Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests

Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 57; no. 1; pp. 158 - 167
Main Authors Dendukuri, Nandini, Joseph, Lawrence
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.03.2001
International Biometric Society
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
DOI10.1111/j.0006-341x.2001.00158.x

Cover

Abstract Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.
AbstractList Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.
Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.
Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.
Author Joseph, Lawrence
Dendukuri, Nandini
Author_xml – sequence: 1
  givenname: Nandini
  surname: Dendukuri
  fullname: Dendukuri, Nandini
– sequence: 2
  givenname: Lawrence
  surname: Joseph
  fullname: Joseph, Lawrence
BackLink https://www.ncbi.nlm.nih.gov/pubmed/11252592$$D View this record in MEDLINE/PubMed
BookMark eNqNkU1vEzEQhi1URNPCP0Cw4gBcNvh7dw8gNSktlRJ6aFArhGQ53tnWYbMOa0dN_j3ebptDDwVfPKN53hl73gO017gGEEoIHpJ4Pi2GGGOZMk42Q4oxiSkR-XDzDA2I4CTFnOI9NHiArvbRgfeLmBYC0xdonxAqqCjoAP0a6S14q5vkaLVqnTY34JPgkqkrobbNdRJuIBm7prTBukbXyTGsoCmhMZCMINwCNMl0XQe7qiE5tvq6cT5Yk8zAB_8SPa907eHV_X2IZidfZ-Nv6eT89Gx8NEmNxDJPtRTANMdViSnP8Ry0xoJoXeb5nJZAWUWEwJJXck54jAwn-dxktKgIFMawQ_Shbxs_8GcdB6ul9QbqWjfg1l4VlJGCc8Ej-f5JMpOFzDkrIvjxSZBIyUTGWNb1fPcIXbh1G1flFaVEZhmjMkJv7qH1fAmlWrV2qdutejAiAl96wLTO-xYqZWzQ3c5Dq22tCFad82qhOlNVZ6rqnFd3zqtNbJA_arCb8W_p5156a2vY_rdOjc7OpzGK-te9fuGDa3d6KjOZ3y097cvWB9jsyrr9rWTGMqEuv5-qK3kyucwnP9VF5N_2fKWd0tet9erHBY0zu2dkGFP2F08l5c4
CODEN BIOMA5
CitedBy_id crossref_primary_10_1017_S0022029919000177
crossref_primary_10_1186_s12874_015_0061_7
crossref_primary_10_1016_j_prevetmed_2006_04_006
crossref_primary_10_1016_j_prevetmed_2004_12_005
crossref_primary_10_1016_j_prevetmed_2006_04_008
crossref_primary_10_1016_j_prevetmed_2020_105199
crossref_primary_10_1016_j_rvsc_2019_04_014
crossref_primary_10_1002_sim_4018
crossref_primary_10_1371_journal_pone_0005221
crossref_primary_10_1155_2012_487502
crossref_primary_10_1198_sbr_2011_10005
crossref_primary_10_3168_jds_2015_10293
crossref_primary_10_1177_0962280217726804
crossref_primary_10_3899_jrheum_130667
crossref_primary_10_1002_sim_9269
crossref_primary_10_1371_journal_pntd_0002843
crossref_primary_10_1002_sim_7522
crossref_primary_10_37737_ace_24012
crossref_primary_10_1016_j_ijpara_2013_05_011
crossref_primary_10_3390_v13050914
crossref_primary_10_1016_S1076_6332_03_00814_6
crossref_primary_10_1371_journal_pone_0262944
crossref_primary_10_3390_microorganisms9091815
crossref_primary_10_1111_jvim_16798
crossref_primary_10_3168_jds_2020_19231
crossref_primary_10_1016_j_vetmic_2025_110377
crossref_primary_10_1016_j_mcp_2007_06_003
crossref_primary_10_1098_rsos_201867
crossref_primary_10_1016_j_prevetmed_2009_06_006
crossref_primary_10_1186_s13020_016_0100_2
crossref_primary_10_3168_jds_2012_5328
crossref_primary_10_1016_j_prevetmed_2021_105347
crossref_primary_10_1111_jfd_12906
crossref_primary_10_1111_j_1541_0420_2006_00665_x
crossref_primary_10_1016_j_prevetmed_2018_10_012
crossref_primary_10_1002_sim_7530
crossref_primary_10_1097_EDE_0b013e318207fc5c
crossref_primary_10_1016_S1473_3099_18_30649_2
crossref_primary_10_1136_archdischild_2021_323712
crossref_primary_10_1016_j_prevetmed_2024_106292
crossref_primary_10_1017_S0031182015000475
crossref_primary_10_1016_j_livsci_2021_104698
crossref_primary_10_1186_s12874_021_01255_4
crossref_primary_10_1186_s12874_024_02432_x
crossref_primary_10_1093_biomtc_ujaf025
crossref_primary_10_1002_sim_3505
crossref_primary_10_1002_sim_2899
crossref_primary_10_1016_j_pt_2003_11_008
crossref_primary_10_1111_j_0006_341X_2004_00187_x
crossref_primary_10_1111_jvim_15699
crossref_primary_10_1016_j_probengmech_2024_103670
crossref_primary_10_1111_1365_2664_12407
crossref_primary_10_1002_sim_3862
crossref_primary_10_1016_S0167_5877_01_00261_6
crossref_primary_10_1111_jvim_14361
crossref_primary_10_1136_bmjopen_2014_005096
crossref_primary_10_1002_sim_10315
crossref_primary_10_1097_INF_0b013e3181c61ddb
crossref_primary_10_1002_sim_6218
crossref_primary_10_1016_j_cvsm_2007_01_007
crossref_primary_10_1214_19_AOAS1256
crossref_primary_10_1016_j_jclinepi_2022_04_026
crossref_primary_10_3389_fvets_2018_00229
crossref_primary_10_1016_j_prevetmed_2022_105771
crossref_primary_10_1111_avj_12190
crossref_primary_10_1186_s12879_023_08135_w
crossref_primary_10_1016_j_prevetmed_2024_106144
crossref_primary_10_1016_j_jiph_2022_10_028
crossref_primary_10_1016_j_camwa_2009_03_119
crossref_primary_10_1186_s12917_017_1145_x
crossref_primary_10_1002_14651858_CD009135_pub2
crossref_primary_10_1080_02664760701835862
crossref_primary_10_1371_journal_pone_0079489
crossref_primary_10_1186_s40001_023_01265_6
crossref_primary_10_1371_journal_pone_0114930
crossref_primary_10_15446_rce_v43n2_80288
crossref_primary_10_3389_fvets_2019_00204
crossref_primary_10_3389_fvets_2021_588176
crossref_primary_10_1016_j_tvjl_2021_105728
crossref_primary_10_1371_journal_pntd_0002807
crossref_primary_10_1016_j_jviromet_2012_08_018
crossref_primary_10_1198_108571107X178095
crossref_primary_10_1371_journal_pone_0261528
