Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline

Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on prog...

Full description

Saved in:
Bibliographic Details
Published inBiometrics Vol. 56; no. 3; pp. 733 - 741
Main Authors Guihenneuc-Jouyaux, Chantal, Richardson, Sylvia, Longini, Ira M. Jr
Format Journal Article
LanguageEnglish
Published Oxford, UK Oxford, UK : Blackwell Publishing Ltd 01.09.2000
Blackwell Publishing Ltd
International Biometric Society
Wiley
Subjects
Online AccessGet full text
ISSN0006-341X
1541-0420
DOI10.1111/j.0006-341X.2000.00733.x

Cover

Abstract Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time-scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial.
AbstractList Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time-scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial.Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time-scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial.
Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow‐up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time‐scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial.
Author Richardson, Sylvia
Longini, Ira M. Jr
Guihenneuc-Jouyaux, Chantal
Author_xml – sequence: 1
  fullname: Guihenneuc-Jouyaux, Chantal
– sequence: 2
  fullname: Richardson, Sylvia
– sequence: 3
  fullname: Longini, Ira M. Jr
BackLink https://www.ncbi.nlm.nih.gov/pubmed/10985209$$D View this record in MEDLINE/PubMed
https://hal.science/hal-00170850$$DView record in HAL
BookMark eNqNkl1v0zAUhiM0xLrBP0BgcYHERcqxnQ9nEkglZe2kliGxAXeW4zidSxoXOx0tvx6nGUXazciFY_s87zm2z3sSHDWmUUGAMAyx_94uhwCQhDTC34fET_0ypXS4fRQMcBzhECICR8HgAB0HJ84t_TKLgTwJjjFkLCaQDQI7N6WqdbNAc2F_KOuQqdBYOyWcQp-tWVjlnDYNKnZIoKkuS9XsUXPbhaWPnqHRel1rKdqOaw3Kb4QVslVW_-4S5-MI5aqu0VhJX0k9DR5Xonbq2d3_NLg-_3iVT8PZ5eQiH81CmUBCQ8JKkKQEISoCScVY6QcsYwy0YkkUFwnF3R4UWQoxLpWUFBgAVRUrRKHoafCmz3sjar62eiXsjhuh-XQ0490eAE6BxXCLPfu6Z9fW_Nwo1_KVdtIfWjTKbBxPCYkJpQ-DURoziKLEg6_ugUuzsY2_MCfE100pox56cQdtipUqD6f82x8PvO8BaY1zVlVc6nb_0K0VuvYg7wzBl7zrNe96zTtD8L0h-NYnYPcS_KvxoPRdL_2la7X7bx3_cHE59zOvf97rl6419qAnSZpkOPbhsA9r16rtIeytxZOUpjH_9mnCv17NpiQ_n_DU8y97vhKGi4XVjl9_IYApgLdDljH6B3JX7DU
CODEN BIOMA5
CitedBy_id crossref_primary_10_1007_s10985_022_09547_7
crossref_primary_10_1146_annurev_statistics_022513_115558
crossref_primary_10_1111_j_1751_5823_2012_00193_x
crossref_primary_10_15446_rev_fac_cienc_v10n2_90438
crossref_primary_10_1097_00126334_200309010_00007
crossref_primary_10_1016_j_jmva_2020_104646
crossref_primary_10_1214_15_AOAS810
crossref_primary_10_1093_nar_gkp493
crossref_primary_10_1111_1467_9884_00351
crossref_primary_10_1111_j_1467_9876_2004_04985_x
crossref_primary_10_1111_j_1467_9876_2010_00714_x
crossref_primary_10_1177_096228020101000203
crossref_primary_10_1198_106186005X25727
crossref_primary_10_1111_rssc_12373
crossref_primary_10_1097_QAD_0000000000001437
crossref_primary_10_1002_sam_11479
crossref_primary_10_4236_health_2019_118083
crossref_primary_10_1002_sim_5861
crossref_primary_10_1111_rssc_12015
crossref_primary_10_1002_sim_7502
crossref_primary_10_1002_sim_4059
crossref_primary_10_1016_j_insmatheco_2022_08_001
crossref_primary_10_1080_02664763_2019_1677573
crossref_primary_10_1111_rssc_12194
crossref_primary_10_1111_j_1541_0420_2007_00932_x
crossref_primary_10_1016_j_ecolmodel_2004_05_011
crossref_primary_10_1080_10920277_2007_10597486
crossref_primary_10_1016_j_spl_2011_02_005
crossref_primary_10_1177_15333175221111658
crossref_primary_10_1016_j_mbs_2013_08_011
crossref_primary_10_1016_j_mbs_2018_08_011
crossref_primary_10_1186_1742_7622_9_1
crossref_primary_10_1093_aje_kws345
crossref_primary_10_1097_EDE_0000000000000032
crossref_primary_10_1002_sim_7813
crossref_primary_10_1177_0163278720984203
crossref_primary_10_1081_STA_200056845
crossref_primary_10_1097_QAI_0b013e3182976891
crossref_primary_10_1002_sim_886
crossref_primary_10_2165_00003088_200140120_00001
crossref_primary_10_1111_biom_13593
crossref_primary_10_1002_sim_6402
crossref_primary_10_1002_sim_6962
crossref_primary_10_1007_s11222_013_9399_z
crossref_primary_10_1097_01_TP_0000071200_37399_1D
crossref_primary_10_1002_sim_1274
crossref_primary_10_1177_09622802221122390
Cites_doi 10.1002/sim.4780100706
10.1097/00002030-199606000-00011
10.2307/2290756
10.2307/2983150
10.1002/sim.4780080708
10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
10.1111/j.2517-6161.1992.tb01457.x
10.2307/2986089
10.1002/sim.4780121205
10.1097/00002030-199708000-00008
10.1093/oxfordjournals.aje.a116625
10.1007/978-1-4899-4485-6
10.1080/01621459.1990.10476213
10.1002/sim.4780130803
10.1007/978-1-4612-4348-9
10.1080/01621459.1990.10474968
10.1007/978-1-4757-2728-9
10.2307/2530699
10.1002/sim.4780070605
10.1002/sim.4780141804
10.1109/34.481537
10.1080/01621459.1994.10476806
10.1016/S0140-6736(94)90006-X
ContentType Journal Article
Copyright Copyright 2000 The International Biometric Society
Copyright International Biometric Society Sep 2000
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright 2000 The International Biometric Society
– notice: Copyright International Biometric Society Sep 2000
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID FBQ
BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
JQ2
K7-
K9.
L6V
LK8
M0S
M1P
M2P
M7P
M7S
P5Z
P62
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
7S9
L.6
7X8
1XC
DOI 10.1111/j.0006-341X.2000.00733.x
DatabaseName AGRIS
Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Science Database (Alumni Edition)
STEM Database
Public Health Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Collection
ProQuest Hospital Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
ProQuest Technology Collection
Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Health & Medical Complete (Alumni)
ProQuest Engineering Collection
Biological Sciences
ProQuest Health & Medical Collection
Medical Database (ProQuest)
Science Database (ProQuest)
Biological Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest AP Science
SciTech Premium Collection
ProQuest Central China
ProQuest One Applied & Life Sciences
Health Research Premium Collection
Natural Science Collection
Health & Medical Research Collection
Biological Science Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
ProQuest Technology Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Natural Science Collection
ProQuest Central
ProQuest Health & Medical Research Collection
ProQuest Engineering Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
ProQuest Public Health
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest Medical Library
Materials Science & Engineering Collection
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

Computer Science Database
MEDLINE

CrossRef
AGRICOLA

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
– sequence: 4
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Statistics
Biology
Mathematics
EISSN 1541-0420
EndPage 741
ExternalDocumentID oai_HAL_hal_00170850v1
59843106
10985209
10_1111_j_0006_341X_2000_00733_x
BIOM733
2676915
ark_67375_WNG_VTLH2CFG_7
US201300864998
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
-~X
.3N
.4S
.DC
.GA
.GJ
.Y3
05W
0R~
10A
1OC
23N
2AX
2QV
3-9
31~
33P
36B
3SF
3V.
4.4
44B
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5RE
5VS
66C
6J9
702
7PT
7X7
8-0
8-1
8-3
8-4
8-5
88E
88I
8AF
8C1
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
8UM
930
A03
A8Z
AAESR
AAEVG
AAHHS
AAJUZ
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABBHK
ABCQN
ABCUV
ABCVL
ABDBF
ABEML
ABFAN
ABHUG
ABJCF
ABJNI
ABLJU
ABPPZ
ABPTK
ABPVW
ABTAH
ABUWG
ABWRO
ABYWD
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOD
ACIWK
ACKIV
ACMTB
ACNCT
ACPOU
ACPRK
ACSCC
ACTMH
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADDAD
ADEOM
ADIPN
ADIZJ
ADKYN
ADMGS
ADODI
ADOZA
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AELPN
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFBPY
AFDVO
AFEBI
AFFTP
AFGKR
AFKRA
AFPWT
AFVGU
AFVYC
AFXKK
AFZJQ
AGJLS
AGTJU
AHMBA
AIAGR
AIBGX
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALEEW
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ANPLD
APXXL
ARAPS
ARCSS
ASPBG
AS~
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BBNVY
BCRHZ
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BPHCQ
BROTX
BRXPI
BVXVI
BY8
CAG
CCPQU
COF
CS3
D-E
D-F
DCZOG
DPXWK
DQDLB
DR2
DRFUL
DRSTM
DSRWC
DWQXO
DXH
EAD
EAP
EBC
EBD
EBS
ECEWR
EDO
EFSUC
EJD
EMB
EMK
EMOBN
EST
ESTFP
ESX
F00
F01
F04
F5P
FBQ
FD6
FEDTE
FXEWX
FYUFA
G-S
G.N
GNUQQ
GODZA
GS5
H.T
H.X
HCIFZ
HF~
HGD
HMCUK
HQ6
HVGLF
HZI
HZ~
IHE
IX1
J0M
JAAYA
JAC
JBMMH
JBZCM
JENOY
JHFFW
JKQEH
JLEZI
JLXEF
JMS
JPL
JSODD
JST
K48
K6V
K7-
L6V
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LK8
LOXES
LP6
LP7
LUTES
LW6
LYRES
M1P
M2P
M7P
M7S
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
NHB
O66
O9-
OWPYF
P0-
P2P
P2W
P2X
P4D
P62
PQQKQ
PROAC
PSQYO
PTHSS
Q.N
Q11
Q2X
QB0
R.K
RNS
ROL
RWL
RX1
RXW
SA0
SUPJJ
SV3
TAE
TN5
TUS
UAP
UB1
UKHRP
V8K
VQA
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
X6Y
XBAML
XFK
XG1
XSW
ZGI
ZXP
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
AAPXW
AAUAY
AAZSN
ABEJV
ABMNT
ABXSQ
ABXVV
ADACV
AJAOE
ALIPV
BSCLL
IPSME
KOP
OIG
OJZSN
ROX
AAMMB
AANHP
AAWIL
AAYCA
ABAWQ
ABDFA
ABGNP
ACHJO
ACRPL
ACYXJ
ADNBA
ADNMO
ADVOB
AEFGJ
AEOTA
AFWVQ
AGLNM
AGORE
AGQPQ
AGXDD
AIDQK
AIDYY
AIHAF
AJNCP
ALRMG
NU-
PHGZM
PHGZT
ACUHS
AAYXX
AHGBF
AJBYB
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7XB
8FK
JQ2
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQUKI
PRINS
Q9U
7S9
L.6
PUEGO
7X8
1XC
ID FETCH-LOGICAL-c6063-28d0c2d0aaf206f88d6f81c5103f8645b6318d6f0b97051decc308003ef8babe3
IEDL.DBID 8FG
ISSN 0006-341X
IngestDate Fri May 09 12:16:36 EDT 2025
Thu Sep 04 18:08:47 EDT 2025
Fri Sep 05 17:31:54 EDT 2025
Fri Jul 25 19:35:09 EDT 2025
Wed Feb 19 01:20:06 EST 2025
Thu Apr 24 23:05:42 EDT 2025
Tue Jul 01 02:39:15 EDT 2025
Wed Jan 22 16:20:25 EST 2025
Thu Jul 03 21:22:35 EDT 2025
Wed Oct 30 09:52:24 EDT 2024
Wed Dec 27 19:05:50 EST 2023
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6063-28d0c2d0aaf206f88d6f81c5103f8645b6318d6f0b97051decc308003ef8babe3
Notes http://dx.doi.org/10.1111/j.0006-341X.2000.00733.x
istex:9E14C6511AE982CA80DEA28EC48BC6E9AF1FB872
ark:/67375/WNG-VTLH2CFG-7
ArticleID:BIOM733
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-7237-7120
PMID 10985209
PQID 221707383
PQPubID 35365
PageCount 9
ParticipantIDs hal_primary_oai_HAL_hal_00170850v1
proquest_miscellaneous_72252331
proquest_miscellaneous_47580446
proquest_journals_221707383
pubmed_primary_10985209
crossref_citationtrail_10_1111_j_0006_341X_2000_00733_x
crossref_primary_10_1111_j_0006_341X_2000_00733_x
wiley_primary_10_1111_j_0006_341X_2000_00733_x_BIOM733
jstor_primary_2676915
istex_primary_ark_67375_WNG_VTLH2CFG_7
fao_agris_US201300864998
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate September 2000
PublicationDateYYYYMMDD 2000-09-01
PublicationDate_xml – month: 09
  year: 2000
  text: September 2000
PublicationDecade 2000
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Washington
PublicationTitle Biometrics
PublicationTitleAlternate Biometrics
PublicationYear 2000
Publisher Oxford, UK : Blackwell Publishing Ltd
Blackwell Publishing Ltd
International Biometric Society
Wiley
Publisher_xml – name: Oxford, UK : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: International Biometric Society
– name: Wiley
References Concorde Coordinating Committee. (1994). Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred Zidovudine in symptom-free HIV infection. Lancet 343, 871-881.
Richardson, S. and Guihenneuc-Jouyaux, C. (1996). Contribution to the discussion of the paper by Satten and Longini. Applied Statistics 45, 298-299.
Longini, I. M., Clark, W. S., Byers, R. H., Ward, J. W., Darrow, W. W., Lemp, G. P., and Hethcote, H. W. (1989). Statistical analysis of the stages of HIV infection using a Markov model. Statistics in Medicine 8, 831-843.
Longini, I. M., Clark, W. S., and Karon, J. (1993). The effect of routine use of therapy on the clinical course of HIV infection in a population-based cohort. American Journal of Epidemiology 137, 1229-1240.
Taylor, J. M. G., Fahey, J. L., Detels, R., and Giorgi, J. V. (1989). CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use? Journal of AIDS 2, 114-124.
Pawitan, Y. and Self, S. (1993). Modeling disease marker processes in AIDS. Journal of the American Statistical Association 88, 719-726.
Berzuini, C. and Larizza, C. (1996). A unified approach for modeling longitudinal and failure time data with application in medical monitoring. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 109-123.
Hendriks, J. C. M., Satten, G. A., Longini, I. M., van Druten, H. A. M., Schellekens, P. T. A., Coutinho, R. A., and van Griensven, G. J. P. (1996). Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men. AIDS 10, 649-456.
Andersen, P. K., Hansen, L. S., and Keiding, N. (1991). Assessing the influence of reversible disease indicators on survival. Statistics in Medicine 10, 1061-1067.
Klein, J. P. and Moeshberger, M. L. (1997). Survival Analysis. New York : Springer.
Chiang, C. L. (1980). An Introduction to Stochastic Process. New York : Robert E. Krieger.
Kirby, A. J. and Spiegelhalter, D. J. (1994). Statistical Modeling for the Precursors of Cervical Cancer. Case in Biometry. New York : Wiley.
Gentleman, R. C., Lawless, J. F., Lindsey, F. C., and Yan, P. (1994). Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease. Statistics in Medicine 13, 805-821.
Taylor, J. M. G., Cumberland, W. G., and Sy, J. P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 89, 727-737.
Faucett, C. L. and Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685.
Frydman, H. (1992). A nonparametric estimation procedure for a periodically observed three-state Markov process, with application to AIDS. Journal of the Royal Statistical Society, Series B 54, 853-866.
Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association 85, 972-985.
Longini, I. M., Clark, W. S., Gardner, L. I., and Brundage, J. F. (1991). The dynamics of CD4+ T-lymphocyte decline in HIV-infected individuals: A Markov modeling approach. Journal of Acquired Immune Deficiency Syndromes 4, 1141-1147.
Satten, G. A. and Longini, I. M. (1996). Markov chains with measurement errors: Estimating the true course of a marker of the progression of HIV disease (with discussion). Applied Statistics 45, 275-309.
Sharples, L. D. (1993). Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation. Statistics in Medicine 12, 1155-1169.
Best, N. G., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Technical Report, MRC Biostatistics Unit, University of Cambridge, Cambridge , U.K .
Andersen, P. K. (1988). Multistate models in survival analysis: A study of nephropathy and mortality in diabetes. Statistics in Medicine 7, 661-670.
Kay, R. (1986). A Markov model for analyzing cancer markers and disease states in survival studies. Biometrics 42, 855-866.
Marshall, G. and Jones, R. H. (1995). Multi-state models and diabetic retinopathy. Statistics in Medicine 14, 1975-1983.
Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer.
Gilks, W. R., Richardson, S., and Spiegelhalter, D. I. (1996). Markov Chain Monte Carlo in Practice. London : Chapman and Hall.
White, I. R., Walker, S., Babiker, A. G., and Darbyshire, J. H. (1997). Impact of treatment changes on the interpretation of the Concorde trial. AIDS 11, 999-1006.
Centers for Disease Control. (1987). Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Morbidity and Mortality Weekly Report 36 (Suppl. 1S), 1-15.
Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409.
Keiding, N. (1991). Age-specific incidence and prevalence: A statistical perspective. Journal of the Royal Statistical Society, Series A 154, 371-396.
1991; 154
1991; 4
1987; 36
1989; 2
1996; 18
1991; 10
1995; 14
1993; 88
1989; 8
1994; 89
1997
1996
1995
1994
1993
1992; 54
1996; 15
1996; 10
1994; 343
1990; 85
1993; 12
1997; 11
1986; 42
1988; 7
1987
1994; 13
1980
1993; 137
1996; 45
Frydman H. (e_1_2_1_12_1) 1992; 54
Kirby A. J. (e_1_2_1_20_1) 1994
Chiang C. L. (e_1_2_1_9_1) 1980
e_1_2_1_24_1
e_1_2_1_21_1
e_1_2_1_22_1
e_1_2_1_28_1
e_1_2_1_25_1
e_1_2_1_26_1
Allen D. M. (e_1_2_1_2_1) 1987
e_1_2_1_29_1
Longini I. M. (e_1_2_1_23_1) 1991; 4
e_1_2_1_30_1
e_1_2_1_5_1
Centers for Disease Control (e_1_2_1_8_1) 1987; 36
e_1_2_1_6_1
e_1_2_1_3_1
e_1_2_1_4_1
e_1_2_1_13_1
e_1_2_1_10_1
Taylor J. M. G. (e_1_2_1_31_1) 1989; 2
e_1_2_1_11_1
e_1_2_1_32_1
e_1_2_1_16_1
e_1_2_1_17_1
Best N. G. (e_1_2_1_7_1) 1995
e_1_2_1_14_1
e_1_2_1_15_1
e_1_2_1_18_1
Richardson S. (e_1_2_1_27_1) 1996; 45
e_1_2_1_19_1
References_xml – reference: Faucett, C. L. and Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685.
– reference: White, I. R., Walker, S., Babiker, A. G., and Darbyshire, J. H. (1997). Impact of treatment changes on the interpretation of the Concorde trial. AIDS 11, 999-1006.
– reference: Andersen, P. K. (1988). Multistate models in survival analysis: A study of nephropathy and mortality in diabetes. Statistics in Medicine 7, 661-670.
– reference: Satten, G. A. and Longini, I. M. (1996). Markov chains with measurement errors: Estimating the true course of a marker of the progression of HIV disease (with discussion). Applied Statistics 45, 275-309.
– reference: Klein, J. P. and Moeshberger, M. L. (1997). Survival Analysis. New York : Springer.
– reference: Berzuini, C. and Larizza, C. (1996). A unified approach for modeling longitudinal and failure time data with application in medical monitoring. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 109-123.
– reference: Longini, I. M., Clark, W. S., and Karon, J. (1993). The effect of routine use of therapy on the clinical course of HIV infection in a population-based cohort. American Journal of Epidemiology 137, 1229-1240.
– reference: Longini, I. M., Clark, W. S., Byers, R. H., Ward, J. W., Darrow, W. W., Lemp, G. P., and Hethcote, H. W. (1989). Statistical analysis of the stages of HIV infection using a Markov model. Statistics in Medicine 8, 831-843.
– reference: Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409.
– reference: Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association 85, 972-985.
– reference: Frydman, H. (1992). A nonparametric estimation procedure for a periodically observed three-state Markov process, with application to AIDS. Journal of the Royal Statistical Society, Series B 54, 853-866.
– reference: Chiang, C. L. (1980). An Introduction to Stochastic Process. New York : Robert E. Krieger.
– reference: Centers for Disease Control. (1987). Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Morbidity and Mortality Weekly Report 36 (Suppl. 1S), 1-15.
– reference: Keiding, N. (1991). Age-specific incidence and prevalence: A statistical perspective. Journal of the Royal Statistical Society, Series A 154, 371-396.
– reference: Kay, R. (1986). A Markov model for analyzing cancer markers and disease states in survival studies. Biometrics 42, 855-866.
– reference: Andersen, P. K., Hansen, L. S., and Keiding, N. (1991). Assessing the influence of reversible disease indicators on survival. Statistics in Medicine 10, 1061-1067.
– reference: Taylor, J. M. G., Fahey, J. L., Detels, R., and Giorgi, J. V. (1989). CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use? Journal of AIDS 2, 114-124.
– reference: Gilks, W. R., Richardson, S., and Spiegelhalter, D. I. (1996). Markov Chain Monte Carlo in Practice. London : Chapman and Hall.
– reference: Kirby, A. J. and Spiegelhalter, D. J. (1994). Statistical Modeling for the Precursors of Cervical Cancer. Case in Biometry. New York : Wiley.
– reference: Longini, I. M., Clark, W. S., Gardner, L. I., and Brundage, J. F. (1991). The dynamics of CD4+ T-lymphocyte decline in HIV-infected individuals: A Markov modeling approach. Journal of Acquired Immune Deficiency Syndromes 4, 1141-1147.
– reference: Marshall, G. and Jones, R. H. (1995). Multi-state models and diabetic retinopathy. Statistics in Medicine 14, 1975-1983.
– reference: Taylor, J. M. G., Cumberland, W. G., and Sy, J. P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 89, 727-737.
– reference: Best, N. G., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Technical Report, MRC Biostatistics Unit, University of Cambridge, Cambridge , U.K .
– reference: Concorde Coordinating Committee. (1994). Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred Zidovudine in symptom-free HIV infection. Lancet 343, 871-881.
– reference: Sharples, L. D. (1993). Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation. Statistics in Medicine 12, 1155-1169.
– reference: Hendriks, J. C. M., Satten, G. A., Longini, I. M., van Druten, H. A. M., Schellekens, P. T. A., Coutinho, R. A., and van Griensven, G. J. P. (1996). Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men. AIDS 10, 649-456.
– reference: Pawitan, Y. and Self, S. (1993). Modeling disease marker processes in AIDS. Journal of the American Statistical Association 88, 719-726.
– reference: Richardson, S. and Guihenneuc-Jouyaux, C. (1996). Contribution to the discussion of the paper by Satten and Longini. Applied Statistics 45, 298-299.
– reference: Gentleman, R. C., Lawless, J. F., Lindsey, F. C., and Yan, P. (1994). Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease. Statistics in Medicine 13, 805-821.
– reference: Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer.
– volume: 89
  start-page: 727
  year: 1994
  end-page: 737
  article-title: A stochastic model for analysis of longitudinal AIDS data
  publication-title: Journal of the American Statistical Association
– volume: 13
  start-page: 805
  year: 1994
  end-page: 821
  article-title: Multi‐state Markov models for analysing incomplete disease history data with illustrations for HIV disease
  publication-title: Statistics in Medicine
– volume: 7
  start-page: 661
  year: 1988
  end-page: 670
  article-title: Multistate models in survival analysis: A study of nephropathy and mortality in diabetes
  publication-title: Statistics in Medicine
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  article-title: Sampling‐based approaches to calculating marginal densities
  publication-title: Journal of the American Statistical Association
– volume: 42
  start-page: 855
  year: 1986
  end-page: 866
  article-title: A Markov model for analyzing cancer markers and disease states in survival studies
  publication-title: Biometrics
– volume: 10
  start-page: 649
  year: 1996
  end-page: 456
  article-title: Use of immunological markers and continuous‐time Markov models to estimate progression of HIV infection in homosexual men
  publication-title: AIDS
– volume: 10
  start-page: 1061
  year: 1991
  end-page: 1067
  article-title: Assessing the influence of reversible disease indicators on survival
  publication-title: Statistics in Medicine
– year: 1987
– year: 1996
– volume: 4
  start-page: 1141
  year: 1991
  end-page: 1147
  article-title: The dynamics of CD4+ T‐lymphocyte decline in HIV‐infected individuals: A Markov modeling approach
  publication-title: Journal of Acquired Immune Deficiency Syndromes
– year: 1994
– volume: 88
  start-page: 719
  year: 1993
  end-page: 726
  article-title: Modeling disease marker processes in AIDS
  publication-title: Journal of the American Statistical Association
– volume: 2
  start-page: 114
  year: 1989
  end-page: 124
  article-title: CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use?
  publication-title: Journal of AIDS
– volume: 85
  start-page: 972
  year: 1990
  end-page: 985
  article-title: Illustration of Bayesian inference in normal data models using Gibbs sampling
  publication-title: Journal of the American Statistical Association
– volume: 11
  start-page: 999
  year: 1997
  end-page: 1006
  article-title: Impact of treatment changes on the interpretation of the Concorde trial
  publication-title: AIDS
– volume: 12
  start-page: 1155
  year: 1993
  end-page: 1169
  article-title: Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation
  publication-title: Statistics in Medicine
– volume: 18
  start-page: 109
  year: 1996
  end-page: 123
  article-title: A unified approach for modeling longitudinal and failure time data with application in medical monitoring
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 343
  start-page: 871
  year: 1994
  end-page: 881
  article-title: Concorde: MRC/ANRS randomised double‐blind controlled trial of immediate and deferred Zidovudine in symptom‐free HIV infection
  publication-title: Lancet
– year: 1980
– volume: 54
  start-page: 853
  year: 1992
  end-page: 866
  article-title: A nonparametric estimation procedure for a periodically observed three‐state Markov process, with application to AIDS
  publication-title: Journal of the Royal Statistical Society
– year: 1997
– volume: 8
  start-page: 831
  year: 1989
  end-page: 843
  article-title: Statistical analysis of the stages of HIV infection using a Markov model
  publication-title: Statistics in Medicine
– year: 1995
– volume: 14
  start-page: 1975
  year: 1995
  end-page: 1983
  article-title: Multi‐state models and diabetic retinopathy
  publication-title: Statistics in Medicine
– volume: 15
  start-page: 1663
  year: 1996
  end-page: 1685
  article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach
  publication-title: Statistics in Medicine
– volume: 45
  start-page: 298
  year: 1996
  end-page: 299
  article-title: Contribution to the discussion of the paper by Satten and Longini
  publication-title: Applied Statistics
– volume: 137
  start-page: 1229
  year: 1993
  end-page: 1240
  article-title: The effect of routine use of therapy on the clinical course of HIV infection in a population‐based cohort
  publication-title: American Journal of Epidemiology
– year: 1993
– volume: 36
  start-page: 1
  issue: Suppl. 1S
  year: 1987
  end-page: 15
  article-title: Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome
  publication-title: Morbidity and Mortality Weekly Report
– volume: 45
  start-page: 275
  year: 1996
  end-page: 309
  article-title: Markov chains with measurement errors: Estimating the true course of a marker of the progression of HIV disease (with discussion)
  publication-title: Applied Statistics
– volume: 154
  start-page: 371
  year: 1991
  end-page: 396
  article-title: Age‐specific incidence and prevalence: A statistical perspective
  publication-title: Journal of the Royal Statistical Society, Series A
– ident: e_1_2_1_5_1
  doi: 10.1002/sim.4780100706
– ident: e_1_2_1_17_1
  doi: 10.1097/00002030-199606000-00011
– ident: e_1_2_1_26_1
  doi: 10.2307/2290756
– ident: e_1_2_1_19_1
  doi: 10.2307/2983150
– ident: e_1_2_1_22_1
  doi: 10.1002/sim.4780080708
– volume-title: CODA: Convergence diagnosis and output analysis software for Gibbs sampling output
  year: 1995
  ident: e_1_2_1_7_1
– ident: e_1_2_1_11_1
  doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1
– volume: 54
  start-page: 853
  year: 1992
  ident: e_1_2_1_12_1
  article-title: A nonparametric estimation procedure for a periodically observed three‐state Markov process, with application to AIDS
  publication-title: Journal of the Royal Statistical Society
  doi: 10.1111/j.2517-6161.1992.tb01457.x
– volume-title: Computer Science and Statistics: Proceedings of the 19th Symposium Interface
  year: 1987
  ident: e_1_2_1_2_1
– ident: e_1_2_1_28_1
  doi: 10.2307/2986089
– volume-title: An Introduction to Stochastic Process
  year: 1980
  ident: e_1_2_1_9_1
– ident: e_1_2_1_29_1
  doi: 10.1002/sim.4780121205
– ident: e_1_2_1_32_1
  doi: 10.1097/00002030-199708000-00008
– volume: 4
  start-page: 1141
  year: 1991
  ident: e_1_2_1_23_1
  article-title: The dynamics of CD4+ T‐lymphocyte decline in HIV‐infected individuals: A Markov modeling approach
  publication-title: Journal of Acquired Immune Deficiency Syndromes
– ident: e_1_2_1_24_1
  doi: 10.1093/oxfordjournals.aje.a116625
– ident: e_1_2_1_16_1
  doi: 10.1007/978-1-4899-4485-6
– volume: 45
  start-page: 298
  year: 1996
  ident: e_1_2_1_27_1
  article-title: Contribution to the discussion of the paper by Satten and Longini
  publication-title: Applied Statistics
– ident: e_1_2_1_13_1
  doi: 10.1080/01621459.1990.10476213
– ident: e_1_2_1_15_1
  doi: 10.1002/sim.4780130803
– ident: e_1_2_1_4_1
  doi: 10.1007/978-1-4612-4348-9
– ident: e_1_2_1_14_1
  doi: 10.1080/01621459.1990.10474968
– ident: e_1_2_1_21_1
  doi: 10.1007/978-1-4757-2728-9
– ident: e_1_2_1_18_1
  doi: 10.2307/2530699
– ident: e_1_2_1_3_1
  doi: 10.1002/sim.4780070605
– volume-title: Statistical Modeling for the Precursors of Cervical Cancer. Case in Biometry
  year: 1994
  ident: e_1_2_1_20_1
– volume: 36
  start-page: 1
  issue: 1
  year: 1987
  ident: e_1_2_1_8_1
  article-title: Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome
  publication-title: Morbidity and Mortality Weekly Report
– ident: e_1_2_1_25_1
  doi: 10.1002/sim.4780141804
– volume: 2
  start-page: 114
  year: 1989
  ident: e_1_2_1_31_1
  article-title: CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use?
  publication-title: Journal of AIDS
– ident: e_1_2_1_6_1
  doi: 10.1109/34.481537
– ident: e_1_2_1_30_1
  doi: 10.1080/01621459.1994.10476806
– ident: e_1_2_1_10_1
  doi: 10.1016/S0140-6736(94)90006-X
SSID ssj0009502
Score 1.8566335
Snippet Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied...
Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow‐up of patients under varied...
SourceID hal
proquest
pubmed
crossref
wiley
jstor
istex
fao
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 733
SubjectTerms AIDS
AIDS related complex
Algorithms
Bayesian hierarchical model
Biomarkers
biometry
Biometry - methods
CD4 cells
CD4 Lymphocyte Count
clinical trials
disease course
Disease models
Disease Progression
Gibbs sampling
HIV
HIV Infections - drug therapy
HIV Infections - immunology
HIV Infections - physiopathology
Humans
Markov chain
Markov chain Monte Carlo
Markov Chains
Markov models
Markov process
Markov processes
Measurement error
Models, Statistical
Monte Carlo method
Multilevel models
Multistate models
Parametric models
Patient Compliance
patients
Statistical discrepancies
therapeutics
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BENJ4GFA2FsaHhRBvqRLny-GttHQFrQPBCn2zHMcBaVUyre207a_nLk6zFQ1pQrxEVeqz0sv5fFf_7ncAb1Khk7jA7IT7uXZDDAhcFaW5m4ZBkigT8ySjAufxYTyahJ-m0bTBP1EtjOWHaP9wo5VR-2ta4Cqbry1ycrUueuFpXW_SrfsPdime9IOYaPQHX_k1_l3PEoc3ImugnpsnWtup7haqwusvQkveoxdwvgIw3hSarke69VY1fAjHqx9pESrH3eUi6-rLP_gf_48WHsFWE9GynjXBx3DHlB24b3tcXnTgwbglhp13YJOCW8sN_QROqREblcMzqhjCOJRVBRvYEyP2hYBjljSEZRdMsRGRnZT10OqMNQUO71jv6gSeLSrWbwmoL2ni_iBkfTObsYGhGlCzDZPhh6P-yG16QLgaU6vA5SL3NM89pQruxYUQOV58TTyAhYjDKIvRKeE9L0sT9C85WmRAQXBgCpGpzAQ7sFFWpdkFVvA0j4TORcj9UAsU1UrHRWEyDCGFSR1IVu9b6oYgnfp0zORVokTKlqRsat9JxKqobHnugN9KnliSkFvI7KJJSfUTfbmcfON0gozpJSagwoHXaGftTEQAPuodSLpX0x2JyDvzHXhbm2E7DLVPIL0kkj8O9-X3o4MR7w_3ZeLAdm2n7UBOqGY_cmBvZbey8VtzyTFDxecTgQOv2m_R4dApkipNtZzLEDNMQgH8fUSCewQPAnzEp3Y5XFNKKgh35UBcG_WttSXff_w8xk_P_lVwDzYtiQKhA5_DxuJ0aV5gOLnIXtaO4jcxU179
  priority: 102
  providerName: Wiley-Blackwell
Title Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline
URI https://api.istex.fr/ark:/67375/WNG-VTLH2CFG-7/fulltext.pdf
https://www.jstor.org/stable/2676915
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2000.00733.x
https://www.ncbi.nlm.nih.gov/pubmed/10985209
https://www.proquest.com/docview/221707383
https://www.proquest.com/docview/47580446
https://www.proquest.com/docview/72252331
https://hal.science/hal-00170850
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7RVUjjAUEZLAyKhRBvgcT5YYcX1HVrC1oLGiv0zUochz1AUppu2vjruUvSbJMA7SVqXduKfGf7rvfddwCvIqlFmKF3wt1U2z4aBHYcRKkd-Z4QsQm5SCjBeToLJ3P_4yJYNNicsoFVbs7E6qBOC03_kb_laDujOkrv_fKXTUWjKLjaVNDoQNfFi4bUXI7G1zh3nZosnOBdvru4AeRpW6tklTdV8cIN_1FzO3WyuMDnKSEku7ToFxvQ4t_M0ZvWbXU9jR7A_cauZINaER7CHZP34G5dafKyB_emLT1r2YNtMjFrhuZHsKJyaJSUzn4SVGdVsiJjTdyGVfCtmrqDJZcsZqdEOZIzSvEpztmyTjN4xwZXcXC2LphuaaB_08TDA59RhIClhjIxzQ7MR4cnw4ndVGKwNTo4ns1l6mieOnGccSfMpEzx4Wpi48tk6AdJiEcDtjlJJHCX42TaI1PUM5lM4sR4j2ErL3KzCyzjURpInUqfu76WOFTHOswyk6AhJ01kgdhIQOmGppyqZfxQV-4KyU6R7KiIJtGbouzUhQVuO3JZU3XcYswuClnF3_FEVfMvnOK46OShGygteImSb2ciGu7J4EhRW0U6JAPn3LXgdaUYbTdcfYLKiUB9m43V15OjCR-OxkpYsFNpTtuRE7bYDSzY22iSak6PUrW6bsGL9lfc9iSpODfFWal89PMoFv_vHgJPau55-IpPagW9tiiRJPSTBWGlsbdeLbX_4dMUPz3970vvwXbNV0BAvGewtV6dmedoua2TPnTEQuBTDt1-tVf70N0_nH0-xm8Hx_wP0aw6bg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71IUQ5IAiFmgJdIeBmsNePXSMhFFJShybhQFJyW-y1TQ8QhyQtDf-J_8iMX20lQL30Ylnr3ZW9Mzs745n5BuBZILXwM7ROuJ1o00WFwIy8IDED1xEiSn0uYkpwHgz9cOx-mHiTNfhd58JQWGUtEwtBneSa_pG_4qg7IztK5-3sh0lFo8i5WlfQKLniMF39RItt8aa3j-R9znn3_agTmlVRAVOjru6YXCaW5okVRRm3_EzKBC-2JmC5TPquF_vI5dhmxYFAhk3wEx3Sqpw0k3EUpw7Ouw6bLv0Yx-0jJuICxq9VgpNTOJlrTy4FDjWtRXLMy6JYYo23VJ2G61mU4_WYIjI3ichndZDk39Tfy9p0cRx278DtSo9l7ZLx7sJaOm3BjbKy5aoFtwYNHOyiBVuk0paI0PdgTuXXKAmefafQoPmC5Rmr_ESsCBcroUJYvGIROyaIkymjlKL8lM3KtIbXrH3ud2fLnOkGdvoXTdzZdxl5JBiuK6nR2zC-FiLdh41pPk13gGU8SDypE-ly29USh-pI-1mWxqg4yjQwQNQUULqCRafqHN_UuXlEtFNEOyraSXCqSDt1ZoDdjJyV0CBXGLODRFbRV5TgavyJk98YjUo0O6UBT5HyzUwE-x22-4raCpAj6VmntgEvCsZouuHqU2ie8NTn4YE6GvVD3ukeKGHAdsE5TUdOscy2Z8BuzUmqklYL1ewtA_aapyhmiFLRNM1PFspFu5J8___uIfBk4I6Dr_igZNALixJIirYywC849sqrpd71Pg7w7uF_X3oPboajQV_1e8PDXdgqsRIoCPARbCznJ-lj1BqX8ZNirzL4ct3C4Q8NCXKW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED_tQ6DxgKCMLQyYhYC3bInzYQcJodLStawtSKzQN5M4yfYATWm7sfKf8d9xl69tEqC97CWqXNtKfefzXf273wE8D6QWforRCbdjbbroEJihF8Rm4DpChInPRUQJzoOh3x2578feeAV-V7kwBKusbGJuqONM03_k-xx9Z1RH6eynJSriY7vzZvrDpAJSdNFaVdMoNOQwWf7E6G3-utdGUb_gvPPuqNU1ywIDpka_3TG5jC3NYysMU275qZQxPmxNJHOp9F0v8lHjsc2KAoHKG-PPdcjDcpJURmGUODjvKqwLB50q3EpiLC7x_VoFUTlBy1x7fAVEVLfmiTJ7eeHEinupPBlX0zDD5wmhM9dJ4OcVYPJvrvBVzzo_Gjv34G7p07JmoYT3YSWZNOBWUeVy2YA7g5oadt6ADXJvC3boBzCjUmyUEM--E0xoNmdZyso7I5ZDxwraEBYtWchOiO5kwii9KDtj0yLF4RVrXtzBs0XGdE1B_YsmbrVdRrcTDNeVXOpNGN2IkB7C2iSbJNvAUh7EntSxdLntaolDdaj9NE0idCJlEhggKgkoXVKkU6WOb-oiVCLZKZIdFfAkalWUnTo3wK5HTguakGuM2UYhq_AYrbkafeJ0h4wBJoag0oBnKPl6JqIA7zb7itpywiPpWWe2AS9zxai74eoTTE946svwQH0-6nd5q3OghAGbuebUHTnhmm3PgJ1Kk1Rpueaq3mcG7NbfoskhSYWTJDudKxdjTMIB_LuHwFOCOw6-4lahoJcWJZCEvDLAzzX22qul3vY-DPDTo_--9C7cRrOg-r3h4Q5sFLQJhAd8DGuL2WnyBB3IRfQ036oMvt60bfgDNWN21Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Markers+of+Disease+Progression+by+a+Hidden+Markov+Process%3A+Application+to+Characterizing+CD4+Cell+Decline&rft.jtitle=Biometrics&rft.au=Guihenneuc-Jouyaux%2C+Chantal&rft.au=Richardson%2C+Sylvia&rft.au=Longini%2C+Ira+M.&rft.date=2000-09-01&rft.pub=International+Biometric+Society&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=56&rft.issue=3&rft.spage=733&rft.epage=741&rft_id=info:doi/10.1111%2Fj.0006-341X.2000.00733.x&rft.externalDocID=2676915
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon