Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer
Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological...
Saved in:
Published in | Signal transduction and targeted therapy Vol. 6; no. 1; pp. 362 - 25 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
07.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment. |
---|---|
AbstractList | Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment. Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment. Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment.Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion during tumor progression. These cells not only support immune escape directly but also promote tumor invasion via various non-immunological activities. Besides, this group of cells are proved to impair the efficiency of current antitumor strategies such as chemotherapy, radiotherapy, and immunotherapy. Therefore, MDSCs are considered as potential therapeutic targets for cancer therapy. Treatment strategies targeting MDSCs have shown promising outcomes in both preclinical studies and clinical trials when administrated alone, or in combination with other anticancer therapies. In this review, we shed new light on recent advances in the biological characteristics and immunosuppressive functions of MDSCs. We also hope to propose an overview of current MDSCs-targeting therapies so as to provide new ideas for cancer treatment. |
ArticleNumber | 362 |
Author | Li, Kai Ma, Qizhi Li, Dan Wang, Yongsheng Ou, Xuejin Shu, Pei Zhang, Benxia Shi, Houhui Chen, Yue |
Author_xml | – sequence: 1 givenname: Kai surname: Li fullname: Li, Kai organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 2 givenname: Houhui surname: Shi fullname: Shi, Houhui organization: Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University – sequence: 3 givenname: Benxia surname: Zhang fullname: Zhang, Benxia organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 4 givenname: Xuejin surname: Ou fullname: Ou, Xuejin organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 5 givenname: Qizhi surname: Ma fullname: Ma, Qizhi organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 6 givenname: Yue surname: Chen fullname: Chen, Yue organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 7 givenname: Pei surname: Shu fullname: Shu, Pei organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center – sequence: 8 givenname: Dan surname: Li fullname: Li, Dan email: lidan@wchscu.cn organization: Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, and Precision Medicine Center, Precision Medicine Key Laboratory of Sichuan Province, West China Hospital, Sichuan University – sequence: 9 givenname: Yongsheng surname: Wang fullname: Wang, Yongsheng email: wangys@scu.edu.cn organization: Department of Thoracic Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center, Clinical Trial Center, West China Hospital, Sichuan University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34620838$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kktr3DAUhU1JadI0f6CLYuimG7dXD-uxKZTQRyClm-yFLF1PNHikqWQH8u-jyWTaJIusJHTPOXxcnbfNUUwRm-Y9gc8EmPpSOGGadkBJByAkdPpVc0Kh1x0TrD96dD9uzkpZAwARTMqev2mOGRcUFFMnzfD7FqcUfOcxhxv0bVm224ylpNw6nKbS2tKGzWaJ6TCpsjbjapnsnHKdR9_O15jtFpc5uHa2eYVzNcXW2egwv2tej3YqePZwnjZXP75fnf_qLv_8vDj_dtk5AWLuiKOCKjV4rQkTA-HKjz0fwTo3Ou6lQhAo5OippRXdScm4IoprEE5bxk6bi32sT3ZttjlsbL41yQZz_5DyythcASc0XFpOKY7DqDQnEjWlGqwHr0Y2CCQ16-s-a7sMG_QO45zt9CT06SSGa7NKN6biSK76GvDpISCnvwuW2WxC2e3TRkxLMbRXIIEwtuP--Ey6TkuOdVNVJbUSArSuqg-Pif6hHH6yCtRe4HIqJeNoXJjtHNIOMEyGgNn1xux7Y2pvzH1vzC6bPrMe0l80sb2pVHFcYf6P_YLrDl6Y1j8 |
CitedBy_id | crossref_primary_10_1016_j_apsb_2024_08_004 crossref_primary_10_1158_0008_5472_CAN_21_4370 crossref_primary_10_1016_j_phymed_2024_156227 crossref_primary_10_1016_j_intimp_2024_112523 crossref_primary_10_3389_fmed_2025_1539024 crossref_primary_10_1002_cam4_7315 crossref_primary_10_1186_s12951_024_02496_3 crossref_primary_10_1002_eji_202350823 crossref_primary_10_1186_s12943_024_01990_4 crossref_primary_10_1016_j_smim_2025_101931 crossref_primary_10_3390_cancers14235911 crossref_primary_10_1038_s41416_025_02972_z crossref_primary_10_1016_j_cytogfr_2024_11_005 crossref_primary_10_3389_fimmu_2025_1537947 crossref_primary_10_3389_fcell_2022_907572 crossref_primary_10_1093_hmg_ddad187 crossref_primary_10_3390_cells13181518 crossref_primary_10_1016_j_prp_2025_155864 crossref_primary_10_1016_j_omto_2023_04_007 crossref_primary_10_3389_fimmu_2022_1021634 crossref_primary_10_3389_fphar_2022_1040163 crossref_primary_10_1016_j_tem_2025_02_001 crossref_primary_10_1186_s13045_024_01544_7 crossref_primary_10_3390_app14072930 crossref_primary_10_3390_ijms26010006 crossref_primary_10_3390_cells14060403 crossref_primary_10_3389_fonc_2023_1210245 crossref_primary_10_1002_adfm_202214499 crossref_primary_10_1200_JCO_22_00857 crossref_primary_10_3389_fimmu_2021_803014 crossref_primary_10_1007_s13273_023_00362_1 crossref_primary_10_1158_2326_6066_CIR_23_0469 crossref_primary_10_1007_s13105_023_01002_x crossref_primary_10_1007_s40257_024_00907_7 crossref_primary_10_1016_j_biopha_2024_117590 crossref_primary_10_3389_fimmu_2025_1542157 crossref_primary_10_1016_j_addr_2022_114482 crossref_primary_10_3390_cancers17050788 crossref_primary_10_2147_IJN_S441135 crossref_primary_10_3389_fimmu_2022_874308 crossref_primary_10_3389_fimmu_2024_1433091 crossref_primary_10_1038_s41392_024_01851_y crossref_primary_10_3389_fphar_2023_1285343 crossref_primary_10_3389_fimmu_2023_1185985 crossref_primary_10_1007_s10238_022_00860_x crossref_primary_10_1002_ctm2_1019 crossref_primary_10_1016_j_jpha_2024_101181 crossref_primary_10_1038_s41591_023_02518_x crossref_primary_10_2217_epi_2023_0388 crossref_primary_10_1038_s41698_024_00681_z crossref_primary_10_1007_s10522_024_10152_4 crossref_primary_10_1002_ptr_8187 crossref_primary_10_3389_fimmu_2023_1086803 crossref_primary_10_1186_s12943_022_01670_1 crossref_primary_10_1016_j_cmpb_2025_108607 crossref_primary_10_1038_s41392_024_01980_4 crossref_primary_10_1186_s12943_023_01885_w crossref_primary_10_3390_cells13100795 crossref_primary_10_1111_sji_13327 crossref_primary_10_1134_S1990519X24700342 crossref_primary_10_37349_etat_2024_00263 crossref_primary_10_1016_j_cellimm_2024_104836 crossref_primary_10_3389_fimmu_2023_1133050 crossref_primary_10_1136_jitc_2024_008837 crossref_primary_10_3390_ijms241512317 crossref_primary_10_1007_s10555_023_10165_4 crossref_primary_10_3389_fimmu_2023_1295257 crossref_primary_10_1016_j_phrs_2023_106988 crossref_primary_10_1002_advs_202417357 crossref_primary_10_1016_j_mtbio_2023_100633 crossref_primary_10_3389_fimmu_2022_1016059 crossref_primary_10_3389_fonc_2023_1155511 crossref_primary_10_3390_ijms25179659 crossref_primary_10_1016_j_isci_2025_111843 crossref_primary_10_1080_21645515_2024_2335728 crossref_primary_10_1016_j_apsb_2024_07_021 crossref_primary_10_1038_s41467_024_49482_9 crossref_primary_10_1097_MD_0000000000035829 crossref_primary_10_1158_1078_0432_CCR_22_3652 crossref_primary_10_3389_fimmu_2024_1302587 crossref_primary_10_1038_s41392_022_01102_y crossref_primary_10_1186_s12943_023_01860_5 crossref_primary_10_1158_2326_6066_CIR_24_0084 crossref_primary_10_3389_fonc_2023_1233376 crossref_primary_10_3390_cancers16112003 crossref_primary_10_1016_j_biopha_2024_117285 crossref_primary_10_1186_s40164_023_00394_2 crossref_primary_10_1007_s12672_023_00681_8 crossref_primary_10_1016_j_heliyon_2023_e22088 crossref_primary_10_1002_ijc_34801 crossref_primary_10_3390_cancers17050749 crossref_primary_10_3390_ijtm4010003 crossref_primary_10_1002_adhm_202301641 crossref_primary_10_1038_s41391_024_00825_z crossref_primary_10_1002_advs_202411711 crossref_primary_10_1007_s12274_022_5141_5 crossref_primary_10_1186_s12951_024_02584_4 crossref_primary_10_1016_j_phrs_2024_107521 crossref_primary_10_1615_OncoTherap_2022042541 crossref_primary_10_1016_j_intimp_2024_113693 crossref_primary_10_26599_FMH_2025_9420040 crossref_primary_10_1002_adma_202412191 crossref_primary_10_1016_j_cellsig_2024_111041 crossref_primary_10_1186_s13287_024_04061_z crossref_primary_10_1016_j_biopha_2024_117420 crossref_primary_10_1186_s40164_024_00539_x crossref_primary_10_3389_fimmu_2024_1440269 crossref_primary_10_1016_j_ncrna_2024_01_015 crossref_primary_10_1111_apm_13471 crossref_primary_10_32604_or_2024_056860 crossref_primary_10_1016_j_bcp_2024_116254 crossref_primary_10_1016_j_bcp_2024_116498 crossref_primary_10_1016_j_bpg_2024_101954 crossref_primary_10_1016_j_heliyon_2024_e31586 crossref_primary_10_1016_j_jddst_2024_106589 crossref_primary_10_4103_glioma_glioma_4_24 crossref_primary_10_1016_j_bbadis_2024_167035 crossref_primary_10_32604_or_2023_042383 crossref_primary_10_3390_ijms26072923 crossref_primary_10_1002_cam4_6645 crossref_primary_10_1002_cam4_6887 crossref_primary_10_14216_kjco_24009 crossref_primary_10_1080_14737140_2025_2483855 crossref_primary_10_1016_j_ejphar_2024_176357 crossref_primary_10_1186_s41065_024_00361_9 crossref_primary_10_1186_s44342_024_00033_0 crossref_primary_10_3389_fonc_2024_1394260 crossref_primary_10_3390_cancers14153796 crossref_primary_10_1097_HC9_0000000000000508 crossref_primary_10_3390_cancers15194797 crossref_primary_10_1186_s13045_024_01634_6 crossref_primary_10_3389_fimmu_2022_992611 crossref_primary_10_1016_j_ijbiomac_2025_140088 crossref_primary_10_3390_cells12141912 crossref_primary_10_1016_j_biopha_2024_116670 crossref_primary_10_1136_jitc_2022_004973 crossref_primary_10_3390_ijms25094832 crossref_primary_10_1016_j_biomaterials_2024_122660 crossref_primary_10_1021_acsnano_4c17279 crossref_primary_10_1016_j_phymed_2023_155164 crossref_primary_10_1158_2643_3230_BCD_23_0202 crossref_primary_10_1158_0008_5472_CAN_21_3113 crossref_primary_10_3390_biom12111627 crossref_primary_10_1002_cmdc_202400410 crossref_primary_10_1016_j_jconrel_2024_02_030 crossref_primary_10_1016_j_lungcan_2024_108059 crossref_primary_10_1016_j_phymed_2023_155171 crossref_primary_10_1007_s00018_022_04219_z crossref_primary_10_1186_s40164_024_00514_6 crossref_primary_10_1172_JCI170762 crossref_primary_10_1016_j_bbcan_2024_189138 crossref_primary_10_1016_j_bioactmat_2024_01_026 crossref_primary_10_1007_s10495_024_02033_5 crossref_primary_10_1186_s12964_024_01995_y crossref_primary_10_1186_s12979_024_00463_y crossref_primary_10_1016_j_heliyon_2025_e42540 crossref_primary_10_3390_cancers15245857 crossref_primary_10_3390_cancers16213711 crossref_primary_10_3389_fphar_2024_1289957 crossref_primary_10_3892_ijo_2024_5673 crossref_primary_10_1111_imr_13237 crossref_primary_10_3389_fimmu_2024_1488345 crossref_primary_10_3390_cancers16162797 crossref_primary_10_1038_s41420_024_01834_6 crossref_primary_10_3389_fonc_2022_1022542 crossref_primary_10_3389_fcell_2024_1302490 crossref_primary_10_3390_ijms24044060 crossref_primary_10_1007_s00210_024_03647_x crossref_primary_10_3389_fimmu_2023_1277677 crossref_primary_10_2147_OTT_S444214 crossref_primary_10_3390_ijms251910651 crossref_primary_10_1016_j_biopha_2025_117966 crossref_primary_10_3389_fimmu_2021_813832 crossref_primary_10_3389_fimmu_2024_1354735 crossref_primary_10_1016_j_nantod_2023_101877 crossref_primary_10_1038_s41392_023_01384_w crossref_primary_10_1002_adhm_202405124 crossref_primary_10_1021_acsnano_3c07183 crossref_primary_10_1016_j_mtbio_2025_101601 crossref_primary_10_1038_s41392_024_01765_9 crossref_primary_10_1016_j_lfs_2024_123113 crossref_primary_10_1186_s12864_024_10307_0 crossref_primary_10_3389_fonc_2024_1443686 crossref_primary_10_1038_s41568_023_00598_y crossref_primary_10_1002_INMD_20230062 crossref_primary_10_1080_14737140_2022_2110072 crossref_primary_10_18027_2224_5057_2023_13_3s1_100_103 crossref_primary_10_1021_acsnano_3c10212 crossref_primary_10_1186_s40364_023_00475_8 crossref_primary_10_3390_cimb47020090 crossref_primary_10_1615_CritRevOncog_2024053096 crossref_primary_10_3390_cells11020310 crossref_primary_10_1158_0008_5472_CAN_23_1200 crossref_primary_10_3390_nu15214667 crossref_primary_10_37349_etat_2022_00097 crossref_primary_10_3389_fimmu_2024_1502257 crossref_primary_10_1016_j_blre_2022_101012 crossref_primary_10_1158_0008_5472_CAN_23_0230 crossref_primary_10_3390_pharmaceutics16091181 crossref_primary_10_1136_jitc_2022_005902 crossref_primary_10_1186_s13045_023_01439_z crossref_primary_10_1016_j_heliyon_2024_e32337 crossref_primary_10_1007_s11684_023_1048_0 crossref_primary_10_71423_aimed_20250101 crossref_primary_10_3389_pore_2023_1611210 crossref_primary_10_3390_cancers14194965 crossref_primary_10_1016_j_nantod_2024_102240 crossref_primary_10_1111_aji_13711 crossref_primary_10_3390_cancers16244253 crossref_primary_10_1016_j_ymthe_2025_02_042 crossref_primary_10_1080_14712598_2024_2405568 crossref_primary_10_1186_s13054_024_05058_z crossref_primary_10_1136_jitc_2023_008081 crossref_primary_10_3390_ijms231810906 crossref_primary_10_1186_s12967_023_04838_5 crossref_primary_10_1089_jir_2024_0150 crossref_primary_10_1136_jitc_2022_005527 crossref_primary_10_1002_cac2_12313 crossref_primary_10_1002_adma_202413210 crossref_primary_10_1097_IN9_0000000000000028 crossref_primary_10_1186_s12967_025_06221_y crossref_primary_10_1007_s11060_023_04387_3 crossref_primary_10_1016_j_intimp_2023_110882 crossref_primary_10_1111_imm_13592 crossref_primary_10_1080_21645515_2024_2437918 crossref_primary_10_1080_1061186X_2025_2467139 crossref_primary_10_3389_fmed_2024_1515097 crossref_primary_10_1016_j_isci_2023_107626 crossref_primary_10_1038_s41422_022_00773_0 crossref_primary_10_1111_cas_15902 crossref_primary_10_3390_v16010027 crossref_primary_10_3390_ijms24087359 crossref_primary_10_1136_jitc_2024_009552 crossref_primary_10_1186_s40824_023_00369_8 crossref_primary_10_62347_QSWS7848 crossref_primary_10_1016_j_biotechadv_2023_108144 crossref_primary_10_1016_j_cytogfr_2024_07_004 crossref_primary_10_3390_cancers15245847 crossref_primary_10_31857_S0041377124020027 crossref_primary_10_3389_fonc_2024_1460493 crossref_primary_10_3390_ijms25116237 crossref_primary_10_1016_j_smim_2022_101668 crossref_primary_10_1186_s12935_024_03335_z crossref_primary_10_1096_fj_202401237R crossref_primary_10_3390_ijms26052307 crossref_primary_10_1186_s40364_024_00599_5 crossref_primary_10_1096_fj_202400458R crossref_primary_10_3389_fimmu_2025_1524038 crossref_primary_10_1186_s12885_023_11688_3 crossref_primary_10_3389_fimmu_2024_1457691 crossref_primary_10_1186_s13046_024_03218_1 crossref_primary_10_3389_fphar_2022_897942 crossref_primary_10_1007_s00262_023_03496_2 crossref_primary_10_3389_fped_2024_1346493 crossref_primary_10_1039_D3BM00416C crossref_primary_10_1016_j_phrs_2024_107204 crossref_primary_10_1101_cshperspect_a041336 crossref_primary_10_1200_OA_24_00049 crossref_primary_10_3389_fgene_2024_1424119 crossref_primary_10_1016_j_critrevonc_2024_104407 crossref_primary_10_3390_biomedicines12010014 crossref_primary_10_1016_j_ijpharm_2023_123729 crossref_primary_10_1097_TP_0000000000005069 crossref_primary_10_1002_adhm_202303294 crossref_primary_10_1016_j_ymthe_2024_08_019 crossref_primary_10_1111_1759_7714_15128 crossref_primary_10_1039_D4TB00769G crossref_primary_10_1007_s12672_024_01725_3 crossref_primary_10_1186_s13045_022_01282_8 crossref_primary_10_3389_fcimb_2022_1003781 crossref_primary_10_1016_j_bbcan_2022_188702 crossref_primary_10_1038_s41392_024_01769_5 crossref_primary_10_1038_s41392_024_01979_x crossref_primary_10_1002_wrna_1822 crossref_primary_10_1007_s12272_024_01504_2 crossref_primary_10_1016_j_mtbio_2025_101530 crossref_primary_10_1186_s12885_023_10502_4 crossref_primary_10_1007_s00011_024_01918_0 crossref_primary_10_1016_j_medj_2023_09_001 crossref_primary_10_1166_mex_2023_2501 crossref_primary_10_1002_adtp_202300209 crossref_primary_10_1002_mco2_124 crossref_primary_10_3389_fonc_2023_1135456 crossref_primary_10_1007_s12026_024_09558_6 crossref_primary_10_1371_journal_pone_0294171 crossref_primary_10_3389_fimmu_2024_1353570 crossref_primary_10_1007_s12026_024_09536_y crossref_primary_10_1007_s00262_024_03879_z crossref_primary_10_3390_ijms241411233 crossref_primary_10_3390_ijms252413388 crossref_primary_10_1084_jem_20231519 crossref_primary_10_1016_j_ejpb_2024_114510 crossref_primary_10_1007_s00210_024_03479_9 crossref_primary_10_3389_fimmu_2023_1323581 crossref_primary_10_12677_acm_2024_1492548 crossref_primary_10_3389_fimmu_2024_1355405 crossref_primary_10_1021_acs_nanolett_2c03227 crossref_primary_10_3892_etm_2022_11414 crossref_primary_10_1186_s12967_024_05649_y crossref_primary_10_37349_ei_2023_00108 crossref_primary_10_3390_pharmaceutics15102421 crossref_primary_10_3389_fimmu_2024_1382842 crossref_primary_10_1021_acsanm_3c03454 crossref_primary_10_20517_cdr_2024_164 crossref_primary_10_1615_CritRevOncog_2022047088 crossref_primary_10_1080_14728222_2023_2259096 crossref_primary_10_1002_mco2_748 crossref_primary_10_1172_JCI171164 crossref_primary_10_3389_fimmu_2023_1295684 crossref_primary_10_1002_ijc_35102 crossref_primary_10_1016_j_jes_2024_11_032 crossref_primary_10_1080_14728222_2022_2170779 crossref_primary_10_3390_cells13201736 crossref_primary_10_3390_vaccines13030292 crossref_primary_10_1093_nutrit_nuad133 crossref_primary_10_3389_fimmu_2023_1303959 crossref_primary_10_1002_adfm_202312092 crossref_primary_10_1007_s12672_024_01698_3 crossref_primary_10_1002_anbr_202300061 crossref_primary_10_1186_s12951_024_02611_4 crossref_primary_10_1016_j_jare_2024_01_013 crossref_primary_10_3892_ol_2024_14389 crossref_primary_10_1111_jgh_16873 crossref_primary_10_1172_jci_insight_179292 crossref_primary_10_1007_s11033_023_09196_5 crossref_primary_10_1039_D4NR02795G crossref_primary_10_1016_j_prp_2024_155613 crossref_primary_10_1016_j_heliyon_2024_e29949 crossref_primary_10_3389_fimmu_2024_1460437 crossref_primary_10_3389_fimmu_2025_1548535 crossref_primary_10_3390_cancers15082366 crossref_primary_10_1016_j_heliyon_2024_e37896 crossref_primary_10_1186_s40164_024_00564_w crossref_primary_10_3389_fimmu_2024_1325946 crossref_primary_10_1016_j_mrgentox_2024_503807 crossref_primary_10_3390_cancers15030971 crossref_primary_10_3390_ijms25126792 crossref_primary_10_1016_j_ctrv_2023_102632 crossref_primary_10_1021_acsami_4c20893 crossref_primary_10_1016_j_ctarc_2022_100649 crossref_primary_10_1093_carcin_bgad047 crossref_primary_10_1038_s41467_023_42303_5 crossref_primary_10_1007_s13577_024_01083_w crossref_primary_10_1080_20450885_2024_2382079 crossref_primary_10_1097_MD_0000000000040384 crossref_primary_10_1002_mco2_714 crossref_primary_10_1007_s13402_024_00971_5 crossref_primary_10_3724_zdxbyxb_2024_0353 crossref_primary_10_1186_s13020_025_01075_4 crossref_primary_10_1002_anbr_202300159 crossref_primary_10_1007_s10238_023_01229_4 crossref_primary_10_3389_fimmu_2023_1238698 crossref_primary_10_25259_Cytojournal_165_2024 crossref_primary_10_1016_j_compbiomed_2025_109717 crossref_primary_10_1038_s41419_024_06834_z crossref_primary_10_1016_j_pmatsci_2024_101347 crossref_primary_10_3390_ijms24087577 crossref_primary_10_1186_s40164_024_00543_1 crossref_primary_10_1084_jem_20232101 crossref_primary_10_3389_fimmu_2024_1403272 crossref_primary_10_1016_j_ymthe_2023_04_008 crossref_primary_10_3390_pharmaceutics16020251 crossref_primary_10_1016_j_apsb_2022_12_016 crossref_primary_10_1016_j_heliyon_2024_e36156 crossref_primary_10_1172_JCI166847 crossref_primary_10_3389_fimmu_2023_1199273 crossref_primary_10_1016_j_nantod_2024_102334 crossref_primary_10_1158_1078_0432_CCR_23_1957 crossref_primary_10_3389_fimmu_2025_1554496 crossref_primary_10_69709_CIConnect_2024_194763 crossref_primary_10_1016_j_biomaterials_2025_123107 crossref_primary_10_1016_j_nantod_2023_102042 crossref_primary_10_3390_jcm11164908 crossref_primary_10_1111_php_13951 crossref_primary_10_1016_j_bbcan_2023_188884 crossref_primary_10_1136_jitc_2022_006205 crossref_primary_10_4110_in_2024_24_e26 crossref_primary_10_1080_01635581_2022_2096909 crossref_primary_10_3390_ijms252212277 crossref_primary_10_1039_D3BM01552A crossref_primary_10_1080_15384047_2024_2315655 crossref_primary_10_1371_journal_pone_0269166 crossref_primary_10_1016_j_intimp_2025_114283 crossref_primary_10_1080_2162402X_2023_2233403 crossref_primary_10_1172_JCI178617 crossref_primary_10_1007_s12032_024_02561_9 crossref_primary_10_3390_cancers16234068 crossref_primary_10_1016_j_cellsig_2022_110337 crossref_primary_10_1093_jleuko_qiae013 crossref_primary_10_1002_ctm2_70048 crossref_primary_10_1200_EDBK_390794 crossref_primary_10_1016_j_isci_2023_107952 crossref_primary_10_1124_pharmrev_123_000901 crossref_primary_10_3390_v16101612 crossref_primary_10_1172_JCI167951 crossref_primary_10_3390_biom14080986 crossref_primary_10_1002_cam4_7148 crossref_primary_10_1158_1541_7786_MCR_22_0920 crossref_primary_10_1002_smll_202411336 crossref_primary_10_3389_fimmu_2024_1461455 crossref_primary_10_3390_jcm13195738 crossref_primary_10_1038_s41467_024_46769_9 crossref_primary_10_1097_MOU_0000000000000987 crossref_primary_10_1016_j_preme_2024_100013 crossref_primary_10_1089_ars_2023_0272 crossref_primary_10_3390_cancers15102749 crossref_primary_10_1007_s12032_024_02320_w crossref_primary_10_1016_j_onano_2023_100134 crossref_primary_10_1155_2024_5512422 crossref_primary_10_1016_j_ajps_2025_101021 crossref_primary_10_1016_j_jhep_2023_06_021 crossref_primary_10_1093_pcmedi_pbae020 |
Cites_doi | 10.1084/jem.20061104 10.1002/eji.201041069 10.1038/ncomms14979 10.1007/s00262-020-02588-7 10.1007/s10549-018-4760-8 10.1080/2162402X.2017.1320011 10.1080/2162402X.2017.1331807 10.1016/j.ccell.2014.10.018 10.3389/fimmu.2019.00172 10.1093/annonc/mdx190 10.1038/nrd4280 10.1038/srep29521 10.1007/s10637-018-0706-6 10.1158/0008-5472.CAN-06-1690 10.1038/nrc.2017.86 10.1080/2162402X.2018.1469594 10.1158/0008-5472.CAN-06-3037 10.1016/j.immuni.2021.04.004 10.1016/j.immuni.2014.10.020 10.1038/s41388-018-0449-z 10.1084/jem.20131916 10.4049/jimmunol.0900092 10.1158/1078-0432.CCR-08-0165 10.2165/11592590-000000000-00000 10.1053/gast.2003.50096 10.1038/s41416-019-0725-x 10.4049/jimmunol.0804253 10.1038/leu.2017.21 10.1158/2159-8290.CD-15-1157 10.1084/jem.20182005 10.1158/0008-5472.CAN-06-0158 10.1007/s00262-014-1561-8 10.1186/s40425-019-0706-x 10.1038/ni.2526 10.3389/fimmu.2018.02499 10.3390/nu11102376 10.1158/1078-0432.CCR-14-1711 10.1007/s10555-018-9728-y 10.1186/s40425-018-0436-5 10.1186/s12967-016-1037-z 10.1158/0008-5472.CAN-17-2460 10.1080/15384047.2018.1450116 10.1158/0008-5472.CAN-13-2347 10.1158/2326-6066.CIR-14-0137 10.1038/nrc3893 10.7150/jca.35205 10.1080/2162402X.2017.1326440 10.4049/jimmunol.181.8.5791 10.1111/cei.13407 10.7554/eLife.17375 10.1158/0008-5472.CAN-11-2449 10.1038/s41389-020-00248-0 10.1158/2159-8290.CD-19-1355 10.1152/physrev.00012.2017 10.1158/1078-0432.CCR-13-1581 10.1158/1078-0432.CCR-08-1332 10.1073/pnas.1612920114 10.1016/j.otohns.2008.11.011 10.1007/s00018-017-2724-5 10.1158/2326-6066.CIR-15-0036 10.1007/s00262-018-2177-1 10.1038/nri2506 10.1200/JCO.2011.35.6295 10.1158/2326-6066.CIR-18-0578 10.1172/JCI45862 10.1016/S1470-2045(16)00078-4 10.1200/jco.2008.26.15_suppl.5593 10.3389/fimmu.2019.03070 10.1007/s10549-011-1889-0 10.1158/2326-6066.CIR-19-0449 10.1007/s00262-019-02418-5 10.1016/j.celrep.2014.12.039 10.1182/blood-2008-01-136895 10.1158/2159-8290.CD-19-0541 10.1182/blood-2009-08-237412 10.1007/s10637-012-9869-8 10.1158/0008-5472.CAN-19-2843 10.1084/jem.20100587 10.1016/j.addr.2008.12.008 10.1093/carcin/bgq105 10.1038/s41577-020-00490-y 10.1002/hep.23054 10.1016/j.cell.2017.12.026 10.1080/2162402X.2017.1338239 10.1158/1078-0432.CCR-09-3272 10.1016/j.jtho.2016.04.026 10.1007/s00262-014-1549-4 10.1158/2326-6066.CIR-19-0556 10.1158/1078-0432.CCR-16-0387 10.1016/j.ejca.2020.08.020 10.1007/s00262-011-1028-0 10.1007/s00262-014-1553-8 10.1016/j.freeradbiomed.2012.02.007 10.1016/j.ccell.2015.07.006 10.1073/pnas.1910856117 10.1172/JCI35213 10.1001/jamaoncol.2020.5572 10.1007/s00262-014-1618-8 10.1016/j.it.2011.05.003 10.1158/1078-0432.CCR-16-1934 10.1158/0008-5472.CAN-17-0348 10.1080/2162402X.2017.1344804 10.1172/jci.insight.122264 10.1038/cddis.2017.192 10.1158/1078-0432.CCR-14-0635 10.1038/s41590-020-0666-9 10.2147/OTT.S130653 10.1186/s40425-014-0030-4 10.1158/1535-7163.MCT-12-0529 10.1182/blood-2010-12-325753 10.1007/s00018-017-2720-9 10.3892/ijo.2016.3371 10.1016/j.ccell.2016.05.012 10.1111/bph.14205 10.4049/jimmunol.1101304 10.1158/2326-6066.CIR-18-0725 10.1007/978-1-4899-8056-4_13 10.1038/nm.3560 10.1172/JCI80005 10.1038/nrd.2018.97 10.1172/JCI129502 10.3389/fimmu.2020.01680 10.1158/1078-0432.CCR-16-1784 10.1200/JCO.2017.35.4_suppl.276 10.1158/0008-5472.CAN-17-3026 10.1172/JCI64115 10.1007/s10549-015-3508-y 10.1016/j.semcancer.2012.01.011 10.1172/JCI80006 10.1158/0008-5472.CAN-19-0880 10.4049/jimmunol.1500959 10.1038/nm.2999 10.1038/srep23824 10.1038/nri3175 10.1097/CJI.0b013e31826b20b6 10.1016/j.ccell.2016.04.014 10.1158/1078-0432.CCR-18-2882 10.1159/000355126 10.1007/s00109-019-01795-9 10.1089/cbr.2012.1219 10.1186/s40425-019-0734-6 10.1158/1940-6207.CAPR-11-0247 10.1158/0008-5472.CAN-16-3199 10.1158/0008-5472.CAN-15-3164 10.1182/blood-2012-08-449413 10.4049/jimmunol.1501785 10.1016/j.immuni.2020.03.004 10.1158/2159-8290.CD-RW2018-010 10.1016/j.pharmthera.2018.12.004 10.4161/cbt.29922 10.1038/s41419-019-1723-x 10.1172/JCI68189 10.1016/0006-2952(79)90649-X 10.1016/j.ebiom.2019.08.025 10.1158/0008-5472.CAN-15-2528 10.1016/j.ctrv.2017.08.004 10.1200/JCO.2009.26.6452 10.1038/nrc2444 10.1016/j.celrep.2017.09.018 10.1158/0008-5472.CAN-08-1921 10.1080/2162402X.2018.1564505 10.18632/oncotarget.12278 10.1080/10408398.2018.1509201 10.1158/2326-6066.CIR-18-0310 10.1016/j.intimp.2011.02.021 10.1080/2162402X.2020.1777625 10.1016/j.cellimm.2005.01.004 10.4049/jimmunol.162.10.5728 10.1158/1078-0432.CCR-16-2748 10.1038/nrd893 10.1016/j.immuni.2019.01.019 10.1016/j.intimp.2011.01.030 10.1016/j.intimp.2011.01.007 10.1002/ijc.31982 10.4049/jimmunol.0902661 10.1080/2162402X.2015.1072672 10.1158/1078-0432.CCR-20-1610 10.4049/jimmunol.168.2.689 10.1038/jid.2012.190 10.1016/j.immuni.2013.08.025 10.1080/2162402X.2015.1034918 10.1007/s13238-015-0237-2 10.3389/fimmu.2020.00783 10.1111/imr.12528 10.3389/fimmu.2020.01371 10.1158/1078-0432.CCR-20-3305 10.1158/0008-5472.CAN-09-3278 10.1073/pnas.1113744109 10.1158/1078-0432.CCR-17-0741 10.1080/2162402X.2016.1200771 10.1080/10408363.2018.1477729 10.1016/j.humimm.2010.04.008 10.1038/s41571-020-0382-2 10.1073/pnas.0409783102 10.1158/0008-5472.CAN-14-2921 10.1158/0008-5472.CAN-13-1265 10.1002/ijc.29297 10.1158/0008-5472.CAN-09-2587 10.4161/2162402X.2014.989764 10.1016/j.intimp.2018.08.007 10.1200/JCO.2016.66.9697 10.1002/ijc.28607 10.1158/0008-5472.CAN-10-3055 10.4161/onci.19731 10.1158/0008-5472.CAN-20-1414 10.3389/fimmu.2020.557586 10.4049/jimmunol.1501853 10.1038/srep20250 10.1001/jamaoncol.2018.4604 10.1002/eji.201343349 10.1038/nm.3337 10.1038/s41586-020-2054-x 10.1038/s41577-020-0376-4 10.1007/s00018-013-1286-4 10.1002/jcp.26075 10.4049/jimmunol.1101225 10.4049/jimmunol.132.1.101 10.3389/fimmu.2020.00324 10.1158/2326-6066.CIR-13-0129 10.1084/jem.20080132 10.1158/2326-6066.CIR-13-0213 10.1002/advs.201901278 10.1038/onc.2016.229 10.1126/sciimmunol.aaw9159 10.1016/j.jsbmb.2019.105557 10.4049/jimmunol.172.1.464 10.1126/sciimmunol.aay6017 10.1016/j.intimp.2012.05.002 10.3389/fcell.2020.576946 10.1038/nri2216 10.1002/eji.201746976 10.1158/0008-5472.CAN-07-2593 10.1038/nature12034 10.4049/jimmunol.1201018 10.1016/j.biopha.2019.109458 10.1182/blood-2010-11-321752 10.1074/mcp.M110.002980 10.1080/2162402X.2015.1038687 10.1158/1940-6207.CAPR-14-0094 10.1080/2162402X.2018.1442167 10.1084/jem.20101956 10.1158/1078-0432.CCR-15-0676 10.1371/journal.pone.0127028 10.1038/nature13862 10.1007/s12026-016-8789-7 10.1074/jbc.M112.434530 10.4049/jimmunol.1201449 10.1158/0008-5472.CAN-04-0757 10.1016/j.molcel.2017.01.021 10.1111/cas.14306 10.1158/1078-0432.CCR-14-3145 10.18632/oncotarget.25511 10.1189/jlb.4RI0515-204R 10.1038/s41586-019-1118-2 10.1186/s12943-019-0978-2 10.1002/ijc.28449 10.1038/srep36107 10.1080/2162402X.2017.1413520 10.1002/eji.201040895 10.1016/j.it.2010.10.002 10.1172/JCI74056 10.1172/jci.insight.126853 10.1158/1078-0432.CCR-17-0357 10.1002/hep.28655 10.1016/j.immuni.2014.08.015 10.1080/2162402X.2018.1474319 10.1158/0008-5472.CAN-16-0144 10.1136/jitc-2019-000478 10.3322/caac.21660 10.4049/jimmunol.166.1.678 10.1097/CJI.0000000000000301 10.1158/2326-6066.CIR-13-0016 10.1038/bjc.2014.437 10.1007/s00281-018-0702-0 10.1158/1078-0432.CCR-14-1716 10.1016/0008-8749(79)90180-1 10.1007/s00262-013-1396-8 10.1158/1078-0432.CCR-14-2742 10.1158/2326-6066.CIR-19-0008 10.1016/j.clcc.2018.09.003 10.1016/j.it.2016.01.004 10.1182/blood.V89.5.1629 10.4049/jimmunol.181.7.4666 10.1016/j.it.2015.11.008 10.1158/0008-5472.CAN-17-3962 10.1007/s11060-015-1720-6 10.1002/ijc.30538 10.1016/j.immuni.2016.01.014 10.3390/cancers13020210 10.3389/fonc.2019.00241 10.1038/s41573-019-0016-5 10.1136/jitc-2020-001223 10.1158/0008-5472.CAN-13-1506 10.1158/1078-0432.CCR-10-2672 10.1038/nm1609 10.1111/febs.15637 10.1126/sciimmunol.aaf8943 10.1172/jci.insight.138581 10.1007/s00262-003-0459-7 10.4049/jimmunol.165.2.779 10.1158/1078-0432.CCR-19-2625 10.1186/1471-2407-10-464 10.1038/ncomms12150 10.1111/j.1600-065X.2008.00608.x 10.1038/nature10138 10.1158/1078-0432.CCR-18-1277 10.1007/s00262-011-1143-y 10.4049/jimmunol.1701069 10.1158/0008-5472.CAN-13-3723 10.1002/eji.200939903 10.1172/jci.insight.130748 10.3389/fnut.2018.00138 10.1016/j.celrep.2015.08.077 10.1038/s41590-017-0022-x 10.1038/nrc3581 10.1158/2326-6066.CIR-18-0070 10.4161/21624011.2014.954471 10.1007/s11523-017-0525-2 10.1016/j.it.2015.02.005 10.1038/s41467-017-01566-5 10.1007/s12272-014-0379-4 10.1158/0008-5472.CAN-05-0529 10.3389/fimmu.2020.531491 10.1016/j.ccr.2009.06.017 10.1016/j.smim.2016.03.018 10.4049/jimmunol.182.1.240 10.1007/s10067-018-4119-x 10.1158/2326-6066.CIR-20-0389 10.1158/0008-5472.CAN-16-1755 10.1182/blood-2007-04-086835 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 2021. The Author(s). The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: 2021. The Author(s). – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7T5 7X7 7XB 8FE 8FH 8FI 8FJ 8FK ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ H94 HCIFZ K9. LK8 M0S M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 5PM DOA |
DOI | 10.1038/s41392-021-00670-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Immunology Abstracts Health & Medical Collection ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student AIDS and Cancer Research Abstracts SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection AIDS and Cancer Research Abstracts ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Immunology Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 2059-3635 |
EndPage | 25 |
ExternalDocumentID | oai_doaj_org_article_47a422efbf89417e92290ad0d8f3b6e1 PMC8497485 34620838 10_1038_s41392_021_00670_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GrantInformation_xml | – fundername: the National Natural Science Foundation of China (Grantno. 81872489). – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 81872489; 81872489; 81872489; 81872489; 81872489; 81872489 funderid: https://doi.org/10.13039/501100001809 – fundername: ; – fundername: ; grantid: 81872489; 81872489; 81872489; 81872489; 81872489; 81872489 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FI 8FJ AAJSJ ABUWG ACGFS ACSMW ADBBV AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU EBLON EBS EJD EMOBN FYUFA GROUPED_DOAJ HCIFZ HMCUK HYE M7P NAO OK1 PIMPY PQQKQ PROAC RNT RPM SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM 7T5 7XB 8FE 8FH 8FK AARCD AZQEC DWQXO GNUQQ H94 K9. LK8 PKEHL PQEST PQGLB PQUKI PRINS 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-1c26288bd99136b148df54f0accfc4d78e06e67fd2a2838c77348184906c9a33 |
IEDL.DBID | DOA |
ISSN | 2059-3635 2095-9907 |
IngestDate | Wed Aug 27 01:31:56 EDT 2025 Thu Aug 21 18:34:13 EDT 2025 Fri Jul 11 03:50:39 EDT 2025 Wed Aug 13 04:34:05 EDT 2025 Thu Apr 03 06:56:49 EDT 2025 Thu Apr 24 23:06:35 EDT 2025 Tue Jul 01 03:15:15 EDT 2025 Fri Feb 21 02:39:12 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | 2021. The Author(s). Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-1c26288bd99136b148df54f0accfc4d78e06e67fd2a2838c77348184906c9a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/47a422efbf89417e92290ad0d8f3b6e1 |
PMID | 34620838 |
PQID | 2579866099 |
PQPubID | 2041911 |
PageCount | 25 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_47a422efbf89417e92290ad0d8f3b6e1 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8497485 proquest_miscellaneous_2580701333 proquest_journals_2579866099 pubmed_primary_34620838 crossref_citationtrail_10_1038_s41392_021_00670_9 crossref_primary_10_1038_s41392_021_00670_9 springer_journals_10_1038_s41392_021_00670_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-10-07 |
PublicationDateYYYYMMDD | 2021-10-07 |
PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-07 day: 07 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Signal transduction and targeted therapy |
PublicationTitleAbbrev | Sig Transduct Target Ther |
PublicationTitleAlternate | Signal Transduct Target Ther |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | QianB-ZCCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasisNature20114752222251:CAS:528:DC%2BC3MXntFKrsb0%3D21654748320850610.1038/nature10138 LuTTumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in miceJ. Clin. Investig.2011121401540291:CAS:528:DC%2BC3MXht12ht7nF21911941319545910.1172/JCI45862 IclozanCAntoniaSChiapporiAChenD-TGabrilovichDTherapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancerCancer Immunol. Immunother.2013629099181:CAS:528:DC%2BC3sXmslamsbY%3D23589106366223710.1007/s00262-013-1396-8 DuttaPSarkissyanMPaicoKWuYVadgamaJVMCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasisBreast Cancer Res. Treat.20181704774861:CAS:528:DC%2BC1cXmsVehtb8%3D29594759602252610.1007/s10549-018-4760-8 KusmartsevSALiYChenS-HGr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulationJ. Immunol.20001657791:CAS:528:DC%2BD3cXkvFWisLo%3D1087835110.4049/jimmunol.165.2.779 PoschkeIMyeloid-derived suppressor cells impair the quality of dendritic cell vaccinesCancer Immunol. Immunother.2012618278381:CAS:528:DC%2BC38XnvFKqurg%3D2208040510.1007/s00262-011-1143-y ManganMSJTargeting the NLRP3 inflammasome in inflammatory diseasesNat. Rev. Drug Discov.2018175886061:CAS:528:DC%2BC1cXhtlGlt7bM3002652410.1038/nrd.2018.97 DuweAKSinghalSKThe immunoregulatory role of bone marrow: I. Suppression of the induction of antibody responses to T-dependent and T-independent antigens by cells in the bone marrowCell. Immunol.1979433623711:STN:280:DyaL3c%2FgtF2kug%3D%3D31434510.1016/0008-8749(79)90180-1 BeuryDWMyeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2J. Immunol.2016196347034781:CAS:528:DC%2BC28XltlSksL0%3D2693688010.4049/jimmunol.1501785 Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-00490-y (2021). RotellaDPPhosphodiesterase 5 inhibitors: current status and potential applicationsNat. Rev. Drug Discov.200216746821:CAS:528:DC%2BD38Xmslamt78%3D1220914810.1038/nrd893 HouAHouKHuangQLeiYChenWTargeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitorsFront. Immunol.2020117831:CAS:528:DC%2BB3cXitVWnsb7J32508809724993710.3389/fimmu.2020.00783 LiJCD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancerOncoImmunology20176e132001128680754548617910.1080/2162402X.2017.1320011 NoelMSOrally administered CCR2 selective inhibitor CCX872-b clinical trial in pancreatic cancerJ. Clin. Oncol.20173527627610.1200/JCO.2017.35.4_suppl.276 VijayanDYoungATengMWLSmythMJTargeting immunosuppressive adenosine in cancerNat. Rev. Cancer2017177097241:CAS:528:DC%2BC2sXhslehs7rO2905914910.1038/nrc.2017.86 RyzhovSAdenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cellsJ. Immunol.2011187612061291:CAS:528:DC%2BC3MXhsV2hsLnL2203930210.4049/jimmunol.1101225 ZoglmeierCCpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing miceClin. Cancer Res.201117176517751:CAS:528:DC%2BC3MXktVOis70%3D2123340010.1158/1078-0432.CCR-10-2672 MoestaAKLiX-YSmythMJTargeting CD39 in cancerNat. Rev. Immunol.2020207397551:CAS:528:DC%2BB3cXhsVygtLvN3272822010.1038/s41577-020-0376-4 ChenH-MMyeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapyClin. Cancer Res.201521407340851:CAS:528:DC%2BC2MXhsFejtrbL25922428472026610.1158/1078-0432.CCR-14-2742 PakASMechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factorClin. Cancer Res.19951951:CAS:528:DyaK2MXlvVarsrs%3D9815891 MolonBChemokine nitration prevents intratumoral infiltration of antigen-specific T cellsJ. Exp. Med.2011208194919621:CAS:528:DC%2BC3MXht1KjsbnI21930770318205110.1084/jem.20101956 OuzounovaMMonocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascadeNat. Commun.2017814979149791:CAS:528:DC%2BC2sXlvVersr8%3D28382931538422810.1038/ncomms14979 CorzoCAHIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironmentJ. Exp. Med.2010207243924531:CAS:528:DC%2BC3cXhsVSktLzE20876310296458410.1084/jem.20100587 LiWG-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancersProtein Cell201671301401:CAS:528:DC%2BC28XhslSmsrg%3D26797765474238510.1007/s13238-015-0237-2 YounJ-IGabrilovichDIThe biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneityEur. J. Immunol.201040296929751:CAS:528:DC%2BC3cXhtl2isbfK21061430327745210.1002/eji.201040895 CorzoCAMechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cellsJ. Immunol.2009182569357011:CAS:528:DC%2BD1MXkslKhs7g%3D1938081610.4049/jimmunol.0900092 LimagneETim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patientsOncoimmunology20198e1564505e156450530906658642240010.1080/2162402X.2018.1564505 MaoYInhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activityClin. Cancer Res.20142040961:CAS:528:DC%2BC2cXhtlSrur3E2490711310.1158/1078-0432.CCR-14-0635 PrimaVKaliberovaLNKaliberovSCurielDTKusmartsevSCOX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cellsProc. Natl Acad. Sci. USA2017114111711221:CAS:528:DC%2BC2sXhtFartbs%3D28096371529301510.1073/pnas.1612920114 ZhengYLong noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing miceMol. Cancer201918616130925926644122910.1186/s12943-019-0978-2 KarinNThe development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrativeFront. Immunol.2020115575861:CAS:528:DC%2BB3MXitVChurk%3D33193327764912210.3389/fimmu.2020.557586 KumarVCD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiationImmunity2016443033151:CAS:528:DC%2BC28XjtVCms7o%3D26885857475965510.1016/j.immuni.2016.01.014 BronteVRecommendations for myeloid-derived suppressor cell nomenclature and characterization standardsNat. Commun.201671:CAS:528:DC%2BC28XhtFGmu7jP27381735493581110.1038/ncomms12150 ZhouJIcariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functionsInt. Immunopharmacol.2011118908981:CAS:528:DC%2BC3MXntVyis70%3D2124486010.1016/j.intimp.2011.01.007 LiLMetformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancerCancer Res.201878177917911:CAS:528:DC%2BC1cXms1aqtrs%3D29374065588258910.1158/0008-5472.CAN-17-2460 WangZTillBGaoQChemotherapeutic agent-mediated elimination of myeloid-derived suppressor cellsOncoimmunology20176e133180728811975554386310.1080/2162402X.2017.1331807 NefedovaYMechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cellsCancer Res.20076711021110281:CAS:528:DC%2BD2sXhtlSlsLvO1800684810.1158/0008-5472.CAN-07-2593 MillrudCRBergenfelzCLeanderssonKOn the origin of myeloid-derived suppressor cellsOncotarget20178364936652769029910.18632/oncotarget.12278 IsambertNFluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 studyOncoimmunology20187e1474319e147431930228942614058610.1080/2162402X.2018.1474319 KulbershJSDayTAGillespieMBYoungMRI1alpha,25-Dihydroxyvitamin D(3) to skew intratumoral levels of immune inhibitory CD34(+) progenitor cells into dendritic cellsOtolaryngol. Head Neck Surg.200914023524019201295333772610.1016/j.otohns.2008.11.011 XuPMetformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing miceBiomed. Pharmacother.20191201094581:CAS:528:DC%2BC1MXhvVarsr%2FL3155067610.1016/j.biopha.2019.109458 ShayanGPhase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signalsClin. Cancer Res.20182462721:CAS:528:DC%2BC1cXhvVWgtA%3D%3D2906164310.1158/1078-0432.CCR-17-0357 ParkerKHHMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cellsCancer Res.201474572357331:CAS:528:DC%2BC2cXhslCqu7bE25164013419991110.1158/0008-5472.CAN-13-2347 WangDSunHWeiJCenBDuBoisRNCXCL1 is critical for premetastatic Niche formation and metastasis in colorectal cancerCancer Res.201777365536651:CAS:528:DC%2BC2sXhtFSmsrbI28455419587740310.1158/0008-5472.CAN-16-3199 KuAWTumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodeseLife20165e1737527929373519919710.7554/eLife.17375 SotaJSafety profile of the interleukin-1 inhibitors anakinra and canakinumab in real-life clinical practice: a nationwide multicenter retrospective observational studyClin. Rheumatol.201837223322402977093010.1007/s10067-018-4119-x HossainFInhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapiesCancer Immunol. Res.20153123612471:CAS:528:DC%2BC2MXhvVajsbvI26025381463694210.1158/2326-6066.CIR-15-0036 ShirotaHKlinmanDMEffect of CpG ODN on monocytic myeloid derived suppressor cellsOncoimmunology2 I Poschke (670_CR117) 2012; 61 O Draghiciu (670_CR162) 2015; 4 D Wang (670_CR132) 2017; 77 J Wong (670_CR182) 2014; 15 670_CR76 C Alfaro (670_CR202) 2017; 60 IH Younos (670_CR9) 2012; 13 J Markowitz (670_CR10) 2015; 64 PT Thevenot (670_CR64) 2014; 41 AS Pak (670_CR22) 1995; 1 V Kumar (670_CR138) 2016; 37 G Shayan (670_CR225) 2018; 24 N Mirza (670_CR29) 2006; 66 DM Peereboom (670_CR160) 2019; 4 B Guo (670_CR178) 2016; 6 H Alshetaiwi (670_CR55) 2020; 5 Y Si (670_CR79) 2019; 4 R Tokunaga (670_CR311) 2019; 18 G Yan (670_CR250) 2018; 78 A Salminen (670_CR293) 2019; 97 SH Albeituni (670_CR240) 2016; 196 BJ Christmas (670_CR267) 2018; 6 L Cardoso Alves (670_CR337) 2020 J Wang (670_CR198) 2016; 48 M Kujawski (670_CR126) 2008; 118 DW Beury (670_CR271) 2016; 196 SJ Priceman (670_CR155) 2010; 115 S Kusmartsev (670_CR212) 2008; 14 M Bilusic (670_CR203) 2019; 7 TA Wynn (670_CR153) 2013; 496 X Zhao (670_CR72) 2012; 122 P Cheng (670_CR166) 2008; 205 SA Kusmartsev (670_CR26) 2000; 165 Y Sawanobori (670_CR49) 2008; 111 O Chornoguz (670_CR69) 2011; 10 YP de Coaña (670_CR84) 2013; 1 J Sota (670_CR179) 2018; 37 670_CR135 K Hiramoto (670_CR273) 2014; 7 D Marvel (670_CR61) 2015; 125 SP Tu (670_CR239) 2012; 5 RF Gabitass (670_CR12) 2011; 60 B Almand (670_CR25) 2001; 166 A Mazzoni (670_CR100) 2002; 168 EA Eksioglu (670_CR339) 2017; 31 C Bergenfelz (670_CR56) 2015; 10 F Koinis (670_CR159) 2016; 11 RP Tobin (670_CR216) 2018; 63 DT Weed (670_CR263) 2015; 21 Y Nefedova (670_CR207) 2004; 172 H Mohammadpour (670_CR66) 2019; 129 B Ricciuti (670_CR306) 2019; 196 670_CR125 670_CR123 KA Noonan (670_CR259) 2014; 2 T Lu (670_CR103) 2011; 121 P Guha (670_CR210) 2019; 38 P Forghani (670_CR228) 2015; 153 MJ Reilley (670_CR209) 2018; 6 E Schlecker (670_CR121) 2012; 189 E Limagne (670_CR161) 2016; 76 L Sun (670_CR199) 2019; 4 P Xu (670_CR294) 2019; 120 M Lee (670_CR223) 2014; 37 C Salvador-Coloma (670_CR302) 2020; 139 V Domankevich (670_CR230) 2019; 68 JM Haverkamp (670_CR142) 2011; 41 D Peng (670_CR131) 2016; 76 AJ Montero (670_CR283) 2012; 132 B Sharma (670_CR197) 2013; 12 AR Bresnick (670_CR163) 2015; 15 670_CR78 V Kumar (670_CR59) 2016; 44 670_CR116 MSJ Mangan (670_CR180) 2018; 17 G Li (670_CR265) 2020; 8 V Bronte (670_CR21) 1999; 162 DI Gabrilovich (670_CR27) 2007; 67 S Eberstal (670_CR249) 2014; 134 S Solito (670_CR32) 2011; 118 A Sonnenfeld (670_CR15) 1929; 111 MD Hellmann (670_CR270) 2021; 27 V Cortez-Retamozo (670_CR37) 2012; 109 GC Prendergast (670_CR298) 2014; 63 H Liang (670_CR187) 2017; 8 AJ Muller (670_CR307) 2019; 41 C Murdoch (670_CR127) 2008; 8 L Bonapace (670_CR194) 2014; 515 F Veglia (670_CR286) 2019; 569 DM Lathers (670_CR28) 2004; 53 BW Labadie (670_CR309) 2019; 25 N Horikawa (670_CR152) 2020; 122 JC Hassel (670_CR262) 2017; 6 V Bronte (670_CR31) 2016; 7 Z Deng (670_CR128) 2017; 36 AF Schott (670_CR201) 2017; 23 J-I Youn (670_CR139) 2008; 181 M Fujita (670_CR251) 2011; 71 Y Shirota (670_CR219) 2012; 188 A Spiegel (670_CR133) 2016; 6 S Tuyaerts (670_CR243) 2019; 5 CS Tannenbaum (670_CR175) 2019; 7 670_CR226 L Seitz (670_CR315) 2019; 37 JD Waight (670_CR47) 2013; 123 C De Santo (670_CR279) 2005; 102 T Condamine (670_CR45) 2015; 98 Y Nefedova (670_CR206) 2005; 65 PY Pan (670_CR40) 2008; 111 A Hou (670_CR14) 2020; 11 KJ Pienta (670_CR191) 2013; 31 I Théate (670_CR299) 2015; 3 S Nagaraj (670_CR104) 2007; 13 DI Gabrilovich (670_CR5) 2012; 12 C Iclozan (670_CR215) 2013; 62 H Shi (670_CR177) 2017; 140 JC Fleet (670_CR232) 2020; 198 T Pilot (670_CR319) 2020; 8 L Fultang (670_CR338) 2019; 47 H Matsushita (670_CR333) 2014; 2 P Dutta (670_CR186) 2018; 170 L Wu (670_CR92) 2019; 7 Y Zhu (670_CR156) 2014; 74 M Bruchard (670_CR318) 2013; 19 R Kinoshita (670_CR167) 2019; 145 B Escudier (670_CR174) 2017; 12 K Rui (670_CR237) 2016; 64 M Mielcarek (670_CR23) 1997; 89 DP Rotella (670_CR261) 2002; 1 M Platten (670_CR305) 2019; 18 H Zhang (670_CR34) 2013; 122 L Li (670_CR296) 2018; 78 N Isambert (670_CR321) 2018; 7 ML Ortiz (670_CR54) 2014; 2 MF Sanmamed (670_CR204) 2017; 28 JM Haverkamp (670_CR71) 2014; 41 CA Corzo (670_CR102) 2009; 182 EM Hanson (670_CR111) 2009; 183 J Pillay (670_CR73) 2013; 70 E Hajek (670_CR183) 2018; 9 PC Rodríguez (670_CR93) 2008; 222 B Molon (670_CR105) 2011; 208 F Hossain (670_CR141) 2015; 3 T Condamine (670_CR36) 2011; 32 S Nagaraj (670_CR275) 2010; 16 S Nagaraj (670_CR101) 2010; 184 J Li (670_CR110) 2017; 6 G Qin (670_CR295) 2018; 7 Y-Y Wang (670_CR274) 2014; 8 AW Ku (670_CR120) 2016; 5 LQM Chow (670_CR224) 2017; 23 A Oseroff (670_CR18) 1984; 132 K Moses (670_CR74) 2016; 28 ZC Ding (670_CR322) 2014; 3 D Bayik (670_CR144) 2020; 10 P Serafini (670_CR260) 2006; 203 C Sternberg (670_CR173) 2016; 34 JL Schultze (670_CR4) 2019; 50 Y Shao (670_CR242) 2017; 10 K Ohl (670_CR277) 2018; 9 ANH Khan (670_CR80) 2020; 8 PL Triozzi (670_CR148) 2012; 35 DR Powell (670_CR77) 2016; 37 F Veglia (670_CR6) 2018; 19 AA Al-Khami (670_CR284) 2017; 6 SL Jian (670_CR290) 2017; 8 J Rodríguez-Ubreva (670_CR246) 2017; 21 MF Al Sayed (670_CR41) 2019; 79 X Ni (670_CR211) 2019; 59 C-X Zhang (670_CR89) 2020; 9 CM Diaz-Montero (670_CR282) 2012; 52 JE Talmadge (670_CR2) 2013; 13 V Umansky (670_CR109) 2014; 63 Y Take (670_CR257) 2020; 11 DK-C Chiu (670_CR52) 2016; 64 E Eriksson (670_CR317) 2016; 14 S George (670_CR325) 2019; 5 L Wang (670_CR85) 2018; 7 KE Andersson (670_CR258) 2018; 175 C Hong (670_CR287) 2014; 13 R Pili (670_CR171) 2011; 29 J Finke (670_CR330) 2011; 11 M Tazzari (670_CR327) 2014; 111 AK Duwe (670_CR19) 1979; 43 Y Chiba (670_CR3) 2018; 75 E Schouppe (670_CR112) 2013; 43 S Takeuchi (670_CR323) 2015; 75 LB Rivera (670_CR157) 2015; 36 H Li (670_CR114) 2009; 182 H Harjunpää (670_CR91) 2020; 200 L Dolcetti (670_CR145) 2010; 40 R Trovato (670_CR205) 2019; 7 Z Wang (670_CR324) 2017; 6 GA Dominguez (670_CR335) 2017; 23 V Mariotti (670_CR308) 2021; 7 T Condamine (670_CR65) 2014; 124 S Hegde (670_CR81) 2021; 54 SK Maenhout (670_CR140) 2014; 134 C Zoglmeier (670_CR220) 2011; 17 DI Albu (670_CR256) 2017; 6 MK Srivastava (670_CR98) 2010; 70 C Cimen Bozkus (670_CR94) 2015; 195 S Ostrand-Rosenberg (670_CR124) 2012; 22 A Meireson (670_CR300) 2020; 11 JS Ko (670_CR329) 2010; 70 DMS Hossain (670_CR222) 2015; 21 I Younos (670_CR137) 2011; 11 J Yu (670_CR99) 2013; 190 EJ Lappat (670_CR16) 1964; 24 JP Antonios (670_CR83) 2017; 19 D Vijayan (670_CR108) 2017; 17 X Yuan (670_CR334) 2018; 37 670_CR11 AL Chang (670_CR185) 2016; 76 Y Yang (670_CR136) 2020; 11 X-Y Li (670_CR314) 2019; 9 B Allard (670_CR310) 2020; 17 N Gupta (670_CR169) 2014; 7 AJ Montero (670_CR281) 2011; 71 MR Young (670_CR24) 1990; 18 Y Wang (670_CR129) 2019; 6 J-I Youn (670_CR38) 2010; 40 J Vollmer (670_CR217) 2009; 61 H-M Chen (670_CR331) 2015; 21 E Limagne (670_CR88) 2019; 8 B Raychaudhuri (670_CR326) 2015; 122 L Negri (670_CR150) 2018; 98 SM Steinberg (670_CR189) 2017; 77 X Hu (670_CR70) 2013; 288 M Ouzounova (670_CR143) 2017; 8 J Zhou (670_CR238) 2016; 6 L Zitvogel (670_CR316) 2008; 8 P Sinha (670_CR68) 2011; 117 SM Pyonteck (670_CR154) 2013; 19 A Kosaka (670_CR254) 2014; 63 KH Parker (670_CR43) 2014; 74 E Mohamed (670_CR276) 2020; 52 TX Cui (670_CR130) 2013; 39 H Qin (670_CR168) 2014; 20 H Shime (670_CR229) 2014; 6 H-W Sun (670_CR48) 2021; 9 J-I Youn (670_CR57) 2013; 14 AJ Armstrong (670_CR172) 2013; 19 A Orillion (670_CR266) 2017; 23 G Gunaydin (670_CR35) 2015; 4 T Baumann (670_CR97) 2020; 21 Z Bian (670_CR196) 2018; 48 P Lu (670_CR208) 2012; 27 O Arrieta (670_CR214) 2010; 28 D Yan (670_CR67) 2020; 217 A Dumont (670_CR320) 2019; 10 JD Veltman (670_CR253) 2010; 10 A Holtzhausen (670_CR62) 2019; 7 P De Cicco (670_CR30) 2020; 11 670_CR184 S Fiorucci (670_CR278) 2003; 124 B Allard (670_CR107) 2017; 276 J Le Naour (670_CR304) 2020; 9 C Gebhardt (670_CR164) 2015; 21 RJ Johnston (670_CR90) 2014; 26 AH Zea (670_CR95) 2004; 232 B Hoechst (670_CR115) 2009; 50 AA Al-Khami (670_CR285) 2016; 5 AK Moesta (670_CR313) 2020; 20 P Serafini (670_CR147) 2004; 64 CM Gutschalk (670_CR149) 2006; 66 J Zhou (670_CR236) 2011; 11 Y Wang (670_CR8) 2019; 10 P Sinha (670_CR165) 2008; 181 RB Holmgaard (670_CR301) 2015; 13 W Hou (670_CR252) 2016; 30 K Okla (670_CR13) 2018; 55 H Shirota (670_CR218) 2012; 1 MS Noel (670_CR193) 2017; 35 MF Tavazoie (670_CR289) 2018; 172 T Seya (670_CR227) 2015; 35 JS Ko (670_CR328) 2009; 15 JA Califano (670_CR264) 2015; 21 Y Rong (670_CR255) 2016; 6 B-Z Qian (670_CR50) 2011; 475 S Greene (670_CR200) 2020; 26 H Jiang (670_CR176) 2015; 136 L Chen (670_CR181) 2018; 75 Y Wang (670_CR118) 2018; 201 N Horikawa (670_CR158) 2017; 23 PC Rodriguez (670_CR96) 2009; 69 L Shen (670_CR170) 2018; 8 CW Steele (670_CR51) 2016; 29 AE Gehad (670_CR113) 2012; 132 V Prima (670_CR247) 2017; 114 A Hashimoto (670_CR268) 2020; 69 E Wennerberg (670_CR312) 2020; 8 A Gonzalez-Junca (670_CR42) 2019; 7 Y Su (670_CR44) 2019; 10 MZ Noman (670_CR82) 2014; 211 D Moreira (670_CR221) 2018; 24 I Le Mercier (670_CR86) 2014; 74 L Strauss (670_CR46) 2015; 28 C Blattner (670_CR53) 2018; 78 A Giordano (670_CR235) 2019; 11 670_CR7 T Hartwig (670_CR336) 2017; 65 C Siret (670_CR122) 2020; 10 M Shen (670_CR119) 2018; 7 670_CR1 JA Flores-Toro (670_CR188) 2020; 117 K Sakuishi (670_CR87) 2011; 32 JE Walsh (670_CR234) 2010; 71 CA Corzo (670_CR58) 2010; 207 N Karin (670_CR39) 2020; 11 ZG Fridlender (670_CR60) 2009; 16 JS Kulbersh (670_CR233) 2009; 140 MY Lee (670_CR17) 1982; 42 Y Ma (670_CR195) 2014; 74 S Di (670_CR231) 2019; 9 Y Zheng (670_CR63) 2019; 18 W Li (670_CR151) 2016; 7 F Li (670_CR303) 2018; 19 Z Lu (670_CR269) 2020; 579 670_CR288 Y Deng (670_CR291) 2018; 67 J Trillo-Tinoco (670_CR297) 2019; 79 Y Nefedova (670_CR213) 2007; 67 H Li (670_CR332) 2020; 43 S Ryzhov (670_CR106) 2011; 187 CN Krasner (670_CR280) 2008; 26 S Ugel (670_CR33) 2015; 125 DI Gabrilovich (670_CR134) 2009; 9 JA Bennett (670_CR20) 1979; 28 H Satoh (670_CR272) 2010; 31 T Wu (670_CR292) 2016; 6 JY Sagiv (670_CR75) 2015; 10 CR Millrud (670_CR146) 2017; 8 TM Nywening (670_CR192) 2016; 17 C Porta (670_CR248) 2020; 80 N Obermajer (670_CR244) 2011; 71 Y Mao (670_CR245) 2014; 20 T Masuda (670_CR190) 2020; 111 X Tian (670_CR241) 2015; 4 |
References_xml | – reference: YanDTIPE2 specifies the functional polarization of myeloid-derived suppressor cells during tumorigenesisJ. Exp. Med.2020217e201820053166234710.1084/jem.201820051:CAS:528:DC%2BB3cXjt1Gis78%3D – reference: PoschkeIMyeloid-derived suppressor cells impair the quality of dendritic cell vaccinesCancer Immunol. Immunother.2012618278381:CAS:528:DC%2BC38XnvFKqurg%3D2208040510.1007/s00262-011-1143-y – reference: ManganMSJTargeting the NLRP3 inflammasome in inflammatory diseasesNat. Rev. Drug Discov.2018175886061:CAS:528:DC%2BC1cXhtlGlt7bM3002652410.1038/nrd.2018.97 – reference: PengDMyeloid-derived suppressor cells endow stem-like qualities to breast cancer cells through IL6/STAT3 and NO/NOTCH cross-talk signalingCancer Res.201676315631651:CAS:528:DC%2BC28XovVykt78%3D27197152489123710.1158/0008-5472.CAN-15-2528 – reference: Veglia, F., Sanseviero, E. & Gabrilovich, D. I. Myeloid-derived suppressor cells in the era of increasing myeloid cell diversity. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-00490-y (2021). – reference: TuSPCurcumin induces the differentiation of myeloid-derived suppressor cells and inhibits their interaction with cancer cells and related tumor growthCancer Prev. Res.201252052151:CAS:528:DC%2BC38XjvValtbg%3D10.1158/1940-6207.CAPR-11-0247 – reference: HellmannMDEntinostat plus pembrolizumab in patients with metastatic NSCLC previously treated with anti-PD-(L)1 therapyClin. Cancer Res.20212710191:CAS:528:DC%2BB3MXnvVOhurc%3D3320364410.1158/1078-0432.CCR-20-3305 – reference: MoreiraDSTAT3 inhibition combined with CpG immunostimulation activates antitumor immunity to eradicate genetically distinct castration-resistant prostate cancersClin. Cancer Res.201824594859621:CAS:528:DC%2BB3cXht1aitrjN30337279627947710.1158/1078-0432.CCR-18-1277 – reference: SerafiniPHigh-dose granulocyte-macrophage colony-stimulating factor-producing vaccines impair the immune response through the recruitment of myeloid suppressor cellsCancer Res.200464633763431:CAS:528:DC%2BD2cXntFClt7k%3D1534242310.1158/0008-5472.CAN-04-0757 – reference: LiFZhaoYWeiLLiSLiuJTumor-infiltrating Treg, MDSC, and IDO expression associated with outcomes of neoadjuvant chemotherapy of breast cancerCancer Biol. Ther.2018196957051:CAS:528:DC%2BC1cXptFCmsrw%3D29621426606787110.1080/15384047.2018.1450116 – reference: ShenLPiliRTasquinimod targets suppressive myeloid cells in the tumor microenvironmentOncoimmunology20188e1072672e107267231646064679142910.1080/2162402X.2015.1072672 – reference: Safarzadeh, E., Orangi, M., Mohammadi, H., Babaie, F. & Baradaran, B. A.-O. Myeloid-derived suppressor cells: important contributors to tumor progression and metastasis. J. Cell. Biol.233, 3024–3036 (2018). – reference: SchouppeETumor-induced myeloid-derived suppressor cell subsets exert either inhibitory or stimulatory effects on distinct CD8+ T-cell activation eventsEur. J. Immunol.201343293029421:CAS:528:DC%2BC3sXhtlWrsr7O2387800210.1002/eji.201343349 – reference: YoungMRYoungMEWrightMAStimulation of immune-suppressive bone marrow cells by colony-stimulating factorsExp. Hematol.1990188068111:CAS:528:DyaK3cXlslSisbY%3D2143138 – reference: HasselJCTadalafil has biologic activity in human melanoma. Results of a pilot trial with Tadalafil in patients with metastatic melanoma (TaMe)Oncoimmunology20176e1326440e132644028932631559908510.1080/2162402X.2017.1326440 – reference: GunaydinGKesikliSAGucDCancer associated fibroblasts have phenotypic and functional characteristics similar to the fibrocytes that represent a novel MDSC subsetOncoimmunology20154e1034918e103491826405600457013710.1080/2162402X.2015.10349181:CAS:528:DC%2BC28XhsFKitrw%3D – reference: CorzoCAHIF-1α regulates function and differentiation of myeloid-derived suppressor cells in the tumor microenvironmentJ. Exp. Med.2010207243924531:CAS:528:DC%2BC3cXhsVSktLzE20876310296458410.1084/jem.20100587 – reference: SinhaPProinflammatory S100 proteins regulate the accumulation of myeloid-derived suppressor cellsJ. Immunol.2008181466646751:CAS:528:DC%2BD1cXhtFarurzK1880206910.4049/jimmunol.181.7.4666 – reference: AlbuDIEP4 antagonism by E7046 diminishes myeloid immunosuppression and synergizes with Treg-reducing IL-2-Diphtheria toxin fusion protein in restoring anti-tumor immunityOncoimmunology20176e1338239e133823928920002559370010.1080/2162402X.2017.1338239 – reference: LeeMResiquimod, a TLR7/8 agonist, promotes differentiation of myeloid-derived suppressor cells into macrophages and dendritic cellsArch. Pharmacal. Res.201437123412401:CAS:528:DC%2BC2cXmsVKlsLs%3D10.1007/s12272-014-0379-4 – reference: MatsushitaHA pilot study of autologous tumor lysate-loaded dendritic cell vaccination combined with sunitinib for metastatic renal cell carcinomaJ. Immunother. Cancer20142303025694811433192410.1186/s40425-014-0030-4 – reference: ChangALCCL2 produced by the glioma microenvironment is essential for the recruitment of regulatory T cells and myeloid-derived suppressor cellsCancer Res.201676567156821:CAS:528:DC%2BC28Xhs1SmtL3I27530322505011910.1158/0008-5472.CAN-16-0144 – reference: SanmamedMFChanges in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patientsAnn. Oncol.201728198819951:STN:280:DC%2BC1cnmtl2nsw%3D%3D28595336583410410.1093/annonc/mdx190 – reference: WangY-YYangY-XZheHHeZ-XZhouS-FBardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic propertiesDrug Des. Dev. Ther.2014820752088 – reference: AntoniosJPImmunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastomaNeuro-Oncology2017197968071:CAS:528:DC%2BC1cXitFSntL%2FF281155785464463 – reference: ZeaAHl-Arginine modulates CD3ζ expression and T cell function in activated human T lymphocytesCell. Immunol.200423221311:CAS:528:DC%2BD2MXls1Gmtbg%3D1592271210.1016/j.cellimm.2005.01.004 – reference: LiangHHost STING-dependent MDSC mobilization drives extrinsic radiation resistanceNat. Commun.201781736173629170400570101910.1038/s41467-017-01566-51:CAS:528:DC%2BC1cXhtFSnsLnM – reference: RodriguezPCArginase I-producing myeloid-derived suppressor cells in renal cell carcinoma are a subpopulation of activated granulocytesCancer Res.200969155315601:CAS:528:DC%2BD1MXhslynsb4%3D19201693290084510.1158/0008-5472.CAN-08-1921 – reference: Rodríguez-UbrevaJProstaglandin E2 leads to the acquisition of DNMT3A-dependent tolerogenic functions in human myeloid-derived suppressor cellsCell Rep.2017211541672897846910.1016/j.celrep.2017.09.0181:CAS:528:DC%2BC2sXhs1Siur3O – reference: MaenhoutSKVan LintSEmeagiPUThielemansKAertsJLEnhanced suppressive capacity of tumor-infiltrating myeloid-derived suppressor cells compared with their peripheral counterpartsInt. J. Cancer2014134107710901:CAS:528:DC%2BC3sXhsVyqtLrL2398319110.1002/ijc.28449 – reference: NomanMZPD-L1 is a novel direct target of HIF-1α, and its blockade under hypoxia enhanced MDSC-mediated T cell activationJ. Exp. Med.20142117817901:CAS:528:DC%2BC2cXotVCjs7w%3D24778419401089110.1084/jem.20131916 – reference: TalmadgeJEGabrilovichDIHistory of myeloid-derived suppressor cellsNat. Rev. Cancer2013137397521:CAS:528:DC%2BC3sXhsV2jsbfL10.1038/nrc3581240608654358792 – reference: HossainFInhibition of fatty acid oxidation modulates immunosuppressive functions of myeloid-derived suppressor cells and enhances cancer therapiesCancer Immunol. Res.20153123612471:CAS:528:DC%2BC2MXhvVajsbvI26025381463694210.1158/2326-6066.CIR-15-0036 – reference: HegdeSLeaderAMMeradMMDSC: markers, development, states, and unaddressed complexityImmunity2021548758841:CAS:528:DC%2BB3MXhtVKqsLjM3397958510.1016/j.immuni.2021.04.0048709560 – reference: WangLVISTA is highly expressed on MDSCs and mediates an inhibition of T cell response in patients with AMLOncoimmunology20187e1469594e146959430228937614058710.1080/2162402X.2018.1469594 – reference: ZhouJIcariin and its derivative, ICT, exert anti-inflammatory, anti-tumor effects, and modulate myeloid derived suppressive cells (MDSCs) functionsInt. Immunopharmacol.2011118908981:CAS:528:DC%2BC3MXntVyis70%3D2124486010.1016/j.intimp.2011.01.007 – reference: ChornoguzOProteomic pathway analysis reveals inflammation increases myeloid-derived suppressor cell resistance to apoptosisMol. Cell. Proteom.201110M110.002980M002110.00298010.1074/mcp.M110.0029801:CAS:528:DC%2BC3MXjt1Glu70%3D – reference: SakuishiKJayaramanPBeharSMAndersonACKuchrooVKEmerging Tim-3 functions in antimicrobial and tumor immunityTrends Immunol.2011323453491:CAS:528:DC%2BC3MXpvFGgsrs%3D21697013316431110.1016/j.it.2011.05.003 – reference: DomankevichVCombining alpha radiation-based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor-specific long-term immune responseCancer Immunol. Immunother.201968194919581:CAS:528:DC%2BC1MXitVSqtL3P31637474687748410.1007/s00262-019-02418-5 – reference: ChristmasBJEntinostat converts immune-resistant breast and pancreatic cancers into checkpoint-responsive tumors by reprogramming tumor-infiltrating MDSCsCancer Immunol. Res.20186156115771:CAS:528:DC%2BB3cXhtFKqs73P30341213627958410.1158/2326-6066.CIR-18-0070 – reference: Le NaourJGalluzziLZitvogelLKroemerGVacchelliETrial watch: IDO inhibitors in cancer therapyOncoimmunology202091777625177762532934882746686310.1080/2162402X.2020.1777625 – reference: ChenLBlockage of the NLRP3 inflammasome by MCC950 improves anti-tumor immune responses in head and neck squamous cell carcinomaCell Mol. Life Sci.201875204520581:CAS:528:DC%2BC2sXhvV2isbrF2918498010.1007/s00018-017-2720-9 – reference: Al SayedMFT-cell-secreted TNFα induces emergency myelopoiesis and myeloid-derived suppressor cell differentiation in cancerCancer Res.2019793461:CAS:528:DC%2BC1MXos1ahsrk%3D3038969810.1158/0008-5472.CAN-17-3026 – reference: HarjunpääHGuillereyCTIGIT as an emerging immune checkpointClin. Exp. Immunol.20202001081193182877410.1111/cei.13407 – reference: MazzoniAMyeloid suppressor lines inhibit T cell responses by an NO-dependent mechanismJ. Immunol.20021686891:CAS:528:DC%2BD38XksFWlsg%3D%3D1177796210.4049/jimmunol.168.2.689 – reference: MariottiVEffect of taxane chemotherapy with or without indoximod in metastatic breast cancer: a randomized clinical trialJAMA Oncol.2021761693315128610.1001/jamaoncol.2020.5572 – reference: FujitaMCOX-2 blockade suppresses gliomagenesis by inhibiting myeloid-derived suppressor cellsCancer Res.201171266426741:CAS:528:DC%2BC3MXktVOjtbk%3D21324923307508610.1158/0008-5472.CAN-10-3055 – reference: BennettJAMitchellMSInduction of suppressor cells by intravenous administration of Bacillus calmette-guérin and its modulation by cyclophosphamideBiochem. Pharmacol.197928194719521:CAS:528:DyaL3cXhsFCjsQ%3D%3D31321010.1016/0006-2952(79)90649-X – reference: YuJMyeloid-derived suppressor cells suppress antitumor immune responses through IDO expression and correlate with lymph node metastasis in patients with breast cancerJ. Immunol.201319037831:CAS:528:DC%2BC3sXksVynsr8%3D2344041210.4049/jimmunol.1201449 – reference: PientaKJPhase 2 study of carlumab (CNTO 888), a human monoclonal antibody against CC-chemokine ligand 2 (CCL2), in metastatic castration-resistant prostate cancerInvestig. N. Drugs2013317607681:CAS:528:DC%2BC3sXnt12ltLY%3D10.1007/s10637-012-9869-8 – reference: BergenfelzCSystemic monocytic-MDSCs are generated from monocytes and correlate with disease progression in breast cancer patientsPLoS ONE201510e0127028e012702825992611443915310.1371/journal.pone.01270281:CAS:528:DC%2BC2MXhs1ClsLrI – reference: ShaoYBisdemethoxycurcumin in combination with α-PD-L1 antibody boosts immune response against bladder cancerOncoTargets Ther.2017102675268310.2147/OTT.S130653 – reference: MirzaNAll-trans-retinoic acid improves differentiation of myeloid cells and immune response in cancer patientsCancer Res.200666929993071:CAS:528:DC%2BD28Xps1ahsrk%3D16982775158610610.1158/0008-5472.CAN-06-1690 – reference: LiHCancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1J. Immunol.20091822402491:CAS:528:DC%2BD1cXhsFCis7bI1910915510.4049/jimmunol.182.1.240 – reference: WalshJEClarkA-MDayTAGillespieMBYoungMRIUse of alpha,25-dihydroxyvitamin D3 treatment to stimulate immune infiltration into head and neck squamous cell carcinomaHum. Immunol.2010716596651:CAS:528:DC%2BC3cXnvVelt7Y%3D20438786333768710.1016/j.humimm.2010.04.008 – reference: PortaCTumor-derived prostaglandin E2 promotes p50 NF-κB-dependent differentiation of monocytic MDSCsCancer Res.20208028741:CAS:528:DC%2BB3cXhvVehtbnP3226522310.1158/0008-5472.CAN-19-2843 – reference: Cardoso AlvesLCorazzaNMicheauOKrebsPThe multifaceted role of TRAIL signaling in cancer and immunityFEBS J.202010.1111/febs.1563733215853 – reference: KuAWTumor-induced MDSC act via remote control to inhibit L-selectin-dependent adaptive immunity in lymph nodeseLife20165e1737527929373519919710.7554/eLife.17375 – reference: LuZEpigenetic therapy inhibits metastases by disrupting premetastatic nichesNature20205792842901:CAS:528:DC%2BB3cXjvFygu7Y%3D3210317510.1038/s41586-020-2054-x8765085 – reference: BruchardMChemotherapy-triggered cathepsin B release in myeloid-derived suppressor cells activates the Nlrp3 inflammasome and promotes tumor growthNat. Med.20131957641:CAS:528:DC%2BC38XhslGku73M2320229610.1038/nm.2999 – reference: OseroffAOkadaSStroberSNatural suppressor (NS) cells found in the spleen of neonatal mice and adult mice given total lymphoid irradiation (TLI) express the null surface phenotypeJ. Immunol.19841321011:STN:280:DyaL2c%2FovVylsQ%3D%3D6228575 – reference: ArmstrongAJLong-term survival and biomarker correlates of tasquinimod efficacy in a multicenter randomized study of men with minimally symptomatic metastatic castration-resistant prostate cancerClin. Cancer Res.201319689169011:CAS:528:DC%2BC3sXhvFyrtrfI24255071425145310.1158/1078-0432.CCR-13-1581 – reference: Tavazoie, M. F. et al. LXR agonism depletes MDSCs to promote antitumor immunity. Cancer Discov.8, 263 (2018). – reference: NagarajSAnti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancerClin. Cancer Res.201016181218231:CAS:528:DC%2BC3cXjtFyhtbk%3D20215551284018110.1158/1078-0432.CCR-09-3272 – reference: PanPYReversion of immune tolerance in advanced malignancy: modulation of myeloid-derived suppressor cell development by blockade of stem-cell factor functionBlood20081112192281:CAS:528:DC%2BD1cXjtVKitg%3D%3D17885078220080710.1182/blood-2007-04-086835 – reference: ZhaoXTNF signaling drives myeloid-derived suppressor cell accumulationJ. Clin. Investig.2012122409441041:CAS:528:DC%2BC38Xhs1CisL%2FP23064360348445310.1172/JCI64115 – reference: SpiegelANeutrophils suppress intraluminal NK cell-mediated tumor cell clearance and enhance extravasation of disseminated carcinoma cellsCancer Discov.201666306491:CAS:528:DC%2BC28Xpt1Ggu78%3D27072748491820210.1158/2159-8290.CD-15-1157 – reference: SrivastavaMKSinhaPClementsVKRodriguezPOstrand-RosenbergSMyeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteineCancer Res.20107068771:CAS:528:DC%2BC3cXltVaj2002885210.1158/0008-5472.CAN-09-2587 – reference: OrtizMLLuLRamachandranIGabrilovichDIMyeloid-derived suppressor cells in the development of lung cancerCancer Immunol. Res.2014250581:CAS:528:DC%2BC2cXmtl2lsrs%3D2477816210.1158/2326-6066.CIR-13-0129 – reference: MillrudCRBergenfelzCLeanderssonKOn the origin of myeloid-derived suppressor cellsOncotarget20178364936652769029910.18632/oncotarget.12278 – reference: CondamineTMastioJGabrilovichDITranscriptional regulation of myeloid-derived suppressor cellsJ. Leukoc. Biol.2015989139221:CAS:528:DC%2BC28XhtlGqt73P26337512466104110.1189/jlb.4RI0515-204R – reference: GeorgeSRiniBIHammersHJEmerging role of combination immunotherapy in the first-line treatment of advanced renal cell carcinoma: a reviewJAMA Oncol.201954114213047695510.1001/jamaoncol.2018.4604 – reference: Rodríguez, P. C. & Ochoa, A. C. Tumor-Induced Immune Suppression. Chap. 13, 369–386 (Springer, 2014). – reference: FridlenderZGPolarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TANCancer Cell2009161831941:CAS:528:DC%2BD1MXhsVChs7vN19732719275440410.1016/j.ccr.2009.06.017 – reference: CuiTXMyeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2Immunity2013396116211:CAS:528:DC%2BC3sXhtl2ksbzO2401242010.1016/j.immuni.2013.08.025 – reference: Al-KhamiAARodriguezPCOchoaACMetabolic reprogramming of myeloid-derived suppressor cells (MDSC) in cancerOncoimmunology20165e120077127622069500795110.1080/2162402X.2016.12007711:CAS:528:DC%2BC28XhtlShtLfO – reference: CalifanoJATadalafil augments tumor specific immunity in patients with head and neck squamous cell carcinomaClin. Cancer Res.20152130381:CAS:528:DC%2BC2MXis12mug%3D%3D25564570432991610.1158/1078-0432.CCR-14-1716 – reference: GabrilovichDINagarajSMyeloid-derived suppressor cells as regulators of the immune systemNat. Rev. Immunol.200991621741:CAS:528:DC%2BD1MXhsFeqsbw%3D19197294282834910.1038/nri2506 – reference: HoltzhausenATAM family receptor kinase inhibition reverses MDSC-mediated suppression and augments anti-PD-1 therapy in melanomaCancer Immunol. Res.20197167216861:CAS:528:DC%2BB3cXhvFOmtLvP31451482694398310.1158/2326-6066.CIR-19-0008 – reference: LabadieBWBaoRLukeJJReimagining IDO pathway inhibition in cancer immunotherapy via downstream focus on the tryptophan-kynurenine-aryl hydrocarbon axisClin. Cancer Res.201925146214711:CAS:528:DC%2BB3cXhtlOmt7rF3037719810.1158/1078-0432.CCR-18-2882 – reference: PeereboomDMMetronomic capecitabine as an immune modulator in glioblastoma patients reduces myeloid-derived suppressor cellsJCI insight20194e130748694886010.1172/jci.insight.130748 – reference: TuyaertsSRombautsKEveraertTVan NuffelAMTAmantFA phase 2 study to assess the immunomodulatory capacity of a lecithin-based delivery system of curcumin in endometrial cancerFront. Nutr.2019513813830687714633692110.3389/fnut.2018.001381:CAS:528:DC%2BB3cXhvVCgsrw%3D – reference: ChenH-MMyeloid-derived suppressor cells as an immune parameter in patients with concurrent sunitinib and stereotactic body radiotherapyClin. Cancer Res.201521407340851:CAS:528:DC%2BC2MXhsFejtrbL25922428472026610.1158/1078-0432.CCR-14-2742 – reference: YounJ-IGabrilovichDIThe biology of myeloid-derived suppressor cells: the blessing and the curse of morphological and functional heterogeneityEur. J. Immunol.201040296929751:CAS:528:DC%2BC3cXhtl2isbfK21061430327745210.1002/eji.201040895 – reference: SiretCDeciphering the crosstalk between myeloid-derived suppressor cells and regulatory T cells in pancreatic ductal adenocarcinomaFront. Immunol.2020103070307032038621698739110.3389/fimmu.2019.030701:CAS:528:DC%2BB3cXhsVGgsb7P – reference: TannenbaumCSMediators of inflammation-driven expansion, trafficking, and function of tumor-infiltrating MDSCsCancer Immunol. Res.20197168716991:CAS:528:DC%2BB3cXhvFOmtLjN31439615677482110.1158/2326-6066.CIR-18-0578 – reference: TavazoieMFLXR/ApoE activation restricts innate immune suppression in cancerCell2018172825840.e8181:CAS:528:DC%2BC1cXhtVejtLw%3D29336888584634410.1016/j.cell.2017.12.026 – reference: Salvador-ColomaCImmunosuppressive profiles in liquid biopsy at diagnosis predict response to neoadjuvant chemotherapy in triple-negative breast cancerEur. J. Cancer20201391191341:CAS:528:DC%2BB3cXhvVOrs7jO3298725310.1016/j.ejca.2020.08.020 – reference: VeltmanJDCOX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC functionBMC Cancer20101020804550293955210.1186/1471-2407-10-4641:CAS:528:DC%2BC3cXhtFSqsLbI – reference: ShenMA novel MDSC-induced PD-1(-)PD-L1(+) B-cell subset in breast tumor microenvironment possesses immuno-suppressive propertiesOncoimmunology20187e1413520e141352029632731588919510.1080/2162402X.2017.1413520 – reference: KrasnerCNNOV-002 plus carboplatin in platinum-resistant ovarian cancerJ. Clin. Oncol.2008265593559310.1200/jco.2008.26.15_suppl.5593 – reference: AllardBAllardDBuisseretLStaggJThe adenosine pathway in immuno-oncologyNat. Rev. Clin. Oncol.2020176116291:CAS:528:DC%2BB3cXhtFOrurrP3251414810.1038/s41571-020-0382-2 – reference: QianB-ZCCL2 recruits inflammatory monocytes to facilitate breast-tumour metastasisNature20114752222251:CAS:528:DC%2BC3MXntFKrsb0%3D21654748320850610.1038/nature10138 – reference: OhlKTenbrockKReactive oxygen species as regulators of MDSC-mediated immune suppressionFront. Immunol.201892499249930425715621861310.3389/fimmu.2018.024991:CAS:528:DC%2BC1MXosVamtrg%3D – reference: DolcettiLHierarchy of immunosuppressive strength among myeloid-derived suppressor cell subsets is determined by GM-CSFEur. J. Immunol.20104022351:CAS:528:DC%2BC3cXktVCn1994131410.1002/eji.200939903 – reference: DiSCombined adjuvant of poly I:C improves antitumor effects of CAR-T cellsFront. Oncol.2019924124131058074648127310.3389/fonc.2019.00241 – reference: Flores-ToroJACCR2 inhibition reduces tumor myeloid cells and unmasks a checkpoint inhibitor effect to slow progression of resistant murine gliomasProc. Natl Acad. Sci. USA2020117112911381:CAS:528:DC%2BB3cXhtFehsbw%3D3187934510.1073/pnas.1910856117 – reference: MaYCCL2/CCR2-dependent recruitment of functional antigen-presenting cells into tumors upon chemotherapyCancer Res.2014744361:CAS:528:DC%2BC2cXptVaitA%3D%3D2430258010.1158/0008-5472.CAN-13-1265 – reference: VollmerJKriegAMImmunotherapeutic applications of CpG oligodeoxynucleotide TLR9 agonistsAdv. Drug Deliv. Rev.2009611952041:CAS:528:DC%2BD1MXjtFKltb4%3D1921103010.1016/j.addr.2008.12.008 – reference: YuanXDeveloping TRAIL/TRAIL death receptor-based cancer therapiesCancer Metastasis Rev.2018377337481:CAS:528:DC%2BC1cXks1KqtLY%3D29541897613856810.1007/s10555-018-9728-y – reference: EksiogluEANovel therapeutic approach to improve hematopoiesis in low risk MDS by targeting MDSCs with the Fc-engineered CD33 antibody BI 836858Leukemia201731217221801:CAS:528:DC%2BC2sXisVymtbk%3D28096534555247210.1038/leu.2017.21 – reference: AlmandBIncreased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancerJ. Immunol.20011666781:CAS:528:DC%2BD3MXis1elsw%3D%3D1112335310.4049/jimmunol.166.1.678 – reference: BronteVUnopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturationJ. Immunol.1999162572857371:CAS:528:DyaK1MXjt12ltrc%3D10229805 – reference: AlshetaiwiHDefining the emergence of myeloid-derived suppressor cells in breast cancer using single-cell transcriptomicsSci. Immunol.20205eaay60171:CAS:528:DC%2BB3cXksVGlsbw%3D32086381721921110.1126/sciimmunol.aay6017 – reference: De CiccoPErcolanoGIanaroAThe new era of cancer immunotherapy: targeting myeloid-derived suppressor cells to overcome immune evasionFront. Immunol.20201116801:CAS:528:DC%2BB3cXitlSis7nN32849585740679210.3389/fimmu.2020.01680 – reference: MohammadpourH2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cellsJ. Clin. Investig.2019129553755521:CAS:528:DC%2BB3cXnsFKgtLY%3D31566578687731610.1172/JCI129502 – reference: Cresswell, G. M. et al. Folate receptor beta designates immunosuppressive tumor-associated myeloid cells that can be reprogrammed with folate-targeted drugs. Cancer Res.https://doi.org/10.1158/0008-5472.CAN-20-1414 (2020). – reference: SagivJYPhenotypic diversity and plasticity in circulating neutrophil subpopulations in cancerCell Rep.2015105625731:CAS:528:DC%2BC2MXhsVars7w%3D2562069810.1016/j.celrep.2014.12.039 – reference: TakeYKoizumiSNagahisaAProstaglandin E receptor 4 antagonist in cancer immunotherapy: mechanisms of actionFront. Immunol.2020113243241:CAS:528:DC%2BB3cXhsVGiur7F32210957707608110.3389/fimmu.2020.00324 – reference: SatohHNrf2-deficiency creates a responsive microenvironment for metastasis to the lungCarcinogenesis201031183318431:CAS:528:DC%2BC3cXht1OgtbzP2051367210.1093/carcin/bgq105 – reference: YounJ-IEpigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancerNat. Immunol.2013142112201:CAS:528:DC%2BC3sXhsVyisL8%3D23354483357801910.1038/ni.2526 – reference: UmanskyVShevchenkoIBazhinAVUtikalJExtracellular adenosine metabolism in immune cells in melanomaCancer Immunol. Immunother.201463107310801:CAS:528:DC%2BC2cXntFOlsbk%3D2475642010.1007/s00262-014-1553-8 – reference: TriozziPLDifferential immunologic and microRNA effects of 2 dosing regimens of recombinant human granulocyte/macrophage colony stimulating factorJ. Immunother.2012355875941:CAS:528:DC%2BC38Xht1ahsr3K2289245510.1097/CJI.0b013e31826b20b6 – reference: PillayJTakTKampVMKoendermanLImmune suppression by neutrophils and granulocytic myeloid-derived suppressor cells: similarities and differencesCell. Mol. life Sci.201370381338271:CAS:528:DC%2BC3sXhsV2mtr3K23423530378131310.1007/s00018-013-1286-4 – reference: MurdochCMuthanaMCoffeltSBLewisCEThe role of myeloid cells in the promotion of tumour angiogenesisNat. Rev. Cancer200886186311:CAS:528:DC%2BD1cXovV2lsrY%3D1863335510.1038/nrc2444 – reference: WuTmTOR masters monocytic myeloid-derived suppressor cells in mice with allografts or tumorsSci. Rep.2016620250202501:CAS:528:DC%2BC28XhslOrsrw%3D26833095473529610.1038/srep20250 – reference: GuoBFuSZhangJLiuBLiZTargeting inflammasome/IL-1 pathways for cancer immunotherapySci. Rep.20166361073610727786298508237610.1038/srep36107 – reference: WangDSunHWeiJCenBDuBoisRNCXCL1 is critical for premetastatic Niche formation and metastasis in colorectal cancerCancer Res.201777365536651:CAS:528:DC%2BC2sXhtFSmsrbI28455419587740310.1158/0008-5472.CAN-16-3199 – reference: MeiresonADevosMBrochezLIDO expression in cancer: different compartment, different functionality?Front. Immunol.2020115314915314911:CAS:528:DC%2BB3cXis1KnsbjE33072086754190710.3389/fimmu.2020.531491 – reference: ChengPInhibition of dendritic cell differentiation and accumulation of myeloid-derived suppressor cells in cancer is regulated by S100A9 proteinJ. Exp. Med.2008205223522491:CAS:528:DC%2BD1cXht1SrtLvE18809714255679710.1084/jem.20080132 – reference: DengZExosomes miR-126a released from MDSC induced by DOX treatment promotes lung metastasisOncogene2017366396511:CAS:528:DC%2BC28XhtVGlsLfP2734540210.1038/onc.2016.229 – reference: HashimotoAFukumotoTZhangRGabrilovichDSelective targeting of different populations of myeloid-derived suppressor cells by histone deacetylase inhibitorsCancer Immunol. Immunother.202069192919361:CAS:528:DC%2BB3cXhtVWnu7%2FM32435850776508310.1007/s00262-020-02588-7 – reference: XuPMetformin inhibits the function of granulocytic myeloid-derived suppressor cells in tumor-bearing miceBiomed. Pharmacother.20191201094581:CAS:528:DC%2BC1MXhvVarsr%2FL3155067610.1016/j.biopha.2019.109458 – reference: BianZTumor conditions induce bone marrow expansion of granulocytic, but not monocytic, immunosuppressive leukocytes with increased CXCR2 expression in miceEur. J. Immunol.2018485325421:CAS:528:DC%2BC2sXhvFejurjE2912005310.1002/eji.201746976 – reference: MonteroAJPhase 2 study of neoadjuvant treatment with NOV-002 in combination with doxorubicin and cyclophosphamide followed by docetaxel in patients with HER-2 negative clinical stage II-IIIc breast cancerBreast Cancer Res. Treat.20121322152231:CAS:528:DC%2BC38XitVSkuro%3D2213874810.1007/s10549-011-1889-0 – reference: CondamineTER stress regulates myeloid-derived suppressor cell fate through TRAIL-R-mediated apoptosisJ. Clin. Investig.2014124262626391:CAS:528:DC%2BC2cXpvFahsrg%3D24789911403857810.1172/JCI74056 – reference: ShirotaHKlinmanDMEffect of CpG ODN on monocytic myeloid derived suppressor cellsOncoimmunology2012178078222934281342959310.4161/onci.19731 – reference: WangJRepertaxin, an inhibitor of the chemokine receptors CXCR1 and CXCR2, inhibits malignant behavior of human gastric cancer MKN45 cells in vitro and in vivo and enhances efficacy of 5-fluorouracilInt. J. Oncol.201648134113521:CAS:528:DC%2BC28XitFGlt7rN26847910477760010.3892/ijo.2016.3371 – reference: DuweAKSinghalSKThe immunoregulatory role of bone marrow: I. Suppression of the induction of antibody responses to T-dependent and T-independent antigens by cells in the bone marrowCell. Immunol.1979433623711:STN:280:DyaL3c%2FgtF2kug%3D%3D31434510.1016/0008-8749(79)90180-1 – reference: BresnickARWeberDJZimmerDBS100 proteins in cancerNat. Rev. Cancer201515961091:CAS:528:DC%2BC2MXhsVartrg%3D25614008436976410.1038/nrc3893 – reference: IclozanCAntoniaSChiapporiAChenD-TGabrilovichDTherapeutic regulation of myeloid-derived suppressor cells and immune response to cancer vaccine in patients with extensive stage small cell lung cancerCancer Immunol. Immunother.2013629099181:CAS:528:DC%2BC3sXmslamsbY%3D23589106366223710.1007/s00262-013-1396-8 – reference: LathersDMClarkJIAchilleNJYoungMRPhase 1B study to improve immune responses in head and neck cancer patients using escalating doses of 25-hydroxyvitamin D3Cancer Immunol. Immunother.2004534224301:CAS:528:DC%2BD2cXisVWhurg%3D1464807010.1007/s00262-003-0459-7 – reference: Cortez-RetamozoVOrigins of tumor-associated macrophages and neutrophilsProc. Natl Acad. Sci. USA2012109249124961:CAS:528:DC%2BC38XivVKntro%3D22308361328937910.1073/pnas.1113744109 – reference: LiX-YTargeting CD39 in cancer reveals an extracellular ATP- and inflammasome-driven tumor immunityCancer Discov.20199175417731:CAS:528:DC%2BB3cXht1Ght77K31699796689120710.1158/2159-8290.CD-19-0541 – reference: YounJ-INagarajSCollazoMGabrilovichDISubsets of myeloid-derived suppressor cells in tumor-bearing miceJ. Immunol.2008181579158021:CAS:528:DC%2BD1cXhtF2hsL3I1883273910.4049/jimmunol.181.8.5791 – reference: DominguezGASelective targeting of myeloid-derived suppressor cells in cancer patients using DS-8273a, an agonistic TRAIL-R2 antibodyClin. Cancer Res.201723294229501:CAS:528:DC%2BC2sXhtVSqu77K2796530910.1158/1078-0432.CCR-16-1784 – reference: SawanoboriYChemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing miceBlood2008111545754661:CAS:528:DC%2BD1cXnsVOktrY%3D1837579110.1182/blood-2008-01-136895 – reference: LuPYuBXuJCucurbitacin B regulates immature myeloid cell differentiation and enhances antitumor immunity in patients with lung cancerCancer Biother. Radiopharm.2012274955031:CAS:528:DC%2BC38XhsFSgsb3P2274628710.1089/cbr.2012.1219 – reference: BeuryDWMyeloid-derived suppressor cell survival and function are regulated by the transcription factor Nrf2J. Immunol.2016196347034781:CAS:528:DC%2BC28XltlSksL0%3D2693688010.4049/jimmunol.1501785 – reference: RyzhovSAdenosinergic regulation of the expansion and immunosuppressive activity of CD11b+Gr1+ cellsJ. Immunol.2011187612061291:CAS:528:DC%2BC3MXhsV2hsLnL2203930210.4049/jimmunol.1101225 – reference: HorikawaNExpression of vascular endothelial growth factor in ovarian cancer inhibits tumor immunity through the accumulation of myeloid-derived suppressor cellsClin. Cancer Res.2017235871:CAS:528:DC%2BC2sXhtVeit7c%3D2740124910.1158/1078-0432.CCR-16-0387 – reference: MasudaTPhase I dose-escalation trial to repurpose propagermanium, an oral CCL2 inhibitor, in patients with breast cancerCancer Sci.20201119249311:CAS:528:DC%2BB3cXis1Snsr8%3D31943636706048710.1111/cas.14306 – reference: KulbershJSDayTAGillespieMBYoungMRI1alpha,25-Dihydroxyvitamin D(3) to skew intratumoral levels of immune inhibitory CD34(+) progenitor cells into dendritic cellsOtolaryngol. Head Neck Surg.200914023524019201295333772610.1016/j.otohns.2008.11.011 – reference: OuzounovaMMonocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascadeNat. Commun.2017814979149791:CAS:528:DC%2BC2sXlvVersr8%3D28382931538422810.1038/ncomms14979 – reference: HuXDeregulation of apoptotic factors Bcl-xL and Bax confers apoptotic resistance to myeloid-derived suppressor cells and contributes to their persistence in cancerJ. Biol. Chem.201328819103191151:CAS:528:DC%2BC3sXhtVehurvI23677993369668310.1074/jbc.M112.434530 – reference: SiYMultidimensional imaging provides evidence for down-regulation of T cell effector function by MDSC in human cancer tissueSci. Immunol.20194eaaw91591:CAS:528:DC%2BC1MXitFaksLnJ3162816110.1126/sciimmunol.aaw9159 – reference: ZhangC-XGalectin-9 promotes a suppressive microenvironment in human cancer by enhancing STING degradationOncogenesis2020965651:CAS:528:DC%2BB3cXhtlKqurfJ32632113733834910.1038/s41389-020-00248-0 – reference: HongCTontonozPLiver X receptors in lipid metabolism: opportunities for drug discoveryNat. Rev. Drug Discov.2014134334441:CAS:528:DC%2BC2cXotV2iuro%3D2483329510.1038/nrd4280 – reference: GebhardtCMyeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumabClin. Cancer Res.20152154531:CAS:528:DC%2BC2MXitVKjs7vL2628906710.1158/1078-0432.CCR-15-0676 – reference: SharmaBNawandarDMNannuruKCVarneyMLSinghRKTargeting CXCR2 enhances chemotherapeutic response, inhibits mammary tumor growth, angiogenesis, and lung metastasisMol. Cancer Ther.2013127991:CAS:528:DC%2BC3sXntlSitrY%3D2346853010.1158/1535-7163.MCT-12-0529 – reference: KinoshitaRNewly developed anti-S100A8/A9 monoclonal antibody efficiently prevents lung tropic cancer metastasisInt. J. Cancer20191455695751:CAS:528:DC%2BC1cXisFSmsL3P3041417010.1002/ijc.31982 – reference: SchottAFPhase Ib pilot study to evaluate reparixin in combination with weekly paclitaxel in patients with HER-2-negative metastatic breast cancerClin. Cancer Res.201723535853651:CAS:528:DC%2BC2sXhsV2mu7fK28539464560082410.1158/1078-0432.CCR-16-2748 – reference: KujawskiMStat3 mediates myeloid cell-dependent tumor angiogenesis in miceJ. Clin. Investig.2008118336733771:CAS:528:DC%2BD1cXht1ChsrrE18776941252891210.1172/JCI35213 – reference: HaverkampJMMyeloid-derived suppressor activity is mediated by monocytic lineages maintained by continuous inhibition of extrinsic and intrinsic death pathwaysImmunity2014419479591:CAS:528:DC%2BC2cXitFejsrjE25500368427266410.1016/j.immuni.2014.10.020 – reference: FinkeJMDSC as a mechanism of tumor escape from sunitinib mediated anti-angiogenic therapyInt. Immunopharmacol.2011118568611:CAS:528:DC%2BC3MXntVyisrw%3D2131578310.1016/j.intimp.2011.01.030 – reference: RaychaudhuriBMyeloid derived suppressor cell infiltration of murine and human gliomas is associated with reduction of tumor infiltrating lymphocytesJ. Neurooncol.20151222933011:CAS:528:DC%2BC2MXhtVCqtL4%3D2557998310.1007/s11060-015-1720-6 – reference: KoJSSunitinib mediates reversal of myeloid-derived suppressor cell accumulation in renal cell carcinoma patientsClin. Cancer Res.200915214821571:CAS:528:DC%2BD1MXjtF2rurY%3D1927628610.1158/1078-0432.CCR-08-1332 – reference: GabrilovichDIThe terminology issue for myeloid-derived suppressor cellsCancer Res.2007674251:CAS:528:DC%2BD2sXisFWitA%3D%3D17210725194178710.1158/0008-5472.CAN-06-3037 – reference: RodríguezPCOchoaACArginine regulation by myeloid derived suppressor cells and tolerance in cancer: mechanisms and therapeutic perspectivesImmunol. Rev.200822218019118364002354650410.1111/j.1600-065X.2008.00608.x – reference: KumarVPatelSTcyganovEGabrilovichDIThe nature of myeloid-derived suppressor cells in the tumor microenvironmentTrends Immunol.2016372082201:CAS:528:DC%2BC28XhsFKltbc%3D26858199477539810.1016/j.it.2016.01.004 – reference: SteinbergSMMyeloid cells that impair immunotherapy are restored in melanomas with acquired resistance to BRAF inhibitorsCancer Res.201777159916101:CAS:528:DC%2BC2sXltlyjtrY%3D28202513538054010.1158/0008-5472.CAN-16-1755 – reference: BronteVRecommendations for myeloid-derived suppressor cell nomenclature and characterization standardsNat. Commun.201671:CAS:528:DC%2BC28XhtFGmu7jP27381735493581110.1038/ncomms12150 – reference: KosakaAOhkuriTOkadaHCombination of an agonistic anti-CD40 monoclonal antibody and the COX-2 inhibitor celecoxib induces anti-glioma effects by promotion of type-1 immunity in myeloid cells and T-cellsCancer Immunol. Immunother.2014638478571:CAS:528:DC%2BC2cXpsVagsLo%3D24878890422128710.1007/s00262-014-1561-8 – reference: StraussLRORC1 regulates tumor-promoting “Emergency” granulo-monocytopoiesisCancer Cell2015282532691:CAS:528:DC%2BC2MXhtlWlsbvP2626753810.1016/j.ccell.2015.07.006 – reference: OklaKWertelIWawruszakABobinskiMKotarskiJBlood-based analyses of cancer: circulating myeloid-derived suppressor cells—Is a new era coming?Crit. Rev. Clin. Lab Sci.2018553764071:CAS:528:DC%2BC1cXhtFymsr7L2992766810.1080/10408363.2018.1477729 – reference: WangYDingYGuoNWangSMDSCs: key criminals of tumor pre-metastatic niche formationFront. Immunol.2019101721721:CAS:528:DC%2BC1MXhsVWnsrrP30792719637429910.3389/fimmu.2019.00172 – reference: Cimen BozkusCElzeyBDCristSAElliesLGRatliffTLExpression of cationic amino acid transporter 2 is required for myeloid-derived suppressor cell-mediated control of T cell immunityJ. Immunol.2015195523752501:CAS:528:DC%2BC2MXhvVOhu7fL2649119810.4049/jimmunol.1500959 – reference: WuLBlockade of TIGIT/CD155 signaling reverses T-cell exhaustion and enhances antitumor capability in head and neck squamous cell carcinomaCancer Immunol. Res.2019717001:CAS:528:DC%2BB3cXhvFOmtLjO3138789710.1158/2326-6066.CIR-18-0725 – reference: ZhouJTherapeutic targeting of myeloid-derived suppressor cells involves a novel mechanism mediated by clusterinSci. Rep.2016629521295211:CAS:528:DC%2BC2sXksVektbY%3D27405665494278710.1038/srep29521 – reference: DumontADocosahexaenoic acid inhibits both NLRP3 inflammasome assembly and JNK-mediated mature IL-1β secretion in 5-fluorouracil-treated MDSC: implication in cancer treatmentCell Death Dis.20191048548531217433658469010.1038/s41419-019-1723-x1:CAS:528:DC%2BC1MXht1KksrbI – reference: UgelSDe SanctisFMandruzzatoSBronteVTumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophagesJ. Clin. Invest.20151253365337626325033458831010.1172/JCI80006 – reference: Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Cancer J. Clin. https://doi.org/10.3322/caac.21660 (2021). – reference: SonnenfeldALeukamische reaktiones bei carcinomaZ. f. Klin. Med.1929111108 – reference: AlfaroCInterleukin-8 in cancer pathogenesis, treatment and follow-upCancer Treat. Rev.20176024311:CAS:528:DC%2BC2sXhtlOgsrrI2886636610.1016/j.ctrv.2017.08.004 – reference: KoinisFEffect of first-line treatment on myeloid-derived suppressor cells’ subpopulations in the peripheral blood of patients with non-small cell lung cancerJ. Thorac. Oncol.201611126312722717898410.1016/j.jtho.2016.04.026 – reference: TobinRPTargeting myeloid-derived suppressor cells using all-trans retinoic acid in melanoma patients treated with IpilimumabInt. Immunopharmacol.2018632822911:CAS:528:DC%2BC1cXhsFequ7zJ30121453613417710.1016/j.intimp.2018.08.007 – reference: PrimaVKaliberovaLNKaliberovSCurielDTKusmartsevSCOX2/mPGES1/PGE2 pathway regulates PD-L1 expression in tumor-associated macrophages and myeloid-derived suppressor cellsProc. Natl Acad. Sci. USA2017114111711221:CAS:528:DC%2BC2sXhtFartbs%3D28096371529301510.1073/pnas.1612920114 – reference: TianXParticulate β-glucan regulates the immunosuppression of granulocytic myeloid-derived suppressor cells by inhibiting NFIA expressionOncoimmunology20154e1038687e103868726405609457010710.1080/2162402X.2015.10386871:CAS:528:DC%2BC28XhsFKisbc%3D – reference: MoestaAKLiX-YSmythMJTargeting CD39 in cancerNat. Rev. Immunol.2020207397551:CAS:528:DC%2BB3cXhsVygtLvN3272822010.1038/s41577-020-0376-4 – reference: HajekEBRAF inhibitors stimulate inflammasome activation and interleukin 1 beta production in dendritic cellsOncotarget20189282942830829983861603336110.18632/oncotarget.25511 – reference: SeyaTShimeHMatsumotoMFunctional alteration of tumor-infiltrating myeloid cells in RNA adjuvant therapyAnticancer Res.201535438543921:CAS:528:DC%2BC2MXhs1ensLvP26168476 – reference: TrovatoRImmunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3J. Immunother. Cancer2019725525531533831675161210.1186/s40425-019-0734-6 – reference: NyweningTMTargeting tumour-associated macrophages with CCR2 inhibition in combination with FOLFIRINOX in patients with borderline resectable and locally advanced pancreatic cancer: a single-centre, open-label, dose-finding, non-randomised, phase 1b trialLancet Oncol.2016176516621:CAS:528:DC%2BC28XlsFOnu7w%3D27055731540728510.1016/S1470-2045(16)00078-4 – reference: SeitzLSafety, tolerability, and pharmacology of AB928, a novel dual adenosine receptor antagonist, in a randomized, phase 1 study in healthy volunteersInvestig. N. Drugs2019377117211:CAS:528:DC%2BC1cXisFKrtrjF10.1007/s10637-018-0706-6 – reference: GuptaNAl UstwaniOShenLPiliRMechanism of action and clinical activity of tasquinimod in castrate-resistant prostate cancerOncoTargets Ther.20147223234 – reference: GreeneSInhibition of MDSC trafficking with SX-682, a CXCR1/2 inhibitor, enhances NK-cell immunotherapy in head and neck cancer modelsClin. Cancer Res.202026142014311:CAS:528:DC%2BB3cXhvValtrnE3184818810.1158/1078-0432.CCR-19-2625 – reference: SinhaPMyeloid-derived suppressor cells express the death receptor Fas and apoptose in response to T cell-expressed FasLBlood2011117538153901:CAS:528:DC%2BC3MXntFKqu74%3D21450901310971210.1182/blood-2010-11-321752 – reference: LeeMYRosseCDepletion of lymphocyte subpopulations in primary and secondary lymphoid organs of mice by a transplanted granulocytosis-inducing mammary carcinomaCancer Res.19824212551:STN:280:DyaL387js1yhsQ%3D%3D7060002 – reference: LimagneETim-3/galectin-9 pathway and mMDSC control primary and secondary resistances to PD-1 blockade in lung cancer patientsOncoimmunology20198e1564505e156450530906658642240010.1080/2162402X.2018.1564505 – reference: Trillo-TinocoJAMPK Alpha-1 intrinsically regulates the function and differentiation of tumor myeloid-derived suppressor cellsCancer Res.201979503450471:CAS:528:DC%2BB3cXhslKrsrw%3D31409640677482910.1158/0008-5472.CAN-19-0880 – reference: TazzariMAdaptive immune contexture at the tumour site and downmodulation of circulating myeloid-derived suppressor cells in the response of solitary fibrous tumour patients to anti-angiogenic therapyBr. J. Cancer2014111135013621:CAS:528:DC%2BC2cXhtlaht7fO25101565418385710.1038/bjc.2014.437 – reference: Alban, T. J. et al. Global immune fingerprinting in glioblastoma patient peripheral blood reveals immune-suppression signatures associated with prognosis. JCI Insighthttps://doi.org/10.1172/jci.insight.122264 (2018). – reference: WangYMyeloid-derived suppressor cells impair B cell responses in lung cancer through IL-7 and STAT5J. Immunol.20182012782951:CAS:528:DC%2BC1cXhtFyjs7%2FL2975231110.4049/jimmunol.1701069 – reference: DengYmTOR-mediated glycolysis contributes to the enhanced suppressive function of murine tumor-infiltrating monocytic myeloid-derived suppressor cellsCancer Immunol. Immunother.201867135513641:CAS:528:DC%2BC1cXht1ygur7K2996815310.1007/s00262-018-2177-1 – reference: KumarVCD45 phosphatase inhibits STAT3 transcription factor activity in myeloid cells and promotes tumor-associated macrophage differentiationImmunity2016443033151:CAS:528:DC%2BC28XjtVCms7o%3D26885857475965510.1016/j.immuni.2016.01.014 – reference: ShimeHMyeloid-derived suppressor cells confer tumor-suppressive functions on natural killer cells via polyinosinic:polycytidylic acid treatment in mouse tumor modelsJ. Innate Immun.201462933051:CAS:528:DC%2BC2cXlslSltLo%3D2419249110.1159/000355126 – reference: HossainDMSTLR9-targeted STAT3 silencing abrogates immunosuppressive activity of myeloid-derived suppressor cells from prostate cancer patientsClin. Cancer Res.201521377137821:CAS:528:DC%2BC2MXhtlKltr3L25967142453781410.1158/1078-0432.CCR-14-3145 – reference: ForghaniPWallerEKPoly (I: C) modulates the immunosuppressive activity of myeloid-derived suppressor cells in a murine model of breast cancerBreast Cancer Res. Treat.201515321301:CAS:528:DC%2BC2MXht1aktLnJ2620848410.1007/s10549-015-3508-y – reference: HaverkampJMCristSAElzeyBDCimenCRatliffTLIn vivo suppressive function of myeloid-derived suppressor cells is limited to the inflammatory siteEur. J. Immunol.2011417497591:CAS:528:DC%2BC3MXit1ehsLg%3D21287554308990210.1002/eji.201041069 – reference: WongJTranLTMagunEAMagunBEWoodLJProduction of IL-1β by bone marrow-derived macrophages in response to chemotherapeutic drugs: synergistic effects of doxorubicin and vincristineCancer Biol. Ther.201415139514031:CAS:528:DC%2BC2cXitVyltLbP25046000413073210.4161/cbt.29922 – reference: NefedovaYHyperactivation of STAT3 is involved in abnormal differentiation of dendritic cells in cancerJ. Immunol.20041724644741:CAS:528:DC%2BD3sXpvFehu7k%3D1468835610.4049/jimmunol.172.1.464 – reference: NegriLFerraraNThe prokineticins: neuromodulators and mediators of inflammation and myeloid cell-dependent angiogenesisPhysiol. Rev.201898105510821:CAS:528:DC%2BC1MXkvFeksb8%3D2953733610.1152/physrev.00012.2017 – reference: KusmartsevSALiYChenS-HGr-1+ myeloid cells derived from tumor-bearing mice inhibit primary T cell activation induced through CD3/CD28 costimulationJ. Immunol.20001657791:CAS:528:DC%2BD3cXkvFWisLo%3D1087835110.4049/jimmunol.165.2.779 – reference: QinHGeneration of a new therapeutic peptide that depletes myeloid-derived suppressor cells in tumor-bearing miceNat. Med.2014206766811:CAS:528:DC%2BC2cXos1eqsLc%3D24859530404832110.1038/nm.3560 – reference: ShiHRecruited monocytic myeloid-derived suppressor cells promote the arrest of tumor cells in the premetastatic niche through an IL-1beta-mediated increase in E-selectin expressionInt. J. Cancer2017140137013831:CAS:528:DC%2BC2sXhs1Wlurs%3D2788567110.1002/ijc.30538 – reference: Aggen, D. H. et al. Blocking interleukin-1 beta promotes tumor regression and remodeling of the myeloid compartment in a renal cell carcinoma model: multi-dimensional analyses. Clin. Cancer Res.https://doi.org/10.1158/1078-0432.CCR-20-1610 (2020). – reference: SunH-WRetinoic acid synthesis deficiency fosters the generation of polymorphonuclear myeloid-derived suppressor cells in colorectal cancerCancer Immunol. Res.20219201:CAS:528:DC%2BB3MXkvVCitbg%3D3317710810.1158/2326-6066.CIR-20-0389 – reference: VegliaFFatty acid transport protein 2 reprograms neutrophils in cancerNature201956973781:CAS:528:DC%2BC1MXosVSmtrs%3D30996346655712010.1038/s41586-019-1118-2 – reference: SuYQiuYQiuZQuPMicroRNA networks regulate the differentiation, expansion and suppression function of myeloid-derived suppressor cells in tumor microenvironmentJ. Cancer201910435043561:CAS:528:DC%2BB3cXjslKnsL4%3D31413755669171310.7150/jca.35205 – reference: HouAHouKHuangQLeiYChenWTargeting myeloid-derived suppressor cell, a promising strategy to overcome resistance to immune checkpoint inhibitorsFront. Immunol.2020117831:CAS:528:DC%2BB3cXitVWnsb7J32508809724993710.3389/fimmu.2020.00783 – reference: ThevenotPTThe stress-response sensor chop regulates the function and accumulation of myeloid-derived suppressor cells in tumorsImmunity2014413894011:CAS:528:DC%2BC2cXhsFyhur%2FP25238096417171110.1016/j.immuni.2014.08.015 – reference: SchleckerETumor-infiltrating monocytic myeloid-derived suppressor cells mediate CCR5-dependent recruitment of regulatory T cells favoring tumor growthJ. Immunol.201218956021:CAS:528:DC%2BC38Xhsl2jtLnL2315255910.4049/jimmunol.1201018 – reference: RiveraLBBergersGIntertwined regulation of angiogenesis and immunity by myeloid cellsTrends Immunol.2015362402491:CAS:528:DC%2BC2MXjs1SjtLk%3D25770923439378710.1016/j.it.2015.02.005 – reference: FleetJCBurchamGNCalvertRDElzeyBDRatliffTL1α, 25 Dihydroxyvitamin D (1,25(OH)2D) inhibits the T cell suppressive function of myeloid derived suppressor cells (MDSC)J. Steroid Biochem. Mol. Biol.20201981055571:CAS:528:DC%2BC1MXitlSqur7J3178315010.1016/j.jsbmb.2019.105557 – reference: RuiKCurdlan blocks the immune suppression by myeloid-derived suppressor cells and reduces tumor burdenImmunol. Res.2016649319391:CAS:528:DC%2BC28XitlOqtLw%3D2683291710.1007/s12026-016-8789-7 – reference: ErikssonEWentheJIrenaeusSLoskogAUllenhagGGemcitabine reduces MDSCs, tregs and TGFβ-1 while restoring the teff/treg ratio in patients with pancreatic cancerJ. Transl. Med.20161428228227687804504143810.1186/s12967-016-1037-z1:CAS:528:DC%2BC1cXmsFSk – reference: PowellDRHuttenlocherANeutrophils in the tumor microenvironmentTrends Immunol.20163741521:CAS:528:DC%2BC2MXhvFGmtb7P2670039710.1016/j.it.2015.11.008 – reference: NefedovaYRegulation of dendritic cell differentiation and antitumor immune response in cancer by pharmacologic-selective inhibition of the janus-activated kinase 2/signal transducers and activators of transcription 3 pathwayCancer Res.200565952595351:CAS:528:DC%2BD2MXhtFWmu7rL16230418135136210.1158/0008-5472.CAN-05-0529 – reference: SotaJSafety profile of the interleukin-1 inhibitors anakinra and canakinumab in real-life clinical practice: a nationwide multicenter retrospective observational studyClin. Rheumatol.201837223322402977093010.1007/s10067-018-4119-x – reference: Gonzalez-JuncaAAutocrine TGFβ is a survival factor for monocytes and drives immunosuppressive lineage commitmentCancer Immunol. Res.201973063201:CAS:528:DC%2BB3cXhtlamsbrL3053809110.1158/2326-6066.CIR-18-0310 – reference: de CoañaYPIpilimumab treatment results in an early decrease in the frequency of circulating granulocytic myeloid-derived suppressor cells as well as their arginase1 productionCancer Immunol. Res.2013115810.1158/2326-6066.CIR-13-00161:CAS:528:DC%2BC2cXmtFSjtro%3D – reference: RotellaDPPhosphodiesterase 5 inhibitors: current status and potential applicationsNat. Rev. Drug Discov.200216746821:CAS:528:DC%2BD38Xmslamt78%3D1220914810.1038/nrd893 – reference: ShirotaYShirotaHKlinmanDMIntratumoral injection of CpG oligonucleotides induces the differentiation and reduces the immunosuppressive activity of myeloid-derived suppressor cellsJ. Immunol.2012188159215991:CAS:528:DC%2BC38Xhs1KhtL4%3D2223170010.4049/jimmunol.1101304 – reference: GutschalkCMHerold-MendeCCFusenigNEMuellerMMGranulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor promote malignant growth of cells from head and neck squamous cell carcinomas in vivoCancer Res.20066680261:CAS:528:DC%2BD28XotFWqt7s%3D1691217810.1158/0008-5472.CAN-06-0158 – reference: Al-KhamiAAExogenous lipid uptake induces metabolic and functional reprogramming of tumor-associated myeloid-derived suppressor cellsOncoimmunology20176e1344804e134480429123954566506910.1080/2162402X.2017.1344804 – reference: KhanANHQuantification of early-stage myeloid-derived suppressor cells in cancer requires excluding basophilsCancer Immunol. Res.2020881982832238380726980710.1158/2326-6066.CIR-19-0556 – reference: NagarajSAltered recognition of antigen is a mechanism of CD8+ T cell tolerance in cancerNat. Med.2007138288351:CAS:528:DC%2BD2sXnsFWmt7w%3D17603493213560710.1038/nm1609 – reference: BayikDMyeloid-derived suppressor cell subsets drive glioblastoma growth in a sex-specific mannerCancer Discov.20201012101:CAS:528:DC%2BB3cXit1ehsLbP32300059741566010.1158/2159-8290.CD-19-1355 – reference: WangZTillBGaoQChemotherapeutic agent-mediated elimination of myeloid-derived suppressor cellsOncoimmunology20176e133180728811975554386310.1080/2162402X.2017.1331807 – reference: ChiuDK-CHypoxia induces myeloid-derived suppressor cell recruitment to hepatocellular carcinoma through chemokine (C-C motif) ligand 26Hepatology2016647978131:CAS:528:DC%2BC28XhtlOnu7fP2722856710.1002/hep.28655 – reference: MosesKBrandauSHuman neutrophils: their role in cancer and relation to myeloid-derived suppressor cellsSemin. Immunol.2016281871961:CAS:528:DC%2BC28XltVaqurc%3D2706717910.1016/j.smim.2016.03.018 – reference: HorikawaNAnti-VEGF therapy resistance in ovarian cancer is caused by GM-CSF-induced myeloid-derived suppressor cell recruitmentBr. J. Cancer20201227787881:CAS:528:DC%2BB3cXhtVOru7s%3D31932754707825810.1038/s41416-019-0725-x – reference: NiXHuGCaiXThe success and the challenge of all-trans retinoic acid in the treatment of cancerCrit. Rev. Food Sci. Nutr.201959S71S801:CAS:528:DC%2BC1cXhvVGjtLvN3027780310.1080/10408398.2018.1509201 – reference: LiHCAIX-specific CAR-T cells and sunitinib show synergistic effects against metastatic renal cancer modelsJ. Immunother20204316281:CAS:528:DC%2BB3cXislaqsLw%3D3157402310.1097/CJI.0000000000000301 – reference: ZhuYCSF1/CSF1R blockade reprograms tumor-infiltrating macrophages and improves response to T-cell checkpoint immunotherapy in pancreatic cancer modelsCancer Res.201474505750691:CAS:528:DC%2BC2cXhsFChtbjO25082815418295010.1158/0008-5472.CAN-13-3723 – reference: PyonteckSMCSF-1R inhibition alters macrophage polarization and blocks glioma progressionNat. Med.201319126412721:CAS:528:DC%2BC3sXhsV2jsr3N24056773384072410.1038/nm.3337 – reference: Cassetta, L. et al. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. J. Immunother. Cancerhttps://doi.org/10.1136/jitc-2020-001223 (2020). – reference: ZoglmeierCCpG blocks immunosuppression by myeloid-derived suppressor cells in tumor-bearing miceClin. Cancer Res.201117176517751:CAS:528:DC%2BC3MXktVOis70%3D2123340010.1158/1078-0432.CCR-10-2672 – reference: CorzoCAMechanism regulating reactive oxygen species in tumor-induced myeloid-derived suppressor cellsJ. Immunol.2009182569357011:CAS:528:DC%2BD1MXkslKhs7g%3D1938081610.4049/jimmunol.0900092 – reference: Le MercierIVISTA regulates the development of protective antitumor immunityCancer Res.201474193319442469199410.1158/0008-5472.CAN-13-15061:CAS:528:DC%2BC2cXlt1eit7k%3D – reference: YangYLiCLiuTDaiXBazhinAVMyeloid-derived suppressor cells in tumors: from mechanisms to antigen specificity and microenvironmental regulationFront Immunol.20201113711:CAS:528:DC%2BB3cXitlSis7vI32793192738765010.3389/fimmu.2020.01371 – reference: ArrietaORandomized phase II trial of All-trans-retinoic acid with chemotherapy based on paclitaxel and cisplatin as first-line treatment in patients with advanced non-small-cell lung cancerJ. Clin. Oncol.201028346334711:CAS:528:DC%2BC3cXhtVGis7fK2054798410.1200/JCO.2009.26.6452 – reference: GiordanoATommonaroGCurcumin and cancerNutrients20191123761:CAS:528:DC%2BB3cXptVSks78%3D683570710.3390/nu11102376 – reference: TokunagaRPrognostic effect of adenosine-related genetic variants in metastatic colorectal cancer treated with bevacizumab-based chemotherapyClin. Colorectal Cancer201918e8e193029387310.1016/j.clcc.2018.09.003 – reference: ZhangHFibrocytes represent a novel MDSC subset circulating in patients with metastatic cancerBlood2013122110511131:CAS:528:DC%2BC3sXhtlOjsLbK23757729374498710.1182/blood-2012-08-449413 – reference: SolitoSA human promyelocytic-like population is responsible for the immune suppression mediated by myeloid-derived suppressor cellsBlood2011118225422651:CAS:528:DC%2BC3MXhtFGisrfN21734236370964110.1182/blood-2010-12-325753 – reference: HoechstBMyeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptorHepatology2009507998071:CAS:528:DC%2BD1MXhtFKntL%2FI1955184410.1002/hep.23054 – reference: Ugolini, A. et al. Polymorphonuclear myeloid-derived suppressor cells limit antigen cross-presentation by dendritic cells in cancer. JCI Insighthttps://doi.org/10.1172/jci.insight.138581 (2020). – reference: MarvelDGabrilovichDIMyeloid-derived suppressor cells in the tumor microenvironment: expect the unexpectedJ. Clin. Invest.20151253356336426168215458823910.1172/JCI80005 – reference: GuhaPSTAT3 inhibition induces Bax-dependent apoptosis in liver tumor myeloid-derived suppressor cellsOncogene2019385335481:CAS:528:DC%2BC1cXhs1Wht77F3015867310.1038/s41388-018-0449-z – reference: NoelMSOrally administered CCR2 selective inhibitor CCX872-b clinical trial in pancreatic cancerJ. Clin. Oncol.20173527627610.1200/JCO.2017.35.4_suppl.276 – reference: SunLInhibiting myeloid-derived suppressor cell trafficking enhances T cell immunotherapyJCI Insight20194e126853648363710.1172/jci.insight.126853 – reference: ChowLQMPhase Ib trial of the toll-like receptor 8 agonist, motolimod (VTX-2337), combined with cetuximab in patients with recurrent or metastatic SCCHNClin. Cancer Res.20172324421:CAS:528:DC%2BC2sXnslyrs7Y%3D2781090410.1158/1078-0432.CCR-16-1934 – reference: JiangHElevated chronic inflammatory factors and myeloid-derived suppressor cells indicate poor prognosis in advanced melanoma patientsInt. J. Cancer2015136235223601:CAS:528:DC%2BC2cXhvFShu7%2FO2535309710.1002/ijc.29297 – reference: QinGMetformin blocks myeloid-derived suppressor cell accumulation through AMPK-DACH1-CXCL1 axisOncoimmunology20187e1442167e144216729900050599349610.1080/2162402X.2018.1442167 – reference: KarinNThe development and homing of myeloid-derived suppressor cells: from a two-stage model to a multistep narrativeFront. Immunol.2020115575861:CAS:528:DC%2BB3MXitVChurk%3D33193327764912210.3389/fimmu.2020.557586 – reference: BilusicMPhase I trial of HuMax-IL8 (BMS-986253), an anti-IL-8 monoclonal antibody, in patients with metastatic or unresectable solid tumorsJ. Immunother. Cancer2019724024031488216672908310.1186/s40425-019-0706-x – reference: NefedovaYMechanism of all-trans retinoic acid effect on tumor-associated myeloid-derived suppressor cellsCancer Res.20076711021110281:CAS:528:DC%2BD2sXhtlSlsLvO1800684810.1158/0008-5472.CAN-07-2593 – reference: SternbergCRandomized, double-blind, placebo-controlled phase III study of tasquinimod in men with metastatic castration-resistant prostate cancerJ. Clin. Oncol.201634263626431:CAS:528:DC%2BC28XitFWksrrE2729841410.1200/JCO.2016.66.9697 – reference: LappatEJCaweinMA study of the leukemoid response to transplantable A-280 tumor in miceCancer Res.1964243021:STN:280:DyaF2c%2FntlCitw%3D%3D14115699 – reference: Diaz-MonteroCMThe glutathione disulfide mimetic NOV-002 inhibits cyclophosphamide-induced hematopoietic and immune suppression by reducing oxidative stressFree Radic. Biol. Med.201252156015681:CAS:528:DC%2BC38XmtlWns7s%3D22343421334149410.1016/j.freeradbiomed.2012.02.007 – reference: MolonBChemokine nitration prevents intratumoral infiltration of antigen-specific T cellsJ. Exp. Med.2011208194919621:CAS:528:DC%2BC3MXht1KjsbnI21930770318205110.1084/jem.20101956 – reference: ShayanGPhase Ib study of immune biomarker modulation with neoadjuvant cetuximab and TLR8 stimulation in head and neck cancer to overcome suppressive myeloid signalsClin. Cancer Res.20182462721:CAS:528:DC%2BC1cXhvVWgtA%3D%3D2906164310.1158/1078-0432.CCR-17-0357 – reference: BonapaceLCessation of CCL2 inhibition accelerates breast cancer metastasis by promoting angiogenesisNature20145151301331:CAS:528:DC%2BC2cXhvVemtr3E2533787310.1038/nature13862 – reference: IsambertNFluorouracil and bevacizumab plus anakinra for patients with metastatic colorectal cancer refractory to standard therapies (IRAFU): a single-arm phase 2 studyOncoimmunology20187e1474319e147431930228942614058610.1080/2162402X.2018.1474319 – reference: RongYDoxorubicin resistant cancer cells activate myeloid-derived suppressor cells by releasing PGE2Sci. Rep.2016623824238241:CAS:528:DC%2BC28Xlt1Kktb4%3D27032536481712110.1038/srep23824 – reference: MarkowitzJPatients with pancreatic adenocarcinoma exhibit elevated levels of myeloid-derived suppressor cells upon progression of diseaseCancer Immunol. Immunother.2015641491591:CAS:528:DC%2BC2cXhslCisLfJ2530503510.1007/s00262-014-1618-8 – reference: LimagneEAccumulation of MDSC and Th17 cells in patients with metastatic colorectal cancer predicts the efficacy of a FOLFOX–bevacizumab drug treatment regimenCancer Res.20167652411:CAS:528:DC%2BC28XhsFWqsbzO2749670910.1158/0008-5472.CAN-15-3164 – reference: DuttaPSarkissyanMPaicoKWuYVadgamaJVMCP-1 is overexpressed in triple-negative breast cancers and drives cancer invasiveness and metastasisBreast Cancer Res. Treat.20181704774861:CAS:528:DC%2BC1cXmsVehtb8%3D29594759602252610.1007/s10549-018-4760-8 – reference: YanGA RIPK3-PGE2 circuit mediates myeloid-derived suppressor cell-potentiated colorectal carcinogenesisCancer Res.20187855861:CAS:528:DC%2BC1cXitlSju7nN3001267110.1158/0008-5472.CAN-17-3962 – reference: PakASMechanisms of immune suppression in patients with head and neck cancer: presence of CD34(+) cells which suppress immune functions within cancers that secrete granulocyte-macrophage colony-stimulating factorClin. Cancer Res.19951951:CAS:528:DyaK2MXlvVarsrs%3D9815891 – reference: HiramotoKMyeloid lineage-specific deletion of antioxidant system enhances tumor metastasisCancer Prev. Res.201478358441:CAS:528:DC%2BC2cXhtlSrtb3K10.1158/1940-6207.CAPR-14-0094 – reference: HartwigTThe TRAIL-induced cancer secretome promotes a tumor-supportive immune microenvironment via CCR2Mol. Cell201765730742.e7351:CAS:528:DC%2BC2sXjtVeqtbg%3D28212753531641510.1016/j.molcel.2017.01.021 – reference: KoJSDirect and differential suppression of myeloid-derived suppressor cell subsets by sunitinib is compartmentally constrainedCancer Res.201070352635361:CAS:528:DC%2BC3cXltlensrw%3D20406969342692410.1158/0008-5472.CAN-09-3278 – reference: EberstalSIntratumoral COX-2 inhibition enhances GM-CSF immunotherapy against established mouse GL261 brain tumorsInt. J. Cancer2014134274827531:CAS:528:DC%2BC3sXhvValtLbO2424364810.1002/ijc.28607 – reference: FiorucciSGastrointestinal safety of NO-aspirin (NCX-4016) in healthy human volunteers: a proof of concept endoscopic studyGastroenterology20031246006071:CAS:528:DC%2BD3sXisVKnsbY%3D1261289710.1053/gast.2003.50096 – reference: PilotTHeat shock and HSP70 regulate 5-FU-mediated caspase-1 activation in myeloid-derived suppressor cells and tumor growth in miceJ. Immunother. Cancer2020832385145722866610.1136/jitc-2019-000478 – reference: MielcarekMMartinPJTorok-StorbBSuppression of alloantigen-induced T-cell proliferation by CD14+ cells derived from granulocyte colony-stimulating factor-mobilized peripheral blood mononuclear cellsBlood199789162916341:CAS:528:DyaK2sXhtlGrtL4%3D905764510.1182/blood.V89.5.1629 – reference: YounosITumor- and organ-dependent infiltration by myeloid-derived suppressor cellsInt. Immunopharmacol.2011118168261:CAS:528:DC%2BC3MXntVyju78%3D2137615310.1016/j.intimp.2011.02.021 – reference: RicciutiBTargeting indoleamine-2,3-dioxygenase in cancer: scientific rationale and clinical evidencePharmacol. Ther.20191961051161:CAS:528:DC%2BC1cXisFSmtrzF3052188410.1016/j.pharmthera.2018.12.004 – reference: NoonanKAGhoshNRudrarajuLBuiMBorrelloITargeting immune suppression with PDE5 inhibition in end-stage multiple myelomaCancer Immunol. Res.2014272573124878583415291310.1158/2326-6066.CIR-13-0213 – reference: VegliaFPeregoMGabrilovichDMyeloid-derived suppressor cells coming of ageNat. Immunol.2018191081191:CAS:528:DC%2BC1cXmtVCktLc%3D29348500585415810.1038/s41590-017-0022-x – reference: VijayanDYoungATengMWLSmythMJTargeting immunosuppressive adenosine in cancerNat. Rev. Cancer2017177097241:CAS:528:DC%2BC2sXhslehs7rO2905914910.1038/nrc.2017.86 – reference: WynnTAChawlaAPollardJWMacrophage biology in development, homeostasis and diseaseNature20134964454551:CAS:528:DC%2BC3sXms1WlsLs%3D23619691372545810.1038/nature12034 – reference: ZitvogelLApetohLGhiringhelliFKroemerGImmunological aspects of cancer chemotherapyNat. Rev. Immunol.2008859731:CAS:528:DC%2BD2sXhsVKrsLnP1809744810.1038/nri2216 – reference: LiLMetformin-induced reduction of CD39 and CD73 blocks myeloid-derived suppressor cell activity in patients with ovarian cancerCancer Res.201878177917911:CAS:528:DC%2BC1cXms1aqtrs%3D29374065588258910.1158/0008-5472.CAN-17-2460 – reference: WangYGranulocytic myeloid-derived suppressor cells promote the stemness of colorectal cancer cells through exosomal S100A9Adv. Sci.20196190127819012781:CAS:528:DC%2BC1MXisVWqtL%2FK10.1002/advs.201901278 – reference: MohamedEThe unfolded protein response mediator PERK governs myeloid cell-driven immunosuppression in tumors through inhibition of STING signalingImmunity202052668682 e6671:CAS:528:DC%2BB3cXntFSqsrY%3D32294407720701910.1016/j.immuni.2020.03.004 – reference: AnderssonKEPDE5 inhibitors—pharmacology and clinical applications 20 years after sildenafil discoveryBr. J. Pharmacol.2018175255425651:CAS:528:DC%2BC1cXotlGhsL8%3D29667180600365210.1111/bph.14205 – reference: WaightJDMyeloid-derived suppressor cell development is regulated by a STAT/IRF-8 axisJ. Clin. Investig.2013123446444781:CAS:528:DC%2BC3sXhsF2rtbzK24091328378453510.1172/JCI68189 – reference: LuTTumor-infiltrating myeloid cells induce tumor cell resistance to cytotoxic T cells in miceJ. Clin. Investig.2011121401540291:CAS:528:DC%2BC3MXht12ht7nF21911941319545910.1172/JCI45862 – reference: JohnstonRJThe immunoreceptor TIGIT regulates antitumor and antiviral CD8+ T cell effector functionCancer Cell2014269239371:CAS:528:DC%2BC2cXhvF2gs7%2FJ2546580010.1016/j.ccell.2014.10.018 – reference: CondamineTGabrilovichDIMolecular mechanisms regulating myeloid-derived suppressor cell differentiation and functionTrends Immunol.20113219251:CAS:528:DC%2BC3MXkt1CmsA%3D%3D2106797410.1016/j.it.2010.10.002 – reference: YounosIHDaffernerAJGulenDBrittonHCTalmadgeJETumor regulation of myeloid-derived suppressor cell proliferation and traffickingInt. Immunopharmacol.2012132452561:CAS:528:DC%2BC38Xot12ntr4%3D2260947310.1016/j.intimp.2012.05.002 – reference: HolmgaardRBTumor-expressed IDO recruits and activates MDSCs in a treg-dependent mannerCell Rep.2015134124241:CAS:528:DC%2BC2MXhsFKqsbvL26411680501382510.1016/j.celrep.2015.08.077 – reference: ReilleyMJSTAT3 antisense oligonucleotide AZD9150 in a subset of patients with heavily pretreated lymphoma: results of a phase 1b trialJ. Immunother. Cancer2018611911930446007624024210.1186/s40425-018-0436-5 – reference: JianSLGlycolysis regulates the expansion of myeloid-derived suppressor cells in tumor-bearing hosts through prevention of ROS-mediated apoptosisCell Death Dis.201781:CAS:528:DC%2BC2sXns1Kisb0%3D28492541552071310.1038/cddis.2017.192 – reference: ParkerKHHMGB1 enhances immune suppression by facilitating the differentiation and suppressive activity of myeloid-derived suppressor cellsCancer Res.201474572357331:CAS:528:DC%2BC2cXhslCqu7bE25164013419991110.1158/0008-5472.CAN-13-2347 – reference: BlattnerCCCR5+ myeloid-derived suppressor cells are enriched and activated in melanoma lesionsCancer Res.2018781571:CAS:528:DC%2BC1cXhvVahsA%3D%3D2908929710.1158/0008-5472.CAN-17-0348 – reference: HouWSampathPRojasJJThorneSHOncolytic virus-mediated targeting of PGE2 in the tumor alters the immune status and sensitizes established and resistant tumors to immunotherapyCancer Cell2016301081191:CAS:528:DC%2BC28XhtFSit7nE27374223496233510.1016/j.ccell.2016.05.012 – reference: TakeuchiSChemotherapy-derived inflammatory responses accelerate the formation of immunosuppressive myeloid cells in the tissue microenvironment of human pancreatic cancerCancer Res.201575262926401:CAS:528:DC%2BC2MXhtV2is7%2FK2595264710.1158/0008-5472.CAN-14-2921 – reference: WeedDTTadalafil reduces myeloid-derived suppressor cells and regulatory T cells and promotes tumor immunity in patients with head and neck squamous cell carcinomaClin. Cancer Res.20152139481:CAS:528:DC%2BC2MXis12muw%3D%3D2532036110.1158/1078-0432.CCR-14-1711 – reference: PlattenMNollenEAARohrigUFFallarinoFOpitzCATryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyondNat. Rev. Drug Discov.2019183794011:CAS:528:DC%2BC1MXmt1ymurw%3D3076088810.1038/s41573-019-0016-5 – reference: GabrilovichDIOstrand-RosenbergSBronteVCoordinated regulation of myeloid cells by tumoursNat. Rev. Immunol.2012122532681:CAS:528:DC%2BC38XksVensrs%3D22437938358714810.1038/nri3175 – reference: GehadAENitric oxide-producing myeloid-derived suppressor cells inhibit vascular E-selectin expression in human squamous cell carcinomasJ. Invest. Dermatol.2012132264226511:CAS:528:DC%2BC38XovValsrk%3D22718118344904310.1038/jid.2012.190 – reference: WennerbergECD73 blockade promotes dendritic cell infiltration of irradiated tumors and tumor rejectionCancer Immunol. Res.202084654781:CAS:528:DC%2BB3cXit12qu7rK32047024712500110.1158/2326-6066.CIR-19-0449 – reference: PricemanSJTargeting distinct tumor-infiltrating myeloid cells by inhibiting CSF-1 receptor: combating tumor evasion of antiangiogenic therapyBlood2010115146114711:CAS:528:DC%2BC3cXjtVWru7k%3D20008303282676710.1182/blood-2009-08-237412 – reference: Haist, M., Stege, H., Grabbe, S. & Bros, M. The functional crosstalk between myeloid-derived suppressor cells and regulatory T cells within the immunosuppressive tumor microenvironment. Cancershttps://doi.org/10.3390/cancers13020210 (2021). – reference: NagarajSSchrumAGChoHICelisEGabrilovichDIMechanism of T cell tolerance induced by myeloid-derived suppressor cellsJ. Immunol.2010184310631161:CAS:528:DC%2BC3cXis1yitrs%3D2014236110.4049/jimmunol.0902661 – reference: HansonEMClementsVKSinhaPIlkovitchDOstrand-RosenbergSMyeloid-derived suppressor cells down-regulate L-selectin expression on CD4+ and CD8+ T cellsJ. Immunol.20091839379441:CAS:528:DC%2BD1MXotFWgtLc%3D1955353310.4049/jimmunol.0804253 – reference: KusmartsevSReversal of myeloid cell-mediated immunosuppression in patients with metastatic renal cell carcinomaClin. Cancer Res.20081482701:CAS:528:DC%2BD1cXhsV2it7jF1908804410.1158/1078-0432.CCR-08-0165 – reference: Condamine, T. et al. Lectin-type oxidized LDL receptor-1 distinguishes population of human polymorphonuclear myeloid-derived suppressor cells in cancer patients. Sci. Immunol.https://doi.org/10.1126/sciimmunol.aaf8943 (2016). – reference: BaumannTRegulatory myeloid cells paralyze T cells through cell–cell transfer of the metabolite methylglyoxalNat. Immunol.2020215555661:CAS:528:DC%2BB3cXot1arsrs%3D3232775610.1038/s41590-020-0666-9 – reference: DingZCMunnDHZhouGChemotherapy-induced myeloid suppressor cells and antitumor immunity: the Janus face of chemotherapy in immunomodulationOncoimmunology20143e95447125610747429242510.4161/21624011.2014.954471 – reference: Ostrand-RosenbergSSinhaPBeuryDWClementsVKCross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppressionSemin. Cancer Biol.2012222752811:CAS:528:DC%2BC38XosVKjtb8%3D22313874370194210.1016/j.semcancer.2012.01.011 – reference: FultangLMDSC targeting with Gemtuzumab ozogamicin restores T cell immunity and immunotherapy against cancersEBioMedicine20194723524631462392679655410.1016/j.ebiom.2019.08.025 – reference: ChibaYRegulation of myelopoiesis by proinflammatory cytokines in infectious diseasesCell. Mol. Life Sci.201875136313761:CAS:528:DC%2BC2sXhvFOnsrfK2921860110.1007/s00018-017-2724-5 – reference: MaoYInhibition of tumor-derived prostaglandin-E2 blocks the induction of myeloid-derived suppressor cells and recovers natural killer cell activityClin. Cancer Res.20142040961:CAS:528:DC%2BC2cXhtlSrur3E2490711310.1158/1078-0432.CCR-14-0635 – reference: OrillionAEntinostat neutralizes myeloid-derived suppressor cells and enhances the antitumor effect of PD-1 inhibition in murine models of lung and renal cell carcinomaClin. Cancer Res.201723518752011:CAS:528:DC%2BC2sXhsVCit7jM28698201572343810.1158/1078-0432.CCR-17-0741 – reference: ThéateIExtensive profiling of the expression of the indoleamine 2,3-dioxygenase 1 protein in normal and tumoral human tissuesCancer Immunol. Res.201531612527115110.1158/2326-6066.CIR-14-01371:CAS:528:DC%2BC2MXis1Knurs%3D – reference: LiGTianYZhuW-GThe roles of histone deacetylases and their inhibitors in cancer therapyFront. Cell Dev. Biol.2020857694657694633117804755218610.3389/fcell.2020.576946 – reference: MonteroAJJassemJCellular redox pathways as a therapeutic target in the treatment of cancerDrugs201171138513961:CAS:528:DC%2BC3MXht1GmtrfL2181250410.2165/11592590-000000000-00000 – reference: ObermajerNMuthuswamyROdunsiKEdwardsRPKalinskiPPGE(2)-induced CXCL12 production and CXCR4 expression controls the accumulation of human MDSCs in ovarian cancer environmentCancer Res.201171746374701:CAS:528:DC%2BC3MXhs1agtrrM22025564499302710.1158/0008-5472.CAN-11-2449 – reference: EscudierBA phase II multicentre, open-label, proof-of-concept study of tasquinimod in hepatocellular, ovarian, renal cell, and gastric cancersTarget Oncol.2017126556612879898610.1007/s11523-017-0525-2 – reference: SerafiniPPhosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell functionJ. Exp. Med-.2006203269127021:CAS:528:DC%2BD28Xht12htLfL17101732211816310.1084/jem.20061104 – reference: AlbeituniSHYeast-derived particulate β-glucan treatment subverts the suppression of myeloid-derived suppressor cells (MDSC) by inducing polymorphonuclear MDSC apoptosis and monocytic MDSC differentiation to APC in cancerJ. Immunol.2016196216721801:CAS:528:DC%2BC28XjvVyiu7o%3D2681022210.4049/jimmunol.1501853 – reference: ZhengYLong noncoding RNA Pvt1 regulates the immunosuppression activity of granulocytic myeloid-derived suppressor cells in tumor-bearing miceMol. Cancer201918616130925926644122910.1186/s12943-019-0978-2 – reference: LiWG-CSF is a key modulator of MDSC and could be a potential therapeutic target in colitis-associated colorectal cancersProtein Cell201671301401:CAS:528:DC%2BC28XhslSmsrg%3D26797765474238510.1007/s13238-015-0237-2 – reference: PrendergastGCIndoleamine 2,3-dioxygenase pathways of pathogenic inflammation and immune escape in cancerCancer Immunol. Immunother.2014637217351:CAS:528:DC%2BC2cXlvFWgtbY%3D24711084438469610.1007/s00262-014-1549-4 – reference: SchultzeJLMassESchlitzerAEmerging principles in myelopoiesis at homeostasis and during infection and inflammationImmunity2019502883011:CAS:528:DC%2BC1MXjtlGnsro%3D3078457710.1016/j.immuni.2019.01.019 – reference: GabitassRFAnnelsNEStockenDDPandhaHAMiddletonGWElevated myeloid-derived suppressor cells in pancreatic, esophageal and gastric cancer are an independent prognostic factor and are associated with significant elevation of the Th2 cytokine interleukin-13Cancer Immunol. Immunother.201160141914301:CAS:528:DC%2BC3MXht1SitLvL21644036317640610.1007/s00262-011-1028-0 – reference: SteeleCWCXCR2 inhibition profoundly suppresses metastases and augments immunotherapy in pancreatic ductal adenocarcinomaCancer Cell2016298328451:CAS:528:DC%2BC28Xpt1enurs%3D27265504491235410.1016/j.ccell.2016.04.014 – reference: De SantoCNitroaspirin corrects immune dysfunction in tumor-bearing hosts and promotes tumor eradication by cancer vaccinationProc. Natl Acad. Sci. USA2005102418541901575330255482310.1073/pnas.04097831021:CAS:528:DC%2BD2MXis12jtL8%3D – reference: MullerAJManfrediMGZakhariaYPrendergastGCInhibiting IDO pathways to treat cancer: lessons from the ECHO-301 trial and beyondSemin. Immunopathol.20194141481:CAS:528:DC%2BC1cXhs1yltrfI3020322710.1007/s00281-018-0702-0 – reference: LiJCD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-β-mTOR-HIF-1 signaling in patients with non-small cell lung cancerOncoImmunology20176e132001128680754548617910.1080/2162402X.2017.1320011 – reference: DraghiciuONijmanHWHoogeboomBNMeijerhofTDaemenTSunitinib depletes myeloid-derived suppressor cells and synergizes with a cancer vaccine to enhance antigen-specific immune responses and tumor eradicationOncoimmunology20154e989764e98976425949902440483410.4161/2162402X.2014.9897641:CAS:528:DC%2BC28XhtlSisrg%3D – reference: PiliRPhase II randomized, double-blind, placebo-controlled study of tasquinimod in men with minimally symptomatic metastatic castrate-resistant prostate cancerJ. Clin. Oncol.201129402240281:CAS:528:DC%2BC3MXhsFams7bK2193101910.1200/JCO.2011.35.6295 – reference: AllardBLonghiMSRobsonSCStaggJThe ectonucleotidases CD39 and CD73: novel checkpoint inhibitor targetsImmunol. Rev.20172761211441:CAS:528:DC%2BC2sXjs1eltL8%3D28258700533864710.1111/imr.12528 – reference: SalminenAKauppinenAKaarnirantaKAMPK activation inhibits the functions of myeloid-derived suppressor cells (MDSC): impact on cancer and agingJ. Mol. Med.201997104910641:CAS:528:DC%2BC1MXhtFKhtbfM3112975510.1007/s00109-019-01795-9 – volume: 203 start-page: 2691 year: 2006 ident: 670_CR260 publication-title: J. Exp. Med-. doi: 10.1084/jem.20061104 – volume: 41 start-page: 749 year: 2011 ident: 670_CR142 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201041069 – volume: 8 start-page: 14979 year: 2017 ident: 670_CR143 publication-title: Nat. Commun. doi: 10.1038/ncomms14979 – volume: 69 start-page: 1929 year: 2020 ident: 670_CR268 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-020-02588-7 – volume: 170 start-page: 477 year: 2018 ident: 670_CR186 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-018-4760-8 – volume: 6 start-page: e1320011 year: 2017 ident: 670_CR110 publication-title: OncoImmunology doi: 10.1080/2162402X.2017.1320011 – volume: 6 start-page: e1331807 year: 2017 ident: 670_CR324 publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1331807 – volume: 26 start-page: 923 year: 2014 ident: 670_CR90 publication-title: Cancer Cell doi: 10.1016/j.ccell.2014.10.018 – volume: 10 start-page: 172 year: 2019 ident: 670_CR8 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.00172 – volume: 28 start-page: 1988 year: 2017 ident: 670_CR204 publication-title: Ann. Oncol. doi: 10.1093/annonc/mdx190 – volume: 13 start-page: 433 year: 2014 ident: 670_CR287 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4280 – volume: 6 start-page: 29521 year: 2016 ident: 670_CR238 publication-title: Sci. Rep. doi: 10.1038/srep29521 – volume: 37 start-page: 711 year: 2019 ident: 670_CR315 publication-title: Investig. N. Drugs doi: 10.1007/s10637-018-0706-6 – volume: 66 start-page: 9299 year: 2006 ident: 670_CR29 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-1690 – volume: 17 start-page: 709 year: 2017 ident: 670_CR108 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc.2017.86 – volume: 7 start-page: e1469594 year: 2018 ident: 670_CR85 publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1469594 – volume: 67 start-page: 425 year: 2007 ident: 670_CR27 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-3037 – volume: 54 start-page: 875 year: 2021 ident: 670_CR81 publication-title: Immunity doi: 10.1016/j.immuni.2021.04.004 – volume: 41 start-page: 947 year: 2014 ident: 670_CR71 publication-title: Immunity doi: 10.1016/j.immuni.2014.10.020 – volume: 38 start-page: 533 year: 2019 ident: 670_CR210 publication-title: Oncogene doi: 10.1038/s41388-018-0449-z – volume: 211 start-page: 781 year: 2014 ident: 670_CR82 publication-title: J. Exp. Med. doi: 10.1084/jem.20131916 – volume: 182 start-page: 5693 year: 2009 ident: 670_CR102 publication-title: J. Immunol. doi: 10.4049/jimmunol.0900092 – volume: 14 start-page: 8270 year: 2008 ident: 670_CR212 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-0165 – volume: 71 start-page: 1385 year: 2011 ident: 670_CR281 publication-title: Drugs doi: 10.2165/11592590-000000000-00000 – volume: 124 start-page: 600 year: 2003 ident: 670_CR278 publication-title: Gastroenterology doi: 10.1053/gast.2003.50096 – volume: 122 start-page: 778 year: 2020 ident: 670_CR152 publication-title: Br. J. Cancer doi: 10.1038/s41416-019-0725-x – volume: 183 start-page: 937 year: 2009 ident: 670_CR111 publication-title: J. Immunol. doi: 10.4049/jimmunol.0804253 – volume: 31 start-page: 2172 year: 2017 ident: 670_CR339 publication-title: Leukemia doi: 10.1038/leu.2017.21 – volume: 24 start-page: 302 year: 1964 ident: 670_CR16 publication-title: Cancer Res. – volume: 6 start-page: 630 year: 2016 ident: 670_CR133 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-15-1157 – volume: 217 start-page: e20182005 year: 2020 ident: 670_CR67 publication-title: J. Exp. Med. doi: 10.1084/jem.20182005 – volume: 66 start-page: 8026 year: 2006 ident: 670_CR149 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-06-0158 – volume: 63 start-page: 847 year: 2014 ident: 670_CR254 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-014-1561-8 – volume: 7 start-page: 240 year: 2019 ident: 670_CR203 publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0706-x – volume: 14 start-page: 211 year: 2013 ident: 670_CR57 publication-title: Nat. Immunol. doi: 10.1038/ni.2526 – volume: 9 start-page: 2499 year: 2018 ident: 670_CR277 publication-title: Front. Immunol. doi: 10.3389/fimmu.2018.02499 – volume: 11 start-page: 2376 year: 2019 ident: 670_CR235 publication-title: Nutrients doi: 10.3390/nu11102376 – volume: 35 start-page: 4385 year: 2015 ident: 670_CR227 publication-title: Anticancer Res. – volume: 21 start-page: 39 year: 2015 ident: 670_CR263 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1711 – volume: 37 start-page: 733 year: 2018 ident: 670_CR334 publication-title: Cancer Metastasis Rev. doi: 10.1007/s10555-018-9728-y – volume: 6 start-page: 119 year: 2018 ident: 670_CR209 publication-title: J. Immunother. Cancer doi: 10.1186/s40425-018-0436-5 – volume: 14 start-page: 282 year: 2016 ident: 670_CR317 publication-title: J. Transl. Med. doi: 10.1186/s12967-016-1037-z – volume: 78 start-page: 1779 year: 2018 ident: 670_CR296 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-2460 – volume: 19 start-page: 695 year: 2018 ident: 670_CR303 publication-title: Cancer Biol. Ther. doi: 10.1080/15384047.2018.1450116 – volume: 74 start-page: 5723 year: 2014 ident: 670_CR43 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-2347 – volume: 3 start-page: 161 year: 2015 ident: 670_CR299 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-14-0137 – volume: 15 start-page: 96 year: 2015 ident: 670_CR163 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3893 – volume: 10 start-page: 4350 year: 2019 ident: 670_CR44 publication-title: J. Cancer doi: 10.7150/jca.35205 – volume: 6 start-page: e1326440 year: 2017 ident: 670_CR262 publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1326440 – volume: 181 start-page: 5791 year: 2008 ident: 670_CR139 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.8.5791 – volume: 200 start-page: 108 year: 2020 ident: 670_CR91 publication-title: Clin. Exp. Immunol. doi: 10.1111/cei.13407 – volume: 5 start-page: e17375 year: 2016 ident: 670_CR120 publication-title: eLife doi: 10.7554/eLife.17375 – volume: 71 start-page: 7463 year: 2011 ident: 670_CR244 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-11-2449 – volume: 9 start-page: 65 year: 2020 ident: 670_CR89 publication-title: Oncogenesis doi: 10.1038/s41389-020-00248-0 – volume: 10 start-page: 1210 year: 2020 ident: 670_CR144 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-1355 – volume: 98 start-page: 1055 year: 2018 ident: 670_CR150 publication-title: Physiol. Rev. doi: 10.1152/physrev.00012.2017 – volume: 19 start-page: 6891 year: 2013 ident: 670_CR172 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-13-1581 – volume: 15 start-page: 2148 year: 2009 ident: 670_CR328 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-08-1332 – volume: 114 start-page: 1117 year: 2017 ident: 670_CR247 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1612920114 – volume: 140 start-page: 235 year: 2009 ident: 670_CR233 publication-title: Otolaryngol. Head Neck Surg. doi: 10.1016/j.otohns.2008.11.011 – volume: 75 start-page: 1363 year: 2018 ident: 670_CR3 publication-title: Cell. Mol. Life Sci. doi: 10.1007/s00018-017-2724-5 – volume: 3 start-page: 1236 year: 2015 ident: 670_CR141 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-15-0036 – volume: 67 start-page: 1355 year: 2018 ident: 670_CR291 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-018-2177-1 – volume: 9 start-page: 162 year: 2009 ident: 670_CR134 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2506 – volume: 29 start-page: 4022 year: 2011 ident: 670_CR171 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2011.35.6295 – volume: 7 start-page: 1687 year: 2019 ident: 670_CR175 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0578 – volume: 121 start-page: 4015 year: 2011 ident: 670_CR103 publication-title: J. Clin. Investig. doi: 10.1172/JCI45862 – volume: 17 start-page: 651 year: 2016 ident: 670_CR192 publication-title: Lancet Oncol. doi: 10.1016/S1470-2045(16)00078-4 – volume: 26 start-page: 5593 year: 2008 ident: 670_CR280 publication-title: J. Clin. Oncol. doi: 10.1200/jco.2008.26.15_suppl.5593 – volume: 10 start-page: 3070 year: 2020 ident: 670_CR122 publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.03070 – volume: 132 start-page: 215 year: 2012 ident: 670_CR283 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-011-1889-0 – volume: 8 start-page: 465 year: 2020 ident: 670_CR312 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-19-0449 – volume: 68 start-page: 1949 year: 2019 ident: 670_CR230 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-019-02418-5 – volume: 10 start-page: 562 year: 2015 ident: 670_CR75 publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.12.039 – volume: 111 start-page: 5457 year: 2008 ident: 670_CR49 publication-title: Blood doi: 10.1182/blood-2008-01-136895 – volume: 9 start-page: 1754 year: 2019 ident: 670_CR314 publication-title: Cancer Discov. doi: 10.1158/2159-8290.CD-19-0541 – volume: 115 start-page: 1461 year: 2010 ident: 670_CR155 publication-title: Blood doi: 10.1182/blood-2009-08-237412 – volume: 31 start-page: 760 year: 2013 ident: 670_CR191 publication-title: Investig. N. Drugs doi: 10.1007/s10637-012-9869-8 – volume: 80 start-page: 2874 year: 2020 ident: 670_CR248 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-2843 – volume: 207 start-page: 2439 year: 2010 ident: 670_CR58 publication-title: J. Exp. Med. doi: 10.1084/jem.20100587 – volume: 61 start-page: 195 year: 2009 ident: 670_CR217 publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2008.12.008 – volume: 31 start-page: 1833 year: 2010 ident: 670_CR272 publication-title: Carcinogenesis doi: 10.1093/carcin/bgq105 – ident: 670_CR76 doi: 10.1038/s41577-020-00490-y – volume: 50 start-page: 799 year: 2009 ident: 670_CR115 publication-title: Hepatology doi: 10.1002/hep.23054 – volume: 172 start-page: 825 year: 2018 ident: 670_CR289 publication-title: Cell doi: 10.1016/j.cell.2017.12.026 – volume: 6 start-page: e1338239 year: 2017 ident: 670_CR256 publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1338239 – volume: 16 start-page: 1812 year: 2010 ident: 670_CR275 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-09-3272 – volume: 11 start-page: 1263 year: 2016 ident: 670_CR159 publication-title: J. Thorac. Oncol. doi: 10.1016/j.jtho.2016.04.026 – volume: 63 start-page: 721 year: 2014 ident: 670_CR298 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-014-1549-4 – volume: 8 start-page: 819 year: 2020 ident: 670_CR80 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-19-0556 – volume: 23 start-page: 587 year: 2017 ident: 670_CR158 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-0387 – volume: 139 start-page: 119 year: 2020 ident: 670_CR302 publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2020.08.020 – volume: 60 start-page: 1419 year: 2011 ident: 670_CR12 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-011-1028-0 – volume: 63 start-page: 1073 year: 2014 ident: 670_CR109 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-014-1553-8 – volume: 52 start-page: 1560 year: 2012 ident: 670_CR282 publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2012.02.007 – volume: 28 start-page: 253 year: 2015 ident: 670_CR46 publication-title: Cancer Cell doi: 10.1016/j.ccell.2015.07.006 – volume: 117 start-page: 1129 year: 2020 ident: 670_CR188 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1910856117 – volume: 118 start-page: 3367 year: 2008 ident: 670_CR126 publication-title: J. Clin. Investig. doi: 10.1172/JCI35213 – volume: 7 start-page: 61 year: 2021 ident: 670_CR308 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2020.5572 – volume: 64 start-page: 149 year: 2015 ident: 670_CR10 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-014-1618-8 – volume: 32 start-page: 345 year: 2011 ident: 670_CR87 publication-title: Trends Immunol. doi: 10.1016/j.it.2011.05.003 – volume: 23 start-page: 2442 year: 2017 ident: 670_CR224 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-1934 – volume: 78 start-page: 157 year: 2018 ident: 670_CR53 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0348 – volume: 6 start-page: e1344804 year: 2017 ident: 670_CR284 publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1344804 – ident: 670_CR11 doi: 10.1172/jci.insight.122264 – volume: 8 year: 2017 ident: 670_CR290 publication-title: Cell Death Dis. doi: 10.1038/cddis.2017.192 – volume: 20 start-page: 4096 year: 2014 ident: 670_CR245 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-0635 – volume: 21 start-page: 555 year: 2020 ident: 670_CR97 publication-title: Nat. Immunol. doi: 10.1038/s41590-020-0666-9 – volume: 10 start-page: 2675 year: 2017 ident: 670_CR242 publication-title: OncoTargets Ther. doi: 10.2147/OTT.S130653 – volume: 2 start-page: 30 year: 2014 ident: 670_CR333 publication-title: J. Immunother. Cancer doi: 10.1186/s40425-014-0030-4 – volume: 12 start-page: 799 year: 2013 ident: 670_CR197 publication-title: Mol. Cancer Ther. doi: 10.1158/1535-7163.MCT-12-0529 – volume: 118 start-page: 2254 year: 2011 ident: 670_CR32 publication-title: Blood doi: 10.1182/blood-2010-12-325753 – volume: 75 start-page: 2045 year: 2018 ident: 670_CR181 publication-title: Cell Mol. Life Sci. doi: 10.1007/s00018-017-2720-9 – volume: 48 start-page: 1341 year: 2016 ident: 670_CR198 publication-title: Int. J. Oncol. doi: 10.3892/ijo.2016.3371 – volume: 30 start-page: 108 year: 2016 ident: 670_CR252 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.05.012 – volume: 175 start-page: 2554 year: 2018 ident: 670_CR258 publication-title: Br. J. Pharmacol. doi: 10.1111/bph.14205 – volume: 188 start-page: 1592 year: 2012 ident: 670_CR219 publication-title: J. Immunol. doi: 10.4049/jimmunol.1101304 – volume: 7 start-page: 1700 year: 2019 ident: 670_CR92 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0725 – ident: 670_CR135 doi: 10.1007/978-1-4899-8056-4_13 – volume: 20 start-page: 676 year: 2014 ident: 670_CR168 publication-title: Nat. Med. doi: 10.1038/nm.3560 – volume: 125 start-page: 3356 year: 2015 ident: 670_CR61 publication-title: J. Clin. Invest. doi: 10.1172/JCI80005 – volume: 17 start-page: 588 year: 2018 ident: 670_CR180 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2018.97 – volume: 129 start-page: 5537 year: 2019 ident: 670_CR66 publication-title: J. Clin. Investig. doi: 10.1172/JCI129502 – volume: 11 start-page: 1680 year: 2020 ident: 670_CR30 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.01680 – volume: 23 start-page: 2942 year: 2017 ident: 670_CR335 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-1784 – volume: 35 start-page: 276 year: 2017 ident: 670_CR193 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2017.35.4_suppl.276 – volume: 79 start-page: 346 year: 2019 ident: 670_CR41 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3026 – volume: 122 start-page: 4094 year: 2012 ident: 670_CR72 publication-title: J. Clin. Investig. doi: 10.1172/JCI64115 – volume: 153 start-page: 21 year: 2015 ident: 670_CR228 publication-title: Breast Cancer Res. Treat. doi: 10.1007/s10549-015-3508-y – volume: 22 start-page: 275 year: 2012 ident: 670_CR124 publication-title: Semin. Cancer Biol. doi: 10.1016/j.semcancer.2012.01.011 – volume: 125 start-page: 3365 year: 2015 ident: 670_CR33 publication-title: J. Clin. Invest. doi: 10.1172/JCI80006 – volume: 79 start-page: 5034 year: 2019 ident: 670_CR297 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-19-0880 – volume: 195 start-page: 5237 year: 2015 ident: 670_CR94 publication-title: J. Immunol. doi: 10.4049/jimmunol.1500959 – volume: 19 start-page: 57 year: 2013 ident: 670_CR318 publication-title: Nat. Med. doi: 10.1038/nm.2999 – volume: 6 start-page: 23824 year: 2016 ident: 670_CR255 publication-title: Sci. Rep. doi: 10.1038/srep23824 – volume: 12 start-page: 253 year: 2012 ident: 670_CR5 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri3175 – volume: 35 start-page: 587 year: 2012 ident: 670_CR148 publication-title: J. Immunother. doi: 10.1097/CJI.0b013e31826b20b6 – volume: 29 start-page: 832 year: 2016 ident: 670_CR51 publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.04.014 – volume: 25 start-page: 1462 year: 2019 ident: 670_CR309 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-2882 – volume: 6 start-page: 293 year: 2014 ident: 670_CR229 publication-title: J. Innate Immun. doi: 10.1159/000355126 – volume: 97 start-page: 1049 year: 2019 ident: 670_CR293 publication-title: J. Mol. Med. doi: 10.1007/s00109-019-01795-9 – volume: 27 start-page: 495 year: 2012 ident: 670_CR208 publication-title: Cancer Biother. Radiopharm. doi: 10.1089/cbr.2012.1219 – volume: 7 start-page: 255 year: 2019 ident: 670_CR205 publication-title: J. Immunother. Cancer doi: 10.1186/s40425-019-0734-6 – volume: 5 start-page: 205 year: 2012 ident: 670_CR239 publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-11-0247 – volume: 77 start-page: 3655 year: 2017 ident: 670_CR132 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-3199 – volume: 76 start-page: 5241 year: 2016 ident: 670_CR161 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-3164 – volume: 122 start-page: 1105 year: 2013 ident: 670_CR34 publication-title: Blood doi: 10.1182/blood-2012-08-449413 – volume: 196 start-page: 3470 year: 2016 ident: 670_CR271 publication-title: J. Immunol. doi: 10.4049/jimmunol.1501785 – volume: 52 start-page: 668 year: 2020 ident: 670_CR276 publication-title: Immunity doi: 10.1016/j.immuni.2020.03.004 – ident: 670_CR288 doi: 10.1158/2159-8290.CD-RW2018-010 – volume: 196 start-page: 105 year: 2019 ident: 670_CR306 publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2018.12.004 – volume: 15 start-page: 1395 year: 2014 ident: 670_CR182 publication-title: Cancer Biol. Ther. doi: 10.4161/cbt.29922 – volume: 10 start-page: 485 year: 2019 ident: 670_CR320 publication-title: Cell Death Dis. doi: 10.1038/s41419-019-1723-x – volume: 123 start-page: 4464 year: 2013 ident: 670_CR47 publication-title: J. Clin. Investig. doi: 10.1172/JCI68189 – volume: 28 start-page: 1947 year: 1979 ident: 670_CR20 publication-title: Biochem. Pharmacol. doi: 10.1016/0006-2952(79)90649-X – volume: 47 start-page: 235 year: 2019 ident: 670_CR338 publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.08.025 – volume: 76 start-page: 3156 year: 2016 ident: 670_CR131 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-15-2528 – volume: 60 start-page: 24 year: 2017 ident: 670_CR202 publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2017.08.004 – volume: 28 start-page: 3463 year: 2010 ident: 670_CR214 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2009.26.6452 – volume: 8 start-page: 618 year: 2008 ident: 670_CR127 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc2444 – volume: 21 start-page: 154 year: 2017 ident: 670_CR246 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.09.018 – volume: 69 start-page: 1553 year: 2009 ident: 670_CR96 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-08-1921 – volume: 8 start-page: e1564505 year: 2019 ident: 670_CR88 publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1564505 – volume: 8 start-page: 3649 year: 2017 ident: 670_CR146 publication-title: Oncotarget doi: 10.18632/oncotarget.12278 – volume: 59 start-page: S71 year: 2019 ident: 670_CR211 publication-title: Crit. Rev. Food Sci. Nutr. doi: 10.1080/10408398.2018.1509201 – volume: 7 start-page: 306 year: 2019 ident: 670_CR42 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0310 – volume: 11 start-page: 816 year: 2011 ident: 670_CR137 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2011.02.021 – volume: 9 start-page: 1777625 year: 2020 ident: 670_CR304 publication-title: Oncoimmunology doi: 10.1080/2162402X.2020.1777625 – volume: 232 start-page: 21 year: 2004 ident: 670_CR95 publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2005.01.004 – volume: 162 start-page: 5728 year: 1999 ident: 670_CR21 publication-title: J. Immunol. doi: 10.4049/jimmunol.162.10.5728 – volume: 23 start-page: 5358 year: 2017 ident: 670_CR201 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-16-2748 – volume: 1 start-page: 674 year: 2002 ident: 670_CR261 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd893 – volume: 50 start-page: 288 year: 2019 ident: 670_CR4 publication-title: Immunity doi: 10.1016/j.immuni.2019.01.019 – volume: 11 start-page: 856 year: 2011 ident: 670_CR330 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2011.01.030 – volume: 11 start-page: 890 year: 2011 ident: 670_CR236 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2011.01.007 – volume: 18 start-page: 806 year: 1990 ident: 670_CR24 publication-title: Exp. Hematol. – volume: 145 start-page: 569 year: 2019 ident: 670_CR167 publication-title: Int. J. Cancer doi: 10.1002/ijc.31982 – volume: 184 start-page: 3106 year: 2010 ident: 670_CR101 publication-title: J. Immunol. doi: 10.4049/jimmunol.0902661 – volume: 8 start-page: e1072672 year: 2018 ident: 670_CR170 publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1072672 – ident: 670_CR184 doi: 10.1158/1078-0432.CCR-20-1610 – volume: 168 start-page: 689 year: 2002 ident: 670_CR100 publication-title: J. Immunol. doi: 10.4049/jimmunol.168.2.689 – volume: 132 start-page: 2642 year: 2012 ident: 670_CR113 publication-title: J. Invest. Dermatol. doi: 10.1038/jid.2012.190 – volume: 39 start-page: 611 year: 2013 ident: 670_CR130 publication-title: Immunity doi: 10.1016/j.immuni.2013.08.025 – volume: 4 start-page: e1034918 year: 2015 ident: 670_CR35 publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1034918 – volume: 7 start-page: 130 year: 2016 ident: 670_CR151 publication-title: Protein Cell doi: 10.1007/s13238-015-0237-2 – volume: 11 start-page: 783 year: 2020 ident: 670_CR14 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00783 – volume: 276 start-page: 121 year: 2017 ident: 670_CR107 publication-title: Immunol. Rev. doi: 10.1111/imr.12528 – volume: 11 start-page: 1371 year: 2020 ident: 670_CR136 publication-title: Front Immunol. doi: 10.3389/fimmu.2020.01371 – volume: 27 start-page: 1019 year: 2021 ident: 670_CR270 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-20-3305 – volume: 70 start-page: 3526 year: 2010 ident: 670_CR329 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-3278 – volume: 109 start-page: 2491 year: 2012 ident: 670_CR37 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1113744109 – volume: 23 start-page: 5187 year: 2017 ident: 670_CR266 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0741 – volume: 5 start-page: e1200771 year: 2016 ident: 670_CR285 publication-title: Oncoimmunology doi: 10.1080/2162402X.2016.1200771 – volume: 55 start-page: 376 year: 2018 ident: 670_CR13 publication-title: Crit. Rev. Clin. Lab Sci. doi: 10.1080/10408363.2018.1477729 – volume: 71 start-page: 659 year: 2010 ident: 670_CR234 publication-title: Hum. Immunol. doi: 10.1016/j.humimm.2010.04.008 – volume: 17 start-page: 611 year: 2020 ident: 670_CR310 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/s41571-020-0382-2 – volume: 102 start-page: 4185 year: 2005 ident: 670_CR279 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.0409783102 – volume: 75 start-page: 2629 year: 2015 ident: 670_CR323 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-14-2921 – volume: 74 start-page: 436 year: 2014 ident: 670_CR195 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1265 – volume: 136 start-page: 2352 year: 2015 ident: 670_CR176 publication-title: Int. J. Cancer doi: 10.1002/ijc.29297 – volume: 70 start-page: 68 year: 2010 ident: 670_CR98 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-09-2587 – volume: 4 start-page: e989764 year: 2015 ident: 670_CR162 publication-title: Oncoimmunology doi: 10.4161/2162402X.2014.989764 – volume: 63 start-page: 282 year: 2018 ident: 670_CR216 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2018.08.007 – volume: 34 start-page: 2636 year: 2016 ident: 670_CR173 publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2016.66.9697 – volume: 134 start-page: 2748 year: 2014 ident: 670_CR249 publication-title: Int. J. Cancer doi: 10.1002/ijc.28607 – volume: 71 start-page: 2664 year: 2011 ident: 670_CR251 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-3055 – volume: 1 start-page: 780 year: 2012 ident: 670_CR218 publication-title: Oncoimmunology doi: 10.4161/onci.19731 – ident: 670_CR226 doi: 10.1158/0008-5472.CAN-20-1414 – volume: 11 start-page: 557586 year: 2020 ident: 670_CR39 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.557586 – volume: 196 start-page: 2167 year: 2016 ident: 670_CR240 publication-title: J. Immunol. doi: 10.4049/jimmunol.1501853 – volume: 6 start-page: 20250 year: 2016 ident: 670_CR292 publication-title: Sci. Rep. doi: 10.1038/srep20250 – volume: 5 start-page: 411 year: 2019 ident: 670_CR325 publication-title: JAMA Oncol. doi: 10.1001/jamaoncol.2018.4604 – volume: 43 start-page: 2930 year: 2013 ident: 670_CR112 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201343349 – volume: 19 start-page: 1264 year: 2013 ident: 670_CR154 publication-title: Nat. Med. doi: 10.1038/nm.3337 – volume: 579 start-page: 284 year: 2020 ident: 670_CR269 publication-title: Nature doi: 10.1038/s41586-020-2054-x – volume: 20 start-page: 739 year: 2020 ident: 670_CR313 publication-title: Nat. Rev. Immunol. doi: 10.1038/s41577-020-0376-4 – volume: 70 start-page: 3813 year: 2013 ident: 670_CR73 publication-title: Cell. Mol. life Sci. doi: 10.1007/s00018-013-1286-4 – ident: 670_CR125 doi: 10.1002/jcp.26075 – volume: 187 start-page: 6120 year: 2011 ident: 670_CR106 publication-title: J. Immunol. doi: 10.4049/jimmunol.1101225 – volume: 132 start-page: 101 year: 1984 ident: 670_CR18 publication-title: J. Immunol. doi: 10.4049/jimmunol.132.1.101 – volume: 11 start-page: 324 year: 2020 ident: 670_CR257 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.00324 – volume: 2 start-page: 50 year: 2014 ident: 670_CR54 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0129 – volume: 205 start-page: 2235 year: 2008 ident: 670_CR166 publication-title: J. Exp. Med. doi: 10.1084/jem.20080132 – volume: 2 start-page: 725 year: 2014 ident: 670_CR259 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0213 – volume: 6 start-page: 1901278 year: 2019 ident: 670_CR129 publication-title: Adv. Sci. doi: 10.1002/advs.201901278 – volume: 36 start-page: 639 year: 2017 ident: 670_CR128 publication-title: Oncogene doi: 10.1038/onc.2016.229 – volume: 4 start-page: eaaw9159 year: 2019 ident: 670_CR79 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaw9159 – volume: 198 start-page: 105557 year: 2020 ident: 670_CR232 publication-title: J. Steroid Biochem. Mol. Biol. doi: 10.1016/j.jsbmb.2019.105557 – volume: 172 start-page: 464 year: 2004 ident: 670_CR207 publication-title: J. Immunol. doi: 10.4049/jimmunol.172.1.464 – volume: 5 start-page: eaay6017 year: 2020 ident: 670_CR55 publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aay6017 – volume: 13 start-page: 245 year: 2012 ident: 670_CR9 publication-title: Int. Immunopharmacol. doi: 10.1016/j.intimp.2012.05.002 – volume: 8 start-page: 576946 year: 2020 ident: 670_CR265 publication-title: Front. Cell Dev. Biol. doi: 10.3389/fcell.2020.576946 – volume: 8 start-page: 59 year: 2008 ident: 670_CR316 publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2216 – volume: 48 start-page: 532 year: 2018 ident: 670_CR196 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201746976 – volume: 67 start-page: 11021 year: 2007 ident: 670_CR213 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-07-2593 – volume: 496 start-page: 445 year: 2013 ident: 670_CR153 publication-title: Nature doi: 10.1038/nature12034 – volume: 189 start-page: 5602 year: 2012 ident: 670_CR121 publication-title: J. Immunol. doi: 10.4049/jimmunol.1201018 – volume: 120 start-page: 109458 year: 2019 ident: 670_CR294 publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2019.109458 – volume: 117 start-page: 5381 year: 2011 ident: 670_CR68 publication-title: Blood doi: 10.1182/blood-2010-11-321752 – volume: 10 start-page: M110.002980 year: 2011 ident: 670_CR69 publication-title: Mol. Cell. Proteom. doi: 10.1074/mcp.M110.002980 – volume: 4 start-page: e1038687 year: 2015 ident: 670_CR241 publication-title: Oncoimmunology doi: 10.1080/2162402X.2015.1038687 – volume: 7 start-page: 835 year: 2014 ident: 670_CR273 publication-title: Cancer Prev. Res. doi: 10.1158/1940-6207.CAPR-14-0094 – volume: 7 start-page: e1442167 year: 2018 ident: 670_CR295 publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1442167 – volume: 208 start-page: 1949 year: 2011 ident: 670_CR105 publication-title: J. Exp. Med. doi: 10.1084/jem.20101956 – volume: 21 start-page: 5453 year: 2015 ident: 670_CR164 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-15-0676 – volume: 10 start-page: e0127028 year: 2015 ident: 670_CR56 publication-title: PLoS ONE doi: 10.1371/journal.pone.0127028 – volume: 515 start-page: 130 year: 2014 ident: 670_CR194 publication-title: Nature doi: 10.1038/nature13862 – volume: 64 start-page: 931 year: 2016 ident: 670_CR237 publication-title: Immunol. Res. doi: 10.1007/s12026-016-8789-7 – volume: 288 start-page: 19103 year: 2013 ident: 670_CR70 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.434530 – volume: 190 start-page: 3783 year: 2013 ident: 670_CR99 publication-title: J. Immunol. doi: 10.4049/jimmunol.1201449 – volume: 64 start-page: 6337 year: 2004 ident: 670_CR147 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-04-0757 – volume: 65 start-page: 730 year: 2017 ident: 670_CR336 publication-title: Mol. Cell doi: 10.1016/j.molcel.2017.01.021 – volume: 111 start-page: 924 year: 2020 ident: 670_CR190 publication-title: Cancer Sci. doi: 10.1111/cas.14306 – volume: 21 start-page: 3771 year: 2015 ident: 670_CR222 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-3145 – volume: 9 start-page: 28294 year: 2018 ident: 670_CR183 publication-title: Oncotarget doi: 10.18632/oncotarget.25511 – volume: 98 start-page: 913 year: 2015 ident: 670_CR45 publication-title: J. Leukoc. Biol. doi: 10.1189/jlb.4RI0515-204R – volume: 569 start-page: 73 year: 2019 ident: 670_CR286 publication-title: Nature doi: 10.1038/s41586-019-1118-2 – volume: 18 start-page: 61 year: 2019 ident: 670_CR63 publication-title: Mol. Cancer doi: 10.1186/s12943-019-0978-2 – volume: 134 start-page: 1077 year: 2014 ident: 670_CR140 publication-title: Int. J. Cancer doi: 10.1002/ijc.28449 – volume: 6 start-page: 36107 year: 2016 ident: 670_CR178 publication-title: Sci. Rep. doi: 10.1038/srep36107 – volume: 42 start-page: 1255 year: 1982 ident: 670_CR17 publication-title: Cancer Res. – volume: 111 start-page: 108 year: 1929 ident: 670_CR15 publication-title: Z. f. Klin. Med. – volume: 7 start-page: e1413520 year: 2018 ident: 670_CR119 publication-title: Oncoimmunology doi: 10.1080/2162402X.2017.1413520 – volume: 40 start-page: 2969 year: 2010 ident: 670_CR38 publication-title: Eur. J. Immunol. doi: 10.1002/eji.201040895 – volume: 32 start-page: 19 year: 2011 ident: 670_CR36 publication-title: Trends Immunol. doi: 10.1016/j.it.2010.10.002 – volume: 124 start-page: 2626 year: 2014 ident: 670_CR65 publication-title: J. Clin. Investig. doi: 10.1172/JCI74056 – volume: 4 start-page: e126853 year: 2019 ident: 670_CR199 publication-title: JCI Insight doi: 10.1172/jci.insight.126853 – volume: 24 start-page: 62 year: 2018 ident: 670_CR225 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-17-0357 – volume: 64 start-page: 797 year: 2016 ident: 670_CR52 publication-title: Hepatology doi: 10.1002/hep.28655 – volume: 41 start-page: 389 year: 2014 ident: 670_CR64 publication-title: Immunity doi: 10.1016/j.immuni.2014.08.015 – volume: 7 start-page: e1474319 year: 2018 ident: 670_CR321 publication-title: Oncoimmunology doi: 10.1080/2162402X.2018.1474319 – volume: 76 start-page: 5671 year: 2016 ident: 670_CR185 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-0144 – volume: 1 start-page: 95 year: 1995 ident: 670_CR22 publication-title: Clin. Cancer Res. – volume: 8 year: 2020 ident: 670_CR319 publication-title: J. Immunother. Cancer doi: 10.1136/jitc-2019-000478 – ident: 670_CR1 doi: 10.3322/caac.21660 – volume: 166 start-page: 678 year: 2001 ident: 670_CR25 publication-title: J. Immunol. doi: 10.4049/jimmunol.166.1.678 – volume: 43 start-page: 16 year: 2020 ident: 670_CR332 publication-title: J. Immunother doi: 10.1097/CJI.0000000000000301 – volume: 1 start-page: 158 year: 2013 ident: 670_CR84 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-13-0016 – volume: 111 start-page: 1350 year: 2014 ident: 670_CR327 publication-title: Br. J. Cancer doi: 10.1038/bjc.2014.437 – volume: 41 start-page: 41 year: 2019 ident: 670_CR307 publication-title: Semin. Immunopathol. doi: 10.1007/s00281-018-0702-0 – volume: 21 start-page: 30 year: 2015 ident: 670_CR264 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-1716 – volume: 43 start-page: 362 year: 1979 ident: 670_CR19 publication-title: Cell. Immunol. doi: 10.1016/0008-8749(79)90180-1 – volume: 62 start-page: 909 year: 2013 ident: 670_CR215 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-013-1396-8 – volume: 21 start-page: 4073 year: 2015 ident: 670_CR331 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-14-2742 – volume: 7 start-page: 1672 year: 2019 ident: 670_CR62 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-19-0008 – volume: 18 start-page: e8 year: 2019 ident: 670_CR311 publication-title: Clin. Colorectal Cancer doi: 10.1016/j.clcc.2018.09.003 – volume: 37 start-page: 208 year: 2016 ident: 670_CR138 publication-title: Trends Immunol. doi: 10.1016/j.it.2016.01.004 – volume: 89 start-page: 1629 year: 1997 ident: 670_CR23 publication-title: Blood doi: 10.1182/blood.V89.5.1629 – volume: 181 start-page: 4666 year: 2008 ident: 670_CR165 publication-title: J. Immunol. doi: 10.4049/jimmunol.181.7.4666 – volume: 37 start-page: 41 year: 2016 ident: 670_CR77 publication-title: Trends Immunol. doi: 10.1016/j.it.2015.11.008 – volume: 78 start-page: 5586 year: 2018 ident: 670_CR250 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-3962 – volume: 122 start-page: 293 year: 2015 ident: 670_CR326 publication-title: J. Neurooncol. doi: 10.1007/s11060-015-1720-6 – volume: 7 start-page: 223 year: 2014 ident: 670_CR169 publication-title: OncoTargets Ther. – volume: 140 start-page: 1370 year: 2017 ident: 670_CR177 publication-title: Int. J. Cancer doi: 10.1002/ijc.30538 – volume: 44 start-page: 303 year: 2016 ident: 670_CR59 publication-title: Immunity doi: 10.1016/j.immuni.2016.01.014 – ident: 670_CR123 doi: 10.3390/cancers13020210 – volume: 9 start-page: 241 year: 2019 ident: 670_CR231 publication-title: Front. Oncol. doi: 10.3389/fonc.2019.00241 – volume: 18 start-page: 379 year: 2019 ident: 670_CR305 publication-title: Nat. Rev. Drug Discov. doi: 10.1038/s41573-019-0016-5 – ident: 670_CR7 doi: 10.1136/jitc-2020-001223 – volume: 74 start-page: 1933 year: 2014 ident: 670_CR86 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-1506 – volume: 17 start-page: 1765 year: 2011 ident: 670_CR220 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-10-2672 – volume: 13 start-page: 828 year: 2007 ident: 670_CR104 publication-title: Nat. Med. doi: 10.1038/nm1609 – year: 2020 ident: 670_CR337 publication-title: FEBS J. doi: 10.1111/febs.15637 – ident: 670_CR78 doi: 10.1126/sciimmunol.aaf8943 – ident: 670_CR116 doi: 10.1172/jci.insight.138581 – volume: 53 start-page: 422 year: 2004 ident: 670_CR28 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-003-0459-7 – volume: 165 start-page: 779 year: 2000 ident: 670_CR26 publication-title: J. Immunol. doi: 10.4049/jimmunol.165.2.779 – volume: 26 start-page: 1420 year: 2020 ident: 670_CR200 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-19-2625 – volume: 10 year: 2010 ident: 670_CR253 publication-title: BMC Cancer doi: 10.1186/1471-2407-10-464 – volume: 7 year: 2016 ident: 670_CR31 publication-title: Nat. Commun. doi: 10.1038/ncomms12150 – volume: 222 start-page: 180 year: 2008 ident: 670_CR93 publication-title: Immunol. Rev. doi: 10.1111/j.1600-065X.2008.00608.x – volume: 475 start-page: 222 year: 2011 ident: 670_CR50 publication-title: Nature doi: 10.1038/nature10138 – volume: 24 start-page: 5948 year: 2018 ident: 670_CR221 publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-18-1277 – volume: 61 start-page: 827 year: 2012 ident: 670_CR117 publication-title: Cancer Immunol. Immunother. doi: 10.1007/s00262-011-1143-y – volume: 201 start-page: 278 year: 2018 ident: 670_CR118 publication-title: J. Immunol. doi: 10.4049/jimmunol.1701069 – volume: 74 start-page: 5057 year: 2014 ident: 670_CR156 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-13-3723 – volume: 40 start-page: 22 year: 2010 ident: 670_CR145 publication-title: Eur. J. Immunol. doi: 10.1002/eji.200939903 – volume: 4 start-page: e130748 year: 2019 ident: 670_CR160 publication-title: JCI insight doi: 10.1172/jci.insight.130748 – volume: 5 start-page: 138 year: 2019 ident: 670_CR243 publication-title: Front. Nutr. doi: 10.3389/fnut.2018.00138 – volume: 13 start-page: 412 year: 2015 ident: 670_CR301 publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.08.077 – volume: 19 start-page: 108 year: 2018 ident: 670_CR6 publication-title: Nat. Immunol. doi: 10.1038/s41590-017-0022-x – volume: 13 start-page: 739 year: 2013 ident: 670_CR2 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc3581 – volume: 6 start-page: 1561 year: 2018 ident: 670_CR267 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-18-0070 – volume: 3 start-page: e954471 year: 2014 ident: 670_CR322 publication-title: Oncoimmunology doi: 10.4161/21624011.2014.954471 – volume: 12 start-page: 655 year: 2017 ident: 670_CR174 publication-title: Target Oncol. doi: 10.1007/s11523-017-0525-2 – volume: 36 start-page: 240 year: 2015 ident: 670_CR157 publication-title: Trends Immunol. doi: 10.1016/j.it.2015.02.005 – volume: 8 start-page: 1736 year: 2017 ident: 670_CR187 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01566-5 – volume: 37 start-page: 1234 year: 2014 ident: 670_CR223 publication-title: Arch. Pharmacal. Res. doi: 10.1007/s12272-014-0379-4 – volume: 65 start-page: 9525 year: 2005 ident: 670_CR206 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-0529 – volume: 8 start-page: 2075 year: 2014 ident: 670_CR274 publication-title: Drug Des. Dev. Ther. – volume: 11 start-page: 531491 year: 2020 ident: 670_CR300 publication-title: Front. Immunol. doi: 10.3389/fimmu.2020.531491 – volume: 16 start-page: 183 year: 2009 ident: 670_CR60 publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.06.017 – volume: 28 start-page: 187 year: 2016 ident: 670_CR74 publication-title: Semin. Immunol. doi: 10.1016/j.smim.2016.03.018 – volume: 182 start-page: 240 year: 2009 ident: 670_CR114 publication-title: J. Immunol. doi: 10.4049/jimmunol.182.1.240 – volume: 37 start-page: 2233 year: 2018 ident: 670_CR179 publication-title: Clin. Rheumatol. doi: 10.1007/s10067-018-4119-x – volume: 9 start-page: 20 year: 2021 ident: 670_CR48 publication-title: Cancer Immunol. Res. doi: 10.1158/2326-6066.CIR-20-0389 – volume: 77 start-page: 1599 year: 2017 ident: 670_CR189 publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-16-1755 – volume: 111 start-page: 219 year: 2008 ident: 670_CR40 publication-title: Blood doi: 10.1182/blood-2007-04-086835 – volume: 19 start-page: 796 year: 2017 ident: 670_CR83 publication-title: Neuro-Oncology |
SSID | ssj0001637754 ssib046561479 ssib044760960 ssib048695610 |
Score | 2.6376078 |
SecondaryResourceType | review_article |
Snippet | Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive expansion... Abstract Myeloid-derived suppressor cells (MDSCs) are a heterogenic population of immature myeloid cells with immunosuppressive effects, which undergo massive... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 362 |
SubjectTerms | 631/67/327 631/67/580 Antitumor agents Cancer Cancer Research Cancer therapies Cell Biology Chemotherapy Clinical trials Humans Immune Tolerance - immunology Immunosuppressive Agents - therapeutic use Immunotherapy Internal Medicine Medicine Medicine & Public Health Myeloid cells Myeloid-Derived Suppressor Cells - immunology Myeloid-Derived Suppressor Cells - transplantation Neoplasms - immunology Neoplasms - therapy Oncology Pathology Radiation therapy Review Review Article Suppressor cells Therapeutic applications Tumor Escape - immunology Tumor Microenvironment - immunology |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXLggoDwCBRkJcYGoie3144QKoqqQyqlIe7MS24GV2mRJdpH675lxnCzLo8fEjuR4PtvfjOdByGvGF0E0CF5vQi4kq_O6DEDkvJbCgQagDcYOn3-RZ1_F5-VimQxuQ3KrnPbEuFH7zqGN_BigZbSUQGjer3_kWDUKb1dTCY3b5A6mLkNUq-V8nAqhJDL0-Vli2svdrZTQ0sz0IdpkJMeEcFiPrsAShqA4pjibguvjAfZ7dNVkoH9jdEtu9s6ymPL_Xzz1b3fLP-5c41F2ep_cSxyUnoygeUBuhfYhOTxpQf--uqZvaPQKjeb2Q1KfX4fLbuVzD1D9GTwdtuvoO9v1FI3-A60GusIgk25qgW60H0vcdz20t57-FuVFR99z-KilDiHXPyIXp58uPp7lqS5DDsKTm7x0DIsU1x64JZc1KFS-WYimqJxrnPBKh0IGqRrPKiAv2inMoAOapCmkMxXnj8lB27XhKaF4PDJmdJBNGZkhsCEeqrqUhatA0cpIOU2wdSlnOZbOuLTx7pxrOwrFglBsFIo1GXk7f7MeM3bc2PsDym3uidm244uu_2bT4rVCVYKx0NSNNqJUwWCS_MoXXje8lqHMyNEkdZu2gMHuAJuRV3MzLF4UTtWGbot9NGy5Jec8I09GkMwj4bBwgB_rjKg9-OwNdb-lXX2PCcJhqpXQMHvvJqDthvX_qXh28188J3cZYh-dJ9QROdj02_ACCNmmfhlX3S_lCyu5 priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VVkJcELR8BAoyEuICEYntdezjgqiqlZYLRerNSmwHVmqTKtlF6r9nxkm2LBQkrrEtOZ5n-4098wzwmotZkDWB15uQSsWrtMoDEjmvlXToAWhDucPLz-r0q1ycz873gE-5MDFoP0paxmV6ig573-NiS3GSHJ1fSi1JzR04IKl2xPbBfL74srg5WVGCZN3GDJlM6Fsa7-xCUaz_Nob5Z6Dkb7elcRM6eQD3R_bI5kN_H8JeaA7haI6_0l5eszcsxnPGg_JDuLscr82PoFpeh4t25VOPePsRPOs3VzEAtu0Yndz3rOzZijJF2qkEq7FueKe-7bC88eyXVC02BJBjo4Y5wk33CM5OPp19PE3HxxVStIBap7nj9NJw5ZEgClWhV-Trmayz0rnaSV_okKmgitrzEhmIdgXJ4KA7aDLlTCnEY9hv2iY8BUZ7HOdGB1Xnkd4hpRGhrHKVuRK9pQTyaaytG4XH6f2LCxsvwIW2g30s2sdG-1iTwNttm6tBduOftT-QCbc1STI7fmi7b3aEkJVFKTkPdVVrI_MiGFK6L33mdS0qFfIEjicA2HEe9xYXNKOVQhqdwKttMc5AMk7ZhHZDdTSum-jriwSeDHjZ9kQg-pHk6gSKHSTtdHW3pFl9jyrfONSF1Dh67ybM3XTr70Px7P-qP4d7nKYFRUQUx7C_7jbhBbKsdfVynFY_AQ3uISw priority: 102 providerName: Springer Nature |
Title | Myeloid-derived suppressor cells as immunosuppressive regulators and therapeutic targets in cancer |
URI | https://link.springer.com/article/10.1038/s41392-021-00670-9 https://www.ncbi.nlm.nih.gov/pubmed/34620838 https://www.proquest.com/docview/2579866099 https://www.proquest.com/docview/2580701333 https://pubmed.ncbi.nlm.nih.gov/PMC8497485 https://doaj.org/article/47a422efbf89417e92290ad0d8f3b6e1 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFH9s3WWXsa378NoFDcYum6ltKZJ8TENKCaSMrYPchC3JLNDaJU4Gvexv73uykyX7vOxigyWDeO8n6fek9wHwNuNDLyoCr8t9LGRWxmXqkcg5LYVFC0DnFDs8u5DnX8R0PpzvlPoin7AuPXAnuBOhCpFlviornYtU-ZwSlBcucbripfTB8ME9b8eYCqcrklNqtz5KJuH6pMXVmhwtM7SeKTYlzvd2opCw_3cs81dnyZ9uTMNGdPYYHvUMko26kT-Be75-CoejGq3n61v2jgWfznBYfgjl7NZfNQsXOwTaN-9Yu74Jnq_NktGRfcuKli0oRKTZtGA3tuwK1DdLbK8d24nRYp3nOP5UM0uAWT6Dy7PJ5fg87qsqxCh6uYpTm1GJ4dIhM-SyRHPIVUNRJYW1lRVOaZ9IL1XlsgKph7aK8t-gHZgn0uYF58_hoG5q_xIYbW6oDe1llQZeh1yG-6JMZWILNJMiSDcCNrbPOE6FL65MuPnm2nRKMagUE5Ri8gjeb_-56fJt_LX3Kelt25NyZYcPiCDTI8j8C0ERHG-0bvoJ3BpcyXItJfLnCN5sm3HqkXKK2jdr6qNxwUQjn0fwogPJdiQcYY_sVkeg9uCzN9T9lnrxNaT3RlEroVF6HzZA-zGsP4vi1f8QxRE8zGiGkIOEOoaD1XLtXyPpWpUDuK_magAPRqPp5ym-TycXHz_h17EcD8Lcw-fs--QOMNEtmQ |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLaqcoALAsoSKGAk4AJRE8fj2AeEylJNaaenQZqbldhOGakkQzIDmh_Ff-Q9ZxmGpbceM3YUj9_2PfsthDxnycjxApnXKhdywfIwjx0AOSsFN-ABSIW5w5MzMf7MP81Gsx3ys8-FwbDKXid6RW0rg2fkB8BaSgoBgObt4luIXaPwdrVvodGyxYlb_wCXrXlz_AHo-4Kxo4_T9-Ow6yoQwqfFMowNwxa7uQVklIgc3AFbjHgRZcYUhttUukg4kRaWZWB6pUmx_gv4QSoSRmV4_gka_xrY3Qh9vXQ2WG_OU4EOwfAssMrm5hKMS6EGtOKPgESC9eew_V2EHRPBT-3SeqJEHjRgXjAylIG7j8k0odoynb7DwL9g8d_RnX9c8XrLeXSL3OwgLz1sefQ22XHlHbJ3WIK7_3VNX1IfhOpP9_dIPlm7i2puQwuS8d1Z2qwWPlS3qineMTQ0a-gcc1qqfgSm0dqdYxuyqobx0tLfkspoG-oOL5XUIIfXd8n0Kgh2j-yWVekeEIrWmDElnShiD0QBfCUuy2MRmQz8uoDE_QZr05VIx04dF9pf1SdSt0TRQBTtiaJVQF4N7yzaAiGXzn6HdBtmYnFv_0NVn-tOV2ieZpwxV-SFVDxOncKa_JmNrCySXLg4IPs91XWncRq9kY-APBuGQVcgcbLSVSucI0HDx0mSBOR-yyTDShKQU4DjMiDpFvtsLXV7pJx_8fXIYatTLmH3XveMtlnW_7fi4eX_4im5Pp5OTvXp8dnJI3KDoRxg3Ea6T3aX9co9Biy4zJ94CaREX7HE_wJ1t2cA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLamTkK8IGBcwgYYCXiBqIntOs4DQhtbtTFWTWhIe7OS2BmVRtIlLag_jX_HOc6llMve9pjYkRyfi7_jcyPkJeMjK3JkXhNbX0iW-mloAcgZJUUGFoCKMXf4ZCIPv4iP56PzDfKzy4XBsMpOJzpFbcoM78iHwFqxkhIAzTBvwyJO98fvZ1c-dpBCT2vXTqNhkWO7_AHmW_3uaB9o_Yqx8cHZh0O_7TDgwzLk3A8zhu12UwMoicsUTAOTj0QeJFmWZ8JEygbSyig3LIFjWGUR1oIBmygOZBYneBcK2n8zQqNoQDb3DiannztmFiKSaB70zxJrbq5cYkLJuMcu7kJIcqxGh83wAuyfCFZrm-QTcDWs4bDBOFEGxj-m1vjx2kHq-g38CyT_Hev5h8PXnaPju-ROC4DpbsOx98iGLe6Trd0CjP9vS_qaupBUd9e_RdKTpb0sp8Y3ICffraH1YuYCd8uKosehpklNp5jhUnYjMI1W9gKbkpUVjBeG_pZiRpvAd_iooBnye_WAnN0EyR6SQVEW9jGheDYzFisr89DBUoBi3CZpKIMsASvPI2G3wTprC6Zj345L7Rz3XOmGKBqIoh1RdOyRN_03s6ZcyLWz95Bu_Uws9e1elNWFbjWHFlEiGLN5mqtYhJGNsUJ_YgKjcp5KG3pkp6O6bvVPrVfS4pEX_TBoDiROUthygXMU6PuQc-6RRw2T9CvhILUAzpVHojX2WVvq-kgx_eqqk8NWR0LB7r3tGG21rP9vxZPr_-I5uQXSrj8dTY63yW2GYoBBHNEOGcyrhX0KwHCePmtFkBJ9w0L_C-9bbJs |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Myeloid-derived+suppressor+cells+as+immunosuppressive+regulators+and+therapeutic+targets+in+cancer&rft.jtitle=Signal+transduction+and+targeted+therapy&rft.au=Kai+Li&rft.au=Houhui+Shi&rft.au=Benxia+Zhang&rft.au=Xuejin+Ou&rft.date=2021-10-07&rft.pub=Nature+Publishing+Group&rft.eissn=2059-3635&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=25&rft_id=info:doi/10.1038%2Fs41392-021-00670-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_47a422efbf89417e92290ad0d8f3b6e1 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-3635&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-3635&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-3635&client=summon |