crossref_primary_10_1371_journal_pntd_0000995
crossref_primary_10_1002_sim_6101
crossref_primary_10_1007_s11250_020_02263_0
crossref_primary_10_1016_j_prevetmed_2022_105783
crossref_primary_10_1177_0962280219852649
crossref_primary_10_1186_s13098_015_0070_z
crossref_primary_10_1186_1746_6148_8_68
crossref_primary_10_1016_j_prevetmed_2012_11_029
crossref_primary_10_3390_diagnostics1010001
crossref_primary_10_1111_jfd_12792
crossref_primary_10_1080_10543406_2011_589638
crossref_primary_10_1214_08_BJPS006
crossref_primary_10_1002_sim_7449
crossref_primary_10_1136_bmjopen_2022_061311
crossref_primary_10_1590_0037_8682_0009_2017
crossref_primary_10_1093_aje_kwt286
crossref_primary_10_1016_j_prevetmed_2022_105712
crossref_primary_10_1111_j_1740_9713_2011_00470_x
crossref_primary_10_2310_8000_2013_131031
crossref_primary_10_1002_sim_6230
crossref_primary_10_1080_01621459_2018_1476239
crossref_primary_10_5005_jp_journals_10071_24051
crossref_primary_10_1016_j_smallrumres_2018_08_004
crossref_primary_10_1186_1471_2288_14_110
crossref_primary_10_1111_zph_13109
crossref_primary_10_1590_S0100_736X2012000400001
crossref_primary_10_1198_jasa_2009_tm08603
crossref_primary_10_1186_s41512_024_00175_3
crossref_primary_10_5897_JVMAH2015_0410
crossref_primary_10_1093_jtm_taac043
crossref_primary_10_1177_0272989X221089268
crossref_primary_10_1002_sim_7339
crossref_primary_10_1016_j_jviromet_2017_07_010
crossref_primary_10_1016_j_prevetmed_2023_105946
crossref_primary_10_1002_sim_6803
crossref_primary_10_1002_jrsm_1243
crossref_primary_10_1186_s12917_023_03712_2
crossref_primary_10_1016_j_actatropica_2024_107414
crossref_primary_10_1081_BIP_200067912
crossref_primary_10_1111_biom_12583
crossref_primary_10_2139_ssrn_4095071
crossref_primary_10_1016_j_prevetmed_2019_01_010
crossref_primary_10_1214_088342305000000098
crossref_primary_10_1016_j_annepidem_2014_04_009
crossref_primary_10_1016_j_prevetmed_2008_01_011
crossref_primary_10_1038_modpathol_3800457
crossref_primary_10_1016_j_pt_2008_12_008
crossref_primary_10_1080_00224065_2012_11917894
crossref_primary_10_1177_10406387211011990
crossref_primary_10_1093_cid_cir080
crossref_primary_10_1038_s41598_018_37616_1
crossref_primary_10_1111_tbed_13589
crossref_primary_10_1002_sim_9078
crossref_primary_10_1016_j_prevetmed_2018_11_003
crossref_primary_10_3389_fvets_2023_1079918
crossref_primary_10_1002_art_39320
crossref_primary_10_1177_1471082X0700800106
crossref_primary_10_1097_01_ede_0000173042_07579_17
crossref_primary_10_1002_sim_5842
crossref_primary_10_1007_s13253_015_0214_5
crossref_primary_10_1016_j_jctube_2022_100331
crossref_primary_10_1002_sim_1809
crossref_primary_10_1016_j_forsciint_2017_01_016
crossref_primary_10_1016_j_prevetmed_2022_105732
crossref_primary_10_1177_009286151004400409
crossref_primary_10_1016_j_prevetmed_2017_03_008
crossref_primary_10_1198_108571106X153534
crossref_primary_10_1016_j_actatropica_2013_11_026
crossref_primary_10_1016_j_prevetmed_2021_105452
crossref_primary_10_1016_j_yrtph_2010_02_003
crossref_primary_10_1111_j_1365_3156_2007_01975_x
crossref_primary_10_1002_sim_9085
crossref_primary_10_1002_sim_3661
crossref_primary_10_1097_EDE_0b013e31823b506b
crossref_primary_10_1111_j_1541_0420_2009_01279_x
crossref_primary_10_1016_j_drugalcdep_2020_107906
crossref_primary_10_1371_journal_pone_0282417
crossref_primary_10_1111_j_1541_0420_2012_01773_x
crossref_primary_10_1111_jam_13098
crossref_primary_10_1371_journal_pone_0161621
crossref_primary_10_1002_bimj_200710365
crossref_primary_10_1002_bimj_201400155
crossref_primary_10_1016_j_jviromet_2014_06_025
crossref_primary_10_1371_journal_pone_0050765
crossref_primary_10_1016_j_prevetmed_2005_01_006
crossref_primary_10_1214_14_EJS891
crossref_primary_10_1016_j_annepidem_2016_08_002
crossref_primary_10_1186_s12911_019_0845_5
crossref_primary_10_1111_j_1365_2753_2009_01150_x
crossref_primary_10_1016_j_prevetmed_2021_105567
crossref_primary_10_1016_j_jad_2016_08_014
crossref_primary_10_1038_tpj_2016_37
crossref_primary_10_1016_j_ijmm_2015_08_029
crossref_primary_10_1136_ard_2008_093161
crossref_primary_10_3389_fvets_2023_1149929
crossref_primary_10_1198_1085711031526
crossref_primary_10_1016_j_ijpara_2009_09_003
crossref_primary_10_1016_j_vetpar_2017_07_030
crossref_primary_10_1016_j_jclinepi_2009_02_005
crossref_primary_10_1177_0272989X09345022
crossref_primary_10_1371_journal_pntd_0009630
crossref_primary_10_4269_ajtmh_19_0866
crossref_primary_10_1016_j_prevetmed_2011_10_014
crossref_primary_10_3168_jds_2022_21905
crossref_primary_10_1186_s12879_023_08935_0
crossref_primary_10_1371_journal_pone_0305126
crossref_primary_10_1002_sim_2116
crossref_primary_10_3354_dao03566
crossref_primary_10_3354_dao03687
crossref_primary_10_1177_1040638720975742
crossref_primary_10_1016_j_jval_2013_02_007
crossref_primary_10_1093_cid_cis403
crossref_primary_10_1016_j_prevetmed_2007_04_002
crossref_primary_10_1183_13993003_00811_2024
crossref_primary_10_3389_fvets_2024_1415277
crossref_primary_10_1002_sim_5629
crossref_primary_10_1186_1742_7622_9_9
crossref_primary_10_1177_15563316211006710
crossref_primary_10_1016_j_prevetmed_2023_106048
crossref_primary_10_1080_10543401003618868
crossref_primary_10_1371_journal_pntd_0010739
crossref_primary_10_1093_aje_kwy092
crossref_primary_10_1177_1470320313498632
crossref_primary_10_1016_j_prevetmed_2015_02_018
crossref_primary_10_1111_j_1541_0420_2009_01330_x
crossref_primary_10_1111_1365_2664_13477
crossref_primary_10_1136_vr_102872
crossref_primary_10_1186_s40249_025_01292_x
crossref_primary_10_1016_j_vetpar_2014_11_020
crossref_primary_10_1080_19466315_2019_1574489
crossref_primary_10_1371_journal_pone_0144608
crossref_primary_10_1016_j_atherosclerosis_2020_09_026
crossref_primary_10_1111_2041_210X_14370
crossref_primary_10_1198_108571107X198895
crossref_primary_10_1016_j_actatropica_2017_05_028
crossref_primary_10_1128_JCM_02744_15
crossref_primary_10_3168_jds_2021_21491
crossref_primary_10_1176_jnp_15_2_200
crossref_primary_10_1017_S0022149X10000167
crossref_primary_10_1016_j_ijpara_2014_05_009
crossref_primary_10_1002_art_24793
crossref_primary_10_1093_aje_kwp049
crossref_primary_10_1016_j_prevetmed_2006_02_007
crossref_primary_10_1371_journal_pone_0040633
crossref_primary_10_1002_sim_2002
crossref_primary_10_1016_j_actatropica_2012_03_010
crossref_primary_10_1002_art_40355
crossref_primary_10_1007_s00415_019_09212_4
crossref_primary_10_1186_s41182_016_0031_8
crossref_primary_10_1016_j_jviromet_2010_09_001
crossref_primary_10_1016_j_prevetmed_2004_09_009
crossref_primary_10_3390_microorganisms10061095
crossref_primary_10_1111_j_0006_341X_2004_00183_x
crossref_primary_10_1097_00005650_200503000_00009
crossref_primary_10_1111_j_1541_0420_2005_00510_x
crossref_primary_10_1371_journal_pntd_0008087
crossref_primary_10_2460_ajvr_2002_63_1598
crossref_primary_10_1016_j_tvjl_2009_10_024
crossref_primary_10_1016_j_cmpb_2023_107765
crossref_primary_10_1111_biom_13579
crossref_primary_10_1002_sim_6619
crossref_primary_10_1007_s13253_015_0239_9
crossref_primary_10_1016_j_vetpar_2018_03_013
crossref_primary_10_1080_14737167_2022_2079497
crossref_primary_10_1002_sim_8114
crossref_primary_10_1016_j_prevetmed_2017_10_002
crossref_primary_10_1177_0962280214541852
crossref_primary_10_1097_INF_0b013e3181cb45da
crossref_primary_10_1016_j_ehb_2015_02_002
crossref_primary_10_1177_104063871002200301
crossref_primary_10_1198_108571106X110883
crossref_primary_10_1002_sim_7148
crossref_primary_10_3168_jds_2016_11407
crossref_primary_10_1186_s12917_016_0814_5
crossref_primary_10_1371_journal_pntd_0006102
crossref_primary_10_1080_02664763_2013_849231
crossref_primary_10_1016_j_prevetmed_2007_01_003
crossref_primary_10_1016_j_prevetmed_2021_105409
crossref_primary_10_1371_journal_pone_0267110
crossref_primary_10_1002_sim_1178
crossref_primary_10_1111_1467_9876_00389
crossref_primary_10_1002_sim_6745
crossref_primary_10_1093_aje_kws465
crossref_primary_10_1186_1472_6947_13_45
crossref_primary_10_1080_03610918_2023_2196750
crossref_primary_10_2139_ssrn_4107137
crossref_primary_10_1002_ece3_6448
crossref_primary_10_1016_j_canep_2011_07_001
crossref_primary_10_1002_sim_4320
crossref_primary_10_1016_j_jspi_2010_09_015
crossref_primary_10_1080_02664763_2014_995608
crossref_primary_10_1007_s00296_010_1591_2
crossref_primary_10_1051_vetres_2006018
crossref_primary_10_1080_02664763_2014_995606
crossref_primary_10_1080_02664763_2015_1070810
crossref_primary_10_1002_sim_3470
crossref_primary_10_1007_s11250_021_03039_w
crossref_primary_10_1080_03610918_2012_690483
crossref_primary_10_1080_10543400701668274
crossref_primary_10_1007_s11606_012_2031_7
crossref_primary_10_1093_biostatistics_kxl038
crossref_primary_10_1007_s12539_024_00653_8
crossref_primary_10_1002_sim_9902
crossref_primary_10_1016_j_tvjl_2014_08_002
crossref_primary_10_3168_jds_2023_24590
crossref_primary_10_1016_j_vetpar_2009_12_014
crossref_primary_10_1016_S2214_109X_23_00108_0
crossref_primary_10_1111_j_1467_985X_2011_00682_x
crossref_primary_10_17826_cumj_1003633
crossref_primary_10_1371_journal_pone_0012485
crossref_primary_10_1080_02664763_2017_1391182
crossref_primary_10_7717_peerj_8310
crossref_primary_10_3168_jds_2024_25404
crossref_primary_10_2460_ajvr_68_3_236
crossref_primary_10_1111_j_1541_0420_2010_01398_x
crossref_primary_10_1186_s12884_020_03068_7
crossref_primary_10_1007_s13253_009_0013_y
crossref_primary_10_1111_tmi_12559
crossref_primary_10_1016_j_prevetmed_2014_01_021
crossref_primary_10_1016_j_prevetmed_2016_03_015
crossref_primary_10_1080_01966324_2017_1338976
crossref_primary_10_1111_j_1541_0420_2007_00817_x
crossref_primary_10_1038_srep24845
crossref_primary_10_1136_thoraxjnl_2018_211715
crossref_primary_10_1017_S0950268814000338
crossref_primary_10_3168_jds_2018_14854
crossref_primary_10_1016_j_onehlt_2021_100359
crossref_primary_10_1198_jasa_2009_0017
crossref_primary_10_1016_j_prevetmed_2023_106074
crossref_primary_10_1016_S0167_5877_01_00272_0
crossref_primary_10_1177_104063870501700507
crossref_primary_10_1002_sim_2167
crossref_primary_10_1186_s13643_024_02609_x
crossref_primary_10_1093_aje_kwab093
crossref_primary_10_1002_sim_3250
crossref_primary_10_1186_1471_2288_14_67
crossref_primary_10_1093_botlinnean_boaa011
crossref_primary_10_1016_j_annepidem_2021_11_009
crossref_primary_10_1080_03610918_2011_649332
crossref_primary_10_1080_10543406_2011_590921
crossref_primary_10_1097_01_ede_0000198422_64801_8d
crossref_primary_10_1016_j_prevetmed_2022_105699
crossref_primary_10_1128_CVI_00223_07
crossref_primary_10_1016_j_prevetmed_2024_106345
crossref_primary_10_1016_j_prevetmed_2022_105694
crossref_primary_10_1186_s12874_023_01873_0
crossref_primary_10_3168_jds_S0022_0302_06_72577_2
crossref_primary_10_1080_24709360_2019_1673623
crossref_primary_10_2460_ajvr_2003_64_57
crossref_primary_10_1186_s12879_023_08772_1
crossref_primary_10_1214_09_STS305
crossref_primary_10_3201_eid1402_061101
crossref_primary_10_1590_0037_8682_0423_2016
crossref_primary_10_1093_cid_ciaa1135
crossref_primary_10_1080_02664760903030239
crossref_primary_10_1177_117693510800600002
crossref_primary_10_1073_pnas_2023947118
crossref_primary_10_1198_108571107X177519
crossref_primary_10_3390_ijerph16162912
crossref_primary_10_1186_s12917_022_03141_7
crossref_primary_10_12677_AP_2022_127311
crossref_primary_10_1016_S0735_1097_01_01639_4
crossref_primary_10_1002_sim_1773
crossref_primary_10_3354_dao03655
crossref_primary_10_1016_j_clnesp_2023_12_019
crossref_primary_10_1016_j_prevetmed_2011_10_009
crossref_primary_10_3923_jp_2020_31_37
crossref_primary_10_1038_srep15375
crossref_primary_10_1002_sim_8047
crossref_primary_10_3168_jds_2014_7947
crossref_primary_10_1016_j_csda_2012_02_014
crossref_primary_10_1513_AnnalsATS_202212_1005OC
crossref_primary_10_1111_j_1365_3156_2009_02229_x
crossref_primary_10_1371_journal_pone_0164181
crossref_primary_10_1186_s13071_018_2700_4
crossref_primary_10_1002_acr_20656
crossref_primary_10_1371_journal_pone_0117313
crossref_primary_10_3899_jrheum_181121
crossref_primary_10_1002_acr_21743
crossref_primary_10_1017_S0950268816000455
crossref_primary_10_1016_j_csda_2007_08_020
crossref_primary_10_1590_0037_8682_0055_2018
Cites_doi 10.2307/2530967
10.1016/0010-4809(78)90001-0
10.2307/2531499
10.2307/2684892
10.1080/01621459.1998.10473748
10.1016/0895-4356(88)90110-2
10.2307/2533555
10.1080/01621459.1990.10476213
10.2307/2533043
10.1111/1467-9876.00131
10.1093/oxfordjournals.aje.a117428
10.2307/2983527
10.1111/j.2517-6161.1991.tb01835.x
10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
10.1214/ss/1177013215
10.1002/(SICI)1097-0258(19971015)16:19<2157::AID-SIM653>3.0.CO;2-X
10.1214/ss/1177011136
10.2307/3315793
10.1002/(SICI)1097-0258(19960715)15:13<1377::AID-SIM275>3.0.CO;2-#
ContentType Journal Article
Copyright Copyright 2001 The International Biometric Society
Copyright International Biometric Society Mar 2001
Copyright_xml – notice: Copyright 2001 The International Biometric Society
– notice: Copyright International Biometric Society Mar 2001
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7S9
L.6
7X8
7ST
7U6
C1K
DOI 10.1111/j.0006-341x.2001.00158.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Public Health Database (subscription)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection (subscription)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
ProQuest Natural Science Collection (Hollins)
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database
Science Database (subscription)
Biological Science Database
Engineering Database (subscription)
AAdvanced Technologies & Aerospace Database (subscription)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection (ProQuest)
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Environment Abstracts
Sustainability Science Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList AGRICOLA
Computer Science Database

MEDLINE
Environment Abstracts
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 167
ExternalDocumentID 70018661
11252592
10_1111_j_0006_341X_2001_00158_x
BIOM158
2676854
ark_67375_WNG_X6FLW8LZ_S
US201500067002
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GeographicLocations Cambodia
Canada
GeographicLocations_xml – name: Cambodia
– name: Canada
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHBH
AAHHS
AANHP
AANLZ
AAONW
AASGY
AAUAY
AAWIL
AAXRX
AAYCA
AAZKR
AAZSN
ABAWQ
ABBHK
ABCQN
ABCUV
ABDBF
ABDFA
ABEJV
ABEML
ABFAN
ABGNP
ABJCF
ABJNI
ABLJU
ABMNT
ABPPZ
ABPVW
ABTAH
ABUWG
ABXSQ
ABXVV
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACHJO
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACRPL
ACSCC
ACTMH
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADNBA
ADNMO
ADODI
ADOZA
ADULT
ADVOB
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEOTA
AEQDE
AEUPB
AEUYR
AFBPY
AFDVO
AFEBI
AFGKR
AFKRA
AFVYC
AFWVQ
AFZJQ
AGLNM
AGTJU
AHMBA
AIAGR
AIHAF
AIURR
AIWBW
AJAOE
AJBDE
AJNCP
AJXKR
ALAGY
ALEEW
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALRMG
ALUQN
AMBMR
AMYDB
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EJD
EMB
EMK
EMOBN
EST
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JST
K48
K6V
K7-
KOP
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
NU-
O66
O9-
OIG
OJZSN
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PHGZT
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
ROX
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WYISQ
X6Y
XBAML
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
3V.
AAPXW
ADACV
AELPN
AEUQT
AFFTP
AFPWT
AIBGX
BSCLL
ESTFP
JSODD
VQA
WRC
AAMMB
AEFGJ
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
PHGZM
AAYXX
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7XB
8FK
JQ2
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7S9
L.6
PUEGO
7X8
7ST
7U6
C1K
ID FETCH-LOGICAL-c6068-a65e3a40fd02480beaa051aad88b2de23f155064f6b14550c418bc729f1e9cc3
IEDL.DBID DR2
ISSN 0006-341X
IngestDate Fri Sep 05 13:45:16 EDT 2025
Fri Sep 05 11:45:23 EDT 2025
Fri Sep 05 17:28:24 EDT 2025
Fri Jul 25 19:42:22 EDT 2025
Wed Feb 19 01:29:49 EST 2025
Tue Jul 01 02:39:15 EDT 2025
Thu Apr 24 22:56:11 EDT 2025
Wed Jan 22 16:20:43 EST 2025
Thu Jul 03 21:22:35 EDT 2025
Wed Oct 30 09:57:22 EDT 2024
Thu Apr 03 09:44:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6068-a65e3a40fd02480beaa051aad88b2de23f155064f6b14550c418bc729f1e9cc3
Notes http://dx.doi.org/10.1111/j.0006-341X.2001.00158.x
ark:/67375/WNG-X6FLW8LZ-S
ArticleID:BIOM158
istex:0FACA98BC5B95506D51C2EF4C38A6C0206DE05F5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PMID 11252592
PQID 221677326
PQPubID 35365
PageCount 10
ParticipantIDs proquest_miscellaneous_923194454
proquest_miscellaneous_76968439
proquest_miscellaneous_1663573374
proquest_journals_221677326
pubmed_primary_11252592
crossref_citationtrail_10_1111_j_0006_341X_2001_00158_x
crossref_primary_10_1111_j_0006_341X_2001_00158_x
wiley_primary_10_1111_j_0006_341X_2001_00158_x_BIOM158
jstor_primary_2676854
istex_primary_ark_67375_WNG_X6FLW8LZ_S
fao_agris_US201500067002
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2001
PublicationDateYYYYMMDD 2001-03-01
PublicationDate_xml – month: 03
  year: 2001
  text: March 2001
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2001
Publisher Blackwell Publishing Ltd
International Biometric Society
Publisher_xml – name: Blackwell Publishing Ltd
– name: International Biometric Society
References Joseph, L., Gyorkos, T., and Coupal, L. (1995). Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141, 263-272.
Fryback, D. G. (1978). Bayes' theorem and conditional nonindependence of data in medical diagnosis. Computers and Biomedical Research 11, 423-434.
Spiegelhalter, D. J., Freedman, L. S., and Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. Journal of the Royal Statistical Society, Series A 157, 357-416.
Walter, S. D. and Irwig, L. M. (1988). Estimation of error rates, disease prevalence, and relative risk misclassified data: A review. Journal of Clinical Epidemiology 41, 923-937.
Neath, A. and Samaniego, F. J. (1997). On the efficacy of Bayesian inference for nonidentifiable models. American Statistician 51, 225-234.
Brenner, H. (1996). How independent are multiple 'independent' diagnostic classifications Statistics in Medicine 15, 1377-1386.
Qu, Y. and Hadgu, A. (1998). A model for evaluating the sensitivity and specificity for correlated diagnostic tests in efficacy studies with an imperfect reference test. Journal of the American Statistical Association 93, 920-928.
Yang, I. and Becker, M. P. (1997). Latent variable modeling of diagnostic accuracy. Biometrics 53, 948-958.
Espeland, M. A. and Handelman, S. L. (1989). Using latent class models to characterize and assess relative error in discrete measurements. Biometrics 45, 587-599.
Torrance-Rynard, V. L. and Walter, S. D. (1997). Effects of dependent errors in the assessment of diagnostic test performance. Statistics in Medicine 16, 2157-2175.
Gastwirth, J. L. (1987). The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data. Statistical Science 2, 213-238.
Alonzo, T. A. and Pepe, M. S. (1999). Using a combination of reference tests to assess the accuracy of a new diagnostic test. Statistics in Medicine 22, 2987-3003.
Vacek, P. M. (1985). The effect of conditional dependence on the evaluation of diagnostic tests. Biometrics 41, 959-968.
Gastwirth, J. L., Johnson, W. O., and Reneau, D. M. (1991). Bayesian analysis of screening data: Application to AIDS in blood donors. The Canadian Journal of Statistics 19, 135-150.
Hadgu, A. and Qu, Y. (1998). A biomedical application of latent class models with random effects. Applied Statistics 47, 603-616.
Qu, Y., Tan, M., and Kutner, M. H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 52, 797-810.
Thisted, R. A. (1988). Elements of Statistical Computing. New York : Chapman and Hall.
Rubin, D. (1988). Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics 3, 395-402.
Gelman, A. and Rubin, D. B. (1992). Inferences from iterative simulation and multiple sequences (with discussion). Statistical Science 7, 457-511.
Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409.
Johnson, W. O. and Gastwirth, J. L. (1991). Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome. Journal of the Royal Statistical Society, Series B 53, 427-439.
1990; 85
1992; 7
1994; 157
1987; 2
1991; 19
1988; 3
1997; 51
1989; 45
1978; 11
1997; 53
1991; 53
1999; 22
1996; 52
1997; 16
1985; 41
1988; 41
1998; 93
1996; 15
1995; 141
1998; 47
1992; 4
1988
Raftery A. E. (e_1_2_1_16_1) 1992
Thisted R. A. (e_1_2_1_19_1) 1988
Rubin D. (e_1_2_1_17_1) 1988; 3
Johnson W. O. (e_1_2_1_11_1) 1991; 53
Walter S. D. (e_1_2_1_22_1) 1988; 41
e_1_2_1_7_1
e_1_2_1_8_1
e_1_2_1_20_1
e_1_2_1_5_1
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_12_1
e_1_2_1_23_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_10_1
e_1_2_1_21_1
Alonzo T. A. (e_1_2_1_2_1) 1999; 22
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_9_1
e_1_2_1_18_1
References_xml – reference: Hadgu, A. and Qu, Y. (1998). A biomedical application of latent class models with random effects. Applied Statistics 47, 603-616.
– reference: Gastwirth, J. L., Johnson, W. O., and Reneau, D. M. (1991). Bayesian analysis of screening data: Application to AIDS in blood donors. The Canadian Journal of Statistics 19, 135-150.
– reference: Fryback, D. G. (1978). Bayes' theorem and conditional nonindependence of data in medical diagnosis. Computers and Biomedical Research 11, 423-434.
– reference: Gastwirth, J. L. (1987). The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data. Statistical Science 2, 213-238.
– reference: Rubin, D. (1988). Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics 3, 395-402.
– reference: Joseph, L., Gyorkos, T., and Coupal, L. (1995). Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141, 263-272.
– reference: Brenner, H. (1996). How independent are multiple 'independent' diagnostic classifications Statistics in Medicine 15, 1377-1386.
– reference: Thisted, R. A. (1988). Elements of Statistical Computing. New York : Chapman and Hall.
– reference: Alonzo, T. A. and Pepe, M. S. (1999). Using a combination of reference tests to assess the accuracy of a new diagnostic test. Statistics in Medicine 22, 2987-3003.
– reference: Vacek, P. M. (1985). The effect of conditional dependence on the evaluation of diagnostic tests. Biometrics 41, 959-968.
– reference: Gelman, A. and Rubin, D. B. (1992). Inferences from iterative simulation and multiple sequences (with discussion). Statistical Science 7, 457-511.
– reference: Johnson, W. O. and Gastwirth, J. L. (1991). Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome. Journal of the Royal Statistical Society, Series B 53, 427-439.
– reference: Qu, Y. and Hadgu, A. (1998). A model for evaluating the sensitivity and specificity for correlated diagnostic tests in efficacy studies with an imperfect reference test. Journal of the American Statistical Association 93, 920-928.
– reference: Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409.
– reference: Torrance-Rynard, V. L. and Walter, S. D. (1997). Effects of dependent errors in the assessment of diagnostic test performance. Statistics in Medicine 16, 2157-2175.
– reference: Spiegelhalter, D. J., Freedman, L. S., and Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. Journal of the Royal Statistical Society, Series A 157, 357-416.
– reference: Walter, S. D. and Irwig, L. M. (1988). Estimation of error rates, disease prevalence, and relative risk misclassified data: A review. Journal of Clinical Epidemiology 41, 923-937.
– reference: Qu, Y., Tan, M., and Kutner, M. H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 52, 797-810.
– reference: Neath, A. and Samaniego, F. J. (1997). On the efficacy of Bayesian inference for nonidentifiable models. American Statistician 51, 225-234.
– reference: Espeland, M. A. and Handelman, S. L. (1989). Using latent class models to characterize and assess relative error in discrete measurements. Biometrics 45, 587-599.
– reference: Yang, I. and Becker, M. P. (1997). Latent variable modeling of diagnostic accuracy. Biometrics 53, 948-958.
– volume: 53
  start-page: 427
  year: 1991
  end-page: 439
  article-title: Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome
  publication-title: Journal of the Royal Statistical Society, Series B
– volume: 41
  start-page: 959
  year: 1985
  end-page: 968
  article-title: The effect of conditional dependence on the evaluation of diagnostic tests
  publication-title: Biometrics
– volume: 22
  start-page: 2987
  year: 1999
  end-page: 3003
  article-title: Using a combination of reference tests to assess the accuracy of a new diagnostic test
  publication-title: Statistics in Medicine
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  article-title: Sampling‐based approaches to calculating marginal densities
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 213
  year: 1987
  end-page: 238
  article-title: The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data
  publication-title: Statistical Science
– volume: 41
  start-page: 923
  year: 1988
  end-page: 937
  article-title: Estimation of error rates, disease prevalence, and relative risk misclassified data: A review
  publication-title: Journal of Clinical Epidemiology
– volume: 47
  start-page: 603
  year: 1998
  end-page: 616
  article-title: A biomedical application of latent class models with random effects
  publication-title: Applied Statistics
– volume: 11
  start-page: 423
  year: 1978
  end-page: 434
  article-title: Bayes' theorem and conditional nonindependence of data in medical diagnosis
  publication-title: Computers and Biomedical Research
– volume: 157
  start-page: 357
  year: 1994
  end-page: 416
  article-title: Bayesian approaches to randomized trials
  publication-title: Journal of the Royal Statistical Society, Series A
– year: 1988
– volume: 141
  start-page: 263
  year: 1995
  end-page: 272
  article-title: Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard
  publication-title: American Journal of Epidemiology
– volume: 3
  start-page: 395
  year: 1988
  end-page: 402
  article-title: Using the SIR algorithm to simulate posterior distributions
  publication-title: Bayesian Statistics
– volume: 19
  start-page: 135
  year: 1991
  end-page: 150
  article-title: Bayesian analysis of screening data: Application to AIDS in blood donors
  publication-title: The Canadian Journal of Statistics
– volume: 15
  start-page: 1377
  year: 1996
  end-page: 1386
  article-title: How independent are multiple ‘independent’ diagnostic classifications
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 587
  year: 1989
  end-page: 599
  article-title: Using latent class models to characterize and assess relative error in discrete measurements
  publication-title: Biometrics
– volume: 52
  start-page: 797
  year: 1996
  end-page: 810
  article-title: Random effects models in latent class analysis for evaluating accuracy of diagnostic tests
  publication-title: Biometrics
– volume: 4
  start-page: 765
  year: 1992
  end-page: 776
– volume: 16
  start-page: 2157
  year: 1997
  end-page: 2175
  article-title: Effects of dependent errors in the assessment of diagnostic test performance
  publication-title: Statistics in Medicine
– volume: 51
  start-page: 225
  year: 1997
  end-page: 234
  article-title: On the efficacy of Bayesian inference for nonidentifiable models
  publication-title: American Statistician
– volume: 93
  start-page: 920
  year: 1998
  end-page: 928
  article-title: A model for evaluating the sensitivity and specificity for correlated diagnostic tests in efficacy studies with an imperfect reference test
  publication-title: Journal of the American Statistical Association
– volume: 7
  start-page: 457
  year: 1992
  end-page: 511
  article-title: Inferences from iterative simulation and multiple sequences (with discussion)
  publication-title: Statistical Science
– volume: 53
  start-page: 948
  year: 1997
  end-page: 958
  article-title: Latent variable modeling of diagnostic accuracy
  publication-title: Biometrics
– ident: e_1_2_1_21_1
  doi: 10.2307/2530967
– ident: e_1_2_1_5_1
  doi: 10.1016/0010-4809(78)90001-0
– start-page: 765
  volume-title: Bayesian Statistics
  year: 1992
  ident: e_1_2_1_16_1
– ident: e_1_2_1_4_1
  doi: 10.2307/2531499
– ident: e_1_2_1_13_1
  doi: 10.2307/2684892
– ident: e_1_2_1_14_1
  doi: 10.1080/01621459.1998.10473748
– volume: 41
  start-page: 923
  year: 1988
  ident: e_1_2_1_22_1
  article-title: Estimation of error rates, disease prevalence, and relative risk misclassified data: A review
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/0895-4356(88)90110-2
– ident: e_1_2_1_23_1
  doi: 10.2307/2533555
– ident: e_1_2_1_8_1
  doi: 10.1080/01621459.1990.10476213
– ident: e_1_2_1_15_1
  doi: 10.2307/2533043
– volume: 3
  start-page: 395
  year: 1988
  ident: e_1_2_1_17_1
  article-title: Using the SIR algorithm to simulate posterior distributions
  publication-title: Bayesian Statistics
– ident: e_1_2_1_10_1
  doi: 10.1111/1467-9876.00131
– ident: e_1_2_1_12_1
  doi: 10.1093/oxfordjournals.aje.a117428
– ident: e_1_2_1_18_1
  doi: 10.2307/2983527
– volume: 53
  start-page: 427
  year: 1991
  ident: e_1_2_1_11_1
  article-title: Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome
  publication-title: Journal of the Royal Statistical Society, Series B
  doi: 10.1111/j.2517-6161.1991.tb01835.x
– volume: 22
  start-page: 2987
  year: 1999
  ident: e_1_2_1_2_1
  article-title: Using a combination of reference tests to assess the accuracy of a new diagnostic test
  publication-title: Statistics in Medicine
  doi: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B
– ident: e_1_2_1_6_1
  doi: 10.1214/ss/1177013215
– ident: e_1_2_1_20_1
  doi: 10.1002/(SICI)1097-0258(19971015)16:19<2157::AID-SIM653>3.0.CO;2-X
– ident: e_1_2_1_9_1
  doi: 10.1214/ss/1177011136
– ident: e_1_2_1_7_1
  doi: 10.2307/3315793
– volume-title: Elements of Statistical Computing
  year: 1988
  ident: e_1_2_1_19_1
– ident: e_1_2_1_3_1
  doi: 10.1002/(SICI)1097-0258(19960715)15:13<1377::AID-SIM275>3.0.CO;2-#
SSID ssj0009502
Score 2.191991
Snippet Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject....
SourceID proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 158
SubjectTerms Bayes Theorem
Bayesian analysis
Bayesian theory
Binary data
Biometrics
Biometry
Cambodia
Cambodia - ethnology
Canada
Canada - epidemiology
Correlation
Covariance
diagnostic techniques
Diagnostic tests
Diagnostic Tests, Routine - statistics & numerical data
Disease models
disease prevalence
Epidemiology
Frequentism
Gold standard
Humans
Latent class model
Markov chain Monte Carlo
Markov Chains
Medical diagnostic tests
Models, Statistical
Monte Carlo Method
Multilevel models
Musical intervals
Parametric models
Random effects model
refugees
Sensitivity
Serology
Specificity
Strongyloides
Strongyloidiasis - diagnosis
Strongyloidiasis - epidemiology
strongylosis
uncertainty
SummonAdditionalLinks – databaseName: ProQuest Technology Collection
  dbid: 8FG
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB5sRagPUs_arvVHBPFtcbObze49iS1eq_TqQ1t6iBCSbCKi3NbuFa7_vTPZH2fBSt-OuyTcZibJN5lvvwF4k2V4bLpxFSfOprGovI8NEWwKaXluk8K6kIqZHsvDM_F5ls86bk7T0Sr7PTFs1FVt6Y78XZpyWRQINt5f_I6paBQlV7sKGmtwn-NBQ25eTg7-0txNWrFwoncJPrtB5Om_XVKMyCkhkZe9_lF3Oq15XSNmpele9nTFfwHRm7g2HEyTTXjUIUr2oXWBx3DPzUfwoK0xeT2Ch9NBmLUZwQaBy1ab-Ql829PXjl6iZL2yuGvYomahOg4eaQw7MoyXqx_thSHrK-Zaxzp-F-sJiaxqOXs4MkP0umi24HTy8XT_MO6qLcQWg5gy1jJ3mRaJr0jmLDFOa1ywWldladLKpZmnaEYKL00QN7eCl8YiNvfcja3NnsL6vJ67HWBCm1TnpIHqvaDMZsaN10ZaJxLtrImg6CdZ2U6JnApi_FKriITMo8hoVCeTq2AetYyADz0vWjWOO_TZQTsq_R03TXV2ktIVT_t2UhrB22DcYSx9-ZOIbkWuzo8P1ExOjs7Lo6_qJIKtYP2hYSoxTMtFBLu9N6hu7Tdq8NQIXg-_4qKlTIyeu_qqUZxwXpFlBY7w6pY2BckWIVyMgN3SgrD5WAj6G9utJ64mBXErBrb4hDK45p1nS-19-jLFT8_--2S7sLHi4j2H9cXllXuB4GxhXoYl-AfZ2S7c
  priority: 102
  providerName: ProQuest
Title Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests
URI https://api.istex.fr/ark:/67375/WNG-X6FLW8LZ-S/fulltext.pdf
https://www.jstor.org/stable/2676854
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2001.00158.x
https://www.ncbi.nlm.nih.gov/pubmed/11252592
https://www.proquest.com/docview/221677326
https://www.proquest.com/docview/1663573374
https://www.proquest.com/docview/76968439
https://www.proquest.com/docview/923194454
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6xIaTxwI8yWBgUIyHeUsWJY6ePa7tuoLWgrdMqNMmyXYeHohYtrbTx1-OL05SiTZoQL1Gl2FZ8PZ-_852_A_iQJG7btO1JGFkTh2yS56HGBBvBDU1NJIwtQzGDIT8-Z5_H6bjKf8K7MJ4foj5ww5VR2mtc4EoXG4scTW3orPAY3TyKMYU0ayGepAlHGv3eafwH_27kicOrLhtJPbcPtLFTbeVq7vAriv56lbp4GyjdxLjlJtV_CtPV9HxuyrS1XOiW-fUX8-P_mf8zeFJhWXLgle85PLCzBjzy1S1vGvB4UFPCFg3YQVjrWaFfwGVH3Vi8vkkOKk5zW5DFnGBlNrwfT1xH0p1jOL08qiS9qlavsaTjM8vIoEqFJD2fLehGJiMnpGIXRv3DUfc4rOo8hMa5T1moeGoTxaJ8ggRrkbZKOVOh1CTLdDyxcZKjH8VZznVJq24YzbRxXkFObduY5CVsz-YzuweEKR2rFNlX85xhTDWhOleaG8siZY0OQKz-UmkqDnQsxfFDrn0hlKpEqWKFTipLqcrrAGjd86fnAblHnz2nNVJ9d-Zanp_FeLjk70XFAXwsVakeS11NMcVOpPJieCTHvH9ykZ18k2cB7Ja6VjeMuXMQUxbA_kr3ZGV1ChnHlAvhAHkA7-u3zlxgDEjN7HxZSIoIUySJcCO8u6ONQMIkB1QDIHe0QK-gzRh-xiuv92uhOMTsXGo3Q15q772lJTufvgzcr9f_2nEfdtYJgm9ge3G1tG8dYlzoJmyJsXDPrEvx2T9qwsPO4fDrabO0Er8BTtxbtw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5tQ4jxgKAMFgbMSMBbROI4cfqAEANKy9rysE2rJiTLcRyEQO1YOtH-J34kd0mcMomhveytSm0r8Z3P3_nO3wE8jyLcNm039wNruC_yovAzSrCRiQljE0hjq1DMaJz0j8SnSTxZg9_uLgylVTqbWBnqfGbojPwV52EiJYKNN6c_fSoaRcFVV0Gj1op9u_yFHlv5evAexfuC896Hw3d9vykq4BvE6qmvk9hGWgRFTmxeQWa1Rr3UOk_TjOeWRwWB9kQUSVZxeBsRpplBCFqEtmtMhMOuww1B5-K4euRE_kXxG9Tc5JRNJsLJhbwh93RBLmlI8Y84dXRLzWa4XugZQmSS7sJlR_4L916E0dU-2LsLdxoAy97WGncP1uy0AzfrkpbLDtwetTywZQc2CcvWVND34cueXlq6s8kckbkt2XzGqmI8uIMy7MjQPc-_1eeTzBXoNZY16WTM5T-yvE4RxJEZguV5uQWH1yGHB7AxnU3tNjChM65jolwtCkGB1CjMCp0lxopAW5N5IN0kK9MQn1P9jR9q5QCReBQJjcpyhqoSj1p4ELY9T2vyjyv02UY5Kv0VbbQ6OuB0olRfhuIevKyE246lz75TXp2M1fH4o5okveFxOjxRBx5sVdJvG_IEvcJYeLDjtEE1pqZU7cLw4Fn7L9oICvzoqZ2dlyokWCmjSOIIu5e0kcSShOjUA3ZJC3IFukLQazysNXE1KQiT0Y_GL0wq1bzybKm9wecR_nr03y_bhVv9w9FQDQfj_R3YXKUBPoaN-dm5fYK4cJ49rZYjA3XNy_8PiqRqvQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5tQ6DxgKAMFgbMSMBbtMRx4vQBIcYoK2sL0jatQkiW4zgIgdqxdKL9Z_w87pI4ZRJDe9lbldpW4jvb39mfvwN4HkW4bNpu7gfWcF_kReFnRLCRiQljE0hjq6OY4SjZPxYfxvF4BX67uzBEq3RzYjVR51NDe-Q7nIeJlAg2doqGFfFpr_f69KdPCaTooNVl06g95MAufmH0Vr7q76GpX3Dee3f0dt9vEgz4BnF76usktpEWQZGTsleQWa3RR7XO0zTjueVRQQA-EUWSVXreRoRpZhCOFqHtGhNhs6twQ0aIqXAkybH8S-43qHXKiVkmwvEFDpF7OqfwNKSzkDh10kvNwrha6CnCZbL03DEl_4WBL0Lqak3s3YU7DZhlb2rvuwcrdtKBm3V6y0UHbg9bTdiyA-uEa2tZ6PvwZVcvLN3fZE7U3JZsNmVVYh5cTRlWZBiq59_qvUrmkvUayxpqGXNcSJbXdEFsmSFwnpUbcHQddngAa5PpxG4CEzrjOib51aIQdKgahVmhs8RYEWhrMg-k62RlGhF0ysXxQy2DITKPIqNRis5QVeZRcw_CtuZpLQRyhTqbaEelv-J8rY4POe0u1RejuAcvK-O2bemz78Sxk7E6Gb1X46Q3OEkHn9WhBxuV9duCPMEIMRYebDlvUM20U6p2kHjwrP0X5ws6BNITOz0vVUgQU0aRxBa2LykjSTEJkaoH7JISFBZ0haDXeFh74rJTEDJjTI1fmFSueeXeUrv9j0P89ei_X7YNt3Dgq0F_dLAF60tG4GNYm52d2ycIEWfZ02o0MlDXPPr_AC8Ibvw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Approaches+to+Modeling+the+Conditional+Dependence+Between+Multiple+Diagnostic+Tests&rft.jtitle=Biometrics&rft.au=Dendukuri%2C+Nandini&rft.au=Joseph%2C+Lawrence&rft.date=2001-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=57&rft.issue=1&rft.spage=158&rft.epage=167&rft_id=info:doi/10.1111%2Fj.0006-341X.2001.00158.x&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon