.1165831 – volume: 21 start-page: 3573 year: 2021 ident: 913_CR24 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.1c00596 – volume: 8 year: 2017 ident: 913_CR50 publication-title: Nat. Commun. doi: 10.1038/ncomms14180 – volume: 601 start-page: 366 year: 2022 ident: 913_CR109 publication-title: Nature doi: 10.1038/s41586-021-04243-2 – volume: 118 start-page: 10617 year: 2018 ident: 913_CR131 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.8b00359 – volume: 14 start-page: 1702990 year: 2018 ident: 913_CR48 publication-title: Small doi: 10.1002/smll.201702990 – volume: 12 start-page: 1778 year: 2021 ident: 913_CR168 publication-title: Chem. Sci. doi: 10.1039/D0SC05100D – volume: 12 start-page: 58 year: 2020 ident: 913_CR49 publication-title: Nanoscale doi: 10.1039/C9NR08433A – volume: 12 start-page: 19497 year: 2020 ident: 913_CR60 publication-title: Nanoscale doi: 10.1039/D0NR04239K – volume: 7 start-page: 11094 year: 2013 ident: 913_CR239 publication-title: ACS Nano doi: 10.1021/nn404832f – volume: 7 start-page: 8370 year: 2011 ident: 913_CR199 publication-title: Soft Matter doi: 10.1039/c1sm05590a – volume: 44 start-page: 8990 year: 2011 ident: 913_CR202 publication-title: Macromolecules doi: 10.1021/ma201649f – volume: 47 start-page: 1088 year: 2014 ident: 913_CR205 publication-title: Acc. Chem. Res. doi: 10.1021/ar400243m – ident: 913_CR274 doi: 10.1016/j.matt.2022.05.012 – volume: 122 start-page: 4946 year: 2022 ident: 913_CR81 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.1c00330 – volume: 336 start-page: 1275 year: 2012 ident: 913_CR88 publication-title: Science doi: 10.1126/science.1218764 – volume: 115 start-page: 395 year: 2015 ident: 913_CR286 publication-title: Chem. Rev. doi: 10.1021/cr400478f – volume: 25 start-page: 1999 year: 2013 ident: 913_CR159 publication-title: Adv. Mater. doi: 10.1002/adma.201203965 – volume: 59 start-page: 9888 year: 2020 ident: 913_CR312 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201916729 – ident: 913_CR57 doi: 10.1002/adma.202108431 – volume: 136 start-page: 6446 year: 2014 ident: 913_CR37 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5018199 – volume: 15 start-page: 192 year: 2020 ident: 913_CR329 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0606-8 – volume: 56 start-page: 12174 year: 2017 ident: 913_CR33 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201706308 – volume: 59 start-page: 11087 year: 2020 ident: 913_CR242 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202002904 – volume: 2 start-page: e48 year: 2021 ident: 913_CR112 publication-title: Aggregate doi: 10.1002/agt2.10 – ident: 913_CR138 doi: 10.1002/9781118680469.ch9 – volume: 44 start-page: 1346 year: 2015 ident: 913_CR289 publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00163J – ident: 913_CR103 doi: 10.1201/9781315120539-2 – volume: 16 start-page: 226 year: 2022 ident: 913_CR321 publication-title: Nat. Photon. doi: 10.1038/s41566-022-00957-5 – volume: 33 start-page: 2103309 year: 2021 ident: 913_CR82 publication-title: Adv. Mater. doi: 10.1002/adma.202103309 – volume: 1 start-page: 14 year: 2016 ident: 913_CR238 publication-title: Nanoscale Horiz. doi: 10.1039/C5NH00072F – volume: 397 start-page: 506 year: 1999 ident: 913_CR120 publication-title: Nature doi: 10.1038/17343 – volume: 9 start-page: 2101142 year: 2021 ident: 913_CR226 publication-title: Adv. Optical Mater. doi: 10.1002/adom.202101142 – volume: 13 start-page: 9074 year: 2019 ident: 913_CR259 publication-title: ACS Nano doi: 10.1021/acsnano.9b03305 – volume: 56 start-page: 15118 year: 2020 ident: 913_CR290 publication-title: Chem. Commun. doi: 10.1039/D0CC05878E – ident: 913_CR102 doi: 10.1007/978-3-319-16580-6_18 – volume: 10 year: 2019 ident: 913_CR19 publication-title: Nat. Commun. doi: 10.1038/s41467-019-10383-x – volume: 115 start-page: 3225 year: 2018 ident: 913_CR222 publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1721690115 – volume: 8 start-page: 100077 year: 2021 ident: 913_CR230 publication-title: Giant doi: 10.1016/j.giant.2021.100077 – volume: 15 start-page: 3692 year: 2015 ident: 913_CR264 publication-title: Nano Lett. doi: 10.1021/nl5048779 – volume: 34 start-page: 2110170 year: 2022 ident: 913_CR322 publication-title: Adv. Mater. doi: 10.1002/adma.202110170 – volume: 3 start-page: 2571 year: 2019 ident: 913_CR254 publication-title: Mater. Chem. Front. doi: 10.1039/C9QM00415G – volume: 3 start-page: 321 year: 1996 ident: 913_CR143 publication-title: Chem. Commun. doi: 10.1039/cc9960000321 – volume: 468 start-page: 422 year: 2010 ident: 913_CR204 publication-title: Nature doi: 10.1038/nature09540 – volume: 50 start-page: 5499 year: 2011 ident: 913_CR179 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201007536 – volume: 59 start-page: 226 year: 2020 ident: 913_CR251 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201911468 – ident: 913_CR136 doi: 10.1007/978-3-319-18293-3_6 – ident: 913_CR83 doi: 10.1002/9781118680469 – volume: 31 start-page: 5033 year: 2015 ident: 913_CR208 publication-title: Langmuir doi: 10.1021/acs.langmuir.5b00728 – volume: 31 start-page: 2104991 year: 2021 ident: 913_CR197 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202104991 – volume: 6 start-page: 924 year: 2019 ident: 913_CR142 publication-title: ACS Photon. doi: 10.1021/acsphotonics.8b01584 – volume: 61 start-page: 851 year: 2021 ident: 913_CR14 publication-title: Isr. J. Chem. doi: 10.1002/ijch.202100076 – volume: 26 start-page: 85 year: 2017 ident: 913_CR154 publication-title: Liq. Cryst. Today doi: 10.1080/1358314X.2017.1398307 – volume: 9 start-page: 555 year: 2021 ident: 913_CR228 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC07090G – volume: 55 start-page: 2994 year: 2016 ident: 913_CR73 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201505520 – volume: 12 start-page: 551 year: 2020 ident: 913_CR133 publication-title: Nat. Chem. doi: 10.1038/s41557-020-0453-0 – volume: 48 start-page: 5167 year: 2009 ident: 913_CR186 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200901206 – volume: 325 start-page: 449 year: 2009 ident: 913_CR85 publication-title: Science doi: 10.1126/science.1172051 – volume: 13 start-page: 862 year: 2014 ident: 913_CR25 publication-title: Nat. Mater. doi: 10.1038/nmat4031 – volume: 556 start-page: 360 year: 2018 ident: 913_CR17 publication-title: Nature doi: 10.1038/s41586-018-0034-1 – ident: 913_CR104 doi: 10.1002/9783527816774 – volume: 4 start-page: 582 year: 2020 ident: 913_CR122 publication-title: ChemPhotoChem doi: 10.1002/cptc.202000077 – volume: 13 start-page: 330 year: 2018 ident: 913_CR221 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-018-0071-9 – volume: 4 start-page: 113 year: 2022 ident: 913_CR108 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00391-6 – volume: 43 start-page: 2391 year: 2016 ident: 913_CR166 publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1225834 – volume: 55 start-page: 5914 year: 2019 ident: 913_CR315 publication-title: Chem. Commun. doi: 10.1039/C9CC02253H – volume: 8 start-page: 3284 year: 2020 ident: 913_CR313 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC07022B – volume: 368 start-page: 642 year: 2020 ident: 913_CR18 publication-title: Science doi: 10.1126/science.aaz7949 – volume: 7 start-page: 305 year: 2017 ident: 913_CR200 publication-title: Nanomaterials doi: 10.3390/nano7100305 – ident: 913_CR99 doi: 10.1002/9781118259993 – ident: 913_CR135 doi: 10.1007/978-3-319-18293-3_3 – volume: 47 start-page: 1044 year: 2018 ident: 913_CR72 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00630F – volume: 32 start-page: 1900110 year: 2020 ident: 913_CR111 publication-title: Adv. Mater. doi: 10.1002/adma.201900110 – volume: 3 start-page: 328 year: 2021 ident: 913_CR332 publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-021-00302-9 – volume: 18 start-page: 2103241 year: 2022 ident: 913_CR282 publication-title: Small doi: 10.1002/smll.202103241 – volume: 56 start-page: 13649 year: 2020 ident: 913_CR305 publication-title: Chem. Commun. doi: 10.1039/D0CC05910B – volume: 358 start-page: 1072 year: 2017 ident: 913_CR328 publication-title: Science doi: 10.1126/science.aao4640 – volume: 368 start-page: 1472 year: 2020 ident: 913_CR21 publication-title: Science doi: 10.1126/science.aba0980 – ident: 913_CR79 doi: 10.1002/adma.202109063 – volume: 32 start-page: 1906319 year: 2020 ident: 913_CR69 publication-title: Adv. Mater. doi: 10.1002/adma.201906319 – volume: 14 start-page: 592 year: 2022 ident: 913_CR148 publication-title: Nanoscale doi: 10.1039/D1NR06036H – volume: 59 start-page: 15226 year: 2020 ident: 913_CR53 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202006486 – volume: 33 start-page: 2005506 year: 2021 ident: 913_CR330 publication-title: Adv. Mater. doi: 10.1002/adma.202005506 – volume: 10 start-page: 797 year: 2021 ident: 913_CR227 publication-title: Nanophotonics doi: 10.1515/nanoph-2020-0473 – volume: 12 year: 2021 ident: 913_CR97 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21564-y – ident: 913_CR294 doi: 10.1007/978-981-15-2309-0 – volume: 7 start-page: 19062 year: 2019 ident: 913_CR213 publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.9b04875 – volume: 13 start-page: 12461 year: 2019 ident: 913_CR195 publication-title: ACS Nano doi: 10.1021/acsnano.9b01573 – volume: 325 start-page: 1513 year: 2009 ident: 913_CR139 publication-title: Science doi: 10.1126/science.1177031 – volume: 29 start-page: 1903155 year: 2019 ident: 913_CR270 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201903155 – volume: 5 start-page: 1700182 year: 2017 ident: 913_CR106 publication-title: Adv. Optical Mater. doi: 10.1002/adom.201700182 – volume: 2020 start-page: 6452123 year: 2020 ident: 913_CR302 publication-title: Research doi: 10.34133/2020/6452123 – volume: 29 start-page: 9 year: 2017 ident: 913_CR203 publication-title: Curr. Opin. Colloid Interface Sci. doi: 10.1016/j.cocis.2017.01.003 – volume: 26 start-page: 504 year: 2010 ident: 913_CR220 publication-title: Langmuir doi: 10.1021/la9021432 – ident: 913_CR95 doi: 10.1007/978-3-319-18293-3 – volume: 32 start-page: 1908175 year: 2020 ident: 913_CR299 publication-title: Adv. Mater. doi: 10.1002/adma.201908175 – volume: 20 start-page: 230 year: 2017 ident: 913_CR91 publication-title: Mater. Today doi: 10.1016/j.mattod.2017.04.028 – volume: 44 start-page: 1929 year: 2017 ident: 913_CR163 publication-title: Liq. Cryst. – volume: 50 start-page: 546 year: 2021 ident: 913_CR293 publication-title: Chem. Lett. doi: 10.1246/cl.200771 – volume: 6 year: 2015 ident: 913_CR140 publication-title: Nat. Commun. doi: 10.1038/ncomms7484 – volume: 3 start-page: 2508 year: 2021 ident: 913_CR170 publication-title: Nanoscale Adv. doi: 10.1039/D0NA01039A – volume: 179 start-page: 10 year: 2019 ident: 913_CR255 publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2019.04.028 – volume: 50 start-page: 11208 year: 2021 ident: 913_CR105 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS01583K – volume: 51 start-page: 15039 year: 2015 ident: 913_CR151 publication-title: Chem. Commun. doi: 10.1039/C5CC06146F – volume: 10 start-page: 3290 year: 2019 ident: 913_CR268 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.9b01224 – volume: 133 start-page: 3728 year: 2011 ident: 913_CR216 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja110369d – volume: 6 start-page: e202100256 year: 2022 ident: 913_CR225 publication-title: ChemPhotoChem doi: 10.1002/cptc.202200032 – volume: 59 start-page: m381 year: 2003 ident: 913_CR265 publication-title: Acta Crystallogr. Sect. E doi: 10.1107/S1600536803010985 – volume: 24 start-page: 777 year: 2014 ident: 913_CR253 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201302521 – volume: 4 start-page: eaas9819 year: 2018 ident: 913_CR20 publication-title: Sci. Adv. doi: 10.1126/sciadv.aas9819 – volume: 109 start-page: 15712 year: 2012 ident: 913_CR86 publication-title: Proc. Natl Acad. Sci. U.S.A doi: 10.1073/pnas.1210105109 – volume: 43 start-page: 101419 year: 2022 ident: 913_CR75 publication-title: Nano Today doi: 10.1016/j.nantod.2022.101419 – volume: 9 start-page: 21607 year: 2021 ident: 913_CR194 publication-title: J. Mater. Chem. A doi: 10.1039/D1TA02748D – volume: 8 start-page: 1048 year: 2020 ident: 913_CR247 publication-title: J. Mater. Chem. C. doi: 10.1039/C9TC05751J – volume: 15 start-page: 12457 year: 2021 ident: 913_CR6 publication-title: ACS Nano doi: 10.1021/acsnano.1c06959 – volume: 110 start-page: 5468 year: 2013 ident: 913_CR218 publication-title: Proc. Natl Acad. Sci. U.S.A. doi: 10.1073/pnas.1219476110 – volume: 483 start-page: 311 year: 2012 ident: 913_CR23 publication-title: Nature doi: 10.1038/nature10889 – volume: 2 start-page: 3851 year: 2021 ident: 913_CR121 publication-title: Mater. Adv. doi: 10.1039/D1MA00368B – volume: 38 start-page: 737 year: 2011 ident: 913_CR245 publication-title: Liq. Cryst. doi: 10.1080/02678292.2011.570796 – volume: 29 start-page: 1603560 year: 2017 ident: 913_CR125 publication-title: Adv. Mater. doi: 10.1002/adma.201603560 – volume: 34 start-page: 2105958 year: 2022 ident: 913_CR273 publication-title: Adv. Mater. doi: 10.1002/adma.202105958 – ident: 913_CR76 doi: 10.1002/adfm.202201884 – volume: 10 year: 2019 ident: 913_CR291 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12506-w – volume: 1 start-page: 2100007 year: 2021 ident: 913_CR90 publication-title: Small Sci. doi: 10.1002/smsc.202100007 – volume: 12 start-page: 50192 year: 2020 ident: 913_CR12 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c15955 – volume: 61 start-page: e202116219 year: 2022 ident: 913_CR77 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202116219 – volume: 93 start-page: 201901 year: 2008 ident: 913_CR129 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3003869 – volume: 7 start-page: 8198 year: 2011 ident: 913_CR165 publication-title: Soft Matter doi: 10.1039/c1sm05628j – volume: 123 start-page: 10153 year: 2001 ident: 913_CR173 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010610e – volume: 32 start-page: 2111280 year: 2022 ident: 913_CR190 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202111280 – volume: 371 start-page: 1368 year: 2021 ident: 913_CR117 publication-title: Science doi: 10.1126/science.abd8576 – volume: 11 start-page: 23512 year: 2019 ident: 913_CR303 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.9b05941 – volume: 33 start-page: 2005900 year: 2021 ident: 913_CR54 publication-title: Adv. Mater. doi: 10.1002/adma.202005900 – volume: 13 year: 2022 ident: 913_CR62 publication-title: Nat. Commun. doi: 10.1038/s41467-022-28220-z – volume: 10 start-page: 76 year: 2021 ident: 913_CR223 publication-title: Light. Sci. Appl. doi: 10.1038/s41377-021-00516-7 – volume: 32 start-page: 1906738 year: 2020 ident: 913_CR8 publication-title: Adv. Mater. doi: 10.1002/adma.201906738 – volume: 9 year: 2018 ident: 913_CR115 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04811-7 – volume: 3 start-page: 186 year: 2022 ident: 913_CR45 publication-title: Mater. Adv. doi: 10.1039/D1MA00915J – volume: 24 start-page: 12607 year: 2018 ident: 913_CR314 publication-title: Chem. A Eur. J. doi: 10.1002/chem.201801186 – volume: 21 start-page: 1746 year: 2009 ident: 913_CR160 publication-title: Adv. Mater. doi: 10.1002/adma.200803403 – volume: 8 start-page: 2189 year: 2012 ident: 913_CR94 publication-title: Small doi: 10.1002/smll.201200052 – volume: 11 start-page: 760 year: 2011 ident: 913_CR4 publication-title: Curr. Top. Med. Chem. doi: 10.2174/156802611795165098 – volume: 50 start-page: 5293 year: 2017 ident: 913_CR31 publication-title: Macromolecules doi: 10.1021/acs.macromol.7b01364 – volume: 52 start-page: 8828 year: 2013 ident: 913_CR183 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300872 – volume: 20 start-page: 8453 year: 2020 ident: 913_CR269 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.0c02013 – ident: 913_CR100 doi: 10.1002/9783527807369 – volume: 24 start-page: 6216 year: 2012 ident: 913_CR244 publication-title: Adv. Mater. doi: 10.1002/adma.201202227 – volume: 11 start-page: 75 year: 2022 ident: 913_CR256 publication-title: Light. Sci. Appl. doi: 10.1038/s41377-022-00764-1 – volume: 13 start-page: 41102 year: 2021 ident: 913_CR98 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.1c11711 – volume: 47 start-page: 586 year: 2018 ident: 913_CR236 publication-title: Chem. Soc. Rev. doi: 10.1039/C7CS00500H – volume: 15 start-page: 20261 year: 2021 ident: 913_CR219 publication-title: ACS Nano doi: 10.1021/acsnano.1c08374 – volume: 70 start-page: 275 year: 2019 ident: 913_CR47 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-050317-021332 – volume: 43 start-page: 994 year: 2016 ident: 913_CR246 publication-title: Liq. Cryst. doi: 10.1080/02678292.2016.1155771 – volume: 5 start-page: 1600956 year: 2017 ident: 913_CR307 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600956 – volume: 325 start-page: 452 year: 2009 ident: 913_CR182 publication-title: Science doi: 10.1126/science.1170028 – volume: 57 start-page: 2377 year: 2018 ident: 913_CR243 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201712453 – volume: 10 start-page: 786 year: 2022 ident: 913_CR319 publication-title: Photon. Res. doi: 10.1364/PRJ.449284 – ident: 913_CR152 doi: 10.1007/978-3-319-04867-3 – volume: 25 start-page: 38 year: 2019 ident: 913_CR279 publication-title: Nano Today doi: 10.1016/j.nantod.2019.02.007 – volume: 136 start-page: 4788 year: 2014 ident: 913_CR206 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501642p – volume: 27 start-page: 1702261 year: 2017 ident: 913_CR96 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201702261 – volume: 53 start-page: 11702 year: 2014 ident: 913_CR277 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403408 – volume: 4 start-page: 1 year: 2011 ident: 913_CR130 publication-title: Materials doi: 10.3390/ma4010001 – volume: 1 start-page: 229 year: 2002 ident: 913_CR89 publication-title: Nat. Mater. doi: 10.1038/nmat772 – volume: 29 start-page: 1602737 year: 2017 ident: 913_CR181 publication-title: Adv. Mater. doi: 10.1002/adma.201602737 – volume: 48 start-page: 310 year: 2019 ident: 913_CR271 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00740C – ident: 913_CR101 doi: 10.1002/9783527807369.ch3 |
SSID | ssj0000941087 ssib052855617 ssib038074990 ssib054953849 |
Score | 2.6427057 |
SecondaryResourceType | review_article |
Snippet | Chiral nanomaterials with intrinsic chirality or spatial asymmetry at the nanoscale are currently in the limelight of both fundamental research and diverse... This review focuses on liquid crystal-templated chiral functional nanomaterials, including chiral plasmonic nanomaterials and chiral luminescent nanomaterials,... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 223 |
SubjectTerms | 639/624/399/354 639/624/399/919 Catalysis Chirality Circular dichroism Lasers Luminescence Microwaves Nanomaterials Nanotechnology Optical and Electronic Materials Optical Devices Optics Photonics Physics Physics and Astronomy Review Review Article Reviews RF and Optical Engineering |
SummonAdditionalLinks | – databaseName: ProQuest Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LjxQhECa6xsSL8W3ratrEm5KFhh7Ai1HjZmPUk5vMjdBAu23G7tnpmcP6662iH5vxsdemIDRVFB9QfEXIS-mQBB059gFLUGlYSZ3UjDoGaBmj3UMK-f_ydXFyKj8ty-V44NaPYZWTT0yOOnQez8iPioU2kiMD2tv1OcWsUXi7OqbQuE5uIHUZWrVaqvmMhWENrca3Mkzoo14iwx7FEHaGjJh0sbceJdr-f2HNv0Mm_7g3TcvR8R1ye8SR-btB8XfJtdjeIzdTPKfv75Mfn5vzXRNyv7kA-LeiyEC1AlgJX84aaDlvXdsBWB3s702Or0ymIhDsfyJjbp9vu9w3mxSqurrI17gNbn5BI-DRMFzeo1t4QE6PP377cELHtArUw_hvaSG8riotudPBeK3B9XIda6mc4p4bZ0wdeKEiE9GUlYT9kmKwDUQx4UztxENy0HZtfEzyELyL2glR61o6wFqhqGrJq7LyQhYyZIRPg2v9yDmOqS9WNt19C20HhVhQiE0KsYuMvJrrrAfGjSul36POZklky04fus13O04-6yT3JSbmYo7JCjBxBNBWG60AjFVFEBk5nDRuxync20uDy8iLuRgmH96ouDZ2O5QBtFUio09GHg0GMvdElABulVAZUXums9fV_ZK2OUsE3wYwn2TQrdeTkV126_9D8eTqv3hKbhXJ7hXl8pAcbDe7-AwA1bZ6nmbNb_VIHYY priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkhcEN8NFBQkbmDhxM7a6W2LqKoVcIFKvVmO49CgJWk3u4f213fG-UALBYmrPUlGnrH9HD8_A7yRlkTQSWMfsQSTOc-YlZozyxEtE9u9DJT_z19mJ6dycZad7UA6noUJpP0gaRmG6ZEd9r6TJI3HiHvOScqSze7AHkm1Y27vzeeLr4vpzwouWPAjajghw4W-5eGtWSiI9d-GMP8kSv62WxomoeMHcH9Aj_G89_ch7PjmEdwNLE7XPYYfn-rLTV3GbnWFoG_JSHdqiWASS85rfHPc2KZFiNpn3WFMZ0vGKjTsfpJObhev29jVq0BQXV7FF7T4ra_xJTiOEUne0WDwBE6PP377cMKGyxSYw1Zfs1Q4XRRaJlaXudMaB9xE-0oqqxKX5DbPqzJJlefC51khcZWkOC7-yEzYvLLiKew2beP3IS5LZ722QlS6khYRVpkWlUyKrHBCprKMIBkb17hBaZwuvFiasOMttOkDYjAgJgTEzCJ4Oz1z0ets_NP6iGI2WZJGdihoV9_NkDPGysRldB0Xt1wWiIQ9QrUq1wohWJGWIoKDMeJm6LidSWea0gdhVwSvp2rscrSPYhvfbsgGMVZGOj4RPOsTZPJEZAhplVARqK3U2XJ1u6apz4Osd45IT3J0692YZL_c-ntTPP8_8xdwLw39QLFEHsDuerXxLxFWrYtXQz-6Ae2oHK0 priority: 102 providerName: Springer Nature |
Title | Liquid crystal-templated chiral nanomaterials: from chiral plasmonics to circularly polarized luminescence |
URI | https://link.springer.com/article/10.1038/s41377-022-00913-6 https://www.ncbi.nlm.nih.gov/pubmed/35835737 https://www.proquest.com/docview/2689410102 https://www.proquest.com/docview/2691053626 https://pubmed.ncbi.nlm.nih.gov/PMC9283403 https://doaj.org/article/a41c554290a04b099e273f987397b2d3 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BEBIviG8CowoSb2DNiZ3Y4a2rNk0VTAiY1DfLcRwtU0lH0z6Mv547Jy0rny88VbIv6enu7PudfPkZ4JW0RIJOHPuIJZgseMas1JxZjmiZut2r0PL__jQ_OZPTWTa7dtUX9YT19MC94Q6sTFxGlypxy2WJeMZjwq2xUsZEWqZV4PnEnHetmLro--Xwj9TwlQwX-qCTxK3HqHmdExcmy3cyUSDs_x3K_LVZ8qcT05CIju_B3QFBxuNe8_tww7cP4Hbo5HTdQ7h413xdN1XsllcI_OaMuKfmCChx5LzBN8etbRcIU_vIexvT9yWbKRTsvhBXbhevFrFrlqFJdX4VX1IB3HzDl-BeRo3yjjaER3B2fPR5csKGCxWYQ8uvWCqcLkstE6urwmmNm26ifS2VVYlLClsUdZWkynPhi6yUWCkpjgUgiQlb1FY8hr120fqnEFeVs15bIWpdS4soq0rLWiZlVjohU1lFkGyMa9zANk6XXsxNOPUW2vQOMegQExxi8gheb5-57Lk2_ip9SD7bShJPdhjA6DFD9Jh_RU8E-xuPm2HxdibNNYUPQq8IXm6ncdnRWYpt_WJNMoizMuLyieBJHyBbTUSGsFYJFYHaCZ0dVXdn2uY8UHsXiPYkR7XebILsh1p_NsWz_2GK53AnDatDsUTuw95qufYvEHCtyhHcVDM1glvj8fTTFH8Pj04_fMTRST4ZhXX3HZ91KaI |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxOfIGBAkeAJrTuzUDhJCfE0d6_a0SX0zjp2woC7pmlao_FH8jdw5Safysbe9xlf34juff47PvyPkhTBIgo4c-4AlqEhZQo1QjBoGaBmz3Z1P-T88GgxPxJdxMt4gv_q7MJhW2cdEH6hdbfEb-W48UKmIkAHt3fScYtUoPF3tS2i0bnGQL3_Alq15u_8J7Psyjvc-H38c0q6qALXw93Mac6uyTInIKJdapSDyRCovhDQyslFq0rRwUSxzxvM0yQRsFySDXRCKcZMWhkO_18h1WHgZbvbkWK6-6TDUUMnubg7jarcRyOhHMWWeIQMnHaytf75MwL-w7d8pmn-c0_rlb-8Oud3h1vB962h3yUZe3SM3fP6obe6T76PyfFG60M6WADcnFBmvJgBj4clpCT2HlalqAMetv78J8VZL3wSCzRky9DbhvA5tOfOpsZNlOMVtd_kTOoEIiun5FsPQA3JyJQP-kGxWdZU_IqFz1uTKcF6oQhjAdi7OChFlSWa5iIULSNQPrrYdxzmW2phof9bOlW4NosEg2htEDwLyavWbacvwcan0B7TZShLZuf2DevZNd5NdGxHZBAuBMcNEBhg8B5BYpEoC-MtixwOy01tcdyGj0RcOHpDnq2aY7HiCY6q8XqAMoLsEGYQCstU6yEoTngCYllwGRK65zpqq6y1VeeoJxVPAmIKBWq97J7tQ6_9DsX35WzwjN4fHhyM92j86eExuxX4OSBqJHbI5ny3yJwDm5tlTP4NC8vWqp-xvF5palw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUGCJ7DqxE7tICHE2KqNjWpCTNqbcZyEBZWka1qh8tP4dZzjXKZy2dteY9c69bnkO_Hxdwh5LgySoCPHPmAJKmIWUSMUo4YBWsZq99SV_H-cjPaOxYeT6GSD_OruwmBZZRcTXaBOK4vfyIfhSMUiQAa0Yd6WRRztjN_Ozih2kMKT1q6dRmMiB9nqB6Rv9Zv9HdD1izAc735-v0fbDgPUgigLGnKrkkSJwKg0tkpBFApUlgtpZGCD2MRxngahzBjP4igRkDpIBhkRTuMmzg2Hda-QTYlZ0YBsbu9Ojj71X3gYyqtke1OHcTWsBfL7USygZ8jHSUdrb0PXNOBfSPfvgs0_Tm3dy3B8k9xoUaz_rjG7W2QjK2-Tq66a1NZ3yLfD4mxZpL6drwB8TinyX00B1MKT0wJW9ktTVgCVG-t_7eMdl24IJtbfka-39heVb4u5K5SdrvwZJuHFT1gE4ikW61sMSnfJ8aVs-T0yKKsye0D8NLUmU4bzXOXCANJLwyQXQRIllotQpB4Jus3VtmU8x8YbU-1O3rnSjUI0KEQ7heiRR172v5k1fB8Xzt5GnfUzkavbPajmX3Xr-tqIwEbYFowZJhJA5BlAxjxWEqBgEqbcI1udxnUbQGp9bu4eedYPg-vjeY4ps2qJcwDrRcgn5JH7jYH0kvAIoLXk0iNyzXTWRF0fKYtTRy8eA-IUDMR61RnZuVj_34qHF_-Lp-QauKs-3J8cPCLXQ-cCkgZiiwwW82X2GJDdInnSupBPvly21_4GK9xgMg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Liquid+crystal-templated+chiral+nanomaterials%3A+from+chiral+plasmonics+to+circularly+polarized+luminescence&rft.jtitle=Light%2C+science+%26+applications&rft.au=Zhang%2C+Xuan&rft.au=Xu%2C+Yiyi&rft.au=Valenzuela%2C+Cristian&rft.au=Zhang%2C+Xinfang&rft.date=2022-07-14&rft.pub=Nature+Publishing+Group+UK&rft.issn=2095-5545&rft.eissn=2047-7538&rft.volume=11&rft_id=info:doi/10.1038%2Fs41377-022-00913-6&rft_id=info%3Apmid%2F35835737&rft.externalDocID=PMC9283403 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7538&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7538&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7538&client=summon |