Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline
Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on prog...
Saved in:
Published in | Biometrics Vol. 56; no. 3; pp. 733 - 741 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Oxford, UK
Oxford, UK : Blackwell Publishing Ltd
01.09.2000
Blackwell Publishing Ltd International Biometric Society Wiley |
Subjects | |
Online Access | Get full text |
ISSN | 0006-341X 1541-0420 |
DOI | 10.1111/j.0006-341X.2000.00733.x |
Cover
Abstract | Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time-scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial. |
---|---|
AbstractList | Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time-scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial.Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time-scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial. Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow‐up of patients under varied clinical protocols. This modeling allows describing disease evolution, estimating the transition rates, and evaluating the therapy effects on progression. In many cases, the staging is defined on the basis of a discretization of the values of continuous markers (CD4 cell count for HIV application) that are subject to great variability due mainly to short time‐scale noise (intraindividual variability) and measurement errors. This led us to formulate a Bayesian hierarchical model where, at a first level, a disease process (Markov model on the true states, which are unobserved) is introduced and, at a second level, the measurement process making the link between the true states and the observed marker values is modeled. This hierarchical formulation allows joint estimation of the parameters of both processes. Estimation of the quantities of interest is performed via stochastic algorithms of the family of Markov chain Monte Carlo methods. The flexibility of this approach is illustrated by analyzing the CD4 data on HIV patients of the Concorde clinical trial. |
Author | Richardson, Sylvia Longini, Ira M. Jr Guihenneuc-Jouyaux, Chantal |
Author_xml | – sequence: 1 fullname: Guihenneuc-Jouyaux, Chantal – sequence: 2 fullname: Richardson, Sylvia – sequence: 3 fullname: Longini, Ira M. Jr |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/10985209$$D View this record in MEDLINE/PubMed https://hal.science/hal-00170850$$DView record in HAL |
BookMark | eNqNkl1v0zAUhiM0xLrBP0BgcYHERcqxnQ9nEkglZe2kliGxAXeW4zidSxoXOx0tvx6nGUXazciFY_s87zm2z3sSHDWmUUGAMAyx_94uhwCQhDTC34fET_0ypXS4fRQMcBzhECICR8HgAB0HJ84t_TKLgTwJjjFkLCaQDQI7N6WqdbNAc2F_KOuQqdBYOyWcQp-tWVjlnDYNKnZIoKkuS9XsUXPbhaWPnqHRel1rKdqOaw3Kb4QVslVW_-4S5-MI5aqu0VhJX0k9DR5Xonbq2d3_NLg-_3iVT8PZ5eQiH81CmUBCQ8JKkKQEISoCScVY6QcsYwy0YkkUFwnF3R4UWQoxLpWUFBgAVRUrRKHoafCmz3sjar62eiXsjhuh-XQ0490eAE6BxXCLPfu6Z9fW_Nwo1_KVdtIfWjTKbBxPCYkJpQ-DURoziKLEg6_ugUuzsY2_MCfE100pox56cQdtipUqD6f82x8PvO8BaY1zVlVc6nb_0K0VuvYg7wzBl7zrNe96zTtD8L0h-NYnYPcS_KvxoPRdL_2la7X7bx3_cHE59zOvf97rl6419qAnSZpkOPbhsA9r16rtIeytxZOUpjH_9mnCv17NpiQ_n_DU8y97vhKGi4XVjl9_IYApgLdDljH6B3JX7DU |
CODEN | BIOMA5 |
CitedBy_id | crossref_primary_10_1007_s10985_022_09547_7 crossref_primary_10_1146_annurev_statistics_022513_115558 crossref_primary_10_1111_j_1751_5823_2012_00193_x crossref_primary_10_15446_rev_fac_cienc_v10n2_90438 crossref_primary_10_1097_00126334_200309010_00007 crossref_primary_10_1016_j_jmva_2020_104646 crossref_primary_10_1214_15_AOAS810 crossref_primary_10_1093_nar_gkp493 crossref_primary_10_1111_1467_9884_00351 crossref_primary_10_1111_j_1467_9876_2004_04985_x crossref_primary_10_1111_j_1467_9876_2010_00714_x crossref_primary_10_1177_096228020101000203 crossref_primary_10_1198_106186005X25727 crossref_primary_10_1111_rssc_12373 crossref_primary_10_1097_QAD_0000000000001437 crossref_primary_10_1002_sam_11479 crossref_primary_10_4236_health_2019_118083 crossref_primary_10_1002_sim_5861 crossref_primary_10_1111_rssc_12015 crossref_primary_10_1002_sim_7502 crossref_primary_10_1002_sim_4059 crossref_primary_10_1016_j_insmatheco_2022_08_001 crossref_primary_10_1080_02664763_2019_1677573 crossref_primary_10_1111_rssc_12194 crossref_primary_10_1111_j_1541_0420_2007_00932_x crossref_primary_10_1016_j_ecolmodel_2004_05_011 crossref_primary_10_1080_10920277_2007_10597486 crossref_primary_10_1016_j_spl_2011_02_005 crossref_primary_10_1177_15333175221111658 crossref_primary_10_1016_j_mbs_2013_08_011 crossref_primary_10_1016_j_mbs_2018_08_011 crossref_primary_10_1186_1742_7622_9_1 crossref_primary_10_1093_aje_kws345 crossref_primary_10_1097_EDE_0000000000000032 crossref_primary_10_1002_sim_7813 crossref_primary_10_1177_0163278720984203 crossref_primary_10_1081_STA_200056845 crossref_primary_10_1097_QAI_0b013e3182976891 crossref_primary_10_1002_sim_886 crossref_primary_10_2165_00003088_200140120_00001 crossref_primary_10_1111_biom_13593 crossref_primary_10_1002_sim_6402 crossref_primary_10_1002_sim_6962 crossref_primary_10_1007_s11222_013_9399_z crossref_primary_10_1097_01_TP_0000071200_37399_1D crossref_primary_10_1002_sim_1274 crossref_primary_10_1177_09622802221122390 |
Cites_doi | 10.1002/sim.4780100706 10.1097/00002030-199606000-00011 10.2307/2290756 10.2307/2983150 10.1002/sim.4780080708 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 10.1111/j.2517-6161.1992.tb01457.x 10.2307/2986089 10.1002/sim.4780121205 10.1097/00002030-199708000-00008 10.1093/oxfordjournals.aje.a116625 10.1007/978-1-4899-4485-6 10.1080/01621459.1990.10476213 10.1002/sim.4780130803 10.1007/978-1-4612-4348-9 10.1080/01621459.1990.10474968 10.1007/978-1-4757-2728-9 10.2307/2530699 10.1002/sim.4780070605 10.1002/sim.4780141804 10.1109/34.481537 10.1080/01621459.1994.10476806 10.1016/S0140-6736(94)90006-X |
ContentType | Journal Article |
Copyright | Copyright 2000 The International Biometric Society Copyright International Biometric Society Sep 2000 Distributed under a Creative Commons Attribution 4.0 International License |
Copyright_xml | – notice: Copyright 2000 The International Biometric Society – notice: Copyright International Biometric Society Sep 2000 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
DBID | FBQ BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 3V. 7X7 7XB 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ JQ2 K7- K9. L6V LK8 M0S M1P M2P M7P M7S P5Z P62 PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U 7S9 L.6 7X8 1XC |
DOI | 10.1111/j.0006-341X.2000.00733.x |
DatabaseName | AGRIS Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Central (Corporate) Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Science Database (Alumni Edition) STEM Database Public Health Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection ProQuest Hospital Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials Biological Science Collection ProQuest Central ProQuest Technology Collection Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Health & Medical Complete (Alumni) ProQuest Engineering Collection Biological Sciences ProQuest Health & Medical Collection Medical Database (ProQuest) Science Database (ProQuest) Biological Science Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic AGRICOLA AGRICOLA - Academic MEDLINE - Academic Hyper Article en Ligne (HAL) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest AP Science SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences Health Research Premium Collection Natural Science Collection Health & Medical Research Collection Biological Science Collection ProQuest Central (New) ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) Technology Collection ProQuest One Academic Middle East (New) ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Natural Science Collection ProQuest Central ProQuest Health & Medical Research Collection ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library Materials Science & Engineering Collection ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Computer Science Database MEDLINE CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database – sequence: 4 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Statistics Biology Mathematics |
EISSN | 1541-0420 |
EndPage | 741 |
ExternalDocumentID | oai_HAL_hal_00170850v1 59843106 10985209 10_1111_j_0006_341X_2000_00733_x BIOM733 2676915 ark_67375_WNG_VTLH2CFG_7 US201300864998 |
Genre | article Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- -~X .3N .4S .DC .GA .GJ .Y3 05W 0R~ 10A 1OC 23N 2AX 2QV 3-9 31~ 33P 36B 3SF 3V. 4.4 44B 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5RE 5VS 66C 6J9 702 7PT 7X7 8-0 8-1 8-3 8-4 8-5 88E 88I 8AF 8C1 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8UM 930 A03 A8Z AAESR AAEVG AAHHS AAJUZ AANLZ AAONW AASGY AAXRX AAZKR ABBHK ABCQN ABCUV ABCVL ABDBF ABEML ABFAN ABHUG ABJCF ABJNI ABLJU ABPPZ ABPTK ABPVW ABTAH ABUWG ABWRO ABYWD ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOD ACIWK ACKIV ACMTB ACNCT ACPOU ACPRK ACSCC ACTMH ACXBN ACXME ACXQS ADAWD ADBBV ADDAD ADEOM ADIPN ADIZJ ADKYN ADMGS ADODI ADOZA ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AELPN AENEX AEQDE AEUPB AEUQT AEUYR AFBPY AFDVO AFEBI AFFTP AFGKR AFKRA AFPWT AFVGU AFVYC AFXKK AFZJQ AGJLS AGTJU AHMBA AIAGR AIBGX AIURR AIWBW AJBDE AJXKR ALAGY ALEEW ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ANPLD APXXL ARAPS ARCSS ASPBG AS~ ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BBNVY BCRHZ BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BPHCQ BROTX BRXPI BVXVI BY8 CAG CCPQU COF CS3 D-E D-F DCZOG DPXWK DQDLB DR2 DRFUL DRSTM DSRWC DWQXO DXH EAD EAP EBC EBD EBS ECEWR EDO EFSUC EJD EMB EMK EMOBN EST ESTFP ESX F00 F01 F04 F5P FBQ FD6 FEDTE FXEWX FYUFA G-S G.N GNUQQ GODZA GS5 H.T H.X HCIFZ HF~ HGD HMCUK HQ6 HVGLF HZI HZ~ IHE IX1 J0M JAAYA JAC JBMMH JBZCM JENOY JHFFW JKQEH JLEZI JLXEF JMS JPL JSODD JST K48 K6V K7- L6V LATKE LC2 LC3 LEEKS LH4 LITHE LK8 LOXES LP6 LP7 LUTES LW6 LYRES M1P M2P M7P M7S MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ NHB O66 O9- OWPYF P0- P2P P2W P2X P4D P62 PQQKQ PROAC PSQYO PTHSS Q.N Q11 Q2X QB0 R.K RNS ROL RWL RX1 RXW SA0 SUPJJ SV3 TAE TN5 TUS UAP UB1 UKHRP V8K VQA W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WRC WXSBR WYISQ X6Y XBAML XFK XG1 XSW ZGI ZXP ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH AAPXW AAUAY AAZSN ABEJV ABMNT ABXSQ ABXVV ADACV AJAOE ALIPV BSCLL IPSME KOP OIG OJZSN ROX AAMMB AANHP AAWIL AAYCA ABAWQ ABDFA ABGNP ACHJO ACRPL ACYXJ ADNBA ADNMO ADVOB AEFGJ AEOTA AFWVQ AGLNM AGORE AGQPQ AGXDD AIDQK AIDYY AIHAF AJNCP ALRMG NU- PHGZM PHGZT ACUHS AAYXX AHGBF AJBYB CITATION CGR CUY CVF ECM EIF NPM PKN 7XB 8FK JQ2 K9. PJZUB PKEHL PPXIY PQEST PQGLB PQUKI PRINS Q9U 7S9 L.6 PUEGO 7X8 1XC |
ID | FETCH-LOGICAL-c6063-28d0c2d0aaf206f88d6f81c5103f8645b6318d6f0b97051decc308003ef8babe3 |
IEDL.DBID | 8FG |
ISSN | 0006-341X |
IngestDate | Fri May 09 12:16:36 EDT 2025 Thu Sep 04 18:08:47 EDT 2025 Fri Sep 05 17:31:54 EDT 2025 Fri Jul 25 19:35:09 EDT 2025 Wed Feb 19 01:20:06 EST 2025 Thu Apr 24 23:05:42 EDT 2025 Tue Jul 01 02:39:15 EDT 2025 Wed Jan 22 16:20:25 EST 2025 Thu Jul 03 21:22:35 EDT 2025 Wed Oct 30 09:52:24 EDT 2024 Wed Dec 27 19:05:50 EST 2023 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6063-28d0c2d0aaf206f88d6f81c5103f8645b6318d6f0b97051decc308003ef8babe3 |
Notes | http://dx.doi.org/10.1111/j.0006-341X.2000.00733.x istex:9E14C6511AE982CA80DEA28EC48BC6E9AF1FB872 ark:/67375/WNG-VTLH2CFG-7 ArticleID:BIOM733 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-7237-7120 |
PMID | 10985209 |
PQID | 221707383 |
PQPubID | 35365 |
PageCount | 9 |
ParticipantIDs | hal_primary_oai_HAL_hal_00170850v1 proquest_miscellaneous_72252331 proquest_miscellaneous_47580446 proquest_journals_221707383 pubmed_primary_10985209 crossref_citationtrail_10_1111_j_0006_341X_2000_00733_x crossref_primary_10_1111_j_0006_341X_2000_00733_x wiley_primary_10_1111_j_0006_341X_2000_00733_x_BIOM733 jstor_primary_2676915 istex_primary_ark_67375_WNG_VTLH2CFG_7 fao_agris_US201300864998 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | September 2000 |
PublicationDateYYYYMMDD | 2000-09-01 |
PublicationDate_xml | – month: 09 year: 2000 text: September 2000 |
PublicationDecade | 2000 |
PublicationPlace | Oxford, UK |
PublicationPlace_xml | – name: Oxford, UK – name: United States – name: Washington |
PublicationTitle | Biometrics |
PublicationTitleAlternate | Biometrics |
PublicationYear | 2000 |
Publisher | Oxford, UK : Blackwell Publishing Ltd Blackwell Publishing Ltd International Biometric Society Wiley |
Publisher_xml | – name: Oxford, UK : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: International Biometric Society – name: Wiley |
References | Concorde Coordinating Committee. (1994). Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred Zidovudine in symptom-free HIV infection. Lancet 343, 871-881. Richardson, S. and Guihenneuc-Jouyaux, C. (1996). Contribution to the discussion of the paper by Satten and Longini. Applied Statistics 45, 298-299. Longini, I. M., Clark, W. S., Byers, R. H., Ward, J. W., Darrow, W. W., Lemp, G. P., and Hethcote, H. W. (1989). Statistical analysis of the stages of HIV infection using a Markov model. Statistics in Medicine 8, 831-843. Longini, I. M., Clark, W. S., and Karon, J. (1993). The effect of routine use of therapy on the clinical course of HIV infection in a population-based cohort. American Journal of Epidemiology 137, 1229-1240. Taylor, J. M. G., Fahey, J. L., Detels, R., and Giorgi, J. V. (1989). CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use? Journal of AIDS 2, 114-124. Pawitan, Y. and Self, S. (1993). Modeling disease marker processes in AIDS. Journal of the American Statistical Association 88, 719-726. Berzuini, C. and Larizza, C. (1996). A unified approach for modeling longitudinal and failure time data with application in medical monitoring. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 109-123. Hendriks, J. C. M., Satten, G. A., Longini, I. M., van Druten, H. A. M., Schellekens, P. T. A., Coutinho, R. A., and van Griensven, G. J. P. (1996). Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men. AIDS 10, 649-456. Andersen, P. K., Hansen, L. S., and Keiding, N. (1991). Assessing the influence of reversible disease indicators on survival. Statistics in Medicine 10, 1061-1067. Klein, J. P. and Moeshberger, M. L. (1997). Survival Analysis. New York : Springer. Chiang, C. L. (1980). An Introduction to Stochastic Process. New York : Robert E. Krieger. Kirby, A. J. and Spiegelhalter, D. J. (1994). Statistical Modeling for the Precursors of Cervical Cancer. Case in Biometry. New York : Wiley. Gentleman, R. C., Lawless, J. F., Lindsey, F. C., and Yan, P. (1994). Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease. Statistics in Medicine 13, 805-821. Taylor, J. M. G., Cumberland, W. G., and Sy, J. P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 89, 727-737. Faucett, C. L. and Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685. Frydman, H. (1992). A nonparametric estimation procedure for a periodically observed three-state Markov process, with application to AIDS. Journal of the Royal Statistical Society, Series B 54, 853-866. Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association 85, 972-985. Longini, I. M., Clark, W. S., Gardner, L. I., and Brundage, J. F. (1991). The dynamics of CD4+ T-lymphocyte decline in HIV-infected individuals: A Markov modeling approach. Journal of Acquired Immune Deficiency Syndromes 4, 1141-1147. Satten, G. A. and Longini, I. M. (1996). Markov chains with measurement errors: Estimating the true course of a marker of the progression of HIV disease (with discussion). Applied Statistics 45, 275-309. Sharples, L. D. (1993). Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation. Statistics in Medicine 12, 1155-1169. Best, N. G., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Technical Report, MRC Biostatistics Unit, University of Cambridge, Cambridge , U.K . Andersen, P. K. (1988). Multistate models in survival analysis: A study of nephropathy and mortality in diabetes. Statistics in Medicine 7, 661-670. Kay, R. (1986). A Markov model for analyzing cancer markers and disease states in survival studies. Biometrics 42, 855-866. Marshall, G. and Jones, R. H. (1995). Multi-state models and diabetic retinopathy. Statistics in Medicine 14, 1975-1983. Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer. Gilks, W. R., Richardson, S., and Spiegelhalter, D. I. (1996). Markov Chain Monte Carlo in Practice. London : Chapman and Hall. White, I. R., Walker, S., Babiker, A. G., and Darbyshire, J. H. (1997). Impact of treatment changes on the interpretation of the Concorde trial. AIDS 11, 999-1006. Centers for Disease Control. (1987). Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Morbidity and Mortality Weekly Report 36 (Suppl. 1S), 1-15. Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409. Keiding, N. (1991). Age-specific incidence and prevalence: A statistical perspective. Journal of the Royal Statistical Society, Series A 154, 371-396. 1991; 154 1991; 4 1987; 36 1989; 2 1996; 18 1991; 10 1995; 14 1993; 88 1989; 8 1994; 89 1997 1996 1995 1994 1993 1992; 54 1996; 15 1996; 10 1994; 343 1990; 85 1993; 12 1997; 11 1986; 42 1988; 7 1987 1994; 13 1980 1993; 137 1996; 45 Frydman H. (e_1_2_1_12_1) 1992; 54 Kirby A. J. (e_1_2_1_20_1) 1994 Chiang C. L. (e_1_2_1_9_1) 1980 e_1_2_1_24_1 e_1_2_1_21_1 e_1_2_1_22_1 e_1_2_1_28_1 e_1_2_1_25_1 e_1_2_1_26_1 Allen D. M. (e_1_2_1_2_1) 1987 e_1_2_1_29_1 Longini I. M. (e_1_2_1_23_1) 1991; 4 e_1_2_1_30_1 e_1_2_1_5_1 Centers for Disease Control (e_1_2_1_8_1) 1987; 36 e_1_2_1_6_1 e_1_2_1_3_1 e_1_2_1_4_1 e_1_2_1_13_1 e_1_2_1_10_1 Taylor J. M. G. (e_1_2_1_31_1) 1989; 2 e_1_2_1_11_1 e_1_2_1_32_1 e_1_2_1_16_1 e_1_2_1_17_1 Best N. G. (e_1_2_1_7_1) 1995 e_1_2_1_14_1 e_1_2_1_15_1 e_1_2_1_18_1 Richardson S. (e_1_2_1_27_1) 1996; 45 e_1_2_1_19_1 |
References_xml | – reference: Faucett, C. L. and Thomas, D. C. (1996). Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach. Statistics in Medicine 15, 1663-1685. – reference: White, I. R., Walker, S., Babiker, A. G., and Darbyshire, J. H. (1997). Impact of treatment changes on the interpretation of the Concorde trial. AIDS 11, 999-1006. – reference: Andersen, P. K. (1988). Multistate models in survival analysis: A study of nephropathy and mortality in diabetes. Statistics in Medicine 7, 661-670. – reference: Satten, G. A. and Longini, I. M. (1996). Markov chains with measurement errors: Estimating the true course of a marker of the progression of HIV disease (with discussion). Applied Statistics 45, 275-309. – reference: Klein, J. P. and Moeshberger, M. L. (1997). Survival Analysis. New York : Springer. – reference: Berzuini, C. and Larizza, C. (1996). A unified approach for modeling longitudinal and failure time data with application in medical monitoring. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 109-123. – reference: Longini, I. M., Clark, W. S., and Karon, J. (1993). The effect of routine use of therapy on the clinical course of HIV infection in a population-based cohort. American Journal of Epidemiology 137, 1229-1240. – reference: Longini, I. M., Clark, W. S., Byers, R. H., Ward, J. W., Darrow, W. W., Lemp, G. P., and Hethcote, H. W. (1989). Statistical analysis of the stages of HIV infection using a Markov model. Statistics in Medicine 8, 831-843. – reference: Gelfand, A. E. and Smith, A. F. M. (1990). Sampling-based approaches to calculating marginal densities. Journal of the American Statistical Association 85, 398-409. – reference: Gelfand, A. E., Hills, S. E., Racine-Poon, A., and Smith, A. F. M. (1990). Illustration of Bayesian inference in normal data models using Gibbs sampling. Journal of the American Statistical Association 85, 972-985. – reference: Frydman, H. (1992). A nonparametric estimation procedure for a periodically observed three-state Markov process, with application to AIDS. Journal of the Royal Statistical Society, Series B 54, 853-866. – reference: Chiang, C. L. (1980). An Introduction to Stochastic Process. New York : Robert E. Krieger. – reference: Centers for Disease Control. (1987). Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome. Morbidity and Mortality Weekly Report 36 (Suppl. 1S), 1-15. – reference: Keiding, N. (1991). Age-specific incidence and prevalence: A statistical perspective. Journal of the Royal Statistical Society, Series A 154, 371-396. – reference: Kay, R. (1986). A Markov model for analyzing cancer markers and disease states in survival studies. Biometrics 42, 855-866. – reference: Andersen, P. K., Hansen, L. S., and Keiding, N. (1991). Assessing the influence of reversible disease indicators on survival. Statistics in Medicine 10, 1061-1067. – reference: Taylor, J. M. G., Fahey, J. L., Detels, R., and Giorgi, J. V. (1989). CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use? Journal of AIDS 2, 114-124. – reference: Gilks, W. R., Richardson, S., and Spiegelhalter, D. I. (1996). Markov Chain Monte Carlo in Practice. London : Chapman and Hall. – reference: Kirby, A. J. and Spiegelhalter, D. J. (1994). Statistical Modeling for the Precursors of Cervical Cancer. Case in Biometry. New York : Wiley. – reference: Longini, I. M., Clark, W. S., Gardner, L. I., and Brundage, J. F. (1991). The dynamics of CD4+ T-lymphocyte decline in HIV-infected individuals: A Markov modeling approach. Journal of Acquired Immune Deficiency Syndromes 4, 1141-1147. – reference: Marshall, G. and Jones, R. H. (1995). Multi-state models and diabetic retinopathy. Statistics in Medicine 14, 1975-1983. – reference: Taylor, J. M. G., Cumberland, W. G., and Sy, J. P. (1994). A stochastic model for analysis of longitudinal AIDS data. Journal of the American Statistical Association 89, 727-737. – reference: Best, N. G., Cowles, M. K., and Vines, K. (1995). CODA: Convergence diagnosis and output analysis software for Gibbs sampling output, Version 0.30. Technical Report, MRC Biostatistics Unit, University of Cambridge, Cambridge , U.K . – reference: Concorde Coordinating Committee. (1994). Concorde: MRC/ANRS randomised double-blind controlled trial of immediate and deferred Zidovudine in symptom-free HIV infection. Lancet 343, 871-881. – reference: Sharples, L. D. (1993). Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation. Statistics in Medicine 12, 1155-1169. – reference: Hendriks, J. C. M., Satten, G. A., Longini, I. M., van Druten, H. A. M., Schellekens, P. T. A., Coutinho, R. A., and van Griensven, G. J. P. (1996). Use of immunological markers and continuous-time Markov models to estimate progression of HIV infection in homosexual men. AIDS 10, 649-456. – reference: Pawitan, Y. and Self, S. (1993). Modeling disease marker processes in AIDS. Journal of the American Statistical Association 88, 719-726. – reference: Richardson, S. and Guihenneuc-Jouyaux, C. (1996). Contribution to the discussion of the paper by Satten and Longini. Applied Statistics 45, 298-299. – reference: Gentleman, R. C., Lawless, J. F., Lindsey, F. C., and Yan, P. (1994). Multi-state Markov models for analysing incomplete disease history data with illustrations for HIV disease. Statistics in Medicine 13, 805-821. – reference: Andersen, P. K., Borgan, Ø., Gill, R. D., and Keiding, N. (1993). Statistical Models Based on Counting Processes. New York : Springer. – volume: 89 start-page: 727 year: 1994 end-page: 737 article-title: A stochastic model for analysis of longitudinal AIDS data publication-title: Journal of the American Statistical Association – volume: 13 start-page: 805 year: 1994 end-page: 821 article-title: Multi‐state Markov models for analysing incomplete disease history data with illustrations for HIV disease publication-title: Statistics in Medicine – volume: 7 start-page: 661 year: 1988 end-page: 670 article-title: Multistate models in survival analysis: A study of nephropathy and mortality in diabetes publication-title: Statistics in Medicine – volume: 85 start-page: 398 year: 1990 end-page: 409 article-title: Sampling‐based approaches to calculating marginal densities publication-title: Journal of the American Statistical Association – volume: 42 start-page: 855 year: 1986 end-page: 866 article-title: A Markov model for analyzing cancer markers and disease states in survival studies publication-title: Biometrics – volume: 10 start-page: 649 year: 1996 end-page: 456 article-title: Use of immunological markers and continuous‐time Markov models to estimate progression of HIV infection in homosexual men publication-title: AIDS – volume: 10 start-page: 1061 year: 1991 end-page: 1067 article-title: Assessing the influence of reversible disease indicators on survival publication-title: Statistics in Medicine – year: 1987 – year: 1996 – volume: 4 start-page: 1141 year: 1991 end-page: 1147 article-title: The dynamics of CD4+ T‐lymphocyte decline in HIV‐infected individuals: A Markov modeling approach publication-title: Journal of Acquired Immune Deficiency Syndromes – year: 1994 – volume: 88 start-page: 719 year: 1993 end-page: 726 article-title: Modeling disease marker processes in AIDS publication-title: Journal of the American Statistical Association – volume: 2 start-page: 114 year: 1989 end-page: 124 article-title: CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use? publication-title: Journal of AIDS – volume: 85 start-page: 972 year: 1990 end-page: 985 article-title: Illustration of Bayesian inference in normal data models using Gibbs sampling publication-title: Journal of the American Statistical Association – volume: 11 start-page: 999 year: 1997 end-page: 1006 article-title: Impact of treatment changes on the interpretation of the Concorde trial publication-title: AIDS – volume: 12 start-page: 1155 year: 1993 end-page: 1169 article-title: Use of the Gibbs sampler to estimate transition rates between grades of coronary disease following cardiac transplantation publication-title: Statistics in Medicine – volume: 18 start-page: 109 year: 1996 end-page: 123 article-title: A unified approach for modeling longitudinal and failure time data with application in medical monitoring publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 343 start-page: 871 year: 1994 end-page: 881 article-title: Concorde: MRC/ANRS randomised double‐blind controlled trial of immediate and deferred Zidovudine in symptom‐free HIV infection publication-title: Lancet – year: 1980 – volume: 54 start-page: 853 year: 1992 end-page: 866 article-title: A nonparametric estimation procedure for a periodically observed three‐state Markov process, with application to AIDS publication-title: Journal of the Royal Statistical Society – year: 1997 – volume: 8 start-page: 831 year: 1989 end-page: 843 article-title: Statistical analysis of the stages of HIV infection using a Markov model publication-title: Statistics in Medicine – year: 1995 – volume: 14 start-page: 1975 year: 1995 end-page: 1983 article-title: Multi‐state models and diabetic retinopathy publication-title: Statistics in Medicine – volume: 15 start-page: 1663 year: 1996 end-page: 1685 article-title: Simultaneously modelling censored survival data and repeatedly measured covariates: A Gibbs sampling approach publication-title: Statistics in Medicine – volume: 45 start-page: 298 year: 1996 end-page: 299 article-title: Contribution to the discussion of the paper by Satten and Longini publication-title: Applied Statistics – volume: 137 start-page: 1229 year: 1993 end-page: 1240 article-title: The effect of routine use of therapy on the clinical course of HIV infection in a population‐based cohort publication-title: American Journal of Epidemiology – year: 1993 – volume: 36 start-page: 1 issue: Suppl. 1S year: 1987 end-page: 15 article-title: Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome publication-title: Morbidity and Mortality Weekly Report – volume: 45 start-page: 275 year: 1996 end-page: 309 article-title: Markov chains with measurement errors: Estimating the true course of a marker of the progression of HIV disease (with discussion) publication-title: Applied Statistics – volume: 154 start-page: 371 year: 1991 end-page: 396 article-title: Age‐specific incidence and prevalence: A statistical perspective publication-title: Journal of the Royal Statistical Society, Series A – ident: e_1_2_1_5_1 doi: 10.1002/sim.4780100706 – ident: e_1_2_1_17_1 doi: 10.1097/00002030-199606000-00011 – ident: e_1_2_1_26_1 doi: 10.2307/2290756 – ident: e_1_2_1_19_1 doi: 10.2307/2983150 – ident: e_1_2_1_22_1 doi: 10.1002/sim.4780080708 – volume-title: CODA: Convergence diagnosis and output analysis software for Gibbs sampling output year: 1995 ident: e_1_2_1_7_1 – ident: e_1_2_1_11_1 doi: 10.1002/(SICI)1097-0258(19960815)15:15<1663::AID-SIM294>3.0.CO;2-1 – volume: 54 start-page: 853 year: 1992 ident: e_1_2_1_12_1 article-title: A nonparametric estimation procedure for a periodically observed three‐state Markov process, with application to AIDS publication-title: Journal of the Royal Statistical Society doi: 10.1111/j.2517-6161.1992.tb01457.x – volume-title: Computer Science and Statistics: Proceedings of the 19th Symposium Interface year: 1987 ident: e_1_2_1_2_1 – ident: e_1_2_1_28_1 doi: 10.2307/2986089 – volume-title: An Introduction to Stochastic Process year: 1980 ident: e_1_2_1_9_1 – ident: e_1_2_1_29_1 doi: 10.1002/sim.4780121205 – ident: e_1_2_1_32_1 doi: 10.1097/00002030-199708000-00008 – volume: 4 start-page: 1141 year: 1991 ident: e_1_2_1_23_1 article-title: The dynamics of CD4+ T‐lymphocyte decline in HIV‐infected individuals: A Markov modeling approach publication-title: Journal of Acquired Immune Deficiency Syndromes – ident: e_1_2_1_24_1 doi: 10.1093/oxfordjournals.aje.a116625 – ident: e_1_2_1_16_1 doi: 10.1007/978-1-4899-4485-6 – volume: 45 start-page: 298 year: 1996 ident: e_1_2_1_27_1 article-title: Contribution to the discussion of the paper by Satten and Longini publication-title: Applied Statistics – ident: e_1_2_1_13_1 doi: 10.1080/01621459.1990.10476213 – ident: e_1_2_1_15_1 doi: 10.1002/sim.4780130803 – ident: e_1_2_1_4_1 doi: 10.1007/978-1-4612-4348-9 – ident: e_1_2_1_14_1 doi: 10.1080/01621459.1990.10474968 – ident: e_1_2_1_21_1 doi: 10.1007/978-1-4757-2728-9 – ident: e_1_2_1_18_1 doi: 10.2307/2530699 – ident: e_1_2_1_3_1 doi: 10.1002/sim.4780070605 – volume-title: Statistical Modeling for the Precursors of Cervical Cancer. Case in Biometry year: 1994 ident: e_1_2_1_20_1 – volume: 36 start-page: 1 issue: 1 year: 1987 ident: e_1_2_1_8_1 article-title: Revision of the CDC surveillance case definition for acquired immunodeficiency syndrome publication-title: Morbidity and Mortality Weekly Report – ident: e_1_2_1_25_1 doi: 10.1002/sim.4780141804 – volume: 2 start-page: 114 year: 1989 ident: e_1_2_1_31_1 article-title: CD4 percentage, CD4 number and CD4:CD8 ratio in HIV infection: Which to choose and how to use? publication-title: Journal of AIDS – ident: e_1_2_1_6_1 doi: 10.1109/34.481537 – ident: e_1_2_1_30_1 doi: 10.1080/01621459.1994.10476806 – ident: e_1_2_1_10_1 doi: 10.1016/S0140-6736(94)90006-X |
SSID | ssj0009502 |
Score | 1.8566335 |
Snippet | Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow-up of patients under varied... Multistate models have been increasingly used to model natural history of many diseases as well as to characterize the follow‐up of patients under varied... |
SourceID | hal proquest pubmed crossref wiley jstor istex fao |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 733 |
SubjectTerms | AIDS AIDS related complex Algorithms Bayesian hierarchical model Biomarkers biometry Biometry - methods CD4 cells CD4 Lymphocyte Count clinical trials disease course Disease models Disease Progression Gibbs sampling HIV HIV Infections - drug therapy HIV Infections - immunology HIV Infections - physiopathology Humans Markov chain Markov chain Monte Carlo Markov Chains Markov models Markov process Markov processes Measurement error Models, Statistical Monte Carlo method Multilevel models Multistate models Parametric models Patient Compliance patients Statistical discrepancies therapeutics |
SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3db9MwED_BENJ4GFA2FsaHhRBvqRLny-GttHQFrQPBCn2zHMcBaVUyre207a_nLk6zFQ1pQrxEVeqz0sv5fFf_7ncAb1Khk7jA7IT7uXZDDAhcFaW5m4ZBkigT8ySjAufxYTyahJ-m0bTBP1EtjOWHaP9wo5VR-2ta4Cqbry1ycrUueuFpXW_SrfsPdime9IOYaPQHX_k1_l3PEoc3ImugnpsnWtup7haqwusvQkveoxdwvgIw3hSarke69VY1fAjHqx9pESrH3eUi6-rLP_gf_48WHsFWE9GynjXBx3DHlB24b3tcXnTgwbglhp13YJOCW8sN_QROqREblcMzqhjCOJRVBRvYEyP2hYBjljSEZRdMsRGRnZT10OqMNQUO71jv6gSeLSrWbwmoL2ni_iBkfTObsYGhGlCzDZPhh6P-yG16QLgaU6vA5SL3NM89pQruxYUQOV58TTyAhYjDKIvRKeE9L0sT9C85WmRAQXBgCpGpzAQ7sFFWpdkFVvA0j4TORcj9UAsU1UrHRWEyDCGFSR1IVu9b6oYgnfp0zORVokTKlqRsat9JxKqobHnugN9KnliSkFvI7KJJSfUTfbmcfON0gozpJSagwoHXaGftTEQAPuodSLpX0x2JyDvzHXhbm2E7DLVPIL0kkj8O9-X3o4MR7w_3ZeLAdm2n7UBOqGY_cmBvZbey8VtzyTFDxecTgQOv2m_R4dApkipNtZzLEDNMQgH8fUSCewQPAnzEp3Y5XFNKKgh35UBcG_WttSXff_w8xk_P_lVwDzYtiQKhA5_DxuJ0aV5gOLnIXtaO4jcxU179 priority: 102 providerName: Wiley-Blackwell |
Title | Modeling Markers of Disease Progression by a Hidden Markov Process: Application to Characterizing CD4 Cell Decline |
URI | https://api.istex.fr/ark:/67375/WNG-VTLH2CFG-7/fulltext.pdf https://www.jstor.org/stable/2676915 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.0006-341X.2000.00733.x https://www.ncbi.nlm.nih.gov/pubmed/10985209 https://www.proquest.com/docview/221707383 https://www.proquest.com/docview/47580446 https://www.proquest.com/docview/72252331 https://hal.science/hal-00170850 |
Volume | 56 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fb9MwED7RVUjjAUEZLAyKhRBvgcT5YYcX1HVrC1oLGiv0zUochz1AUppu2vjruUvSbJMA7SVqXduKfGf7rvfddwCvIqlFmKF3wt1U2z4aBHYcRKkd-Z4QsQm5SCjBeToLJ3P_4yJYNNicsoFVbs7E6qBOC03_kb_laDujOkrv_fKXTUWjKLjaVNDoQNfFi4bUXI7G1zh3nZosnOBdvru4AeRpW6tklTdV8cIN_1FzO3WyuMDnKSEku7ToFxvQ4t_M0ZvWbXU9jR7A_cauZINaER7CHZP34G5dafKyB_emLT1r2YNtMjFrhuZHsKJyaJSUzn4SVGdVsiJjTdyGVfCtmrqDJZcsZqdEOZIzSvEpztmyTjN4xwZXcXC2LphuaaB_08TDA59RhIClhjIxzQ7MR4cnw4ndVGKwNTo4ns1l6mieOnGccSfMpEzx4Wpi48tk6AdJiEcDtjlJJHCX42TaI1PUM5lM4sR4j2ErL3KzCyzjURpInUqfu76WOFTHOswyk6AhJ01kgdhIQOmGppyqZfxQV-4KyU6R7KiIJtGbouzUhQVuO3JZU3XcYswuClnF3_FEVfMvnOK46OShGygteImSb2ciGu7J4EhRW0U6JAPn3LXgdaUYbTdcfYLKiUB9m43V15OjCR-OxkpYsFNpTtuRE7bYDSzY22iSak6PUrW6bsGL9lfc9iSpODfFWal89PMoFv_vHgJPau55-IpPagW9tiiRJPSTBWGlsbdeLbX_4dMUPz3970vvwXbNV0BAvGewtV6dmedoua2TPnTEQuBTDt1-tVf70N0_nH0-xm8Hx_wP0aw6bg |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB71IUQ5IAiFmgJdIeBmsNePXSMhFFJShybhQFJyW-y1TQ8QhyQtDf-J_8iMX20lQL30Ylnr3ZW9Mzs745n5BuBZILXwM7ROuJ1o00WFwIy8IDED1xEiSn0uYkpwHgz9cOx-mHiTNfhd58JQWGUtEwtBneSa_pG_4qg7IztK5-3sh0lFo8i5WlfQKLniMF39RItt8aa3j-R9znn3_agTmlVRAVOjru6YXCaW5okVRRm3_EzKBC-2JmC5TPquF_vI5dhmxYFAhk3wEx3Sqpw0k3EUpw7Ouw6bLv0Yx-0jJuICxq9VgpNTOJlrTy4FDjWtRXLMy6JYYo23VJ2G61mU4_WYIjI3ichndZDk39Tfy9p0cRx278DtSo9l7ZLx7sJaOm3BjbKy5aoFtwYNHOyiBVuk0paI0PdgTuXXKAmefafQoPmC5Rmr_ESsCBcroUJYvGIROyaIkymjlKL8lM3KtIbXrH3ud2fLnOkGdvoXTdzZdxl5JBiuK6nR2zC-FiLdh41pPk13gGU8SDypE-ly29USh-pI-1mWxqg4yjQwQNQUULqCRafqHN_UuXlEtFNEOyraSXCqSDt1ZoDdjJyV0CBXGLODRFbRV5TgavyJk98YjUo0O6UBT5HyzUwE-x22-4raCpAj6VmntgEvCsZouuHqU2ie8NTn4YE6GvVD3ukeKGHAdsE5TUdOscy2Z8BuzUmqklYL1ewtA_aapyhmiFLRNM1PFspFu5J8___uIfBk4I6Dr_igZNALixJIirYywC849sqrpd71Pg7w7uF_X3oPboajQV_1e8PDXdgqsRIoCPARbCznJ-lj1BqX8ZNirzL4ct3C4Q8NCXKW |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED_tQ6DxgKCMLQyYhYC3bInzYQcJodLStawtSKzQN5M4yfYATWm7sfKf8d9xl69tEqC97CWqXNtKfefzXf273wE8D6QWforRCbdjbbroEJihF8Rm4DpChInPRUQJzoOh3x2578feeAV-V7kwBKusbGJuqONM03_k-xx9Z1RH6eynJSriY7vzZvrDpAJSdNFaVdMoNOQwWf7E6G3-utdGUb_gvPPuqNU1ywIDpka_3TG5jC3NYysMU275qZQxPmxNJHOp9F0v8lHjsc2KAoHKG-PPdcjDcpJURmGUODjvKqwLB50q3EpiLC7x_VoFUTlBy1x7fAVEVLfmiTJ7eeHEinupPBlX0zDD5wmhM9dJ4OcVYPJvrvBVzzo_Gjv34G7p07JmoYT3YSWZNOBWUeVy2YA7g5oadt6ADXJvC3boBzCjUmyUEM--E0xoNmdZyso7I5ZDxwraEBYtWchOiO5kwii9KDtj0yLF4RVrXtzBs0XGdE1B_YsmbrVdRrcTDNeVXOpNGN2IkB7C2iSbJNvAUh7EntSxdLntaolDdaj9NE0idCJlEhggKgkoXVKkU6WOb-oiVCLZKZIdFfAkalWUnTo3wK5HTguakGuM2UYhq_AYrbkafeJ0h4wBJoag0oBnKPl6JqIA7zb7itpywiPpWWe2AS9zxai74eoTTE946svwQH0-6nd5q3OghAGbuebUHTnhmm3PgJ1Kk1Rpueaq3mcG7NbfoskhSYWTJDudKxdjTMIB_LuHwFOCOw6-4lahoJcWJZCEvDLAzzX22qul3vY-DPDTo_--9C7cRrOg-r3h4Q5sFLQJhAd8DGuL2WnyBB3IRfQ036oMvt60bfgDNWN21Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modeling+Markers+of+Disease+Progression+by+a+Hidden+Markov+Process%3A+Application+to+Characterizing+CD4+Cell+Decline&rft.jtitle=Biometrics&rft.au=Guihenneuc-Jouyaux%2C+Chantal&rft.au=Richardson%2C+Sylvia&rft.au=Longini%2C+Ira+M.&rft.date=2000-09-01&rft.pub=International+Biometric+Society&rft.issn=0006-341X&rft.eissn=1541-0420&rft.volume=56&rft.issue=3&rft.spage=733&rft.epage=741&rft_id=info:doi/10.1111%2Fj.0006-341X.2000.00733.x&rft.externalDocID=2676915 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-341X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-341X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-341X&client=summon |