Crescent‐Shaped Electron Distributions at the Nonreconnecting Magnetopause: Magnetospheric Multiscale Observations

Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we pres...

Full description

Saved in:
Bibliographic Details
Published inGeophysical research letters Vol. 46; no. 6; pp. 3024 - 3032
Main Authors Tang, B.‐B., Li, W. Y., Graham, D. B., Rager, A. C., Wang, C., Khotyaintsev, Yu. V., Lavraud, B., Hasegawa, H., Zhang, Y.‐C., Dai, L., Giles, B. L., Dorelli, J. C., Russell, C. T., Lindqvist, P.‐A., Ergun, R. E., Burch, J. L.
Format Journal Article
LanguageEnglish
Published Washington John Wiley & Sons, Inc 28.03.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause on 20 September 2017, where reconnection signatures are not observed. These agyrotropic electron distributions are generated by electron gyromotion at the thin electron‐scale magnetic boundaries of a magnetic minimum after magnetic curvature scattering. The variation of their angular range in the perpendicular plane is in good agreement with predictions. Upper hybrid waves are observed to accompany the electron crescents at all four Magnetospheric Multiscale spacecraft as a result of the beam‐plasma instability associated with these agyrotropic electron distributions. This study suggests electron crescents can be more frequently formed at the magnetopause. Plain Language Summary In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause and these agyrotropic electron distributions are formed at thin electron‐scale magnetic boundaries after electron pitch angle scattering by the curved magnetic field. These results suggest that agyrotropic electron distributions can be more frequently formed at the magnetopause: (1) magnetic reconnection is not necessary, although electron crescents are taken as one of the observational signatures of the electron diffusion region, and (2) agyrotropic electron distributions can cover a large local time range to the flank magnetopause. In addition, upper hybrid waves accompanied with the electron crescents are observed as a result of the beam‐plasma interaction associated with these agyrotropic electron distributions. This suggests that high‐frequency waves play a role in electron dynamics through wave‐particle interactions. Key Points Agyrotropic electron crescents are found in a nonreconnecting current sheet at the flank magnetopause These electron distributions are generated by finite gyroradius effect after magnetic curvature scattering The observed electron crescents can excite upper hybrid waves
AbstractList Crescent-shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause on 20 September 2017, where reconnection signatures are not observed. These agyrotropic electron distributions are generated by electron gyromotion at the thin electron-scale magnetic boundaries of a magnetic minimum after magnetic curvature scattering. The variation of their angular range in the perpendicular plane is in good agreement with predictions. Upper hybrid waves are observed to accompany the electron crescents at all four Magnetospheric Multiscale spacecraft as a result of the beam-plasma instability associated with these agyrotropic electron distributions. This study suggests electron crescents can be more frequently formed at the magnetopause. Plain Language Summary In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause and these agyrotropic electron distributions are formed at thin electron-scale magnetic boundaries after electron pitch angle scattering by the curved magnetic field. These results suggest that agyrotropic electron distributions can be more frequently formed at the magnetopause: (1) magnetic reconnection is not necessary, although electron crescents are taken as one of the observational signatures of the electron diffusion region, and (2) agyrotropic electron distributions can cover a large local time range to the flank magnetopause. In addition, upper hybrid waves accompanied with the electron crescents are observed as a result of the beam-plasma interaction associated with these agyrotropic electron distributions. This suggests that high-frequency waves play a role in electron dynamics through wave-particle interactions.
Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause on 20 September 2017, where reconnection signatures are not observed. These agyrotropic electron distributions are generated by electron gyromotion at the thin electron‐scale magnetic boundaries of a magnetic minimum after magnetic curvature scattering. The variation of their angular range in the perpendicular plane is in good agreement with predictions. Upper hybrid waves are observed to accompany the electron crescents at all four Magnetospheric Multiscale spacecraft as a result of the beam‐plasma instability associated with these agyrotropic electron distributions. This study suggests electron crescents can be more frequently formed at the magnetopause. Plain Language Summary In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause and these agyrotropic electron distributions are formed at thin electron‐scale magnetic boundaries after electron pitch angle scattering by the curved magnetic field. These results suggest that agyrotropic electron distributions can be more frequently formed at the magnetopause: (1) magnetic reconnection is not necessary, although electron crescents are taken as one of the observational signatures of the electron diffusion region, and (2) agyrotropic electron distributions can cover a large local time range to the flank magnetopause. In addition, upper hybrid waves accompanied with the electron crescents are observed as a result of the beam‐plasma interaction associated with these agyrotropic electron distributions. This suggests that high‐frequency waves play a role in electron dynamics through wave‐particle interactions.
Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause on 20 September 2017, where reconnection signatures are not observed. These agyrotropic electron distributions are generated by electron gyromotion at the thin electron‐scale magnetic boundaries of a magnetic minimum after magnetic curvature scattering. The variation of their angular range in the perpendicular plane is in good agreement with predictions. Upper hybrid waves are observed to accompany the electron crescents at all four Magnetospheric Multiscale spacecraft as a result of the beam‐plasma instability associated with these agyrotropic electron distributions. This study suggests electron crescents can be more frequently formed at the magnetopause. Plain Language Summary In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause and these agyrotropic electron distributions are formed at thin electron‐scale magnetic boundaries after electron pitch angle scattering by the curved magnetic field. These results suggest that agyrotropic electron distributions can be more frequently formed at the magnetopause: (1) magnetic reconnection is not necessary, although electron crescents are taken as one of the observational signatures of the electron diffusion region, and (2) agyrotropic electron distributions can cover a large local time range to the flank magnetopause. In addition, upper hybrid waves accompanied with the electron crescents are observed as a result of the beam‐plasma interaction associated with these agyrotropic electron distributions. This suggests that high‐frequency waves play a role in electron dynamics through wave‐particle interactions. Key Points Agyrotropic electron crescents are found in a nonreconnecting current sheet at the flank magnetopause These electron distributions are generated by finite gyroradius effect after magnetic curvature scattering The observed electron crescents can excite upper hybrid waves
Abstract Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause on 20 September 2017, where reconnection signatures are not observed. These agyrotropic electron distributions are generated by electron gyromotion at the thin electron‐scale magnetic boundaries of a magnetic minimum after magnetic curvature scattering. The variation of their angular range in the perpendicular plane is in good agreement with predictions. Upper hybrid waves are observed to accompany the electron crescents at all four Magnetospheric Multiscale spacecraft as a result of the beam‐plasma instability associated with these agyrotropic electron distributions. This study suggests electron crescents can be more frequently formed at the magnetopause. Plain Language Summary In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause and these agyrotropic electron distributions are formed at thin electron‐scale magnetic boundaries after electron pitch angle scattering by the curved magnetic field. These results suggest that agyrotropic electron distributions can be more frequently formed at the magnetopause: (1) magnetic reconnection is not necessary, although electron crescents are taken as one of the observational signatures of the electron diffusion region, and (2) agyrotropic electron distributions can cover a large local time range to the flank magnetopause. In addition, upper hybrid waves accompanied with the electron crescents are observed as a result of the beam‐plasma interaction associated with these agyrotropic electron distributions. This suggests that high‐frequency waves play a role in electron dynamics through wave‐particle interactions. Key Points Agyrotropic electron crescents are found in a nonreconnecting current sheet at the flank magnetopause These electron distributions are generated by finite gyroradius effect after magnetic curvature scattering The observed electron crescents can excite upper hybrid waves
Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic reconnection. They can be formed by the electron finite gyroradius effect at plasma boundaries or by demagnetized electron motion. In this study, we present Magnetospheric Multiscale mission observations of electron crescents at the flank magnetopause on 20 September 2017, where reconnection signatures are not observed. These agyrotropic electron distributions are generated by electron gyromotion at the thin electron‐scale magnetic boundaries of a magnetic minimum after magnetic curvature scattering. The variation of their angular range in the perpendicular plane is in good agreement with predictions. Upper hybrid waves are observed to accompany the electron crescents at all four Magnetospheric Multiscale spacecraft as a result of the beam‐plasma instability associated with these agyrotropic electron distributions. This study suggests electron crescents can be more frequently formed at the magnetopause.
Author Hasegawa, H.
Dai, L.
Burch, J. L.
Khotyaintsev, Yu. V.
Tang, B.‐B.
Graham, D. B.
Rager, A. C.
Dorelli, J. C.
Giles, B. L.
Li, W. Y.
Zhang, Y.‐C.
Wang, C.
Ergun, R. E.
Russell, C. T.
Lindqvist, P.‐A.
Lavraud, B.
