CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus
CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid Brassica napus —an important oilseed crop. In this study, we exa...
Saved in:
Published in | Scientific reports Vol. 7; no. 1; pp. 7489 - 13 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.08.2017
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid
Brassica napus
—an important oilseed crop. In this study, we examined the mutation efficiency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specificity and heritability of these gene modifications in
B
.
napus
. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative off-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efficient tool for creating targeted genome modifications at multiple loci that are stable and inheritable in
B
.
napus
. These findings open many doors for biotechnological applications in oilseed crops. |
---|---|
AbstractList | CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid
Brassica napus
—an important oilseed crop. In this study, we examined the mutation efficiency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specificity and heritability of these gene modifications in
B
.
napus
. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative off-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efficient tool for creating targeted genome modifications at multiple loci that are stable and inheritable in
B
.
napus
. These findings open many doors for biotechnological applications in oilseed crops. CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid Brassica napus-an important oilseed crop. In this study, we examined the mutation efficiency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specificity and heritability of these gene modifications in B. napus. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative off-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efficient tool for creating targeted genome modifications at multiple loci that are stable and inheritable in B. napus. These findings open many doors for biotechnological applications in oilseed crops.CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid Brassica napus-an important oilseed crop. In this study, we examined the mutation efficiency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specificity and heritability of these gene modifications in B. napus. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative off-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efficient tool for creating targeted genome modifications at multiple loci that are stable and inheritable in B. napus. These findings open many doors for biotechnological applications in oilseed crops. Abstract CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid Brassica napus—an important oilseed crop. In this study, we examined the mutation efficiency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specificity and heritability of these gene modifications in B. napus. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative off-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efficient tool for creating targeted genome modifications at multiple loci that are stable and inheritable in B. napus. These findings open many doors for biotechnological applications in oilseed crops. CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical assessment of the efficiency of this method is not available for the allotetraploid Brassica napus—an important oilseed crop. In this study, we examined the mutation efficiency of the CRISPR/Cas9 method for 12 genes and also determined the pattern, specificity and heritability of these gene modifications in B. napus. The average mutation frequency for a single-gene targeted sgRNA in the T0 generation is 65.3%. For paralogous genes located in conserved regions that were targeted by sgRNAs, we observed mutation frequencies that ranged from 27.6% to 96.6%. Homozygotes were readily found in T0 plants. A total of 48.2% of the gene mutations, including homozygotes, bi-alleles, and heterozygotes were stably inherited as classic Mendelian alleles in the next generation (T1) without any new mutations or reversions. Moreover, no mutation was found in the putative off-target sites among the examined T0 plants. Collectively, our results demonstrate that CRISPR/Cas9 is an efficient tool for creating targeted genome modifications at multiple loci that are stable and inheritable in B. napus. These findings open many doors for biotechnological applications in oilseed crops. |
ArticleNumber | 7489 |
Author | Dai, Cheng Yang, Hong Tang, Ting Liu, Ke-De Wu, Jia-Jing |
Author_xml | – sequence: 1 givenname: Hong surname: Yang fullname: Yang, Hong organization: College of Plant Science & Technology, Huazhong Agricultural University – sequence: 2 givenname: Jia-Jing surname: Wu fullname: Wu, Jia-Jing organization: College of Plant Science & Technology, Huazhong Agricultural University – sequence: 3 givenname: Ting surname: Tang fullname: Tang, Ting organization: College of Plant Science & Technology, Huazhong Agricultural University – sequence: 4 givenname: Ke-De orcidid: 0000-0002-1395-2049 surname: Liu fullname: Liu, Ke-De email: kdliu@mail.hzau.edu.cn organization: National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University – sequence: 5 givenname: Cheng surname: Dai fullname: Dai, Cheng email: cdai@mail.hzau.edu.cn organization: College of Plant Science & Technology, Huazhong Agricultural University |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/28790350$$D View this record in MEDLINE/PubMed |
BookMark | eNp9Uk1v1DAQjVARLaV_gAOyxIVLqD2xE-eCVFZ8rFQBWuBs2d5J8CprL3aC1EP_e71Ni7aVwJJlz_i9p-eZeV4c-eCxKF4y-pbRSp4nzkQrS8qakjayYWX7pDgBykUJFcDRwf24OEtpQ_MS0HLWPiuOQTYtrQQ9Ka4Xq-X3b6vzhU5tucW10yOuSY8-bJHkcHS-J9h1zjr043BFbMQMSSTt0LqcJttp1KMLPhE95mAY3W5AMgTryJT27OybpH715YI4T95HnZKzmni9m9KL4mmnh4Rnd-dp8fPjhx-Lz-Xl10_LxcVlaWtajyWTVDIjWsqpNYYbiWCwbq2tAWzFOAXogDaNFh2sGVoLlUCOxlAQDa10dVosZ9110Bu1i26r45UK2qnbRIi90nF0dkAFa8PrjgutWcMrA6biUFPWNQYNAG2z1rtZazeZXDCbyxL18ED04Yt3v1Qf_ighuJRUZIE3dwIx_J4wjWrrksVh0B7DlBRroREtp1Rm6OtH0E2Yos-lyijR5F1LyKhXh47-WrnvcgbIGWBjSClip6ybm5YNukExqvYzpeaZUnmm1O1Mqf1v4RH1Xv2_pGompQz2PcYD2_9m3QA6095D |
CitedBy_id | crossref_primary_10_1186_s13007_019_0428_6 crossref_primary_10_3390_genes11101161 crossref_primary_10_3389_fgene_2021_600789 crossref_primary_10_1007_s11033_023_08660_6 crossref_primary_10_1007_s00122_022_04193_x crossref_primary_10_1007_s11816_019_00585_6 crossref_primary_10_1016_j_molp_2020_06_011 crossref_primary_10_3390_ijms222313076 crossref_primary_10_3389_fpls_2018_01533 crossref_primary_10_1016_j_ymthe_2020_09_028 crossref_primary_10_7554_eLife_41463 crossref_primary_10_1111_pbi_13394 crossref_primary_10_1088_1755_1315_482_1_012028 crossref_primary_10_1007_s13205_024_04010_w crossref_primary_10_1111_pbi_13317 crossref_primary_10_1038_s41438_020_00403_z crossref_primary_10_3389_fpls_2022_801456 crossref_primary_10_1186_s12863_020_00857_z crossref_primary_10_1002_aic_18031 crossref_primary_10_1007_s00438_019_01564_w crossref_primary_10_3390_ijms23084289 crossref_primary_10_1016_j_plaphy_2018_04_025 crossref_primary_10_3389_fpls_2018_00442 crossref_primary_10_14719_pst_2021_8_3_1127 crossref_primary_10_1007_s00425_024_04544_6 crossref_primary_10_1093_jxb_ery384 crossref_primary_10_1007_s42994_023_00133_5 crossref_primary_10_1038_s41438_019_0196_5 crossref_primary_10_1079_PAVSNNR202116028 crossref_primary_10_3389_fpls_2023_1042430 crossref_primary_10_3390_ijms232315009 crossref_primary_10_1007_s00425_021_03676_3 crossref_primary_10_1093_hr_uhad119 crossref_primary_10_1111_pbi_13281 crossref_primary_10_1016_j_jplph_2018_04_001 crossref_primary_10_1111_pbi_13444 crossref_primary_10_1080_21645698_2023_2219111 crossref_primary_10_1111_tpj_16586 crossref_primary_10_1139_cjps_2018_0189 crossref_primary_10_1002_lipd_12249 crossref_primary_10_3390_plants8120601 crossref_primary_10_1038_s41598_022_10410_w crossref_primary_10_3390_ijpb14040077 crossref_primary_10_1089_crispr_2021_0007 crossref_primary_10_3390_ijms23126841 crossref_primary_10_3389_fsufs_2024_1383302 crossref_primary_10_20289_zfdergi_1432614 crossref_primary_10_3390_genes13101681 crossref_primary_10_3389_fpls_2022_951660 crossref_primary_10_1111_jipb_12734 crossref_primary_10_3390_ijms20153719 crossref_primary_10_3390_ijms19092716 crossref_primary_10_5511_plantbiotechnology_21_0407a crossref_primary_10_1007_s00122_019_03341_0 crossref_primary_10_1093_jxb_erae484 crossref_primary_10_3390_ijms24119191 crossref_primary_10_1007_s10265_021_01275_7 crossref_primary_10_1016_j_ncrops_2024_100045 crossref_primary_10_3389_fmolb_2023_1266088 crossref_primary_10_1007_s00122_020_03607_y crossref_primary_10_3390_agronomy12040824 crossref_primary_10_1021_acssynbio_2c00252 crossref_primary_10_3390_agronomy11091776 crossref_primary_10_1007_s11240_019_01665_9 crossref_primary_10_1186_s13568_021_01242_4 crossref_primary_10_1038_s41438_018_0107_1 crossref_primary_10_3390_agronomy10071033 crossref_primary_10_1186_s13287_021_02510_7 crossref_primary_10_1111_pbi_13628 crossref_primary_10_1111_tpj_16846 crossref_primary_10_1007_s42994_022_00076_3 crossref_primary_10_1038_s41598_017_12836_z crossref_primary_10_1093_jxb_erab041 crossref_primary_10_3389_fpls_2018_00368 crossref_primary_10_1007_s12033_023_00788_x crossref_primary_10_3390_plants12020305 crossref_primary_10_53471_bahce_1481956 crossref_primary_10_1007_s11032_020_01174_0 crossref_primary_10_1016_j_plaphy_2018_03_027 crossref_primary_10_1111_jipb_12916 crossref_primary_10_1007_s10142_024_01325_y crossref_primary_10_1111_pbi_13636 crossref_primary_10_31590_ejosat_853850 crossref_primary_10_1021_acssuschemeng_1c05783 crossref_primary_10_3390_plants11020212 crossref_primary_10_3389_fpls_2022_843575 crossref_primary_10_3389_fpls_2021_667757 crossref_primary_10_1186_s13068_019_1567_8 crossref_primary_10_1007_s42729_023_01194_7 crossref_primary_10_3390_ijms23136963 crossref_primary_10_3390_plants11111453 crossref_primary_10_18699_VJ19_458 crossref_primary_10_1016_j_jplph_2020_153293 crossref_primary_10_3389_fpls_2022_1034215 crossref_primary_10_3389_fpls_2023_1152468 crossref_primary_10_1186_s12870_024_04918_8 crossref_primary_10_3389_fpls_2020_589517 crossref_primary_10_1007_s11816_019_00562_z crossref_primary_10_1007_s13205_023_03519_w crossref_primary_10_1007_s11627_021_10187_z crossref_primary_10_1016_j_hpj_2019_04_001 crossref_primary_10_1111_pbi_14063 crossref_primary_10_3390_ijms20133303 crossref_primary_10_1080_07060661_2020_1794541 crossref_primary_10_3390_genes11091064 crossref_primary_10_1007_s12038_020_00094_7 crossref_primary_10_1016_j_ocsci_2021_03_005 crossref_primary_10_3389_fpls_2018_01594 crossref_primary_10_1080_07352689_2020_1782568 crossref_primary_10_3389_fbioe_2022_973326 crossref_primary_10_1016_j_tplants_2019_09_006 crossref_primary_10_1007_s00122_018_3240_1 crossref_primary_10_3390_biology11020275 crossref_primary_10_3390_plants10071347 crossref_primary_10_1016_j_cj_2018_07_004 crossref_primary_10_1038_s41598_018_34884_9 crossref_primary_10_1080_01904167_2022_2027972 crossref_primary_10_3389_fpls_2021_767150 |
Cites_doi | 10.1007/s00299-013-1539-6 10.1016/j.jbiotec.2015.11.005 10.1038/nbt.3389 10.1016/j.molp.2015.04.007 10.1111/pbi.12671 10.1038/nbt.3026 10.1126/science.1253435 10.1038/nbt.3680 10.1007/s11032-007-9155-1 10.1155/2007/82612 10.1104/pp.15.00636 10.1104/pp.15.01696 10.1371/journal.pone.0144591 10.1016/j.tibtech.2013.04.004 10.1093/mp/ssu044 10.1038/srep27943 10.1016/j.ab.2013.02.028 10.1093/jxb/eri123 10.1016/j.jgg.2013.12.001 10.1186/s13059-015-0826-7 10.1038/nbt.2654 10.1016/j.molp.2015.10.004 10.1111/plb.12462 10.1104/pp.111.172981 10.1038/ncomms12617 10.1186/s12870-014-0327-y 10.1038/srep24765 10.1007/s00425-014-2180-5 10.3389/fpls.2016.00506 10.1093/pcp/pcu014 10.1105/tpc.113.115063 10.1111/jipb.12295 10.1038/cr.2013.123 10.1146/annurev.arplant.53.092701.180236 10.1038/srep10342 10.1126/science.1204094 10.1111/tpj.12079 10.1111/nure.12033 10.1080/07315724.1989.10720311 10.1126/science.1231143 10.1016/S1360-1385(03)00002-5 10.1007/s11103-014-0188-7 10.1038/ng.253 10.1111/pbi.12468 10.1111/pbi.12200 10.1007/s11248-016-9953-5 10.1126/science.1225829 10.1186/s12896-015-0131-2 10.1104/pp.16.00663 10.1073/pnas.1400822111 10.1534/genetics.111.131433 10.1186/s13059-015-0715-0 10.1073/pnas.93.10.5055 10.1038/nrg1185 10.1111/pbi.12634 10.1093/mp/sst119 10.1146/annurev.arplant.55.031903.141753 10.1101/gad.463608 10.1111/nph.13335 10.1016/j.molp.2015.05.009 10.1093/genetics/146.3.1087 10.1126/science.1246981 10.1017/S0016672301005158 10.1007/s00122-016-2846-4 |
ContentType | Journal Article |
Copyright | The Author(s) 2017 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2017 – notice: 2017. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88A 88E 88I 8FE 8FH 8FI 8FJ 8FK ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. LK8 M0S M1P M2P M7P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS Q9U 7X8 5PM DOA |
DOI | 10.1038/s41598-017-07871-9 |
DatabaseName | Springer Nature OA Free Journals CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Science Database (Alumni Edition) ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central Korea ProQuest Health & Medical Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Biological Sciences Health & Medical Collection (Alumni) PML(ProQuest Medical Library) Science Database ProQuest Biological Science ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central China ProQuest Biology Journals (Alumni Edition) ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest Central Basic ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef Publicly Available Content Database MEDLINE |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 4 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 5 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 2045-2322 |
EndPage | 13 |
ExternalDocumentID | oai_doaj_org_article_2db46f45aa1743b2b342601f7beb2209 PMC5548805 28790350 10_1038_s41598_017_07871_9 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | 0R~ 3V. 4.4 53G 5VS 7X7 88A 88E 88I 8FE 8FH 8FI 8FJ AAFWJ AAJSJ AAKDD ABDBF ABUWG ACGFS ACSMW ACUHS ADBBV ADRAZ AENEX AEUYN AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS AOIJS AZQEC BAWUL BBNVY BCNDV BENPR BHPHI BPHCQ BVXVI C6C CCPQU DIK DWQXO EBD EBLON EBS EJD ESX FYUFA GNUQQ GROUPED_DOAJ GX1 HCIFZ HH5 HMCUK HYE KQ8 LK8 M0L M1P M2P M48 M7P M~E NAO OK1 PIMPY PQQKQ PROAC PSQYO RNT RNTTT RPM SNYQT UKHRP AASML AAYXX AFPKN CITATION PHGZM PHGZT CGR CUY CVF ECM EIF NPM PJZUB PPXIY PQGLB 7XB 8FK AARCD K9. PKEHL PQEST PQUKI PRINS Q9U 7X8 5PM PUEGO |
ID | FETCH-LOGICAL-c606t-18081b59040cbb4b8e2be69cc622c314022f2077a5f2d1ecc235e4ebb025703a3 |
IEDL.DBID | 7X7 |
ISSN | 2045-2322 |
IngestDate | Wed Aug 27 01:20:42 EDT 2025 Thu Aug 21 18:11:53 EDT 2025 Thu Jul 10 19:28:12 EDT 2025 Wed Aug 13 08:04:31 EDT 2025 Mon Jul 21 05:33:53 EDT 2025 Tue Jul 01 01:33:29 EDT 2025 Thu Apr 24 23:00:15 EDT 2025 Fri Feb 21 02:39:14 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c606t-18081b59040cbb4b8e2be69cc622c314022f2077a5f2d1ecc235e4ebb025703a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1395-2049 |
OpenAccessLink | https://www.proquest.com/docview/1957195682?pq-origsite=%requestingapplication% |
PMID | 28790350 |
PQID | 1957195682 |
PQPubID | 2041939 |
PageCount | 13 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2db46f45aa1743b2b342601f7beb2209 pubmedcentral_primary_oai_pubmedcentral_nih_gov_5548805 proquest_miscellaneous_1927594008 proquest_journals_1957195682 pubmed_primary_28790350 crossref_citationtrail_10_1038_s41598_017_07871_9 crossref_primary_10_1038_s41598_017_07871_9 springer_journals_10_1038_s41598_017_07871_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-08-08 |
PublicationDateYYYYMMDD | 2017-08-08 |
PublicationDate_xml | – month: 08 year: 2017 text: 2017-08-08 day: 08 |
PublicationDecade | 2010 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationTitle | Scientific reports |
PublicationTitleAbbrev | Sci Rep |
PublicationTitleAlternate | Sci Rep |
PublicationYear | 2017 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Chalhoub (CR31) 2014; 345 Liang, Zhang, Chen, Gao (CR13) 2014; 41 Bortesi (CR9) 2016; 14 Miao (CR29) 2013; 23 Melzer (CR40) 2008; 40 Wang, Wei, Sabatini, Lander (CR43) 2013 Schouten, Jacobsen (CR6) 2007; 2007 Sauer (CR32) 2016; 170 Mao (CR55) 2016; 14 Zhang (CR30) 2014; 12 Zhang, Duan, Wu (CR53) 2016; 6 Du (CR14) 2016; 217 Bogdanove, Voytas (CR17) 2011; 333 Sugano (CR57) 2014; 55 Li (CR24) 2013; 31 Curtin (CR15) 2011; 156 Khatodia, Bhatotia, Passricha, Khurana, Tuteja (CR20) 2016; 7 Morineau (CR26) 2017; 15 Xie, Yang (CR49) 2013; 6 Sun (CR58) 2015; 5 Lowder (CR23) 2015; 169 CR3 Arntzen, Cghlan, Johnson, Peacock, Rodemeyer (CR7) 2003; 4 Ma (CR44) 2015; 8 Zhang (CR63) 2015; 206 Carroll (CR16) 2011; 188 CR48 Butler, Atkins, Voytas, Douches (CR51) 2015; 10 Zhang (CR61) 2016; 7 Pan (CR28) 2016; 6 Li, Zheng, Corke, Smith, Bevan (CR42) 2008; 22 Lin (CR2) 2013; 71 Xing (CR34) 2014; 14 Yan (CR56) 2015; 8 Dupont (CR1) 1989; 8 Yan, Zhou, Xue (CR50) 2015; 57 Xia (CR41) 2013; 25 Gao (CR64) 2013; 437 Lei (CR35) 2014; 7 Puchta (CR10) 2005; 56 Woo (CR60) 2015; 33 Liu (CR46) 2015; 8 Gao, Chen, Dai, Zhang, Zhao (CR62) 2016; 171 Wang (CR27) 2015; 16 Feng (CR25) 2014; 111 Mühlhausen, Lenser, Mummenhoff, Theißen (CR39) 2013; 73 Chen, Gao (CR8) 2014; 33 Lawrenson (CR33) 2015; 16 Puchta, Dujon, Hohn (CR11) 1996; 93 Doench (CR45) 2014; 32 Silverstone, Mak, Martinez, Sun (CR37) 1997; 146 Gaj, Gersbach, Barbas (CR18) 2013; 31 Roberts, Elliott, Gonzalez-Carranza (CR38) 2002; 53 Kim, Kim (CR59) 2016; 34 Sun, Gubler (CR36) 2004; 55 Smith (CR4) 2008; 22 Britt, May (CR12) 2003; 8 Hyun (CR54) 2015; 241 Samanta, Dey, Gayen (CR22) 2016; 25 Liu, Fan (CR19) 2014; 85 Jinek (CR47) 2012; 337 Mason, Snowdon (CR5) 2016; 18 Jacobs, LaFayette, Schmitz, Parrott (CR52) 2015; 15 Cong (CR21) 2013; 339 J Miao (7871_CR29) 2013; 23 TB Jacobs (7871_CR52) 2015; 15 SS Sugano (7871_CR57) 2014; 55 T Xia (7871_CR41) 2013; 25 JA Roberts (7871_CR38) 2002; 53 B Zhang (7871_CR63) 2015; 206 C Pan (7871_CR28) 2016; 6 HL Xing (7871_CR34) 2014; 14 JW Woo (7871_CR60) 2015; 33 Z Feng (7871_CR25) 2014; 111 L Liu (7871_CR19) 2014; 85 7871_CR48 X Sun (7871_CR58) 2015; 5 HJ Schouten (7871_CR6) 2007; 2007 7871_CR3 S Melzer (7871_CR40) 2008; 40 Y Hyun (7871_CR54) 2015; 241 L Yan (7871_CR56) 2015; 8 H Puchta (7871_CR10) 2005; 56 M Jinek (7871_CR47) 2012; 337 Y Mao (7871_CR55) 2016; 14 Y Li (7871_CR42) 2008; 22 T Wang (7871_CR43) 2013 AB Britt (7871_CR12) 2003; 8 X Gao (7871_CR64) 2013; 437 TP Sun (7871_CR36) 2004; 55 X Ma (7871_CR44) 2015; 8 B Chalhoub (7871_CR31) 2014; 345 AL Silverstone (7871_CR37) 1997; 146 M Yan (7871_CR50) 2015; 57 K Chen (7871_CR8) 2014; 33 X Gao (7871_CR62) 2016; 171 H Zhang (7871_CR30) 2014; 12 K Xie (7871_CR49) 2013; 6 Y Zhang (7871_CR61) 2016; 7 L Lin (7871_CR2) 2013; 71 T Gaj (7871_CR18) 2013; 31 T Lawrenson (7871_CR33) 2015; 16 S Khatodia (7871_CR20) 2016; 7 L Bortesi (7871_CR9) 2016; 14 D Carroll (7871_CR16) 2011; 188 AJ Bogdanove (7871_CR17) 2011; 333 A Mühlhausen (7871_CR39) 2013; 73 J Kim (7871_CR59) 2016; 34 C Morineau (7871_CR26) 2017; 15 AS Mason (7871_CR5) 2016; 18 H Du (7871_CR14) 2016; 217 Z Liang (7871_CR13) 2014; 41 SJ Curtin (7871_CR15) 2011; 156 W Liu (7871_CR46) 2015; 8 H Puchta (7871_CR11) 1996; 93 JF Li (7871_CR24) 2013; 31 K Zhang (7871_CR53) 2016; 6 NJ Sauer (7871_CR32) 2016; 170 CJ Arntzen (7871_CR7) 2003; 4 J Dupont (7871_CR1) 1989; 8 L Cong (7871_CR21) 2013; 339 MK Samanta (7871_CR22) 2016; 25 JSC Smith (7871_CR4) 2008; 22 ZP Wang (7871_CR27) 2015; 16 LG Lowder (7871_CR23) 2015; 169 JG Doench (7871_CR45) 2014; 32 Y Lei (7871_CR35) 2014; 7 NM Butler (7871_CR51) 2015; 10 29545646 - Sci Rep. 2018 Mar 15;8(1):4877 |
References_xml | – volume: 33 start-page: 575 year: 2014 end-page: 583 ident: CR8 article-title: Targeted genome modification technologies and their applications in crop improvements publication-title: Plant Cell Rep doi: 10.1007/s00299-013-1539-6 – volume: 217 start-page: 90 year: 2016 end-page: 97 ident: CR14 article-title: Efficient targeted mutagenesis in soybean by TALENs and CRISPR/Cas9 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.11.005 – volume: 33 start-page: 1162 year: 2015 end-page: 1164 ident: CR60 article-title: DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins publication-title: Nat Biotech doi: 10.1038/nbt.3389 – volume: 8 start-page: 1274 year: 2015 end-page: 1284 ident: CR44 article-title: A Robust CRISPR/Cas9 System for Convenient, High-Efficiency Multiplex Genome Editing in Monocot and Dicot Plants publication-title: Mol Plant doi: 10.1016/j.molp.2015.04.007 – volume: 15 start-page: 729 year: 2017 end-page: 739 ident: CR26 article-title: Selective gene dosage by CRISPR-Cas9 genome editing in hexaploid Camelina sativa publication-title: Plant Biotechnol J doi: 10.1111/pbi.12671 – volume: 32 start-page: 1262 year: 2014 end-page: 1267 ident: CR45 article-title: Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation publication-title: Nat Biotechnol doi: 10.1038/nbt.3026 – volume: 345 start-page: 950 year: 2014 end-page: 953 ident: CR31 article-title: Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome publication-title: Science doi: 10.1126/science.1253435 – volume: 34 start-page: 1014 year: 2016 end-page: 1015 ident: CR59 article-title: Bypassing GMO regulations with CRISPR gene editing publication-title: Nat Biotechnol doi: 10.1038/nbt.3680 – volume: 22 start-page: 51 year: 2008 end-page: 59 ident: CR4 article-title: Use of doubled haploids in maize breeding: implications for intellectual property protection and genetic diversity in hybrid crops publication-title: Molecular Breeding doi: 10.1007/s11032-007-9155-1 – volume: 2007 start-page: 82612 year: 2007 ident: CR6 article-title: Are mutations in genetically modified plants dangerous? publication-title: J Biomed Biotechnol doi: 10.1155/2007/82612 – volume: 169 start-page: 971 year: 2015 end-page: 985 ident: CR23 article-title: A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation publication-title: Plant Physiol doi: 10.1104/pp.15.00636 – volume: 170 start-page: 1917 year: 2016 end-page: 1928 ident: CR32 article-title: Oligonucleotide-Mediated Genome Editing Provides Precision and Function to Engineered Nucleases and Antibiotics in Plants publication-title: Plant Physiol doi: 10.1104/pp.15.01696 – volume: 10 start-page: e0144591 year: 2015 ident: CR51 article-title: Generation and Inheritance of Targeted Mutations in Potato (Solanum tuberosum L.) Using the CRISPR/Cas System publication-title: PLoS One doi: 10.1371/journal.pone.0144591 – volume: 31 start-page: 397 year: 2013 end-page: 405 ident: CR18 article-title: ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.04.004 – volume: 7 start-page: 1494 year: 2014 end-page: 1496 ident: CR35 article-title: CRISPR-P: a web tool for synthetic single-guide RNA design of CRISPR-system in plants publication-title: Mol Plant doi: 10.1093/mp/ssu044 – volume: 6 start-page: 27943 year: 2016 ident: CR53 article-title: Multigene disruption in undomesticated Bacillus subtilis ATCC 6051a using the CRISPR/Cas9 system publication-title: Sci Rep doi: 10.1038/srep27943 – volume: 437 start-page: 172 year: 2013 end-page: 177 ident: CR64 article-title: Modular construction of plasmids by parallel assembly of linear vector components publication-title: Anal Biochem doi: 10.1016/j.ab.2013.02.028 – volume: 56 start-page: 1 year: 2005 end-page: 14 ident: CR10 article-title: The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution publication-title: J Exp Bot doi: 10.1093/jxb/eri123 – volume: 41 start-page: 63 year: 2014 end-page: 68 ident: CR13 article-title: Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system publication-title: J Genet Genomics doi: 10.1016/j.jgg.2013.12.001 – volume: 16 start-page: 258 year: 2015 ident: CR33 article-title: Induction of targeted, heritable mutations in barley and Brassica oleracea using RNA-guided Cas9 nuclease publication-title: Genome Biology doi: 10.1186/s13059-015-0826-7 – volume: 31 start-page: 688 year: 2013 end-page: 691 ident: CR24 article-title: Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9 publication-title: Nat Biotechnol doi: 10.1038/nbt.2654 – volume: 8 start-page: 1820 year: 2015 end-page: 1823 ident: CR56 article-title: High-Efficiency Genome Editing in Arabidopsis Using YAO Promoter-Driven CRISPR/Cas9 System publication-title: Mol Plant doi: 10.1016/j.molp.2015.10.004 – volume: 18 start-page: 883 year: 2016 end-page: 892 ident: CR5 article-title: Oilseed rape: learning about ancient and recent polyploid evolution from a recent crop species publication-title: Plant Biology doi: 10.1111/plb.12462 – volume: 156 start-page: 466 year: 2011 end-page: 473 ident: CR15 article-title: Targeted mutagenesis of duplicated genes in soybean with zinc-finger nucleases publication-title: Plant Physiol doi: 10.1104/pp.111.172981 – volume: 7 start-page: 12617 year: 2016 ident: CR61 article-title: Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA publication-title: Nat Commun doi: 10.1038/ncomms12617 – volume: 14 start-page: 327 year: 2014 ident: CR34 article-title: A CRISPR/Cas9 toolkit for multiplex genome editing in plants publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0327-y – volume: 6 start-page: 24765 year: 2016 ident: CR28 article-title: CRISPR/Cas9-mediated efficient and heritable targeted mutagenesis in tomato plants in the first and later generations publication-title: Sci Rep doi: 10.1038/srep24765 – volume: 241 start-page: 271 year: 2015 end-page: 284 ident: CR54 article-title: Site-directed mutagenesis in Arabidopsis thaliana using dividing tissue-targeted RGEN of the CRISPR/Cas system to generate heritable null alleles publication-title: Planta doi: 10.1007/s00425-014-2180-5 – volume: 7 start-page: 506 year: 2016 ident: CR20 article-title: The CRISPR/Cas Genome-Editing Tool: Application in Improvement of Crops publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00506 – year: 2013 ident: CR43 article-title: Genetic Screens in Human Cells Using the CRISPR/Cas9 System publication-title: Science – volume: 55 start-page: 475 year: 2014 end-page: 481 ident: CR57 article-title: CRISPR/Cas9-mediated targeted mutagenesis in the liverwort Marchantia polymorpha L publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcu014 – volume: 25 start-page: 3347 year: 2013 end-page: 3359 ident: CR41 article-title: The ubiquitin receptor DA1 interacts with the E3 ubiquitin ligase DA2 to regulate seed and organ size in Arabidopsis publication-title: Plant Cell doi: 10.1105/tpc.113.115063 – volume: 57 start-page: 613 year: 2015 end-page: 617 ident: CR50 article-title: CRISPR Primer Designer: Design primers for knockout and chromosome imaging CRISPR-Cas system publication-title: J Integr Plant Biol doi: 10.1111/jipb.12295 – volume: 23 start-page: 1233 year: 2013 end-page: 1236 ident: CR29 article-title: Targeted mutagenesis in rice using CRISPR-Cas system publication-title: Cell Res doi: 10.1038/cr.2013.123 – volume: 53 start-page: 131 year: 2002 end-page: 158 ident: CR38 article-title: Abscission, dehiscence, and other cell separation processes publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.092701.180236 – volume: 5 start-page: 10342 year: 2015 ident: CR58 article-title: Targeted mutagenesis in soybean using the CRISPR-Cas9 system publication-title: Sci Rep doi: 10.1038/srep10342 – volume: 333 start-page: 1843 year: 2011 end-page: 1846 ident: CR17 article-title: TAL effectors: customizable proteins for DNA targeting publication-title: Science doi: 10.1126/science.1204094 – volume: 73 start-page: 824 year: 2013 end-page: 835 ident: CR39 article-title: Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes publication-title: The Plant Journal doi: 10.1111/tpj.12079 – volume: 71 start-page: 370 year: 2013 end-page: 385 ident: CR2 article-title: Evidence of health benefits of canola oil publication-title: Nutr Rev doi: 10.1111/nure.12033 – volume: 8 start-page: 360 year: 1989 end-page: 375 ident: CR1 article-title: Food safety and health effects of canola oil publication-title: J Am Coll Nutr doi: 10.1080/07315724.1989.10720311 – volume: 339 start-page: 819 year: 2013 end-page: 823 ident: CR21 article-title: Multiplex genome engineering using CRISPR/Cas systems publication-title: Science doi: 10.1126/science.1231143 – volume: 8 start-page: 90 year: 2003 end-page: 95 ident: CR12 article-title: Re-engineering plant gene targeting publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(03)00002-5 – volume: 85 start-page: 209 year: 2014 end-page: 218 ident: CR19 article-title: CRISPR-Cas system: a powerful tool for genome engineering publication-title: Plant Mol Biol doi: 10.1007/s11103-014-0188-7 – volume: 40 start-page: 1489 year: 2008 end-page: 1492 ident: CR40 article-title: Flowering-time genes modulate meristem determinacy and growth form in Arabidopsis thaliana publication-title: Nat Genet doi: 10.1038/ng.253 – volume: 14 start-page: 519 year: 2016 end-page: 532 ident: CR55 article-title: Development of germ-line-specific CRISPR-Cas9 systems to improve the production of heritable gene modifications in Arabidopsis publication-title: Plant Biotechnol J doi: 10.1111/pbi.12468 – volume: 12 start-page: 797 year: 2014 end-page: 807 ident: CR30 article-title: The CRISPR/Cas9 system produces specific and homozygous targeted gene editing in rice in one generation publication-title: Plant Biotechnol J doi: 10.1111/pbi.12200 – volume: 25 start-page: 561 year: 2016 end-page: 573 ident: CR22 article-title: CRISPR/Cas9: an advanced tool for editing plant genomes publication-title: Transgenic Research doi: 10.1007/s11248-016-9953-5 – volume: 146 start-page: 1087 year: 1997 end-page: 1099 ident: CR37 article-title: The new RGA locus encodes a negative regulator of gibberellin response in Arabidopsis thaliana publication-title: Genetics – volume: 337 start-page: 816 year: 2012 end-page: 821 ident: CR47 article-title: A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity publication-title: Science doi: 10.1126/science.1225829 – volume: 15 start-page: 16 year: 2015 ident: CR52 article-title: Targeted genome modifications in soybean with CRISPR/Cas9 publication-title: BMC Biotechnol doi: 10.1186/s12896-015-0131-2 – volume: 171 start-page: 1794 year: 2016 end-page: 1800 ident: CR62 article-title: An Effective Strategy for Reliably Isolating Heritable and Cas9-Free Arabidopsis Mutants Generated by CRISPR/Cas9-Mediated Genome Editing publication-title: Plant Physiol doi: 10.1104/pp.16.00663 – volume: 111 start-page: 4632 year: 2014 end-page: 4637 ident: CR25 article-title: Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1400822111 – ident: CR48 – volume: 188 start-page: 773 year: 2011 end-page: 782 ident: CR16 article-title: Genome engineering with zinc-finger nucleases publication-title: Genetics doi: 10.1534/genetics.111.131433 – ident: CR3 – volume: 16 start-page: 144 year: 2015 ident: CR27 article-title: Egg cell-specific promoter-controlled CRISPR/Cas9 efficiently generates homozygous mutants for multiple target genes in Arabidopsis in a single generation publication-title: Genome Biol doi: 10.1186/s13059-015-0715-0 – volume: 93 start-page: 5055 year: 1996 end-page: 5060 ident: CR11 article-title: Two different but related mechanisms are used in plants for the repair of genomic double-strand breaks by homologous recombination publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.10.5055 – volume: 4 start-page: 839 year: 2003 end-page: 843 ident: CR7 article-title: GM crops: science, politics and communication publication-title: Nat Rev Genet doi: 10.1038/nrg1185 – volume: 14 start-page: 2203 year: 2016 end-page: 2216 ident: CR9 article-title: Patterns of CRISPR/Cas9 activity in plants, animals and microbes publication-title: Plant Biotechnol J doi: 10.1111/pbi.12634 – volume: 6 start-page: 1975 year: 2013 end-page: 1983 ident: CR49 article-title: RNA-guided genome editing in plants using a CRISPR-Cas system publication-title: Mol Plant doi: 10.1093/mp/sst119 – volume: 55 start-page: 197 year: 2004 end-page: 223 ident: CR36 article-title: Molecular mechanism of gibberellin signaling in plants publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.55.031903.141753 – volume: 22 start-page: 1331 year: 2008 end-page: 1336 ident: CR42 article-title: Control of final seed and organ size by the DA1 gene family in Arabidopsis thaliana publication-title: Genes Dev doi: 10.1101/gad.463608 – volume: 206 start-page: 1513 year: 2015 end-page: 1526 ident: CR63 article-title: Disruption of a CAROTENOID CLEAVAGE DIOXYGENASE 4 gene converts flower colour from white to yellow in Brassica species publication-title: New Phytol doi: 10.1111/nph.13335 – volume: 8 start-page: 1431 year: 2015 end-page: 1433 ident: CR46 article-title: DSDecode: A Web-Based Tool for Decoding of Sequencing Chromatograms for Genotyping of Targeted Mutations publication-title: Mol Plant doi: 10.1016/j.molp.2015.05.009 – volume: 32 start-page: 1262 year: 2014 ident: 7871_CR45 publication-title: Nat Biotechnol doi: 10.1038/nbt.3026 – volume: 18 start-page: 883 year: 2016 ident: 7871_CR5 publication-title: Plant Biology doi: 10.1111/plb.12462 – volume: 8 start-page: 1820 year: 2015 ident: 7871_CR56 publication-title: Mol Plant doi: 10.1016/j.molp.2015.10.004 – volume: 31 start-page: 688 year: 2013 ident: 7871_CR24 publication-title: Nat Biotechnol doi: 10.1038/nbt.2654 – volume: 23 start-page: 1233 year: 2013 ident: 7871_CR29 publication-title: Cell Res doi: 10.1038/cr.2013.123 – volume: 33 start-page: 575 year: 2014 ident: 7871_CR8 publication-title: Plant Cell Rep doi: 10.1007/s00299-013-1539-6 – volume: 55 start-page: 197 year: 2004 ident: 7871_CR36 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.55.031903.141753 – volume: 6 start-page: 1975 year: 2013 ident: 7871_CR49 publication-title: Mol Plant doi: 10.1093/mp/sst119 – volume: 22 start-page: 51 year: 2008 ident: 7871_CR4 publication-title: Molecular Breeding doi: 10.1007/s11032-007-9155-1 – volume: 337 start-page: 816 year: 2012 ident: 7871_CR47 publication-title: Science doi: 10.1126/science.1225829 – volume: 146 start-page: 1087 year: 1997 ident: 7871_CR37 publication-title: Genetics doi: 10.1093/genetics/146.3.1087 – volume: 31 start-page: 397 year: 2013 ident: 7871_CR18 publication-title: Trends Biotechnol doi: 10.1016/j.tibtech.2013.04.004 – volume: 16 start-page: 258 year: 2015 ident: 7871_CR33 publication-title: Genome Biology doi: 10.1186/s13059-015-0826-7 – volume: 171 start-page: 1794 year: 2016 ident: 7871_CR62 publication-title: Plant Physiol doi: 10.1104/pp.16.00663 – volume: 8 start-page: 1274 year: 2015 ident: 7871_CR44 publication-title: Mol Plant doi: 10.1016/j.molp.2015.04.007 – volume: 333 start-page: 1843 year: 2011 ident: 7871_CR17 publication-title: Science doi: 10.1126/science.1204094 – volume: 7 start-page: 12617 year: 2016 ident: 7871_CR61 publication-title: Nat Commun doi: 10.1038/ncomms12617 – volume: 15 start-page: 729 year: 2017 ident: 7871_CR26 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12671 – volume: 33 start-page: 1162 year: 2015 ident: 7871_CR60 publication-title: Nat Biotech doi: 10.1038/nbt.3389 – volume: 8 start-page: 360 year: 1989 ident: 7871_CR1 publication-title: J Am Coll Nutr doi: 10.1080/07315724.1989.10720311 – volume: 8 start-page: 1431 year: 2015 ident: 7871_CR46 publication-title: Mol Plant doi: 10.1016/j.molp.2015.05.009 – volume: 55 start-page: 475 year: 2014 ident: 7871_CR57 publication-title: Plant Cell Physiol doi: 10.1093/pcp/pcu014 – volume: 22 start-page: 1331 year: 2008 ident: 7871_CR42 publication-title: Genes Dev doi: 10.1101/gad.463608 – volume: 7 start-page: 1494 year: 2014 ident: 7871_CR35 publication-title: Mol Plant doi: 10.1093/mp/ssu044 – volume: 14 start-page: 327 year: 2014 ident: 7871_CR34 publication-title: BMC Plant Biol doi: 10.1186/s12870-014-0327-y – volume: 4 start-page: 839 year: 2003 ident: 7871_CR7 publication-title: Nat Rev Genet doi: 10.1038/nrg1185 – volume: 206 start-page: 1513 year: 2015 ident: 7871_CR63 publication-title: New Phytol doi: 10.1111/nph.13335 – volume: 8 start-page: 90 year: 2003 ident: 7871_CR12 publication-title: Trends Plant Sci doi: 10.1016/S1360-1385(03)00002-5 – volume: 73 start-page: 824 year: 2013 ident: 7871_CR39 publication-title: The Plant Journal doi: 10.1111/tpj.12079 – volume: 14 start-page: 519 year: 2016 ident: 7871_CR55 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12468 – volume: 12 start-page: 797 year: 2014 ident: 7871_CR30 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12200 – volume: 40 start-page: 1489 year: 2008 ident: 7871_CR40 publication-title: Nat Genet doi: 10.1038/ng.253 – volume: 7 start-page: 506 year: 2016 ident: 7871_CR20 publication-title: Front Plant Sci doi: 10.3389/fpls.2016.00506 – volume: 14 start-page: 2203 year: 2016 ident: 7871_CR9 publication-title: Plant Biotechnol J doi: 10.1111/pbi.12634 – volume: 169 start-page: 971 year: 2015 ident: 7871_CR23 publication-title: Plant Physiol doi: 10.1104/pp.15.00636 – volume: 25 start-page: 3347 year: 2013 ident: 7871_CR41 publication-title: Plant Cell doi: 10.1105/tpc.113.115063 – year: 2013 ident: 7871_CR43 publication-title: Science doi: 10.1126/science.1246981 – volume: 217 start-page: 90 year: 2016 ident: 7871_CR14 publication-title: J Biotechnol doi: 10.1016/j.jbiotec.2015.11.005 – volume: 6 start-page: 24765 year: 2016 ident: 7871_CR28 publication-title: Sci Rep doi: 10.1038/srep24765 – ident: 7871_CR3 doi: 10.1017/S0016672301005158 – volume: 53 start-page: 131 year: 2002 ident: 7871_CR38 publication-title: Annu Rev Plant Biol doi: 10.1146/annurev.arplant.53.092701.180236 – volume: 345 start-page: 950 year: 2014 ident: 7871_CR31 publication-title: Science doi: 10.1126/science.1253435 – volume: 2007 start-page: 82612 year: 2007 ident: 7871_CR6 publication-title: J Biomed Biotechnol doi: 10.1155/2007/82612 – volume: 71 start-page: 370 year: 2013 ident: 7871_CR2 publication-title: Nutr Rev doi: 10.1111/nure.12033 – volume: 10 start-page: e0144591 year: 2015 ident: 7871_CR51 publication-title: PLoS One doi: 10.1371/journal.pone.0144591 – volume: 339 start-page: 819 year: 2013 ident: 7871_CR21 publication-title: Science doi: 10.1126/science.1231143 – volume: 437 start-page: 172 year: 2013 ident: 7871_CR64 publication-title: Anal Biochem doi: 10.1016/j.ab.2013.02.028 – volume: 6 start-page: 27943 year: 2016 ident: 7871_CR53 publication-title: Sci Rep doi: 10.1038/srep27943 – volume: 57 start-page: 613 year: 2015 ident: 7871_CR50 publication-title: J Integr Plant Biol doi: 10.1111/jipb.12295 – volume: 56 start-page: 1 year: 2005 ident: 7871_CR10 publication-title: J Exp Bot doi: 10.1093/jxb/eri123 – volume: 41 start-page: 63 year: 2014 ident: 7871_CR13 publication-title: J Genet Genomics doi: 10.1016/j.jgg.2013.12.001 – volume: 15 start-page: 16 year: 2015 ident: 7871_CR52 publication-title: BMC Biotechnol doi: 10.1186/s12896-015-0131-2 – volume: 93 start-page: 5055 year: 1996 ident: 7871_CR11 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.93.10.5055 – volume: 34 start-page: 1014 year: 2016 ident: 7871_CR59 publication-title: Nat Biotechnol doi: 10.1038/nbt.3680 – volume: 170 start-page: 1917 year: 2016 ident: 7871_CR32 publication-title: Plant Physiol doi: 10.1104/pp.15.01696 – volume: 156 start-page: 466 year: 2011 ident: 7871_CR15 publication-title: Plant Physiol doi: 10.1104/pp.111.172981 – ident: 7871_CR48 doi: 10.1007/s00122-016-2846-4 – volume: 241 start-page: 271 year: 2015 ident: 7871_CR54 publication-title: Planta doi: 10.1007/s00425-014-2180-5 – volume: 85 start-page: 209 year: 2014 ident: 7871_CR19 publication-title: Plant Mol Biol doi: 10.1007/s11103-014-0188-7 – volume: 25 start-page: 561 year: 2016 ident: 7871_CR22 publication-title: Transgenic Research doi: 10.1007/s11248-016-9953-5 – volume: 111 start-page: 4632 year: 2014 ident: 7871_CR25 publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1400822111 – volume: 16 start-page: 144 year: 2015 ident: 7871_CR27 publication-title: Genome Biol doi: 10.1186/s13059-015-0715-0 – volume: 5 start-page: 10342 year: 2015 ident: 7871_CR58 publication-title: Sci Rep doi: 10.1038/srep10342 – volume: 188 start-page: 773 year: 2011 ident: 7871_CR16 publication-title: Genetics doi: 10.1534/genetics.111.131433 – reference: 29545646 - Sci Rep. 2018 Mar 15;8(1):4877 |
SSID | ssj0000529419 |
Score | 2.5623667 |
Snippet | CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a systematical... Abstract CRISPR/Cas9 is a valuable tool for both basic and applied research that has been widely applied to different plant species. Nonetheless, a... |
SourceID | doaj pubmedcentral proquest pubmed crossref springer |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 7489 |
SubjectTerms | 631/449/447/2311 631/61/447 Agrobacterium - genetics Alleles Amino Acid Sequence Base Sequence Biotechnology Brassica napus Brassica napus - genetics Brassica napus - metabolism Clustered Regularly Interspaced Short Palindromic Repeats CRISPR CRISPR-Associated Protein 9 - genetics CRISPR-Associated Protein 9 - metabolism CRISPR-Cas Systems Gene Editing - methods Genes Genes, Plant Genetic Loci Genome editing Genomes Genotype Heritability Heterozygotes Homozygote Homozygotes Humanities and Social Sciences multidisciplinary Mutation Mutation Rate Oilseed crops Oilseeds Phenotype Plant species Rape plants RNA, Guide, CRISPR-Cas Systems - genetics RNA, Guide, CRISPR-Cas Systems - metabolism Science Science (multidisciplinary) Sequence Alignment Tetraploidy |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9swED9GYbCXsXVf7tqhwd42E0uyLOuxDSvdYGVkK_RNSLbcBVq31MlDH_a_705yQrLPl70EHCtY6O5yv_Pd_Q7gja-aQrVFl6u2MvTqhucm0IfhXdCNcy5QoPjptDo5Kz-eq_ONUV9UE5bogdPBTUTry6orlXOEnb3wkjjVeac9xoQite6hz9sIphKrtzAlN2OXTCHryYCeirrJOL2ZwyghN1ueKBL2_w5l_los-VPGNDqi40fwcESQ7DDt_DHcC_0u3E8zJe-ewPfp7MOXz7PJ1A0mj30hiCkZUbFeBYaXVObMQiSOwEdd3rEIG8PAqOeS6obY1TKl5wfmFmxVcMjQ6c0ZVclfsOs-sOFidnrI5j07ukX4jZJmvbtZDk_h7Pj91-lJPs5YyBsMXRY5p8kbXhm05cb70tdB-FCZpqmEaCRGX0J0otDaqU60HOUtpApl8L6g8XfSyWew0-NjXwBDtNYVThdBqrZsjXe1Mo5LXZsgRatcBnx13rYZCchpDsaljYlwWdskI4syslFG1mTwdv2bm0S_8dfVRyTG9Uqizo5foELZUaHsvxQqg_2VEtjRngfLjdKxs1Jk8Hp9Gy2R0iuuD9dLWiO0ojnzdQbPk86sd4JxqaEcbgZ6S5u2trp9p59_i2zfiPfwP1Zl8G6ldxvb-uNR7P2Po3gJD0Q0GCIx34edxe0yHCAGW_hX0dx-AHzjK70 priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3db9MwELfGEBIviPEZGJOReIOw2I7j-AGhrWIaSJtQodLeLDtxukpdOppWog_879w5SbWyspdISZzE8d3l7nJ3vyPkncuKRJZJFcsy0_jrhsXa40azyqvCWuvRUTw7z05H6bcLebFD-nZH3QI2W1077Cc1mk8__v61-gwC_6ktGc8PG1BCWCjG8KcbOACxvkfug2ZS2NHgrDP3W6xvrlOmu9qZ7Zdu6KcA47_N9rydQvlPHDWop5PH5FFnV9KjlhH2yI6vn5AHbafJ1VPyZzD8-uP78HBgGx2HahGwNCkCtF55CruY_Ex9gJOAR01XNBiTvqFYiYnZRPRq2QbtG2oXtE9DpKAKJxRz58d0VnvajIfnR3RS0-M5GOVAf1rb62XzjIxOvvwcnMZd54W4AIdmETPsx-GkBgkvnEtd7rnzmS6KjPNCgE_GecUTpayseMmAC7iQPvXOJdgUT1jxnOzW8NiXhIINVyVWJV7IMi21s7nUlgmVay94KW1EWL_epuhgybE7xtSE8LjITUsjAzQygUZGR-T9-prrFpTjztHHSMb1SATUDgdm87Hp5NPw0qVZlUpr0UVz3AmE7meVct5xnsBN9nsmMD2TGqalCvWWPCJv16dBPjHoYms_W-IYriR2n88j8qLlmfVMwFvVGNmNiNrgpo2pbp6pJ5cBAxysQPjyyoh86PnuxrT-uxSv7n6L1-QhD6KAoOX7ZHcxX_o3YHMt3EEQpL9-Rib7 priority: 102 providerName: Scholars Portal – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-NTUi8IL4JDGQk3iBabMdJ_NhVTKMSE-qYtDfLTpxSaUunpn3YA_87d86HKAwkXiqlcRIrdxf_znf3O4D3LisTVSV1rKpM09YNj7WnH81rn5fWWk-O4pez7PQinV2qyz0QQy1MSNoPlJbhMz1khx21uNBQMRinjTUE-bG-BwdE1Y66fTCZzM5n484Kxa5SrvsKmUQWd1y8swoFsv67EOafiZK_RUvDInTyCB726JFNuvk-hj3fPIH7XT_J26fwYzr_fP51fjS1rY5DTQjiSUY0rNee4SGlODMfSCPwUVe3LEBG3zKqt6ScIXa97ULzLbMbNiQbMlzwlowy5Bds1XjWLuZnE7Zs2PEaoTdKmTX2Zts-g4uTT9-mp3HfXyEu0W3ZxJy6bjil0Y5L51JXeOF8pssyE6KU6HkJUYskz62qRcVR1kIqn3rnEmp9J618DvsNPvYlMERqdWLzxEtVpZV2tlDacpkX2ktRKRsBH963KXvyceqBcWVCEFwWppORQRmZICOjI_gwXnPTUW_8c_QxiXEcSbTZ4Y_VemF6NTKicmlWp8pacsSccJII-nmdO--ESPAmh4MSmN6WW8O1ykNVpYjg3XgarZBCK7bxqy2NEbmiHvNFBC86nRlngj6ppvhtBPmONu1MdfdMs_wemL4R6-H3VUXwcdC7X6b111fx6v-Gv4YHIpgGUZUfwv5mvfVvEGlt3NvetH4CJEMi-A priority: 102 providerName: Springer Nature |
Title | CRISPR/Cas9-mediated genome editing efficiently creates specific mutations at multiple loci using one sgRNA in Brassica napus |
URI | https://link.springer.com/article/10.1038/s41598-017-07871-9 https://www.ncbi.nlm.nih.gov/pubmed/28790350 https://www.proquest.com/docview/1957195682 https://www.proquest.com/docview/1927594008 https://pubmed.ncbi.nlm.nih.gov/PMC5548805 https://doaj.org/article/2db46f45aa1743b2b342601f7beb2209 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Na9swFBdby2CXse9564IGu20mtmxZ1mkkpqULNJR0hdyEZMtpoHWyODn00P-978kfW_bRi0NsxVb83pPe5-8R8tkkecCLoPR5kUh03YS-tHiQYWlFrrW2aCieTZPTy3gy5_PW4Va3aZXdmugW6mKVo498GEouXG0b-7b-6WPXKIyuti00HpNDhC5DrhZz0ftYMIoVh7KtlQmidFjDfoU1ZSH658BW8OXefuRg-_-la_6dMvlH3NRtRyfPybNWj6SjhvAvyCNbvSRPms6St6_IXTb7fnE-G2a6lr6rDgHNkiIg642l8BWTnal18BHwqOtb6pRHW1OsvMTsIXqza4L0NdVb2qUdUtj6lhRz5Rd0VVlaL2bTEV1WdLwBJRzoTSu93tWvyeXJ8Y_s1G87Lfg5GDBbP8T-G4ZLkOjcmNiklhmbyDxPGMsjsMEYK1kghOYlK0KgOou4ja0xATbBi3T0hhxU8Nh3hILOVgZaBDbiRVxIo1MudRiJVNqIFVx7JOzet8pbGHLshnGtXDg8SlVDIwU0Uo5GSnrkS_-bdQPC8eDoMZKxH4kA2u7EarNQrTwqVpg4KWOuNZpkhpkIofrDUhhrGAvgJkcdE6hWqmv1iwc98qm_DPKIQRZd2dUOxzDBsdt86pG3Dc_0MwHrVGIk1yNij5v2prp_pVpeOcxv0PpgpeUe-drx3W_T-u-reP_wv_hAnjInCghSfkQOtpud_Qg61tYMnCANyOFoNLmYwOf4eHo-g7NZkg2c3wKOZ3F6D10pKZ8 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfGEIIXxDcZA4wETxA1ceI4fkBoK0wt2ypUNqlvxk6crtKWlqYV6gP_En8jd05SKB9720ukJm7i5O58d76PHyEvTZIFPA8Kn-eJxK2b0JcWDzIsrMi01hYdxeNB0juNP474aIv8aGthMK2yXRPdQp1PM9wj74SSC1fbxt7NvvqIGoXR1RZCo2aLQ7v6Bi5b9bb_Huj7irGDDyfdnt-gCvgZGOsLP0SsCcMlcG9mTGxSy4xNZJYljGUR-BuMFSwQQvOC5SG8IYu4ja0xAQK-RTqC-14j10HxBujsiZFY7-lg1CwOZVObE0RppwL9iDVsIe4Hgm_iyw3952AC_mXb_p2i-Uec1qm_gzvkdmO30r2a0e6SLVveIzdqJMvVffK9O-x__jTsdHUlfVeNApYsxQawF5bCT0yupta1q4BHna-oM1ZtRbHSE7OV6MWyTgqoqF7QNs2RgqqdUMzNH9NpaWk1Hg726KSk-3Mw-oG_aKlny-oBOb0SGjwk2yU89jGhYCMWgRaBjXge59LolEsdRiKVNmI51x4J2--tsqbtOaJvnCsXfo9SVdNIAY2Uo5GSHnm9_s-sbvpx6eh9JON6JDbsdiem87Fq5F-x3MRJEXOt0QU0zEQIDRAWwljDWAA32W2ZQDWrSKV-8bxHXqwvg_xjUEeXdrrEMUxwRLdPPfKo5pn1TMAblhg59ojY4KaNqW5eKSdnrsc4WJmwsnOPvGn57rdp_fdT7Fz-Fs_Jzd7J8ZE66g8On5BbzIkFNkjfJduL-dI-BftuYZ45oaLky1VL8U_Sn1-0 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZGJxAviDuBAUaCJ4iaOHESPyC0dqtWBlVVmLQ3z06cUmlLS9MK9YE_xq_jHOcC5bK3vURq4iZOzsXn-Fw-Ql7qKPV45uUuzyKBWze-KwwehJ-bOFVKGXQUP46io5Pw_Sk_3SE_mloYTKtsdKJV1Nk8xT3yri94bGvbWDev0yLGB4N3i68uIkhhpLWB06hY5NhsvoH7Vr4dHgCtXzE2OPzcP3JrhAE3BcN95fqIO6G5AE5OtQ51Ypg2kUjTiLE0AN-DsZx5cax4zjIf3pYF3IRGaw_B3wIVwH2vkd0YvaIO2e0djsaTdocHY2ihL-pKHS9IuiWslljR5uPuIHgqrthaDS1owL8s3b8TNv-I2trFcHCb3KqtWLpfsd0dsmOKu-R6hWu5uUe-9yfDT-NJt69K4draFLBrKbaDvTAUfmKqNTW2eQU86nxDrelqSop1n5i7RC_WVYpASdWKNkmPFBbeGcVM_SmdF4aW08lon84K2luCCwDcRgu1WJf3ycmVUOEB6RTw2EeEgsWYeyr2TMCzMBNaJVwoP4gTYQKWceUQv_neMq2boCMWx7m0wfggkRWNJNBIWhpJ4ZDX7X8WVQuQS0f3kIztSGzfbU_Ml1NZawPJMh1GeciVQodQMx0gUICfx9poxjy4yV7DBLLWKaX8JQEOedFeBm2AIR5VmPkax7CYI9Z94pCHFc-0MwHfWGAc2SHxFjdtTXX7SjH7YjuOg80Jep475E3Dd79N67-f4vHlb_Gc3AAJlh-Go-Mn5CazUoHd0vdIZ7Vcm6dg7K30s1qqKDm7akH-CWogZU8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=CRISPR%2FCas9-mediated+genome+editing+efficiently+creates+specific+mutations+at+multiple+loci+using+one+sgRNA+in+Brassica+napus&rft.jtitle=Scientific+reports&rft.au=Yang%2C+Hong&rft.au=Jia-Jing%2C+Wu&rft.au=Tang%2C+Ting&rft.au=Ke-De%2C+Liu&rft.date=2017-08-08&rft.pub=Nature+Publishing+Group&rft.eissn=2045-2322&rft.volume=7&rft.spage=1&rft.epage=13&rft_id=info:doi/10.1038%2Fs41598-017-07871-9&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2045-2322&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2045-2322&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2045-2322&client=summon |