Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests
Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical...
Saved in:
Published in | Biometrics Vol. 57; no. 1; pp. 158 - 167 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Blackwell Publishing Ltd
01.03.2001
International Biometric Society |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 |
DOI | 10.1111/j.0006-341x.2001.00158.x |
Cover
Abstract | Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada. |
---|---|
AbstractList | Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada. Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada. Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada.Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject. This assumption may be violated in practice, especially in situations where none of the tests is a perfectly accurate gold standard. Classical inference for models accounting for the conditional dependence between tests requires that results from at least four different tests be used in order to obtain an identifiable solution, but it is not always feasible to have results from this many tests. We use a Bayesian approach to draw inferences about the disease prevalence and test properties while adjusting for the possibility of conditional dependence between tests, particularly when we have only two tests. We propose both fixed and random effects models. Since with fewer than four tests the problem is nonidentifiable, the posterior distributions are strongly dependent on the prior information about the test properties and the disease prevalence, even with large sample sizes. If the degree of correlation between the tests is known a priori with high precision, then our methods adjust for the dependence between the tests. Otherwise, our methods provide adjusted inferences that incorporate all of the uncertainty inherent in the problem, typically resulting in wider interval estimates. We illustrate our methods using data from a study on the prevalence of Strongyloides infection among Cambodian refugees to Canada. |
Author | Joseph, Lawrence Dendukuri, Nandini |
Author_xml | – sequence: 1 givenname: Nandini surname: Dendukuri fullname: Dendukuri, Nandini – sequence: 2 givenname: Lawrence surname: Joseph fullname: Joseph, Lawrence |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/11252592$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkU1vEzEQhi1URNPCP0Cw4gBcNvh7dw8gNSktlRJ6aFArhGQ53tnWYbMOa0dN_j3ebptDDwVfPKN53hl73gO017gGEEoIHpJ4Pi2GGGOZMk42Q4oxiSkR-XDzDA2I4CTFnOI9NHiArvbRgfeLmBYC0xdonxAqqCjoAP0a6S14q5vkaLVqnTY34JPgkqkrobbNdRJuIBm7prTBukbXyTGsoCmhMZCMINwCNMl0XQe7qiE5tvq6cT5Yk8zAB_8SPa907eHV_X2IZidfZ-Nv6eT89Gx8NEmNxDJPtRTANMdViSnP8Ry0xoJoXeb5nJZAWUWEwJJXck54jAwn-dxktKgIFMawQ_Shbxs_8GcdB6ul9QbqWjfg1l4VlJGCc8Ej-f5JMpOFzDkrIvjxSZBIyUTGWNb1fPcIXbh1G1flFaVEZhmjMkJv7qH1fAmlWrV2qdutejAiAl96wLTO-xYqZWzQ3c5Dq22tCFad82qhOlNVZ6rqnFd3zqtNbJA_arCb8W_p5156a2vY_rdOjc7OpzGK-te9fuGDa3d6KjOZ3y097cvWB9jsyrr9rWTGMqEuv5-qK3kyucwnP9VF5N_2fKWd0tet9erHBY0zu2dkGFP2F08l5c4 |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1017_S0022029919000177 crossref_primary_10_1186_s12874_015_0061_7 crossref_primary_10_1016_j_prevetmed_2006_04_006 crossref_primary_10_1016_j_prevetmed_2004_12_005 crossref_primary_10_1016_j_prevetmed_2006_04_008 crossref_primary_10_1016_j_prevetmed_2020_105199 crossref_primary_10_1016_j_rvsc_2019_04_014 crossref_primary_10_1002_sim_4018 crossref_primary_10_1371_journal_pone_0005221 crossref_primary_10_1155_2012_487502 crossref_primary_10_1198_sbr_2011_10005 crossref_primary_10_3168_jds_2015_10293 crossref_primary_10_1177_0962280217726804 crossref_primary_10_3899_jrheum_130667 crossref_primary_10_1002_sim_9269 crossref_primary_10_1371_journal_pntd_0002843 crossref_primary_10_1002_sim_7522 crossref_primary_10_37737_ace_24012 crossref_primary_10_1016_j_ijpara_2013_05_011 crossref_primary_10_3390_v13050914 crossref_primary_10_1016_S1076_6332_03_00814_6 crossref_primary_10_1371_journal_pone_0262944 crossref_primary_10_3390_microorganisms9091815 crossref_primary_10_1111_jvim_16798 crossref_primary_10_3168_jds_2020_19231 crossref_primary_10_1016_j_vetmic_2025_110377 crossref_primary_10_1016_j_mcp_2007_06_003 crossref_primary_10_1098_rsos_201867 crossref_primary_10_1016_j_prevetmed_2009_06_006 crossref_primary_10_1186_s13020_016_0100_2 crossref_primary_10_3168_jds_2012_5328 crossref_primary_10_1016_j_prevetmed_2021_105347 crossref_primary_10_1111_jfd_12906 crossref_primary_10_1111_j_1541_0420_2006_00665_x crossref_primary_10_1016_j_prevetmed_2018_10_012 crossref_primary_10_1002_sim_7530 crossref_primary_10_1097_EDE_0b013e318207fc5c crossref_primary_10_1016_S1473_3099_18_30649_2 crossref_primary_10_1136_archdischild_2021_323712 crossref_primary_10_1016_j_prevetmed_2024_106292 crossref_primary_10_1017_S0031182015000475 crossref_primary_10_1016_j_livsci_2021_104698 crossref_primary_10_1186_s12874_021_01255_4 crossref_primary_10_1186_s12874_024_02432_x crossref_primary_10_1093_biomtc_ujaf025 crossref_primary_10_1002_sim_3505 crossref_primary_10_1002_sim_2899 crossref_primary_10_1016_j_pt_2003_11_008 crossref_primary_10_1111_j_0006_341X_2004_00187_x crossref_primary_10_1111_jvim_15699 crossref_primary_10_1016_j_probengmech_2024_103670 crossref_primary_10_1111_1365_2664_12407 crossref_primary_10_1002_sim_3862 crossref_primary_10_1016_S0167_5877_01_00261_6 crossref_primary_10_1111_jvim_14361 crossref_primary_10_1136_bmjopen_2014_005096 crossref_primary_10_1002_sim_10315 crossref_primary_10_1097_INF_0b013e3181c61ddb crossref_primary_10_1002_sim_6218 crossref_primary_10_1016_j_cvsm_2007_01_007 crossref_primary_10_1214_19_AOAS1256 crossref_primary_10_1016_j_jclinepi_2022_04_026 crossref_primary_10_3389_fvets_2018_00229 crossref_primary_10_1016_j_prevetmed_2022_105771 crossref_primary_10_1111_avj_12190 crossref_primary_10_1186_s12879_023_08135_w crossref_primary_10_1016_j_prevetmed_2024_106144 crossref_primary_10_1016_j_jiph_2022_10_028 crossref_primary_10_1016_j_camwa_2009_03_119 crossref_primary_10_1186_s12917_017_1145_x crossref_primary_10_1002_14651858_CD009135_pub2 crossref_primary_10_1080_02664760701835862 crossref_primary_10_1371_journal_pone_0079489 crossref_primary_10_1186_s40001_023_01265_6 crossref_primary_10_1371_journal_pone_0114930 crossref_primary_10_15446_rce_v43n2_80288 crossref_primary_10_3389_fvets_2019_00204 crossref_primary_10_3389_fvets_2021_588176 crossref_primary_10_1016_j_tvjl_2021_105728 crossref_primary_10_1371_journal_pntd_0002807 crossref_primary_10_1016_j_jviromet_2012_08_018 crossref_primary_10_1198_108571107X178095 crossref_primary_10_1371_journal_pone_0261528 crossref_primary_10_1371_journal_pntd_0000995 crossref_primary_10_1002_sim_6101 crossref_primary_10_1007_s11250_020_02263_0 crossref_primary_10_1016_j_prevetmed_2022_105783 crossref_primary_10_1177_0962280219852649 crossref_primary_10_1186_s13098_015_0070_z crossref_primary_10_1186_1746_6148_8_68 crossref_primary_10_1016_j_prevetmed_2012_11_029 crossref_primary_10_3390_diagnostics1010001 crossref_primary_10_1111_jfd_12792 crossref_primary_10_1080_10543406_2011_589638 crossref_primary_10_1214_08_BJPS006 crossref_primary_10_1002_sim_7449 crossref_primary_10_1136_bmjopen_2022_061311 crossref_primary_10_1590_0037_8682_0009_2017 crossref_primary_10_1093_aje_kwt286 crossref_primary_10_1016_j_prevetmed_2022_105712 crossref_primary_10_1111_j_1740_9713_2011_00470_x crossref_primary_10_2310_8000_2013_131031 crossref_primary_10_1002_sim_6230 crossref_primary_10_1080_01621459_2018_1476239 crossref_primary_10_5005_jp_journals_10071_24051 crossref_primary_10_1016_j_smallrumres_2018_08_004 crossref_primary_10_1186_1471_2288_14_110 crossref_primary_10_1111_zph_13109 crossref_primary_10_1590_S0100_736X2012000400001 crossref_primary_10_1198_jasa_2009_tm08603 crossref_primary_10_1186_s41512_024_00175_3 crossref_primary_10_5897_JVMAH2015_0410 crossref_primary_10_1093_jtm_taac043 crossref_primary_10_1177_0272989X221089268 crossref_primary_10_1002_sim_7339 crossref_primary_10_1016_j_jviromet_2017_07_010 crossref_primary_10_1016_j_prevetmed_2023_105946 crossref_primary_10_1002_sim_6803 crossref_primary_10_1002_jrsm_1243 crossref_primary_10_1186_s12917_023_03712_2 crossref_primary_10_1016_j_actatropica_2024_107414 crossref_primary_10_1081_BIP_200067912 crossref_primary_10_1111_biom_12583 crossref_primary_10_2139_ssrn_4095071 crossref_primary_10_1016_j_prevetmed_2019_01_010 crossref_primary_10_1214_088342305000000098 crossref_primary_10_1016_j_annepidem_2014_04_009 crossref_primary_10_1016_j_prevetmed_2008_01_011 crossref_primary_10_1038_modpathol_3800457 crossref_primary_10_1016_j_pt_2008_12_008 crossref_primary_10_1080_00224065_2012_11917894 crossref_primary_10_1177_10406387211011990 crossref_primary_10_1093_cid_cir080 crossref_primary_10_1038_s41598_018_37616_1 crossref_primary_10_1111_tbed_13589 crossref_primary_10_1002_sim_9078 crossref_primary_10_1016_j_prevetmed_2018_11_003 crossref_primary_10_3389_fvets_2023_1079918 crossref_primary_10_1002_art_39320 crossref_primary_10_1177_1471082X0700800106 crossref_primary_10_1097_01_ede_0000173042_07579_17 crossref_primary_10_1002_sim_5842 crossref_primary_10_1007_s13253_015_0214_5 crossref_primary_10_1016_j_jctube_2022_100331 crossref_primary_10_1002_sim_1809 crossref_primary_10_1016_j_forsciint_2017_01_016 crossref_primary_10_1016_j_prevetmed_2022_105732 crossref_primary_10_1177_009286151004400409 crossref_primary_10_1016_j_prevetmed_2017_03_008 crossref_primary_10_1198_108571106X153534 crossref_primary_10_1016_j_actatropica_2013_11_026 crossref_primary_10_1016_j_prevetmed_2021_105452 crossref_primary_10_1016_j_yrtph_2010_02_003 crossref_primary_10_1111_j_1365_3156_2007_01975_x crossref_primary_10_1002_sim_9085 crossref_primary_10_1002_sim_3661 crossref_primary_10_1097_EDE_0b013e31823b506b crossref_primary_10_1111_j_1541_0420_2009_01279_x crossref_primary_10_1016_j_drugalcdep_2020_107906 crossref_primary_10_1371_journal_pone_0282417 crossref_primary_10_1111_j_1541_0420_2012_01773_x crossref_primary_10_1111_jam_13098 crossref_primary_10_1371_journal_pone_0161621 crossref_primary_10_1002_bimj_200710365 crossref_primary_10_1002_bimj_201400155 crossref_primary_10_1016_j_jviromet_2014_06_025 crossref_primary_10_1371_journal_pone_0050765 crossref_primary_10_1016_j_prevetmed_2005_01_006 crossref_primary_10_1214_14_EJS891 crossref_primary_10_1016_j_annepidem_2016_08_002 crossref_primary_10_1186_s12911_019_0845_5 crossref_primary_10_1111_j_1365_2753_2009_01150_x crossref_primary_10_1016_j_prevetmed_2021_105567 crossref_primary_10_1016_j_jad_2016_08_014 crossref_primary_10_1038_tpj_2016_37 crossref_primary_10_1016_j_ijmm_2015_08_029 crossref_primary_10_1136_ard_2008_093161 crossref_primary_10_3389_fvets_2023_1149929 crossref_primary_10_1198_1085711031526 crossref_primary_10_1016_j_ijpara_2009_09_003 crossref_primary_10_1016_j_vetpar_2017_07_030 crossref_primary_10_1016_j_jclinepi_2009_02_005 crossref_primary_10_1177_0272989X09345022 crossref_primary_10_1371_journal_pntd_0009630 crossref_primary_10_4269_ajtmh_19_0866 crossref_primary_10_1016_j_prevetmed_2011_10_014 crossref_primary_10_3168_jds_2022_21905 crossref_primary_10_1186_s12879_023_08935_0 crossref_primary_10_1371_journal_pone_0305126 crossref_primary_10_1002_sim_2116 crossref_primary_10_3354_dao03566 crossref_primary_10_3354_dao03687 crossref_primary_10_1177_1040638720975742 crossref_primary_10_1016_j_jval_2013_02_007 crossref_primary_10_1093_cid_cis403 crossref_primary_10_1016_j_prevetmed_2007_04_002 crossref_primary_10_1183_13993003_00811_2024 crossref_primary_10_3389_fvets_2024_1415277 crossref_primary_10_1002_sim_5629 crossref_primary_10_1186_1742_7622_9_9 crossref_primary_10_1177_15563316211006710 crossref_primary_10_1016_j_prevetmed_2023_106048 crossref_primary_10_1080_10543401003618868 crossref_primary_10_1371_journal_pntd_0010739 crossref_primary_10_1093_aje_kwy092 crossref_primary_10_1177_1470320313498632 crossref_primary_10_1016_j_prevetmed_2015_02_018 crossref_primary_10_1111_j_1541_0420_2009_01330_x crossref_primary_10_1111_1365_2664_13477 crossref_primary_10_1136_vr_102872 crossref_primary_10_1186_s40249_025_01292_x crossref_primary_10_1016_j_vetpar_2014_11_020 crossref_primary_10_1080_19466315_2019_1574489 crossref_primary_10_1371_journal_pone_0144608 crossref_primary_10_1016_j_atherosclerosis_2020_09_026 crossref_primary_10_1111_2041_210X_14370 crossref_primary_10_1198_108571107X198895 crossref_primary_10_1016_j_actatropica_2017_05_028 crossref_primary_10_1128_JCM_02744_15 crossref_primary_10_3168_jds_2021_21491 crossref_primary_10_1176_jnp_15_2_200 crossref_primary_10_1017_S0022149X10000167 crossref_primary_10_1016_j_ijpara_2014_05_009 crossref_primary_10_1002_art_24793 crossref_primary_10_1093_aje_kwp049 crossref_primary_10_1016_j_prevetmed_2006_02_007 crossref_primary_10_1371_journal_pone_0040633 crossref_primary_10_1002_sim_2002 crossref_primary_10_1016_j_actatropica_2012_03_010 crossref_primary_10_1002_art_40355 crossref_primary_10_1007_s00415_019_09212_4 crossref_primary_10_1186_s41182_016_0031_8 crossref_primary_10_1016_j_jviromet_2010_09_001 crossref_primary_10_1016_j_prevetmed_2004_09_009 crossref_primary_10_3390_microorganisms10061095 crossref_primary_10_1111_j_0006_341X_2004_00183_x crossref_primary_10_1097_00005650_200503000_00009 crossref_primary_10_1111_j_1541_0420_2005_00510_x crossref_primary_10_1371_journal_pntd_0008087 crossref_primary_10_2460_ajvr_2002_63_1598 crossref_primary_10_1016_j_tvjl_2009_10_024 crossref_primary_10_1016_j_cmpb_2023_107765 crossref_primary_10_1111_biom_13579 crossref_primary_10_1002_sim_6619 crossref_primary_10_1007_s13253_015_0239_9 crossref_primary_10_1016_j_vetpar_2018_03_013 crossref_primary_10_1080_14737167_2022_2079497 crossref_primary_10_1002_sim_8114 crossref_primary_10_1016_j_prevetmed_2017_10_002 crossref_primary_10_1177_0962280214541852 crossref_primary_10_1097_INF_0b013e3181cb45da crossref_primary_10_1016_j_ehb_2015_02_002 crossref_primary_10_1177_104063871002200301 crossref_primary_10_1198_108571106X110883 crossref_primary_10_1002_sim_7148 crossref_primary_10_3168_jds_2016_11407 crossref_primary_10_1186_s12917_016_0814_5 crossref_primary_10_1371_journal_pntd_0006102 crossref_primary_10_1080_02664763_2013_849231 crossref_primary_10_1016_j_prevetmed_2007_01_003 crossref_primary_10_1016_j_prevetmed_2021_105409 crossref_primary_10_1371_journal_pone_0267110 crossref_primary_10_1002_sim_1178 crossref_primary_10_1111_1467_9876_00389 crossref_primary_10_1002_sim_6745 crossref_primary_10_1093_aje_kws465 crossref_primary_10_1186_1472_6947_13_45 crossref_primary_10_1080_03610918_2023_2196750 crossref_primary_10_2139_ssrn_4107137 crossref_primary_10_1002_ece3_6448 crossref_primary_10_1016_j_canep_2011_07_001 crossref_primary_10_1002_sim_4320 crossref_primary_10_1016_j_jspi_2010_09_015 crossref_primary_10_1080_02664763_2014_995608 crossref_primary_10_1007_s00296_010_1591_2 crossref_primary_10_1051_vetres_2006018 crossref_primary_10_1080_02664763_2014_995606 crossref_primary_10_1080_02664763_2015_1070810 crossref_primary_10_1002_sim_3470 crossref_primary_10_1007_s11250_021_03039_w crossref_primary_10_1080_03610918_2012_690483 crossref_primary_10_1080_10543400701668274 crossref_primary_10_1007_s11606_012_2031_7 crossref_primary_10_1093_biostatistics_kxl038 crossref_primary_10_1007_s12539_024_00653_8 crossref_primary_10_1002_sim_9902 crossref_primary_10_1016_j_tvjl_2014_08_002 crossref_primary_10_3168_jds_2023_24590 crossref_primary_10_1016_j_vetpar_2009_12_014 crossref_primary_10_1016_S2214_109X_23_00108_0 crossref_primary_10_1111_j_1467_985X_2011_00682_x crossref_primary_10_17826_cumj_1003633 crossref_primary_10_1371_journal_pone_0012485 crossref_primary_10_1080_02664763_2017_1391182 crossref_primary_10_7717_peerj_8310 crossref_primary_10_3168_jds_2024_25404 crossref_primary_10_2460_ajvr_68_3_236 crossref_primary_10_1111_j_1541_0420_2010_01398_x crossref_primary_10_1186_s12884_020_03068_7 crossref_primary_10_1007_s13253_009_0013_y crossref_primary_10_1111_tmi_12559 crossref_primary_10_1016_j_prevetmed_2014_01_021 crossref_primary_10_1016_j_prevetmed_2016_03_015 crossref_primary_10_1080_01966324_2017_1338976 crossref_primary_10_1111_j_1541_0420_2007_00817_x crossref_primary_10_1038_srep24845 crossref_primary_10_1136_thoraxjnl_2018_211715 crossref_primary_10_1017_S0950268814000338 crossref_primary_10_3168_jds_2018_14854 crossref_primary_10_1016_j_onehlt_2021_100359 crossref_primary_10_1198_jasa_2009_0017 crossref_primary_10_1016_j_prevetmed_2023_106074 crossref_primary_10_1016_S0167_5877_01_00272_0 crossref_primary_10_1177_104063870501700507 crossref_primary_10_1002_sim_2167 crossref_primary_10_1186_s13643_024_02609_x crossref_primary_10_1093_aje_kwab093 crossref_primary_10_1002_sim_3250 crossref_primary_10_1186_1471_2288_14_67 crossref_primary_10_1093_botlinnean_boaa011 crossref_primary_10_1016_j_annepidem_2021_11_009 crossref_primary_10_1080_03610918_2011_649332 crossref_primary_10_1080_10543406_2011_590921 crossref_primary_10_1097_01_ede_0000198422_64801_8d crossref_primary_10_1016_j_prevetmed_2022_105699 crossref_primary_10_1128_CVI_00223_07 crossref_primary_10_1016_j_prevetmed_2024_106345 crossref_primary_10_1016_j_prevetmed_2022_105694 crossref_primary_10_1186_s12874_023_01873_0 crossref_primary_10_3168_jds_S0022_0302_06_72577_2 crossref_primary_10_1080_24709360_2019_1673623 crossref_primary_10_2460_ajvr_2003_64_57 crossref_primary_10_1186_s12879_023_08772_1 crossref_primary_10_1214_09_STS305 crossref_primary_10_3201_eid1402_061101 crossref_primary_10_1590_0037_8682_0423_2016 crossref_primary_10_1093_cid_ciaa1135 crossref_primary_10_1080_02664760903030239 crossref_primary_10_1177_117693510800600002 crossref_primary_10_1073_pnas_2023947118 crossref_primary_10_1198_108571107X177519 crossref_primary_10_3390_ijerph16162912 crossref_primary_10_1186_s12917_022_03141_7 crossref_primary_10_12677_AP_2022_127311 crossref_primary_10_1016_S0735_1097_01_01639_4 crossref_primary_10_1002_sim_1773 crossref_primary_10_3354_dao03655 crossref_primary_10_1016_j_clnesp_2023_12_019 crossref_primary_10_1016_j_prevetmed_2011_10_009 crossref_primary_10_3923_jp_2020_31_37 crossref_primary_10_1038_srep15375 crossref_primary_10_1002_sim_8047 crossref_primary_10_3168_jds_2014_7947 crossref_primary_10_1016_j_csda_2012_02_014 crossref_primary_10_1513_AnnalsATS_202212_1005OC crossref_primary_10_1111_j_1365_3156_2009_02229_x crossref_primary_10_1371_journal_pone_0164181 crossref_primary_10_1186_s13071_018_2700_4 crossref_primary_10_1002_acr_20656 crossref_primary_10_1371_journal_pone_0117313 crossref_primary_10_3899_jrheum_181121 crossref_primary_10_1002_acr_21743 crossref_primary_10_1017_S0950268816000455 crossref_primary_10_1016_j_csda_2007_08_020 crossref_primary_10_1590_0037_8682_0055_2018 |
Cites_doi | 10.2307/2530967 10.1016/0010-4809(78)90001-0 10.2307/2531499 10.2307/2684892 10.1080/01621459.1998.10473748 10.1016/0895-4356(88)90110-2 10.2307/2533555 10.1080/01621459.1990.10476213 10.2307/2533043 10.1111/1467-9876.00131 10.1093/oxfordjournals.aje.a117428 10.2307/2983527 10.1111/j.2517-6161.1991.tb01835.x 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B 10.1214/ss/1177013215 10.1002/(SICI)1097-0258(19971015)16:19<2157::AID-SIM653>3.0.CO;2-X 10.1214/ss/1177011136 10.2307/3315793 10.1002/(SICI)1097-0258(19960715)15:13<1377::AID-SIM275>3.0.CO;2-# |
ContentType | Journal Article |
Copyright | Copyright 2001 The International Biometric Society Copyright International Biometric Society Mar 2001 |
Copyright_xml | – notice: Copyright 2001 The International Biometric Society – notice: Copyright International Biometric Society Mar 2001 |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M2P M7P M7S P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7S9 L.6 7X8 7ST 7U6 C1K |
DOI | 10.1111/j.0006-341x.2001.00158.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Public Health Database (subscription) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection (subscription) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection ProQuest Natural Science Collection (Hollins) ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database Science Database (subscription) Biological Science Database Engineering Database (subscription) AAdvanced Technologies & Aerospace Database (subscription) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection (ProQuest) ProQuest Central Basic AGRICOLA AGRICOLA - Academic MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic Environment Abstracts Sustainability Science Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | AGRICOLA Computer Science Database MEDLINE Environment Abstracts CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 167 |
ExternalDocumentID | 70018661 11252592 10_1111_j_0006_341X_2001_00158_x BIOM158 2676854 ark_67375_WNG_X6FLW8LZ_S US201500067002 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GeographicLocations | Cambodia Canada |
GeographicLocations_xml | – name: Cambodia – name: Canada |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHBH AAHHS AANHP AANLZ AAONW AASGY AAUAY AAWIL AAXRX AAYCA AAZKR AAZSN ABAWQ ABBHK ABCQN ABCUV ABDBF ABDFA ABEJV ABEML ABFAN ABGNP ABJCF ABJNI ABLJU ABMNT ABPPZ ABPVW ABTAH ABUWG ABXSQ ABXVV ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACHJO ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACRPL ACSCC ACTMH ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIPN ADIZJ ADKYN ADMGS ADNBA ADNMO ADODI ADOZA ADULT ADVOB ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEOTA AEQDE AEUPB AEUYR AFBPY AFDVO AFEBI AFGKR AFKRA AFVYC AFWVQ AFZJQ AGLNM AGTJU AHMBA AIAGR AIHAF AIURR AIWBW AJAOE AJBDE AJNCP AJXKR ALAGY ALEEW ALIPV ALMA_UNASSIGNED_HOLDINGS ALRMG ALUQN AMBMR AMYDB APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EJD EMB EMK EMOBN EST ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JST K48 K6V K7- KOP L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB NU- O66 O9- OIG OJZSN OWPYF P0- P2P P2W P2X P4D P62 PHGZT PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL ROX RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WYISQ X6Y XBAML XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT 3V. AAPXW ADACV AELPN AEUQT AFFTP AFPWT AIBGX BSCLL ESTFP JSODD VQA WRC AAMMB AEFGJ AGORE AGQPQ AGXDD AIDQK AIDYY PHGZM AAYXX AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM PKN 7XB 8FK JQ2 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7S9 L.6 PUEGO 7X8 7ST 7U6 C1K |
ID | FETCH-LOGICAL-c6068-a65e3a40fd02480beaa051aad88b2de23f155064f6b14550c418bc729f1e9cc3 |
IEDL.DBID | DR2 |
ISSN | 0006-341X |
IngestDate | Fri Sep 05 13:45:16 EDT 2025 Fri Sep 05 11:45:23 EDT 2025 Fri Sep 05 17:28:24 EDT 2025 Fri Jul 25 19:42:22 EDT 2025 Wed Feb 19 01:29:49 EST 2025 Tue Jul 01 02:39:15 EDT 2025 Thu Apr 24 22:56:11 EDT 2025 Wed Jan 22 16:20:43 EST 2025 Thu Jul 03 21:22:35 EDT 2025 Wed Oct 30 09:57:22 EDT 2024 Thu Apr 03 09:44:47 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6068-a65e3a40fd02480beaa051aad88b2de23f155064f6b14550c418bc729f1e9cc3 |
Notes | http://dx.doi.org/10.1111/j.0006-341X.2001.00158.x ark:/67375/WNG-X6FLW8LZ-S ArticleID:BIOM158 istex:0FACA98BC5B95506D51C2EF4C38A6C0206DE05F5 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PMID | 11252592 |
PQID | 221677326 |
PQPubID | 35365 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_923194454 proquest_miscellaneous_76968439 proquest_miscellaneous_1663573374 proquest_journals_221677326 pubmed_primary_11252592 crossref_citationtrail_10_1111_j_0006_341X_2001_00158_x crossref_primary_10_1111_j_0006_341X_2001_00158_x wiley_primary_10_1111_j_0006_341X_2001_00158_x_BIOM158 jstor_primary_2676854 istex_primary_ark_67375_WNG_X6FLW8LZ_S fao_agris_US201500067002 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2001 |
PublicationDateYYYYMMDD | 2001-03-01 |
PublicationDate_xml | – month: 03 year: 2001 text: March 2001 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2001 |
Publisher | Blackwell Publishing Ltd International Biometric Society |
Publisher_xml | – name: Blackwell Publishing Ltd – name: International Biometric Society |
References | Joseph, L., Gyorkos, T., and Coupal, L. (1995). Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141, 263-272. Fryback, D. G. (1978). Bayes' theorem and conditional nonindependence of data in medical diagnosis. Computers and Biomedical Research 11, 423-434. Spiegelhalter, D. J., Freedman, L. S., and Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. Journal of the Royal Statistical Society, Series A 157, 357-416. Walter, S. D. and Irwig, L. M. (1988). Estimation of error rates, disease prevalence, and relative risk misclassified data: A review. Journal of Clinical Epidemiology 41, 923-937. Neath, A. and Samaniego, F. J. (1997). On the efficacy of Bayesian inference for nonidentifiable models. American Statistician 51, 225-234. Brenner, H. (1996). How independent are multiple 'independent' diagnostic classifications Statistics in Medicine 15, 1377-1386. Qu, Y. and Hadgu, A. (1998). A model for evaluating the sensitivity and specificity for correlated diagnostic tests in efficacy studies with an imperfect reference test. Journal of the American Statistical Association 93, 920-928. Yang, I. and Becker, M. P. (1997). Latent variable modeling of diagnostic accuracy. Biometrics 53, 948-958. Espeland, M. A. and Handelman, S. L. (1989). Using latent class models to characterize and assess relative error in discrete measurements. Biometrics 45, 587-599. Torrance-Rynard, V. L. and Walter, S. D. (1997). Effects of dependent errors in the assessment of diagnostic test performance. Statistics in Medicine 16, 2157-2175. Gastwirth, J. L. (1987). The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data. Statistical Science 2, 213-238. Alonzo, T. A. and Pepe, M. S. (1999). Using a combination of reference tests to assess the accuracy of a new diagnostic test. Statistics in Medicine 22, 2987-3003. Vacek, P. M. (1985). The effect of conditional dependence on the evaluation of diagnostic tests. Biometrics 41, 959-968. Gastwirth, J. L., Johnson, W. O., and Reneau, D. M. (1991). Bayesian analysis of screening data: Application to AIDS in blood donors. The Canadian Journal of Statistics 19, 135-150. Hadgu, A. and Qu, Y. (1998). A biomedical application of latent class models with random effects. Applied Statistics 47, 603-616. Qu, Y., Tan, M., and Kutner, M. H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 52, 797-810. Thisted, R. A. (1988). Elements of Statistical Computing. New York : Chapman and Hall. Rubin, D. (1988). Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics 3, 395-402. Gelman, A. and Rubin, D. B. (1992). Inferences from iterative simulation and multiple sequences (with discussion). Statistical Science 7, 457-511. Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409. Johnson, W. O. and Gastwirth, J. L. (1991). Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome. Journal of the Royal Statistical Society, Series B 53, 427-439. 1990; 85 1992; 7 1994; 157 1987; 2 1991; 19 1988; 3 1997; 51 1989; 45 1978; 11 1997; 53 1991; 53 1999; 22 1996; 52 1997; 16 1985; 41 1988; 41 1998; 93 1996; 15 1995; 141 1998; 47 1992; 4 1988 Raftery A. E. (e_1_2_1_16_1) 1992 Thisted R. A. (e_1_2_1_19_1) 1988 Rubin D. (e_1_2_1_17_1) 1988; 3 Johnson W. O. (e_1_2_1_11_1) 1991; 53 Walter S. D. (e_1_2_1_22_1) 1988; 41 e_1_2_1_7_1 e_1_2_1_8_1 e_1_2_1_20_1 e_1_2_1_5_1 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_12_1 e_1_2_1_23_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_10_1 e_1_2_1_21_1 Alonzo T. A. (e_1_2_1_2_1) 1999; 22 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_9_1 e_1_2_1_18_1 |
References_xml | – reference: Hadgu, A. and Qu, Y. (1998). A biomedical application of latent class models with random effects. Applied Statistics 47, 603-616. – reference: Gastwirth, J. L., Johnson, W. O., and Reneau, D. M. (1991). Bayesian analysis of screening data: Application to AIDS in blood donors. The Canadian Journal of Statistics 19, 135-150. – reference: Fryback, D. G. (1978). Bayes' theorem and conditional nonindependence of data in medical diagnosis. Computers and Biomedical Research 11, 423-434. – reference: Gastwirth, J. L. (1987). The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data. Statistical Science 2, 213-238. – reference: Rubin, D. (1988). Using the SIR algorithm to simulate posterior distributions. Bayesian Statistics 3, 395-402. – reference: Joseph, L., Gyorkos, T., and Coupal, L. (1995). Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard. American Journal of Epidemiology 141, 263-272. – reference: Brenner, H. (1996). How independent are multiple 'independent' diagnostic classifications Statistics in Medicine 15, 1377-1386. – reference: Thisted, R. A. (1988). Elements of Statistical Computing. New York : Chapman and Hall. – reference: Alonzo, T. A. and Pepe, M. S. (1999). Using a combination of reference tests to assess the accuracy of a new diagnostic test. Statistics in Medicine 22, 2987-3003. – reference: Vacek, P. M. (1985). The effect of conditional dependence on the evaluation of diagnostic tests. Biometrics 41, 959-968. – reference: Gelman, A. and Rubin, D. B. (1992). Inferences from iterative simulation and multiple sequences (with discussion). Statistical Science 7, 457-511. – reference: Johnson, W. O. and Gastwirth, J. L. (1991). Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome. Journal of the Royal Statistical Society, Series B 53, 427-439. – reference: Qu, Y. and Hadgu, A. (1998). A model for evaluating the sensitivity and specificity for correlated diagnostic tests in efficacy studies with an imperfect reference test. Journal of the American Statistical Association 93, 920-928. – reference: Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409. – reference: Torrance-Rynard, V. L. and Walter, S. D. (1997). Effects of dependent errors in the assessment of diagnostic test performance. Statistics in Medicine 16, 2157-2175. – reference: Spiegelhalter, D. J., Freedman, L. S., and Parmar, M. K. B. (1994). Bayesian approaches to randomized trials. Journal of the Royal Statistical Society, Series A 157, 357-416. – reference: Walter, S. D. and Irwig, L. M. (1988). Estimation of error rates, disease prevalence, and relative risk misclassified data: A review. Journal of Clinical Epidemiology 41, 923-937. – reference: Qu, Y., Tan, M., and Kutner, M. H. (1996). Random effects models in latent class analysis for evaluating accuracy of diagnostic tests. Biometrics 52, 797-810. – reference: Neath, A. and Samaniego, F. J. (1997). On the efficacy of Bayesian inference for nonidentifiable models. American Statistician 51, 225-234. – reference: Espeland, M. A. and Handelman, S. L. (1989). Using latent class models to characterize and assess relative error in discrete measurements. Biometrics 45, 587-599. – reference: Yang, I. and Becker, M. P. (1997). Latent variable modeling of diagnostic accuracy. Biometrics 53, 948-958. – volume: 53 start-page: 427 year: 1991 end-page: 439 article-title: Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome publication-title: Journal of the Royal Statistical Society, Series B – volume: 41 start-page: 959 year: 1985 end-page: 968 article-title: The effect of conditional dependence on the evaluation of diagnostic tests publication-title: Biometrics – volume: 22 start-page: 2987 year: 1999 end-page: 3003 article-title: Using a combination of reference tests to assess the accuracy of a new diagnostic test publication-title: Statistics in Medicine – volume: 85 start-page: 398 year: 1990 end-page: 409 article-title: Sampling‐based approaches to calculating marginal densities publication-title: Journal of the American Statistical Association – volume: 2 start-page: 213 year: 1987 end-page: 238 article-title: The statistical precision of medical screening procedures: Application to polygraph and AIDS antibodies test data publication-title: Statistical Science – volume: 41 start-page: 923 year: 1988 end-page: 937 article-title: Estimation of error rates, disease prevalence, and relative risk misclassified data: A review publication-title: Journal of Clinical Epidemiology – volume: 47 start-page: 603 year: 1998 end-page: 616 article-title: A biomedical application of latent class models with random effects publication-title: Applied Statistics – volume: 11 start-page: 423 year: 1978 end-page: 434 article-title: Bayes' theorem and conditional nonindependence of data in medical diagnosis publication-title: Computers and Biomedical Research – volume: 157 start-page: 357 year: 1994 end-page: 416 article-title: Bayesian approaches to randomized trials publication-title: Journal of the Royal Statistical Society, Series A – year: 1988 – volume: 141 start-page: 263 year: 1995 end-page: 272 article-title: Bayesian estimation of disease prevalence and the parameters of diagnostic tests in the absence of a gold standard publication-title: American Journal of Epidemiology – volume: 3 start-page: 395 year: 1988 end-page: 402 article-title: Using the SIR algorithm to simulate posterior distributions publication-title: Bayesian Statistics – volume: 19 start-page: 135 year: 1991 end-page: 150 article-title: Bayesian analysis of screening data: Application to AIDS in blood donors publication-title: The Canadian Journal of Statistics – volume: 15 start-page: 1377 year: 1996 end-page: 1386 article-title: How independent are multiple ‘independent’ diagnostic classifications publication-title: Statistics in Medicine – volume: 45 start-page: 587 year: 1989 end-page: 599 article-title: Using latent class models to characterize and assess relative error in discrete measurements publication-title: Biometrics – volume: 52 start-page: 797 year: 1996 end-page: 810 article-title: Random effects models in latent class analysis for evaluating accuracy of diagnostic tests publication-title: Biometrics – volume: 4 start-page: 765 year: 1992 end-page: 776 – volume: 16 start-page: 2157 year: 1997 end-page: 2175 article-title: Effects of dependent errors in the assessment of diagnostic test performance publication-title: Statistics in Medicine – volume: 51 start-page: 225 year: 1997 end-page: 234 article-title: On the efficacy of Bayesian inference for nonidentifiable models publication-title: American Statistician – volume: 93 start-page: 920 year: 1998 end-page: 928 article-title: A model for evaluating the sensitivity and specificity for correlated diagnostic tests in efficacy studies with an imperfect reference test publication-title: Journal of the American Statistical Association – volume: 7 start-page: 457 year: 1992 end-page: 511 article-title: Inferences from iterative simulation and multiple sequences (with discussion) publication-title: Statistical Science – volume: 53 start-page: 948 year: 1997 end-page: 958 article-title: Latent variable modeling of diagnostic accuracy publication-title: Biometrics – ident: e_1_2_1_21_1 doi: 10.2307/2530967 – ident: e_1_2_1_5_1 doi: 10.1016/0010-4809(78)90001-0 – start-page: 765 volume-title: Bayesian Statistics year: 1992 ident: e_1_2_1_16_1 – ident: e_1_2_1_4_1 doi: 10.2307/2531499 – ident: e_1_2_1_13_1 doi: 10.2307/2684892 – ident: e_1_2_1_14_1 doi: 10.1080/01621459.1998.10473748 – volume: 41 start-page: 923 year: 1988 ident: e_1_2_1_22_1 article-title: Estimation of error rates, disease prevalence, and relative risk misclassified data: A review publication-title: Journal of Clinical Epidemiology doi: 10.1016/0895-4356(88)90110-2 – ident: e_1_2_1_23_1 doi: 10.2307/2533555 – ident: e_1_2_1_8_1 doi: 10.1080/01621459.1990.10476213 – ident: e_1_2_1_15_1 doi: 10.2307/2533043 – volume: 3 start-page: 395 year: 1988 ident: e_1_2_1_17_1 article-title: Using the SIR algorithm to simulate posterior distributions publication-title: Bayesian Statistics – ident: e_1_2_1_10_1 doi: 10.1111/1467-9876.00131 – ident: e_1_2_1_12_1 doi: 10.1093/oxfordjournals.aje.a117428 – ident: e_1_2_1_18_1 doi: 10.2307/2983527 – volume: 53 start-page: 427 year: 1991 ident: e_1_2_1_11_1 article-title: Bayesian inference for medical screening tests: Approximations useful for the analysis of acquired immune deficiency syndrome publication-title: Journal of the Royal Statistical Society, Series B doi: 10.1111/j.2517-6161.1991.tb01835.x – volume: 22 start-page: 2987 year: 1999 ident: e_1_2_1_2_1 article-title: Using a combination of reference tests to assess the accuracy of a new diagnostic test publication-title: Statistics in Medicine doi: 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO;2-B – ident: e_1_2_1_6_1 doi: 10.1214/ss/1177013215 – ident: e_1_2_1_20_1 doi: 10.1002/(SICI)1097-0258(19971015)16:19<2157::AID-SIM653>3.0.CO;2-X – ident: e_1_2_1_9_1 doi: 10.1214/ss/1177011136 – ident: e_1_2_1_7_1 doi: 10.2307/3315793 – volume-title: Elements of Statistical Computing year: 1988 ident: e_1_2_1_19_1 – ident: e_1_2_1_3_1 doi: 10.1002/(SICI)1097-0258(19960715)15:13<1377::AID-SIM275>3.0.CO;2-# |
SSID | ssj0009502 |
Score | 2.191991 |
Snippet | Many analyses of results from multiple diagnostic tests assume the tests are statistically independent conditional on the true disease status of the subject.... |
SourceID | proquest pubmed crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 158 |
SubjectTerms | Bayes Theorem Bayesian analysis Bayesian theory Binary data Biometrics Biometry Cambodia Cambodia - ethnology Canada Canada - epidemiology Correlation Covariance diagnostic techniques Diagnostic tests Diagnostic Tests, Routine - statistics & numerical data Disease models disease prevalence Epidemiology Frequentism Gold standard Humans Latent class model Markov chain Monte Carlo Markov Chains Medical diagnostic tests Models, Statistical Monte Carlo Method Multilevel models Musical intervals Parametric models Random effects model refugees Sensitivity Serology Specificity Strongyloides Strongyloidiasis - diagnosis Strongyloidiasis - epidemiology strongylosis uncertainty |
SummonAdditionalLinks | – databaseName: ProQuest Technology Collection dbid: 8FG link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3faxQxEB5sRagPUs_arvVHBPFtcbObze49iS1eq_TqQ1t6iBCSbCKi3NbuFa7_vTPZH2fBSt-OuyTcZibJN5lvvwF4k2V4bLpxFSfOprGovI8NEWwKaXluk8K6kIqZHsvDM_F5ls86bk7T0Sr7PTFs1FVt6Y78XZpyWRQINt5f_I6paBQlV7sKGmtwn-NBQ25eTg7-0txNWrFwoncJPrtB5Om_XVKMyCkhkZe9_lF3Oq15XSNmpele9nTFfwHRm7g2HEyTTXjUIUr2oXWBx3DPzUfwoK0xeT2Ch9NBmLUZwQaBy1ab-Ql829PXjl6iZL2yuGvYomahOg4eaQw7MoyXqx_thSHrK-Zaxzp-F-sJiaxqOXs4MkP0umi24HTy8XT_MO6qLcQWg5gy1jJ3mRaJr0jmLDFOa1ywWldladLKpZmnaEYKL00QN7eCl8YiNvfcja3NnsL6vJ67HWBCm1TnpIHqvaDMZsaN10ZaJxLtrImg6CdZ2U6JnApi_FKriITMo8hoVCeTq2AetYyADz0vWjWOO_TZQTsq_R03TXV2ktIVT_t2UhrB22DcYSx9-ZOIbkWuzo8P1ExOjs7Lo6_qJIKtYP2hYSoxTMtFBLu9N6hu7Tdq8NQIXg-_4qKlTIyeu_qqUZxwXpFlBY7w6pY2BckWIVyMgN3SgrD5WAj6G9utJ64mBXErBrb4hDK45p1nS-19-jLFT8_--2S7sLHi4j2H9cXllXuB4GxhXoYl-AfZ2S7c priority: 102 providerName: ProQuest |
Title | Bayesian Approaches to Modeling the Conditional Dependence Between Multiple Diagnostic Tests |
URI | https://api.istex.fr/ark:/67375/WNG-X6FLW8LZ-S/fulltext.pdf https://www.jstor.org/stable/2676854 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2001.00158.x https://www.ncbi.nlm.nih.gov/pubmed/11252592 https://www.proquest.com/docview/221677326 https://www.proquest.com/docview/1663573374 https://www.proquest.com/docview/76968439 https://www.proquest.com/docview/923194454 |
Volume | 57 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwED6xIaTxwI8yWBgUIyHeUsWJY6ePa7tuoLWgrdMqNMmyXYeHohYtrbTx1-OL05SiTZoQL1Gl2FZ8PZ-_852_A_iQJG7btO1JGFkTh2yS56HGBBvBDU1NJIwtQzGDIT8-Z5_H6bjKf8K7MJ4foj5ww5VR2mtc4EoXG4scTW3orPAY3TyKMYU0ayGepAlHGv3eafwH_27kicOrLhtJPbcPtLFTbeVq7vAriv56lbp4GyjdxLjlJtV_CtPV9HxuyrS1XOiW-fUX8-P_mf8zeFJhWXLgle85PLCzBjzy1S1vGvB4UFPCFg3YQVjrWaFfwGVH3Vi8vkkOKk5zW5DFnGBlNrwfT1xH0p1jOL08qiS9qlavsaTjM8vIoEqFJD2fLehGJiMnpGIXRv3DUfc4rOo8hMa5T1moeGoTxaJ8ggRrkbZKOVOh1CTLdDyxcZKjH8VZznVJq24YzbRxXkFObduY5CVsz-YzuweEKR2rFNlX85xhTDWhOleaG8siZY0OQKz-UmkqDnQsxfFDrn0hlKpEqWKFTipLqcrrAGjd86fnAblHnz2nNVJ9d-Zanp_FeLjk70XFAXwsVakeS11NMcVOpPJieCTHvH9ykZ18k2cB7Ja6VjeMuXMQUxbA_kr3ZGV1ChnHlAvhAHkA7-u3zlxgDEjN7HxZSIoIUySJcCO8u6ONQMIkB1QDIHe0QK-gzRh-xiuv92uhOMTsXGo3Q15q772lJTufvgzcr9f_2nEfdtYJgm9ge3G1tG8dYlzoJmyJsXDPrEvx2T9qwsPO4fDrabO0Er8BTtxbtw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5tQ4jxgKAMFgbMSMBbROI4cfqAEANKy9rysE2rJiTLcRyEQO1YOtH-J34kd0mcMomhveytSm0r8Z3P3_nO3wE8jyLcNm039wNruC_yovAzSrCRiQljE0hjq1DMaJz0j8SnSTxZg9_uLgylVTqbWBnqfGbojPwV52EiJYKNN6c_fSoaRcFVV0Gj1op9u_yFHlv5evAexfuC896Hw3d9vykq4BvE6qmvk9hGWgRFTmxeQWa1Rr3UOk_TjOeWRwWB9kQUSVZxeBsRpplBCFqEtmtMhMOuww1B5-K4euRE_kXxG9Tc5JRNJsLJhbwh93RBLmlI8Y84dXRLzWa4XugZQmSS7sJlR_4L916E0dU-2LsLdxoAy97WGncP1uy0AzfrkpbLDtwetTywZQc2CcvWVND34cueXlq6s8kckbkt2XzGqmI8uIMy7MjQPc-_1eeTzBXoNZY16WTM5T-yvE4RxJEZguV5uQWH1yGHB7AxnU3tNjChM65jolwtCkGB1CjMCp0lxopAW5N5IN0kK9MQn1P9jR9q5QCReBQJjcpyhqoSj1p4ELY9T2vyjyv02UY5Kv0VbbQ6OuB0olRfhuIevKyE246lz75TXp2M1fH4o5okveFxOjxRBx5sVdJvG_IEvcJYeLDjtEE1pqZU7cLw4Fn7L9oICvzoqZ2dlyokWCmjSOIIu5e0kcSShOjUA3ZJC3IFukLQazysNXE1KQiT0Y_GL0wq1bzybKm9wecR_nr03y_bhVv9w9FQDQfj_R3YXKUBPoaN-dm5fYK4cJ49rZYjA3XNy_8PiqRqvQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED5tQ6DxgKAMFgbMSMBbtMRx4vQBIcYoK2sL0jatQkiW4zgIgdqxdKL9Z_w87pI4ZRJDe9lbldpW4jvb39mfvwN4HkW4bNpu7gfWcF_kReFnRLCRiQljE0hjq6OY4SjZPxYfxvF4BX67uzBEq3RzYjVR51NDe-Q7nIeJlAg2doqGFfFpr_f69KdPCaTooNVl06g95MAufmH0Vr7q76GpX3Dee3f0dt9vEgz4BnF76usktpEWQZGTsleQWa3RR7XO0zTjueVRQQA-EUWSVXreRoRpZhCOFqHtGhNhs6twQ0aIqXAkybH8S-43qHXKiVkmwvEFDpF7OqfwNKSzkDh10kvNwrha6CnCZbL03DEl_4WBL0Lqak3s3YU7DZhlb2rvuwcrdtKBm3V6y0UHbg9bTdiyA-uEa2tZ6PvwZVcvLN3fZE7U3JZsNmVVYh5cTRlWZBiq59_qvUrmkvUayxpqGXNcSJbXdEFsmSFwnpUbcHQddngAa5PpxG4CEzrjOib51aIQdKgahVmhs8RYEWhrMg-k62RlGhF0ysXxQy2DITKPIqNRis5QVeZRcw_CtuZpLQRyhTqbaEelv-J8rY4POe0u1RejuAcvK-O2bemz78Sxk7E6Gb1X46Q3OEkHn9WhBxuV9duCPMEIMRYebDlvUM20U6p2kHjwrP0X5ws6BNITOz0vVUgQU0aRxBa2LykjSTEJkaoH7JISFBZ0haDXeFh74rJTEDJjTI1fmFSueeXeUrv9j0P89ei_X7YNt3Dgq0F_dLAF60tG4GNYm52d2ycIEWfZ02o0MlDXPPr_AC8Ibvw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+Approaches+to+Modeling+the+Conditional+Dependence+Between+Multiple+Diagnostic+Tests&rft.jtitle=Biometrics&rft.au=Dendukuri%2C+Nandini&rft.au=Joseph%2C+Lawrence&rft.date=2001-03-01&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=57&rft.issue=1&rft.spage=158&rft.epage=167&rft_id=info:doi/10.1111%2Fj.0006-341X.2001.00158.x&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |