Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer

Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological...

Full description

Saved in:
Bibliographic Details
Published inSignal transduction and targeted therapy Vol. 6; no. 1; pp. 362 - 25
Main Authors Li, Kai, Shi, Houhui, Zhang, Benxia, Ou, Xuejin, Ma, Qizhi, Chen, Yue, Shu, Pei, Li, Dan, Wang, Yongsheng
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.10.2021
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
AbstractList Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.
ArticleNumber 362
Author Li, Kai
Ma, Qizhi
Li, Dan
Wang, Yongsheng
Ou, Xuejin
Shu, Pei
Zhang, Benxia
Shi, Houhui
Chen, Yue
Author_xml – sequence: 1
  givenname: Kai
  surname: Li
  fullname: Li, Kai
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 2
  givenname: Houhui
  surname: Shi
  fullname: Shi, Houhui
  organization: Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University
– sequence: 3
  givenname: Benxia
  surname: Zhang
  fullname: Zhang, Benxia
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 4
  givenname: Xuejin
  surname: Ou
  fullname: Ou, Xuejin
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 5
  givenname: Qizhi
  surname: Ma
  fullname: Ma, Qizhi
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 6
  givenname: Yue
  surname: Chen
  fullname: Chen, Yue
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 7
  givenname: Pei
  surname: Shu
  fullname: Shu, Pei
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center
– sequence: 8
  givenname: Dan
  surname: Li
  fullname: Li, Dan
  email: lidan@wchscu.cn
  organization: Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University
– sequence: 9
  givenname: Yongsheng
  surname: Wang
  fullname: Wang, Yongsheng
  email: wangys@scu.edu.cn
  organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Clinical Trial Center, West China Hospital, Sichuan University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34620838$$D View this record in MEDLINE/PubMed
BookMark eNp9kktr3DAUhU1JadI0f6CLYuimG7dXD-uxKZTQRyClm-yFLF1PNHikqWQH8u-jyWTaJIusJHTPOXxcnbfNUUwRm-Y9gc8EmPpSOGGadkBJByAkdPpVc0Kh1x0TrD96dD9uzkpZAwARTMqev2mOGRcUFFMnzfD7FqcUfOcxhxv0bVm224ylpNw6nKbS2tKGzWaJ6TCpsjbjapnsnHKdR9_O15jtFpc5uHa2eYVzNcXW2egwv2tej3YqePZwnjZXP75fnf_qLv_8vDj_dtk5AWLuiKOCKjV4rQkTA-HKjz0fwTo3Ou6lQhAo5OippRXdScm4IoprEE5bxk6bi32sT3ZttjlsbL41yQZz_5DyythcASc0XFpOKY7DqDQnEjWlGqwHr0Y2CCQ16-s-a7sMG_QO45zt9CT06SSGa7NKN6biSK76GvDpISCnvwuW2WxC2e3TRkxLMbRXIIEwtuP--Ey6TkuOdVNVJbUSArSuqg-Pif6hHH6yCtRe4HIqJeNoXJjtHNIOMEyGgNn1xux7Y2pvzH1vzC6bPrMe0l80sb2pVHFcYf6P_YLrDl6Y1j8
CitedBy_id crossref_primary_10_1016_j_apsb_2024_08_004
crossref_primary_10_1158_0008_5472_CAN_21_4370
crossref_primary_10_1016_j_phymed_2024_156227
crossref_primary_10_1016_j_intimp_2024_112523
crossref_primary_10_3389_fmed_2025_1539024
crossref_primary_10_1002_cam4_7315
crossref_primary_10_1186_s12951_024_02496_3
crossref_primary_10_1002_eji_202350823
crossref_primary_10_1186_s12943_024_01990_4
crossref_primary_10_1016_j_smim_2025_101931
crossref_primary_10_3390_cancers14235911
crossref_primary_10_1038_s41416_025_02972_z
crossref_primary_10_1016_j_cytogfr_2024_11_005
crossref_primary_10_3389_fimmu_2025_1537947
crossref_primary_10_3389_fcell_2022_907572
crossref_primary_10_1093_hmg_ddad187
crossref_primary_10_3390_cells13181518
crossref_primary_10_1016_j_prp_2025_155864
crossref_primary_10_1016_j_omto_2023_04_007
crossref_primary_10_3389_fimmu_2022_1021634
crossref_primary_10_3389_fphar_2022_1040163
crossref_primary_10_1016_j_tem_2025_02_001
crossref_primary_10_1186_s13045_024_01544_7
crossref_primary_10_3390_app14072930
crossref_primary_10_3390_ijms26010006
crossref_primary_10_3390_cells14060403
crossref_primary_10_3389_fonc_2023_1210245
crossref_primary_10_1002_adfm_202214499
crossref_primary_10_1200_JCO_22_00857
crossref_primary_10_3389_fimmu_2021_803014
crossref_primary_10_1007_s13273_023_00362_1
crossref_primary_10_1158_2326_6066_CIR_23_0469
crossref_primary_10_1007_s13105_023_01002_x
crossref_primary_10_1007_s40257_024_00907_7
crossref_primary_10_1016_j_biopha_2024_117590
crossref_primary_10_3389_fimmu_2025_1542157
crossref_primary_10_1016_j_addr_2022_114482
crossref_primary_10_3390_cancers17050788
crossref_primary_10_2147_IJN_S441135
crossref_primary_10_3389_fimmu_2022_874308
crossref_primary_10_3389_fimmu_2024_1433091
crossref_primary_10_1038_s41392_024_01851_y
crossref_primary_10_3389_fphar_2023_1285343
crossref_primary_10_3389_fimmu_2023_1185985
crossref_primary_10_1007_s10238_022_00860_x
crossref_primary_10_1002_ctm2_1019
crossref_primary_10_1016_j_jpha_2024_101181
crossref_primary_10_1038_s41591_023_02518_x
crossref_primary_10_2217_epi_2023_0388
crossref_primary_10_1038_s41698_024_00681_z
crossref_primary_10_1007_s10522_024_10152_4
crossref_primary_10_1002_ptr_8187
crossref_primary_10_3389_fimmu_2023_1086803
crossref_primary_10_1186_s12943_022_01670_1
crossref_primary_10_1016_j_cmpb_2025_108607
crossref_primary_10_1038_s41392_024_01980_4
crossref_primary_10_1186_s12943_023_01885_w
crossref_primary_10_3390_cells13100795
crossref_primary_10_1111_sji_13327
crossref_primary_10_1134_S1990519X24700342
crossref_primary_10_37349_etat_2024_00263
crossref_primary_10_1016_j_cellimm_2024_104836
crossref_primary_10_3389_fimmu_2023_1133050
crossref_primary_10_1136_jitc_2024_008837
crossref_primary_10_3390_ijms241512317
crossref_primary_10_1007_s10555_023_10165_4
crossref_primary_10_3389_fimmu_2023_1295257
crossref_primary_10_1016_j_phrs_2023_106988
crossref_primary_10_1002_advs_202417357
crossref_primary_10_1016_j_mtbio_2023_100633
crossref_primary_10_3389_fimmu_2022_1016059
crossref_primary_10_3389_fonc_2023_1155511
crossref_primary_10_3390_ijms25179659
crossref_primary_10_1016_j_isci_2025_111843
crossref_primary_10_1080_21645515_2024_2335728
crossref_primary_10_1016_j_apsb_2024_07_021
crossref_primary_10_1038_s41467_024_49482_9
crossref_primary_10_1097_MD_0000000000035829
crossref_primary_10_1158_1078_0432_CCR_22_3652
crossref_primary_10_3389_fimmu_2024_1302587
crossref_primary_10_1038_s41392_022_01102_y
crossref_primary_10_1186_s12943_023_01860_5
crossref_primary_10_1158_2326_6066_CIR_24_0084
crossref_primary_10_3389_fonc_2023_1233376
crossref_primary_10_3390_cancers16112003
crossref_primary_10_1016_j_biopha_2024_117285
crossref_primary_10_1186_s40164_023_00394_2
crossref_primary_10_1007_s12672_023_00681_8
crossref_primary_10_1016_j_heliyon_2023_e22088
crossref_primary_10_1002_ijc_34801
crossref_primary_10_3390_cancers17050749
crossref_primary_10_3390_ijtm4010003
crossref_primary_10_1002_adhm_202301641
crossref_primary_10_1038_s41391_024_00825_z
crossref_primary_10_1002_advs_202411711
crossref_primary_10_1007_s12274_022_5141_5
crossref_primary_10_1186_s12951_024_02584_4
crossref_primary_10_1016_j_phrs_2024_107521
crossref_primary_10_1615_OncoTherap_2022042541
crossref_primary_10_1016_j_intimp_2024_113693
crossref_primary_10_26599_FMH_2025_9420040
crossref_primary_10_1002_adma_202412191
crossref_primary_10_1016_j_cellsig_2024_111041
crossref_primary_10_1186_s13287_024_04061_z
crossref_primary_10_1016_j_biopha_2024_117420
crossref_primary_10_1186_s40164_024_00539_x
crossref_primary_10_3389_fimmu_2024_1440269
crossref_primary_10_1016_j_ncrna_2024_01_015
crossref_primary_10_1111_apm_13471
crossref_primary_10_32604_or_2024_056860
crossref_primary_10_1016_j_bcp_2024_116254
crossref_primary_10_1016_j_bcp_2024_116498
crossref_primary_10_1016_j_bpg_2024_101954
crossref_primary_10_1016_j_heliyon_2024_e31586
crossref_primary_10_1016_j_jddst_2024_106589
crossref_primary_10_4103_glioma_glioma_4_24
crossref_primary_10_1016_j_bbadis_2024_167035
crossref_primary_10_32604_or_2023_042383
crossref_primary_10_3390_ijms26072923
crossref_primary_10_1002_cam4_6645
crossref_primary_10_1002_cam4_6887
crossref_primary_10_14216_kjco_24009
crossref_primary_10_1080_14737140_2025_2483855
crossref_primary_10_1016_j_ejphar_2024_176357
crossref_primary_10_1186_s41065_024_00361_9
crossref_primary_10_1186_s44342_024_00033_0
crossref_primary_10_3389_fonc_2024_1394260
crossref_primary_10_3390_cancers14153796
crossref_primary_10_1097_HC9_0000000000000508
crossref_primary_10_3390_cancers15194797
crossref_primary_10_1186_s13045_024_01634_6
crossref_primary_10_3389_fimmu_2022_992611
crossref_primary_10_1016_j_ijbiomac_2025_140088
crossref_primary_10_3390_cells12141912
crossref_primary_10_1016_j_biopha_2024_116670
crossref_primary_10_1136_jitc_2022_004973
crossref_primary_10_3390_ijms25094832
crossref_primary_10_1016_j_biomaterials_2024_122660
crossref_primary_10_1021_acsnano_4c17279
crossref_primary_10_1016_j_phymed_2023_155164
crossref_primary_10_1158_2643_3230_BCD_23_0202
crossref_primary_10_1158_0008_5472_CAN_21_3113
crossref_primary_10_3390_biom12111627
crossref_primary_10_1002_cmdc_202400410
crossref_primary_10_1016_j_jconrel_2024_02_030
crossref_primary_10_1016_j_lungcan_2024_108059
crossref_primary_10_1016_j_phymed_2023_155171
crossref_primary_10_1007_s00018_022_04219_z
crossref_primary_10_1186_s40164_024_00514_6
crossref_primary_10_1172_JCI170762
crossref_primary_10_1016_j_bbcan_2024_189138
crossref_primary_10_1016_j_bioactmat_2024_01_026
crossref_primary_10_1007_s10495_024_02033_5
crossref_primary_10_1186_s12964_024_01995_y
crossref_primary_10_1186_s12979_024_00463_y
crossref_primary_10_1016_j_heliyon_2025_e42540
crossref_primary_10_3390_cancers15245857
crossref_primary_10_3390_cancers16213711
crossref_primary_10_3389_fphar_2024_1289957
crossref_primary_10_3892_ijo_2024_5673
crossref_primary_10_1111_imr_13237
crossref_primary_10_3389_fimmu_2024_1488345
crossref_primary_10_3390_cancers16162797
crossref_primary_10_1038_s41420_024_01834_6
crossref_primary_10_3389_fonc_2022_1022542
crossref_primary_10_3389_fcell_2024_1302490
crossref_primary_10_3390_ijms24044060
crossref_primary_10_1007_s00210_024_03647_x
crossref_primary_10_3389_fimmu_2023_1277677
crossref_primary_10_2147_OTT_S444214
crossref_primary_10_3390_ijms251910651
crossref_primary_10_1016_j_biopha_2025_117966
crossref_primary_10_3389_fimmu_2021_813832
crossref_primary_10_3389_fimmu_2024_1354735
crossref_primary_10_1016_j_nantod_2023_101877
crossref_primary_10_1038_s41392_023_01384_w
crossref_primary_10_1002_adhm_202405124
crossref_primary_10_1021_acsnano_3c07183
crossref_primary_10_1016_j_mtbio_2025_101601
crossref_primary_10_1038_s41392_024_01765_9
crossref_primary_10_1016_j_lfs_2024_123113
crossref_primary_10_1186_s12864_024_10307_0
crossref_primary_10_3389_fonc_2024_1443686
crossref_primary_10_1038_s41568_023_00598_y
crossref_primary_10_1002_INMD_20230062
crossref_primary_10_1080_14737140_2022_2110072
crossref_primary_10_18027_2224_5057_2023_13_3s1_100_103
crossref_primary_10_1021_acsnano_3c10212
crossref_primary_10_1186_s40364_023_00475_8
crossref_primary_10_3390_cimb47020090
crossref_primary_10_1615_CritRevOncog_2024053096
crossref_primary_10_3390_cells11020310
crossref_primary_10_1158_0008_5472_CAN_23_1200
crossref_primary_10_3390_nu15214667
crossref_primary_10_37349_etat_2022_00097
crossref_primary_10_3389_fimmu_2024_1502257
crossref_primary_10_1016_j_blre_2022_101012
crossref_primary_10_1158_0008_5472_CAN_23_0230
crossref_primary_10_3390_pharmaceutics16091181
crossref_primary_10_1136_jitc_2022_005902
crossref_primary_10_1186_s13045_023_01439_z
crossref_primary_10_1016_j_heliyon_2024_e32337
crossref_primary_10_1007_s11684_023_1048_0
crossref_primary_10_71423_aimed_20250101
crossref_primary_10_3389_pore_2023_1611210
crossref_primary_10_3390_cancers14194965
crossref_primary_10_1016_j_nantod_2024_102240
crossref_primary_10_1111_aji_13711
crossref_primary_10_3390_cancers16244253
crossref_primary_10_1016_j_ymthe_2025_02_042
crossref_primary_10_1080_14712598_2024_2405568
crossref_primary_10_1186_s13054_024_05058_z
crossref_primary_10_1136_jitc_2023_008081
crossref_primary_10_3390_ijms231810906
crossref_primary_10_1186_s12967_023_04838_5
crossref_primary_10_1089_jir_2024_0150
crossref_primary_10_1136_jitc_2022_005527
crossref_primary_10_1002_cac2_12313
crossref_primary_10_1002_adma_202413210
crossref_primary_10_1097_IN9_0000000000000028
crossref_primary_10_1186_s12967_025_06221_y
crossref_primary_10_1007_s11060_023_04387_3
crossref_primary_10_1016_j_intimp_2023_110882
crossref_primary_10_1111_imm_13592
crossref_primary_10_1080_21645515_2024_2437918
crossref_primary_10_1080_1061186X_2025_2467139
crossref_primary_10_3389_fmed_2024_1515097
crossref_primary_10_1016_j_isci_2023_107626
crossref_primary_10_1038_s41422_022_00773_0
crossref_primary_10_1111_cas_15902
crossref_primary_10_3390_v16010027
crossref_primary_10_3390_ijms24087359
crossref_primary_10_1136_jitc_2024_009552
crossref_primary_10_1186_s40824_023_00369_8
crossref_primary_10_62347_QSWS7848
crossref_primary_10_1016_j_biotechadv_2023_108144
crossref_primary_10_1016_j_cytogfr_2024_07_004
crossref_primary_10_3390_cancers15245847
crossref_primary_10_31857_S0041377124020027
crossref_primary_10_3389_fonc_2024_1460493
crossref_primary_10_3390_ijms25116237
crossref_primary_10_1016_j_smim_2022_101668
crossref_primary_10_1186_s12935_024_03335_z
crossref_primary_10_1096_fj_202401237R
crossref_primary_10_3390_ijms26052307
crossref_primary_10_1186_s40364_024_00599_5
crossref_primary_10_1096_fj_202400458R
crossref_primary_10_3389_fimmu_2025_1524038
crossref_primary_10_1186_s12885_023_11688_3
crossref_primary_10_3389_fimmu_2024_1457691
crossref_primary_10_1186_s13046_024_03218_1
crossref_primary_10_3389_fphar_2022_897942
crossref_primary_10_1007_s00262_023_03496_2
crossref_primary_10_3389_fped_2024_1346493
crossref_primary_10_1039_D3BM00416C
crossref_primary_10_1016_j_phrs_2024_107204
crossref_primary_10_1101_cshperspect_a041336
crossref_primary_10_1200_OA_24_00049
crossref_primary_10_3389_fgene_2024_1424119
crossref_primary_10_1016_j_critrevonc_2024_104407
crossref_primary_10_3390_biomedicines12010014
crossref_primary_10_1016_j_ijpharm_2023_123729
crossref_primary_10_1097_TP_0000000000005069
crossref_primary_10_1002_adhm_202303294
crossref_primary_10_1016_j_ymthe_2024_08_019
crossref_primary_10_1111_1759_7714_15128
crossref_primary_10_1039_D4TB00769G
crossref_primary_10_1007_s12672_024_01725_3
crossref_primary_10_1186_s13045_022_01282_8
crossref_primary_10_3389_fcimb_2022_1003781
crossref_primary_10_1016_j_bbcan_2022_188702
crossref_primary_10_1038_s41392_024_01769_5
crossref_primary_10_1038_s41392_024_01979_x
crossref_primary_10_1002_wrna_1822
crossref_primary_10_1007_s12272_024_01504_2
crossref_primary_10_1016_j_mtbio_2025_101530
crossref_primary_10_1186_s12885_023_10502_4
crossref_primary_10_1007_s00011_024_01918_0
crossref_primary_10_1016_j_medj_2023_09_001
crossref_primary_10_1166_mex_2023_2501
crossref_primary_10_1002_adtp_202300209
crossref_primary_10_1002_mco2_124
crossref_primary_10_3389_fonc_2023_1135456
crossref_primary_10_1007_s12026_024_09558_6
crossref_primary_10_1371_journal_pone_0294171
crossref_primary_10_3389_fimmu_2024_1353570
crossref_primary_10_1007_s12026_024_09536_y
crossref_primary_10_1007_s00262_024_03879_z
crossref_primary_10_3390_ijms241411233
crossref_primary_10_3390_ijms252413388
crossref_primary_10_1084_jem_20231519
crossref_primary_10_1016_j_ejpb_2024_114510
crossref_primary_10_1007_s00210_024_03479_9
crossref_primary_10_3389_fimmu_2023_1323581
crossref_primary_10_12677_acm_2024_1492548
crossref_primary_10_3389_fimmu_2024_1355405
crossref_primary_10_1021_acs_nanolett_2c03227
crossref_primary_10_3892_etm_2022_11414
crossref_primary_10_1186_s12967_024_05649_y
crossref_primary_10_37349_ei_2023_00108
crossref_primary_10_3390_pharmaceutics15102421
crossref_primary_10_3389_fimmu_2024_1382842
crossref_primary_10_1021_acsanm_3c03454
crossref_primary_10_20517_cdr_2024_164
crossref_primary_10_1615_CritRevOncog_2022047088
crossref_primary_10_1080_14728222_2023_2259096
crossref_primary_10_1002_mco2_748
crossref_primary_10_1172_JCI171164
crossref_primary_10_3389_fimmu_2023_1295684
crossref_primary_10_1002_ijc_35102
crossref_primary_10_1016_j_jes_2024_11_032
crossref_primary_10_1080_14728222_2022_2170779
crossref_primary_10_3390_cells13201736
crossref_primary_10_3390_vaccines13030292
crossref_primary_10_1093_nutrit_nuad133
crossref_primary_10_3389_fimmu_2023_1303959
crossref_primary_10_1002_adfm_202312092
crossref_primary_10_1007_s12672_024_01698_3
crossref_primary_10_1002_anbr_202300061
crossref_primary_10_1186_s12951_024_02611_4
crossref_primary_10_1016_j_jare_2024_01_013
crossref_primary_10_3892_ol_2024_14389
crossref_primary_10_1111_jgh_16873
crossref_primary_10_1172_jci_insight_179292
crossref_primary_10_1007_s11033_023_09196_5
crossref_primary_10_1039_D4NR02795G
crossref_primary_10_1016_j_prp_2024_155613
crossref_primary_10_1016_j_heliyon_2024_e29949
crossref_primary_10_3389_fimmu_2024_1460437
crossref_primary_10_3389_fimmu_2025_1548535
crossref_primary_10_3390_cancers15082366
crossref_primary_10_1016_j_heliyon_2024_e37896
crossref_primary_10_1186_s40164_024_00564_w
crossref_primary_10_3389_fimmu_2024_1325946
crossref_primary_10_1016_j_mrgentox_2024_503807
crossref_primary_10_3390_cancers15030971
crossref_primary_10_3390_ijms25126792
crossref_primary_10_1016_j_ctrv_2023_102632
crossref_primary_10_1021_acsami_4c20893
crossref_primary_10_1016_j_ctarc_2022_100649
crossref_primary_10_1093_carcin_bgad047
crossref_primary_10_1038_s41467_023_42303_5
crossref_primary_10_1007_s13577_024_01083_w
crossref_primary_10_1080_20450885_2024_2382079
crossref_primary_10_1097_MD_0000000000040384
crossref_primary_10_1002_mco2_714
crossref_primary_10_1007_s13402_024_00971_5
crossref_primary_10_3724_zdxbyxb_2024_0353
crossref_primary_10_1186_s13020_025_01075_4
crossref_primary_10_1002_anbr_202300159
crossref_primary_10_1007_s10238_023_01229_4
crossref_primary_10_3389_fimmu_2023_1238698
crossref_primary_10_25259_Cytojournal_165_2024
crossref_primary_10_1016_j_compbiomed_2025_109717
crossref_primary_10_1038_s41419_024_06834_z
crossref_primary_10_1016_j_pmatsci_2024_101347
crossref_primary_10_3390_ijms24087577
crossref_primary_10_1186_s40164_024_00543_1
crossref_primary_10_1084_jem_20232101
crossref_primary_10_3389_fimmu_2024_1403272
crossref_primary_10_1016_j_ymthe_2023_04_008
crossref_primary_10_3390_pharmaceutics16020251
crossref_primary_10_1016_j_apsb_2022_12_016
crossref_primary_10_1016_j_heliyon_2024_e36156
crossref_primary_10_1172_JCI166847
crossref_primary_10_3389_fimmu_2023_1199273
crossref_primary_10_1016_j_nantod_2024_102334
crossref_primary_10_1158_1078_0432_CCR_23_1957
crossref_primary_10_3389_fimmu_2025_1554496
crossref_primary_10_69709_CIConnect_2024_194763
crossref_primary_10_1016_j_biomaterials_2025_123107
crossref_primary_10_1016_j_nantod_2023_102042
crossref_primary_10_3390_jcm11164908
crossref_primary_10_1111_php_13951
crossref_primary_10_1016_j_bbcan_2023_188884
crossref_primary_10_1136_jitc_2022_006205
crossref_primary_10_4110_in_2024_24_e26
crossref_primary_10_1080_01635581_2022_2096909
crossref_primary_10_3390_ijms252212277
crossref_primary_10_1039_D3BM01552A
crossref_primary_10_1080_15384047_2024_2315655
crossref_primary_10_1371_journal_pone_0269166
crossref_primary_10_1016_j_intimp_2025_114283
crossref_primary_10_1080_2162402X_2023_2233403
crossref_primary_10_1172_JCI178617
crossref_primary_10_1007_s12032_024_02561_9
crossref_primary_10_3390_cancers16234068
crossref_primary_10_1016_j_cellsig_2022_110337
crossref_primary_10_1093_jleuko_qiae013
crossref_primary_10_1002_ctm2_70048
crossref_primary_10_1200_EDBK_390794
crossref_primary_10_1016_j_isci_2023_107952
crossref_primary_10_1124_pharmrev_123_000901
crossref_primary_10_3390_v16101612
crossref_primary_10_1172_JCI167951
crossref_primary_10_3390_biom14080986
crossref_primary_10_1002_cam4_7148
crossref_primary_10_1158_1541_7786_MCR_22_0920
crossref_primary_10_1002_smll_202411336
crossref_primary_10_3389_fimmu_2024_1461455
crossref_primary_10_3390_jcm13195738
crossref_primary_10_1038_s41467_024_46769_9
crossref_primary_10_1097_MOU_0000000000000987
crossref_primary_10_1016_j_preme_2024_100013
crossref_primary_10_1089_ars_2023_0272
crossref_primary_10_3390_cancers15102749
crossref_primary_10_1007_s12032_024_02320_w
crossref_primary_10_1016_j_onano_2023_100134
crossref_primary_10_1155_2024_5512422
crossref_primary_10_1016_j_ajps_2025_101021
crossref_primary_10_1016_j_jhep_2023_06_021
crossref_primary_10_1093_pcmedi_pbae020
Cites_doi 10.1084/jem.20061104
10.1002/eji.201041069
10.1038/ncomms14979
10.1007/s00262-020-02588-7
10.1007/s10549-018-4760-8
10.1080/2162402X.2017.1320011
10.1080/2162402X.2017.1331807
10.1016/j.ccell.2014.10.018
10.3389/fimmu.2019.00172
10.1093/annonc/mdx190
10.1038/nrd4280
10.1038/srep29521
10.1007/s10637-018-0706-6
10.1158/0008-5472.CAN-06-1690
10.1038/nrc.2017.86
10.1080/2162402X.2018.1469594
10.1158/0008-5472.CAN-06-3037
10.1016/j.immuni.2021.04.004
10.1016/j.immuni.2014.10.020
10.1038/s41388-018-0449-z
10.1084/jem.20131916
10.4049/jimmunol.0900092
10.1158/1078-0432.CCR-08-0165
10.2165/11592590-000000000-00000
10.1053/gast.2003.50096
10.1038/s41416-019-0725-x
10.4049/jimmunol.0804253
10.1038/leu.2017.21
10.1158/2159-8290.CD-15-1157
10.1084/jem.20182005
10.1158/0008-5472.CAN-06-0158
10.1007/s00262-014-1561-8
10.1186/s40425-019-0706-x
10.1038/ni.2526
10.3389/fimmu.2018.02499
10.3390/nu11102376
10.1158/1078-0432.CCR-14-1711
10.1007/s10555-018-9728-y
10.1186/s40425-018-0436-5
10.1186/s12967-016-1037-z
10.1158/0008-5472.CAN-17-2460
10.1080/15384047.2018.1450116
10.1158/0008-5472.CAN-13-2347
10.1158/2326-6066.CIR-14-0137
10.1038/nrc3893
10.7150/jca.35205
10.1080/2162402X.2017.1326440
10.4049/jimmunol.181.8.5791
10.1111/cei.13407
10.7554/eLife.17375
10.1158/0008-5472.CAN-11-2449
10.1038/s41389-020-00248-0
10.1158/2159-8290.CD-19-1355
10.1152/physrev.00012.2017
10.1158/1078-0432.CCR-13-1581
10.1158/1078-0432.CCR-08-1332
10.1073/pnas.1612920114
10.1016/j.otohns.2008.11.011
10.1007/s00018-017-2724-5
10.1158/2326-6066.CIR-15-0036
10.1007/s00262-018-2177-1
10.1038/nri2506
10.1200/JCO.2011.35.6295
10.1158/2326-6066.CIR-18-0578
10.1172/JCI45862
10.1016/S1470-2045(16)00078-4
10.1200/jco.2008.26.15_suppl.5593
10.3389/fimmu.2019.03070
10.1007/s10549-011-1889-0
10.1158/2326-6066.CIR-19-0449
10.1007/s00262-019-02418-5
10.1016/j.celrep.2014.12.039
10.1182/blood-2008-01-136895
10.1158/2159-8290.CD-19-0541
10.1182/blood-2009-08-237412
10.1007/s10637-012-9869-8
10.1158/0008-5472.CAN-19-2843
10.1084/jem.20100587
10.1016/j.addr.2008.12.008
10.1093/carcin/bgq105
10.1038/s41577-020-00490-y
10.1002/hep.23054
10.1016/j.cell.2017.12.026
10.1080/2162402X.2017.1338239
10.1158/1078-0432.CCR-09-3272
10.1016/j.jtho.2016.04.026
10.1007/s00262-014-1549-4
10.1158/2326-6066.CIR-19-0556
10.1158/1078-0432.CCR-16-0387
10.1016/j.ejca.2020.08.020
10.1007/s00262-011-1028-0
10.1007/s00262-014-1553-8
10.1016/j.freeradbiomed.2012.02.007
10.1016/j.ccell.2015.07.006
10.1073/pnas.1910856117
10.1172/JCI35213
10.1001/jamaoncol.2020.5572
10.1007/s00262-014-1618-8
10.1016/j.it.2011.05.003
10.1158/1078-0432.CCR-16-1934
10.1158/0008-5472.CAN-17-0348
10.1080/2162402X.2017.1344804
10.1172/jci.insight.122264
10.1038/cddis.2017.192
10.1158/1078-0432.CCR-14-0635
10.1038/s41590-020-0666-9
10.2147/OTT.S130653
10.1186/s40425-014-0030-4
10.1158/1535-7163.MCT-12-0529
10.1182/blood-2010-12-325753
10.1007/s00018-017-2720-9
10.3892/ijo.2016.3371
10.1016/j.ccell.2016.05.012
10.1111/bph.14205
10.4049/jimmunol.1101304
10.1158/2326-6066.CIR-18-0725
10.1007/978-1-4899-8056-4_13
10.1038/nm.3560
10.1172/JCI80005
10.1038/nrd.2018.97
10.1172/JCI129502
10.3389/fimmu.2020.01680
10.1158/1078-0432.CCR-16-1784
10.1200/JCO.2017.35.4_suppl.276
10.1158/0008-5472.CAN-17-3026
10.1172/JCI64115
10.1007/s10549-015-3508-y
10.1016/j.semcancer.2012.01.011
10.1172/JCI80006
10.1158/0008-5472.CAN-19-0880
10.4049/jimmunol.1500959
10.1038/nm.2999
10.1038/srep23824
10.1038/nri3175
10.1097/CJI.0b013e31826b20b6
10.1016/j.ccell.2016.04.014
10.1158/1078-0432.CCR-18-2882
10.1159/000355126
10.1007/s00109-019-01795-9
10.1089/cbr.2012.1219
10.1186/s40425-019-0734-6
10.1158/1940-6207.CAPR-11-0247
10.1158/0008-5472.CAN-16-3199
10.1158/0008-5472.CAN-15-3164
10.1182/blood-2012-08-449413
10.4049/jimmunol.1501785
10.1016/j.immuni.2020.03.004
10.1158/2159-8290.CD-RW2018-010
10.1016/j.pharmthera.2018.12.004
10.4161/cbt.29922
10.1038/s41419-019-1723-x
10.1172/JCI68189
10.1016/0006-2952(79)90649-X
10.1016/j.ebiom.2019.08.025
10.1158/0008-5472.CAN-15-2528
10.1016/j.ctrv.2017.08.004
10.1200/JCO.2009.26.6452
10.1038/nrc2444
10.1016/j.celrep.2017.09.018
10.1158/0008-5472.CAN-08-1921
10.1080/2162402X.2018.1564505
10.18632/oncotarget.12278
10.1080/10408398.2018.1509201
10.1158/2326-6066.CIR-18-0310
10.1016/j.intimp.2011.02.021
10.1080/2162402X.2020.1777625
10.1016/j.cellimm.2005.01.004
10.4049/jimmunol.162.10.5728
10.1158/1078-0432.CCR-16-2748
10.1038/nrd893
10.1016/j.immuni.2019.01.019
10.1016/j.intimp.2011.01.030
10.1016/j.intimp.2011.01.007
10.1002/ijc.31982
10.4049/jimmunol.0902661
10.1080/2162402X.2015.1072672
10.1158/1078-0432.CCR-20-1610
10.4049/jimmunol.168.2.689
10.1038/jid.2012.190
10.1016/j.immuni.2013.08.025
10.1080/2162402X.2015.1034918
10.1007/s13238-015-0237-2
10.3389/fimmu.2020.00783
10.1111/imr.12528
10.3389/fimmu.2020.01371
10.1158/1078-0432.CCR-20-3305
10.1158/0008-5472.CAN-09-3278
10.1073/pnas.1113744109
10.1158/1078-0432.CCR-17-0741
10.1080/2162402X.2016.1200771
10.1080/10408363.2018.1477729
10.1016/j.humimm.2010.04.008
10.1038/s41571-020-0382-2
10.1073/pnas.0409783102
10.1158/0008-5472.CAN-14-2921
10.1158/0008-5472.CAN-13-1265
10.1002/ijc.29297
10.1158/0008-5472.CAN-09-2587
10.4161/2162402X.2014.989764
10.1016/j.intimp.2018.08.007
10.1200/JCO.2016.66.9697
10.1002/ijc.28607
10.1158/0008-5472.CAN-10-3055
10.4161/onci.19731
10.1158/0008-5472.CAN-20-1414
10.3389/fimmu.2020.557586
10.4049/jimmunol.1501853
10.1038/srep20250
10.1001/jamaoncol.2018.4604
10.1002/eji.201343349
10.1038/nm.3337
10.1038/s41586-020-2054-x
10.1038/s41577-020-0376-4
10.1007/s00018-013-1286-4
10.1002/jcp.26075
10.4049/jimmunol.1101225
10.4049/jimmunol.132.1.101
10.3389/fimmu.2020.00324
10.1158/2326-6066.CIR-13-0129
10.1084/jem.20080132
10.1158/2326-6066.CIR-13-0213
10.1002/advs.201901278
10.1038/onc.2016.229
10.1126/sciimmunol.aaw9159
10.1016/j.jsbmb.2019.105557
10.4049/jimmunol.172.1.464
10.1126/sciimmunol.aay6017
10.1016/j.intimp.2012.05.002
10.3389/fcell.2020.576946
10.1038/nri2216
10.1002/eji.201746976
10.1158/0008-5472.CAN-07-2593
10.1038/nature12034
10.4049/jimmunol.1201018
10.1016/j.biopha.2019.109458
10.1182/blood-2010-11-321752
10.1074/mcp.M110.002980
10.1080/2162402X.2015.1038687
10.1158/1940-6207.CAPR-14-0094
10.1080/2162402X.2018.1442167
10.1084/jem.20101956
10.1158/1078-0432.CCR-15-0676
10.1371/journal.pone.0127028
10.1038/nature13862
10.1007/s12026-016-8789-7
10.1074/jbc.M112.434530
10.4049/jimmunol.1201449
10.1158/0008-5472.CAN-04-0757
10.1016/j.molcel.2017.01.021
10.1111/cas.14306
10.1158/1078-0432.CCR-14-3145
10.18632/oncotarget.25511
10.1189/jlb.4RI0515-204R
10.1038/s41586-019-1118-2
10.1186/s12943-019-0978-2
10.1002/ijc.28449
10.1038/srep36107
10.1080/2162402X.2017.1413520
10.1002/eji.201040895
10.1016/j.it.2010.10.002
10.1172/JCI74056
10.1172/jci.insight.126853
10.1158/1078-0432.CCR-17-0357
10.1002/hep.28655
10.1016/j.immuni.2014.08.015
10.1080/2162402X.2018.1474319
10.1158/0008-5472.CAN-16-0144
10.1136/jitc-2019-000478
10.3322/caac.21660
10.4049/jimmunol.166.1.678
10.1097/CJI.0000000000000301
10.1158/2326-6066.CIR-13-0016
10.1038/bjc.2014.437
10.1007/s00281-018-0702-0
10.1158/1078-0432.CCR-14-1716
10.1016/0008-8749(79)90180-1
10.1007/s00262-013-1396-8
10.1158/1078-0432.CCR-14-2742
10.1158/2326-6066.CIR-19-0008
10.1016/j.clcc.2018.09.003
10.1016/j.it.2016.01.004
10.1182/blood.V89.5.1629
10.4049/jimmunol.181.7.4666
10.1016/j.it.2015.11.008
10.1158/0008-5472.CAN-17-3962
10.1007/s11060-015-1720-6
10.1002/ijc.30538
10.1016/j.immuni.2016.01.014
10.3390/cancers13020210
10.3389/fonc.2019.00241
10.1038/s41573-019-0016-5
10.1136/jitc-2020-001223
10.1158/0008-5472.CAN-13-1506
10.1158/1078-0432.CCR-10-2672
10.1038/nm1609
10.1111/febs.15637
10.1126/sciimmunol.aaf8943
10.1172/jci.insight.138581
10.1007/s00262-003-0459-7
10.4049/jimmunol.165.2.779
10.1158/1078-0432.CCR-19-2625
10.1186/1471-2407-10-464
10.1038/ncomms12150
10.1111/j.1600-065X.2008.00608.x
10.1038/nature10138
10.1158/1078-0432.CCR-18-1277
10.1007/s00262-011-1143-y
10.4049/jimmunol.1701069
10.1158/0008-5472.CAN-13-3723
10.1002/eji.200939903
10.1172/jci.insight.130748
10.3389/fnut.2018.00138
10.1016/j.celrep.2015.08.077
10.1038/s41590-017-0022-x
10.1038/nrc3581
10.1158/2326-6066.CIR-18-0070
10.4161/21624011.2014.954471
10.1007/s11523-017-0525-2
10.1016/j.it.2015.02.005
10.1038/s41467-017-01566-5
10.1007/s12272-014-0379-4
10.1158/0008-5472.CAN-05-0529
10.3389/fimmu.2020.531491
10.1016/j.ccr.2009.06.017
10.1016/j.smim.2016.03.018
10.4049/jimmunol.182.1.240
10.1007/s10067-018-4119-x
10.1158/2326-6066.CIR-20-0389
10.1158/0008-5472.CAN-16-1755
10.1182/blood-2007-04-086835
ContentType Journal Article
Copyright The Author(s) 2021
2021. The Author(s).
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: 2021. The Author(s).
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7T5
7X7
7XB
8FE
8FH
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
H94
HCIFZ
K9.
LK8
M0S
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.1038/s41392-021-00670-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Immunology Abstracts
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
AIDS and Cancer Research Abstracts
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
Biological Sciences
Health & Medical Collection (Alumni)
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
AIDS and Cancer Research Abstracts
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
Immunology Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
MEDLINE


MEDLINE - Academic
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 4
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 5
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 2059-3635
EndPage 25
ExternalDocumentID oai_doaj_org_article_47a422efbf89417e92290ad0d8f3b6e1
PMC8497485
34620838
10_1038_s41392_021_00670_9
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GrantInformation_xml – fundername: the National Natural Science Foundation of China (Grantno. 81872489).
– fundername: National Natural Science Foundation of China (National Science Foundation of China)
  grantid: 81872489; 81872489; 81872489; 81872489; 81872489; 81872489
  funderid: https://doi.org/10.13039/501100001809
– fundername: ;
– fundername: ;
  grantid: 81872489; 81872489; 81872489; 81872489; 81872489; 81872489
GroupedDBID 0R~
3V.
5VS
7X7
8FI
8FJ
AAJSJ
ABUWG
ACGFS
ACSMW
ADBBV
AFKRA
AJTQC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
BPHCQ
BVXVI
C6C
CCPQU
EBLON
EBS
EJD
EMOBN
FYUFA
GROUPED_DOAJ
HCIFZ
HMCUK
HYE
M7P
NAO
OK1
PIMPY
PQQKQ
PROAC
RNT
RPM
SNYQT
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
CGR
CUY
CVF
ECM
EIF
NPM
7T5
7XB
8FE
8FH
8FK
AARCD
AZQEC
DWQXO
GNUQQ
H94
K9.
LK8
PKEHL
PQEST
PQGLB
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c606t-1c26288bd99136b148df54f0accfc4d78e06e67fd2a2838c77348184906c9a33
IEDL.DBID DOA
ISSN 2059-3635
2095-9907
IngestDate Wed Aug 27 01:31:56 EDT 2025
Thu Aug 21 18:34:13 EDT 2025
Fri Jul 11 03:50:39 EDT 2025
Wed Aug 13 04:34:05 EDT 2025
Thu Apr 03 06:56:49 EDT 2025
Thu Apr 24 23:06:35 EDT 2025
Tue Jul 01 03:15:15 EDT 2025
Fri Feb 21 02:39:12 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License 2021. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c606t-1c26288bd99136b148df54f0accfc4d78e06e67fd2a2838c77348184906c9a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Review-3
content type line 23
OpenAccessLink https://doaj.org/article/47a422efbf89417e92290ad0d8f3b6e1
PMID 34620838
PQID 2579866099
PQPubID 2041911
PageCount 25
ParticipantIDs doaj_primary_oai_doaj_org_article_47a422efbf89417e92290ad0d8f3b6e1
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8497485
proquest_miscellaneous_2580701333
proquest_journals_2579866099
pubmed_primary_34620838
crossref_citationtrail_10_1038_s41392_021_00670_9
crossref_primary_10_1038_s41392_021_00670_9
springer_journals_10_1038_s41392_021_00670_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-07
PublicationDateYYYYMMDD 2021-10-07
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-07
  day: 07
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Signal transduction and targeted therapy
PublicationTitleAbbrev Sig Transduct Target Ther
PublicationTitleAlternate Signal Transduct Target Ther
PublicationYear 2021
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References QianB-ZCCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasisNature20114752222251:CAS:528:DC%2BC3MXntFKrsb0%3D21654748320850610.1038/nature10138
LuTTumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in miceJ. Clin. Investig.2011121401540291:CAS:528:DC%2BC3MXht12ht7nF21911941319545910.1172/JCI45862
IclozanCAntoniaSChiapporiAChenD-TGabrilovichDTherapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancerCancer Immunol. Immunother.2013629099181:CAS:528:DC%2BC3sXmslamsbY%3D23589106366223710.1007/s00262-013-1396-8
DuttaPSarkissyanMPaicoKWuYVadgamaJVMCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasisBreast Cancer Res. Treat.20181704774861:CAS:528:DC%2BC1cXmsVehtb8%3D29594759602252610.1007/s10549-018-4760-8
KusmartsevSALiYChenS-HGr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulationJ. Immunol.20001657791:CAS:528:DC%2BD3cXkvFWisLo%3D1087835110.4049/jimmunol.165.2.779
PoschkeIMyeloid-derived suppressor cells impair the quality of dendritic cell vaccinesCancer Immunol. Immunother.2012618278381:CAS:528:DC%2BC38XnvFKqurg%3D2208040510.1007/s00262-011-1143-y
ManganMSJTargeting the NLRP3 inflammasome in inflammatory diseasesNat. Rev. Drug Discov.2018175886061:CAS:528:DC%2BC1cXhtlGlt7bM3002652410.1038/nrd.2018.97
DuweAKSinghalSKThe immunoregulatory role of bone marrow: I. Suppression of the induction of antibody responses to T-dependent and T-independent antigens by cells in the bone marrowCell. Immunol.1979433623711:STN:280:DyaL3c%2FgtF2kug%3D%3D31434510.1016/0008-8749(79)90180-1
BeuryDWMyeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2J. Immunol.2016196347034781:CAS:528:DC%2BC28XltlSksL0%3D2693688010.4049/jimmunol.1501785
Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-00490-y (2021).
RotellaDPPhosphodiesterase 5 inhibitors: current status and potential applicationsNat. Rev. Drug Discov.200216746821:CAS:528:DC%2BD38Xmslamt78%3D1220914810.1038/nrd893
HouAHouKHuangQLeiYChenWTargeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitorsFront. Immunol.2020117831:CAS:528:DC%2BB3cXitVWnsb7J32508809724993710.3389/fimmu.2020.00783
LiJCD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancerOncoImmunology20176e132001128680754548617910.1080/2162402X.2017.1320011
NoelMSOrally administered CCR2 selective inhibitor CCX872-b clinical trial in pancreatic cancerJ. Clin. Oncol.20173527627610.1200/JCO.2017.35.4_suppl.276
VijayanDYoungATengMWLSmythMJTargeting immunosuppressive adenosine in cancerNat. Rev. Cancer2017177097241:CAS:528:DC%2BC2sXhslehs7rO2905914910.1038/nrc.2017.86
RyzhovSAdenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cellsJ. Immunol.2011187612061291:CAS:528:DC%2BC3MXhsV2hsLnL2203930210.4049/jimmunol.1101225
ZoglmeierCCpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing miceClin. Cancer Res.201117176517751:CAS:528:DC%2BC3MXktVOis70%3D2123340010.1158/1078-0432.CCR-10-2672
MoestaAKLiX-YSmythMJTargeting CD39 in cancerNat. Rev. Immunol.2020207397551:CAS:528:DC%2BB3cXhsVygtLvN3272822010.1038/s41577-020-0376-4
ChenH-MMyeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapyClin. Cancer Res.201521407340851:CAS:528:DC%2BC2MXhsFejtrbL25922428472026610.1158/1078-0432.CCR-14-2742
PakASMechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factorClin. Cancer Res.19951951:CAS:528:DyaK2MXlvVarsrs%3D9815891
MolonBChemokine nitration prevents intratumoral infiltration of antigen-specific T cellsJ. Exp. Med.2011208194919621:CAS:528:DC%2BC3MXht1KjsbnI21930770318205110.1084/jem.20101956
OuzounovaMMonocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascadeNat. Commun.2017814979149791:CAS:528:DC%2BC2sXlvVersr8%3D28382931538422810.1038/ncomms14979
CorzoCAHIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironmentJ. Exp. Med.2010207243924531:CAS:528:DC%2BC3cXhsVSktLzE20876310296458410.1084/jem.20100587
LiWG-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancersProtein Cell201671301401:CAS:528:DC%2BC28XhslSmsrg%3D26797765474238510.1007/s13238-015-0237-2
YounJ-IGabrilovichDIThe biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneityEur. J. Immunol.201040296929751:CAS:528:DC%2BC3cXhtl2isbfK21061430327745210.1002/eji.201040895
CorzoCAMechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cellsJ. Immunol.2009182569357011:CAS:528:DC%2BD1MXkslKhs7g%3D1938081610.4049/jimmunol.0900092
LimagneETim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patientsOncoimmunology20198e1564505e156450530906658642240010.1080/2162402X.2018.1564505
MaoYInhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activityClin. Cancer Res.20142040961:CAS:528:DC%2BC2cXhtlSrur3E2490711310.1158/1078-0432.CCR-14-0635
PrimaVKaliberovaLNKaliberovSCurielDTKusmartsevSCOX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cellsProc. Natl Acad. Sci. USA2017114111711221:CAS:528:DC%2BC2sXhtFartbs%3D28096371529301510.1073/pnas.1612920114
ZhengYLong noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing miceMol. Cancer201918616130925926644122910.1186/s12943-019-0978-2
KarinNThe development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrativeFront. Immunol.2020115575861:CAS:528:DC%2BB3MXitVChurk%3D33193327764912210.3389/fimmu.2020.557586
KumarVCD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiationImmunity2016443033151:CAS:528:DC%2BC28XjtVCms7o%3D26885857475965510.1016/j.immuni.2016.01.014
BronteVRecommendations for myeloid-derived suppressor cell nomenclature and characterization standardsNat. Commun.201671:CAS:528:DC%2BC28XhtFGmu7jP27381735493581110.1038/ncomms12150
ZhouJIcariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functionsInt. Immunopharmacol.2011118908981:CAS:528:DC%2BC3MXntVyis70%3D2124486010.1016/j.intimp.2011.01.007
LiLMetformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancerCancer Res.201878177917911:CAS:528:DC%2BC1cXms1aqtrs%3D29374065588258910.1158/0008-5472.CAN-17-2460
WangZTillBGaoQChemotherapeutic agent-mediated elimination of myeloid-derived suppressor cellsOncoimmunology20176e133180728811975554386310.1080/2162402X.2017.1331807
NefedovaYMechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cellsCancer Res.20076711021110281:CAS:528:DC%2BD2sXhtlSlsLvO1800684810.1158/0008-5472.CAN-07-2593
MillrudCRBergenfelzCLeanderssonKOn the origin of myeloid-derived suppressor cellsOncotarget20178364936652769029910.18632/oncotarget.12278
IsambertNFluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 studyOncoimmunology20187e1474319e147431930228942614058610.1080/2162402X.2018.1474319
KulbershJSDayTAGillespieMBYoungMRI1alpha,25-Dihydroxyvitamin D(3) to skew intratumoral levels of immune inhibitory CD34(+) progenitor cells into dendritic cellsOtolaryngol. Head Neck Surg.200914023524019201295333772610.1016/j.otohns.2008.11.011
XuPMetformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing miceBiomed. Pharmacother.20191201094581:CAS:528:DC%2BC1MXhvVarsr%2FL3155067610.1016/j.biopha.2019.109458
ShayanGPhase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signalsClin. Cancer Res.20182462721:CAS:528:DC%2BC1cXhvVWgtA%3D%3D2906164310.1158/1078-0432.CCR-17-0357
ParkerKHHMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cellsCancer Res.201474572357331:CAS:528:DC%2BC2cXhslCqu7bE25164013419991110.1158/0008-5472.CAN-13-2347
WangDSunHWeiJCenBDuBoisRNCXCL1 is critical for premetastatic Niche formation and metastasis in colorectal cancerCancer Res.201777365536651:CAS:528:DC%2BC2sXhtFSmsrbI28455419587740310.1158/0008-5472.CAN-16-3199
KuAWTumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodeseLife20165e1737527929373519919710.7554/eLife.17375
SotaJSafety profile of the interleukin-1 inhibitors anakinra and canakinumab in real-life clinical practice: a nationwide multicenter retrospective observational studyClin. Rheumatol.201837223322402977093010.1007/s10067-018-4119-x
HossainFInhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapiesCancer Immunol. Res.20153123612471:CAS:528:DC%2BC2MXhvVajsbvI26025381463694210.1158/2326-6066.CIR-15-0036
ShirotaHKlinmanDMEffect of CpG ODN on monocytic myeloid derived suppressor cellsOncoimmunology2
I Poschke (670_CR117) 2012; 61
O Draghiciu (670_CR162) 2015; 4
D Wang (670_CR132) 2017; 77
J Wong (670_CR182) 2014; 15
670_CR76
C Alfaro (670_CR202) 2017; 60
IH Younos (670_CR9) 2012; 13
J Markowitz (670_CR10) 2015; 64
PT Thevenot (670_CR64) 2014; 41
AS Pak (670_CR22) 1995; 1
V Kumar (670_CR138) 2016; 37
G Shayan (670_CR225) 2018; 24
N Mirza (670_CR29) 2006; 66
DM Peereboom (670_CR160) 2019; 4
B Guo (670_CR178) 2016; 6
H Alshetaiwi (670_CR55) 2020; 5
Y Si (670_CR79) 2019; 4
R Tokunaga (670_CR311) 2019; 18
G Yan (670_CR250) 2018; 78
A Salminen (670_CR293) 2019; 97
SH Albeituni (670_CR240) 2016; 196
BJ Christmas (670_CR267) 2018; 6
L Cardoso Alves (670_CR337) 2020
J Wang (670_CR198) 2016; 48
M Kujawski (670_CR126) 2008; 118
DW Beury (670_CR271) 2016; 196
SJ Priceman (670_CR155) 2010; 115
S Kusmartsev (670_CR212) 2008; 14
M Bilusic (670_CR203) 2019; 7
TA Wynn (670_CR153) 2013; 496
X Zhao (670_CR72) 2012; 122
P Cheng (670_CR166) 2008; 205
SA Kusmartsev (670_CR26) 2000; 165
Y Sawanobori (670_CR49) 2008; 111
O Chornoguz (670_CR69) 2011; 10
YP de Coaña (670_CR84) 2013; 1
J Sota (670_CR179) 2018; 37
670_CR135
K Hiramoto (670_CR273) 2014; 7
D Marvel (670_CR61) 2015; 125
SP Tu (670_CR239) 2012; 5
RF Gabitass (670_CR12) 2011; 60
B Almand (670_CR25) 2001; 166
A Mazzoni (670_CR100) 2002; 168
EA Eksioglu (670_CR339) 2017; 31
C Bergenfelz (670_CR56) 2015; 10
F Koinis (670_CR159) 2016; 11
RP Tobin (670_CR216) 2018; 63
DT Weed (670_CR263) 2015; 21
Y Nefedova (670_CR207) 2004; 172
H Mohammadpour (670_CR66) 2019; 129
B Ricciuti (670_CR306) 2019; 196
670_CR125
670_CR123
KA Noonan (670_CR259) 2014; 2
T Lu (670_CR103) 2011; 121
P Guha (670_CR210) 2019; 38
P Forghani (670_CR228) 2015; 153
MJ Reilley (670_CR209) 2018; 6
E Schlecker (670_CR121) 2012; 189
E Limagne (670_CR161) 2016; 76
L Sun (670_CR199) 2019; 4
P Xu (670_CR294) 2019; 120
M Lee (670_CR223) 2014; 37
C Salvador-Coloma (670_CR302) 2020; 139
V Domankevich (670_CR230) 2019; 68
JM Haverkamp (670_CR142) 2011; 41
D Peng (670_CR131) 2016; 76
AJ Montero (670_CR283) 2012; 132
B Sharma (670_CR197) 2013; 12
AR Bresnick (670_CR163) 2015; 15
670_CR78
V Kumar (670_CR59) 2016; 44
670_CR116
MSJ Mangan (670_CR180) 2018; 17
G Li (670_CR265) 2020; 8
V Bronte (670_CR21) 1999; 162
DI Gabrilovich (670_CR27) 2007; 67
S Eberstal (670_CR249) 2014; 134
S Solito (670_CR32) 2011; 118
A Sonnenfeld (670_CR15) 1929; 111
MD Hellmann (670_CR270) 2021; 27
V Cortez-Retamozo (670_CR37) 2012; 109
GC Prendergast (670_CR298) 2014; 63
H Liang (670_CR187) 2017; 8
AJ Muller (670_CR307) 2019; 41
C Murdoch (670_CR127) 2008; 8
L Bonapace (670_CR194) 2014; 515
F Veglia (670_CR286) 2019; 569
DM Lathers (670_CR28) 2004; 53
BW Labadie (670_CR309) 2019; 25
N Horikawa (670_CR152) 2020; 122
JC Hassel (670_CR262) 2017; 6
V Bronte (670_CR31) 2016; 7
Z Deng (670_CR128) 2017; 36
AF Schott (670_CR201) 2017; 23
J-I Youn (670_CR139) 2008; 181
M Fujita (670_CR251) 2011; 71
Y Shirota (670_CR219) 2012; 188
A Spiegel (670_CR133) 2016; 6
S Tuyaerts (670_CR243) 2019; 5
CS Tannenbaum (670_CR175) 2019; 7
670_CR226
L Seitz (670_CR315) 2019; 37
JD Waight (670_CR47) 2013; 123
C De Santo (670_CR279) 2005; 102
T Condamine (670_CR45) 2015; 98
Y Nefedova (670_CR206) 2005; 65
PY Pan (670_CR40) 2008; 111
A Hou (670_CR14) 2020; 11
KJ Pienta (670_CR191) 2013; 31
I Théate (670_CR299) 2015; 3
S Nagaraj (670_CR104) 2007; 13
DI Gabrilovich (670_CR5) 2012; 12
C Iclozan (670_CR215) 2013; 62
H Shi (670_CR177) 2017; 140
JC Fleet (670_CR232) 2020; 198
T Pilot (670_CR319) 2020; 8
L Fultang (670_CR338) 2019; 47
H Matsushita (670_CR333) 2014; 2
P Dutta (670_CR186) 2018; 170
L Wu (670_CR92) 2019; 7
Y Zhu (670_CR156) 2014; 74
M Bruchard (670_CR318) 2013; 19
R Kinoshita (670_CR167) 2019; 145
B Escudier (670_CR174) 2017; 12
K Rui (670_CR237) 2016; 64
M Mielcarek (670_CR23) 1997; 89
DP Rotella (670_CR261) 2002; 1
M Platten (670_CR305) 2019; 18
H Zhang (670_CR34) 2013; 122
L Li (670_CR296) 2018; 78
N Isambert (670_CR321) 2018; 7
ML Ortiz (670_CR54) 2014; 2
MF Sanmamed (670_CR204) 2017; 28
JM Haverkamp (670_CR71) 2014; 41
CA Corzo (670_CR102) 2009; 182
EM Hanson (670_CR111) 2009; 183
J Pillay (670_CR73) 2013; 70
E Hajek (670_CR183) 2018; 9
PC Rodríguez (670_CR93) 2008; 222
B Molon (670_CR105) 2011; 208
F Hossain (670_CR141) 2015; 3
T Condamine (670_CR36) 2011; 32
S Nagaraj (670_CR275) 2010; 16
S Nagaraj (670_CR101) 2010; 184
J Li (670_CR110) 2017; 6
G Qin (670_CR295) 2018; 7
Y-Y Wang (670_CR274) 2014; 8
AW Ku (670_CR120) 2016; 5
LQM Chow (670_CR224) 2017; 23
A Oseroff (670_CR18) 1984; 132
K Moses (670_CR74) 2016; 28
ZC Ding (670_CR322) 2014; 3
D Bayik (670_CR144) 2020; 10
P Serafini (670_CR260) 2006; 203
C Sternberg (670_CR173) 2016; 34
JL Schultze (670_CR4) 2019; 50
Y Shao (670_CR242) 2017; 10
K Ohl (670_CR277) 2018; 9
ANH Khan (670_CR80) 2020; 8
PL Triozzi (670_CR148) 2012; 35
DR Powell (670_CR77) 2016; 37
F Veglia (670_CR6) 2018; 19
AA Al-Khami (670_CR284) 2017; 6
SL Jian (670_CR290) 2017; 8
J Rodríguez-Ubreva (670_CR246) 2017; 21
MF Al Sayed (670_CR41) 2019; 79
X Ni (670_CR211) 2019; 59
C-X Zhang (670_CR89) 2020; 9
CM Diaz-Montero (670_CR282) 2012; 52
JE Talmadge (670_CR2) 2013; 13
V Umansky (670_CR109) 2014; 63
Y Take (670_CR257) 2020; 11
DK-C Chiu (670_CR52) 2016; 64
E Eriksson (670_CR317) 2016; 14
S George (670_CR325) 2019; 5
L Wang (670_CR85) 2018; 7
KE Andersson (670_CR258) 2018; 175
C Hong (670_CR287) 2014; 13
R Pili (670_CR171) 2011; 29
J Finke (670_CR330) 2011; 11
M Tazzari (670_CR327) 2014; 111
AK Duwe (670_CR19) 1979; 43
Y Chiba (670_CR3) 2018; 75
E Schouppe (670_CR112) 2013; 43
S Takeuchi (670_CR323) 2015; 75
LB Rivera (670_CR157) 2015; 36
H Li (670_CR114) 2009; 182
H Harjunpää (670_CR91) 2020; 200
L Dolcetti (670_CR145) 2010; 40
R Trovato (670_CR205) 2019; 7
Z Wang (670_CR324) 2017; 6
GA Dominguez (670_CR335) 2017; 23
V Mariotti (670_CR308) 2021; 7
T Condamine (670_CR65) 2014; 124
S Hegde (670_CR81) 2021; 54
SK Maenhout (670_CR140) 2014; 134
C Zoglmeier (670_CR220) 2011; 17
DI Albu (670_CR256) 2017; 6
MK Srivastava (670_CR98) 2010; 70
C Cimen Bozkus (670_CR94) 2015; 195
S Ostrand-Rosenberg (670_CR124) 2012; 22
A Meireson (670_CR300) 2020; 11
JS Ko (670_CR329) 2010; 70
DMS Hossain (670_CR222) 2015; 21
I Younos (670_CR137) 2011; 11
J Yu (670_CR99) 2013; 190
EJ Lappat (670_CR16) 1964; 24
JP Antonios (670_CR83) 2017; 19
D Vijayan (670_CR108) 2017; 17
X Yuan (670_CR334) 2018; 37
670_CR11
AL Chang (670_CR185) 2016; 76
Y Yang (670_CR136) 2020; 11
X-Y Li (670_CR314) 2019; 9
B Allard (670_CR310) 2020; 17
N Gupta (670_CR169) 2014; 7
AJ Montero (670_CR281) 2011; 71
MR Young (670_CR24) 1990; 18
Y Wang (670_CR129) 2019; 6
J-I Youn (670_CR38) 2010; 40
J Vollmer (670_CR217) 2009; 61
H-M Chen (670_CR331) 2015; 21
E Limagne (670_CR88) 2019; 8
B Raychaudhuri (670_CR326) 2015; 122
L Negri (670_CR150) 2018; 98
SM Steinberg (670_CR189) 2017; 77
X Hu (670_CR70) 2013; 288
M Ouzounova (670_CR143) 2017; 8
J Zhou (670_CR238) 2016; 6
L Zitvogel (670_CR316) 2008; 8
P Sinha (670_CR68) 2011; 117
SM Pyonteck (670_CR154) 2013; 19
A Kosaka (670_CR254) 2014; 63
KH Parker (670_CR43) 2014; 74
E Mohamed (670_CR276) 2020; 52
TX Cui (670_CR130) 2013; 39
H Qin (670_CR168) 2014; 20
H Shime (670_CR229) 2014; 6
H-W Sun (670_CR48) 2021; 9
J-I Youn (670_CR57) 2013; 14
AJ Armstrong (670_CR172) 2013; 19
A Orillion (670_CR266) 2017; 23
G Gunaydin (670_CR35) 2015; 4
T Baumann (670_CR97) 2020; 21
Z Bian (670_CR196) 2018; 48
P Lu (670_CR208) 2012; 27
O Arrieta (670_CR214) 2010; 28
D Yan (670_CR67) 2020; 217
A Dumont (670_CR320) 2019; 10
JD Veltman (670_CR253) 2010; 10
A Holtzhausen (670_CR62) 2019; 7
P De Cicco (670_CR30) 2020; 11
670_CR184
S Fiorucci (670_CR278) 2003; 124
B Allard (670_CR107) 2017; 276
J Le Naour (670_CR304) 2020; 9
C Gebhardt (670_CR164) 2015; 21
RJ Johnston (670_CR90) 2014; 26
AH Zea (670_CR95) 2004; 232
B Hoechst (670_CR115) 2009; 50
AA Al-Khami (670_CR285) 2016; 5
AK Moesta (670_CR313) 2020; 20
P Serafini (670_CR147) 2004; 64
CM Gutschalk (670_CR149) 2006; 66
J Zhou (670_CR236) 2011; 11
Y Wang (670_CR8) 2019; 10
P Sinha (670_CR165) 2008; 181
RB Holmgaard (670_CR301) 2015; 13
W Hou (670_CR252) 2016; 30
K Okla (670_CR13) 2018; 55
H Shirota (670_CR218) 2012; 1
MS Noel (670_CR193) 2017; 35
MF Tavazoie (670_CR289) 2018; 172
T Seya (670_CR227) 2015; 35
JS Ko (670_CR328) 2009; 15
JA Califano (670_CR264) 2015; 21
Y Rong (670_CR255) 2016; 6
B-Z Qian (670_CR50) 2011; 475
S Greene (670_CR200) 2020; 26
H Jiang (670_CR176) 2015; 136
L Chen (670_CR181) 2018; 75
Y Wang (670_CR118) 2018; 201
N Horikawa (670_CR158) 2017; 23
PC Rodriguez (670_CR96) 2009; 69
L Shen (670_CR170) 2018; 8
CW Steele (670_CR51) 2016; 29
AE Gehad (670_CR113) 2012; 132
V Prima (670_CR247) 2017; 114
A Hashimoto (670_CR268) 2020; 69
E Wennerberg (670_CR312) 2020; 8
A Gonzalez-Junca (670_CR42) 2019; 7
Y Su (670_CR44) 2019; 10
MZ Noman (670_CR82) 2014; 211
D Moreira (670_CR221) 2018; 24
I Le Mercier (670_CR86) 2014; 74
L Strauss (670_CR46) 2015; 28
C Blattner (670_CR53) 2018; 78
A Giordano (670_CR235) 2019; 11
670_CR7
T Hartwig (670_CR336) 2017; 65
C Siret (670_CR122) 2020; 10
M Shen (670_CR119) 2018; 7
670_CR1
JA Flores-Toro (670_CR188) 2020; 117
K Sakuishi (670_CR87) 2011; 32
JE Walsh (670_CR234) 2010; 71
CA Corzo (670_CR58) 2010; 207
N Karin (670_CR39) 2020; 11
ZG Fridlender (670_CR60) 2009; 16
JS Kulbersh (670_CR233) 2009; 140
MY Lee (670_CR17) 1982; 42
Y Ma (670_CR195) 2014; 74
S Di (670_CR231) 2019; 9
Y Zheng (670_CR63) 2019; 18
W Li (670_CR151) 2016; 7
F Li (670_CR303) 2018; 19
Z Lu (670_CR269) 2020; 579
670_CR288
Y Deng (670_CR291) 2018; 67
J Trillo-Tinoco (670_CR297) 2019; 79
Y Nefedova (670_CR213) 2007; 67
H Li (670_CR332) 2020; 43
S Ryzhov (670_CR106) 2011; 187
CN Krasner (670_CR280) 2008; 26
S Ugel (670_CR33) 2015; 125
DI Gabrilovich (670_CR134) 2009; 9
JA Bennett (670_CR20) 1979; 28
H Satoh (670_CR272) 2010; 31
T Wu (670_CR292) 2016; 6
JY Sagiv (670_CR75) 2015; 10
CR Millrud (670_CR146) 2017; 8
TM Nywening (670_CR192) 2016; 17
C Porta (670_CR248) 2020; 80
N Obermajer (670_CR244) 2011; 71
Y Mao (670_CR245) 2014; 20
T Masuda (670_CR190) 2020; 111
X Tian (670_CR241) 2015; 4
References_xml – reference: YanDTIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesisJ. Exp. Med.2020217e201820053166234710.1084/jem.201820051:CAS:528:DC%2BB3cXjt1Gis78%3D
– reference: PoschkeIMyeloid-derived suppressor cells impair the quality of dendritic cell vaccinesCancer Immunol. Immunother.2012618278381:CAS:528:DC%2BC38XnvFKqurg%3D2208040510.1007/s00262-011-1143-y
– reference: ManganMSJTargeting the NLRP3 inflammasome in inflammatory diseasesNat. Rev. Drug Discov.2018175886061:CAS:528:DC%2BC1cXhtlGlt7bM3002652410.1038/nrd.2018.97
– reference: PengDMyeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signalingCancer Res.201676315631651:CAS:528:DC%2BC28XovVykt78%3D27197152489123710.1158/0008-5472.CAN-15-2528
– reference: Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-00490-y (2021).
– reference: TuSPCurcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growthCancer Prev. Res.201252052151:CAS:528:DC%2BC38XjvValtbg%3D10.1158/1940-6207.CAPR-11-0247
– reference: HellmannMDEntinostat plus pembrolizumab in patients with metastatic NSCLC previously treated with anti-PD-(L)1 therapyClin. Cancer Res.20212710191:CAS:528:DC%2BB3MXnvVOhurc%3D3320364410.1158/1078-0432.CCR-20-3305
– reference: MoreiraDSTAT3 inhibition combined with CpG immunostimulation activates antitumor immunity to eradicate genetically distinct castration-resistant prostate cancersClin. Cancer Res.201824594859621:CAS:528:DC%2BB3cXht1aitrjN30337279627947710.1158/1078-0432.CCR-18-1277
– reference: SerafiniPHigh-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cellsCancer Res.200464633763431:CAS:528:DC%2BD2cXntFClt7k%3D1534242310.1158/0008-5472.CAN-04-0757
– reference: LiFZhaoYWeiLLiSLiuJTumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancerCancer Biol. Ther.2018196957051:CAS:528:DC%2BC1cXptFCmsrw%3D29621426606787110.1080/15384047.2018.1450116
– reference: ShenLPiliRTasquinimod targets suppressive myeloid cells in the tumor microenvironmentOncoimmunology20188e1072672e107267231646064679142910.1080/2162402X.2015.1072672
– reference: Safarzadeh, E., Orangi, M., Mohammadi, H., Babaie, F. & Baradaran, B. A.-O. Myeloid-derived suppressor cells: important contributors to tumor progression and metastasis. J. Cell. Biol.233, 3024–3036 (2018).
– reference: SchouppeETumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation eventsEur. J. Immunol.201343293029421:CAS:528:DC%2BC3sXhtlWrsr7O2387800210.1002/eji.201343349
– reference: YoungMRYoungMEWrightMAStimulation of immune-suppressive bone marrow cells by colony-stimulating factorsExp. Hematol.1990188068111:CAS:528:DyaK3cXlslSisbY%3D2143138
– reference: HasselJCTadalafil has biologic activity in human melanoma. Results of a pilot trial with Tadalafil in patients with metastatic melanoma (TaMe)Oncoimmunology20176e1326440e132644028932631559908510.1080/2162402X.2017.1326440
– reference: GunaydinGKesikliSAGucDCancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subsetOncoimmunology20154e1034918e103491826405600457013710.1080/2162402X.2015.10349181:CAS:528:DC%2BC28XhsFKitrw%3D
– reference: CorzoCAHIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironmentJ. Exp. Med.2010207243924531:CAS:528:DC%2BC3cXhsVSktLzE20876310296458410.1084/jem.20100587
– reference: SinhaPProinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cellsJ. Immunol.2008181466646751:CAS:528:DC%2BD1cXhtFarurzK1880206910.4049/jimmunol.181.7.4666
– reference: AlbuDIEP4 antagonism by E7046 diminishes myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunityOncoimmunology20176e1338239e133823928920002559370010.1080/2162402X.2017.1338239
– reference: LeeMResiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cellsArch. Pharmacal. Res.201437123412401:CAS:528:DC%2BC2cXmsVKlsLs%3D10.1007/s12272-014-0379-4
– reference: MatsushitaHA pilot study of autologous tumor lysate-loaded dendritic cell vaccination combined with sunitinib for metastatic renal cell carcinomaJ. Immunother. Cancer20142303025694811433192410.1186/s40425-014-0030-4
– reference: ChangALCCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cellsCancer Res.201676567156821:CAS:528:DC%2BC28Xhs1SmtL3I27530322505011910.1158/0008-5472.CAN-16-0144
– reference: SanmamedMFChanges in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patientsAnn. Oncol.201728198819951:STN:280:DC%2BC1cnmtl2nsw%3D%3D28595336583410410.1093/annonc/mdx190
– reference: WangY-YYangY-XZheHHeZ-XZhouS-FBardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic propertiesDrug Des. Dev. Ther.2014820752088
– reference: AntoniosJPImmunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastomaNeuro-Oncology2017197968071:CAS:528:DC%2BC1cXitFSntL%2FF281155785464463
– reference: ZeaAHl-Arginine modulates CD3ζ expression and T cell function in activated human T lymphocytesCell. Immunol.200423221311:CAS:528:DC%2BD2MXls1Gmtbg%3D1592271210.1016/j.cellimm.2005.01.004
– reference: LiangHHost STING-dependent MDSC mobilization drives extrinsic radiation resistanceNat. Commun.201781736173629170400570101910.1038/s41467-017-01566-51:CAS:528:DC%2BC1cXhtFSnsLnM
– reference: RodriguezPCArginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytesCancer Res.200969155315601:CAS:528:DC%2BD1MXhslynsb4%3D19201693290084510.1158/0008-5472.CAN-08-1921
– reference: Rodríguez-UbrevaJProstaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cellsCell Rep.2017211541672897846910.1016/j.celrep.2017.09.0181:CAS:528:DC%2BC2sXhs1Siur3O
– reference: MaenhoutSKVan LintSEmeagiPUThielemansKAertsJLEnhanced suppressive capacity of tumor-infiltrating myeloid-derived suppressor cells compared with their peripheral counterpartsInt. J. Cancer2014134107710901:CAS:528:DC%2BC3sXhsVyqtLrL2398319110.1002/ijc.28449
– reference: NomanMZPD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activationJ. Exp. Med.20142117817901:CAS:528:DC%2BC2cXotVCjs7w%3D24778419401089110.1084/jem.20131916
– reference: TalmadgeJEGabrilovichDIHistory of myeloid-derived suppressor cellsNat. Rev. Cancer2013137397521:CAS:528:DC%2BC3sXhsV2jsbfL10.1038/nrc3581240608654358792
– reference: HossainFInhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapiesCancer Immunol. Res.20153123612471:CAS:528:DC%2BC2MXhvVajsbvI26025381463694210.1158/2326-6066.CIR-15-0036
– reference: HegdeSLeaderAMMeradMMDSC: markers, development, states, and unaddressed complexityImmunity2021548758841:CAS:528:DC%2BB3MXhtVKqsLjM3397958510.1016/j.immuni.2021.04.0048709560
– reference: WangLVISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AMLOncoimmunology20187e1469594e146959430228937614058710.1080/2162402X.2018.1469594
– reference: ZhouJIcariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functionsInt. Immunopharmacol.2011118908981:CAS:528:DC%2BC3MXntVyis70%3D2124486010.1016/j.intimp.2011.01.007
– reference: ChornoguzOProteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosisMol. Cell. Proteom.201110M110.002980M002110.00298010.1074/mcp.M110.0029801:CAS:528:DC%2BC3MXjt1Glu70%3D
– reference: SakuishiKJayaramanPBeharSMAndersonACKuchrooVKEmerging Tim-3 functions in antimicrobial and tumor immunityTrends Immunol.2011323453491:CAS:528:DC%2BC3MXpvFGgsrs%3D21697013316431110.1016/j.it.2011.05.003
– reference: DomankevichVCombining alpha radiation-based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor-specific long-term immune responseCancer Immunol. Immunother.201968194919581:CAS:528:DC%2BC1MXitVSqtL3P31637474687748410.1007/s00262-019-02418-5
– reference: ChristmasBJEntinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCsCancer Immunol. Res.20186156115771:CAS:528:DC%2BB3cXhtFKqs73P30341213627958410.1158/2326-6066.CIR-18-0070
– reference: Le NaourJGalluzziLZitvogelLKroemerGVacchelliETrial watch: IDO inhibitors in cancer therapyOncoimmunology202091777625177762532934882746686310.1080/2162402X.2020.1777625
– reference: ChenLBlockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinomaCell Mol. Life Sci.201875204520581:CAS:528:DC%2BC2sXhvV2isbrF2918498010.1007/s00018-017-2720-9
– reference: Al SayedMFT-cell-secreted TNFα induces emergency myelopoiesis and myeloid-derived suppressor cell differentiation in cancerCancer Res.2019793461:CAS:528:DC%2BC1MXos1ahsrk%3D3038969810.1158/0008-5472.CAN-17-3026
– reference: HarjunpääHGuillereyCTIGIT as an emerging immune checkpointClin. Exp. Immunol.20202001081193182877410.1111/cei.13407
– reference: MazzoniAMyeloid suppressor lines inhibit T cell responses by an NO-dependent mechanismJ. Immunol.20021686891:CAS:528:DC%2BD38XksFWlsg%3D%3D1177796210.4049/jimmunol.168.2.689
– reference: MariottiVEffect of taxane chemotherapy with or without indoximod in metastatic breast cancer: a randomized clinical trialJAMA Oncol.2021761693315128610.1001/jamaoncol.2020.5572
– reference: FujitaMCOX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cellsCancer Res.201171266426741:CAS:528:DC%2BC3MXktVOjtbk%3D21324923307508610.1158/0008-5472.CAN-10-3055
– reference: BennettJAMitchellMSInduction of suppressor cells by intravenous administration of Bacillus calmette-guérin and its modulation by cyclophosphamideBiochem. Pharmacol.197928194719521:CAS:528:DyaL3cXhsFCjsQ%3D%3D31321010.1016/0006-2952(79)90649-X
– reference: YuJMyeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancerJ. Immunol.201319037831:CAS:528:DC%2BC3sXksVynsr8%3D2344041210.4049/jimmunol.1201449
– reference: PientaKJPhase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancerInvestig. N. Drugs2013317607681:CAS:528:DC%2BC3sXnt12ltLY%3D10.1007/s10637-012-9869-8
– reference: BergenfelzCSystemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patientsPLoS ONE201510e0127028e012702825992611443915310.1371/journal.pone.01270281:CAS:528:DC%2BC2MXhs1ClsLrI
– reference: ShaoYBisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancerOncoTargets Ther.2017102675268310.2147/OTT.S130653
– reference: MirzaNAll-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patientsCancer Res.200666929993071:CAS:528:DC%2BD28Xps1ahsrk%3D16982775158610610.1158/0008-5472.CAN-06-1690
– reference: LiHCancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1J. Immunol.20091822402491:CAS:528:DC%2BD1cXhsFCis7bI1910915510.4049/jimmunol.182.1.240
– reference: WalshJEClarkA-MDayTAGillespieMBYoungMRIUse of alpha,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinomaHum. Immunol.2010716596651:CAS:528:DC%2BC3cXnvVelt7Y%3D20438786333768710.1016/j.humimm.2010.04.008
– reference: PortaCTumor-derived prostaglandin E2 promotes p50 NF-κB-dependent differentiation of monocytic MDSCsCancer Res.20208028741:CAS:528:DC%2BB3cXhvVehtbnP3226522310.1158/0008-5472.CAN-19-2843
– reference: Cardoso AlvesLCorazzaNMicheauOKrebsPThe multifaceted role of TRAIL signaling in cancer and immunityFEBS J.202010.1111/febs.1563733215853
– reference: KuAWTumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodeseLife20165e1737527929373519919710.7554/eLife.17375
– reference: LuZEpigenetic therapy inhibits metastases by disrupting premetastatic nichesNature20205792842901:CAS:528:DC%2BB3cXjvFygu7Y%3D3210317510.1038/s41586-020-2054-x8765085
– reference: BruchardMChemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growthNat. Med.20131957641:CAS:528:DC%2BC38XhslGku73M2320229610.1038/nm.2999
– reference: OseroffAOkadaSStroberSNatural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotypeJ. Immunol.19841321011:STN:280:DyaL2c%2FovVylsQ%3D%3D6228575
– reference: ArmstrongAJLong-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancerClin. Cancer Res.201319689169011:CAS:528:DC%2BC3sXhvFyrtrfI24255071425145310.1158/1078-0432.CCR-13-1581
– reference: Tavazoie, M. F. et al. LXR agonism depletes MDSCs to promote antitumor immunity. Cancer Discov.8, 263 (2018).
– reference: NagarajSAnti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancerClin. Cancer Res.201016181218231:CAS:528:DC%2BC3cXjtFyhtbk%3D20215551284018110.1158/1078-0432.CCR-09-3272
– reference: PanPYReversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor functionBlood20081112192281:CAS:528:DC%2BD1cXjtVKitg%3D%3D17885078220080710.1182/blood-2007-04-086835
– reference: ZhaoXTNF signaling drives myeloid-derived suppressor cell accumulationJ. Clin. Investig.2012122409441041:CAS:528:DC%2BC38Xhs1CisL%2FP23064360348445310.1172/JCI64115
– reference: SpiegelANeutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cellsCancer Discov.201666306491:CAS:528:DC%2BC28Xpt1Ggu78%3D27072748491820210.1158/2159-8290.CD-15-1157
– reference: SrivastavaMKSinhaPClementsVKRodriguezPOstrand-RosenbergSMyeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteineCancer Res.20107068771:CAS:528:DC%2BC3cXltVaj2002885210.1158/0008-5472.CAN-09-2587
– reference: OrtizMLLuLRamachandranIGabrilovichDIMyeloid-derived suppressor cells in the development of lung cancerCancer Immunol. Res.2014250581:CAS:528:DC%2BC2cXmtl2lsrs%3D2477816210.1158/2326-6066.CIR-13-0129
– reference: MillrudCRBergenfelzCLeanderssonKOn the origin of myeloid-derived suppressor cellsOncotarget20178364936652769029910.18632/oncotarget.12278
– reference: CondamineTMastioJGabrilovichDITranscriptional regulation of myeloid-derived suppressor cellsJ. Leukoc. Biol.2015989139221:CAS:528:DC%2BC28XhtlGqt73P26337512466104110.1189/jlb.4RI0515-204R
– reference: GeorgeSRiniBIHammersHJEmerging role of combination immunotherapy in the first-line treatment of advanced renal cell carcinoma: a reviewJAMA Oncol.201954114213047695510.1001/jamaoncol.2018.4604
– reference: Rodríguez, P. C. & Ochoa, A. C. Tumor-Induced Immune Suppression. Chap. 13, 369–386 (Springer, 2014).
– reference: FridlenderZGPolarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TANCancer Cell2009161831941:CAS:528:DC%2BD1MXhsVChs7vN19732719275440410.1016/j.ccr.2009.06.017
– reference: CuiTXMyeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2Immunity2013396116211:CAS:528:DC%2BC3sXhtl2ksbzO2401242010.1016/j.immuni.2013.08.025
– reference: Al-KhamiAARodriguezPCOchoaACMetabolic reprogramming of myeloid-derived suppressor cells (MDSC) in cancerOncoimmunology20165e120077127622069500795110.1080/2162402X.2016.12007711:CAS:528:DC%2BC28XhtlShtLfO
– reference: CalifanoJATadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinomaClin. Cancer Res.20152130381:CAS:528:DC%2BC2MXis12mug%3D%3D25564570432991610.1158/1078-0432.CCR-14-1716
– reference: GabrilovichDINagarajSMyeloid-derived suppressor cells as regulators of the immune systemNat. Rev. Immunol.200991621741:CAS:528:DC%2BD1MXhsFeqsbw%3D19197294282834910.1038/nri2506
– reference: HoltzhausenATAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanomaCancer Immunol. Res.20197167216861:CAS:528:DC%2BB3cXhvFOmtLvP31451482694398310.1158/2326-6066.CIR-19-0008
– reference: LabadieBWBaoRLukeJJReimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axisClin. Cancer Res.201925146214711:CAS:528:DC%2BB3cXhtlOmt7rF3037719810.1158/1078-0432.CCR-18-2882
– reference: PeereboomDMMetronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cellsJCI insight20194e130748694886010.1172/jci.insight.130748
– reference: TuyaertsSRombautsKEveraertTVan NuffelAMTAmantFA phase 2 study to assess the immunomodulatory capacity of a lecithin-based delivery system of curcumin in endometrial cancerFront. Nutr.2019513813830687714633692110.3389/fnut.2018.001381:CAS:528:DC%2BB3cXhvVCgsrw%3D
– reference: ChenH-MMyeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapyClin. Cancer Res.201521407340851:CAS:528:DC%2BC2MXhsFejtrbL25922428472026610.1158/1078-0432.CCR-14-2742
– reference: YounJ-IGabrilovichDIThe biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneityEur. J. Immunol.201040296929751:CAS:528:DC%2BC3cXhtl2isbfK21061430327745210.1002/eji.201040895
– reference: SiretCDeciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinomaFront. Immunol.2020103070307032038621698739110.3389/fimmu.2019.030701:CAS:528:DC%2BB3cXhsVGgsb7P
– reference: TannenbaumCSMediators of inflammation-driven expansion, trafficking, and function of tumor-infiltrating MDSCsCancer Immunol. Res.20197168716991:CAS:528:DC%2BB3cXhvFOmtLjN31439615677482110.1158/2326-6066.CIR-18-0578
– reference: TavazoieMFLXR/ApoE activation restricts innate immune suppression in cancerCell2018172825840.e8181:CAS:528:DC%2BC1cXhtVejtLw%3D29336888584634410.1016/j.cell.2017.12.026
– reference: Salvador-ColomaCImmunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancerEur. J. Cancer20201391191341:CAS:528:DC%2BB3cXhvVOrs7jO3298725310.1016/j.ejca.2020.08.020
– reference: VeltmanJDCOX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC functionBMC Cancer20101020804550293955210.1186/1471-2407-10-4641:CAS:528:DC%2BC3cXhtFSqsLbI
– reference: ShenMA novel MDSC-induced PD-1(-)PD-L1(+) B-cell subset in breast tumor microenvironment possesses immuno-suppressive propertiesOncoimmunology20187e1413520e141352029632731588919510.1080/2162402X.2017.1413520
– reference: KrasnerCNNOV-002 plus carboplatin in platinum-resistant ovarian cancerJ. Clin. Oncol.2008265593559310.1200/jco.2008.26.15_suppl.5593
– reference: AllardBAllardDBuisseretLStaggJThe adenosine pathway in immuno-oncologyNat. Rev. Clin. Oncol.2020176116291:CAS:528:DC%2BB3cXhtFOrurrP3251414810.1038/s41571-020-0382-2
– reference: QianB-ZCCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasisNature20114752222251:CAS:528:DC%2BC3MXntFKrsb0%3D21654748320850610.1038/nature10138
– reference: OhlKTenbrockKReactive oxygen species as regulators of MDSC-mediated immune suppressionFront. Immunol.201892499249930425715621861310.3389/fimmu.2018.024991:CAS:528:DC%2BC1MXosVamtrg%3D
– reference: DolcettiLHierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSFEur. J. Immunol.20104022351:CAS:528:DC%2BC3cXktVCn1994131410.1002/eji.200939903
– reference: DiSCombined adjuvant of poly I:C improves antitumor effects of CAR-T cellsFront. Oncol.2019924124131058074648127310.3389/fonc.2019.00241
– reference: Flores-ToroJACCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomasProc. Natl Acad. Sci. USA2020117112911381:CAS:528:DC%2BB3cXhtFehsbw%3D3187934510.1073/pnas.1910856117
– reference: MaYCCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapyCancer Res.2014744361:CAS:528:DC%2BC2cXptVaitA%3D%3D2430258010.1158/0008-5472.CAN-13-1265
– reference: VollmerJKriegAMImmunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonistsAdv. Drug Deliv. Rev.2009611952041:CAS:528:DC%2BD1MXjtFKltb4%3D1921103010.1016/j.addr.2008.12.008
– reference: YuanXDeveloping TRAIL/TRAIL death receptor-based cancer therapiesCancer Metastasis Rev.2018377337481:CAS:528:DC%2BC1cXks1KqtLY%3D29541897613856810.1007/s10555-018-9728-y
– reference: EksiogluEANovel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858Leukemia201731217221801:CAS:528:DC%2BC2sXisVymtbk%3D28096534555247210.1038/leu.2017.21
– reference: AlmandBIncreased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancerJ. Immunol.20011666781:CAS:528:DC%2BD3MXis1elsw%3D%3D1112335310.4049/jimmunol.166.1.678
– reference: BronteVUnopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturationJ. Immunol.1999162572857371:CAS:528:DyaK1MXjt12ltrc%3D10229805
– reference: AlshetaiwiHDefining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomicsSci. Immunol.20205eaay60171:CAS:528:DC%2BB3cXksVGlsbw%3D32086381721921110.1126/sciimmunol.aay6017
– reference: De CiccoPErcolanoGIanaroAThe new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasionFront. Immunol.20201116801:CAS:528:DC%2BB3cXitlSis7nN32849585740679210.3389/fimmu.2020.01680
– reference: MohammadpourH2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cellsJ. Clin. Investig.2019129553755521:CAS:528:DC%2BB3cXnsFKgtLY%3D31566578687731610.1172/JCI129502
– reference: Cresswell, G. M. et al. Folate receptor beta designates immunosuppressive tumor-associated myeloid cells that can be reprogrammed with folate-targeted drugs. Cancer Res.https://doi.org/10.1158/0008-5472.CAN-20-1414 (2020).
– reference: SagivJYPhenotypic diversity and plasticity in circulating neutrophil subpopulations in cancerCell Rep.2015105625731:CAS:528:DC%2BC2MXhsVars7w%3D2562069810.1016/j.celrep.2014.12.039
– reference: TakeYKoizumiSNagahisaAProstaglandin E receptor 4 antagonist in cancer immunotherapy: mechanisms of actionFront. Immunol.2020113243241:CAS:528:DC%2BB3cXhsVGiur7F32210957707608110.3389/fimmu.2020.00324
– reference: SatohHNrf2-deficiency creates a responsive microenvironment for metastasis to the lungCarcinogenesis201031183318431:CAS:528:DC%2BC3cXht1OgtbzP2051367210.1093/carcin/bgq105
– reference: YounJ-IEpigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancerNat. Immunol.2013142112201:CAS:528:DC%2BC3sXhsVyisL8%3D23354483357801910.1038/ni.2526
– reference: UmanskyVShevchenkoIBazhinAVUtikalJExtracellular adenosine metabolism in immune cells in melanomaCancer Immunol. Immunother.201463107310801:CAS:528:DC%2BC2cXntFOlsbk%3D2475642010.1007/s00262-014-1553-8
– reference: TriozziPLDifferential immunologic and microRNA effects of 2 dosing regimens of recombinant human granulocyte/macrophage colony stimulating factorJ. Immunother.2012355875941:CAS:528:DC%2BC38Xht1ahsr3K2289245510.1097/CJI.0b013e31826b20b6
– reference: PillayJTakTKampVMKoendermanLImmune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differencesCell. Mol. life Sci.201370381338271:CAS:528:DC%2BC3sXhsV2mtr3K23423530378131310.1007/s00018-013-1286-4
– reference: MurdochCMuthanaMCoffeltSBLewisCEThe role of myeloid cells in the promotion of tumour angiogenesisNat. Rev. Cancer200886186311:CAS:528:DC%2BD1cXovV2lsrY%3D1863335510.1038/nrc2444
– reference: WuTmTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumorsSci. Rep.2016620250202501:CAS:528:DC%2BC28XhslOrsrw%3D26833095473529610.1038/srep20250
– reference: GuoBFuSZhangJLiuBLiZTargeting inflammasome/IL-1 pathways for cancer immunotherapySci. Rep.20166361073610727786298508237610.1038/srep36107
– reference: WangDSunHWeiJCenBDuBoisRNCXCL1 is critical for premetastatic Niche formation and metastasis in colorectal cancerCancer Res.201777365536651:CAS:528:DC%2BC2sXhtFSmsrbI28455419587740310.1158/0008-5472.CAN-16-3199
– reference: MeiresonADevosMBrochezLIDO expression in cancer: different compartment, different functionality?Front. Immunol.2020115314915314911:CAS:528:DC%2BB3cXis1KnsbjE33072086754190710.3389/fimmu.2020.531491
– reference: ChengPInhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 proteinJ. Exp. Med.2008205223522491:CAS:528:DC%2BD1cXht1SrtLvE18809714255679710.1084/jem.20080132
– reference: DengZExosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasisOncogene2017366396511:CAS:528:DC%2BC28XhtVGlsLfP2734540210.1038/onc.2016.229
– reference: HashimotoAFukumotoTZhangRGabrilovichDSelective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitorsCancer Immunol. Immunother.202069192919361:CAS:528:DC%2BB3cXhtVWnu7%2FM32435850776508310.1007/s00262-020-02588-7
– reference: XuPMetformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing miceBiomed. Pharmacother.20191201094581:CAS:528:DC%2BC1MXhvVarsr%2FL3155067610.1016/j.biopha.2019.109458
– reference: BianZTumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in miceEur. J. Immunol.2018485325421:CAS:528:DC%2BC2sXhvFejurjE2912005310.1002/eji.201746976
– reference: MonteroAJPhase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancerBreast Cancer Res. Treat.20121322152231:CAS:528:DC%2BC38XitVSkuro%3D2213874810.1007/s10549-011-1889-0
– reference: CondamineTER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosisJ. Clin. Investig.2014124262626391:CAS:528:DC%2BC2cXpvFahsrg%3D24789911403857810.1172/JCI74056
– reference: ShirotaHKlinmanDMEffect of CpG ODN on monocytic myeloid derived suppressor cellsOncoimmunology2012178078222934281342959310.4161/onci.19731
– reference: WangJRepertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracilInt. J. Oncol.201648134113521:CAS:528:DC%2BC28XitFGlt7rN26847910477760010.3892/ijo.2016.3371
– reference: DuweAKSinghalSKThe immunoregulatory role of bone marrow: I. Suppression of the induction of antibody responses to T-dependent and T-independent antigens by cells in the bone marrowCell. Immunol.1979433623711:STN:280:DyaL3c%2FgtF2kug%3D%3D31434510.1016/0008-8749(79)90180-1
– reference: BresnickARWeberDJZimmerDBS100 proteins in cancerNat. Rev. Cancer201515961091:CAS:528:DC%2BC2MXhsVartrg%3D25614008436976410.1038/nrc3893
– reference: IclozanCAntoniaSChiapporiAChenD-TGabrilovichDTherapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancerCancer Immunol. Immunother.2013629099181:CAS:528:DC%2BC3sXmslamsbY%3D23589106366223710.1007/s00262-013-1396-8
– reference: LathersDMClarkJIAchilleNJYoungMRPhase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3Cancer Immunol. Immunother.2004534224301:CAS:528:DC%2BD2cXisVWhurg%3D1464807010.1007/s00262-003-0459-7
– reference: Cortez-RetamozoVOrigins of tumor-associated macrophages and neutrophilsProc. Natl Acad. Sci. USA2012109249124961:CAS:528:DC%2BC38XivVKntro%3D22308361328937910.1073/pnas.1113744109
– reference: LiX-YTargeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunityCancer Discov.20199175417731:CAS:528:DC%2BB3cXht1Ght77K31699796689120710.1158/2159-8290.CD-19-0541
– reference: YounJ-INagarajSCollazoMGabrilovichDISubsets of myeloid-derived suppressor cells in tumor-bearing miceJ. Immunol.2008181579158021:CAS:528:DC%2BD1cXhtF2hsL3I1883273910.4049/jimmunol.181.8.5791
– reference: DominguezGASelective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibodyClin. Cancer Res.201723294229501:CAS:528:DC%2BC2sXhtVSqu77K2796530910.1158/1078-0432.CCR-16-1784
– reference: SawanoboriYChemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing miceBlood2008111545754661:CAS:528:DC%2BD1cXnsVOktrY%3D1837579110.1182/blood-2008-01-136895
– reference: LuPYuBXuJCucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancerCancer Biother. Radiopharm.2012274955031:CAS:528:DC%2BC38XhsFSgsb3P2274628710.1089/cbr.2012.1219
– reference: BeuryDWMyeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2J. Immunol.2016196347034781:CAS:528:DC%2BC28XltlSksL0%3D2693688010.4049/jimmunol.1501785
– reference: RyzhovSAdenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cellsJ. Immunol.2011187612061291:CAS:528:DC%2BC3MXhsV2hsLnL2203930210.4049/jimmunol.1101225
– reference: HorikawaNExpression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cellsClin. Cancer Res.2017235871:CAS:528:DC%2BC2sXhtVeit7c%3D2740124910.1158/1078-0432.CCR-16-0387
– reference: MasudaTPhase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancerCancer Sci.20201119249311:CAS:528:DC%2BB3cXis1Snsr8%3D31943636706048710.1111/cas.14306
– reference: KulbershJSDayTAGillespieMBYoungMRI1alpha,25-Dihydroxyvitamin D(3) to skew intratumoral levels of immune inhibitory CD34(+) progenitor cells into dendritic cellsOtolaryngol. Head Neck Surg.200914023524019201295333772610.1016/j.otohns.2008.11.011
– reference: OuzounovaMMonocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascadeNat. Commun.2017814979149791:CAS:528:DC%2BC2sXlvVersr8%3D28382931538422810.1038/ncomms14979
– reference: HuXDeregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancerJ. Biol. Chem.201328819103191151:CAS:528:DC%2BC3sXhtVehurvI23677993369668310.1074/jbc.M112.434530
– reference: SiYMultidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissueSci. Immunol.20194eaaw91591:CAS:528:DC%2BC1MXitFaksLnJ3162816110.1126/sciimmunol.aaw9159
– reference: ZhangC-XGalectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradationOncogenesis2020965651:CAS:528:DC%2BB3cXhtlKqurfJ32632113733834910.1038/s41389-020-00248-0
– reference: HongCTontonozPLiver X receptors in lipid metabolism: opportunities for drug discoveryNat. Rev. Drug Discov.2014134334441:CAS:528:DC%2BC2cXotV2iuro%3D2483329510.1038/nrd4280
– reference: GebhardtCMyeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumabClin. Cancer Res.20152154531:CAS:528:DC%2BC2MXitVKjs7vL2628906710.1158/1078-0432.CCR-15-0676
– reference: SharmaBNawandarDMNannuruKCVarneyMLSinghRKTargeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasisMol. Cancer Ther.2013127991:CAS:528:DC%2BC3sXntlSitrY%3D2346853010.1158/1535-7163.MCT-12-0529
– reference: KinoshitaRNewly developed anti-S100A8/A9 monoclonal antibody efficiently prevents lung tropic cancer metastasisInt. J. Cancer20191455695751:CAS:528:DC%2BC1cXisFSmsL3P3041417010.1002/ijc.31982
– reference: SchottAFPhase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancerClin. Cancer Res.201723535853651:CAS:528:DC%2BC2sXhsV2mu7fK28539464560082410.1158/1078-0432.CCR-16-2748
– reference: KujawskiMStat3 mediates myeloid cell-dependent tumor angiogenesis in miceJ. Clin. Investig.2008118336733771:CAS:528:DC%2BD1cXht1ChsrrE18776941252891210.1172/JCI35213
– reference: HaverkampJMMyeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathwaysImmunity2014419479591:CAS:528:DC%2BC2cXitFejsrjE25500368427266410.1016/j.immuni.2014.10.020
– reference: FinkeJMDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapyInt. Immunopharmacol.2011118568611:CAS:528:DC%2BC3MXntVyisrw%3D2131578310.1016/j.intimp.2011.01.030
– reference: RaychaudhuriBMyeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytesJ. Neurooncol.20151222933011:CAS:528:DC%2BC2MXhtVCqtL4%3D2557998310.1007/s11060-015-1720-6
– reference: KoJSSunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patientsClin. Cancer Res.200915214821571:CAS:528:DC%2BD1MXjtF2rurY%3D1927628610.1158/1078-0432.CCR-08-1332
– reference: GabrilovichDIThe terminology issue for myeloid-derived suppressor cellsCancer Res.2007674251:CAS:528:DC%2BD2sXisFWitA%3D%3D17210725194178710.1158/0008-5472.CAN-06-3037
– reference: RodríguezPCOchoaACArginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectivesImmunol. Rev.200822218019118364002354650410.1111/j.1600-065X.2008.00608.x
– reference: KumarVPatelSTcyganovEGabrilovichDIThe nature of myeloid-derived suppressor cells in the tumor microenvironmentTrends Immunol.2016372082201:CAS:528:DC%2BC28XhsFKltbc%3D26858199477539810.1016/j.it.2016.01.004
– reference: SteinbergSMMyeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitorsCancer Res.201777159916101:CAS:528:DC%2BC2sXltlyjtrY%3D28202513538054010.1158/0008-5472.CAN-16-1755
– reference: BronteVRecommendations for myeloid-derived suppressor cell nomenclature and characterization standardsNat. Commun.201671:CAS:528:DC%2BC28XhtFGmu7jP27381735493581110.1038/ncomms12150
– reference: KosakaAOhkuriTOkadaHCombination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cellsCancer Immunol. Immunother.2014638478571:CAS:528:DC%2BC2cXpsVagsLo%3D24878890422128710.1007/s00262-014-1561-8
– reference: StraussLRORC1 regulates tumor-promoting “Emergency” granulo-monocytopoiesisCancer Cell2015282532691:CAS:528:DC%2BC2MXhtlWlsbvP2626753810.1016/j.ccell.2015.07.006
– reference: OklaKWertelIWawruszakABobinskiMKotarskiJBlood-based analyses of cancer: circulating myeloid-derived suppressor cells—Is a new era coming?Crit. Rev. Clin. Lab Sci.2018553764071:CAS:528:DC%2BC1cXhtFymsr7L2992766810.1080/10408363.2018.1477729
– reference: WangYDingYGuoNWangSMDSCs: key criminals of tumor pre-metastatic niche formationFront. Immunol.2019101721721:CAS:528:DC%2BC1MXhsVWnsrrP30792719637429910.3389/fimmu.2019.00172
– reference: Cimen BozkusCElzeyBDCristSAElliesLGRatliffTLExpression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunityJ. Immunol.2015195523752501:CAS:528:DC%2BC2MXhvVOhu7fL2649119810.4049/jimmunol.1500959
– reference: WuLBlockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinomaCancer Immunol. Res.2019717001:CAS:528:DC%2BB3cXhvFOmtLjO3138789710.1158/2326-6066.CIR-18-0725
– reference: ZhouJTherapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterinSci. Rep.2016629521295211:CAS:528:DC%2BC2sXksVektbY%3D27405665494278710.1038/srep29521
– reference: DumontADocosahexaenoic acid inhibits both NLRP3 inflammasome assembly and JNK-mediated mature IL-1β secretion in 5-fluorouracil-treated MDSC: implication in cancer treatmentCell Death Dis.20191048548531217433658469010.1038/s41419-019-1723-x1:CAS:528:DC%2BC1MXht1KksrbI
– reference: UgelSDe SanctisFMandruzzatoSBronteVTumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophagesJ. Clin. Invest.20151253365337626325033458831010.1172/JCI80006
– reference: Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. https://doi.org/10.3322/caac.21660 (2021).
– reference: SonnenfeldALeukamische reaktiones bei carcinomaZ. f. Klin. Med.1929111108
– reference: AlfaroCInterleukin-8 in cancer pathogenesis, treatment and follow-upCancer Treat. Rev.20176024311:CAS:528:DC%2BC2sXhtlOgsrrI2886636610.1016/j.ctrv.2017.08.004
– reference: KoinisFEffect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancerJ. Thorac. Oncol.201611126312722717898410.1016/j.jtho.2016.04.026
– reference: TobinRPTargeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with IpilimumabInt. Immunopharmacol.2018632822911:CAS:528:DC%2BC1cXhsFequ7zJ30121453613417710.1016/j.intimp.2018.08.007
– reference: PrimaVKaliberovaLNKaliberovSCurielDTKusmartsevSCOX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cellsProc. Natl Acad. Sci. USA2017114111711221:CAS:528:DC%2BC2sXhtFartbs%3D28096371529301510.1073/pnas.1612920114
– reference: TianXParticulate β-glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expressionOncoimmunology20154e1038687e103868726405609457010710.1080/2162402X.2015.10386871:CAS:528:DC%2BC28XhsFKisbc%3D
– reference: MoestaAKLiX-YSmythMJTargeting CD39 in cancerNat. Rev. Immunol.2020207397551:CAS:528:DC%2BB3cXhsVygtLvN3272822010.1038/s41577-020-0376-4
– reference: HajekEBRAF inhibitors stimulate inflammasome activation and interleukin 1 beta production in dendritic cellsOncotarget20189282942830829983861603336110.18632/oncotarget.25511
– reference: SeyaTShimeHMatsumotoMFunctional alteration of tumor-infiltrating myeloid cells in RNA adjuvant therapyAnticancer Res.201535438543921:CAS:528:DC%2BC2MXhs1ensLvP26168476
– reference: TrovatoRImmunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3J. Immunother. Cancer2019725525531533831675161210.1186/s40425-019-0734-6
– reference: NyweningTMTargeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trialLancet Oncol.2016176516621:CAS:528:DC%2BC28XlsFOnu7w%3D27055731540728510.1016/S1470-2045(16)00078-4
– reference: SeitzLSafety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteersInvestig. N. Drugs2019377117211:CAS:528:DC%2BC1cXisFKrtrjF10.1007/s10637-018-0706-6
– reference: GuptaNAl UstwaniOShenLPiliRMechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancerOncoTargets Ther.20147223234
– reference: GreeneSInhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer modelsClin. Cancer Res.202026142014311:CAS:528:DC%2BB3cXhvValtrnE3184818810.1158/1078-0432.CCR-19-2625
– reference: SinhaPMyeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasLBlood2011117538153901:CAS:528:DC%2BC3MXntFKqu74%3D21450901310971210.1182/blood-2010-11-321752
– reference: LeeMYRosseCDepletion of lymphocyte subpopulations in primary and secondary lymphoid organs of mice by a transplanted granulocytosis-inducing mammary carcinomaCancer Res.19824212551:STN:280:DyaL387js1yhsQ%3D%3D7060002
– reference: LimagneETim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patientsOncoimmunology20198e1564505e156450530906658642240010.1080/2162402X.2018.1564505
– reference: Trillo-TinocoJAMPK Alpha-1 intrinsically regulates the function and differentiation of tumor myeloid-derived suppressor cellsCancer Res.201979503450471:CAS:528:DC%2BB3cXhslKrsrw%3D31409640677482910.1158/0008-5472.CAN-19-0880
– reference: TazzariMAdaptive immune contexture at the tumour site and downmodulation of circulating myeloid-derived suppressor cells in the response of solitary fibrous tumour patients to anti-angiogenic therapyBr. J. Cancer2014111135013621:CAS:528:DC%2BC2cXhtlaht7fO25101565418385710.1038/bjc.2014.437
– reference: Alban, T. J. et al. Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insighthttps://doi.org/10.1172/jci.insight.122264 (2018).
– reference: WangYMyeloid-derived suppressor cells impair B cell responses in lung cancer through IL-7 and STAT5J. Immunol.20182012782951:CAS:528:DC%2BC1cXhtFyjs7%2FL2975231110.4049/jimmunol.1701069
– reference: DengYmTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cellsCancer Immunol. Immunother.201867135513641:CAS:528:DC%2BC1cXht1ygur7K2996815310.1007/s00262-018-2177-1
– reference: KumarVCD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiationImmunity2016443033151:CAS:528:DC%2BC28XjtVCms7o%3D26885857475965510.1016/j.immuni.2016.01.014
– reference: ShimeHMyeloid-derived suppressor cells confer tumor-suppressive functions on natural killer cells via polyinosinic:polycytidylic acid treatment in mouse tumor modelsJ. Innate Immun.201462933051:CAS:528:DC%2BC2cXlslSltLo%3D2419249110.1159/000355126
– reference: HossainDMSTLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patientsClin. Cancer Res.201521377137821:CAS:528:DC%2BC2MXhtlKltr3L25967142453781410.1158/1078-0432.CCR-14-3145
– reference: ForghaniPWallerEKPoly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancerBreast Cancer Res. Treat.201515321301:CAS:528:DC%2BC2MXht1aktLnJ2620848410.1007/s10549-015-3508-y
– reference: HaverkampJMCristSAElzeyBDCimenCRatliffTLIn vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory siteEur. J. Immunol.2011417497591:CAS:528:DC%2BC3MXit1ehsLg%3D21287554308990210.1002/eji.201041069
– reference: WongJTranLTMagunEAMagunBEWoodLJProduction of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristineCancer Biol. Ther.201415139514031:CAS:528:DC%2BC2cXitVyltLbP25046000413073210.4161/cbt.29922
– reference: NefedovaYHyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancerJ. Immunol.20041724644741:CAS:528:DC%2BD3sXpvFehu7k%3D1468835610.4049/jimmunol.172.1.464
– reference: NegriLFerraraNThe prokineticins: neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesisPhysiol. Rev.201898105510821:CAS:528:DC%2BC1MXkvFeksb8%3D2953733610.1152/physrev.00012.2017
– reference: KusmartsevSALiYChenS-HGr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulationJ. Immunol.20001657791:CAS:528:DC%2BD3cXkvFWisLo%3D1087835110.4049/jimmunol.165.2.779
– reference: QinHGeneration of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing miceNat. Med.2014206766811:CAS:528:DC%2BC2cXos1eqsLc%3D24859530404832110.1038/nm.3560
– reference: ShiHRecruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expressionInt. J. Cancer2017140137013831:CAS:528:DC%2BC2sXhs1Wlurs%3D2788567110.1002/ijc.30538
– reference: Aggen, D. H. et al. Blocking interleukin-1 beta promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: multi-dimensional analyses. Clin. Cancer Res.https://doi.org/10.1158/1078-0432.CCR-20-1610 (2020).
– reference: SunH-WRetinoic acid synthesis deficiency fosters the generation of polymorphonuclear myeloid-derived suppressor cells in colorectal cancerCancer Immunol. Res.20219201:CAS:528:DC%2BB3MXkvVCitbg%3D3317710810.1158/2326-6066.CIR-20-0389
– reference: VegliaFFatty acid transport protein 2 reprograms neutrophils in cancerNature201956973781:CAS:528:DC%2BC1MXosVSmtrs%3D30996346655712010.1038/s41586-019-1118-2
– reference: SuYQiuYQiuZQuPMicroRNA networks regulate the differentiation, expansion and suppression function of myeloid-derived suppressor cells in tumor microenvironmentJ. Cancer201910435043561:CAS:528:DC%2BB3cXjslKnsL4%3D31413755669171310.7150/jca.35205
– reference: HouAHouKHuangQLeiYChenWTargeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitorsFront. Immunol.2020117831:CAS:528:DC%2BB3cXitVWnsb7J32508809724993710.3389/fimmu.2020.00783
– reference: ThevenotPTThe stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumorsImmunity2014413894011:CAS:528:DC%2BC2cXhsFyhur%2FP25238096417171110.1016/j.immuni.2014.08.015
– reference: SchleckerETumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growthJ. Immunol.201218956021:CAS:528:DC%2BC38Xhsl2jtLnL2315255910.4049/jimmunol.1201018
– reference: RiveraLBBergersGIntertwined regulation of angiogenesis and immunity by myeloid cellsTrends Immunol.2015362402491:CAS:528:DC%2BC2MXjs1SjtLk%3D25770923439378710.1016/j.it.2015.02.005
– reference: FleetJCBurchamGNCalvertRDElzeyBDRatliffTL1α, 25 Dihydroxyvitamin D (1,25(OH)2D) inhibits the T cell suppressive function of myeloid derived suppressor cells (MDSC)J. Steroid Biochem. Mol. Biol.20201981055571:CAS:528:DC%2BC1MXitlSqur7J3178315010.1016/j.jsbmb.2019.105557
– reference: RuiKCurdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burdenImmunol. Res.2016649319391:CAS:528:DC%2BC28XitlOqtLw%3D2683291710.1007/s12026-016-8789-7
– reference: ErikssonEWentheJIrenaeusSLoskogAUllenhagGGemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancerJ. Transl. Med.20161428228227687804504143810.1186/s12967-016-1037-z1:CAS:528:DC%2BC1cXmsFSk
– reference: PowellDRHuttenlocherANeutrophils in the tumor microenvironmentTrends Immunol.20163741521:CAS:528:DC%2BC2MXhvFGmtb7P2670039710.1016/j.it.2015.11.008
– reference: NefedovaYRegulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathwayCancer Res.200565952595351:CAS:528:DC%2BD2MXhtFWmu7rL16230418135136210.1158/0008-5472.CAN-05-0529
– reference: SotaJSafety profile of the interleukin-1 inhibitors anakinra and canakinumab in real-life clinical practice: a nationwide multicenter retrospective observational studyClin. Rheumatol.201837223322402977093010.1007/s10067-018-4119-x
– reference: Gonzalez-JuncaAAutocrine TGFβ is a survival factor for monocytes and drives immunosuppressive lineage commitmentCancer Immunol. Res.201973063201:CAS:528:DC%2BB3cXhtlamsbrL3053809110.1158/2326-6066.CIR-18-0310
– reference: de CoañaYPIpilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 productionCancer Immunol. Res.2013115810.1158/2326-6066.CIR-13-00161:CAS:528:DC%2BC2cXmtFSjtro%3D
– reference: RotellaDPPhosphodiesterase 5 inhibitors: current status and potential applicationsNat. Rev. Drug Discov.200216746821:CAS:528:DC%2BD38Xmslamt78%3D1220914810.1038/nrd893
– reference: ShirotaYShirotaHKlinmanDMIntratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cellsJ. Immunol.2012188159215991:CAS:528:DC%2BC38Xhs1KhtL4%3D2223170010.4049/jimmunol.1101304
– reference: GutschalkCMHerold-MendeCCFusenigNEMuellerMMGranulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor promote malignant growth of cells from head and neck squamous cell carcinomas in vivoCancer Res.20066680261:CAS:528:DC%2BD28XotFWqt7s%3D1691217810.1158/0008-5472.CAN-06-0158
– reference: Al-KhamiAAExogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cellsOncoimmunology20176e1344804e134480429123954566506910.1080/2162402X.2017.1344804
– reference: KhanANHQuantification of early-stage myeloid-derived suppressor cells in cancer requires excluding basophilsCancer Immunol. Res.2020881982832238380726980710.1158/2326-6066.CIR-19-0556
– reference: NagarajSAltered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancerNat. Med.2007138288351:CAS:528:DC%2BD2sXnsFWmt7w%3D17603493213560710.1038/nm1609
– reference: BayikDMyeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific mannerCancer Discov.20201012101:CAS:528:DC%2BB3cXit1ehsLbP32300059741566010.1158/2159-8290.CD-19-1355
– reference: WangZTillBGaoQChemotherapeutic agent-mediated elimination of myeloid-derived suppressor cellsOncoimmunology20176e133180728811975554386310.1080/2162402X.2017.1331807
– reference: ChiuDK-CHypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26Hepatology2016647978131:CAS:528:DC%2BC28XhtlOnu7fP2722856710.1002/hep.28655
– reference: MosesKBrandauSHuman neutrophils: their role in cancer and relation to myeloid-derived suppressor cellsSemin. Immunol.2016281871961:CAS:528:DC%2BC28XltVaqurc%3D2706717910.1016/j.smim.2016.03.018
– reference: HorikawaNAnti-VEGF therapy resistance in ovarian cancer is caused by GM-CSF-induced myeloid-derived suppressor cell recruitmentBr. J. Cancer20201227787881:CAS:528:DC%2BB3cXhtVOru7s%3D31932754707825810.1038/s41416-019-0725-x
– reference: NiXHuGCaiXThe success and the challenge of all-trans retinoic acid in the treatment of cancerCrit. Rev. Food Sci. Nutr.201959S71S801:CAS:528:DC%2BC1cXhvVGjtLvN3027780310.1080/10408398.2018.1509201
– reference: LiHCAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer modelsJ. Immunother20204316281:CAS:528:DC%2BB3cXislaqsLw%3D3157402310.1097/CJI.0000000000000301
– reference: ZhuYCSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer modelsCancer Res.201474505750691:CAS:528:DC%2BC2cXhsFChtbjO25082815418295010.1158/0008-5472.CAN-13-3723
– reference: PyonteckSMCSF-1R inhibition alters macrophage polarization and blocks glioma progressionNat. Med.201319126412721:CAS:528:DC%2BC3sXhsV2jsr3N24056773384072410.1038/nm.3337
– reference: Cassetta, L. et al. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. J. Immunother. Cancerhttps://doi.org/10.1136/jitc-2020-001223 (2020).
– reference: ZoglmeierCCpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing miceClin. Cancer Res.201117176517751:CAS:528:DC%2BC3MXktVOis70%3D2123340010.1158/1078-0432.CCR-10-2672
– reference: CorzoCAMechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cellsJ. Immunol.2009182569357011:CAS:528:DC%2BD1MXkslKhs7g%3D1938081610.4049/jimmunol.0900092
– reference: Le MercierIVISTA regulates the development of protective antitumor immunityCancer Res.201474193319442469199410.1158/0008-5472.CAN-13-15061:CAS:528:DC%2BC2cXlt1eit7k%3D
– reference: YangYLiCLiuTDaiXBazhinAVMyeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulationFront Immunol.20201113711:CAS:528:DC%2BB3cXitlSis7vI32793192738765010.3389/fimmu.2020.01371
– reference: ArrietaORandomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancerJ. Clin. Oncol.201028346334711:CAS:528:DC%2BC3cXhtVGis7fK2054798410.1200/JCO.2009.26.6452
– reference: GiordanoATommonaroGCurcumin and cancerNutrients20191123761:CAS:528:DC%2BB3cXptVSks78%3D683570710.3390/nu11102376
– reference: TokunagaRPrognostic effect of adenosine-related genetic variants in metastatic colorectal cancer treated with bevacizumab-based chemotherapyClin. Colorectal Cancer201918e8e193029387310.1016/j.clcc.2018.09.003
– reference: ZhangHFibrocytes represent a novel MDSC subset circulating in patients with metastatic cancerBlood2013122110511131:CAS:528:DC%2BC3sXhtlOjsLbK23757729374498710.1182/blood-2012-08-449413
– reference: SolitoSA human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cellsBlood2011118225422651:CAS:528:DC%2BC3MXhtFGisrfN21734236370964110.1182/blood-2010-12-325753
– reference: HoechstBMyeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptorHepatology2009507998071:CAS:528:DC%2BD1MXhtFKntL%2FI1955184410.1002/hep.23054
– reference: Ugolini, A. et al. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insighthttps://doi.org/10.1172/jci.insight.138581 (2020).
– reference: MarvelDGabrilovichDIMyeloid-derived suppressor cells in the tumor microenvironment: expect the unexpectedJ. Clin. Invest.20151253356336426168215458823910.1172/JCI80005
– reference: GuhaPSTAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cellsOncogene2019385335481:CAS:528:DC%2BC1cXhs1Wht77F3015867310.1038/s41388-018-0449-z
– reference: NoelMSOrally administered CCR2 selective inhibitor CCX872-b clinical trial in pancreatic cancerJ. Clin. Oncol.20173527627610.1200/JCO.2017.35.4_suppl.276
– reference: SunLInhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapyJCI Insight20194e126853648363710.1172/jci.insight.126853
– reference: ChowLQMPhase Ib trial of the toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHNClin. Cancer Res.20172324421:CAS:528:DC%2BC2sXnslyrs7Y%3D2781090410.1158/1078-0432.CCR-16-1934
– reference: JiangHElevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patientsInt. J. Cancer2015136235223601:CAS:528:DC%2BC2cXhvFShu7%2FO2535309710.1002/ijc.29297
– reference: QinGMetformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axisOncoimmunology20187e1442167e144216729900050599349610.1080/2162402X.2018.1442167
– reference: KarinNThe development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrativeFront. Immunol.2020115575861:CAS:528:DC%2BB3MXitVChurk%3D33193327764912210.3389/fimmu.2020.557586
– reference: BilusicMPhase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumorsJ. Immunother. Cancer2019724024031488216672908310.1186/s40425-019-0706-x
– reference: NefedovaYMechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cellsCancer Res.20076711021110281:CAS:528:DC%2BD2sXhtlSlsLvO1800684810.1158/0008-5472.CAN-07-2593
– reference: SternbergCRandomized, double-blind, placebo-controlled phase III study of tasquinimod in men with metastatic castration-resistant prostate cancerJ. Clin. Oncol.201634263626431:CAS:528:DC%2BC28XitFWksrrE2729841410.1200/JCO.2016.66.9697
– reference: LappatEJCaweinMA study of the leukemoid response to transplantable A-280 tumor in miceCancer Res.1964243021:STN:280:DyaF2c%2FntlCitw%3D%3D14115699
– reference: Diaz-MonteroCMThe glutathione disulfide mimetic NOV-002 inhibits cyclophosphamide-induced hematopoietic and immune suppression by reducing oxidative stressFree Radic. Biol. Med.201252156015681:CAS:528:DC%2BC38XmtlWns7s%3D22343421334149410.1016/j.freeradbiomed.2012.02.007
– reference: MolonBChemokine nitration prevents intratumoral infiltration of antigen-specific T cellsJ. Exp. Med.2011208194919621:CAS:528:DC%2BC3MXht1KjsbnI21930770318205110.1084/jem.20101956
– reference: ShayanGPhase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signalsClin. Cancer Res.20182462721:CAS:528:DC%2BC1cXhvVWgtA%3D%3D2906164310.1158/1078-0432.CCR-17-0357
– reference: BonapaceLCessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesisNature20145151301331:CAS:528:DC%2BC2cXhvVemtr3E2533787310.1038/nature13862
– reference: IsambertNFluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 studyOncoimmunology20187e1474319e147431930228942614058610.1080/2162402X.2018.1474319
– reference: RongYDoxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2Sci. Rep.2016623824238241:CAS:528:DC%2BC28Xlt1Kktb4%3D27032536481712110.1038/srep23824
– reference: MarkowitzJPatients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of diseaseCancer Immunol. Immunother.2015641491591:CAS:528:DC%2BC2cXhslCisLfJ2530503510.1007/s00262-014-1618-8
– reference: LimagneEAccumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX–bevacizumab drug treatment regimenCancer Res.20167652411:CAS:528:DC%2BC28XhsFWqsbzO2749670910.1158/0008-5472.CAN-15-3164
– reference: DuttaPSarkissyanMPaicoKWuYVadgamaJVMCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasisBreast Cancer Res. Treat.20181704774861:CAS:528:DC%2BC1cXmsVehtb8%3D29594759602252610.1007/s10549-018-4760-8
– reference: YanGA RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesisCancer Res.20187855861:CAS:528:DC%2BC1cXitlSju7nN3001267110.1158/0008-5472.CAN-17-3962
– reference: PakASMechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factorClin. Cancer Res.19951951:CAS:528:DyaK2MXlvVarsrs%3D9815891
– reference: HiramotoKMyeloid lineage-specific deletion of antioxidant system enhances tumor metastasisCancer Prev. Res.201478358441:CAS:528:DC%2BC2cXhtlSrtb3K10.1158/1940-6207.CAPR-14-0094
– reference: HartwigTThe TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2Mol. Cell201765730742.e7351:CAS:528:DC%2BC2sXjtVeqtbg%3D28212753531641510.1016/j.molcel.2017.01.021
– reference: KoJSDirect and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrainedCancer Res.201070352635361:CAS:528:DC%2BC3cXltlensrw%3D20406969342692410.1158/0008-5472.CAN-09-3278
– reference: EberstalSIntratumoral COX-2 inhibition enhances GM-CSF immunotherapy against established mouse GL261 brain tumorsInt. J. Cancer2014134274827531:CAS:528:DC%2BC3sXhvValtLbO2424364810.1002/ijc.28607
– reference: FiorucciSGastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic studyGastroenterology20031246006071:CAS:528:DC%2BD3sXisVKnsbY%3D1261289710.1053/gast.2003.50096
– reference: PilotTHeat shock and HSP70 regulate 5-FU-mediated caspase-1 activation in myeloid-derived suppressor cells and tumor growth in miceJ. Immunother. Cancer2020832385145722866610.1136/jitc-2019-000478
– reference: MielcarekMMartinPJTorok-StorbBSuppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cellsBlood199789162916341:CAS:528:DyaK2sXhtlGrtL4%3D905764510.1182/blood.V89.5.1629
– reference: YounosITumor- and organ-dependent infiltration by myeloid-derived suppressor cellsInt. Immunopharmacol.2011118168261:CAS:528:DC%2BC3MXntVyju78%3D2137615310.1016/j.intimp.2011.02.021
– reference: RicciutiBTargeting indoleamine-2,3-dioxygenase in cancer: scientific rationale and clinical evidencePharmacol. Ther.20191961051161:CAS:528:DC%2BC1cXisFSmtrzF3052188410.1016/j.pharmthera.2018.12.004
– reference: NoonanKAGhoshNRudrarajuLBuiMBorrelloITargeting immune suppression with PDE5 inhibition in end-stage multiple myelomaCancer Immunol. Res.2014272573124878583415291310.1158/2326-6066.CIR-13-0213
– reference: VegliaFPeregoMGabrilovichDMyeloid-derived suppressor cells coming of ageNat. Immunol.2018191081191:CAS:528:DC%2BC1cXmtVCktLc%3D29348500585415810.1038/s41590-017-0022-x
– reference: VijayanDYoungATengMWLSmythMJTargeting immunosuppressive adenosine in cancerNat. Rev. Cancer2017177097241:CAS:528:DC%2BC2sXhslehs7rO2905914910.1038/nrc.2017.86
– reference: WynnTAChawlaAPollardJWMacrophage biology in development, homeostasis and diseaseNature20134964454551:CAS:528:DC%2BC3sXms1WlsLs%3D23619691372545810.1038/nature12034
– reference: ZitvogelLApetohLGhiringhelliFKroemerGImmunological aspects of cancer chemotherapyNat. Rev. Immunol.2008859731:CAS:528:DC%2BD2sXhsVKrsLnP1809744810.1038/nri2216
– reference: LiLMetformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancerCancer Res.201878177917911:CAS:528:DC%2BC1cXms1aqtrs%3D29374065588258910.1158/0008-5472.CAN-17-2460
– reference: WangYGranulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9Adv. Sci.20196190127819012781:CAS:528:DC%2BC1MXisVWqtL%2FK10.1002/advs.201901278
– reference: MohamedEThe unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signalingImmunity202052668682 e6671:CAS:528:DC%2BB3cXntFSqsrY%3D32294407720701910.1016/j.immuni.2020.03.004
– reference: AnderssonKEPDE5 inhibitors—pharmacology and clinical applications 20 years after sildenafil discoveryBr. J. Pharmacol.2018175255425651:CAS:528:DC%2BC1cXotlGhsL8%3D29667180600365210.1111/bph.14205
– reference: WaightJDMyeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axisJ. Clin. Investig.2013123446444781:CAS:528:DC%2BC3sXhsF2rtbzK24091328378453510.1172/JCI68189
– reference: LuTTumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in miceJ. Clin. Investig.2011121401540291:CAS:528:DC%2BC3MXht12ht7nF21911941319545910.1172/JCI45862
– reference: JohnstonRJThe immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector functionCancer Cell2014269239371:CAS:528:DC%2BC2cXhvF2gs7%2FJ2546580010.1016/j.ccell.2014.10.018
– reference: CondamineTGabrilovichDIMolecular mechanisms regulating myeloid-derived suppressor cell differentiation and functionTrends Immunol.20113219251:CAS:528:DC%2BC3MXkt1CmsA%3D%3D2106797410.1016/j.it.2010.10.002
– reference: YounosIHDaffernerAJGulenDBrittonHCTalmadgeJETumor regulation of myeloid-derived suppressor cell proliferation and traffickingInt. Immunopharmacol.2012132452561:CAS:528:DC%2BC38Xot12ntr4%3D2260947310.1016/j.intimp.2012.05.002
– reference: HolmgaardRBTumor-expressed IDO recruits and activates MDSCs in a treg-dependent mannerCell Rep.2015134124241:CAS:528:DC%2BC2MXhsFKqsbvL26411680501382510.1016/j.celrep.2015.08.077
– reference: ReilleyMJSTAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trialJ. Immunother. Cancer2018611911930446007624024210.1186/s40425-018-0436-5
– reference: JianSLGlycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosisCell Death Dis.201781:CAS:528:DC%2BC2sXns1Kisb0%3D28492541552071310.1038/cddis.2017.192
– reference: ParkerKHHMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cellsCancer Res.201474572357331:CAS:528:DC%2BC2cXhslCqu7bE25164013419991110.1158/0008-5472.CAN-13-2347
– reference: BlattnerCCCR5+ myeloid-derived suppressor cells are enriched and activated in melanoma lesionsCancer Res.2018781571:CAS:528:DC%2BC1cXhvVahsA%3D%3D2908929710.1158/0008-5472.CAN-17-0348
– reference: HouWSampathPRojasJJThorneSHOncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapyCancer Cell2016301081191:CAS:528:DC%2BC28XhtFSit7nE27374223496233510.1016/j.ccell.2016.05.012
– reference: TakeuchiSChemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancerCancer Res.201575262926401:CAS:528:DC%2BC2MXhtV2is7%2FK2595264710.1158/0008-5472.CAN-14-2921
– reference: WeedDTTadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinomaClin. Cancer Res.20152139481:CAS:528:DC%2BC2MXis12muw%3D%3D2532036110.1158/1078-0432.CCR-14-1711
– reference: PlattenMNollenEAARohrigUFFallarinoFOpitzCATryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyondNat. Rev. Drug Discov.2019183794011:CAS:528:DC%2BC1MXmt1ymurw%3D3076088810.1038/s41573-019-0016-5
– reference: GabrilovichDIOstrand-RosenbergSBronteVCoordinated regulation of myeloid cells by tumoursNat. Rev. Immunol.2012122532681:CAS:528:DC%2BC38XksVensrs%3D22437938358714810.1038/nri3175
– reference: GehadAENitric oxide-producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomasJ. Invest. Dermatol.2012132264226511:CAS:528:DC%2BC38XovValsrk%3D22718118344904310.1038/jid.2012.190
– reference: WennerbergECD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejectionCancer Immunol. Res.202084654781:CAS:528:DC%2BB3cXit12qu7rK32047024712500110.1158/2326-6066.CIR-19-0449
– reference: PricemanSJTargeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapyBlood2010115146114711:CAS:528:DC%2BC3cXjtVWru7k%3D20008303282676710.1182/blood-2009-08-237412
– reference: Haist, M., Stege, H., Grabbe, S. & Bros, M. The functional crosstalk between myeloid-derived suppressor cells and regulatory T cells within the immunosuppressive tumor microenvironment. Cancershttps://doi.org/10.3390/cancers13020210 (2021).
– reference: NagarajSSchrumAGChoHICelisEGabrilovichDIMechanism of T cell tolerance induced by myeloid-derived suppressor cellsJ. Immunol.2010184310631161:CAS:528:DC%2BC3cXis1yitrs%3D2014236110.4049/jimmunol.0902661
– reference: HansonEMClementsVKSinhaPIlkovitchDOstrand-RosenbergSMyeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cellsJ. Immunol.20091839379441:CAS:528:DC%2BD1MXotFWgtLc%3D1955353310.4049/jimmunol.0804253
– reference: KusmartsevSReversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinomaClin. Cancer Res.20081482701:CAS:528:DC%2BD1cXhsV2it7jF1908804410.1158/1078-0432.CCR-08-0165
– reference: Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol.https://doi.org/10.1126/sciimmunol.aaf8943 (2016).
– reference: BaumannTRegulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxalNat. Immunol.2020215555661:CAS:528:DC%2BB3cXot1arsrs%3D3232775610.1038/s41590-020-0666-9
– reference: DingZCMunnDHZhouGChemotherapy-induced myeloid suppressor cells and antitumor immunity: the Janus face of chemotherapy in immunomodulationOncoimmunology20143e95447125610747429242510.4161/21624011.2014.954471
– reference: Ostrand-RosenbergSSinhaPBeuryDWClementsVKCross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppressionSemin. Cancer Biol.2012222752811:CAS:528:DC%2BC38XosVKjtb8%3D22313874370194210.1016/j.semcancer.2012.01.011
– reference: FultangLMDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancersEBioMedicine20194723524631462392679655410.1016/j.ebiom.2019.08.025
– reference: ChibaYRegulation of myelopoiesis by proinflammatory cytokines in infectious diseasesCell. Mol. Life Sci.201875136313761:CAS:528:DC%2BC2sXhvFOnsrfK2921860110.1007/s00018-017-2724-5
– reference: MaoYInhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activityClin. Cancer Res.20142040961:CAS:528:DC%2BC2cXhtlSrur3E2490711310.1158/1078-0432.CCR-14-0635
– reference: OrillionAEntinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinomaClin. Cancer Res.201723518752011:CAS:528:DC%2BC2sXhsVCit7jM28698201572343810.1158/1078-0432.CCR-17-0741
– reference: ThéateIExtensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissuesCancer Immunol. Res.201531612527115110.1158/2326-6066.CIR-14-01371:CAS:528:DC%2BC2MXis1Knurs%3D
– reference: LiGTianYZhuW-GThe roles of histone deacetylases and their inhibitors in cancer therapyFront. Cell Dev. Biol.2020857694657694633117804755218610.3389/fcell.2020.576946
– reference: MonteroAJJassemJCellular redox pathways as a therapeutic target in the treatment of cancerDrugs201171138513961:CAS:528:DC%2BC3MXht1GmtrfL2181250410.2165/11592590-000000000-00000
– reference: ObermajerNMuthuswamyROdunsiKEdwardsRPKalinskiPPGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environmentCancer Res.201171746374701:CAS:528:DC%2BC3MXhs1agtrrM22025564499302710.1158/0008-5472.CAN-11-2449
– reference: EscudierBA phase II multicentre, open-label, proof-of-concept study of tasquinimod in hepatocellular, ovarian, renal cell, and gastric cancersTarget Oncol.2017126556612879898610.1007/s11523-017-0525-2
– reference: SerafiniPPhosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell functionJ. Exp. Med-.2006203269127021:CAS:528:DC%2BD28Xht12htLfL17101732211816310.1084/jem.20061104
– reference: AlbeituniSHYeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancerJ. Immunol.2016196216721801:CAS:528:DC%2BC28XjvVyiu7o%3D2681022210.4049/jimmunol.1501853
– reference: ZhengYLong noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing miceMol. Cancer201918616130925926644122910.1186/s12943-019-0978-2
– reference: LiWG-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancersProtein Cell201671301401:CAS:528:DC%2BC28XhslSmsrg%3D26797765474238510.1007/s13238-015-0237-2
– reference: PrendergastGCIndoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancerCancer Immunol. Immunother.2014637217351:CAS:528:DC%2BC2cXlvFWgtbY%3D24711084438469610.1007/s00262-014-1549-4
– reference: SchultzeJLMassESchlitzerAEmerging principles in myelopoiesis at homeostasis and during infection and inflammationImmunity2019502883011:CAS:528:DC%2BC1MXjtlGnsro%3D3078457710.1016/j.immuni.2019.01.019
– reference: GabitassRFAnnelsNEStockenDDPandhaHAMiddletonGWElevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13Cancer Immunol. Immunother.201160141914301:CAS:528:DC%2BC3MXht1SitLvL21644036317640610.1007/s00262-011-1028-0
– reference: SteeleCWCXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinomaCancer Cell2016298328451:CAS:528:DC%2BC28Xpt1enurs%3D27265504491235410.1016/j.ccell.2016.04.014
– reference: De SantoCNitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccinationProc. Natl Acad. Sci. USA2005102418541901575330255482310.1073/pnas.04097831021:CAS:528:DC%2BD2MXis12jtL8%3D
– reference: MullerAJManfrediMGZakhariaYPrendergastGCInhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyondSemin. Immunopathol.20194141481:CAS:528:DC%2BC1cXhs1yltrfI3020322710.1007/s00281-018-0702-0
– reference: LiJCD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancerOncoImmunology20176e132001128680754548617910.1080/2162402X.2017.1320011
– reference: DraghiciuONijmanHWHoogeboomBNMeijerhofTDaemenTSunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradicationOncoimmunology20154e989764e98976425949902440483410.4161/2162402X.2014.9897641:CAS:528:DC%2BC28XhtlSisrg%3D
– reference: PiliRPhase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancerJ. Clin. Oncol.201129402240281:CAS:528:DC%2BC3MXhsFams7bK2193101910.1200/JCO.2011.35.6295
– reference: AllardBLonghiMSRobsonSCStaggJThe ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targetsImmunol. Rev.20172761211441:CAS:528:DC%2BC2sXjs1eltL8%3D28258700533864710.1111/imr.12528
– reference: SalminenAKauppinenAKaarnirantaKAMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and agingJ. Mol. Med.201997104910641:CAS:528:DC%2BC1MXhtFKhtbfM3112975510.1007/s00109-019-01795-9
– volume: 203
  start-page: 2691
  year: 2006
  ident: 670_CR260
  publication-title: J. Exp. Med-.
  doi: 10.1084/jem.20061104
– volume: 41
  start-page: 749
  year: 2011
  ident: 670_CR142
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201041069
– volume: 8
  start-page: 14979
  year: 2017
  ident: 670_CR143
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14979
– volume: 69
  start-page: 1929
  year: 2020
  ident: 670_CR268
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-020-02588-7
– volume: 170
  start-page: 477
  year: 2018
  ident: 670_CR186
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-018-4760-8
– volume: 6
  start-page: e1320011
  year: 2017
  ident: 670_CR110
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2017.1320011
– volume: 6
  start-page: e1331807
  year: 2017
  ident: 670_CR324
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1331807
– volume: 26
  start-page: 923
  year: 2014
  ident: 670_CR90
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2014.10.018
– volume: 10
  start-page: 172
  year: 2019
  ident: 670_CR8
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.00172
– volume: 28
  start-page: 1988
  year: 2017
  ident: 670_CR204
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdx190
– volume: 13
  start-page: 433
  year: 2014
  ident: 670_CR287
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4280
– volume: 6
  start-page: 29521
  year: 2016
  ident: 670_CR238
  publication-title: Sci. Rep.
  doi: 10.1038/srep29521
– volume: 37
  start-page: 711
  year: 2019
  ident: 670_CR315
  publication-title: Investig. N. Drugs
  doi: 10.1007/s10637-018-0706-6
– volume: 66
  start-page: 9299
  year: 2006
  ident: 670_CR29
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-1690
– volume: 17
  start-page: 709
  year: 2017
  ident: 670_CR108
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc.2017.86
– volume: 7
  start-page: e1469594
  year: 2018
  ident: 670_CR85
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1469594
– volume: 67
  start-page: 425
  year: 2007
  ident: 670_CR27
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-3037
– volume: 54
  start-page: 875
  year: 2021
  ident: 670_CR81
  publication-title: Immunity
  doi: 10.1016/j.immuni.2021.04.004
– volume: 41
  start-page: 947
  year: 2014
  ident: 670_CR71
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.10.020
– volume: 38
  start-page: 533
  year: 2019
  ident: 670_CR210
  publication-title: Oncogene
  doi: 10.1038/s41388-018-0449-z
– volume: 211
  start-page: 781
  year: 2014
  ident: 670_CR82
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20131916
– volume: 182
  start-page: 5693
  year: 2009
  ident: 670_CR102
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0900092
– volume: 14
  start-page: 8270
  year: 2008
  ident: 670_CR212
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-0165
– volume: 71
  start-page: 1385
  year: 2011
  ident: 670_CR281
  publication-title: Drugs
  doi: 10.2165/11592590-000000000-00000
– volume: 124
  start-page: 600
  year: 2003
  ident: 670_CR278
  publication-title: Gastroenterology
  doi: 10.1053/gast.2003.50096
– volume: 122
  start-page: 778
  year: 2020
  ident: 670_CR152
  publication-title: Br. J. Cancer
  doi: 10.1038/s41416-019-0725-x
– volume: 183
  start-page: 937
  year: 2009
  ident: 670_CR111
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0804253
– volume: 31
  start-page: 2172
  year: 2017
  ident: 670_CR339
  publication-title: Leukemia
  doi: 10.1038/leu.2017.21
– volume: 24
  start-page: 302
  year: 1964
  ident: 670_CR16
  publication-title: Cancer Res.
– volume: 6
  start-page: 630
  year: 2016
  ident: 670_CR133
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-15-1157
– volume: 217
  start-page: e20182005
  year: 2020
  ident: 670_CR67
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20182005
– volume: 66
  start-page: 8026
  year: 2006
  ident: 670_CR149
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-06-0158
– volume: 63
  start-page: 847
  year: 2014
  ident: 670_CR254
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-014-1561-8
– volume: 7
  start-page: 240
  year: 2019
  ident: 670_CR203
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0706-x
– volume: 14
  start-page: 211
  year: 2013
  ident: 670_CR57
  publication-title: Nat. Immunol.
  doi: 10.1038/ni.2526
– volume: 9
  start-page: 2499
  year: 2018
  ident: 670_CR277
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2018.02499
– volume: 11
  start-page: 2376
  year: 2019
  ident: 670_CR235
  publication-title: Nutrients
  doi: 10.3390/nu11102376
– volume: 35
  start-page: 4385
  year: 2015
  ident: 670_CR227
  publication-title: Anticancer Res.
– volume: 21
  start-page: 39
  year: 2015
  ident: 670_CR263
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-1711
– volume: 37
  start-page: 733
  year: 2018
  ident: 670_CR334
  publication-title: Cancer Metastasis Rev.
  doi: 10.1007/s10555-018-9728-y
– volume: 6
  start-page: 119
  year: 2018
  ident: 670_CR209
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-018-0436-5
– volume: 14
  start-page: 282
  year: 2016
  ident: 670_CR317
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-016-1037-z
– volume: 78
  start-page: 1779
  year: 2018
  ident: 670_CR296
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-2460
– volume: 19
  start-page: 695
  year: 2018
  ident: 670_CR303
  publication-title: Cancer Biol. Ther.
  doi: 10.1080/15384047.2018.1450116
– volume: 74
  start-page: 5723
  year: 2014
  ident: 670_CR43
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-2347
– volume: 3
  start-page: 161
  year: 2015
  ident: 670_CR299
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-14-0137
– volume: 15
  start-page: 96
  year: 2015
  ident: 670_CR163
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3893
– volume: 10
  start-page: 4350
  year: 2019
  ident: 670_CR44
  publication-title: J. Cancer
  doi: 10.7150/jca.35205
– volume: 6
  start-page: e1326440
  year: 2017
  ident: 670_CR262
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1326440
– volume: 181
  start-page: 5791
  year: 2008
  ident: 670_CR139
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.8.5791
– volume: 200
  start-page: 108
  year: 2020
  ident: 670_CR91
  publication-title: Clin. Exp. Immunol.
  doi: 10.1111/cei.13407
– volume: 5
  start-page: e17375
  year: 2016
  ident: 670_CR120
  publication-title: eLife
  doi: 10.7554/eLife.17375
– volume: 71
  start-page: 7463
  year: 2011
  ident: 670_CR244
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-11-2449
– volume: 9
  start-page: 65
  year: 2020
  ident: 670_CR89
  publication-title: Oncogenesis
  doi: 10.1038/s41389-020-00248-0
– volume: 10
  start-page: 1210
  year: 2020
  ident: 670_CR144
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-19-1355
– volume: 98
  start-page: 1055
  year: 2018
  ident: 670_CR150
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.00012.2017
– volume: 19
  start-page: 6891
  year: 2013
  ident: 670_CR172
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-13-1581
– volume: 15
  start-page: 2148
  year: 2009
  ident: 670_CR328
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-08-1332
– volume: 114
  start-page: 1117
  year: 2017
  ident: 670_CR247
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1612920114
– volume: 140
  start-page: 235
  year: 2009
  ident: 670_CR233
  publication-title: Otolaryngol. Head Neck Surg.
  doi: 10.1016/j.otohns.2008.11.011
– volume: 75
  start-page: 1363
  year: 2018
  ident: 670_CR3
  publication-title: Cell. Mol. Life Sci.
  doi: 10.1007/s00018-017-2724-5
– volume: 3
  start-page: 1236
  year: 2015
  ident: 670_CR141
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-15-0036
– volume: 67
  start-page: 1355
  year: 2018
  ident: 670_CR291
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-018-2177-1
– volume: 9
  start-page: 162
  year: 2009
  ident: 670_CR134
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2506
– volume: 29
  start-page: 4022
  year: 2011
  ident: 670_CR171
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2011.35.6295
– volume: 7
  start-page: 1687
  year: 2019
  ident: 670_CR175
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0578
– volume: 121
  start-page: 4015
  year: 2011
  ident: 670_CR103
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI45862
– volume: 17
  start-page: 651
  year: 2016
  ident: 670_CR192
  publication-title: Lancet Oncol.
  doi: 10.1016/S1470-2045(16)00078-4
– volume: 26
  start-page: 5593
  year: 2008
  ident: 670_CR280
  publication-title: J. Clin. Oncol.
  doi: 10.1200/jco.2008.26.15_suppl.5593
– volume: 10
  start-page: 3070
  year: 2020
  ident: 670_CR122
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.03070
– volume: 132
  start-page: 215
  year: 2012
  ident: 670_CR283
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-011-1889-0
– volume: 8
  start-page: 465
  year: 2020
  ident: 670_CR312
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-19-0449
– volume: 68
  start-page: 1949
  year: 2019
  ident: 670_CR230
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-019-02418-5
– volume: 10
  start-page: 562
  year: 2015
  ident: 670_CR75
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.12.039
– volume: 111
  start-page: 5457
  year: 2008
  ident: 670_CR49
  publication-title: Blood
  doi: 10.1182/blood-2008-01-136895
– volume: 9
  start-page: 1754
  year: 2019
  ident: 670_CR314
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-19-0541
– volume: 115
  start-page: 1461
  year: 2010
  ident: 670_CR155
  publication-title: Blood
  doi: 10.1182/blood-2009-08-237412
– volume: 31
  start-page: 760
  year: 2013
  ident: 670_CR191
  publication-title: Investig. N. Drugs
  doi: 10.1007/s10637-012-9869-8
– volume: 80
  start-page: 2874
  year: 2020
  ident: 670_CR248
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-19-2843
– volume: 207
  start-page: 2439
  year: 2010
  ident: 670_CR58
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20100587
– volume: 61
  start-page: 195
  year: 2009
  ident: 670_CR217
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2008.12.008
– volume: 31
  start-page: 1833
  year: 2010
  ident: 670_CR272
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgq105
– ident: 670_CR76
  doi: 10.1038/s41577-020-00490-y
– volume: 50
  start-page: 799
  year: 2009
  ident: 670_CR115
  publication-title: Hepatology
  doi: 10.1002/hep.23054
– volume: 172
  start-page: 825
  year: 2018
  ident: 670_CR289
  publication-title: Cell
  doi: 10.1016/j.cell.2017.12.026
– volume: 6
  start-page: e1338239
  year: 2017
  ident: 670_CR256
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1338239
– volume: 16
  start-page: 1812
  year: 2010
  ident: 670_CR275
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-09-3272
– volume: 11
  start-page: 1263
  year: 2016
  ident: 670_CR159
  publication-title: J. Thorac. Oncol.
  doi: 10.1016/j.jtho.2016.04.026
– volume: 63
  start-page: 721
  year: 2014
  ident: 670_CR298
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-014-1549-4
– volume: 8
  start-page: 819
  year: 2020
  ident: 670_CR80
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-19-0556
– volume: 23
  start-page: 587
  year: 2017
  ident: 670_CR158
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-0387
– volume: 139
  start-page: 119
  year: 2020
  ident: 670_CR302
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2020.08.020
– volume: 60
  start-page: 1419
  year: 2011
  ident: 670_CR12
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-011-1028-0
– volume: 63
  start-page: 1073
  year: 2014
  ident: 670_CR109
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-014-1553-8
– volume: 52
  start-page: 1560
  year: 2012
  ident: 670_CR282
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2012.02.007
– volume: 28
  start-page: 253
  year: 2015
  ident: 670_CR46
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2015.07.006
– volume: 117
  start-page: 1129
  year: 2020
  ident: 670_CR188
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1910856117
– volume: 118
  start-page: 3367
  year: 2008
  ident: 670_CR126
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI35213
– volume: 7
  start-page: 61
  year: 2021
  ident: 670_CR308
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2020.5572
– volume: 64
  start-page: 149
  year: 2015
  ident: 670_CR10
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-014-1618-8
– volume: 32
  start-page: 345
  year: 2011
  ident: 670_CR87
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2011.05.003
– volume: 23
  start-page: 2442
  year: 2017
  ident: 670_CR224
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-1934
– volume: 78
  start-page: 157
  year: 2018
  ident: 670_CR53
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0348
– volume: 6
  start-page: e1344804
  year: 2017
  ident: 670_CR284
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1344804
– ident: 670_CR11
  doi: 10.1172/jci.insight.122264
– volume: 8
  year: 2017
  ident: 670_CR290
  publication-title: Cell Death Dis.
  doi: 10.1038/cddis.2017.192
– volume: 20
  start-page: 4096
  year: 2014
  ident: 670_CR245
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-0635
– volume: 21
  start-page: 555
  year: 2020
  ident: 670_CR97
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-020-0666-9
– volume: 10
  start-page: 2675
  year: 2017
  ident: 670_CR242
  publication-title: OncoTargets Ther.
  doi: 10.2147/OTT.S130653
– volume: 2
  start-page: 30
  year: 2014
  ident: 670_CR333
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-014-0030-4
– volume: 12
  start-page: 799
  year: 2013
  ident: 670_CR197
  publication-title: Mol. Cancer Ther.
  doi: 10.1158/1535-7163.MCT-12-0529
– volume: 118
  start-page: 2254
  year: 2011
  ident: 670_CR32
  publication-title: Blood
  doi: 10.1182/blood-2010-12-325753
– volume: 75
  start-page: 2045
  year: 2018
  ident: 670_CR181
  publication-title: Cell Mol. Life Sci.
  doi: 10.1007/s00018-017-2720-9
– volume: 48
  start-page: 1341
  year: 2016
  ident: 670_CR198
  publication-title: Int. J. Oncol.
  doi: 10.3892/ijo.2016.3371
– volume: 30
  start-page: 108
  year: 2016
  ident: 670_CR252
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.05.012
– volume: 175
  start-page: 2554
  year: 2018
  ident: 670_CR258
  publication-title: Br. J. Pharmacol.
  doi: 10.1111/bph.14205
– volume: 188
  start-page: 1592
  year: 2012
  ident: 670_CR219
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101304
– volume: 7
  start-page: 1700
  year: 2019
  ident: 670_CR92
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0725
– ident: 670_CR135
  doi: 10.1007/978-1-4899-8056-4_13
– volume: 20
  start-page: 676
  year: 2014
  ident: 670_CR168
  publication-title: Nat. Med.
  doi: 10.1038/nm.3560
– volume: 125
  start-page: 3356
  year: 2015
  ident: 670_CR61
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI80005
– volume: 17
  start-page: 588
  year: 2018
  ident: 670_CR180
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2018.97
– volume: 129
  start-page: 5537
  year: 2019
  ident: 670_CR66
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI129502
– volume: 11
  start-page: 1680
  year: 2020
  ident: 670_CR30
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.01680
– volume: 23
  start-page: 2942
  year: 2017
  ident: 670_CR335
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-1784
– volume: 35
  start-page: 276
  year: 2017
  ident: 670_CR193
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2017.35.4_suppl.276
– volume: 79
  start-page: 346
  year: 2019
  ident: 670_CR41
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-3026
– volume: 122
  start-page: 4094
  year: 2012
  ident: 670_CR72
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI64115
– volume: 153
  start-page: 21
  year: 2015
  ident: 670_CR228
  publication-title: Breast Cancer Res. Treat.
  doi: 10.1007/s10549-015-3508-y
– volume: 22
  start-page: 275
  year: 2012
  ident: 670_CR124
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2012.01.011
– volume: 125
  start-page: 3365
  year: 2015
  ident: 670_CR33
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI80006
– volume: 79
  start-page: 5034
  year: 2019
  ident: 670_CR297
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-19-0880
– volume: 195
  start-page: 5237
  year: 2015
  ident: 670_CR94
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1500959
– volume: 19
  start-page: 57
  year: 2013
  ident: 670_CR318
  publication-title: Nat. Med.
  doi: 10.1038/nm.2999
– volume: 6
  start-page: 23824
  year: 2016
  ident: 670_CR255
  publication-title: Sci. Rep.
  doi: 10.1038/srep23824
– volume: 12
  start-page: 253
  year: 2012
  ident: 670_CR5
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri3175
– volume: 35
  start-page: 587
  year: 2012
  ident: 670_CR148
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0b013e31826b20b6
– volume: 29
  start-page: 832
  year: 2016
  ident: 670_CR51
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.04.014
– volume: 25
  start-page: 1462
  year: 2019
  ident: 670_CR309
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-2882
– volume: 6
  start-page: 293
  year: 2014
  ident: 670_CR229
  publication-title: J. Innate Immun.
  doi: 10.1159/000355126
– volume: 97
  start-page: 1049
  year: 2019
  ident: 670_CR293
  publication-title: J. Mol. Med.
  doi: 10.1007/s00109-019-01795-9
– volume: 27
  start-page: 495
  year: 2012
  ident: 670_CR208
  publication-title: Cancer Biother. Radiopharm.
  doi: 10.1089/cbr.2012.1219
– volume: 7
  start-page: 255
  year: 2019
  ident: 670_CR205
  publication-title: J. Immunother. Cancer
  doi: 10.1186/s40425-019-0734-6
– volume: 5
  start-page: 205
  year: 2012
  ident: 670_CR239
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-11-0247
– volume: 77
  start-page: 3655
  year: 2017
  ident: 670_CR132
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-3199
– volume: 76
  start-page: 5241
  year: 2016
  ident: 670_CR161
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-3164
– volume: 122
  start-page: 1105
  year: 2013
  ident: 670_CR34
  publication-title: Blood
  doi: 10.1182/blood-2012-08-449413
– volume: 196
  start-page: 3470
  year: 2016
  ident: 670_CR271
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501785
– volume: 52
  start-page: 668
  year: 2020
  ident: 670_CR276
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.03.004
– ident: 670_CR288
  doi: 10.1158/2159-8290.CD-RW2018-010
– volume: 196
  start-page: 105
  year: 2019
  ident: 670_CR306
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2018.12.004
– volume: 15
  start-page: 1395
  year: 2014
  ident: 670_CR182
  publication-title: Cancer Biol. Ther.
  doi: 10.4161/cbt.29922
– volume: 10
  start-page: 485
  year: 2019
  ident: 670_CR320
  publication-title: Cell Death Dis.
  doi: 10.1038/s41419-019-1723-x
– volume: 123
  start-page: 4464
  year: 2013
  ident: 670_CR47
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI68189
– volume: 28
  start-page: 1947
  year: 1979
  ident: 670_CR20
  publication-title: Biochem. Pharmacol.
  doi: 10.1016/0006-2952(79)90649-X
– volume: 47
  start-page: 235
  year: 2019
  ident: 670_CR338
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.08.025
– volume: 76
  start-page: 3156
  year: 2016
  ident: 670_CR131
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-15-2528
– volume: 60
  start-page: 24
  year: 2017
  ident: 670_CR202
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2017.08.004
– volume: 28
  start-page: 3463
  year: 2010
  ident: 670_CR214
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2009.26.6452
– volume: 8
  start-page: 618
  year: 2008
  ident: 670_CR127
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc2444
– volume: 21
  start-page: 154
  year: 2017
  ident: 670_CR246
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.09.018
– volume: 69
  start-page: 1553
  year: 2009
  ident: 670_CR96
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-08-1921
– volume: 8
  start-page: e1564505
  year: 2019
  ident: 670_CR88
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1564505
– volume: 8
  start-page: 3649
  year: 2017
  ident: 670_CR146
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.12278
– volume: 59
  start-page: S71
  year: 2019
  ident: 670_CR211
  publication-title: Crit. Rev. Food Sci. Nutr.
  doi: 10.1080/10408398.2018.1509201
– volume: 7
  start-page: 306
  year: 2019
  ident: 670_CR42
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0310
– volume: 11
  start-page: 816
  year: 2011
  ident: 670_CR137
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.02.021
– volume: 9
  start-page: 1777625
  year: 2020
  ident: 670_CR304
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2020.1777625
– volume: 232
  start-page: 21
  year: 2004
  ident: 670_CR95
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2005.01.004
– volume: 162
  start-page: 5728
  year: 1999
  ident: 670_CR21
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.162.10.5728
– volume: 23
  start-page: 5358
  year: 2017
  ident: 670_CR201
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-16-2748
– volume: 1
  start-page: 674
  year: 2002
  ident: 670_CR261
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd893
– volume: 50
  start-page: 288
  year: 2019
  ident: 670_CR4
  publication-title: Immunity
  doi: 10.1016/j.immuni.2019.01.019
– volume: 11
  start-page: 856
  year: 2011
  ident: 670_CR330
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.01.030
– volume: 11
  start-page: 890
  year: 2011
  ident: 670_CR236
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2011.01.007
– volume: 18
  start-page: 806
  year: 1990
  ident: 670_CR24
  publication-title: Exp. Hematol.
– volume: 145
  start-page: 569
  year: 2019
  ident: 670_CR167
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.31982
– volume: 184
  start-page: 3106
  year: 2010
  ident: 670_CR101
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.0902661
– volume: 8
  start-page: e1072672
  year: 2018
  ident: 670_CR170
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1072672
– ident: 670_CR184
  doi: 10.1158/1078-0432.CCR-20-1610
– volume: 168
  start-page: 689
  year: 2002
  ident: 670_CR100
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.168.2.689
– volume: 132
  start-page: 2642
  year: 2012
  ident: 670_CR113
  publication-title: J. Invest. Dermatol.
  doi: 10.1038/jid.2012.190
– volume: 39
  start-page: 611
  year: 2013
  ident: 670_CR130
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.08.025
– volume: 4
  start-page: e1034918
  year: 2015
  ident: 670_CR35
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1034918
– volume: 7
  start-page: 130
  year: 2016
  ident: 670_CR151
  publication-title: Protein Cell
  doi: 10.1007/s13238-015-0237-2
– volume: 11
  start-page: 783
  year: 2020
  ident: 670_CR14
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00783
– volume: 276
  start-page: 121
  year: 2017
  ident: 670_CR107
  publication-title: Immunol. Rev.
  doi: 10.1111/imr.12528
– volume: 11
  start-page: 1371
  year: 2020
  ident: 670_CR136
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2020.01371
– volume: 27
  start-page: 1019
  year: 2021
  ident: 670_CR270
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-20-3305
– volume: 70
  start-page: 3526
  year: 2010
  ident: 670_CR329
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-3278
– volume: 109
  start-page: 2491
  year: 2012
  ident: 670_CR37
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1113744109
– volume: 23
  start-page: 5187
  year: 2017
  ident: 670_CR266
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0741
– volume: 5
  start-page: e1200771
  year: 2016
  ident: 670_CR285
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2016.1200771
– volume: 55
  start-page: 376
  year: 2018
  ident: 670_CR13
  publication-title: Crit. Rev. Clin. Lab Sci.
  doi: 10.1080/10408363.2018.1477729
– volume: 71
  start-page: 659
  year: 2010
  ident: 670_CR234
  publication-title: Hum. Immunol.
  doi: 10.1016/j.humimm.2010.04.008
– volume: 17
  start-page: 611
  year: 2020
  ident: 670_CR310
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/s41571-020-0382-2
– volume: 102
  start-page: 4185
  year: 2005
  ident: 670_CR279
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.0409783102
– volume: 75
  start-page: 2629
  year: 2015
  ident: 670_CR323
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-14-2921
– volume: 74
  start-page: 436
  year: 2014
  ident: 670_CR195
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1265
– volume: 136
  start-page: 2352
  year: 2015
  ident: 670_CR176
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.29297
– volume: 70
  start-page: 68
  year: 2010
  ident: 670_CR98
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-09-2587
– volume: 4
  start-page: e989764
  year: 2015
  ident: 670_CR162
  publication-title: Oncoimmunology
  doi: 10.4161/2162402X.2014.989764
– volume: 63
  start-page: 282
  year: 2018
  ident: 670_CR216
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2018.08.007
– volume: 34
  start-page: 2636
  year: 2016
  ident: 670_CR173
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2016.66.9697
– volume: 134
  start-page: 2748
  year: 2014
  ident: 670_CR249
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28607
– volume: 71
  start-page: 2664
  year: 2011
  ident: 670_CR251
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-3055
– volume: 1
  start-page: 780
  year: 2012
  ident: 670_CR218
  publication-title: Oncoimmunology
  doi: 10.4161/onci.19731
– ident: 670_CR226
  doi: 10.1158/0008-5472.CAN-20-1414
– volume: 11
  start-page: 557586
  year: 2020
  ident: 670_CR39
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.557586
– volume: 196
  start-page: 2167
  year: 2016
  ident: 670_CR240
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1501853
– volume: 6
  start-page: 20250
  year: 2016
  ident: 670_CR292
  publication-title: Sci. Rep.
  doi: 10.1038/srep20250
– volume: 5
  start-page: 411
  year: 2019
  ident: 670_CR325
  publication-title: JAMA Oncol.
  doi: 10.1001/jamaoncol.2018.4604
– volume: 43
  start-page: 2930
  year: 2013
  ident: 670_CR112
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201343349
– volume: 19
  start-page: 1264
  year: 2013
  ident: 670_CR154
  publication-title: Nat. Med.
  doi: 10.1038/nm.3337
– volume: 579
  start-page: 284
  year: 2020
  ident: 670_CR269
  publication-title: Nature
  doi: 10.1038/s41586-020-2054-x
– volume: 20
  start-page: 739
  year: 2020
  ident: 670_CR313
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/s41577-020-0376-4
– volume: 70
  start-page: 3813
  year: 2013
  ident: 670_CR73
  publication-title: Cell. Mol. life Sci.
  doi: 10.1007/s00018-013-1286-4
– ident: 670_CR125
  doi: 10.1002/jcp.26075
– volume: 187
  start-page: 6120
  year: 2011
  ident: 670_CR106
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1101225
– volume: 132
  start-page: 101
  year: 1984
  ident: 670_CR18
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.132.1.101
– volume: 11
  start-page: 324
  year: 2020
  ident: 670_CR257
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.00324
– volume: 2
  start-page: 50
  year: 2014
  ident: 670_CR54
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0129
– volume: 205
  start-page: 2235
  year: 2008
  ident: 670_CR166
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20080132
– volume: 2
  start-page: 725
  year: 2014
  ident: 670_CR259
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0213
– volume: 6
  start-page: 1901278
  year: 2019
  ident: 670_CR129
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901278
– volume: 36
  start-page: 639
  year: 2017
  ident: 670_CR128
  publication-title: Oncogene
  doi: 10.1038/onc.2016.229
– volume: 4
  start-page: eaaw9159
  year: 2019
  ident: 670_CR79
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaw9159
– volume: 198
  start-page: 105557
  year: 2020
  ident: 670_CR232
  publication-title: J. Steroid Biochem. Mol. Biol.
  doi: 10.1016/j.jsbmb.2019.105557
– volume: 172
  start-page: 464
  year: 2004
  ident: 670_CR207
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.172.1.464
– volume: 5
  start-page: eaay6017
  year: 2020
  ident: 670_CR55
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aay6017
– volume: 13
  start-page: 245
  year: 2012
  ident: 670_CR9
  publication-title: Int. Immunopharmacol.
  doi: 10.1016/j.intimp.2012.05.002
– volume: 8
  start-page: 576946
  year: 2020
  ident: 670_CR265
  publication-title: Front. Cell Dev. Biol.
  doi: 10.3389/fcell.2020.576946
– volume: 8
  start-page: 59
  year: 2008
  ident: 670_CR316
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2216
– volume: 48
  start-page: 532
  year: 2018
  ident: 670_CR196
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201746976
– volume: 67
  start-page: 11021
  year: 2007
  ident: 670_CR213
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-07-2593
– volume: 496
  start-page: 445
  year: 2013
  ident: 670_CR153
  publication-title: Nature
  doi: 10.1038/nature12034
– volume: 189
  start-page: 5602
  year: 2012
  ident: 670_CR121
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201018
– volume: 120
  start-page: 109458
  year: 2019
  ident: 670_CR294
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2019.109458
– volume: 117
  start-page: 5381
  year: 2011
  ident: 670_CR68
  publication-title: Blood
  doi: 10.1182/blood-2010-11-321752
– volume: 10
  start-page: M110.002980
  year: 2011
  ident: 670_CR69
  publication-title: Mol. Cell. Proteom.
  doi: 10.1074/mcp.M110.002980
– volume: 4
  start-page: e1038687
  year: 2015
  ident: 670_CR241
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2015.1038687
– volume: 7
  start-page: 835
  year: 2014
  ident: 670_CR273
  publication-title: Cancer Prev. Res.
  doi: 10.1158/1940-6207.CAPR-14-0094
– volume: 7
  start-page: e1442167
  year: 2018
  ident: 670_CR295
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1442167
– volume: 208
  start-page: 1949
  year: 2011
  ident: 670_CR105
  publication-title: J. Exp. Med.
  doi: 10.1084/jem.20101956
– volume: 21
  start-page: 5453
  year: 2015
  ident: 670_CR164
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-15-0676
– volume: 10
  start-page: e0127028
  year: 2015
  ident: 670_CR56
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0127028
– volume: 515
  start-page: 130
  year: 2014
  ident: 670_CR194
  publication-title: Nature
  doi: 10.1038/nature13862
– volume: 64
  start-page: 931
  year: 2016
  ident: 670_CR237
  publication-title: Immunol. Res.
  doi: 10.1007/s12026-016-8789-7
– volume: 288
  start-page: 19103
  year: 2013
  ident: 670_CR70
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.434530
– volume: 190
  start-page: 3783
  year: 2013
  ident: 670_CR99
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201449
– volume: 64
  start-page: 6337
  year: 2004
  ident: 670_CR147
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-04-0757
– volume: 65
  start-page: 730
  year: 2017
  ident: 670_CR336
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2017.01.021
– volume: 111
  start-page: 924
  year: 2020
  ident: 670_CR190
  publication-title: Cancer Sci.
  doi: 10.1111/cas.14306
– volume: 21
  start-page: 3771
  year: 2015
  ident: 670_CR222
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-3145
– volume: 9
  start-page: 28294
  year: 2018
  ident: 670_CR183
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.25511
– volume: 98
  start-page: 913
  year: 2015
  ident: 670_CR45
  publication-title: J. Leukoc. Biol.
  doi: 10.1189/jlb.4RI0515-204R
– volume: 569
  start-page: 73
  year: 2019
  ident: 670_CR286
  publication-title: Nature
  doi: 10.1038/s41586-019-1118-2
– volume: 18
  start-page: 61
  year: 2019
  ident: 670_CR63
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-019-0978-2
– volume: 134
  start-page: 1077
  year: 2014
  ident: 670_CR140
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.28449
– volume: 6
  start-page: 36107
  year: 2016
  ident: 670_CR178
  publication-title: Sci. Rep.
  doi: 10.1038/srep36107
– volume: 42
  start-page: 1255
  year: 1982
  ident: 670_CR17
  publication-title: Cancer Res.
– volume: 111
  start-page: 108
  year: 1929
  ident: 670_CR15
  publication-title: Z. f. Klin. Med.
– volume: 7
  start-page: e1413520
  year: 2018
  ident: 670_CR119
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2017.1413520
– volume: 40
  start-page: 2969
  year: 2010
  ident: 670_CR38
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.201040895
– volume: 32
  start-page: 19
  year: 2011
  ident: 670_CR36
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2010.10.002
– volume: 124
  start-page: 2626
  year: 2014
  ident: 670_CR65
  publication-title: J. Clin. Investig.
  doi: 10.1172/JCI74056
– volume: 4
  start-page: e126853
  year: 2019
  ident: 670_CR199
  publication-title: JCI Insight
  doi: 10.1172/jci.insight.126853
– volume: 24
  start-page: 62
  year: 2018
  ident: 670_CR225
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-17-0357
– volume: 64
  start-page: 797
  year: 2016
  ident: 670_CR52
  publication-title: Hepatology
  doi: 10.1002/hep.28655
– volume: 41
  start-page: 389
  year: 2014
  ident: 670_CR64
  publication-title: Immunity
  doi: 10.1016/j.immuni.2014.08.015
– volume: 7
  start-page: e1474319
  year: 2018
  ident: 670_CR321
  publication-title: Oncoimmunology
  doi: 10.1080/2162402X.2018.1474319
– volume: 76
  start-page: 5671
  year: 2016
  ident: 670_CR185
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-0144
– volume: 1
  start-page: 95
  year: 1995
  ident: 670_CR22
  publication-title: Clin. Cancer Res.
– volume: 8
  year: 2020
  ident: 670_CR319
  publication-title: J. Immunother. Cancer
  doi: 10.1136/jitc-2019-000478
– ident: 670_CR1
  doi: 10.3322/caac.21660
– volume: 166
  start-page: 678
  year: 2001
  ident: 670_CR25
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.166.1.678
– volume: 43
  start-page: 16
  year: 2020
  ident: 670_CR332
  publication-title: J. Immunother
  doi: 10.1097/CJI.0000000000000301
– volume: 1
  start-page: 158
  year: 2013
  ident: 670_CR84
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-13-0016
– volume: 111
  start-page: 1350
  year: 2014
  ident: 670_CR327
  publication-title: Br. J. Cancer
  doi: 10.1038/bjc.2014.437
– volume: 41
  start-page: 41
  year: 2019
  ident: 670_CR307
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-018-0702-0
– volume: 21
  start-page: 30
  year: 2015
  ident: 670_CR264
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-1716
– volume: 43
  start-page: 362
  year: 1979
  ident: 670_CR19
  publication-title: Cell. Immunol.
  doi: 10.1016/0008-8749(79)90180-1
– volume: 62
  start-page: 909
  year: 2013
  ident: 670_CR215
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-013-1396-8
– volume: 21
  start-page: 4073
  year: 2015
  ident: 670_CR331
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-14-2742
– volume: 7
  start-page: 1672
  year: 2019
  ident: 670_CR62
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-19-0008
– volume: 18
  start-page: e8
  year: 2019
  ident: 670_CR311
  publication-title: Clin. Colorectal Cancer
  doi: 10.1016/j.clcc.2018.09.003
– volume: 37
  start-page: 208
  year: 2016
  ident: 670_CR138
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2016.01.004
– volume: 89
  start-page: 1629
  year: 1997
  ident: 670_CR23
  publication-title: Blood
  doi: 10.1182/blood.V89.5.1629
– volume: 181
  start-page: 4666
  year: 2008
  ident: 670_CR165
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.181.7.4666
– volume: 37
  start-page: 41
  year: 2016
  ident: 670_CR77
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.11.008
– volume: 78
  start-page: 5586
  year: 2018
  ident: 670_CR250
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-3962
– volume: 122
  start-page: 293
  year: 2015
  ident: 670_CR326
  publication-title: J. Neurooncol.
  doi: 10.1007/s11060-015-1720-6
– volume: 7
  start-page: 223
  year: 2014
  ident: 670_CR169
  publication-title: OncoTargets Ther.
– volume: 140
  start-page: 1370
  year: 2017
  ident: 670_CR177
  publication-title: Int. J. Cancer
  doi: 10.1002/ijc.30538
– volume: 44
  start-page: 303
  year: 2016
  ident: 670_CR59
  publication-title: Immunity
  doi: 10.1016/j.immuni.2016.01.014
– ident: 670_CR123
  doi: 10.3390/cancers13020210
– volume: 9
  start-page: 241
  year: 2019
  ident: 670_CR231
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2019.00241
– volume: 18
  start-page: 379
  year: 2019
  ident: 670_CR305
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/s41573-019-0016-5
– ident: 670_CR7
  doi: 10.1136/jitc-2020-001223
– volume: 74
  start-page: 1933
  year: 2014
  ident: 670_CR86
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-1506
– volume: 17
  start-page: 1765
  year: 2011
  ident: 670_CR220
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-10-2672
– volume: 13
  start-page: 828
  year: 2007
  ident: 670_CR104
  publication-title: Nat. Med.
  doi: 10.1038/nm1609
– year: 2020
  ident: 670_CR337
  publication-title: FEBS J.
  doi: 10.1111/febs.15637
– ident: 670_CR78
  doi: 10.1126/sciimmunol.aaf8943
– ident: 670_CR116
  doi: 10.1172/jci.insight.138581
– volume: 53
  start-page: 422
  year: 2004
  ident: 670_CR28
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-003-0459-7
– volume: 165
  start-page: 779
  year: 2000
  ident: 670_CR26
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.165.2.779
– volume: 26
  start-page: 1420
  year: 2020
  ident: 670_CR200
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-19-2625
– volume: 10
  year: 2010
  ident: 670_CR253
  publication-title: BMC Cancer
  doi: 10.1186/1471-2407-10-464
– volume: 7
  year: 2016
  ident: 670_CR31
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms12150
– volume: 222
  start-page: 180
  year: 2008
  ident: 670_CR93
  publication-title: Immunol. Rev.
  doi: 10.1111/j.1600-065X.2008.00608.x
– volume: 475
  start-page: 222
  year: 2011
  ident: 670_CR50
  publication-title: Nature
  doi: 10.1038/nature10138
– volume: 24
  start-page: 5948
  year: 2018
  ident: 670_CR221
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-18-1277
– volume: 61
  start-page: 827
  year: 2012
  ident: 670_CR117
  publication-title: Cancer Immunol. Immunother.
  doi: 10.1007/s00262-011-1143-y
– volume: 201
  start-page: 278
  year: 2018
  ident: 670_CR118
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1701069
– volume: 74
  start-page: 5057
  year: 2014
  ident: 670_CR156
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-13-3723
– volume: 40
  start-page: 22
  year: 2010
  ident: 670_CR145
  publication-title: Eur. J. Immunol.
  doi: 10.1002/eji.200939903
– volume: 4
  start-page: e130748
  year: 2019
  ident: 670_CR160
  publication-title: JCI insight
  doi: 10.1172/jci.insight.130748
– volume: 5
  start-page: 138
  year: 2019
  ident: 670_CR243
  publication-title: Front. Nutr.
  doi: 10.3389/fnut.2018.00138
– volume: 13
  start-page: 412
  year: 2015
  ident: 670_CR301
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2015.08.077
– volume: 19
  start-page: 108
  year: 2018
  ident: 670_CR6
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-017-0022-x
– volume: 13
  start-page: 739
  year: 2013
  ident: 670_CR2
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc3581
– volume: 6
  start-page: 1561
  year: 2018
  ident: 670_CR267
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-18-0070
– volume: 3
  start-page: e954471
  year: 2014
  ident: 670_CR322
  publication-title: Oncoimmunology
  doi: 10.4161/21624011.2014.954471
– volume: 12
  start-page: 655
  year: 2017
  ident: 670_CR174
  publication-title: Target Oncol.
  doi: 10.1007/s11523-017-0525-2
– volume: 36
  start-page: 240
  year: 2015
  ident: 670_CR157
  publication-title: Trends Immunol.
  doi: 10.1016/j.it.2015.02.005
– volume: 8
  start-page: 1736
  year: 2017
  ident: 670_CR187
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01566-5
– volume: 37
  start-page: 1234
  year: 2014
  ident: 670_CR223
  publication-title: Arch. Pharmacal. Res.
  doi: 10.1007/s12272-014-0379-4
– volume: 65
  start-page: 9525
  year: 2005
  ident: 670_CR206
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-0529
– volume: 8
  start-page: 2075
  year: 2014
  ident: 670_CR274
  publication-title: Drug Des. Dev. Ther.
– volume: 11
  start-page: 531491
  year: 2020
  ident: 670_CR300
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2020.531491
– volume: 16
  start-page: 183
  year: 2009
  ident: 670_CR60
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.06.017
– volume: 28
  start-page: 187
  year: 2016
  ident: 670_CR74
  publication-title: Semin. Immunol.
  doi: 10.1016/j.smim.2016.03.018
– volume: 182
  start-page: 240
  year: 2009
  ident: 670_CR114
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.182.1.240
– volume: 37
  start-page: 2233
  year: 2018
  ident: 670_CR179
  publication-title: Clin. Rheumatol.
  doi: 10.1007/s10067-018-4119-x
– volume: 9
  start-page: 20
  year: 2021
  ident: 670_CR48
  publication-title: Cancer Immunol. Res.
  doi: 10.1158/2326-6066.CIR-20-0389
– volume: 77
  start-page: 1599
  year: 2017
  ident: 670_CR189
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-16-1755
– volume: 111
  start-page: 219
  year: 2008
  ident: 670_CR40
  publication-title: Blood
  doi: 10.1182/blood-2007-04-086835
– volume: 19
  start-page: 796
  year: 2017
  ident: 670_CR83
  publication-title: Neuro-Oncology
SSID ssj0001637754
ssib046561479
ssib044760960
ssib048695610
Score 2.6376078
SecondaryResourceType review_article
Snippet Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion...
Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 362
SubjectTerms 631/67/327
631/67/580
Antitumor agents
Cancer
Cancer Research
Cancer therapies
Cell Biology
Chemotherapy
Clinical trials
Humans
Immune Tolerance - immunology
Immunosuppressive Agents - therapeutic use
Immunotherapy
Internal Medicine
Medicine
Medicine & Public Health
Myeloid cells
Myeloid-Derived Suppressor Cells - immunology
Myeloid-Derived Suppressor Cells - transplantation
Neoplasms - immunology
Neoplasms - therapy
Oncology
Pathology
Radiation therapy
Review
Review Article
Suppressor cells
Therapeutic applications
Tumor Escape - immunology
Tumor Microenvironment - immunology
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggoDwCBRkJcYGoie3144QKoqqQyqlIe7MS24GV2mRJdpH675lxnCzLo8fEjuR4PtvfjOdByGvGF0E0CF5vQi4kq_O6DEDkvJbCgQagDcYOn3-RZ1_F5-VimQxuQ3KrnPbEuFH7zqGN_BigZbSUQGjer3_kWDUKb1dTCY3b5A6mLkNUq-V8nAqhJDL0-Vli2svdrZTQ0sz0IdpkJMeEcFiPrsAShqA4pjibguvjAfZ7dNVkoH9jdEtu9s6ymPL_Xzz1b3fLP-5c41F2ep_cSxyUnoygeUBuhfYhOTxpQf--uqZvaPQKjeb2Q1KfX4fLbuVzD1D9GTwdtuvoO9v1FI3-A60GusIgk25qgW60H0vcdz20t57-FuVFR99z-KilDiHXPyIXp58uPp7lqS5DDsKTm7x0DIsU1x64JZc1KFS-WYimqJxrnPBKh0IGqRrPKiAv2inMoAOapCmkMxXnj8lB27XhKaF4PDJmdJBNGZkhsCEeqrqUhatA0cpIOU2wdSlnOZbOuLTx7pxrOwrFglBsFIo1GXk7f7MeM3bc2PsDym3uidm244uu_2bT4rVCVYKx0NSNNqJUwWCS_MoXXje8lqHMyNEkdZu2gMHuAJuRV3MzLF4UTtWGbot9NGy5Jec8I09GkMwj4bBwgB_rjKg9-OwNdb-lXX2PCcJhqpXQMHvvJqDthvX_qXh28188J3cZYh-dJ9QROdj02_ACCNmmfhlX3S_lCyu5
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature HAS Fully OA
  dbid: AAJSJ
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkJcELR8BAoyEuICEYntdezjgqiqlZYLRerNSmwHVmqTKtlF6r9nxkm2LBQkrrEtOZ5n-4098wzwmotZkDWB15uQSsWrtMoDEjmvlXToAWhDucPLz-r0q1ycz873gE-5MDFoP0paxmV6ig573-NiS3GSHJ1fSi1JzR04IKl2xPbBfL74srg5WVGCZN3GDJlM6Fsa7-xCUaz_Nob5Z6Dkb7elcRM6eQD3R_bI5kN_H8JeaA7haI6_0l5eszcsxnPGg_JDuLscr82PoFpeh4t25VOPePsRPOs3VzEAtu0Yndz3rOzZijJF2qkEq7FueKe-7bC88eyXVC02BJBjo4Y5wk33CM5OPp19PE3HxxVStIBap7nj9NJw5ZEgClWhV-Trmayz0rnaSV_okKmgitrzEhmIdgXJ4KA7aDLlTCnEY9hv2iY8BUZ7HOdGB1Xnkd4hpRGhrHKVuRK9pQTyaaytG4XH6f2LCxsvwIW2g30s2sdG-1iTwNttm6tBduOftT-QCbc1STI7fmi7b3aEkJVFKTkPdVVrI_MiGFK6L33mdS0qFfIEjicA2HEe9xYXNKOVQhqdwKttMc5AMk7ZhHZDdTSum-jriwSeDHjZ9kQg-pHk6gSKHSTtdHW3pFl9jyrfONSF1Dh67ybM3XTr70Px7P-qP4d7nKYFRUQUx7C_7jbhBbKsdfVynFY_AQ3uISw
  priority: 102
  providerName: Springer Nature
Title Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer
URI https://link.springer.com/article/10.1038/s41392-021-00670-9
https://www.ncbi.nlm.nih.gov/pubmed/34620838
https://www.proquest.com/docview/2579866099
https://www.proquest.com/docview/2580701333
https://pubmed.ncbi.nlm.nih.gov/PMC8497485
https://doaj.org/article/47a422efbf89417e92290ad0d8f3b6e1
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFH9s3WWXsa378NoFDcYum6ltKZJ8TENKCaSMrYPchC3JLNDaJU4Gvexv73uykyX7vOxigyWDeO8n6fek9wHwNuNDLyoCr8t9LGRWxmXqkcg5LYVFC0DnFDs8u5DnX8R0PpzvlPoin7AuPXAnuBOhCpFlviornYtU-ZwSlBcucbripfTB8ME9b8eYCqcrklNqtz5KJuH6pMXVmhwtM7SeKTYlzvd2opCw_3cs81dnyZ9uTMNGdPYYHvUMko26kT-Be75-CoejGq3n61v2jgWfznBYfgjl7NZfNQsXOwTaN-9Yu74Jnq_NktGRfcuKli0oRKTZtGA3tuwK1DdLbK8d24nRYp3nOP5UM0uAWT6Dy7PJ5fg87qsqxCh6uYpTm1GJ4dIhM-SyRHPIVUNRJYW1lRVOaZ9IL1XlsgKph7aK8t-gHZgn0uYF58_hoG5q_xIYbW6oDe1llQZeh1yG-6JMZWILNJMiSDcCNrbPOE6FL65MuPnm2nRKMagUE5Ri8gjeb_-56fJt_LX3Kelt25NyZYcPiCDTI8j8C0ERHG-0bvoJ3BpcyXItJfLnCN5sm3HqkXKK2jdr6qNxwUQjn0fwogPJdiQcYY_sVkeg9uCzN9T9lnrxNaT3RlEroVF6HzZA-zGsP4vi1f8QxRE8zGiGkIOEOoaD1XLtXyPpWpUDuK_magAPRqPp5ym-TycXHz_h17EcD8Lcw-fs--QOMNEtmQ
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqcoALAsoSKGAk4AJRE8fj2AeEylJNaaenQZqbldhOGakkQzIDmh_Ff-Q9ZxmGpbceM3YUj9_2PfsthDxnycjxApnXKhdywfIwjx0AOSsFN-ABSIW5w5MzMf7MP81Gsx3ys8-FwbDKXid6RW0rg2fkB8BaSgoBgObt4luIXaPwdrVvodGyxYlb_wCXrXlz_AHo-4Kxo4_T9-Ow6yoQwqfFMowNwxa7uQVklIgc3AFbjHgRZcYUhttUukg4kRaWZWB6pUmx_gv4QSoSRmV4_gka_xrY3Qh9vXQ2WG_OU4EOwfAssMrm5hKMS6EGtOKPgESC9eew_V2EHRPBT-3SeqJEHjRgXjAylIG7j8k0odoynb7DwL9g8d_RnX9c8XrLeXSL3OwgLz1sefQ22XHlHbJ3WIK7_3VNX1IfhOpP9_dIPlm7i2puQwuS8d1Z2qwWPlS3qineMTQ0a-gcc1qqfgSm0dqdYxuyqobx0tLfkspoG-oOL5XUIIfXd8n0Kgh2j-yWVekeEIrWmDElnShiD0QBfCUuy2MRmQz8uoDE_QZr05VIx04dF9pf1SdSt0TRQBTtiaJVQF4N7yzaAiGXzn6HdBtmYnFv_0NVn-tOV2ieZpwxV-SFVDxOncKa_JmNrCySXLg4IPs91XWncRq9kY-APBuGQVcgcbLSVSucI0HDx0mSBOR-yyTDShKQU4DjMiDpFvtsLXV7pJx_8fXIYatTLmH3XveMtlnW_7fi4eX_4im5Pp5OTvXp8dnJI3KDoRxg3Ea6T3aX9co9Biy4zJ94CaREX7HE_wJ1t2cA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkK8IGBcwgYYCXiBqIntOs4DQhtbtTFWTWhIe7OS2BmVRtIlLag_jX_HOc6llMve9pjYkRyfi7_jcyPkJeMjK3JkXhNbX0iW-mloAcgZJUUGFoCKMXf4ZCIPv4iP56PzDfKzy4XBsMpOJzpFbcoM78iHwFqxkhIAzTBvwyJO98fvZ1c-dpBCT2vXTqNhkWO7_AHmW_3uaB9o_Yqx8cHZh0O_7TDgwzLk3A8zhu12UwMoicsUTAOTj0QeJFmWZ8JEygbSyig3LIFjWGUR1oIBmygOZBYneBcK2n8zQqNoQDb3DiannztmFiKSaB70zxJrbq5cYkLJuMcu7kJIcqxGh83wAuyfCFZrm-QTcDWs4bDBOFEGxj-m1vjx2kHq-g38CyT_Hev5h8PXnaPju-ROC4DpbsOx98iGLe6Trd0CjP9vS_qaupBUd9e_RdKTpb0sp8Y3ICffraH1YuYCd8uKosehpklNp5jhUnYjMI1W9gKbkpUVjBeG_pZiRpvAd_iooBnye_WAnN0EyR6SQVEW9jGheDYzFisr89DBUoBi3CZpKIMsASvPI2G3wTprC6Zj345L7Rz3XOmGKBqIoh1RdOyRN_03s6ZcyLWz95Bu_Uws9e1elNWFbjWHFlEiGLN5mqtYhJGNsUJ_YgKjcp5KG3pkp6O6bvVPrVfS4pEX_TBoDiROUthygXMU6PuQc-6RRw2T9CvhILUAzpVHojX2WVvq-kgx_eqqk8NWR0LB7r3tGG21rP9vxZPr_-I5uQXSrj8dTY63yW2GYoBBHNEOGcyrhX0KwHCePmtFkBJ9w0L_C-9bbJs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myeloid-derived+suppressor+cells+as+immunosuppressive+regulators+and+therapeutic+targets+in+cancer&rft.jtitle=Signal+transduction+and+targeted+therapy&rft.au=Kai+Li&rft.au=Houhui+Shi&rft.au=Benxia+Zhang&rft.au=Xuejin+Ou&rft.date=2021-10-07&rft.pub=Nature+Publishing+Group&rft.eissn=2059-3635&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1038%2Fs41392-021-00670-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47a422efbf89417e92290ad0d8f3b6e1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-3635&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-3635&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-3635&client=summon