Author_xml – sequence: 1
  givenname: B.‐B.
  orcidid: 0000-0002-9244-1828
  surname: Tang
  fullname: Tang, B.‐B.
  organization: Chinese Academy of Sciences
– sequence: 2
  givenname: W. Y.
  orcidid: 0000-0003-1920-2406
  surname: Li
  fullname: Li, W. Y.
  organization: Swedish Institute of Space Physics
– sequence: 3
  givenname: D. B.
  orcidid: 0000-0002-1046-746X
  surname: Graham
  fullname: Graham, D. B.
  organization: Swedish Institute of Space Physics
– sequence: 4
  givenname: A. C.
  orcidid: 0000-0001-7088-1059
  surname: Rager
  fullname: Rager, A. C.
  organization: NASA Goddard Space Flight Center
– sequence: 5
  givenname: C.
  orcidid: 0000-0001-6991-9398
  surname: Wang
  fullname: Wang, C.
  email: cwang@spaceweather.ac.cn
  organization: University of Chinese Academy of Sciences
– sequence: 6
  givenname: Yu. V.
  orcidid: 0000-0001-5550-3113
  surname: Khotyaintsev
  fullname: Khotyaintsev, Yu. V.
  organization: Swedish Institute of Space Physics
– sequence: 7
  givenname: B.
  orcidid: 0000-0001-6807-8494
  surname: Lavraud
  fullname: Lavraud, B.
  organization: Universite de Toulouse
– sequence: 8
  givenname: H.
  orcidid: 0000-0002-1172-021X
  surname: Hasegawa
  fullname: Hasegawa, H.
  organization: Japan Aerospace Exploration Agency
– sequence: 9
  givenname: Y.‐C.
  orcidid: 0000-0001-5721-8164
  surname: Zhang
  fullname: Zhang, Y.‐C.
  organization: Chinese Academy of Sciences
– sequence: 10
  givenname: L.
  orcidid: 0000-0002-5122-3066
  surname: Dai
  fullname: Dai, L.
  organization: Chinese Academy of Sciences
– sequence: 11
  givenname: B. L.
  orcidid: 0000-0001-8054-825X
  surname: Giles
  fullname: Giles, B. L.
  organization: NASA Goddard Space Flight Center
– sequence: 12
  givenname: J. C.
  surname: Dorelli
  fullname: Dorelli, J. C.
  organization: NASA Goddard Space Flight Center
– sequence: 13
  givenname: C. T.
  orcidid: 0000-0003-1639-8298
  surname: Russell
  fullname: Russell, C. T.
  organization: University of California
– sequence: 14
  givenname: P.‐A.
  orcidid: 0000-0001-5617-9765
  surname: Lindqvist
  fullname: Lindqvist, P.‐A.
  organization: KTH Royal Institute of Technology
– sequence: 15
  givenname: R. E.
  orcidid: 0000-0002-3096-8579
  surname: Ergun
  fullname: Ergun, R. E.
  organization: University of Colorado Boulder
– sequence: 16
  givenname: J. L.
  orcidid: 0000-0003-0452-8403
  surname: Burch
  fullname: Burch, J. L.
  organization: Southwest Research Institute
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251342$$DView record from Swedish Publication Index
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-382993$$DView record from Swedish Publication Index
BookMark eNqF0c1OGzEQB3CrolID7a0PsFKvbBl_xLvuDYUQkJIi9etqec1sYtjai-0tyo1H4Bl5km6btvQEp5mRfvprRrNP9nzwSMhbCu8pMHXEgKrFEmrGOH1BJlQJUdYA1R6ZAKixZ5V8RfZTugIADpxOSJ5FTBZ9fri7_7wxPV4W8w5tjsEXJy7l6Johu-BTYXKRN1h8DD6iDd6PyPl1sTJrjzn0Zkj44e-U-g1GZ4vV0GWXrOmwuGgSxh_md9Zr8rI1XcI3f-oB-Xo6_zI7K5cXi_PZ8bK0EiQvsbUCja0FXFa8US2rplwAqyupBE5Nrfh4qECk0ghZSyFoA5ZLaAVIwRrJD8jhLjfdYj80uo_uu4lbHYzTJ-7bsQ5xrYdB85opxUdePs-v80azKeWCjf7dzvcx3AyYsr4KQ_TjRZoxqIQEoarHJWwMKUVs_-VS0L_epv9_28jZjt-6DrdPWr34tJzWFeX8J6ovnIw
CitedBy_id crossref_primary_10_3389_fspas_2019_00070
crossref_primary_10_11728_cjss2023_01_yg01
crossref_primary_10_3847_2041_8213_ac5181
crossref_primary_10_1016_j_physrep_2022_12_001
crossref_primary_10_1029_2020GL091437
crossref_primary_10_1029_2019GL082538
crossref_primary_10_1029_2020GL090286
crossref_primary_10_3847_1538_4357_ac8eb5
crossref_primary_10_1007_s41614_023_00129_0
crossref_primary_10_1029_2020GL087111
crossref_primary_10_3847_2041_8213_ab36b9
crossref_primary_10_3847_1538_4357_ac7141
crossref_primary_10_1134_S1028335821010031
crossref_primary_10_1029_2022GL102235
crossref_primary_10_3389_fspas_2021_740560
Cites_doi 10.1002/2017GL076330
10.1126/science.aaf2939
10.1002/2016GL069034
10.1002/2016GL069842
10.1002/2016JA023572
10.1038/s41586-018-0091-5
10.1002/2017JA024024
10.1002/2016GL069205
10.1063/1.4989737
10.1002/2015GL066980
10.1007/s11214-014-0116-9
10.1007/s11214-014-0057-3
10.1002/2016JA022409
10.1029/JA094iA09p11821
10.1002/2017JA024789
10.1002/2016JA023290
10.1002/2016GL069787
10.1002/2016GL069215
10.1007/s11214-016-0245-4
10.1002/2017GL076260
10.1002/2014GL061586
10.1007/s11214-014-0115-x
10.1002/2017JA025034
10.1002/2016GL068359
10.1103/PhysRevLett.117.185101
10.1029/2018JA025245
10.1103/PhysRevLett.119.025101
10.1103/PhysRevLett.120.055101
10.1002/2016GL069064
10.1002/2017JA024524
10.1002/2016GL070224
ContentType Journal Article
Copyright 2019. American Geophysical Union. All Rights Reserved.
Copyright_xml – notice: 2019. American Geophysical Union. All Rights Reserved.
DBID AAYXX
CITATION
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
ADTPV
AOWAS
D8V
DF2
DOI 10.1029/2019GL082231
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
SwePub
SwePub Articles
SWEPUB Kungliga Tekniska Högskolan
SWEPUB Uppsala universitet
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList


CrossRef
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Physics
EISSN 1944-8007
EndPage 3032
ExternalDocumentID oai_DiVA_org_uu_382993
oai_DiVA_org_kth_251342
10_1029_2019GL082231
GRL58713
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  funderid: 41474145; 41504114; 41574159; 41731070
– fundername: Chinese Academy of Sciences (CAS)
  funderid: QYZDJ-SSW-JSC028; XDA15052500
GroupedDBID -DZ
-~X
05W
0R~
1OB
1OC
24P
33P
50Y
5GY
5VS
702
8-1
8R4
8R5
A00
AAESR
AAHHS
AAIHA
AASGY
AAXRX
AAZKR
ABCUV
ABPPZ
ACAHQ
ACBEA
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACIWK
ACNCT
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEFZC
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFPWT
AFRAH
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMYDB
AVUZU
AZFZN
AZVAB
BENPR
BFHJK
BMXJE
BRXPI
CS3
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F5P
G-S
GODZA
HZ~
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OK1
P-X
P2P
P2W
Q2X
R.K
RNS
ROL
SUPJJ
TN5
TWZ
UPT
WBKPD
WH7
WIH
WIN
WXSBR
WYJ
XSW
ZZTAW
~02
~OA
~~A
AAYXX
CITATION
PYCSY
7TG
7TN
8FD
F1W
FR3
H8D
H96
KL.
KR7
L.G
L7M
31~
3V.
6TJ
7XC
88I
8FE
8FG
8FH
8G5
ABJCF
ABJNI
ABUWG
ACBWZ
ADTPV
AFKRA
AFZJQ
AI.
ALXUD
AOWAS
ARAPS
ASPBG
ATCPS
AVWKF
AZQEC
BDRZF
BGLVJ
BHPHI
BKSAR
BPHCQ
CCPQU
D1K
D8V
DDYGU
DWQXO
FEDTE
GNUQQ
GROUPED_DOAJ
GUQSH
HCIFZ
HVGLF
K6-
L6V
LK5
M2O
M2P
M7R
M7S
MVM
OHT
P62
PALCI
PATMY
PCBAR
PQQKQ
PROAC
PTHSS
RIWAO
RJQFR
SAMSI
UQL
VH1
VOH
ZCG
DF2
ID FETCH-LOGICAL-c6063-efc4eac840d73b9f275340287694e5a8932234ee16a4686441b0c360f40642b63
ISSN 0094-8276
1944-8007
IngestDate Sat Aug 24 00:22:51 EDT 2024
Sat Aug 24 00:14:08 EDT 2024
Fri Sep 13 10:11:54 EDT 2024
Thu Sep 12 17:39:46 EDT 2024
Sat Aug 24 01:04:20 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c6063-efc4eac840d73b9f275340287694e5a8932234ee16a4686441b0c360f40642b63
ORCID 0000-0002-1172-021X
0000-0002-5122-3066
0000-0003-0452-8403
0000-0001-8054-825X
0000-0001-5617-9765
0000-0001-7088-1059
0000-0003-1639-8298
0000-0001-6991-9398
0000-0002-9244-1828
0000-0003-1920-2406
0000-0001-6807-8494
0000-0001-5721-8164
0000-0001-5550-3113
0000-0002-1046-746X
0000-0002-3096-8579
OpenAccessLink https://hal.science/hal-02372809
PQID 2207460497
PQPubID 54723
PageCount 9
ParticipantIDs swepub_primary_oai_DiVA_org_uu_382993
swepub_primary_oai_DiVA_org_kth_251342
proquest_journals_2207460497
crossref_primary_10_1029_2019GL082231
wiley_primary_10_1029_2019GL082231_GRL58713
PublicationCentury 2000
PublicationDate 28 March 2019
PublicationDateYYYYMMDD 2019-03-28
PublicationDate_xml – month: 03
  year: 2019
  text: 28 March 2019
  day: 28
PublicationDecade 2010
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Geophysical research letters
PublicationYear 2019
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2018; 120
1989; 94
1946; 10
2018; 557
2018; 123
2017; 24
2016; 43
2017b; 119
2016; 199
2016; 352
2016; 121
2016; 117
1982
2017; 122
2014; 41
2018; 45
2014; 199
2017a; 122
e_1_2_5_27_1
e_1_2_5_28_1
e_1_2_5_25_1
e_1_2_5_26_1
e_1_2_5_23_1
e_1_2_5_24_1
e_1_2_5_21_1
e_1_2_5_22_1
e_1_2_5_29_1
e_1_2_5_20_1
e_1_2_5_15_1
e_1_2_5_14_1
e_1_2_5_17_1
e_1_2_5_9_1
e_1_2_5_16_1
e_1_2_5_8_1
e_1_2_5_11_1
e_1_2_5_34_1
e_1_2_5_7_1
e_1_2_5_10_1
e_1_2_5_6_1
e_1_2_5_13_1
e_1_2_5_32_1
e_1_2_5_5_1
e_1_2_5_12_1
e_1_2_5_33_1
e_1_2_5_4_1
e_1_2_5_3_1
e_1_2_5_2_1
e_1_2_5_19_1
Landau L. D. (e_1_2_5_18_1) 1946; 10
e_1_2_5_30_1
e_1_2_5_31_1
References_xml – volume: 43
  start-page: 43
  year: 2016
  end-page: 49
  article-title: Quantifying gyrotropy in magnetic reconnection
  publication-title: Geophysical Research Letters
– volume: 43
  start-page: 7831
  year: 2016
  end-page: 7839
  article-title: Two‐scale ion meandering caused by the polarization electric field during asymmetric reconnection
  publication-title: Geophysical Research Letters
– volume: 199
  start-page: 331
  year: 2016
  end-page: 406
  article-title: Fast plasma investigation for magnetospheric multiscale
  publication-title: Space Science Reviews
– volume: 123
  start-page: 1118
  year: 2018
  end-page: 1133
  article-title: Wave phenomena and beam‐plasma interactions at the magnetopause reconnection region
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 199
  start-page: 189
  year: 2014
  end-page: 256
  article-title: The magnetospheric multiscale magnetometers
  publication-title: Space Science Reviews
– volume: 121
  start-page: 4103
  year: 2016
  end-page: 4110
  article-title: First in situ evidence of electron pitch angle scattering due to magnetic field line curvature in the Ion diffusion region
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 119
  start-page: 25101
  year: 2017b
  article-title: Instability of agyrotropic electron beams near the electron diffusion region
  publication-title: Physical Review Letters
– volume: 43
  start-page: 6036
  year: 2016
  end-page: 6043
  article-title: Electron energization and mixing observed by MMS in the vicinity of an electron diffusion region during magnetopause reconnection
  publication-title: Geophysical Research Letters
– volume: 45
  start-page: 4542
  year: 2018
  end-page: 4549
  article-title: An electron‐scale current sheet without bursty reconnection signatures observed in the near‐Earth tail
  publication-title: Geophysical Research Letters
– volume: 41
  start-page: 8673
  year: 2014
  end-page: 8680
  article-title: On the electron diffusion region in planar, asymmetric systems
  publication-title: Geophysical Research Letters
– volume: 43
  start-page: 3042
  year: 2016
  end-page: 3050
  article-title: Currents and associated electron scattering and bouncing near the diffusion region at Earth's magnetopause
  publication-title: Geophysical Research Letters
– volume: 199
  start-page: 167
  year: 2014
  end-page: 188
  article-title: The axial double probe and fields signal processing for the MMS mission
  publication-title: Space Science Reviews
– volume: 43
  start-page: 4145
  year: 2016
  end-page: 4154
  article-title: Kinetic signatures of the region surrounding the X line in asymmetric (magnetopause) reconnection
  publication-title: Geophysical Research Letters
– volume: 43
  start-page: 5571
  year: 2016
  end-page: 5580
  article-title: Electron jet of asymmetric reconnection
  publication-title: Geophysical Research Letters
– volume: 123
  start-page: 146
  year: 2018
  end-page: 162
  article-title: Electron dynamics within the electron diffusion region of asymmetric reconnection
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 94
  start-page: 11,821
  issue: A9
  year: 1989
  end-page: 11,842
  article-title: Regular and chaotic charged particle motion in magnetotail‐like field reversals: 1. Basic theory of trapped motion
  publication-title: Journal of Geophysical Research
– volume: 122
  start-page: 517
  year: 2017a
  end-page: 533
  article-title: Lower hybrid waves in the ion diffusion and magnetospheric inflow regions
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 120
  start-page: 55101
  year: 2018
  article-title: Spacecraft observations of oblique electron beams breaking the frozen‐in law during asymmetric reconnection
  publication-title: Physical Review Letters
– volume: 352
  start-page: aaf2939
  issue: 6290
  year: 2016
  article-title: Electron‐scale measurements of magnetic reconnection in space
  publication-title: Science
– volume: 122
  start-page: 2024
  year: 2017
  end-page: 2039
  article-title: On the origin of the crescent‐shaped distributions observed by MMS at the magnetopause
  publication-title: Journal of Geophysical Research: Space Physics
– year: 1982
– volume: 122
  start-page: 5466
  year: 2017
  end-page: 5486
  article-title: Large‐scale characteristics of reconnection diffusion regions and associated magnetopause crossings observed by MMS
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 45
  start-page: 578
  year: 2018
  end-page: 584
  article-title: Electron crescent distributions as a manifestation of diamagnetic drift in an electron‐scale current sheet: Magnetospheric Multiscale observations using new 7.5 ms Fast Plasma Investigation moments
  publication-title: Geophysical Research Letters
– volume: 43
  start-page: 6724
  year: 2016
  end-page: 6733
  article-title: Finite gyroradius effects in the electron outflow of asymmetric magnetic reconnection
  publication-title: Geophysical Research Letters
– volume: 123
  start-page: 2630
  year: 2018
  end-page: 2657
  article-title: Large‐amplitude high‐frequency waves at Earth's magnetopause
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 557
  start-page: 202
  issue: 7704
  year: 2018
  end-page: 206
  article-title: Electron magnetic reconnection without ioncoupling in Earth's turbulent magnetosheath
  publication-title: Nature
– volume: 199
  start-page: 137
  year: 2014
  end-page: 165
  article-title: The spin‐plane double probe electric field instrument for MMS
  publication-title: Space Science Reviews
– volume: 10
  start-page: 25
  year: 1946
  end-page: 34
  article-title: On the vibration of the electronic plasma
  publication-title: Journal of Physics
– volume: 117
  start-page: 185101
  year: 2016
  article-title: Spacecraft observations and analytic theory of crescent‐shaped electron distributions in asymmetric magnetic reconnection
  publication-title: Physical Review Letters
– volume: 123
  start-page: 4858
  year: 2018
  end-page: 4878
  article-title: Magnetospheric Multiscale dayside reconnection electron diffusion region events
  publication-title: Journal of Geophysical Research: Space Physics
– volume: 43
  start-page: 8844
  year: 2016
  end-page: 8852
  article-title: Ion Larmor radius effects near a reconnection X line at the magnetopause: THEMIS observations and simulation comparison
  publication-title: Geophysical Research Letters
– volume: 43
  start-page: 8327
  year: 2016
  end-page: 8338
  article-title: Magnetic reconnection at the dayside magnetopause: Advances with MMS
  publication-title: Geophysical Research Letters
– volume: 24
  start-page: 72903
  year: 2017
  article-title: The effect of reconnection electric field on crescent and U‐shaped distribution functions in asymmetric reconnection with no guide field
  publication-title: Physics, Plasmas
– ident: e_1_2_5_32_1
  doi: 10.1002/2017GL076330
– ident: e_1_2_5_6_1
  doi: 10.1126/science.aaf2939
– ident: e_1_2_5_29_1
  doi: 10.1002/2016GL069034
– ident: e_1_2_5_31_1
  doi: 10.1002/2016GL069842
– ident: e_1_2_5_13_1
  doi: 10.1002/2016JA023572
– ident: e_1_2_5_23_1
  doi: 10.1038/s41586-018-0091-5
– ident: e_1_2_5_12_1
  doi: 10.1002/2017JA024024
– ident: e_1_2_5_22_1
  doi: 10.1002/2016GL069205
– ident: e_1_2_5_3_1
  doi: 10.1063/1.4989737
– ident: e_1_2_5_30_1
  doi: 10.1002/2015GL066980
– ident: e_1_2_5_21_1
  doi: 10.1007/s11214-014-0116-9
– ident: e_1_2_5_28_1
  doi: 10.1007/s11214-014-0057-3
– ident: e_1_2_5_34_1
  doi: 10.1002/2016JA022409
– ident: e_1_2_5_4_1
  doi: 10.1029/JA094iA09p11821
– ident: e_1_2_5_7_1
  doi: 10.1002/2017JA024789
– ident: e_1_2_5_19_1
  doi: 10.1002/2016JA023290
– ident: e_1_2_5_5_1
  doi: 10.1002/2016GL069787
– ident: e_1_2_5_8_1
  doi: 10.1002/2016GL069215
– ident: e_1_2_5_25_1
  doi: 10.1007/s11214-016-0245-4
– ident: e_1_2_5_26_1
  doi: 10.1002/2017GL076260
– ident: e_1_2_5_16_1
  doi: 10.1002/2014GL061586
– ident: e_1_2_5_11_1
  doi: 10.1007/s11214-014-0115-x
– ident: e_1_2_5_15_1
  doi: 10.1002/2017JA025034
– ident: e_1_2_5_20_1
  doi: 10.1002/2016GL068359
– ident: e_1_2_5_10_1
  doi: 10.1103/PhysRevLett.117.185101
– ident: e_1_2_5_33_1
  doi: 10.1029/2018JA025245
– ident: e_1_2_5_14_1
  doi: 10.1103/PhysRevLett.119.025101
– volume: 10
  start-page: 25
  year: 1946
  ident: e_1_2_5_18_1
  article-title: On the vibration of the electronic plasma
  publication-title: Journal of Physics
  contributor:
    fullname: Landau L. D.
– ident: e_1_2_5_27_1
– ident: e_1_2_5_9_1
  doi: 10.1103/PhysRevLett.120.055101
– ident: e_1_2_5_17_1
  doi: 10.1002/2016GL069064
– ident: e_1_2_5_2_1
  doi: 10.1002/2017JA024524
– ident: e_1_2_5_24_1
  doi: 10.1002/2016GL070224
SSID ssj0003031
Score 2.4330726
Snippet Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic...
Abstract Crescent‐shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic...
Crescent-shaped electron distributions perpendicular to the magnetic field are an important indicator of the electron diffusion region in magnetic...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Publisher
StartPage 3024
SubjectTerms agyrotropic electron distributions
Boundaries
Curvature
Diffusion
Dynamics
Electron diffusion
electron finite gyroradius effect
Electron motion
Electrons
Instability
Interactions
Magnetic field
Magnetic fields
Magnetic reconnection
Magnetopause
Magnetospheres
Multiscale analysis
Particle interactions
Pitch (inclination)
Plasma instabilities
Plasma interactions
Scattering
Signatures
Spacecraft
Spacecraft stability
upper hybrid waves
Waves
Title Crescent‐Shaped Electron Distributions at the Nonreconnecting Magnetopause: Magnetospheric Multiscale Observations
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2019GL082231
https://www.proquest.com/docview/2207460497/abstract/
https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-251342
https://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-382993
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NjtMwELbKrpC4IH5FYUE-AJco4MRu0nAr7W4LdAvabZcVFytOnLYCpVWTHuDEI_AIPBtPwjh20pSuKuASpVblWJ4v8-PMfIPQU08SkHIsbCoSajOPCFv4obQjJlvUl4EjE_VF93TkDSbs7WXrstH4WctaWufiRfTtyrqS_5EqjIFcVZXsP0i2mhQG4B7kC1eQMFz_SsbdlSZjqjIWzmfhEjzIY9PbRnFrVh2tMlO3aI0WaREGp0rXpVPrNJymMofgea0L1c3vTBEOzCOrKNHNQJTSei-qM9ys7tX25WJZytuwB82sL0Wh0OYUvlrka2scGnupMoGKdIKPVuVSb2q3e5uW0GeKakPrsW79oELVRtGy8LswIruZQDvpnirP0W67viHH1io5YDBGdG_cUmebY8v5jgKmRJdkG2MOBtq90lAQV_GsqmX2h4r03piiLT7uQeecf-id8OGb0btr6ND1gxaE94edi8mnSWXt4Qm6K6NZuSmugPlf1mffdntqsYzmp90OjQrfZnwL3TRBCe5ohN1GDZneQdf7RdPnr3BXpAlH2V2Ul4j79f2HxhousYa3sIbDHAPW8B9Yw3WsvcLbSMMbpOE60u6hycnxuDuwTd8OO4JwmNoygTc9jNqMxD4VQeJCSMzAj_W9ADRACB4y7AiT0vFC5rWVQy5IRD2SMBUNC4_eRwfpIpUPEJa-4yQ0johqB0P8OBQsILH0nLDlRWAwmuhZua18qelZeJFW4Qa8vv1NdFTuOTcvcMZdVzXbgRDZb6LnWg7VJIp1vTe_6PDFaso_5zMOcQBlLjxv3x_Xa07b4ODRJrIKee5dFO-fDVtt36EP96_uEbqxeZ-O0EG-WsvH4Arn4olB428LTbLE
link.rule.ids 230,315,786,790,891,27957,27958,50849,50958
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9tAEF6CQ2gvIUlb6jyaPbS9FFFJu1pJvZk87KS2C20cQi_LrjRyQkAOlnzorT-hvzG_pDPS2jiXQG4SrFZiRjvzffv4hrGPCnz0cm49YQvhSeVbz8YGvExCJGJIAyhoRXc0VoOJvLyJblydUzoL0-pDrCbcaGQ08ZoGOE1IO7UBEsnE1JX2h6RYTueoNzHzRUmHbfauJ78nq2CMEbotmpdKLwlj5fa-Yw9f159_mpXWoGYrH_oUuTap53yHbTvMyHutk3fZBpR7bKvf1OT9g1fNLs6sesPqk3mrzvT499-vW_MAOT9zZW74KSnkuuJWFTc1R-THx7OyYcQlhb1yykdmWkKNPHpRwbflXUXKA3cZb87qVuhT4D_sajK3essm52dXJwPPlVXwMmQrwoMCHWEyZHZ5LGxahMhYkEViWEzRQQYBDFpEAgTKSJUQXrJ-JpRfSCIrVol3rFPOSnjPOMRBUIg886lahx_nxsrUz0EFJlIZjucu-7Q0q35o1TN0s-odpnrd_F12uLS5dmOo0mFItVCQwcRd9rn1w6oTEsU-vbvu6dl8qu_rW40wTcgQ3_dcw8VCiwTzr-iyL40_n_0o3f85jJBPiv0XtT5mrwZXo6EeXoy_H7DX1Ib2rIXJIevU8wUcIYip7Qf3o_4Hrejq6Q
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF5VoFZcKihUDc89ABdk1fZu1jG3iJBQCAG1DUK9rHbtcUCVnCh2Dtz6E_ob-SXM2JsoXJC42dL6oZmd2e_bxzeMHSrw0cup9YTNhCeVbz0bGfASCU0RQRxARiu61wN1MZSX9817N-FGZ2FqfYjFhBtFRpWvKcAnaebEBkgjE0euuNcnwXI6Rr2KQENir15t3w3_DBe5GBN0XTMvll4rjJTb-o5v-L78_OtBaQlp1uqhr4FrNfJ019lnBxl5u_bxBvsA-Rf2sVeV5H3Cq2oTZ1JssvJsWoszPf_7_-vBTCDl567KDe-QQK6rbVVwU3IEfnwwzitCnFPWy0f82oxyKJFGzwo4nd8VJDzwmPDqqG6BLgV-YxdzucUWG3bPf59deK6qgpcgWREeZOgHkyCxSyNh4yxEwoIkErNijP4xiF_QIhIgUEaqFsEl6ydC-ZkkrmKV-MpW8nEO3xiHKAgykSY-Fevwo9RYGfspqMA0VYLh3GBHc7PqSS2eoatF7zDWy-ZvsN25zbULoUKHIZVCQQITNdhx7YfFS0gTu_N419bj6Uj_LR80ojQhQ_zeWw1nMy1aOPyKBjup_PnmT-nez34T6aTYflfrA_bpttPV_R-Dqx22Rk1ox1rY2mUr5XQGewhhSrvv-ukLR3TqEg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crescent%E2%80%90Shaped+Electron+Distributions+at+the+Nonreconnecting+Magnetopause%3A+Magnetospheric+Multiscale+Observations&rft.jtitle=Geophysical+research+letters&rft.au=B%E2%80%90B+Tang&rft.au=Li%2C+W+Y&rft.au=Graham%2C+D+B&rft.au=Rager%2C+A+C&rft.date=2019-03-28&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=46&rft.issue=6&rft.spage=3024&rft.epage=3032&rft_id=info:doi/10.1029%2F2019GL082231&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon