Methods to account for spatial autocorrelation in the analysis of species distributional data: a review

Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model...

Full description

Saved in:
Bibliographic Details
Published inEcography (Copenhagen) Vol. 30; no. 5; pp. 609 - 628
Main Authors Dormann, Carsten F, McPherson, Jana M, Araújo, Miguel B, Bivand, Roger, Bolliger, Janine, Carl, Gudrun, Davies, Richard G, Hirzel, Alexandre, Jetz, Walter, Daniel Kissling, W, Kühn, Ingolf, Ohlemüller, Ralf, Peres-Neto, Pedro R, Reineking, Björn, Schröder, Boris, Schurr, Frank M, Wilson, Robert
Format Journal Article
LanguageEnglish
Published Copenhagen Copenhagen : Blackwell Publishing Ltd 01.10.2007
Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species' distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix.
AbstractList Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species' distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix.
Author Schurr, Frank M
Davies, Richard G
McPherson, Jana M
Bolliger, Janine
Kühn, Ingolf
Jetz, Walter
Peres-Neto, Pedro R
Schröder, Boris
Hirzel, Alexandre
Reineking, Björn
Wilson, Robert
Dormann, Carsten F
Ohlemüller, Ralf
Araújo, Miguel B
Daniel Kissling, W
Carl, Gudrun
Bivand, Roger
Author_xml – sequence: 1
  fullname: Dormann, Carsten F
– sequence: 2
  fullname: McPherson, Jana M
– sequence: 3
  fullname: Araújo, Miguel B
– sequence: 4
  fullname: Bivand, Roger
– sequence: 5
  fullname: Bolliger, Janine
– sequence: 6
  fullname: Carl, Gudrun
– sequence: 7
  fullname: Davies, Richard G
– sequence: 8
  fullname: Hirzel, Alexandre
– sequence: 9
  fullname: Jetz, Walter
– sequence: 10
  fullname: Daniel Kissling, W
– sequence: 11
  fullname: Kühn, Ingolf
– sequence: 12
  fullname: Ohlemüller, Ralf
– sequence: 13
  fullname: Peres-Neto, Pedro R
– sequence: 14
  fullname: Reineking, Björn
– sequence: 15
  fullname: Schröder, Boris
– sequence: 16
  fullname: Schurr, Frank M
– sequence: 17
  fullname: Wilson, Robert
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19282725$$DView record in Pascal Francis
BookMark eNqNkcFv0zAYxSM0JLrBn4DwBW4pn-04cTggoWoUxNgOMHG0vrj25pLFne2y9r_HWaoeuAxfbOv9vmf5vdPiZPCDKQpCYU7zer-eM4BmDi3UZSNamIOgDZ3vnhUzWgOUIGRzUsyO-oviNMY1AGVtLWfFzXeTbv0qkuQJau23QyLWBxI3mBz2BLfJax-C6fPdD8QNJN0aggP2--gi8TajRjsTycrFFFy3Hbk8ucKEHwiSYP448_CyeG6xj-bVYT8rrj-f_1x8KS-ull8Xny5KXUNNSw3Qta3VteY6f6PWrNWtkNiJilvQttINq1fSiE5qaYWpBNO8A66t6XjVIT8r3k2-m-DvtyYmdeeiNn2Pg_HbqKqmaoFL-iTIQADlDc_g2wOIUWNvAw7aRbUJ7g7DXtGWSdYwkbmPE6eDjzEYq7RLj6GlgK5XFNRYmFqrsTA1FqLGQtRjYWqXDeQ_Bsc3nh49vP3gerP_7zl1vrhajsds8HoyWMfkw9GAA6sqQUe9nPTcsdkddQy_Vd3wRqhfl0u1kN-qil5SxTL_ZuIteoU3IQd2_YPlQAFkzirP_AX3otJs
CitedBy_id crossref_primary_10_1080_21580103_2019_1687108
crossref_primary_10_1111_avsc_12135
crossref_primary_10_3390_d13090425
crossref_primary_10_1016_j_agee_2014_03_014
crossref_primary_10_1111_j_1472_4642_2010_00677_x
crossref_primary_10_1016_j_agee_2011_05_026
crossref_primary_10_1002_ece3_2335
crossref_primary_10_1016_j_apgeog_2014_09_012
crossref_primary_10_1016_j_ttbdis_2016_02_008
crossref_primary_10_1111_j_1439_0485_2010_00393_x
crossref_primary_10_1016_j_ecolind_2012_05_022
crossref_primary_10_1016_j_gecco_2015_07_004
crossref_primary_10_1371_journal_pone_0031520
crossref_primary_10_1002_ece3_1496
crossref_primary_10_3354_esr00574
crossref_primary_10_1002_aqc_3290
crossref_primary_10_1371_journal_pone_0063582
crossref_primary_10_1016_j_foreco_2024_121749
crossref_primary_10_1016_j_jnc_2023_126393
crossref_primary_10_1371_journal_pntd_0004211
crossref_primary_10_1080_13574809_2015_1041894
crossref_primary_10_1111_ejss_12346
crossref_primary_10_1111_jofo_12026
crossref_primary_10_1007_s10531_020_02077_4
crossref_primary_10_1371_journal_pone_0306832
crossref_primary_10_1371_journal_pone_0141148
crossref_primary_10_1111_nph_17443
crossref_primary_10_1111_mec_12628
crossref_primary_10_1111_ddi_12623
crossref_primary_10_1890_08_2323_1
crossref_primary_10_1111_ddi_13955
crossref_primary_10_1093_jmammal_gyad042
crossref_primary_10_1016_j_agee_2014_03_034
crossref_primary_10_1016_j_jenvrad_2016_05_010
crossref_primary_10_1111_ecog_02881
crossref_primary_10_1111_faf_12515
crossref_primary_10_1016_j_foreco_2010_03_007
crossref_primary_10_5735_086_058_0108
crossref_primary_10_1016_j_jaridenv_2018_07_002
crossref_primary_10_1111_brv_12111
crossref_primary_10_1111_eva_12154
crossref_primary_10_3390_insects14020180
crossref_primary_10_1016_j_agee_2017_10_025
crossref_primary_10_1007_s00442_019_04370_8
crossref_primary_10_1007_s11001_016_9297_9
crossref_primary_10_1186_1810_522X_52_57
crossref_primary_10_1016_j_scitotenv_2016_06_223
crossref_primary_10_1111_j_1466_8238_2008_00416_x
crossref_primary_10_1590_S1415_47572009000200001
crossref_primary_10_1093_forestry_cpu008
crossref_primary_10_5194_gmd_17_6007_2024
crossref_primary_10_1016_j_biocon_2009_08_004
crossref_primary_10_1016_j_trc_2018_04_003
crossref_primary_10_2989_1814232X_2019_1576540
crossref_primary_10_3389_fmars_2022_850368
crossref_primary_10_1111_jbi_13792
crossref_primary_10_1111_j_1523_1739_2010_01645_x
crossref_primary_10_1007_s10336_011_0766_2
crossref_primary_10_1111_faf_12524
crossref_primary_10_3390_ijerph15081625
crossref_primary_10_1038_srep45371
crossref_primary_10_1111_evo_12308
crossref_primary_10_1002_eap_3007
crossref_primary_10_1016_j_scitotenv_2021_145198
crossref_primary_10_1016_j_ppees_2015_07_005
crossref_primary_10_1371_journal_pone_0007843
crossref_primary_10_1002_ece3_2371
crossref_primary_10_1371_journal_pone_0108548
crossref_primary_10_1016_j_biocon_2010_06_024
crossref_primary_10_1080_15230406_2014_893839
crossref_primary_10_1016_j_indic_2025_100646
crossref_primary_10_1111_1365_2656_12896
crossref_primary_10_21425_fob_18_133105
crossref_primary_10_1038_s41598_021_83262_5
crossref_primary_10_1016_j_chemosphere_2009_06_023
crossref_primary_10_1038_s41467_020_14409_7
crossref_primary_10_1016_j_landurbplan_2022_104447
crossref_primary_10_1111_btp_12417
crossref_primary_10_1111_fog_12660
crossref_primary_10_1016_j_jhevol_2014_11_001
crossref_primary_10_1108_PM_09_2019_0053
crossref_primary_10_1098_rsos_210932
crossref_primary_10_3354_meps09974
crossref_primary_10_1016_j_gecco_2016_02_008
crossref_primary_10_1080_10095020_2024_2336593
crossref_primary_10_1111_1365_2664_12635
crossref_primary_10_1007_s10841_010_9280_8
crossref_primary_10_3390_f6103501
crossref_primary_10_1007_s00442_013_2627_6
crossref_primary_10_1016_j_ecoinf_2022_101629
crossref_primary_10_1111_ddi_12656
crossref_primary_10_1111_j_1365_2699_2011_02550_x
crossref_primary_10_1111_j_1472_4642_2011_00813_x
crossref_primary_10_1140_epjds_s13688_018_0156_6
crossref_primary_10_1111_geb_12818
crossref_primary_10_3390_plants6040058
crossref_primary_10_1080_02827581_2015_1052751
crossref_primary_10_1002_rse2_298
crossref_primary_10_1111_j_1600_0587_2008_05632_x
crossref_primary_10_3390_f7020043
crossref_primary_10_1016_j_baae_2012_05_005
crossref_primary_10_1111_j_1365_2699_2010_02392_x
crossref_primary_10_1016_j_envpol_2017_07_021
crossref_primary_10_1049_cth2_12486
crossref_primary_10_1002_ecs2_4028
crossref_primary_10_1007_s11356_025_35985_5
crossref_primary_10_1038_s41559_020_1216_4
crossref_primary_10_1016_j_gecco_2016_02_006
crossref_primary_10_1016_j_ufug_2020_126732
crossref_primary_10_1590_0074_0276130047
crossref_primary_10_1111_ele_13259
crossref_primary_10_3390_ani9030113
crossref_primary_10_3390_su11154108
crossref_primary_10_1111_gcb_15711
crossref_primary_10_1016_j_actao_2010_11_006
crossref_primary_10_1007_s11252_022_01255_2
crossref_primary_10_1080_02664763_2017_1386771
crossref_primary_10_1111_1365_2656_12872
crossref_primary_10_1371_journal_pone_0157929
crossref_primary_10_1111_ecog_01593
crossref_primary_10_63033_JWLS_WHOX2496
crossref_primary_10_1111_ibi_12733
crossref_primary_10_1111_j_1365_2699_2009_02186_x
crossref_primary_10_1007_s11802_021_4557_y
crossref_primary_10_1007_s00442_020_04687_9
crossref_primary_10_1007_s10531_024_02995_7
crossref_primary_10_1016_j_actao_2009_08_009
crossref_primary_10_1080_00343404_2012_675054
crossref_primary_10_1111_ddi_12672
crossref_primary_10_1111_ele_13269
crossref_primary_10_1655_HERPMONOGRAPHS_D_13_00002
crossref_primary_10_1002_ece3_10439
crossref_primary_10_1016_j_geodrs_2021_e00412
crossref_primary_10_1371_journal_pone_0162035
crossref_primary_10_4018_ijagr_2014100101
crossref_primary_10_1016_j_tree_2015_09_007
crossref_primary_10_1111_cobi_13036
crossref_primary_10_1111_j_1466_8238_2012_00777_x
crossref_primary_10_13157_arla_68_1_2021_ra2
crossref_primary_10_1111_j_1472_4642_2010_00668_x
crossref_primary_10_3390_ijgi4042496
crossref_primary_10_1111_1365_2656_12881
crossref_primary_10_7717_peerj_7156
crossref_primary_10_1093_cz_zov003
crossref_primary_10_3389_fmicb_2014_00667
crossref_primary_10_1002_aqc_70013
crossref_primary_10_1080_13658816_2017_1346255
crossref_primary_10_1111_2041_210X_12174
crossref_primary_10_1111_geb_12868
crossref_primary_10_1007_s11258_014_0329_8
crossref_primary_10_1111_ddi_12201
crossref_primary_10_1016_j_ecolmodel_2019_05_005
crossref_primary_10_1016_j_jaridenv_2014_01_006
crossref_primary_10_1111_1755_0998_13367
crossref_primary_10_1016_j_scitotenv_2019_03_009
crossref_primary_10_3354_meps12303
crossref_primary_10_1111_ele_13233
crossref_primary_10_1007_s10980_010_9482_1
crossref_primary_10_1108_JFRA_03_2019_0043
crossref_primary_10_1111_2041_210X_12502
crossref_primary_10_1016_j_ocecoaman_2017_12_014
crossref_primary_10_1111_2041_210X_12983
crossref_primary_10_1007_s10237_013_0517_9
crossref_primary_10_1007_s13157_011_0165_8
crossref_primary_10_1111_geb_13702
crossref_primary_10_3390_d12010011
crossref_primary_10_1111_fwb_13319
crossref_primary_10_1111_ecog_01925
crossref_primary_10_1007_s13593_017_0471_5
crossref_primary_10_1111_j_1472_4642_2010_00646_x
crossref_primary_10_25225_jvb_22041
crossref_primary_10_1016_j_jclepro_2019_05_389
crossref_primary_10_1111_j_2041_210X_2010_00059_x
crossref_primary_10_1002_1438_390X_12001
crossref_primary_10_1111_j_2041_210X_2011_00141_x
crossref_primary_10_3356_rapt_49_02_174_182_1
crossref_primary_10_1038_s41477_023_01369_1
crossref_primary_10_1016_j_biocon_2021_109330
crossref_primary_10_1098_rsbl_2018_0388
crossref_primary_10_1146_annurev_marine_122414_033921
crossref_primary_10_1016_j_sste_2010_09_003
crossref_primary_10_1016_j_jag_2017_08_009
crossref_primary_10_2478_s11756_020_00455_5
crossref_primary_10_1016_j_biocon_2018_03_033
crossref_primary_10_1016_j_foreco_2009_09_007
crossref_primary_10_1098_rspb_2022_2473
crossref_primary_10_1016_j_biocon_2018_12_033
crossref_primary_10_1016_j_jclepro_2017_09_275
crossref_primary_10_1111_j_1365_2699_2011_02589_x
crossref_primary_10_1111_jav_03189
crossref_primary_10_1016_j_dsr2_2016_10_009
crossref_primary_10_1016_j_gloenvcha_2015_02_004
crossref_primary_10_1186_s40461_018_0068_5
crossref_primary_10_1016_j_agee_2021_107547
crossref_primary_10_1111_j_1365_2699_2010_02433_x
crossref_primary_10_1093_aob_mcae030
crossref_primary_10_1093_icesjms_fsac170
crossref_primary_10_1007_s10182_024_00507_0
crossref_primary_10_1016_j_ecolmodel_2020_109180
crossref_primary_10_1016_j_jas_2015_12_002
crossref_primary_10_3389_fmars_2020_00303
crossref_primary_10_1002_eap_1710
crossref_primary_10_1016_j_apgeog_2012_11_014
crossref_primary_10_1007_s12224_013_9157_1
crossref_primary_10_1002_mnfr_202400604
crossref_primary_10_1071_WF18234
crossref_primary_10_1038_s41598_022_09795_5
crossref_primary_10_1016_j_agee_2016_04_015
crossref_primary_10_1016_j_agee_2016_04_013
crossref_primary_10_1111_ele_12343
crossref_primary_10_1002_joc_5020
crossref_primary_10_1002_gbc_20089
crossref_primary_10_1016_j_ecolind_2017_04_036
crossref_primary_10_1007_s10144_008_0106_4
crossref_primary_10_1111_1365_2656_12018
crossref_primary_10_1007_s10393_010_0316_z
crossref_primary_10_1016_j_rsma_2021_101714
crossref_primary_10_1111_j_1365_294X_2010_04717_x
crossref_primary_10_1111_cobi_13448
crossref_primary_10_1371_journal_pone_0091695
crossref_primary_10_1016_j_ecoser_2023_101519
crossref_primary_10_1038_s41467_020_18321_y
crossref_primary_10_1093_biolinnean_bly168
crossref_primary_10_1016_j_healthplace_2010_12_005
crossref_primary_10_1016_j_fishres_2017_06_011
crossref_primary_10_1111_j_1466_8238_2011_00714_x
crossref_primary_10_1371_journal_pone_0083605
crossref_primary_10_1016_j_foreco_2019_117737
crossref_primary_10_1111_ele_13682
crossref_primary_10_1088_1748_9326_abf526
crossref_primary_10_3390_d12030119
crossref_primary_10_1007_s11356_017_0864_7
crossref_primary_10_1093_icesjms_fsab256
crossref_primary_10_1186_1746_6148_8_172
crossref_primary_10_1016_j_foreco_2022_120694
crossref_primary_10_1098_rsos_191644
crossref_primary_10_1111_btp_12804
crossref_primary_10_1007_s10344_020_01414_w
crossref_primary_10_1038_s41559_024_02347_2
crossref_primary_10_1670_18_112
crossref_primary_10_1111_avsc_12115
crossref_primary_10_1016_j_eswa_2018_02_028
crossref_primary_10_1007_s10980_016_0482_7
crossref_primary_10_1002_ece3_613
crossref_primary_10_1111_jbi_12825
crossref_primary_10_1016_j_biocon_2018_10_031
crossref_primary_10_1038_s41558_018_0231_9
crossref_primary_10_1017_S0007485313000163
crossref_primary_10_1111_1365_2664_12681
crossref_primary_10_1016_j_biocon_2008_11_008
crossref_primary_10_1016_j_visinf_2021_09_001
crossref_primary_10_1016_j_gecco_2018_e00513
crossref_primary_10_1111_1365_2664_12686
crossref_primary_10_1111_geb_12881
crossref_primary_10_1675_063_040_sp112
crossref_primary_10_1016_j_ecss_2017_06_038
crossref_primary_10_1007_s10531_023_02616_9
crossref_primary_10_1111_1365_2435_12146
crossref_primary_10_1038_s41598_018_23762_z
crossref_primary_10_1371_journal_pone_0140666
crossref_primary_10_1111_cobi_12103
crossref_primary_10_1371_journal_pone_0186987
crossref_primary_10_1016_j_ecoinf_2024_102684
crossref_primary_10_1111_ecog_01986
crossref_primary_10_1111_ecog_01503
crossref_primary_10_1038_s41559_019_0799_0
crossref_primary_10_1016_j_ppees_2017_08_003
crossref_primary_10_1016_j_fooweb_2022_e00249
crossref_primary_10_1371_journal_pone_0153977
crossref_primary_10_1002_ece3_2328
crossref_primary_10_1111_j_1752_4598_2012_00217_x
crossref_primary_10_1007_s12665_016_6338_2
crossref_primary_10_1002_aqc_3232
crossref_primary_10_1002_ecy_4443
crossref_primary_10_1073_pnas_2004769118
crossref_primary_10_1186_s13071_019_3682_6
crossref_primary_10_1111_ddi_12272
crossref_primary_10_1371_journal_pone_0160262
crossref_primary_10_1016_j_ecoinf_2012_11_008
crossref_primary_10_1007_s12145_020_00468_3
crossref_primary_10_1111_ddi_12165
crossref_primary_10_1515_mammalia_2016_0155
crossref_primary_10_1016_j_tree_2011_05_012
crossref_primary_10_1016_j_geoderma_2017_06_016
crossref_primary_10_1111_ddi_13019
crossref_primary_10_1139_cjz_2016_0033
crossref_primary_10_1007_s10457_014_9757_7
crossref_primary_10_1186_s13021_020_00151_6
crossref_primary_10_3354_meps13111
crossref_primary_10_1016_j_ppees_2017_06_004
crossref_primary_10_1016_j_scs_2024_105700
crossref_primary_10_3389_fmars_2022_948336
crossref_primary_10_1016_j_apgeog_2021_102521
crossref_primary_10_1111_j_1365_2419_2012_00616_x
crossref_primary_10_1890_09_1359_1
crossref_primary_10_1177_0309133314521448
crossref_primary_10_1080_00063657_2021_1977780
crossref_primary_10_1111_j_1749_8198_2010_00351_x
crossref_primary_10_1080_03949370_2011_635696
crossref_primary_10_1080_13416979_2023_2257464
crossref_primary_10_1007_s00442_012_2498_2
crossref_primary_10_1007_s10344_019_1255_9
crossref_primary_10_1007_s10113_014_0733_6
crossref_primary_10_1111_ecog_03389
crossref_primary_10_1111_j_1365_2656_2012_01970_x
crossref_primary_10_1038_s41561_019_0530_4
crossref_primary_10_1080_24749508_2024_2429227
crossref_primary_10_1007_s11273_016_9516_9
crossref_primary_10_1016_j_gecco_2023_e02682
crossref_primary_10_1371_journal_pone_0194032
crossref_primary_10_1016_j_ecolind_2020_106874
crossref_primary_10_3389_fgene_2015_00132
crossref_primary_10_1098_rstb_2022_0194
crossref_primary_10_1111_ecog_03380
crossref_primary_10_1111_jvs_12759
crossref_primary_10_1007_s10531_019_01915_4
crossref_primary_10_1016_j_ecolind_2022_109261
crossref_primary_10_1017_S0007485325000021
crossref_primary_10_1111_geoa_12050
crossref_primary_10_3354_meps14471
crossref_primary_10_1007_s00027_020_0715_3
crossref_primary_10_1007_s10980_022_01482_0
crossref_primary_10_1134_S2075111724700498
crossref_primary_10_1111_j_1365_2745_2012_01994_x
crossref_primary_10_7717_peerj_6794
crossref_primary_10_1093_ije_dyw128
crossref_primary_10_1002_edn3_79
crossref_primary_10_1111_ecog_05597
crossref_primary_10_1007_s10750_020_04512_7
crossref_primary_10_1016_j_foreco_2013_05_057
crossref_primary_10_1093_jpe_rtu002
crossref_primary_10_1111_j_1600_0587_2009_05495_x
crossref_primary_10_1007_s11258_011_9961_8
crossref_primary_10_3390_rs10081263
crossref_primary_10_1111_geb_12435
crossref_primary_10_1111_j_1365_2699_2012_02707_x
crossref_primary_10_1002_ecs2_70138
crossref_primary_10_1007_s10531_024_02800_5
crossref_primary_10_1002_fee_2499
crossref_primary_10_1016_j_jglr_2015_10_015
crossref_primary_10_1016_j_envsci_2020_04_013
crossref_primary_10_1111_j_1466_8238_2012_00794_x
crossref_primary_10_1289_EHP15106
crossref_primary_10_1371_journal_pone_0072984
crossref_primary_10_1016_j_jenvman_2024_122120
crossref_primary_10_1080_14772000_2010_533716
crossref_primary_10_1139_cjfas_2022_0108
crossref_primary_10_1007_s11676_016_0215_4
crossref_primary_10_1007_s10493_022_00765_0
crossref_primary_10_1007_s11270_009_9997_8
crossref_primary_10_1016_j_ecolind_2017_11_026
crossref_primary_10_1016_j_ufug_2022_127766
crossref_primary_10_1071_AM23054
crossref_primary_10_1111_1462_2920_13112
crossref_primary_10_1007_s11119_022_09896_1
crossref_primary_10_1038_s41598_021_86830_x
crossref_primary_10_1111_j_1365_2745_2012_01972_x
crossref_primary_10_1038_s41598_018_22436_0
crossref_primary_10_1111_j_1752_4598_2010_00097_x
crossref_primary_10_1186_s12879_018_3343_y
crossref_primary_10_1007_s10530_017_1525_y
crossref_primary_10_1002_sim_5944
crossref_primary_10_3354_meps12228
crossref_primary_10_1111_j_1365_2699_2011_02523_x
crossref_primary_10_1098_rspb_2024_0808
crossref_primary_10_3354_meps11378
crossref_primary_10_1007_s10531_022_02458_x
crossref_primary_10_1890_11_1608_1
crossref_primary_10_1111_ecog_05134
crossref_primary_10_1139_cjfas_2020_0090
crossref_primary_10_1071_WF18220
crossref_primary_10_1016_j_trd_2019_09_004
crossref_primary_10_1038_s43247_023_01098_5
crossref_primary_10_1016_j_rse_2015_09_020
crossref_primary_10_1002_ecs2_2634
crossref_primary_10_1002_ecs2_3969
crossref_primary_10_1007_s11104_009_0043_9
crossref_primary_10_1111_afe_12284
crossref_primary_10_1007_s10531_016_1278_4
crossref_primary_10_1007_s10750_011_0673_9
crossref_primary_10_1016_j_biocon_2015_12_005
crossref_primary_10_1111_j_1600_0587_2010_06775_x
crossref_primary_10_1016_j_biocon_2015_12_007
crossref_primary_10_1038_s41597_022_01738_z
crossref_primary_10_1111_j_1600_0706_2009_17540_x
crossref_primary_10_1111_j_2007_0906_7590_05358_x
crossref_primary_10_1111_icad_12437
crossref_primary_10_1016_j_scib_2025_03_001
crossref_primary_10_1111_icad_12438
crossref_primary_10_1111_ecog_02097
crossref_primary_10_1139_cjfas_2017_0526
crossref_primary_10_3390_fishes2030012
crossref_primary_10_1111_geb_13345
crossref_primary_10_1371_journal_pntd_0002992
crossref_primary_10_1111_geb_12011
crossref_primary_10_1016_j_dsr2_2016_07_007
crossref_primary_10_1080_11263504_2017_1353550
crossref_primary_10_1371_journal_pone_0159795
crossref_primary_10_3389_fmars_2020_00214
crossref_primary_10_1016_j_ecolmodel_2009_06_004
crossref_primary_10_1017_S0959270910000298
crossref_primary_10_1016_j_scitotenv_2024_172431
crossref_primary_10_1186_1756_3305_5_270
crossref_primary_10_1038_s41467_020_16449_5
crossref_primary_10_1007_s00265_014_1706_y
crossref_primary_10_1016_j_ecoser_2018_03_003
crossref_primary_10_1017_inp_2020_21
crossref_primary_10_1093_cz_zoz037
crossref_primary_10_5194_bg_14_163_2017
crossref_primary_10_1111_geb_12486
crossref_primary_10_5194_bg_10_3127_2013
crossref_primary_10_1016_j_ympev_2024_108056
crossref_primary_10_1111_geb_12483
crossref_primary_10_1111_oik_07771
crossref_primary_10_1371_journal_pone_0151825
crossref_primary_10_24072_pcjournal_454
crossref_primary_10_1111_j_1472_4642_2010_00705_x
crossref_primary_10_1371_journal_pntd_0006098
crossref_primary_10_1007_s10750_015_2277_2
crossref_primary_10_1016_j_ecolind_2022_109233
crossref_primary_10_1007_s40615_022_01453_w
crossref_primary_10_1016_j_landurbplan_2013_11_012
crossref_primary_10_15446_rcdg_v31n2_98012
crossref_primary_10_1002_eap_2966
crossref_primary_10_3389_fevo_2023_1178379
crossref_primary_10_1080_14772000_2011_588726
crossref_primary_10_1111_2041_210X_12609
crossref_primary_10_1016_j_biocon_2015_12_029
crossref_primary_10_1111_j_1654_109X_2010_01096_x
crossref_primary_10_1016_j_aquabot_2013_01_005
crossref_primary_10_1007_s10531_015_0869_9
crossref_primary_10_1016_j_agee_2022_108263
crossref_primary_10_1111_gean_12054
crossref_primary_10_2981_wlb_13024
crossref_primary_10_1002_ece3_11654
crossref_primary_10_3389_frsen_2025_1531097
crossref_primary_10_1371_journal_pone_0189509
crossref_primary_10_1007_s40995_021_01238_6
crossref_primary_10_3390_w10020201
crossref_primary_10_1371_journal_pone_0275984
crossref_primary_10_1016_j_ecoinf_2019_100975
crossref_primary_10_1111_oik_10961
crossref_primary_10_1657_1938_4246_45_4_563
crossref_primary_10_1071_WR21045
crossref_primary_10_1098_rspb_2021_1879
crossref_primary_10_1016_j_ecolmodel_2019_108739
crossref_primary_10_1126_science_aah4783
crossref_primary_10_1111_j_1365_2699_2010_02383_x
crossref_primary_10_1016_j_ecolmodel_2019_108735
crossref_primary_10_3390_ijgi7080297
crossref_primary_10_1016_j_foreco_2009_05_015
crossref_primary_10_1016_j_foreco_2017_07_045
crossref_primary_10_1128_AEM_02633_08
crossref_primary_10_1007_s10841_022_00402_6
crossref_primary_10_1016_j_fecs_2022_100018
crossref_primary_10_1371_journal_pone_0019359
crossref_primary_10_1007_s10336_013_0967_y
crossref_primary_10_1080_00934690_2019_1580093
crossref_primary_10_1007_s11284_017_1496_6
crossref_primary_10_1016_j_dsr_2020_103237
crossref_primary_10_1111_1365_2664_12700
crossref_primary_10_1016_j_ecoinf_2020_101150
crossref_primary_10_1136_bmjopen_2021_054095
crossref_primary_10_1890_14_2467_1
crossref_primary_10_1111_2041_210X_12184
crossref_primary_10_1080_13658816_2011_554296
crossref_primary_10_1016_j_sajb_2021_04_022
crossref_primary_10_3354_meps09926
crossref_primary_10_1002_eap_2589
crossref_primary_10_1002_eap_2104
crossref_primary_10_1111_j_1600_0587_2012_07681_x
crossref_primary_10_1016_j_dsr2_2020_104878
crossref_primary_10_1002_fee_2436
crossref_primary_10_1111_j_1365_2664_2009_01628_x
crossref_primary_10_1016_j_marpolbul_2018_11_064
crossref_primary_10_1080_01431161_2013_800659
crossref_primary_10_1007_s00436_023_07839_x
crossref_primary_10_1111_jbi_14145
crossref_primary_10_1371_journal_pone_0147324
crossref_primary_10_1111_j_1523_1739_2010_01493_x
crossref_primary_10_3354_meps13180
crossref_primary_10_1556_ComEc_11_2010_2_8
crossref_primary_10_1177_21582440231152226
crossref_primary_10_1111_j_1466_8238_2008_00408_x
crossref_primary_10_1111_cobi_12096
crossref_primary_10_1111_j_1365_2656_2012_02011_x
crossref_primary_10_1016_j_mambio_2010_12_004
crossref_primary_10_1016_j_pedobi_2012_08_007
crossref_primary_10_1111_j_1461_0248_2008_01168_x
crossref_primary_10_1111_j_1600_0587_2013_00393_x
crossref_primary_10_1111_j_1600_0587_2013_00643_x
crossref_primary_10_1111_j_1600_0587_2010_06953_x
crossref_primary_10_1016_j_ufug_2021_127066
crossref_primary_10_1071_WF11178
crossref_primary_10_1016_j_ecoenv_2018_09_012
crossref_primary_10_1002_ecs2_3918
crossref_primary_10_1139_cjb_2016_0267
crossref_primary_10_3390_biology14030225
crossref_primary_10_1111_jvs_12360
crossref_primary_10_1111_ecog_04665
crossref_primary_10_1007_s10329_012_0341_3
crossref_primary_10_1111_ecog_03331
crossref_primary_10_24072_pcjournal_493
crossref_primary_10_1098_rspb_2015_2998
crossref_primary_10_1002_ece3_9827
crossref_primary_10_1111_j_1558_5646_2011_01329_x
crossref_primary_10_1007_s10531_013_0454_z
crossref_primary_10_1007_s13364_024_00749_y
crossref_primary_10_1002_ecs2_1723
crossref_primary_10_1007_s10531_024_02990_y
crossref_primary_10_1890_12_1513_1
crossref_primary_10_1016_j_ecoinf_2014_05_006
crossref_primary_10_1093_jmammal_gyac104
crossref_primary_10_1002_ece3_3294
crossref_primary_10_3389_fenvs_2023_1229437
crossref_primary_10_1098_rsos_231780
crossref_primary_10_1016_j_ecolmodel_2009_04_045
crossref_primary_10_3390_rs16183538
crossref_primary_10_1007_s10980_011_9579_1
crossref_primary_10_1021_acs_analchem_6b00672
crossref_primary_10_1016_j_actao_2017_02_003
crossref_primary_10_3390_su15010582
crossref_primary_10_1016_j_wsee_2022_09_002
crossref_primary_10_1007_s10682_011_9537_z
crossref_primary_10_1007_s10980_025_02071_7
crossref_primary_10_1111_1755_0998_12949
crossref_primary_10_1098_rstb_2011_0058
crossref_primary_10_1007_s10980_013_9857_1
crossref_primary_10_5604_01_3001_0013_2803
crossref_primary_10_1371_journal_pmed_1003693
crossref_primary_10_1111_j_1600_0587_2009_06074_x
crossref_primary_10_1016_j_gecco_2021_e01608
crossref_primary_10_1016_j_ecolind_2022_109289
crossref_primary_10_1016_j_ecolind_2014_02_023
crossref_primary_10_1016_j_foreco_2015_04_020
crossref_primary_10_1111_gcb_12709
crossref_primary_10_1111_aec_13008
crossref_primary_10_1111_ecog_05534
crossref_primary_10_1002_rse2_342
crossref_primary_10_1007_s10980_019_00947_z
crossref_primary_10_1890_12_1899_1
crossref_primary_10_1111_j_1466_8238_2010_00610_x
crossref_primary_10_1016_j_apgeog_2016_08_015
crossref_primary_10_1016_j_ecoinf_2021_101478
crossref_primary_10_1111_j_1472_4642_2011_00772_x
crossref_primary_10_1016_j_fishres_2021_105905
crossref_primary_10_3996_072012_JFWM_056
crossref_primary_10_1038_s41598_019_46809_1
crossref_primary_10_1111_j_1600_0706_2013_00039_x
crossref_primary_10_1016_j_dsr2_2022_105074
crossref_primary_10_1016_j_foreco_2017_07_004
crossref_primary_10_1038_s41467_018_07915_2
crossref_primary_10_1038_s43247_021_00270_z
crossref_primary_10_17208_jkpa_2021_10_56_5_83
crossref_primary_10_3390_rs14163980
crossref_primary_10_1016_j_biocon_2015_10_018
crossref_primary_10_1002_ece3_10378
crossref_primary_10_1134_S0022476623080036
crossref_primary_10_1111_btp_13337
crossref_primary_10_1016_j_ecoinf_2015_11_011
crossref_primary_10_1111_aec_13010
crossref_primary_10_1111_btp_12008
crossref_primary_10_2193_2008_217
crossref_primary_10_1007_s00442_016_3751_x
crossref_primary_10_1007_s11524_022_00708_5
crossref_primary_10_1111_j_1474_919X_2010_01046_x
crossref_primary_10_1093_jmammal_gyw085
crossref_primary_10_1016_j_ecolind_2020_106436
crossref_primary_10_1111_1365_2745_12443
crossref_primary_10_1111_j_1466_8238_2010_00636_x
crossref_primary_10_1016_j_jnc_2018_09_002
crossref_primary_10_1371_journal_pone_0038247
crossref_primary_10_2989_1814232X_2016_1218367
crossref_primary_10_1016_j_habitatint_2016_03_005
crossref_primary_10_3390_ijerph19031614
crossref_primary_10_1038_s41586_018_0539_7
crossref_primary_10_5253_arde_v107i1_a10
crossref_primary_10_1111_j_1600_0587_2009_05571_x
crossref_primary_10_1111_acv_12739
crossref_primary_10_1098_rstb_2011_0018
crossref_primary_10_1098_rstb_2023_0324
crossref_primary_10_1111_icad_12815
crossref_primary_10_3389_fevo_2023_1116083
crossref_primary_10_1007_s41207_024_00648_3
crossref_primary_10_3897_neobiota_82_96282
crossref_primary_10_1111_ecog_05555
crossref_primary_10_1111_j_1472_4642_2011_00794_x
crossref_primary_10_1016_j_spasta_2012_03_005
crossref_primary_10_3897_neobiota_12_2419
crossref_primary_10_1098_rstb_2011_0024
crossref_primary_10_1111_j_1600_0706_2010_18764_x
crossref_primary_10_1098_rstb_2011_0025
crossref_primary_10_1007_s11284_010_0695_1
crossref_primary_10_1016_j_cities_2018_11_005
crossref_primary_10_3897_zookeys_100_1427
crossref_primary_10_1126_sciadv_add8553
crossref_primary_10_1111_j_1095_8312_2012_01890_x
crossref_primary_10_1016_j_foreco_2024_121691
crossref_primary_10_1098_rspb_2009_0921
crossref_primary_10_1111_j_1365_2486_2010_02229_x
crossref_primary_10_3389_fmars_2017_00149
crossref_primary_10_1111_icad_12805
crossref_primary_10_1371_journal_pone_0263508
crossref_primary_10_1111_1365_2745_12463
crossref_primary_10_3390_ijerph22030446
crossref_primary_10_1016_j_biocon_2023_110179
crossref_primary_10_1016_j_foreco_2020_118316
crossref_primary_10_1016_j_ecolind_2010_11_003
crossref_primary_10_1007_s12526_014_0293_5
crossref_primary_10_1371_journal_pone_0150906
crossref_primary_10_1007_s10344_022_01560_3
crossref_primary_10_1111_ddi_12963
crossref_primary_10_1002_rse2_12
crossref_primary_10_1038_ncomms6351
crossref_primary_10_1098_rstb_2011_0117
crossref_primary_10_3389_fcosc_2021_788267
crossref_primary_10_1002_ecy_1944
crossref_primary_10_1111_j_2041_210X_2012_00211_x
crossref_primary_10_1017_S095410201000043X
crossref_primary_10_1111_ddi_13818
crossref_primary_10_1111_j_1939_7445_2012_00124_x
crossref_primary_10_1073_pnas_1308825110
crossref_primary_10_1007_s10531_012_0395_y
crossref_primary_10_1016_j_scitotenv_2022_160548
crossref_primary_10_1017_pab_2017_2
crossref_primary_10_1111_j_1752_4598_2011_00150_x
crossref_primary_10_1016_j_ecolmodel_2016_02_021
crossref_primary_10_1016_j_foreco_2016_07_040
crossref_primary_10_1016_j_compositesa_2019_105491
crossref_primary_10_1093_icesjms_fsx092
crossref_primary_10_1016_j_apenergy_2017_02_013
crossref_primary_10_1111_jse_13157
crossref_primary_10_1675_063_039_0207
crossref_primary_10_1007_s11430_017_9126_3
crossref_primary_10_1016_j_dsr_2014_07_007
crossref_primary_10_1016_j_biocon_2017_03_024
crossref_primary_10_1016_j_ecolmodel_2009_09_009
crossref_primary_10_37040_geografie2016121040521
crossref_primary_10_1111_ddi_13826
crossref_primary_10_1007_s10144_010_0199_4
crossref_primary_10_1007_s11284_010_0732_0
crossref_primary_10_1016_j_ecoleng_2016_02_044
crossref_primary_10_1016_j_envsoft_2021_105203
crossref_primary_10_1016_j_jcrimjus_2024_102256
crossref_primary_10_1126_science_1215442
crossref_primary_10_1007_s10980_023_01681_3
crossref_primary_10_1371_journal_pone_0141060
crossref_primary_10_1016_j_biocon_2025_111047
crossref_primary_10_1016_j_ecolind_2020_107048
crossref_primary_10_3390_ijgi4020783
crossref_primary_10_1007_s10531_013_0519_z
crossref_primary_10_1111_ecog_06099
crossref_primary_10_1080_21564574_2016_1167783
crossref_primary_10_1590_0074_0276130369
crossref_primary_10_2166_hydro_2021_115
crossref_primary_10_1093_beheco_arr189
crossref_primary_10_1111_j_1469_185X_2012_00235_x
crossref_primary_10_3390_atmos9040156
crossref_primary_10_1007_s10530_018_1883_0
crossref_primary_10_1016_j_rsase_2017_07_010
crossref_primary_10_1007_s10336_023_02096_2
crossref_primary_10_1080_01650521_2017_1382122
crossref_primary_10_1111_ddi_12989
crossref_primary_10_1002_jwmg_279
crossref_primary_10_1007_s10336_014_1049_5
crossref_primary_10_1086_685095
crossref_primary_10_1016_j_pedobi_2020_150646
crossref_primary_10_1016_j_rse_2019_05_019
crossref_primary_10_1038_s41559_017_0089
crossref_primary_10_1002_wsb_987
crossref_primary_10_1016_j_rama_2017_02_004
crossref_primary_10_1016_j_foreco_2017_02_031
crossref_primary_10_1111_j_1600_0587_2008_05165_x
crossref_primary_10_3390_ijerph110807740
crossref_primary_10_1016_j_foreco_2016_07_029
crossref_primary_10_1016_j_biocon_2014_05_030
crossref_primary_10_1186_s12898_018_0199_3
crossref_primary_10_1007_s00248_024_02371_6
crossref_primary_10_1007_s11252_014_0364_1
crossref_primary_10_2196_56343
crossref_primary_10_1016_j_ecoleng_2013_04_029
crossref_primary_10_1111_jbi_13669
crossref_primary_10_1111_ddi_12518
crossref_primary_10_2326_osj_12_15
crossref_primary_10_1016_j_scitotenv_2015_07_087
crossref_primary_10_7589_JWD_D_23_00095
crossref_primary_10_1111_jbi_12340
crossref_primary_10_1890_14_1061_1
crossref_primary_10_1656_058_016_0201
crossref_primary_10_1016_j_mambio_2010_03_007
crossref_primary_10_1016_j_anrea_2023_08_002
crossref_primary_10_1111_j_1365_2699_2010_02425_x
crossref_primary_10_1016_j_scitotenv_2016_06_136
crossref_primary_10_1007_s11356_016_7368_8
crossref_primary_10_1016_j_biocon_2016_08_030
crossref_primary_10_1007_s40808_024_02055_7
crossref_primary_10_1111_ecog_04728
crossref_primary_10_1111_j_1095_8312_2012_01987_x
crossref_primary_10_2139_ssrn_2668830
crossref_primary_10_1016_j_biocon_2016_08_032
crossref_primary_10_1016_j_jenvman_2023_120009
crossref_primary_10_1111_ecog_01212
crossref_primary_10_1111_ecog_03876
crossref_primary_10_1111_ddi_13858
crossref_primary_10_1111_j_1467_9787_2011_00719_x
crossref_primary_10_1890_09_1549_1
crossref_primary_10_1073_pnas_1208652109
crossref_primary_10_1002_ecs2_3063
crossref_primary_10_1111_1365_2664_12741
crossref_primary_10_1111_een_12719
crossref_primary_10_1111_j_1600_0706_2009_18284_x
crossref_primary_10_3389_fpubh_2014_00118
crossref_primary_10_1007_s11116_023_10371_7
crossref_primary_10_1111_jvs_12271
crossref_primary_10_1038_s41598_021_84435_y
crossref_primary_10_1111_cobi_12083
crossref_primary_10_1016_j_scitotenv_2020_141655
crossref_primary_10_1098_rstb_2023_0012
crossref_primary_10_1007_s11356_021_18081_2
crossref_primary_10_1016_j_biocon_2025_111005
crossref_primary_10_1126_science_1210199
crossref_primary_10_1073_pnas_1602145113
crossref_primary_10_1111_j_1365_2699_2008_01965_x
crossref_primary_10_1111_j_1466_8238_2007_00379_x
crossref_primary_10_1111_2041_210X_12032
crossref_primary_10_3389_fevo_2023_1032082
crossref_primary_10_1007_s10344_013_0750_7
crossref_primary_10_1111_bij_12479
crossref_primary_10_1111_j_1466_8238_2011_00663_x
crossref_primary_10_1016_j_foreco_2011_04_001
crossref_primary_10_1177_2399808318821947
crossref_primary_10_2981_wlb_00574
crossref_primary_10_2981_wlb_00575
crossref_primary_10_1016_j_landurbplan_2014_02_017
crossref_primary_10_1111_avsc_12081
crossref_primary_10_1093_icesjms_fsz255
crossref_primary_10_1111_avsc_12089
crossref_primary_10_3390_insects9040167
crossref_primary_10_1111_j_2041_210X_2012_00192_x
crossref_primary_10_1073_pnas_1516684112
crossref_primary_10_1007_s10531_018_1670_3
crossref_primary_10_1007_s11252_023_01471_4
crossref_primary_10_1016_j_jenvman_2016_08_042
crossref_primary_10_7717_peerj_16212
crossref_primary_10_1007_s10709_013_9747_0
crossref_primary_10_1016_j_geoderma_2021_115638
crossref_primary_10_1016_j_envres_2017_07_009
crossref_primary_10_1111_1365_2745_13031
crossref_primary_10_1002_ecs2_2189
crossref_primary_10_1007_s11258_016_0626_5
crossref_primary_10_1016_j_ecss_2022_107849
crossref_primary_10_1111_ddi_12560
crossref_primary_10_1111_ddi_12567
crossref_primary_10_1371_journal_pone_0139126
crossref_primary_10_1017_S0959270923000072
crossref_primary_10_1002_psp_2850
crossref_primary_10_1016_j_ppees_2013_08_002
crossref_primary_10_1038_s41559_021_01513_0
crossref_primary_10_1111_afe_12094
crossref_primary_10_1111_j_1420_9101_2009_01905_x
crossref_primary_10_1093_cz_zow069
crossref_primary_10_1029_2018WR023031
crossref_primary_10_1111_j_1365_2486_2010_02310_x
crossref_primary_10_1111_2041_210X_12866
crossref_primary_10_1111_ecog_06022
crossref_primary_10_1111_geb_12981
crossref_primary_10_1016_j_dsr2_2010_11_018
crossref_primary_10_1086_681917
crossref_primary_10_1007_s00227_023_04241_0
crossref_primary_10_1111_geb_12978
crossref_primary_10_1177_0309133311399491
crossref_primary_10_1111_j_1523_1739_2008_00931_x
crossref_primary_10_1016_j_jnc_2022_126129
crossref_primary_10_1111_afe_12088
crossref_primary_10_1650_CONDOR_15_28_1
crossref_primary_10_1371_journal_pone_0191397
crossref_primary_10_1016_j_pocean_2019_05_005
crossref_primary_10_1016_j_scitotenv_2023_168706
crossref_primary_10_2110_palo_2018_060
crossref_primary_10_1007_s11033_021_06911_y
crossref_primary_10_1111_1365_2664_12394
crossref_primary_10_1016_j_landurbplan_2022_104358
crossref_primary_10_3390_ijerph15040603
crossref_primary_10_1016_j_jenvman_2023_118505
crossref_primary_10_1146_annurev_ecolsys_112414_054441
crossref_primary_10_1111_pirs_12306
crossref_primary_10_1017_S026646742000019X
crossref_primary_10_1016_j_heliyon_2024_e41474
crossref_primary_10_3390_insects15090671
crossref_primary_10_1016_j_ecolind_2016_02_004
crossref_primary_10_1111_ecog_02925
crossref_primary_10_1111_ecog_00747
crossref_primary_10_1371_journal_pone_0166724
crossref_primary_10_3390_d15020127
crossref_primary_10_1038_s41559_017_0341_1
crossref_primary_10_1111_j_1365_2656_2012_02019_x
crossref_primary_10_1111_ddi_12106
crossref_primary_10_1098_rspb_2008_0905
crossref_primary_10_1111_icad_12227
crossref_primary_10_1186_s13717_024_00517_5
crossref_primary_10_1002_aqc_2473
crossref_primary_10_1371_journal_pone_0091998
crossref_primary_10_1002_ecm_1370
crossref_primary_10_1111_2041_210X_12403
crossref_primary_10_1603_EN13251
crossref_primary_10_1080_11250003_2016_1223186
crossref_primary_10_1111_2041_210X_12402
crossref_primary_10_1007_s10841_014_9650_8
crossref_primary_10_3389_fmars_2019_00717
crossref_primary_10_1126_science_aam9712
crossref_primary_10_1016_j_ijpara_2013_07_003
crossref_primary_10_1371_journal_pone_0091994
crossref_primary_10_1097_FCH_0000000000000318
crossref_primary_10_1016_j_apgeog_2011_05_005
crossref_primary_10_1080_13658816_2019_1675072
crossref_primary_10_1111_ddi_13442
crossref_primary_10_1016_j_jenvman_2017_05_071
crossref_primary_10_1007_s10021_016_0078_8
crossref_primary_10_1002_ece3_3970
crossref_primary_10_1007_s10980_024_01939_4
crossref_primary_10_1007_s10530_022_02976_3
crossref_primary_10_1002_aqc_1137
crossref_primary_10_1002_ece3_70176
crossref_primary_10_1680_jsmic_18_00001
crossref_primary_10_1371_journal_pone_0014670
crossref_primary_10_1136_bmjopen_2023_073419
crossref_primary_10_1111_mec_12561
crossref_primary_10_1111_gcb_15896
crossref_primary_10_1038_s41467_024_55240_8
crossref_primary_10_1186_s12864_020_06957_5
crossref_primary_10_1139_cjfr_2012_0452
crossref_primary_10_1007_s10344_017_1092_7
crossref_primary_10_2744_CCB_0819_1
crossref_primary_10_1016_j_rbe_2016_10_004
crossref_primary_10_1111_j_1538_4632_2010_00777_x
crossref_primary_10_1016_j_ecolmodel_2020_109000
crossref_primary_10_3389_fenvs_2022_793583
crossref_primary_10_1016_j_biocon_2021_109263
crossref_primary_10_1111_ecog_06060
crossref_primary_10_1111_j_1365_2699_2009_02128_x
crossref_primary_10_1371_journal_pone_0034558
crossref_primary_10_1038_s41477_020_0647_x
crossref_primary_10_1890_15_0616_1
crossref_primary_10_1098_rspb_2017_2003
crossref_primary_10_1371_journal_pone_0081308
crossref_primary_10_1007_s10530_021_02572_x
crossref_primary_10_1016_j_actao_2016_03_006
crossref_primary_10_1111_ddi_12139
crossref_primary_10_1111_jbi_12711
crossref_primary_10_1016_j_ecolind_2021_108227
crossref_primary_10_1017_S0959270923000023
crossref_primary_10_3354_meps11765
crossref_primary_10_1002_ece3_3998
crossref_primary_10_1371_journal_pone_0175648
crossref_primary_10_1111_ens_12466
crossref_primary_10_1111_jbi_12720
crossref_primary_10_1111_avsc_12451
crossref_primary_10_1111_j_1365_2699_2008_02062_x
crossref_primary_10_1016_j_ecoleng_2024_107476
crossref_primary_10_1007_s40823_020_00059_4
crossref_primary_10_1007_s10310_012_0377_7
crossref_primary_10_1186_1297_9716_42_60
crossref_primary_10_1088_1742_6596_1702_1_012011
crossref_primary_10_1016_j_envpol_2024_124353
crossref_primary_10_1007_s12224_013_9167_z
crossref_primary_10_1007_s10530_017_1591_1
crossref_primary_10_1371_journal_pone_0184677
crossref_primary_10_1098_rspb_2014_2870
crossref_primary_10_1890_14_0879_1
crossref_primary_10_1007_s10658_018_1435_6
crossref_primary_10_1111_ecog_01633
crossref_primary_10_1098_rsif_2018_0747
crossref_primary_10_1007_s00477_019_01718_7
crossref_primary_10_1111_1755_0998_13024
crossref_primary_10_1002_ece3_5700
crossref_primary_10_1111_jbi_12707
crossref_primary_10_3389_fpsyt_2022_919892
crossref_primary_10_1002_ecy_2376
crossref_primary_10_1016_j_scitotenv_2025_179199
crossref_primary_10_1093_icesjms_fsab162
crossref_primary_10_1016_j_gloplacha_2011_05_008
crossref_primary_10_1371_journal_pone_0068337
crossref_primary_10_1017_S0959270918000060
crossref_primary_10_1080_10106049_2010_550693
crossref_primary_10_1016_j_rsma_2021_101858
crossref_primary_10_3390_ijgi8010014
crossref_primary_10_1111_2041_210X_12448
crossref_primary_10_1016_j_ppees_2014_03_002
crossref_primary_10_1093_icesjms_fsac015
crossref_primary_10_1139_Z09_108
crossref_primary_10_1890_15_0242_1
crossref_primary_10_1016_j_biocon_2021_109289
crossref_primary_10_1007_s10336_011_0791_1
crossref_primary_10_1111_gcb_13255
crossref_primary_10_1073_pnas_1904747116
crossref_primary_10_7717_peerj_4179
crossref_primary_10_1016_j_landurbplan_2021_104069
crossref_primary_10_1038_s41598_020_59207_9
crossref_primary_10_1111_j_1600_0587_2011_06483_x
crossref_primary_10_1111_icad_12262
crossref_primary_10_1371_journal_pone_0121808
crossref_primary_10_1111_geb_13846
crossref_primary_10_1071_ZO15002
crossref_primary_10_3832_ifor3360_013
crossref_primary_10_1007_s00227_014_2594_4
crossref_primary_10_1111_ecog_02950
crossref_primary_10_1111_oik_10099
crossref_primary_10_1111_2041_210X_13308
crossref_primary_10_1371_journal_pone_0120960
crossref_primary_10_1371_journal_pone_0277223
crossref_primary_10_4001_003_017_0207
crossref_primary_10_1002_ecs2_1252
crossref_primary_10_1371_journal_pone_0054179
crossref_primary_10_1038_s41598_018_35436_x
crossref_primary_10_1186_s40462_023_00437_7
crossref_primary_10_1016_j_apgeog_2015_07_009
crossref_primary_10_1016_j_ecoser_2021_101394
crossref_primary_10_1111_ddi_12045
crossref_primary_10_1111_geb_12108
crossref_primary_10_1111_ddi_12047
crossref_primary_10_3390_su13010207
crossref_primary_10_1016_j_sste_2023_100615
crossref_primary_10_1016_j_biocon_2017_07_024
crossref_primary_10_1139_cjfas_2017_0458
crossref_primary_10_1016_j_landurbplan_2016_10_002
crossref_primary_10_1029_2021JF006175
crossref_primary_10_1007_s11756_022_01100_z
crossref_primary_10_1002_ecs2_1241
crossref_primary_10_1016_j_ecoinf_2017_05_003
crossref_primary_10_1016_j_pocean_2022_102924
crossref_primary_10_3390_f14040739
crossref_primary_10_1002_ecs2_3423
crossref_primary_10_1016_j_ecoinf_2013_05_001
crossref_primary_10_1080_17445647_2017_1395772
crossref_primary_10_1371_journal_pone_0048766
crossref_primary_10_1111_j_1472_4642_2011_00853_x
crossref_primary_10_1146_annurev_ecolsys_110308_120159
crossref_primary_10_1111_ecog_05209
crossref_primary_10_15684_formath_12_1
crossref_primary_10_1016_j_flora_2023_152351
crossref_primary_10_1016_j_scitotenv_2023_165704
crossref_primary_10_1016_j_eswa_2022_117841
crossref_primary_10_1002_ecy_3694
crossref_primary_10_1002_ecs2_1232
crossref_primary_10_1016_j_biocon_2011_11_013
crossref_primary_10_1038_s41586_020_2903_7
crossref_primary_10_1177_0309133309355630
crossref_primary_10_1186_s12889_023_15369_5
crossref_primary_10_1007_s10980_014_0026_y
crossref_primary_10_3390_rs12081332
crossref_primary_10_1186_s40068_024_00352_9
crossref_primary_10_1086_660272
crossref_primary_10_1016_j_foreco_2015_10_035
crossref_primary_10_1071_WR20010
crossref_primary_10_1111_j_1654_1103_2011_01274_x
crossref_primary_10_1016_j_ppees_2011_03_003
crossref_primary_10_1007_s11252_013_0331_2
crossref_primary_10_1007_s10592_013_0517_4
crossref_primary_10_1126_science_abf1772
crossref_primary_10_2188_jea_JE20240129
crossref_primary_10_1016_j_biocon_2017_07_009
crossref_primary_10_1016_j_agrformet_2017_10_015
crossref_primary_10_1016_j_flora_2023_152344
crossref_primary_10_21676_23897864_3446
crossref_primary_10_1016_j_gecco_2023_e02793
crossref_primary_10_1007_s13364_019_00449_y
crossref_primary_10_1017_S0030605314000222
crossref_primary_10_1111_csp2_12665
crossref_primary_10_1007_s10164_013_0375_z
crossref_primary_10_1111_j_1600_0587_2008_05562_x
crossref_primary_10_1002_ecs2_3403
crossref_primary_10_1007_s11284_010_0728_9
crossref_primary_10_1002_ecs2_3886
crossref_primary_10_1007_s00442_012_2509_3
crossref_primary_10_1111_j_1600_0587_2013_00215_x
crossref_primary_10_1016_j_biocon_2016_12_005
crossref_primary_10_1016_j_soscij_2013_10_006
crossref_primary_10_1111_mam_12091
crossref_primary_10_1098_rspb_2012_3048
crossref_primary_10_1007_s10530_020_02440_0
crossref_primary_10_1017_S0959270917000545
crossref_primary_10_1111_jen_12215
crossref_primary_10_1038_s41598_017_10736_w
crossref_primary_10_1080_1747423X_2021_2020921
crossref_primary_10_3390_ijgi8080332
crossref_primary_10_1016_j_oret_2022_08_003
crossref_primary_10_1007_s11869_016_0436_x
crossref_primary_10_1016_j_jenvman_2024_122001
crossref_primary_10_1111_geb_12553
crossref_primary_10_1016_j_firesaf_2022_103559
crossref_primary_10_1111_j_1466_8238_2010_00561_x
crossref_primary_10_1016_j_foreco_2016_03_036
crossref_primary_10_1007_s10661_023_11539_5
crossref_primary_10_1016_j_scitotenv_2022_155679
crossref_primary_10_1111_ele_12741
crossref_primary_10_1890_14_1874
crossref_primary_10_1016_j_ecolind_2015_07_008
crossref_primary_10_1016_j_eswa_2022_116561
crossref_primary_10_1111_mec_17733
crossref_primary_10_1016_j_jhevol_2010_07_019
crossref_primary_10_1016_j_biocon_2014_11_041
crossref_primary_10_1038_nclimate1906
crossref_primary_10_1007_BF03544420
crossref_primary_10_1007_s11284_014_1200_z
crossref_primary_10_1007_s10764_017_9978_5
crossref_primary_10_1016_j_rsma_2020_101161
crossref_primary_10_1098_rspb_2018_0072
crossref_primary_10_1111_j_1472_4642_2010_00704_x
crossref_primary_10_1002_ece3_8002
crossref_primary_10_1016_j_jag_2012_04_002
crossref_primary_10_1007_s00300_014_1454_5
crossref_primary_10_1111_mms_12227
crossref_primary_10_1111_icad_12309
crossref_primary_10_1590_1677_941x_abb_2023_0120
crossref_primary_10_1007_s13147_010_0012_z
crossref_primary_10_1073_pnas_1208976109
crossref_primary_10_1111_j_1600_0587_2011_07138_x
crossref_primary_10_1007_s12224_010_9059_4
crossref_primary_10_1111_acv_12455
crossref_primary_10_2139_ssrn_4142202
crossref_primary_10_1186_1756_3305_6_195
crossref_primary_10_1007_s00300_021_02886_5
crossref_primary_10_1111_ddi_12096
crossref_primary_10_1111_j_1472_4642_2009_00572_x
crossref_primary_10_1177_09622802211032713
crossref_primary_10_4315_JFP_20_414
crossref_primary_10_1098_rsbl_2021_0116
crossref_primary_10_1016_j_actao_2016_01_009
crossref_primary_10_1186_s12862_023_02132_y
crossref_primary_10_1111_gean_12354
crossref_primary_10_3389_fpls_2022_858711
crossref_primary_10_1007_s10530_011_0032_9
crossref_primary_10_1002_eap_1767
crossref_primary_10_1007_s10531_022_02411_y
crossref_primary_10_1016_j_habitatint_2016_11_002
crossref_primary_10_1111_j_1466_8238_2008_00440_x
crossref_primary_10_1016_j_marenvres_2024_106464
crossref_primary_10_3390_ijerph120505026
crossref_primary_10_1016_j_baae_2022_07_007
crossref_primary_10_1016_j_scitotenv_2023_165746
crossref_primary_10_3354_meps10384
crossref_primary_10_1007_s10980_015_0203_7
crossref_primary_10_1016_j_scitotenv_2024_178091
crossref_primary_10_1016_j_fishres_2025_107301
crossref_primary_10_1073_pnas_1516778112
crossref_primary_10_1111_ropr_12212
crossref_primary_10_1071_ZO12006
crossref_primary_10_1080_23294515_2024_2433474
crossref_primary_10_1016_j_dsr2_2017_11_018
crossref_primary_10_1016_j_fishres_2025_107305
crossref_primary_10_1111_j_1365_2419_2010_00546_x
crossref_primary_10_1111_j_1365_2664_2009_01707_x
crossref_primary_10_1016_j_scitotenv_2020_143070
crossref_primary_10_1002_ecs2_1644
crossref_primary_10_1080_00028487_2015_1024333
crossref_primary_10_1061_AJRUA6_RUENG_1403
crossref_primary_10_1111_1365_2745_12507
crossref_primary_10_1016_j_ppees_2016_04_001
crossref_primary_10_1111_geb_12599
crossref_primary_10_1002_eap_1758
crossref_primary_10_1139_cjz_2024_0059
crossref_primary_10_1016_j_jtrangeo_2014_03_002
crossref_primary_10_1002_wsb_1535
crossref_primary_10_1111_ibi_13251
crossref_primary_10_1111_j_1466_8238_2009_00506_x
crossref_primary_10_1007_s10336_011_0662_9
crossref_primary_10_1111_ecog_07440
crossref_primary_10_1111_gcb_16355
crossref_primary_10_3378_027_083_0404
crossref_primary_10_1111_gcb_15026
crossref_primary_10_1007_s11004_024_10163_4
crossref_primary_10_1111_1365_2664_14114
crossref_primary_10_1371_journal_pone_0071574
crossref_primary_10_1080_17550874_2022_2039314
crossref_primary_10_1111_j_1600_0587_2013_00259_x
crossref_primary_10_1371_journal_pone_0109397
crossref_primary_10_1080_21564574_2017_1388855
crossref_primary_10_3846_jeelm_2020_12081
crossref_primary_10_1071_WR20075
crossref_primary_10_1289_EHP9538
crossref_primary_10_1002_mcf2_10025
crossref_primary_10_1007_s10109_015_0225_3
crossref_primary_10_1038_s41467_022_30888_2
crossref_primary_10_1111_jbi_13184
crossref_primary_10_1089_vbz_2011_0786
crossref_primary_10_1080_17489725_2018_1468039
crossref_primary_10_1371_journal_pone_0160630
crossref_primary_10_1002_psp_2060
crossref_primary_10_3389_fevo_2021_612718
crossref_primary_10_1525_cond_2011_100234
crossref_primary_10_1109_ACCESS_2017_2708762
crossref_primary_10_1111_j_1466_8238_2010_00526_x
crossref_primary_10_1016_j_forpol_2023_102938
crossref_primary_10_1002_rse2_89
crossref_primary_10_1016_j_ecoinf_2025_103057
crossref_primary_10_1111_jzo_13055
crossref_primary_10_1111_conl_13017
crossref_primary_10_1111_j_1600_0587_2012_07364_x
crossref_primary_10_1016_j_actao_2019_103486
crossref_primary_10_1111_ecog_01245
crossref_primary_10_1002_ece3_4007
crossref_primary_10_1111_j_1461_0248_2009_01307_x
crossref_primary_10_1186_s13595_023_01199_3
crossref_primary_10_1007_s00227_011_1753_0
crossref_primary_10_1111_j_1365_3180_2012_00934_x
crossref_primary_10_1016_j_scitotenv_2013_08_058
crossref_primary_10_3390_land13040514
crossref_primary_10_1016_j_biocon_2010_03_015
crossref_primary_10_3390_fishes8010027
crossref_primary_10_1007_s10531_024_02947_1
crossref_primary_10_1002_env_2223
crossref_primary_10_1016_j_fishres_2020_105795
crossref_primary_10_13047_KJEE_2024_38_5_477
crossref_primary_10_1016_j_ecoinf_2013_03_003
crossref_primary_10_1111_geb_12169
crossref_primary_10_1007_s10531_018_1613_z
crossref_primary_10_1002_mcf2_10002
crossref_primary_10_1111_gcb_13739
crossref_primary_10_1007_s12224_012_9124_2
crossref_primary_10_1016_j_agee_2014_05_002
crossref_primary_10_1111_1365_2656_12952
crossref_primary_10_1111_ecog_02121
crossref_primary_10_1111_jbi_14016
crossref_primary_10_1007_s11160_019_09560_4
crossref_primary_10_1007_s10980_012_9746_z
crossref_primary_10_1094_PHYTO_10_21_0449_R
crossref_primary_10_1111_j_1600_0587_2009_05717_x
crossref_primary_10_1016_j_ecolmodel_2023_110548
crossref_primary_10_1080_01431161_2014_882028
crossref_primary_10_1111_geb_12161
crossref_primary_10_4236_jgis_2014_64026
crossref_primary_10_1186_s12942_017_0120_x
crossref_primary_10_1371_journal_pone_0137877
crossref_primary_10_1111_j_1600_0587_2010_05892_x
crossref_primary_10_1007_s10980_017_0578_8
crossref_primary_10_3354_meps08939
crossref_primary_10_1016_j_foreco_2025_122505
crossref_primary_10_1016_j_jarmap_2018_02_003
crossref_primary_10_1038_srep29839
crossref_primary_10_1007_s00442_015_3311_9
crossref_primary_10_1111_j_1523_1739_2010_01528_x
crossref_primary_10_1111_1365_2656_12961
crossref_primary_10_1186_s40462_021_00260_y
crossref_primary_10_1016_j_avrs_2025_100222
crossref_primary_10_1093_aesa_say056
crossref_primary_10_1007_s10980_010_9566_y
crossref_primary_10_1016_j_actao_2017_09_010
crossref_primary_10_1111_ecog_02593
crossref_primary_10_1016_j_actao_2017_09_013
crossref_primary_10_1016_j_ecolind_2014_10_009
crossref_primary_10_1111_j_1365_2745_2009_01492_x
crossref_primary_10_1002_env_2240
crossref_primary_10_1039_D1EM00217A
crossref_primary_10_1007_s12061_024_09634_2
crossref_primary_10_1007_s40415_023_00885_w
crossref_primary_10_1017_S0031182012001345
crossref_primary_10_1111_j_1600_0587_2012_07801_x
crossref_primary_10_1007_s10750_018_3508_0
crossref_primary_10_1111_jvs_13109
crossref_primary_10_1007_s10750_021_04612_y
crossref_primary_10_1088_1748_9326_10_11_114001
crossref_primary_10_1111_fwb_12936
crossref_primary_10_1016_j_spasta_2015_07_006
crossref_primary_10_1016_j_agee_2024_109437
crossref_primary_10_1016_j_mechatronics_2020_102436
crossref_primary_10_1515_mammalia_2021_0130
crossref_primary_10_1016_j_ecolind_2014_10_018
crossref_primary_10_1111_j_1365_2699_2011_02602_x
crossref_primary_10_1111_rssc_12453
crossref_primary_10_2903_sp_efsa_2020_EN_1980
crossref_primary_10_1007_s10530_014_0803_1
crossref_primary_10_1016_j_fishres_2018_10_011
crossref_primary_10_1080_03003930_2020_1869545
crossref_primary_10_1016_j_ecolmodel_2009_11_008
crossref_primary_10_1016_j_fishres_2018_10_013
crossref_primary_10_1007_s41208_023_00531_y
crossref_primary_10_1098_rspb_2023_2768
crossref_primary_10_1007_s11252_015_0492_2
crossref_primary_10_1139_er_2016_0045
crossref_primary_10_1007_s11692_019_09479_5
crossref_primary_10_22201_ib_20078706e_2019_90_2829
crossref_primary_10_1111_ecog_03469
crossref_primary_10_1016_j_jmarsys_2017_10_006
crossref_primary_10_1371_journal_pone_0100553
crossref_primary_10_1007_s10841_015_9810_5
crossref_primary_10_1111_ecog_03464
crossref_primary_10_1016_j_ecoinf_2015_06_007
crossref_primary_10_7717_peerj_3771
crossref_primary_10_1111_jvs_12676
crossref_primary_10_1016_j_ecolind_2018_01_050
crossref_primary_10_3390_su10082773
crossref_primary_10_2981_wlb_00022
crossref_primary_10_1111_aec_13580
crossref_primary_10_1111_btp_12359
crossref_primary_10_1038_s41586_021_03483_6
crossref_primary_10_1002_ece3_70528
crossref_primary_10_1007_s11258_017_0700_7
crossref_primary_10_1650_CONDOR_17_14_1
crossref_primary_10_1111_j_1466_8238_2009_00492_x
crossref_primary_10_1016_j_ecoenv_2019_109622
crossref_primary_10_1002_rse2_70
crossref_primary_10_1371_journal_pone_0029212
crossref_primary_10_3390_ani11123426
crossref_primary_10_1002_ajpa_22560
crossref_primary_10_1007_s13364_023_00707_0
crossref_primary_10_1016_j_chemosphere_2016_04_095
crossref_primary_10_1088_1748_9326_ad13b6
crossref_primary_10_4102_jef_v12i1_204
crossref_primary_10_1016_j_foreco_2011_06_009
crossref_primary_10_1155_2014_809495
crossref_primary_10_1007_s10021_009_9246_4
crossref_primary_10_1111_ecog_03493
crossref_primary_10_1016_j_scitotenv_2017_11_255
crossref_primary_10_1016_j_actao_2024_104018
crossref_primary_10_1371_journal_pone_0164198
crossref_primary_10_1007_s10764_013_9690_z
crossref_primary_10_1890_09_2040_1
crossref_primary_10_1007_s00267_023_01905_x
crossref_primary_10_1098_rspb_2021_0253
crossref_primary_10_1093_beheco_ars122
crossref_primary_10_1017_S037689291200032X
crossref_primary_10_1111_aec_12267
crossref_primary_10_1111_j_1365_2699_2011_02659_x
crossref_primary_10_1111_ecog_06510
crossref_primary_10_1038_s41598_024_59973_w
crossref_primary_10_1111_fog_12233
crossref_primary_10_1111_j_1600_0706_2012_20348_x
crossref_primary_10_1016_j_ecoinf_2022_101683
crossref_primary_10_1186_s40462_019_0164_6
crossref_primary_10_1111_j_1472_4642_2012_00911_x
crossref_primary_10_1650_CONDOR_13_072_1
crossref_primary_10_3390_f11111144
crossref_primary_10_1111_j_1600_0587_2010_6380_x
crossref_primary_10_1016_j_ecolind_2024_112896
crossref_primary_10_1371_journal_pone_0097122
crossref_primary_10_1111_btp_12217
crossref_primary_10_1002_ece3_2570
crossref_primary_10_3390_ijgi8060262
crossref_primary_10_1007_s10144_015_0506_1
crossref_primary_10_1007_s10750_017_3087_5
crossref_primary_10_3390_d13030120
crossref_primary_10_1002_ppp3_10629
crossref_primary_10_1111_1365_2656_12214
crossref_primary_10_1016_j_gecco_2025_e03547
crossref_primary_10_1111_jbi_13588
crossref_primary_10_1111_1365_2745_12256
crossref_primary_10_1002_ece3_5604
crossref_primary_10_1016_j_actatropica_2011_03_009
crossref_primary_10_1002_ece3_5609
crossref_primary_10_1007_s11355_025_00640_1
crossref_primary_10_5334_dsj_2020_026
crossref_primary_10_3897_neobiota_14_3273
crossref_primary_10_3955_046_091_0309
crossref_primary_10_13157_arla_67_2_2020_ra5
crossref_primary_10_1111_j_1466_8238_2008_00395_x
crossref_primary_10_1111_j_1600_0587_2009_05991_x
crossref_primary_10_3390_d1010052
crossref_primary_10_1007_s11676_021_01425_6
crossref_primary_10_1016_j_sajb_2019_08_025
crossref_primary_10_3354_meps12937
crossref_primary_10_3354_meps12934
crossref_primary_10_1016_j_gecco_2024_e03281
crossref_primary_10_1126_science_1215320
crossref_primary_10_1016_j_mambio_2019_04_001
crossref_primary_10_1007_s11284_014_1160_3
crossref_primary_10_1007_s11284_010_0733_z
crossref_primary_10_1155_2012_297657
crossref_primary_10_1002_ece3_70
crossref_primary_10_1111_jbi_13573
crossref_primary_10_1016_j_gecco_2021_e01475
crossref_primary_10_1016_j_gecco_2021_e01477
crossref_primary_10_7717_peerj_3850
crossref_primary_10_1016_j_foreco_2018_03_016
crossref_primary_10_1016_j_baae_2023_04_006
crossref_primary_10_1007_s10344_015_0942_4
crossref_primary_10_1038_s41598_023_47734_0
crossref_primary_10_1016_j_ecolecon_2019_03_025
crossref_primary_10_1007_s10994_021_05972_1
crossref_primary_10_3390_rs8121038
crossref_primary_10_1016_j_envpol_2009_06_010
crossref_primary_10_1016_j_ecolecon_2019_03_029
crossref_primary_10_1038_ncomms4271
crossref_primary_10_1371_journal_pone_0033954
crossref_primary_10_1016_j_spasta_2012_02_004
crossref_primary_10_1111_nph_18533
crossref_primary_10_1371_journal_pone_0142236
crossref_primary_10_1016_j_apgeog_2015_03_010
crossref_primary_10_1111_1365_2656_12673
crossref_primary_10_1073_pnas_1521657113
crossref_primary_10_3389_fmicb_2025_1520104
crossref_primary_10_1198_jabes_2009_07032
crossref_primary_10_1093_icesjms_fsy089
crossref_primary_10_1111_j_2041_210X_2011_00170_x
crossref_primary_10_1016_j_heliyon_2024_e32005
crossref_primary_10_1111_fwb_12640
crossref_primary_10_1111_1365_2664_12880
crossref_primary_10_1086_715500
crossref_primary_10_1007_s10980_016_0364_z
crossref_primary_10_1016_j_agee_2014_11_006
crossref_primary_10_1016_j_ppees_2017_09_001
crossref_primary_10_1371_journal_pone_0096261
crossref_primary_10_1038_s41598_021_03038_9
crossref_primary_10_1111_j_1365_2699_2012_02745_x
crossref_primary_10_1111_nph_14167
crossref_primary_10_1038_s41558_023_01650_3
crossref_primary_10_1016_j_ecolmodel_2009_10_038
crossref_primary_10_1016_j_habitatint_2018_09_001
crossref_primary_10_1016_j_ssmph_2023_101493
crossref_primary_10_2196_11357
crossref_primary_10_1002_ece3_4789
crossref_primary_10_1016_j_dsr2_2013_06_010
crossref_primary_10_1002_ece3_91
crossref_primary_10_1016_j_ufug_2024_128651
crossref_primary_10_3389_ffgc_2024_1472699
crossref_primary_10_1007_s10530_015_0946_8
crossref_primary_10_1111_j_1466_8238_2010_00523_x
crossref_primary_10_1111_jzo_12734
crossref_primary_10_3390_su11102720
crossref_primary_10_3390_w10030328
crossref_primary_10_1007_s10901_014_9426_1
crossref_primary_10_1111_jbi_13544
crossref_primary_10_1007_s00300_014_1502_1
crossref_primary_10_1002_jwmg_21083
crossref_primary_10_1038_s41598_023_32077_7
crossref_primary_10_1111_faf_12330
crossref_primary_10_1111_jbi_12213
crossref_primary_10_1371_journal_pone_0175138
crossref_primary_10_1038_srep22400
crossref_primary_10_3354_dao02838
crossref_primary_10_1016_j_marpolbul_2016_06_056
crossref_primary_10_1016_j_envsoft_2014_03_010
crossref_primary_10_1038_s41558_020_00919_1
crossref_primary_10_1111_ddi_12413
crossref_primary_10_1111_ddi_12412
crossref_primary_10_1111_j_1095_8312_2011_01780_x
crossref_primary_10_1111_ecog_03506
crossref_primary_10_3390_f14101970
crossref_primary_10_1111_ddi_12898
crossref_primary_10_1111_ecog_01322
crossref_primary_10_1016_j_biocon_2013_12_007
crossref_primary_10_1016_j_ecolmodel_2014_12_005
crossref_primary_10_1016_j_jnc_2016_09_002
crossref_primary_10_1017_ehs_2023_23
crossref_primary_10_1139_cjfas_2015_0343
crossref_primary_10_1007_s13157_012_0340_6
crossref_primary_10_14411_eje_2009_012
crossref_primary_10_1111_j_1461_0248_2009_01422_x
crossref_primary_10_1007_s10113_020_01647_0
crossref_primary_10_1016_j_foreco_2018_03_041
crossref_primary_10_1139_cjfr_2019_0161
crossref_primary_10_1007_s10530_011_9952_7
crossref_primary_10_3389_fevo_2019_00207
crossref_primary_10_1007_s10530_020_02314_5
crossref_primary_10_1016_j_anbehav_2008_04_004
crossref_primary_10_3389_fmars_2021_606975
crossref_primary_10_1007_s10530_022_02913_4
crossref_primary_10_1111_j_1600_0587_2010_06301_x
crossref_primary_10_1016_j_biocon_2010_12_028
crossref_primary_10_1093_jme_tjab107
crossref_primary_10_1111_ecog_02683
crossref_primary_10_1111_mec_17276
crossref_primary_10_1016_j_geoderma_2014_05_022
crossref_primary_10_1016_j_compag_2015_10_020
crossref_primary_10_1016_j_ecolmodel_2022_110107
crossref_primary_10_1038_s41467_023_36888_0
crossref_primary_10_1007_s10344_013_0762_3
crossref_primary_10_1016_j_joi_2017_05_006
crossref_primary_10_1111_jfb_15133
crossref_primary_10_1186_s13717_020_00265_2
crossref_primary_10_3161_15081109ACC2020_22_1_011
crossref_primary_10_1093_icesjms_fsp224
crossref_primary_10_1111_acv_12910
crossref_primary_10_1111_jbi_13990
crossref_primary_10_1126_sciadv_1500789
crossref_primary_10_1016_j_agee_2011_06_025
crossref_primary_10_1016_j_scitotenv_2021_152506
crossref_primary_10_1016_j_atmosenv_2017_07_023
crossref_primary_10_1111_j_1466_8238_2010_00567_x
crossref_primary_10_1111_sum_12874
crossref_primary_10_1111_j_1466_8238_2009_00446_x
crossref_primary_10_2139_ssrn_2193792
crossref_primary_10_1016_j_scitotenv_2021_145391
crossref_primary_10_1080_17451000_2019_1644773
crossref_primary_10_1016_j_fecs_2023_100093
crossref_primary_10_1111_ddi_12446
crossref_primary_10_1111_ecog_00845
crossref_primary_10_3390_ijgi11040242
crossref_primary_10_1016_j_ecolmodel_2008_06_028
crossref_primary_10_1016_j_biocon_2013_05_019
crossref_primary_10_1007_s13762_025_06412_6
crossref_primary_10_1080_13504509_2015_1055524
crossref_primary_10_1111_ele_13471
crossref_primary_10_1899_12_137_1
crossref_primary_10_1111_een_12485
crossref_primary_10_1111_ecog_06148
crossref_primary_10_1038_s41467_020_15708_9
crossref_primary_10_3390_land10101043
crossref_primary_10_1002_ece3_837
crossref_primary_10_1016_j_scitotenv_2020_140663
crossref_primary_10_3354_meps11692
crossref_primary_10_3390_land10080817
crossref_primary_10_1002_ecs2_3388
crossref_primary_10_1016_j_ecolind_2017_05_041
crossref_primary_10_1080_13658816_2013_871016
crossref_primary_10_3390_w11010162
crossref_primary_10_1007_s10980_020_01033_5
crossref_primary_10_1007_s00442_022_05134_7
crossref_primary_10_1016_j_jmarsys_2014_03_003
crossref_primary_10_1111_ddi_12450
crossref_primary_10_1016_j_dsr2_2016_11_014
crossref_primary_10_1186_s40462_015_0053_6
crossref_primary_10_1111_j_1600_0587_2009_06299_x
crossref_primary_10_1093_icesjms_fst206
crossref_primary_10_1111_een_12474
crossref_primary_10_1371_journal_pone_0180915
crossref_primary_10_1007_s00442_014_2953_3
crossref_primary_10_1016_j_agee_2017_11_003
crossref_primary_10_1111_oik_05802
crossref_primary_10_1021_jasms_4c00144
crossref_primary_10_1007_s11258_020_01006_3
crossref_primary_10_1111_cobi_12324
crossref_primary_10_1080_01650521_2020_1722021
crossref_primary_10_1016_j_agee_2018_08_014
crossref_primary_10_3389_fmed_2023_1131794
crossref_primary_10_1016_j_dsr_2023_104028
crossref_primary_10_1016_j_foreco_2018_12_006
crossref_primary_10_1002_wsb_225
crossref_primary_10_1071_WF08206
crossref_primary_10_1016_j_ecolmodel_2014_07_027
crossref_primary_10_1016_j_foreco_2019_117501
crossref_primary_10_1111_j_1600_0587_2011_06560_x
crossref_primary_10_5194_hess_22_1851_2018
crossref_primary_10_1016_j_foreco_2021_119698
crossref_primary_10_1111_j_1600_0587_2009_05907_x
crossref_primary_10_1002_ece3_2514
crossref_primary_10_1111_acv_12028
crossref_primary_10_1007_s10531_024_02975_x
crossref_primary_10_1111_j_1600_0587_2008_05505_x
crossref_primary_10_1002_aps3_11546
crossref_primary_10_1016_j_ecoinf_2023_102181
crossref_primary_10_1111_j_1600_0587_2012_07764_x
crossref_primary_10_1007_s13157_019_01182_7
crossref_primary_10_1111_bij_12567
crossref_primary_10_1111_aec_12861
crossref_primary_10_1371_journal_pone_0106114
crossref_primary_10_25225_jvb_24001
crossref_primary_10_1016_j_jaridenv_2010_05_015
crossref_primary_10_1002_jwmg_326
crossref_primary_10_1007_s10980_021_01221_x
crossref_primary_10_3354_meps10334
crossref_primary_10_1016_j_jaridenv_2010_05_019
crossref_primary_10_1016_j_jglr_2023_102267
crossref_primary_10_1002_ldr_2695
crossref_primary_10_1111_mam_12125
crossref_primary_10_1038_nature17443
crossref_primary_10_1371_journal_pone_0175545
crossref_primary_10_1007_s12526_009_0028_1
crossref_primary_10_1016_j_ecolmodel_2017_05_021
crossref_primary_10_1007_s10841_021_00363_2
crossref_primary_10_1111_j_1538_4632_2009_00766_x
crossref_primary_10_1007_s10021_017_0156_6
crossref_primary_10_1016_j_ecolind_2019_105742
crossref_primary_10_3354_esr00367
crossref_primary_10_1016_j_ecocom_2019_03_002
crossref_primary_10_1111_ele_12104
crossref_primary_10_1111_ddi_12006
crossref_primary_10_1111_geb_12666
crossref_primary_10_1016_j_ecolmodel_2019_06_002
crossref_primary_10_1007_s10342_021_01394_9
crossref_primary_10_1111_j_1365_2699_2010_02359_x
crossref_primary_10_1002_rra_3591
crossref_primary_10_1111_acv_12053
crossref_primary_10_1139_as_2017_0048
crossref_primary_10_1016_j_biocon_2015_08_033
crossref_primary_10_1111_een_12441
crossref_primary_10_7717_peerj_9522
crossref_primary_10_1002_jpln_200700027
crossref_primary_10_1080_10807039_2022_2134093
crossref_primary_10_1111_icad_12164
crossref_primary_10_1016_j_fishres_2012_06_011
crossref_primary_10_1111_icad_12166
crossref_primary_10_1016_j_geoderma_2017_03_013
crossref_primary_10_1093_icesjms_fsaa170
crossref_primary_10_1016_j_apacoust_2018_12_031
crossref_primary_10_1371_journal_pone_0162697
crossref_primary_10_1111_j_0906_7590_2008_05525_x
crossref_primary_10_1016_j_landusepol_2020_105161
crossref_primary_10_1111_ddi_12019
crossref_primary_10_1093_aobpla_ply029
crossref_primary_10_1111_aec_12849
crossref_primary_10_1016_j_pocean_2022_102859
crossref_primary_10_1111_fwb_13128
crossref_primary_10_1111_ddi_12493
crossref_primary_10_1111_j_1469_7998_2012_00911_x
crossref_primary_10_1080_00063657_2013_849657
crossref_primary_10_1371_journal_pone_0159035
crossref_primary_10_1016_j_pocean_2022_102823
crossref_primary_10_1111_geb_12643
crossref_primary_10_3354_meps12966
crossref_primary_10_1002_ece3_858
crossref_primary_10_1016_j_toxicon_2024_108107
crossref_primary_10_3354_meps11633
crossref_primary_10_1111_ele_13892
crossref_primary_10_1111_j_1654_109X_2011_01135_x
crossref_primary_10_1016_j_ecoleng_2014_11_050
crossref_primary_10_1002_ece3_6914
crossref_primary_10_1111_j_1654_1103_2009_01098_x
crossref_primary_10_1111_jbi_13920
crossref_primary_10_1186_s12936_018_2312_7
crossref_primary_10_1016_j_ecoinf_2017_04_009
crossref_primary_10_1590_S0103_90162009000600007
crossref_primary_10_1002_aqc_3006
crossref_primary_10_1111_j_2041_210X_2011_00130_x
crossref_primary_10_1016_j_ecolecon_2016_03_016
crossref_primary_10_1016_j_protis_2018_03_001
crossref_primary_10_3732_ajb_1500052
crossref_primary_10_1016_j_foreco_2012_03_003
crossref_primary_10_1111_1365_2664_12443
crossref_primary_10_1371_journal_pone_0056245
crossref_primary_10_1111_nph_20003
crossref_primary_10_1007_s11258_019_00963_8
crossref_primary_10_1111_een_12456
crossref_primary_10_1111_ele_13425
crossref_primary_10_1111_ddi_12037
crossref_primary_10_1016_j_rse_2014_09_025
crossref_primary_10_1007_s10342_024_01697_7
crossref_primary_10_1111_nph_19011
crossref_primary_10_3389_fevo_2021_556821
crossref_primary_10_1177_19400829211049999
crossref_primary_10_1016_j_fishres_2024_107071
crossref_primary_10_1002_ecm_1283
crossref_primary_10_1111_csp2_13
crossref_primary_10_7589_2016_06_140
crossref_primary_10_13157_arla_60_1_2012_99
crossref_primary_10_1016_j_ecolmodel_2021_109693
crossref_primary_10_1002_wsb_272
crossref_primary_10_1016_j_rse_2020_111673
crossref_primary_10_1128_AEM_02951_09
crossref_primary_10_1016_j_ecolind_2014_05_036
crossref_primary_10_1002_ece3_8795
crossref_primary_10_1016_j_ufug_2021_127243
crossref_primary_10_1002_ece3_5286
crossref_primary_10_3390_rs8060494
crossref_primary_10_1111_geb_12225
crossref_primary_10_1016_j_foreco_2008_09_023
crossref_primary_10_1038_s41598_021_82404_z
crossref_primary_10_1371_journal_pone_0151650
crossref_primary_10_1016_j_agee_2020_106910
crossref_primary_10_1175_JTECH_D_18_0018_1
crossref_primary_10_1016_j_jmarsys_2020_103372
crossref_primary_10_1111_j_1365_2699_2010_02341_x
crossref_primary_10_1080_21513732_2016_1200672
crossref_primary_10_1007_s10980_021_01367_8
crossref_primary_10_1016_j_ecoenv_2014_04_003
crossref_primary_10_1007_s10336_009_0390_6
crossref_primary_10_1007_s10651_012_0223_2
crossref_primary_10_1098_rspb_2017_1979
crossref_primary_10_1016_j_healthplace_2023_103094
crossref_primary_10_1007_s10661_015_4504_8
crossref_primary_10_1016_j_ecolmodel_2011_12_020
crossref_primary_10_1016_j_aap_2013_07_001
crossref_primary_10_1016_j_envpol_2022_119116
crossref_primary_10_1016_j_scitotenv_2023_163414
crossref_primary_10_1080_13658816_2020_1798968
crossref_primary_10_3390_drones3010010
crossref_primary_10_7717_peerj_4382
crossref_primary_10_1094_PHYTO_07_15_0159_R
crossref_primary_10_1111_gcbb_12146
crossref_primary_10_1111_geb_12212
crossref_primary_10_1007_s11160_021_09688_2
crossref_primary_10_3390_agronomy15030533
crossref_primary_10_1016_j_baae_2013_03_001
crossref_primary_10_3389_fmars_2020_00015
crossref_primary_10_3161_15081109ACC2015_17_1_013
crossref_primary_10_1016_j_ecoser_2022_101414
crossref_primary_10_1655_Herpetologica_D_16_00003_1
crossref_primary_10_1002_widm_1394
crossref_primary_10_1071_WF13195
crossref_primary_10_1111_geb_12200
crossref_primary_10_1371_journal_pone_0149790
crossref_primary_10_1111_geb_12201
crossref_primary_10_1007_s41207_025_00738_w
crossref_primary_10_1016_j_foreco_2016_11_009
crossref_primary_10_1111_1365_2664_14269
crossref_primary_10_1007_s10071_018_1176_0
crossref_primary_10_3390_rs8060462
crossref_primary_10_1016_j_foreco_2013_04_010
crossref_primary_10_1111_eth_13143
crossref_primary_10_3390_vaccines11071149
crossref_primary_10_1111_gcb_12917
crossref_primary_10_1186_s42408_019_0047_7
crossref_primary_10_1371_journal_pone_0022331
crossref_primary_10_1016_j_ecolmodel_2019_108902
crossref_primary_10_1016_j_scitotenv_2017_12_115
crossref_primary_10_1111_oik_05787
crossref_primary_10_2989_10220119_2018_1480525
crossref_primary_10_3354_meps12475
crossref_primary_10_1038_s41598_021_00556_4
crossref_primary_10_1002_ece3_70691
crossref_primary_10_1016_j_ecolind_2017_03_046
crossref_primary_10_1007_s00468_022_02299_9
crossref_primary_10_1080_20442041_2018_1482152
crossref_primary_10_1109_ACCESS_2024_3485512
crossref_primary_10_1007_s12224_013_9185_x
crossref_primary_10_1016_j_tra_2014_10_018
crossref_primary_10_1098_rspb_2011_2153
crossref_primary_10_3354_meps13313
crossref_primary_10_1098_rstb_2016_0116
crossref_primary_10_1111_j_1365_2656_2011_01833_x
crossref_primary_10_1080_13504509_2014_923058
crossref_primary_10_1111_evo_13076
crossref_primary_10_1186_s40663_021_00282_3
crossref_primary_10_1111_geb_13598
crossref_primary_10_1038_s41598_018_36761_x
crossref_primary_10_5735_086_052_0206
crossref_primary_10_1002_ecm_1238
crossref_primary_10_1016_j_intell_2011_05_001
crossref_primary_10_1007_s10841_014_9749_y
crossref_primary_10_1111_geb_12261
crossref_primary_10_1007_s10393_021_01525_z
crossref_primary_10_1007_s10531_018_1545_7
crossref_primary_10_1007_s10531_023_02760_2
crossref_primary_10_1071_WR22100
crossref_primary_10_1086_684391
crossref_primary_10_1111_geb_13109
crossref_primary_10_1186_s40663_021_00305_z
crossref_primary_10_7202_1084230ar
crossref_primary_10_1007_s10344_014_0849_5
crossref_primary_10_1016_j_trd_2022_103227
crossref_primary_10_1890_11_0826_1
crossref_primary_10_1177_0962280217689968
crossref_primary_10_1016_j_ijpara_2023_10_002
crossref_primary_10_1111_ecog_03189
crossref_primary_10_1016_j_ecolind_2023_110309
crossref_primary_10_3390_ani15010061
crossref_primary_10_1111_geb_13585
crossref_primary_10_3390_land8020025
crossref_primary_10_1002_ecs2_2869
crossref_primary_10_1007_s10531_019_01717_8
crossref_primary_10_1093_icesjms_fsu126
crossref_primary_10_1007_s10530_007_9189_7
crossref_primary_10_1007_s11629_019_5603_8
crossref_primary_10_1111_j_1600_0587_2012_07853_x
crossref_primary_10_1093_icesjms_fsu120
crossref_primary_10_1098_rsos_150165
crossref_primary_10_1016_j_chemolab_2024_105254
crossref_primary_10_3390_plants12203654
crossref_primary_10_1111_nph_13206
crossref_primary_10_1038_ncomms10541
crossref_primary_10_1111_1365_2664_13375
crossref_primary_10_1002_ecs2_1542
crossref_primary_10_1016_j_ecolmodel_2021_109738
crossref_primary_10_1016_j_foreco_2017_06_044
crossref_primary_10_1111_1365_2656_13051
crossref_primary_10_3390_su13158481
crossref_primary_10_1186_s12936_023_04677_1
crossref_primary_10_1007_s10531_012_0346_7
crossref_primary_10_1007_s10530_018_1700_9
crossref_primary_10_3354_meps12434
crossref_primary_10_1098_rspb_2016_2086
crossref_primary_10_1098_rsbl_2008_0210
crossref_primary_10_1111_jeb_12244
crossref_primary_10_1080_11263504_2016_1255268
crossref_primary_10_1007_s11252_020_01071_6
crossref_primary_10_1016_j_biocon_2013_07_037
crossref_primary_10_1002_ecs2_2862
crossref_primary_10_1016_j_baae_2015_08_008
crossref_primary_10_1038_s41561_021_00773_6
crossref_primary_10_1016_j_scitotenv_2023_168275
crossref_primary_10_3390_f9030122
crossref_primary_10_1371_journal_pone_0158203
crossref_primary_10_1002_ecs2_2847
crossref_primary_10_1002_ajpa_23355
crossref_primary_10_1007_s11119_013_9314_9
crossref_primary_10_1371_journal_pone_0082142
crossref_primary_10_3897_BDJ_6_e20760
crossref_primary_10_1371_journal_pcbi_1008856
crossref_primary_10_1111_gcb_12507
crossref_primary_10_1111_j_1365_2664_2009_01692_x
crossref_primary_10_3390_su9091674
crossref_primary_10_1007_s10764_010_9464_9
crossref_primary_10_1111_1365_2656_12619
crossref_primary_10_1007_s11252_014_0381_0
crossref_primary_10_1111_ibi_13322
crossref_primary_10_1038_s41598_018_25704_1
crossref_primary_10_1186_s12889_020_08754_x
crossref_primary_10_1038_s41467_023_43729_7
crossref_primary_10_1002_ecs2_2832
crossref_primary_10_1007_s10980_014_9991_4
crossref_primary_10_1016_j_tree_2018_08_001
crossref_primary_10_1098_rspb_2015_0591
crossref_primary_10_1139_cjz_2013_0262
crossref_primary_10_1111_jvs_12112
crossref_primary_10_1126_science_aaz6970
crossref_primary_10_3390_s17102428
crossref_primary_10_1093_icesjms_fsx246
crossref_primary_10_3389_ffgc_2023_1082233
crossref_primary_10_1016_j_cropro_2019_104971
crossref_primary_10_2326_osj_12_117
crossref_primary_10_1111_oik_09720
crossref_primary_10_1007_s10980_024_01943_8
crossref_primary_10_1016_j_apgeog_2014_04_010
crossref_primary_10_1016_j_mambio_2015_11_005
crossref_primary_10_1071_WR22153
crossref_primary_10_1016_j_geoderma_2025_117223
crossref_primary_10_1371_journal_pone_0217840
crossref_primary_10_3389_fenvs_2022_954655
crossref_primary_10_1071_WR16108
crossref_primary_10_1111_jvs_12126
crossref_primary_10_1111_ecog_01393
crossref_primary_10_1007_s12403_019_00310_2
crossref_primary_10_1007_s00040_017_0582_7
crossref_primary_10_1371_journal_pone_0139936
crossref_primary_10_1111_jbi_12194
crossref_primary_10_1007_s10531_016_1103_0
crossref_primary_10_1016_j_psj_2021_101518
crossref_primary_10_1002_ecs2_2817
crossref_primary_10_1007_s10841_017_9957_3
crossref_primary_10_1007_s12237_018_0468_6
crossref_primary_10_1017_eds_2024_22
crossref_primary_10_1016_j_trf_2019_12_001
crossref_primary_10_1111_j_1558_5646_2012_01795_x
crossref_primary_10_1007_s13127_011_0058_y
crossref_primary_10_1016_j_apgeog_2016_07_012
crossref_primary_10_1007_s11434_014_0640_8
crossref_primary_10_1007_s10530_017_1567_1
crossref_primary_10_1371_journal_pone_0085640
crossref_primary_10_1186_2192_1709_1_3
crossref_primary_10_1289_EHP1943
crossref_primary_10_1093_jmammal_gyy003
crossref_primary_10_1371_journal_pone_0217854
crossref_primary_10_1111_j_2041_210x_2012_00253_x
crossref_primary_10_1016_j_foreco_2015_03_011
crossref_primary_10_1111_1365_2656_12607
crossref_primary_10_1111_geb_12274
crossref_primary_10_7717_peerj_2105
crossref_primary_10_1186_1476_072X_12_49
crossref_primary_10_1016_j_gecco_2021_e01848
crossref_primary_10_1093_jmammal_gyab088
crossref_primary_10_1016_j_actatropica_2016_06_015
crossref_primary_10_1002_ece3_6577
crossref_primary_10_1038_s41598_017_13130_8
crossref_primary_10_1016_j_biocon_2010_10_002
crossref_primary_10_1071_WF14024
crossref_primary_10_1080_00045608_2012_685048
crossref_primary_10_1111_geb_13191
crossref_primary_10_1098_rsbl_2010_1174
crossref_primary_10_1111_ecog_03592
crossref_primary_10_1038_s41598_018_22014_4
crossref_primary_10_3732_ajb_1300443
crossref_primary_10_1017_S0030605313000914
crossref_primary_10_1590_S1676_06032009000100006
crossref_primary_10_1007_s13364_018_0377_x
crossref_primary_10_1016_j_apgeog_2014_04_002
crossref_primary_10_1155_2014_424138
crossref_primary_10_1016_j_jasrep_2017_03_017
crossref_primary_10_1007_s10841_024_00571_6
crossref_primary_10_1371_journal_pone_0038007
crossref_primary_10_1016_j_marpolbul_2025_117776
crossref_primary_10_1111_1440_1703_12003
crossref_primary_10_1007_s10109_015_0215_5
crossref_primary_10_1111_jbi_13491
crossref_primary_10_1038_ncomms12793
crossref_primary_10_1086_678084
crossref_primary_10_1016_j_foreco_2023_121165
crossref_primary_10_1111_j_1600_0587_2008_05576_x
crossref_primary_10_1007_s10980_012_9834_0
crossref_primary_10_1111_brv_12256
crossref_primary_10_1636_P10_58_1
crossref_primary_10_1002_aqc_2969
crossref_primary_10_1007_s10342_016_0996_1
crossref_primary_10_1111_maec_12384
crossref_primary_10_1016_j_biocon_2020_108437
crossref_primary_10_1098_rsos_181269
crossref_primary_10_1016_j_ecoinf_2010_12_004
crossref_primary_10_1007_s11802_020_4120_2
crossref_primary_10_1890_14_0104_1
crossref_primary_10_1111_ecog_03137
crossref_primary_10_1111_jbi_14328
crossref_primary_10_3390_su10010194
crossref_primary_10_1007_s00442_016_3588_3
crossref_primary_10_1016_j_agee_2015_06_019
crossref_primary_10_1016_j_eiar_2018_04_006
crossref_primary_10_1017_S0376892910000494
crossref_primary_10_1016_j_scitotenv_2018_06_107
crossref_primary_10_1016_j_biocon_2019_01_019
crossref_primary_10_1007_s10336_015_1285_3
crossref_primary_10_1111_ddi_12835
crossref_primary_10_1002_ecs2_1927
crossref_primary_10_1111_ddi_12839
crossref_primary_10_1016_j_cities_2019_102444
crossref_primary_10_1038_s42003_018_0260_y
crossref_primary_10_1016_j_biocon_2016_05_029
crossref_primary_10_1016_j_ecoleng_2022_106688
crossref_primary_10_1016_j_healthplace_2018_05_002
crossref_primary_10_3390_ijgi6120397
crossref_primary_10_1007_s43388_023_00143_3
crossref_primary_10_3389_fvets_2020_00339
crossref_primary_10_1186_1476_072X_12_43
crossref_primary_10_1111_geb_13165
crossref_primary_10_3390_land12040863
crossref_primary_10_1007_s10531_016_1096_8
crossref_primary_10_1371_journal_pone_0052574
crossref_primary_10_1111_j_1469_1795_2011_00474_x
crossref_primary_10_1111_j_1466_8238_2011_00728_x
crossref_primary_10_1163_156853812X643710
crossref_primary_10_1002_ecs2_1912
crossref_primary_10_1111_ecog_00566
crossref_primary_10_3390_insects14010007
crossref_primary_10_1007_s10980_014_0063_6
crossref_primary_10_2980_16_1_3185
crossref_primary_10_3389_ffgc_2022_962816
crossref_primary_10_3354_meps12822
crossref_primary_10_1002_ece3_1123
crossref_primary_10_1002_ece3_4635
crossref_primary_10_1007_s10641_020_01047_7
crossref_primary_10_1111_j_1472_4642_2011_00793_x
crossref_primary_10_1007_s11629_022_7867_7
crossref_primary_10_1016_j_ecolind_2019_105670
crossref_primary_10_1111_j_1600_0587_2008_05755_x
crossref_primary_10_1603_EN11256
crossref_primary_10_1007_s10533_010_9547_x
crossref_primary_10_1111_j_1365_294X_2011_05137_x
crossref_primary_10_3390_su16177371
crossref_primary_10_1002_ajp_23157
crossref_primary_10_12677_OJNS_2019_72011
crossref_primary_10_1371_journal_pone_0192887
crossref_primary_10_1371_journal_pone_0041444
crossref_primary_10_1007_s10940_021_09538_1
crossref_primary_10_1111_avsc_12252
crossref_primary_10_1007_s40823_024_00104_6
crossref_primary_10_1111_j_1600_0587_2009_05785_x
crossref_primary_10_1016_j_ecoinf_2015_05_012
crossref_primary_10_1016_j_biocon_2017_12_039
crossref_primary_10_1111_gcb_15637
crossref_primary_10_1016_j_marenvres_2018_06_015
crossref_primary_10_1016_j_ecss_2016_08_050
crossref_primary_10_1093_aob_mcac129
crossref_primary_10_1126_science_aax8591
crossref_primary_10_1111_gcb_12123
crossref_primary_10_1038_s41598_018_27591_y
crossref_primary_10_1016_j_ecolind_2021_108452
crossref_primary_10_1111_j_1523_1739_2008_01156_x
crossref_primary_10_1111_jbi_12108
crossref_primary_10_1016_j_palaeo_2011_07_021
crossref_primary_10_3354_meps10624
crossref_primary_10_1111_j_1466_8238_2011_00661_x
crossref_primary_10_1016_j_foreco_2021_119983
crossref_primary_10_1016_j_scitotenv_2020_141006
crossref_primary_10_1017_S1755267213000936
crossref_primary_10_1890_07_1772_1
crossref_primary_10_1002_ece3_4655
crossref_primary_10_1071_ZO17051
crossref_primary_10_1098_rsos_181100
crossref_primary_10_1080_11263504_2012_740083
crossref_primary_10_1111_1365_2656_12313
crossref_primary_10_1111_j_1600_0706_2012_20418_x
crossref_primary_10_1093_jmammal_gyz161
crossref_primary_10_1111_bor_12219
crossref_primary_10_1111_2041_210X_14420
crossref_primary_10_1016_j_scitotenv_2025_178904
crossref_primary_10_1093_sysbio_syr084
crossref_primary_10_1007_s10980_013_9888_7
crossref_primary_10_1016_j_chemosphere_2019_05_058
crossref_primary_10_1007_s10980_020_01091_9
crossref_primary_10_1126_sciadv_adf5492
crossref_primary_10_1111_gcb_12598
crossref_primary_10_1017_S003118201800118X
crossref_primary_10_1016_j_cities_2022_103600
crossref_primary_10_1088_1748_9326_abbbaf
crossref_primary_10_1111_1365_2745_13232
crossref_primary_10_1111_2041_210X_13107
crossref_primary_10_1139_X07_226
crossref_primary_10_1093_jmammal_gyz170
crossref_primary_10_1016_j_actao_2014_10_005
crossref_primary_10_1656_045_020_0419
crossref_primary_10_1080_00063657_2016_1180503
crossref_primary_10_1007_s10530_020_02206_8
crossref_primary_10_1890_14_0183_1
crossref_primary_10_1002_ece3_1162
crossref_primary_10_1016_j_biocon_2017_04_013
crossref_primary_10_1016_j_rhisph_2025_101041
crossref_primary_10_1111_ecog_03636
crossref_primary_10_1016_j_agee_2016_01_051
crossref_primary_10_1007_s10682_020_10089_3
crossref_primary_10_1111_j_1095_8312_2010_01394_x
crossref_primary_10_1111_geb_12705
crossref_primary_10_1016_j_flora_2019_151465
crossref_primary_10_1111_aec_12556
crossref_primary_10_1111_ecog_04960
crossref_primary_10_1111_jvs_12028
crossref_primary_10_1016_j_agrformet_2012_03_002
crossref_primary_10_1098_rspb_2011_2705
crossref_primary_10_1007_s10980_017_0499_6
crossref_primary_10_1016_j_landurbplan_2022_104568
crossref_primary_10_1890_11_1183_1
crossref_primary_10_1111_2041_210X_13594
crossref_primary_10_1371_journal_pone_0097036
crossref_primary_10_1007_s11252_011_0202_7
crossref_primary_10_1007_s10708_014_9525_2
crossref_primary_10_1057_s41267_018_0153_9
crossref_primary_10_1111_j_1472_4642_2009_00557_x
crossref_primary_10_1038_s42003_022_03573_9
crossref_primary_10_1111_ddi_12770
crossref_primary_10_1080_13658816_2010_518147
crossref_primary_10_3354_meps11925
crossref_primary_10_1007_s10530_022_02849_9
crossref_primary_10_1590_1678_4685_gmb_2017_0031
crossref_primary_10_1002_aqc_4064
crossref_primary_10_2981_12_038
crossref_primary_10_1111_jbi_12563
crossref_primary_10_1111_1365_2745_13255
crossref_primary_10_1093_icesjms_fsae006
crossref_primary_10_1016_j_indic_2024_100474
crossref_primary_10_7717_peerj_14291
crossref_primary_10_1007_s10531_021_02338_w
crossref_primary_10_1016_j_vetpar_2014_12_016
crossref_primary_10_1111_ddi_12782
crossref_primary_10_1186_1750_0680_9_2
crossref_primary_10_1002_ajp_22278
crossref_primary_10_1071_SR16186
crossref_primary_10_2981_12_040
crossref_primary_10_1007_s10980_017_0566_z
crossref_primary_10_1016_j_ufug_2015_09_002
crossref_primary_10_1016_j_gecco_2019_e00562
crossref_primary_10_1590_bjb_2014_0088
crossref_primary_10_1007_s10980_013_9942_5
crossref_primary_10_1111_ecog_03655
crossref_primary_10_1111_jvs_12045
crossref_primary_10_1016_j_agee_2016_01_036
crossref_primary_10_1038_s42003_024_07239_6
crossref_primary_10_1111_j_1600_048X_2013_00250_x
crossref_primary_10_1111_j_1365_2745_2011_01902_x
crossref_primary_10_1111_j_1600_0706_2011_19739_x
crossref_primary_10_3389_fenvs_2022_963960
crossref_primary_10_1007_s11284_013_1051_z
crossref_primary_10_1071_MF19272
crossref_primary_10_1111_1365_2664_70017
crossref_primary_10_1016_j_biocon_2014_04_025
crossref_primary_10_3390_land12030549
crossref_primary_10_3390_f9010007
crossref_primary_10_1007_s10336_015_1281_7
crossref_primary_10_1007_s10336_008_0295_9
crossref_primary_10_1111_j_1466_8238_2009_00521_x
crossref_primary_10_1016_j_apgeog_2019_102100
crossref_primary_10_1111_j_1365_2699_2009_02174_x
crossref_primary_10_1016_j_apenergy_2017_03_038
crossref_primary_10_1080_01431161_2025_2464958
crossref_primary_10_1007_s11252_012_0280_1
crossref_primary_10_1371_journal_pone_0065464
crossref_primary_10_1371_journal_pone_0122981
crossref_primary_10_1016_j_foreco_2021_119544
crossref_primary_10_1111_1365_2745_13275
crossref_primary_10_1007_s10584_014_1202_4
crossref_primary_10_1007_s11802_025_5965_1
crossref_primary_10_1002_ajp_22282
crossref_primary_10_1111_2041_210X_14476
crossref_primary_10_1007_s40011_015_0498_9
crossref_primary_10_1111_2041_210X_13142
crossref_primary_10_1111_j_1600_0587_2010_06433_x
crossref_primary_10_1111_j_1439_0418_2010_01598_x
crossref_primary_10_1111_j_1600_0587_2012_00227_x
crossref_primary_10_1016_j_ecolind_2024_112131
crossref_primary_10_1016_j_ecss_2024_109106
crossref_primary_10_3897_neobiota_38_23518
crossref_primary_10_1007_s10841_017_9983_1
crossref_primary_10_1007_s10841_020_00258_8
crossref_primary_10_1086_725016
crossref_primary_10_1111_j_1461_0248_2008_01270_x
crossref_primary_10_1007_s10342_017_1047_2
crossref_primary_10_1111_1365_2664_13472
crossref_primary_10_1109_ACCESS_2017_2766092
crossref_primary_10_1016_j_aspen_2015_03_008
crossref_primary_10_1111_2041_210X_13957
crossref_primary_10_1016_j_flora_2010_11_003
crossref_primary_10_1016_j_sajb_2013_06_004
crossref_primary_10_1080_15568318_2017_1422301
crossref_primary_10_1371_journal_pone_0316946
crossref_primary_10_1002_ece3_3709
crossref_primary_10_1111_icad_12484
crossref_primary_10_1002_ecy_2190
crossref_primary_10_3389_fevo_2021_658713
crossref_primary_10_1016_j_foreco_2017_03_030
crossref_primary_10_1080_01431161_2017_1320450
crossref_primary_10_1111_j_1461_0248_2008_01217_x
crossref_primary_10_1007_s10021_021_00685_x
crossref_primary_10_1111_1365_2435_12283
crossref_primary_10_1111_jbi_12516
crossref_primary_10_1643_CG_18_171
crossref_primary_10_1016_j_ssmph_2018_100340
crossref_primary_10_1016_j_scitotenv_2018_02_026
crossref_primary_10_1111_ecog_07104
crossref_primary_10_1111_j_1600_0587_2011_07181_x
crossref_primary_10_1016_j_agee_2021_107457
crossref_primary_10_3389_fevo_2021_681959
crossref_primary_10_1111_j_1600_0587_2010_06264_x
crossref_primary_10_1111_j_1600_0587_2013_00279_x
crossref_primary_10_1111_geb_12726
crossref_primary_10_3390_ijgi9070414
crossref_primary_10_1002_ajp_22233
crossref_primary_10_1016_j_ecolmodel_2016_03_012
crossref_primary_10_1111_mve_12738
crossref_primary_10_1139_cjfr_2013_0089
crossref_primary_10_1670_10_033_1
crossref_primary_10_1111_j_1365_2486_2012_02679_x
crossref_primary_10_1016_j_biocon_2017_10_029
crossref_primary_10_1016_j_landusepol_2017_11_007
crossref_primary_10_1111_ele_13330
crossref_primary_10_1017_S1742170517000758
crossref_primary_10_1111_ecog_06289
crossref_primary_10_1186_s40064_016_3052_1
crossref_primary_10_1111_2041_210X_12645
crossref_primary_10_1111_ecog_06287
crossref_primary_10_1016_j_palaeo_2019_04_028
crossref_primary_10_17208_jkpa_2018_12_53_7_49
crossref_primary_10_1371_journal_pcbi_1010033
crossref_primary_10_1002_ps_7558
crossref_primary_10_1098_rstb_2013_0194
crossref_primary_10_1007_s11104_016_2957_3
crossref_primary_10_1371_journal_pntd_0006105
crossref_primary_10_1007_s10531_017_1299_7
crossref_primary_10_1111_gcb_15227
crossref_primary_10_1016_j_agee_2020_107145
crossref_primary_10_1016_j_marpol_2019_103703
crossref_primary_10_1016_j_actao_2011_03_002
crossref_primary_10_1002_ece3_5913
crossref_primary_10_1016_j_rse_2023_113591
crossref_primary_10_3417_2008034
crossref_primary_10_1111_j_0906_7590_2008_05206_x
crossref_primary_10_1016_j_isci_2024_110824
crossref_primary_10_1111_cobi_12669
crossref_primary_10_1111_j_1365_2486_2011_02462_x
crossref_primary_10_1016_j_foreco_2015_09_001
crossref_primary_10_1016_j_ecoinf_2022_101914
crossref_primary_10_1111_1365_2656_12372
crossref_primary_10_1111_jav_01063
crossref_primary_10_1089_ham_2018_0130
crossref_primary_10_1111_jbi_13811
crossref_primary_10_1371_journal_pone_0197720
crossref_primary_10_1007_s10342_011_0509_1
crossref_primary_10_1080_00036846_2017_1409421
crossref_primary_10_1017_S095927091800028X
crossref_primary_10_1016_j_csda_2020_107152
crossref_primary_10_1038_s41467_023_42475_0
crossref_primary_10_1111_1365_2664_12588
crossref_primary_10_1016_j_biocon_2017_02_009
crossref_primary_10_1111_mms_12882
crossref_primary_10_1016_j_marenvres_2015_08_005
crossref_primary_10_1111_j_1466_8238_2010_00573_x
crossref_primary_10_3389_fvets_2019_00066
crossref_primary_10_1007_s10531_011_0096_y
crossref_primary_10_1371_journal_pone_0114037
crossref_primary_10_1088_1748_9326_aca6ff
crossref_primary_10_1371_journal_pone_0303250
crossref_primary_10_1007_s10344_011_0492_3
crossref_primary_10_1111_jbi_12953
crossref_primary_10_3390_su16198298
crossref_primary_10_1111_j_1600_0587_2010_06584_x
crossref_primary_10_1016_j_fecs_2024_100223
crossref_primary_10_1111_jbi_12959
crossref_primary_10_1007_s13524_018_0708_1
crossref_primary_10_1371_journal_pone_0081541
crossref_primary_10_1080_10106049_2015_1004129
crossref_primary_10_1111_j_1466_8238_2009_00489_x
crossref_primary_10_1371_journal_pone_0065039
crossref_primary_10_1002_ece3_4607
crossref_primary_10_1007_s10393_015_1013_8
crossref_primary_10_1371_journal_pone_0129995
crossref_primary_10_3390_en18010014
crossref_primary_10_1007_s10980_023_01755_2
crossref_primary_10_1098_rsbl_2020_0620
crossref_primary_10_1016_j_agee_2017_06_043
crossref_primary_10_1007_s10531_020_02094_3
crossref_primary_10_1016_j_ecss_2016_04_005
crossref_primary_10_1007_s00114_013_1039_0
crossref_primary_10_1071_MU14030
crossref_primary_10_1371_journal_pone_0297038
crossref_primary_10_1371_journal_pone_0299217
crossref_primary_10_1371_journal_pone_0139344
crossref_primary_10_1016_j_ecoinf_2024_102559
crossref_primary_10_1007_s10393_010_0281_6
crossref_primary_10_1007_s10530_011_9982_1
crossref_primary_10_1111_icad_12025
crossref_primary_10_1111_2041_210X_12203
crossref_primary_10_1007_s10539_017_9594_y
crossref_primary_10_1007_s10980_024_01896_y
crossref_primary_10_1016_j_gecco_2022_e02313
crossref_primary_10_1007_s10841_018_0073_9
crossref_primary_10_1007_s11284_013_1077_2
crossref_primary_10_1073_pnas_1011728108
crossref_primary_10_1111_ddi_12381
crossref_primary_10_1016_j_agee_2018_06_014
crossref_primary_10_1186_1742_9994_10_9
crossref_primary_10_3161_150811014X687350
crossref_primary_10_1109_TGRS_2020_2989216
crossref_primary_10_1111_j_1365_3180_2009_00758_x
crossref_primary_10_1007_s10113_020_01657_y
crossref_primary_10_1007_s10531_016_1167_x
crossref_primary_10_1007_s10980_014_0117_9
crossref_primary_10_1111_j_1365_2664_2009_01642_x
crossref_primary_10_1016_j_agee_2020_107189
crossref_primary_10_1111_j_1466_8238_2008_00433_x
crossref_primary_10_1016_j_seares_2014_03_008
crossref_primary_10_1038_s41559_019_0972_5
crossref_primary_10_1111_ele_12452
crossref_primary_10_1111_j_1365_2699_2008_01901_x
crossref_primary_10_1016_j_annals_2020_102937
crossref_primary_10_1016_j_envadv_2022_100234
crossref_primary_10_1890_12_1595_1
crossref_primary_10_1016_j_sste_2020_100342
crossref_primary_10_1016_j_ufug_2023_128038
crossref_primary_10_1111_j_1365_2699_2009_02117_x
crossref_primary_10_1007_s11258_016_0641_6
crossref_primary_10_1016_j_vetpar_2022_109806
crossref_primary_10_1016_j_foreco_2020_117936
crossref_primary_10_1080_00218839_2022_2152219
crossref_primary_10_3161_000164512X653917
crossref_primary_10_3390_f14102076
crossref_primary_10_1007_s13253_020_00424_0
crossref_primary_10_1016_j_agee_2016_03_014
crossref_primary_10_1002_ece3_70348
crossref_primary_10_1007_s00442_011_2045_6
crossref_primary_10_1371_journal_pone_0102127
crossref_primary_10_1111_icad_12525
crossref_primary_10_1111_ecog_04122
crossref_primary_10_1371_journal_pone_0172464
crossref_primary_10_1111_1365_2664_13072
crossref_primary_10_1002_ecm_1550
crossref_primary_10_1111_geb_12343
crossref_primary_10_1016_j_envsoft_2016_02_004
crossref_primary_10_1111_ecog_01092
crossref_primary_10_1098_rsos_180706
crossref_primary_10_1038_s43247_024_01664_5
crossref_primary_10_1038_nature09329
crossref_primary_10_1007_s10336_012_0819_1
crossref_primary_10_1016_j_ufug_2023_127914
crossref_primary_10_1111_ddi_12296
crossref_primary_10_1111_geb_12337
crossref_primary_10_1038_s41467_021_27373_7
crossref_primary_10_1007_s10764_014_9784_2
crossref_primary_10_15187_adr_2024_05_37_2_121
crossref_primary_10_1016_j_ufug_2023_127919
crossref_primary_10_1002_ldr_3604
crossref_primary_10_1016_j_dsr_2016_07_006
crossref_primary_10_1890_ES15_00085_1
crossref_primary_10_1007_s10592_016_0875_9
crossref_primary_10_3354_meps12376
crossref_primary_10_3390_su12030997
crossref_primary_10_1016_j_scitotenv_2016_05_099
crossref_primary_10_1002_sim_9395
crossref_primary_10_1007_s10750_023_05205_7
crossref_primary_10_1080_03067319_2020_1858069
crossref_primary_10_1016_j_biocon_2018_01_024
crossref_primary_10_1111_mec_13152
crossref_primary_10_1007_s42991_024_00425_3
crossref_primary_10_1016_j_pocean_2024_103355
crossref_primary_10_1007_s10531_022_02413_w
crossref_primary_10_1111_1365_2656_14056
crossref_primary_10_1111_j_1365_2699_2011_02524_x
crossref_primary_10_3390_ijgi8040199
crossref_primary_10_3354_meps13698
crossref_primary_10_1111_j_1474_919X_2010_01016_x
crossref_primary_10_3390_land11101745
crossref_primary_10_3390_d10030072
crossref_primary_10_1016_j_ecoinf_2023_102222
crossref_primary_10_7717_peerj_3164
crossref_primary_10_1038_s41586_024_07778_2
crossref_primary_10_1590_S1415_47572013000400002
crossref_primary_10_1007_s10530_013_0596_7
crossref_primary_10_1111_j_1600_0587_2010_06273_x
crossref_primary_10_1111_j_1600_0587_2012_07669_x
crossref_primary_10_1093_braincomms_fcaa122
crossref_primary_10_1002_ldr_4919
crossref_primary_10_1007_s11252_014_0349_0
crossref_primary_10_1007_s13157_015_0682_y
crossref_primary_10_1007_s00442_008_1244_2
crossref_primary_10_1016_j_ecolind_2018_04_022
crossref_primary_10_1080_07853890_2022_2105391
crossref_primary_10_1016_j_foreco_2024_122048
crossref_primary_10_1016_j_flora_2021_151966
crossref_primary_10_1016_j_fishres_2018_11_020
crossref_primary_10_1016_j_compag_2022_107164
crossref_primary_10_1111_j_1600_0587_2009_05800_x
crossref_primary_10_1371_journal_pone_0308560
crossref_primary_10_1111_acv_12678
crossref_primary_10_5194_hess_24_5279_2020
crossref_primary_10_1038_s41598_020_67980_w
crossref_primary_10_1111_1365_2664_13069
crossref_primary_10_3389_fpsyg_2017_00433
crossref_primary_10_1111_cobi_13912
crossref_primary_10_1111_1365_2435_12752
crossref_primary_10_1111_j_1654_1103_2011_01294_x
crossref_primary_10_1179_204234811X591046
crossref_primary_10_1017_S095927092100023X
crossref_primary_10_1016_j_ufug_2022_127609
crossref_primary_10_1111_1440_1703_12191
crossref_primary_10_1111_btp_13063
crossref_primary_10_1080_13658816_2011_642799
crossref_primary_10_4018_jagr_2013070103
crossref_primary_10_1890_14_0036_1
crossref_primary_10_1111_acv_12206
crossref_primary_10_1111_j_1600_0587_2013_00368_x
crossref_primary_10_1016_j_baae_2021_11_008
crossref_primary_10_1080_00045608_2014_892321
crossref_primary_10_1002_aqc_3542
crossref_primary_10_1007_s10530_016_1314_z
crossref_primary_10_1890_10_0322_1
crossref_primary_10_3390_land11091438
crossref_primary_10_1016_j_ocecoaman_2021_105555
crossref_primary_10_1002_ece3_2939
crossref_primary_10_1111_j_1654_109X_2012_01210_x
crossref_primary_10_1016_j_jenvman_2022_117108
crossref_primary_10_1016_j_ijintrel_2021_07_010
crossref_primary_10_1111_1365_2664_14365
crossref_primary_10_1111_j_1472_4642_2009_00561_x
crossref_primary_10_1080_19475683_2012_668558
crossref_primary_10_1002_ece3_7391
crossref_primary_10_5194_nhess_15_45_2015
crossref_primary_10_1007_s10531_011_0159_0
crossref_primary_10_1111_btp_13054
crossref_primary_10_1002_ece3_1610
crossref_primary_10_1111_j_1600_0587_2013_00564_x
crossref_primary_10_1098_rsos_150017
crossref_primary_10_1111_geb_12377
crossref_primary_10_1111_geb_12374
crossref_primary_10_1371_journal_pone_0149662
crossref_primary_10_1016_j_ejsobi_2011_01_003
crossref_primary_10_3389_fmicb_2017_01731
crossref_primary_10_1002_ece3_6077
crossref_primary_10_1177_0309133312442522
crossref_primary_10_1007_s11252_013_0333_0
crossref_primary_10_1007_s10531_016_1222_7
crossref_primary_10_1002_jwmg_21530
crossref_primary_10_1016_j_ecolind_2016_10_006
crossref_primary_10_1007_s11104_020_04796_7
crossref_primary_10_1016_j_landusepol_2017_04_011
crossref_primary_10_1111_j_1600_0587_2013_00346_x
crossref_primary_10_1111_jbi_14298
crossref_primary_10_32800_abc_2024_47_0089
crossref_primary_10_1016_j_scitotenv_2020_144166
crossref_primary_10_24072_pci_ecology_100536
crossref_primary_10_1016_j_jspi_2020_04_001
crossref_primary_10_1890_12_2081_1
crossref_primary_10_1007_s10661_023_11004_3
crossref_primary_10_1007_s10344_014_0826_z
crossref_primary_10_1016_j_scitotenv_2014_06_101
crossref_primary_10_3390_safety6020025
crossref_primary_10_1016_j_ufug_2017_08_014
crossref_primary_10_1111_j_1600_0587_2011_06949_x
crossref_primary_10_1016_j_biocon_2014_10_019
crossref_primary_10_1111_j_1466_8238_2010_00604_x
crossref_primary_10_1007_s11676_024_01695_w
crossref_primary_10_1016_j_apgeog_2012_10_012
crossref_primary_10_1007_s10694_020_01037_2
crossref_primary_10_1016_j_ecolind_2014_11_009
crossref_primary_10_1002_ece3_8270
crossref_primary_10_1126_science_1249853
crossref_primary_10_1016_j_ufug_2022_127601
crossref_primary_10_1016_j_baae_2009_11_006
crossref_primary_10_1098_rsbl_2009_0688
crossref_primary_10_1016_j_biocon_2015_01_002
crossref_primary_10_1016_j_mex_2019_09_035
crossref_primary_10_1038_ncomms8379
crossref_primary_10_1111_1365_2745_13624
crossref_primary_10_1016_j_envsoft_2013_02_005
crossref_primary_10_1890_10_0602_1
crossref_primary_10_1086_682688
crossref_primary_10_1007_s10877_019_00277_0
crossref_primary_10_1016_j_apsoil_2021_104260
crossref_primary_10_1016_j_jnc_2017_06_004
crossref_primary_10_1007_s00114_013_1069_7
crossref_primary_10_1111_j_1472_4642_2011_00797_x
crossref_primary_10_1007_s00484_011_0434_5
crossref_primary_10_1007_s13364_018_0378_9
crossref_primary_10_1139_facets_2020_0018
crossref_primary_10_1016_j_ecolmodel_2014_04_024
crossref_primary_10_1155_2011_967631
crossref_primary_10_1111_j_1365_2664_2010_01921_x
crossref_primary_10_1016_j_ecolind_2018_04_080
crossref_primary_10_1007_s10682_020_10094_6
crossref_primary_10_1016_j_biocon_2017_08_001
crossref_primary_10_1016_j_eti_2023_103177
crossref_primary_10_1016_j_gecco_2024_e03310
crossref_primary_10_1111_jbi_14268
crossref_primary_10_1007_s10980_018_0757_2
crossref_primary_10_32800_abc_2024_7_0089
crossref_primary_10_1016_j_ecoinf_2015_07_001
crossref_primary_10_3390_ijerph19095107
crossref_primary_10_1007_s13355_011_0034_1
crossref_primary_10_1007_s10336_011_0784_0
crossref_primary_10_1002_ecs2_2707
crossref_primary_10_1111_gcb_14821
crossref_primary_10_1111_gean_12156
crossref_primary_10_21105_joss_06158
crossref_primary_10_1016_j_lanwpc_2022_100451
crossref_primary_10_3390_biology10070676
crossref_primary_10_3390_f8030059
crossref_primary_10_1016_j_jclepro_2018_01_088
crossref_primary_10_1890_12_1645_1
crossref_primary_10_1016_j_pocean_2012_11_002
crossref_primary_10_1016_j_psychres_2020_112790
crossref_primary_10_1016_j_aei_2024_102451
crossref_primary_10_1186_s12889_018_5087_4
crossref_primary_10_1007_s11258_023_01353_x
crossref_primary_10_1111_j_1752_4598_2011_00138_x
crossref_primary_10_1016_j_gecco_2020_e01239
crossref_primary_10_1016_j_biocon_2017_06_035
crossref_primary_10_1371_journal_pone_0190643
crossref_primary_10_1016_j_actao_2014_12_003
crossref_primary_10_1016_j_ecolind_2021_107992
crossref_primary_10_1657_AAAR0013_108
crossref_primary_10_1007_s12145_024_01387_3
crossref_primary_10_2989_00306525_2018_1544175
crossref_primary_10_1016_j_sste_2014_10_002
crossref_primary_10_1002_wcc_291
crossref_primary_10_1007_s10584_019_02583_7
crossref_primary_10_1007_s00382_020_05319_x
crossref_primary_10_1016_j_ecolmodel_2022_110011
crossref_primary_10_1111_ecog_04530
crossref_primary_10_1016_j_ecolind_2024_112928
crossref_primary_10_1111_jbi_12060
crossref_primary_10_1007_s10646_015_1569_7
crossref_primary_10_1016_j_foreco_2010_10_024
crossref_primary_10_1111_boj_12362
crossref_primary_10_1007_s10750_008_9493_y
crossref_primary_10_1111_mms_12492
crossref_primary_10_1016_j_ecolmodel_2022_110013
crossref_primary_10_3390_ijerph15112578
crossref_primary_10_1016_j_ecolmodel_2012_01_021
crossref_primary_10_1186_s40462_019_0175_3
crossref_primary_10_1016_j_apgeog_2014_11_025
crossref_primary_10_1002_ece3_7784
crossref_primary_10_1111_j_1442_9993_2012_02401_x
crossref_primary_10_1016_j_ecolind_2015_06_033
crossref_primary_10_1111_ecog_05410
crossref_primary_10_1111_jvs_12421
crossref_primary_10_1007_s11160_024_09863_1
crossref_primary_10_3390_f15071261
crossref_primary_10_1146_annurev_ento_031616_035444
crossref_primary_10_5253_arde_v107i2_a1
crossref_primary_10_1600_036364420X16033962925312
crossref_primary_10_1002_wcc_271
crossref_primary_10_1111_j_1466_8238_2009_00481_x
crossref_primary_10_5194_bg_6_1577_2009
crossref_primary_10_1016_j_biocon_2011_12_006
crossref_primary_10_1111_jbi_14219
crossref_primary_10_1186_s13071_024_06280_y
crossref_primary_10_1111_ecog_05403
crossref_primary_10_3390_f14122458
crossref_primary_10_1007_s10531_021_02284_7
crossref_primary_10_31857_S0032180X22100380
crossref_primary_10_1093_biolinnean_blaa190
crossref_primary_10_3390_su9050819
crossref_primary_10_1134_S1064229322602384
crossref_primary_10_1111_fog_12011
crossref_primary_10_1016_j_marpolbul_2015_06_041
crossref_primary_10_1016_j_foreco_2023_121286
crossref_primary_10_3390_f10020108
crossref_primary_10_1007_s11356_009_0219_0
crossref_primary_10_1016_j_agee_2011_08_012
crossref_primary_10_1002_ece3_8650
crossref_primary_10_3389_fbioe_2020_00598
crossref_primary_10_1073_pnas_2300981120
crossref_primary_10_1017_S0266467416000559
crossref_primary_10_1002_ece3_9503
crossref_primary_10_1007_s10530_021_02522_7
crossref_primary_10_3390_agronomy12092095
crossref_primary_10_1038_s41598_019_45713_y
crossref_primary_10_1016_j_ecolind_2015_04_007
crossref_primary_10_1002_ecs2_4094
crossref_primary_10_1111_aje_13121
crossref_primary_10_1111_j_1439_0469_2012_00658_x
crossref_primary_10_1016_j_gecco_2014_11_016
crossref_primary_10_1111_geb_13299
crossref_primary_10_1371_journal_pone_0019653
crossref_primary_10_1111_geb_13297
crossref_primary_10_3390_w13101345
crossref_primary_10_1016_j_palaeo_2017_12_004
crossref_primary_10_1016_j_spasta_2018_04_006
crossref_primary_10_1111_j_1600_048X_2012_05743_x
crossref_primary_10_3389_fmars_2018_00016
crossref_primary_10_1098_rspb_2018_1101
crossref_primary_10_1007_s11284_015_1329_4
crossref_primary_10_1007_s12526_015_0371_3
crossref_primary_10_1007_s10531_012_0376_1
crossref_primary_10_1016_j_envsoft_2014_12_010
crossref_primary_10_3390_rs12050836
crossref_primary_10_1016_j_scitotenv_2020_144552
crossref_primary_10_1111_jbi_13355
crossref_primary_10_2981_wlb_00284
crossref_primary_10_1016_j_ecolind_2024_112966
crossref_primary_10_1371_journal_pntd_0003545
crossref_primary_10_1007_s10336_013_0955_2
crossref_primary_10_1080_17583004_2017_1309204
Cites_doi 10.1007/s00477-007-0117-2
10.1046/j.1365-2664.1999.00436.x
10.1111/j.1600-0587.2001.tb00494.x
10.1111/j.1469-8137.2006.01811.x
10.1111/j.1466-8238.2006.00279.x
10.1007/s10980-006-9058-2
10.2307/3109759
10.1098/rsta.2003.1263
10.1023/A:1021302930424
10.1111/j.1466-822X.2004.00129.x
10.1016/S0006-3207(00)00074-4
10.1002/(SICI)1099-095X(199803/04)9:2<175::AID-ENV294>3.0.CO;2-2
10.1890/0012-9615(2002)072[0445:SAAAMI]2.0.CO;2
10.1016/S0378-1127(00)00490-4
10.1007/978-1-4419-0318-1
10.1111/j.1365-2699.2006.01509.x
10.1111/j.0906-7590.2007.05117.x
10.1890/1051-0761(2003)13[1069:DPMTPA]2.0.CO;2
10.1093/biomet/73.1.13
10.1890/03-5247
10.1111/j.1574-0862.2002.tb00120.x
10.1016/j.ecolmodel.2007.04.024
10.1016/j.ecolmodel.2006.02.015
10.2307/2532950
10.2307/2532039
10.1111/j.1472-4642.2006.00293.x
10.1201/9781420010404
10.1016/S0304-3800(00)00354-9
10.1023/A:1026001008598
10.1098/rspb.2006.3551
10.1111/j.1466-822X.2006.00237.x
10.1016/j.ecolmodel.2006.12.012
10.1034/j.1600-0587.2002.250508.x
10.2307/3236222
10.1002/9781119115151
10.1034/j.1600-0587.2002.250507.x
10.1016/j.ecolmodel.2005.09.007
10.2307/1400634
10.1111/j.1466-8238.2007.00334.x
10.1111/j.1472-4642.2007.00344.x
10.1111/j.1466-822X.2005.00147.x
10.1017/CBO9780511754944
10.1579/0044-7447-32.8.568
10.2307/2290687
10.1111/j.2517-6161.1974.tb00999.x
10.2307/3236071
10.1289/ehp.6052
10.2307/2997753
10.1007/PL00011451
10.1111/j.1538-4632.1996.tb00936.x
10.2193/0022-541X(2005)069[0933:MPOBFR]2.0.CO;2
10.1111/j.1472-4642.2004.00054.x
10.2307/2404755
10.1111/j.1466-822X.2004.00097.x
10.1111/j.1461-0248.2005.00792.x
10.1111/j.1600-0587.2000.tb00265.x
10.1111/j.1365-2664.2006.01162.x
10.2307/2685208
10.2307/1400400
10.1111/j.1095-8312.1978.tb00013.x
10.1126/science.1131758
10.1034/j.1600-0587.2002.250505.x
10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
10.1016/j.ecolmodel.2003.09.039
10.1007/978-1-4899-3242-6
10.2307/143141
10.1007/978-94-015-7799-1
10.1016/j.baae.2006.11.001
10.1046/j.1365-2664.2001.00604.x
10.1016/S0024-3795(00)00031-8
10.1046/j.1466-822X.2003.00042.x
10.1016/0377-0427(96)00018-0
10.1023/A:1018505924603
10.1111/j.2006.0906-7590.04596.x
10.1017/CBO9780511542039
10.1111/j.0906-7590.2004.03732.x
10.1007/BF00116466
10.1016/S0378-3758(03)00111-3
10.1111/j.1558-5646.1998.tb02006.x
10.1068/a310165
10.1016/j.ecolmodel.2007.05.002
10.1890/04-0609
10.1002/0471662682
10.1034/j.1600-0587.2002.250509.x
10.1111/j.1365-2699.2004.01076.x
10.1111/j.1365-2699.2005.01379.x
10.1023/A:1009601932481
10.1126/science.1113399
10.2307/1939924
10.1038/nature03850
10.2307/1942661
10.1093/biostatistics/4.1.11
10.1111/j.1095-8312.1978.tb00014.x
10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2
10.1007/978-0-387-21706-2
10.1046/j.1466-822X.2003.00322.x
10.2307/2532625
10.1126/science.1072779
10.1007/BF00048036
10.1644/1545-1542(2003)084<1356:HPOFAM>2.0.CO;2
10.1016/S0304-3800(01)00501-4
10.1111/j.1467-9876.2005.00466.x
10.1198/1085711031508
ContentType Journal Article
Copyright Copyright 2007 Ecography
2008 INIST-CNRS
Copyright_xml – notice: Copyright 2007 Ecography
– notice: 2008 INIST-CNRS
DBID FBQ
BSCLL
AAYXX
CITATION
IQODW
7SN
C1K
7S9
L.6
DOI 10.1111/j.2007.0906-7590.05171.x
DatabaseName AGRIS
Istex
CrossRef
Pascal-Francis
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Ecology Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

Ecology Abstracts
AGRICOLA

CrossRef
Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
Environmental Sciences
EISSN 1600-0587
EndPage 628
ExternalDocumentID 19282725
10_1111_j_2007_0906_7590_05171_x
ECOG5171
30244511
ark_67375_WNG_C8K441N1_2
US201300825367
Genre article
GroupedDBID .3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
24P
29G
2AX
2~F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHKG
AAONW
AAXTN
AAZKR
ABBHK
ABCQN
ABCUV
ABEML
ABHUG
ABPLY
ABPTK
ABPVW
ABTAH
ABTLG
ABWRO
ACBWZ
ACCFJ
ACFBH
ACGFS
ACPOU
ACPRK
ACSCC
ACXME
ACXQS
ADAWD
ADBBV
ADEOM
ADIZJ
ADMGS
ADPDF
ADULT
ADXAS
ADZLD
ADZOD
AEEJZ
AEEZP
AEGXH
AEIMD
AENEX
AEQDE
AESBF
AEUPB
AEUQT
AFAZZ
AFBPY
AFEBI
AFGKR
AFKRA
AFPWT
AFRAH
AFVGU
AFZJQ
AGJLS
AGUYK
AICQM
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
ASPBG
AS~
ATCPS
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
CCPQU
COF
CS3
CWIXF
D-E
D-F
DATOO
DCZOG
DFEDG
DOOOF
DPXWK
DR2
DU5
DWIUU
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FBQ
FEDTE
G-S
G.N
GODZA
GROUPED_DOAJ
GTFYD
H.T
H.X
HCIFZ
HF~
HGD
HTVGU
HVGLF
HZI
HZ~
IAO
IEP
IHE
IX1
J0M
JAAYA
JBMMH
JBS
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
K48
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OK1
OVD
OVEED
P2W
P2X
P4D
PATMY
PIMPY
PYCSY
Q.N
Q11
QB0
R.K
ROL
RX1
SA0
SAMSI
SUPJJ
TEORI
UB1
V8K
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
YFH
YUY
ZY4
ZZTAW
~02
~IA
~KM
~WT
AAHBH
ABXSQ
ADACV
AHXOZ
ALUQN
AQVQM
BSCLL
IPSME
ITC
OIG
WXSBR
AAMMB
AANHP
ACHIC
ACRPL
ACYXJ
ADNMO
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
ACCMX
AEUYN
AAYXX
CITATION
PHGZM
PHGZT
IQODW
7SN
C1K
7S9
L.6
ID FETCH-LOGICAL-c6061-c00b99fc6c3c1716c29c958ab543f0cf4c726d8e5b8c8f5e452c3b03cfeb34ba3
IEDL.DBID DR2
ISSN 0906-7590
IngestDate Fri Jul 11 15:07:56 EDT 2025
Tue Aug 05 11:21:37 EDT 2025
Mon Jul 21 09:13:59 EDT 2025
Thu Apr 24 23:07:02 EDT 2025
Tue Jul 01 00:51:00 EDT 2025
Wed Jan 22 16:40:29 EST 2025
Thu Jul 03 21:19:29 EDT 2025
Wed Oct 30 09:55:45 EDT 2024
Wed Dec 27 19:13:55 EST 2023
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Spatial distribution
Geographic distribution
Review
Method
Autocorrelation
Species
Distribution range
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c6061-c00b99fc6c3c1716c29c958ab543f0cf4c726d8e5b8c8f5e452c3b03cfeb34ba3
Notes http://dx.doi.org/10.1111/j.2007.0906-7590.05171.x
ArticleID:ECOG5171
ark:/67375/WNG-C8K441N1-2
istex:C4DEA64C919F0D32720739ABCAD4FCF2D0231898
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://serval.unil.ch/resource/serval:BIB_11548077DD68.P001/REF.pdf
PQID 20501373
PQPubID 23462
PageCount 20
ParticipantIDs proquest_miscellaneous_47490381
proquest_miscellaneous_20501373
pascalfrancis_primary_19282725
crossref_citationtrail_10_1111_j_2007_0906_7590_05171_x
crossref_primary_10_1111_j_2007_0906_7590_05171_x
wiley_primary_10_1111_j_2007_0906_7590_05171_x_ECOG5171
jstor_primary_30244511
istex_primary_ark_67375_WNG_C8K441N1_2
fao_agris_US201300825367
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2007
PublicationDateYYYYMMDD 2007-10-01
PublicationDate_xml – month: 10
  year: 2007
  text: October 2007
PublicationDecade 2000
PublicationPlace Copenhagen
PublicationPlace_xml – name: Copenhagen
– name: Oxford
PublicationTitle Ecography (Copenhagen)
PublicationTitleAlternate Ecography
PublicationYear 2007
Publisher Copenhagen : Blackwell Publishing Ltd
Blackwell Publishing Ltd
Blackwell Publishing
Blackwell
Publisher_xml – name: Copenhagen : Blackwell Publishing Ltd
– name: Blackwell Publishing Ltd
– name: Blackwell Publishing
– name: Blackwell
References Araújo, M. B. and Williams, P. H.. 2000. Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331-345.
Teterukovskiy, A. and Edenius, L.. 2003. Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler. Ambio 32: 568-572.
Griffith, D. A. and Peres-Neto, P. R.. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecology 87: 2603-2613.
Breslow, N. E. and Clayton, D. G.. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88: 9-25.
Dormann, C. F.. 2007b. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol. Biogeogr. 16: 129-138.
Osborne, P. E. et al. 2001. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J. Appl. Ecol. 38: 458-471.
Guisan, A. and Zimmermann, N. E.. 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147-186.
Griffith, D. A.. 2000a. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Lin. Algebra Appl. 321: 95-112.
Huffer, F. W. and Wu, H. L.. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524.
Bjørnstad, O. N. and Falck, W.. 2000. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8: 53-70.
Sykes, M. T.. 2001. Modelling the potential distribution and community dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud.) in Scandinavia. For. Ecol. Manage. 141: 69-84.
Brownstein, J. S. et al. 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ. Health Persp. 111: 1152-1157.
Lichstein, J. W. et al. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445-463.
Moore, J. E. and Swihart, R. K.. 2005. Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J. Wildl. Manage. 69: 933-949.
Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
Besag, J.. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. B 36: 192-236.
Diggle, P. J. et al. 1995. Analysis of longitudinal data. Clarendon.
Hawkins, B. A. et al. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30: 375-384.
Myers, R. H. et al. 2002. Generalized linear models. Wiley.
Lennon, J. J.. 2000. Red-shifts and red herrings in geographical ecology. Ecography 23: 101-113.
Griffith, D. A.. 2000b. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2: 141-156.
Hastie, T. J. and Tibshirani, R. J.. 1990. Generalized additive models. Chapman and Hall.
Legendre, P.. 1993. Spatial autocorrelation: trouble or new paradigm?. Ecology 74: 1659-1673.
Legendre, P. et al. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601-615.
Wood, S. N.. 2006. Generalized additive models. Chapman and Hall/CRC.
Kupfer, J. A. and Farris, C. A.. 2007. Incorporating spatial non-stationarity of regression coefficients inti predictive vegetation model. Landscape Ecol. 22: 837-852.
Cressie, N. A. C.. 1993. Statistics for spatial data. Wiley.
Fortin, M. J. and Dale, M. R. T.. 2005. Spatial analysis - a guide for ecologists. Cambridge Univ. Press.
Latimer, A. M. et al. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33-50.
Segurado, P. and Araújo, M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 1555-1568.
Tognelli, M. F. and Kelt, D. A.. 2004. Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography 27: 427-436.
Dormann, C. F.. 2007a. Assessing the validity of autologistic regression. Ecol Modell. 207: 234-242.
Hurlbert, S. H.. 1984. Pseudoreplication and the design of ecological experiments. Ecol. Monogr. 54: 187-211.
Legendre, P. and Legendre, L.. 1998. Numerical ecology. Elsevier.
Kühn, I.. 2007. Incorporating spatial autocorrelation may invert observed patterns. Div. Distrib. 13: 66-69.
Rangel, T. F. L. V. B. et al. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol. Biogeogr. 15: 321-327.
Tobler, W. R.. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46: 234-240.
Cliff, A. D. and Ord, J. K.. 1981. Spatial processes: models and applications. Pion.
Augustin, N. H. et al. 1996. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33: 339-347.
Foody, G. M.. 2004. Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol. Biogeogr. 13: 315-320.
McCullough, P. and Nelder, J. A.. 1989. Generalized linear models. Chapman and Hall.
McPherson, J. M. and Jetz, W.. 2007. Effects of species' ecology on the accuracy of distribution models. Ecography 30: 135-151.
Legendre, P. and Fortin, M.-J.. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107-138.
Isaaks, E. H. and Shrivastava, R. M.. 1989. An introduction to applied geostatistics. Oxford Univ. Press.
Diniz-Filho, J. A. F. et al. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247-1262.
Augustin, N. H. et al. 2005. Analyzing the spread of beech canker. For. Sci. 51: 438-448.
Beerling, D. J. et al. 1995. Climate and the distribution of Fallopia japonica-use of an introduced species to test the predictive capacity of response surfaces. J. Veg. Sci. 6: 269-282.
Waller, L. A. and Gotway, C. A.. 2004. Applied spatial statistics for public health data. Wiley.
Luoto, M. et al. 2001. Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach. Ecography 24: 601-617.
Carl, G. and Kühn, I.. 2007a. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Modell. 207: 159-170.
Diniz-Filho, J. A. F. et al. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53-64.
Link, W. A. and Barker, R. J.. 2006. Model weights and the foundations of multimodel inference. Ecology 87: 2626-2635.
Littell, R. C. et al. 1996. SAS system for mixed lodels. SAS Publ.
Anselin, L.. 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agricult. Econ. 17: 247-267.
Pinheiro, J. C. and Bates, D. M.. 2000. Mixed-effect models in S and S-plus. Springer.
Liang, K. Y. and Zeger, S. L.. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 13-22.
Wu, H. L. and Huffer, F. W.. 1997. Modelling the distribution of plant species using the autologistic regression model. Environ. Ecol. Stat. 4: 49-64.
Dobson, A. J.. 2002. An introduction to generalized linear models. Chapman and Hall.
Jetz, W. and Rahbek, C.. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551.
Knapp, R. A. et al. 2003. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecol. Appl. 13: 1069-1082.
Sokal, R. R. and Oden, N. L.. 1978b. Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229-249.
Borcard, D. and Legendre, P.. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153: 51-68.
Segurado, P. et al. 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43: 433-444.
Wall, M. M.. 2004. A close look at the spatial structure implied by the CAR and SAR models. J. Stat. Plann. Infer. 121: 311-324.
Stephenson, C. M. et al. 2006. Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell 193: 747-758.
Haining, R.. 2003. Spatial data analysis - theory and practice. Cambridge Univ. Press.
Kühn, I. et al. 2006. Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol. 72: 127-139.
Smith, P. A.. 1994. Autocorrelation in logistic regression modelling of species' distributions. Global. Ecol. Biogeogr. Lett. 4: 47-61.
Besag, J. et al. 1991. Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Stat. Math. 43: 1-59.
Palma, L. et al. 1999. The use of sighting data to analyse Iberian lynx habitat and distribution. J. Appl. Ecol. 36: 812-824.
Sokal, R. R. and Oden, N. L.. 1978a. Spatial autocorrelation in biology. I. Methodology. Biol. J. Linn. Soc. 10: 199-228.
Orme, C. D. L. et al. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019.
Thogmartin, W. E. et al. 2004. A hierarchical spatial model of avian abundance with application to Cerulean warblers. Ecol. Appl. 14: 1766-1779.
Augustin, N. H. et al. 1998. The role of simulation in modelling spatially correlated data. Environmetrics 9: 175-196.
Guisan, A. and Thuiller, W.. 2005. Predicting species distributions: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.
Dutilleul, P.. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49: 305-314.
Jetz, W. et al. 2005. Local and global approaches to spatial data analysis in ecology. Global Ecol. Biogeogr. 17: 97-98.
Tiefelsdorf, M. et al. 1999. A variance-stabilizing
2002; 17
1989; 45
1986; 73
2001; 141
2002; 153
2000; 135
2004; 27
2006; 33
2002; 11
1996; 74
1997; 2
1997; 4
2005; 69
2004; 176
2004; 31
2007a; 207
1990
1978a; 10
1984; 54
2000; 96
2006; 29
1992; 46
1981
1989
1988
2007; 202
1995; 51
1993; 49
2000b; 2
2002; 72
2006; 196
1998
2002; 2
1996
1995
1993
2006; 193
2001; 24
1995; 6
2007; 13
2003; 32
2006; 43
2005; 8
1999; 36
1999; 31
2001; 38
2005; 17
1998; 9
2005; 14
2004; 121
2006; 72
2000; 5
1989; 80
2000; 8
2003; 13
2003; 18
2007; 30
2003; 111
1993; 4
1996; 33
2003; 12
1996; 28
2000
1991; 43
2003; 8
2000a; 321
1993; 74
2003; 4
2005; 309
1998; 52
1998; 54
2007; 22
2003; 84
2003; 361
1974; 36
2002; 297
2000; 23
1993; 88
2006; 16
2005; 436
2006; 15
2006; 273
2006
2005
2004
2007c; 8
2003
2002
2006; 313
1978b; 10
2004; 10
2002; 25
2006; 87
2004; 14
2004; 13
2005; 51
2005; 54
2007b; 16
1994; 4
1970; 46
e_1_2_6_114_1
e_1_2_6_53_1
e_1_2_6_76_1
e_1_2_6_95_1
e_1_2_6_118_1
e_1_2_6_30_1
e_1_2_6_72_1
Klute D. S. (e_1_2_6_70_1) 2002
e_1_2_6_110_1
e_1_2_6_19_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_57_1
e_1_2_6_99_1
e_1_2_6_64_1
e_1_2_6_87_1
e_1_2_6_106_1
e_1_2_6_41_1
e_1_2_6_60_1
e_1_2_6_83_1
Littell R. C. (e_1_2_6_85_1) 1996
e_1_2_6_102_1
e_1_2_6_9_1
e_1_2_6_5_1
e_1_2_6_49_1
e_1_2_6_22_1
e_1_2_6_68_1
e_1_2_6_73_1
e_1_2_6_54_1
e_1_2_6_96_1
e_1_2_6_117_1
e_1_2_6_50_1
e_1_2_6_92_1
e_1_2_6_113_1
Augustin N. H. (e_1_2_6_10_1) 2005; 51
Dobson A. J. (e_1_2_6_35_1) 2002
Myers R. H. (e_1_2_6_91_1) 2002
e_1_2_6_12_1
e_1_2_6_39_1
e_1_2_6_77_1
e_1_2_6_16_1
e_1_2_6_58_1
e_1_2_6_84_1
e_1_2_6_42_1
e_1_2_6_105_1
e_1_2_6_65_1
e_1_2_6_80_1
e_1_2_6_109_1
e_1_2_6_61_1
e_1_2_6_120_1
e_1_2_6_101_1
Isaaks E. H. (e_1_2_6_63_1) 1989
e_1_2_6_6_1
Wu H. L. (e_1_2_6_119_1) 1997; 4
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_27_1
e_1_2_6_46_1
e_1_2_6_69_1
e_1_2_6_51_1
e_1_2_6_74_1
e_1_2_6_97_1
e_1_2_6_116_1
e_1_2_6_32_1
Hastie T. J. (e_1_2_6_56_1) 1990
e_1_2_6_93_1
e_1_2_6_112_1
e_1_2_6_36_1
e_1_2_6_59_1
Kaluzny S. P. (e_1_2_6_67_1) 1998
Teterukovskiy A. (e_1_2_6_108_1) 2003; 32
e_1_2_6_17_1
e_1_2_6_55_1
e_1_2_6_62_1
e_1_2_6_104_1
e_1_2_6_43_1
e_1_2_6_81_1
e_1_2_6_20_1
e_1_2_6_100_1
Yan J. (e_1_2_6_121_1) 2002; 2
Besag J. (e_1_2_6_13_1) 1974; 36
e_1_2_6_7_1
Legendre P. (e_1_2_6_78_1) 1998
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_66_1
e_1_2_6_89_1
e_1_2_6_28_1
e_1_2_6_47_1
e_1_2_6_52_1
e_1_2_6_98_1
e_1_2_6_115_1
e_1_2_6_75_1
e_1_2_6_94_1
Diggle P. J. (e_1_2_6_31_1) 1995
e_1_2_6_71_1
e_1_2_6_90_1
e_1_2_6_111_1
e_1_2_6_14_1
McPherson J. M. (e_1_2_6_88_1) 2007; 30
e_1_2_6_33_1
e_1_2_6_18_1
e_1_2_6_37_1
e_1_2_6_79_1
e_1_2_6_103_1
Fotheringham A. S. (e_1_2_6_45_1) 2002
e_1_2_6_86_1
e_1_2_6_21_1
e_1_2_6_107_1
Cliff A. D. (e_1_2_6_26_1) 1981
e_1_2_6_40_1
e_1_2_6_82_1
e_1_2_6_122_1
e_1_2_6_8_1
e_1_2_6_4_1
e_1_2_6_25_1
e_1_2_6_48_1
e_1_2_6_29_1
e_1_2_6_44_1
References_xml – reference: Segurado, P. and Araújo, M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 1555-1568.
– reference: Anselin, L.. 1988. Spatial econometrics: methods and models. Kluwer.
– reference: Bai, Z. et al. 1996. Some large-scale matrix computation problems. J. Comput. Appl. Math. 74: 71-89.
– reference: Dormann, C. F.. 2007c. Promising the future? Global change predictions of species distributions. Basic Appl Ecol. 8: 387-397.
– reference: Besag, J.. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. B 36: 192-236.
– reference: Teterukovskiy, A. and Edenius, L.. 2003. Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler. Ambio 32: 568-572.
– reference: Worm, B. et al. 2005. Global patterns of predator diversity in the open oceans. Science 309: 1365-136.
– reference: Foody, G. M.. 2004. Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol. Biogeogr. 13: 315-320.
– reference: Augustin, N. H. et al. 1998. The role of simulation in modelling spatially correlated data. Environmetrics 9: 175-196.
– reference: Araújo, M. B. and Rahbek, C.. 2006. How does climate Change affect biodiversity?. Science 313: 1396-1397.
– reference: Brooks, S. P.. 2003. Bayesian computation: a statistical revolution. Phil. Trans. R. Soc. A 361: 2681-2697.
– reference: McCullough, P. and Nelder, J. A.. 1989. Generalized linear models. Chapman and Hall.
– reference: Dray, S. et al. 2006. Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modell. 196: 483-493.
– reference: Brunsdon, C. et al. 1996. Geographically weighted regression: a method for exploring spatial non-stationarity. Geogr. Analys. 28: 281-298.
– reference: Sokal, R. R. and Oden, N. L.. 1978b. Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229-249.
– reference: Dutilleul, P.. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49: 305-314.
– reference: Diggle, P. J. et al. 1995. Analysis of longitudinal data. Clarendon.
– reference: Huffer, F. W. and Wu, H. L.. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524.
– reference: Rangel, T. F. L. V. B. et al. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol. Biogeogr. 15: 321-327.
– reference: Gelfand, A. E. and Vounatsou, P.. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25.
– reference: Diniz-Filho, J. A. F. et al. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247-1262.
– reference: Luoto, M. et al. 2001. Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach. Ecography 24: 601-617.
– reference: Clifford, P. et al. 1989. Assessing the significance of the correlation between two spatial processes. Biometrics 45: 123-134.
– reference: McPherson, J. M. and Jetz, W.. 2007. Effects of species' ecology on the accuracy of distribution models. Ecography 30: 135-151.
– reference: Smith, P. A.. 1994. Autocorrelation in logistic regression modelling of species' distributions. Global. Ecol. Biogeogr. Lett. 4: 47-61.
– reference: Guisan, A. and Thuiller, W.. 2005. Predicting species distributions: offering more than simple habitat models. Ecol. Lett. 8: 993-1009.
– reference: Haining, R.. 2003. Spatial data analysis - theory and practice. Cambridge Univ. Press.
– reference: Tobler, W. R.. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46: 234-240.
– reference: Cliff, A. D. and Ord, J. K.. 1981. Spatial processes: models and applications. Pion.
– reference: Sykes, M. T.. 2001. Modelling the potential distribution and community dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud.) in Scandinavia. For. Ecol. Manage. 141: 69-84.
– reference: Anselin, L.. 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agricult. Econ. 17: 247-267.
– reference: Beerling, D. J. et al. 1995. Climate and the distribution of Fallopia japonica-use of an introduced species to test the predictive capacity of response surfaces. J. Veg. Sci. 6: 269-282.
– reference: Cressie, N. A. C.. 1993. Statistics for spatial data. Wiley.
– reference: Segurado, P. et al. 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43: 433-444.
– reference: Legendre, P. et al. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601-615.
– reference: Pinheiro, J. C. and Bates, D. M.. 2000. Mixed-effect models in S and S-plus. Springer.
– reference: Kaboli, M. et al. 2006. Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate, and topography. J. Biogeogr. 33: 133-144.
– reference: Latimer, A. M. et al. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33-50.
– reference: Moore, J. E. and Swihart, R. K.. 2005. Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J. Wildl. Manage. 69: 933-949.
– reference: Araújo, M. B. and Williams, P. H.. 2000. Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331-345.
– reference: Liang, K. Y. and Zeger, S. L.. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 13-22.
– reference: Diniz-Filho, J. A. and Bini, L. M.. 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol. Biogeogr. 14: 177-185.
– reference: Carl, G. and Kühn, I.. 2007a. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Modell. 207: 159-170.
– reference: Jetz, W. and Rahbek, C.. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551.
– reference: Orme, C. D. L. et al. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019.
– reference: Venables, W. N. and Ripley, B. D.. 2002. Modern applied statistics with S. Springer.
– reference: Dormann, C. F.. 2007a. Assessing the validity of autologistic regression. Ecol Modell. 207: 234-242.
– reference: Kaluzny, S. P. et al. 1998. S-plus spatial stats user's manual for Windows and Unix. Springer.
– reference: Kupfer, J. A. and Farris, C. A.. 2007. Incorporating spatial non-stationarity of regression coefficients inti predictive vegetation model. Landscape Ecol. 22: 837-852.
– reference: He, F. L. et al. 2003. Autologistic regression model for the distribution of vegetation. J. Agricult. Biol. Environ. Stat. 8: 205-222.
– reference: Sokal, R. R. and Oden, N. L.. 1978a. Spatial autocorrelation in biology. I. Methodology. Biol. J. Linn. Soc. 10: 199-228.
– reference: Jetz, W. et al. 2005. Local and global approaches to spatial data analysis in ecology. Global Ecol. Biogeogr. 17: 97-98.
– reference: Littell, R. C. et al. 1996. SAS system for mixed lodels. SAS Publ.
– reference: Dark, S. J.. 2004. The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis. Div. Distrib. 10: 1-9.
– reference: Osborne, P. E. et al. 2001. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J. Appl. Ecol. 38: 458-471.
– reference: Griffith, D. A.. 2000a. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Lin. Algebra Appl. 321: 95-112.
– reference: Brownstein, J. S. et al. 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ. Health Persp. 111: 1152-1157.
– reference: Casella, G. and George, E. I.. 1992. Explaining the Gibbs sampler. Am. Stat. 46: 167-176.
– reference: Lennon, J. J.. 2000. Red-shifts and red herrings in geographical ecology. Ecography 23: 101-113.
– reference: Griffith, D. A.. 2000b. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2: 141-156.
– reference: Ver Hoef, J. M. et al. 1993. Spatial models for spatial statistics: some unification. J. Veg. Sci. 4: 441-452.
– reference: Waller, L. A. and Gotway, C. A.. 2004. Applied spatial statistics for public health data. Wiley.
– reference: Griffith, D. A. and Peres-Neto, P. R.. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecology 87: 2603-2613.
– reference: Stephenson, C. M. et al. 2006. Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell 193: 747-758.
– reference: Gavin, D. G. and Hu, F. S.. 2006. Spatial variation of climatic and non-climatic controls on species distribution: the range limit of Tsuga heterophylla. J. Biogeogr. 33: 1384-1396.
– reference: Knapp, R. A. et al. 2003. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecol. Appl. 13: 1069-1082.
– reference: Tiefelsdorf, M. et al. 1999. A variance-stabilizing coding scheme for spatial link matrices. Environ. Plann. A 31: 165-180.
– reference: Link, W. A. and Barker, R. J.. 2006. Model weights and the foundations of multimodel inference. Ecology 87: 2626-2635.
– reference: Hurlbert, S. H.. 1984. Pseudoreplication and the design of ecological experiments. Ecol. Monogr. 54: 187-211.
– reference: Liebhold, A. M. and Gurevitch, J.. 2002. Integrating the statistical analysis of spatial data in ecology. Ecography 25: 553-557.
– reference: Diniz-Filho, J. A. F. et al. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53-64.
– reference: Fotheringham, A. S. et al. 2002. Geographically weighted regression: the analysis of spatially varying relationships. Wiley.
– reference: Kühn, I.. 2007. Incorporating spatial autocorrelation may invert observed patterns. Div. Distrib. 13: 66-69.
– reference: Augustin, N. H. et al. 1996. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33: 339-347.
– reference: Wall, M. M.. 2004. A close look at the spatial structure implied by the CAR and SAR models. J. Stat. Plann. Infer. 121: 311-324.
– reference: Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151.
– reference: Gumpertz, M. L. et al. 1997. Autologistic model of spatial pattern of Phytophthora epidemic in bell pepper: effects of soil variables on disease presence. J. Agricult. Biol. Environ. Stat. 2: 131-156.
– reference: Borcard, D. and Legendre, P.. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153: 51-68.
– reference: Hooten, M. B. et al. 2003. Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model. Landscape Ecol. 18: 487-502.
– reference: Keitt, T. H. et al. 2002. Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25: 616-625.
– reference: Yan, J.. 2002. geepack: yet another package for generalized estimating equations. R News 2: 12-14.
– reference: Reich, R. M. et al. 2004. Predicting the location of northern goshawk nests: modeling the spatial dependency between nest locations and forest structure. Ecol. Modell. 176: 109-133.
– reference: Albert, P. S. and McShane, L. M.. 1995. A generalized estimating equations approach for spatially correlated binary data: with an application to the analysis of neuroimaging data. Biometrics 51: 627-638.
– reference: Bjørnstad, O. N. and Falck, W.. 2000. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8: 53-70.
– reference: Kühn, I. et al. 2006. Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol. 72: 127-139.
– reference: Gelfand, A. E. et al. 2005. Modelling species diversity through species level hierarchical modelling. Appl. Stat. 54: 1-20.
– reference: Lichstein, J. W. et al. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445-463.
– reference: Perry, J. N. et al. 2002. Illustrations and guidelines for selecting statistical methods for quantifying spatial paterrns in ecological data. Ecography 25: 578-600.
– reference: Palma, L. et al. 1999. The use of sighting data to analyse Iberian lynx habitat and distribution. J. Appl. Ecol. 36: 812-824.
– reference: Guisan, A. and Zimmermann, N. E.. 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147-186.
– reference: Wood, S. N.. 2006. Generalized additive models. Chapman and Hall/CRC.
– reference: Davies, R. G. et al. 2006. Human impacts and the global distribution of extinction risk. Proc. R. Soc. B 273: 2127-2133.
– reference: Tognelli, M. F. and Kelt, D. A.. 2004. Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography 27: 427-436.
– reference: Augustin, N. H. et al. 2005. Analyzing the spread of beech canker. For. Sci. 51: 438-448.
– reference: Hawkins, B. A. et al. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30: 375-384.
– reference: Legendre, P.. 1993. Spatial autocorrelation: trouble or new paradigm?. Ecology 74: 1659-1673.
– reference: Dobson, A. J.. 2002. An introduction to generalized linear models. Chapman and Hall.
– reference: Thogmartin, W. E. et al. 2004. A hierarchical spatial model of avian abundance with application to Cerulean warblers. Ecol. Appl. 14: 1766-1779.
– reference: Breslow, N. E. and Clayton, D. G.. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88: 9-25.
– reference: Miller, J. et al. 2007. Incorporating spatial dependence in predictive vegetation models. Ecol. Modell. 202: 225-242.
– reference: Pearson, R. G. and Dawson, T. P.. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecol. Biogeogr. 12: 361-371.
– reference: Besag, J. et al. 1991. Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Stat. Math. 43: 1-59.
– reference: Dormann, C. F.. 2007b. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol. Biogeogr. 16: 129-138.
– reference: Myers, R. H. et al. 2002. Generalized linear models. Wiley.
– reference: Wu, H. L. and Huffer, F. W.. 1997. Modelling the distribution of plant species using the autologistic regression model. Environ. Ecol. Stat. 4: 49-64.
– reference: Yamaguchi, N. et al. 2003. Habitat preferences of feral American mink in the Upper Thames. J. Mammal. 84: 1356-1373.
– reference: Hastie, T. J. and Tibshirani, R. J.. 1990. Generalized additive models. Chapman and Hall.
– reference: Hoeting, J. A. et al. 2000. An improved model for spatially correlated binary responses. J. Agricult. Biol. Environ. Stat. 5: 102-114.
– reference: Isaaks, E. H. and Shrivastava, R. M.. 1989. An introduction to applied geostatistics. Oxford Univ. Press.
– reference: Legendre, P. and Fortin, M.-J.. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107-138.
– reference: Fortin, M. J. and Dale, M. R. T.. 2005. Spatial analysis - a guide for ecologists. Cambridge Univ. Press.
– reference: Ferrier, S. et al. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiv. Conserv. 11: 2275-2307.
– reference: Legendre, P. and Legendre, L.. 1998. Numerical ecology. Elsevier.
– volume: 297
  start-page: 1548
  year: 2002
  end-page: 1551
  article-title: Geographic range size and determinants of avian species richness
  publication-title: Science
– year: 1981
– volume: 72
  start-page: 127
  year: 2006
  end-page: 139
  article-title: Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods
  publication-title: New Phytol.
– volume: 196
  start-page: 483
  year: 2006
  end-page: 493
  article-title: Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM)
  publication-title: Ecol. Modell.
– year: 2005
– volume: 121
  start-page: 311
  year: 2004
  end-page: 324
  article-title: A close look at the spatial structure implied by the CAR and SAR models
  publication-title: J. Stat. Plann. Infer.
– volume: 8
  start-page: 387
  year: 2007c
  end-page: 397
  article-title: Promising the future? Global change predictions of species distributions
  publication-title: Basic Appl Ecol.
– volume: 2
  start-page: 141
  year: 2000b
  end-page: 156
  article-title: A linear regression solution to the spatial autocorrelation problem
  publication-title: J. Geogr. Syst.
– year: 1989
– volume: 141
  start-page: 69
  year: 2001
  end-page: 84
  article-title: Modelling the potential distribution and community dynamics of lodgepole pine ( Dougl. ex. Loud.) in Scandinavia
  publication-title: For. Ecol. Manage.
– volume: 36
  start-page: 812
  year: 1999
  end-page: 824
  article-title: The use of sighting data to analyse Iberian lynx habitat and distribution
  publication-title: J. Appl. Ecol.
– volume: 176
  start-page: 109
  year: 2004
  end-page: 133
  article-title: Predicting the location of northern goshawk nests: modeling the spatial dependency between nest locations and forest structure
  publication-title: Ecol. Modell.
– volume: 22
  start-page: 837
  year: 2007
  end-page: 852
  article-title: Incorporating spatial non‐stationarity of regression coefficients inti predictive vegetation model
  publication-title: Landscape Ecol.
– volume: 436
  start-page: 1016
  year: 2005
  end-page: 1019
  article-title: Global hotspots of species richness are not congruent with endemism or threat
  publication-title: Nature
– year: 1990
– year: 1998
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
– volume: 25
  start-page: 578
  year: 2002
  end-page: 600
  article-title: Illustrations and guidelines for selecting statistical methods for quantifying spatial paterrns in ecological data
  publication-title: Ecography
– volume: 49
  start-page: 305
  year: 1993
  end-page: 314
  article-title: Modifying the t test for assessing the correlation between two spatial processes
  publication-title: Biometrics
– volume: 51
  start-page: 627
  year: 1995
  end-page: 638
  article-title: A generalized estimating equations approach for spatially correlated binary data: with an application to the analysis of neuroimaging data
  publication-title: Biometrics
– volume: 273
  start-page: 2127
  year: 2006
  end-page: 2133
  article-title: Human impacts and the global distribution of extinction risk
  publication-title: Proc. R. Soc. B
– volume: 84
  start-page: 1356
  year: 2003
  end-page: 1373
  article-title: Habitat preferences of feral American mink in the Upper Thames
  publication-title: J. Mammal.
– volume: 11
  start-page: 2275
  year: 2002
  end-page: 2307
  article-title: Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species‐level modelling
  publication-title: Biodiv. Conserv.
– volume: 96
  start-page: 331
  year: 2000
  end-page: 345
  article-title: Selecting areas for species persistence using occurrence data
  publication-title: Biol. Conserv.
– volume: 24
  start-page: 601
  year: 2001
  end-page: 617
  article-title: Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach
  publication-title: Ecography
– volume: 45
  start-page: 123
  year: 1989
  end-page: 134
  article-title: Assessing the significance of the correlation between two spatial processes
  publication-title: Biometrics
– volume: 28
  start-page: 281
  year: 1996
  end-page: 298
  article-title: Geographically weighted regression: a method for exploring spatial non‐stationarity
  publication-title: Geogr. Analys.
– volume: 74
  start-page: 71
  year: 1996
  end-page: 89
  article-title: Some large‐scale matrix computation problems
  publication-title: J. Comput. Appl. Math.
– volume: 14
  start-page: 177
  year: 2005
  end-page: 185
  article-title: Modelling geographical patterns in species richness using eigenvector‐based spatial filters
  publication-title: Global Ecol. Biogeogr.
– year: 1993
– volume: 13
  start-page: 1069
  year: 2003
  end-page: 1082
  article-title: Developing probabilistic models to predict amphibian site occupancy in a patchy landscape
  publication-title: Ecol. Appl.
– volume: 5
  start-page: 102
  year: 2000
  end-page: 114
  article-title: An improved model for spatially correlated binary responses
  publication-title: J. Agricult. Biol. Environ. Stat.
– volume: 31
  start-page: 1555
  year: 2004
  end-page: 1568
  article-title: An evaluation of methods for modelling species distributions
  publication-title: J. Biogeogr.
– volume: 18
  start-page: 487
  year: 2003
  end-page: 502
  article-title: Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model
  publication-title: Landscape Ecol.
– volume: 31
  start-page: 165
  year: 1999
  end-page: 180
  article-title: A variance‐stabilizing coding scheme for spatial link matrices
  publication-title: Environ. Plann. A
– volume: 153
  start-page: 51
  year: 2002
  end-page: 68
  article-title: All‐scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices
  publication-title: Ecol. Modell.
– volume: 25
  start-page: 601
  year: 2002
  end-page: 615
  article-title: The consequences of spatial structure for the design and analysis of ecological field surveys
  publication-title: Ecography
– volume: 111
  start-page: 1152
  year: 2003
  end-page: 1157
  article-title: A climate‐based model predicts the spatial distribution of the Lyme disease vector in the United States
  publication-title: Environ. Health Persp.
– volume: 4
  start-page: 47
  year: 1994
  end-page: 61
  article-title: Autocorrelation in logistic regression modelling of species’ distributions
  publication-title: Global. Ecol. Biogeogr. Lett.
– volume: 33
  start-page: 1384
  year: 2006
  end-page: 1396
  article-title: Spatial variation of climatic and non‐climatic controls on species distribution: the range limit of
  publication-title: J. Biogeogr.
– volume: 30
  start-page: 135
  year: 2007
  end-page: 151
  article-title: Effects of species’ ecology on the accuracy of distribution models
  publication-title: Ecography
– year: 2002
– volume: 51
  start-page: 438
  year: 2005
  end-page: 448
  article-title: Analyzing the spread of beech canker
  publication-title: For. Sci.
– volume: 12
  start-page: 53
  year: 2003
  end-page: 64
  article-title: Spatial autocorrelation and red herrings in geographical ecology
  publication-title: Global Ecol. Biogeogr.
– year: 1995
– volume: 38
  start-page: 458
  year: 2001
  end-page: 471
  article-title: Modelling landscape‐scale habitat use using GIS and remote sensing: a case study with great bustards
  publication-title: J. Appl. Ecol.
– volume: 207
  start-page: 234
  year: 2007a
  end-page: 242
  article-title: Assessing the validity of autologistic regression
  publication-title: Ecol Modell.
– volume: 2
  start-page: 12
  year: 2002
  end-page: 14
  article-title: geepack: yet another package for generalized estimating equations
  publication-title: R News
– volume: 16
  start-page: 33
  year: 2006
  end-page: 50
  article-title: Building statistical models to analyze species distributions
  publication-title: Ecol. Appl.
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– volume: 13
  start-page: 66
  year: 2007
  end-page: 69
  article-title: Incorporating spatial autocorrelation may invert observed patterns
  publication-title: Div. Distrib.
– volume: 25
  start-page: 553
  year: 2002
  end-page: 557
  article-title: Integrating the statistical analysis of spatial data in ecology
  publication-title: Ecography
– volume: 361
  start-page: 2681
  year: 2003
  end-page: 2697
  article-title: Bayesian computation: a statistical revolution
  publication-title: Phil. Trans. R. Soc. A
– volume: 43
  start-page: 433
  year: 2006
  end-page: 444
  article-title: Consequences of spatial autocorrelation for niche‐based models
  publication-title: J. Appl. Ecol.
– volume: 17
  start-page: 247
  year: 2002
  end-page: 267
  article-title: Under the hood: issues in the specification and interpretation of spatial regression models
  publication-title: Agricult. Econ.
– volume: 69
  start-page: 933
  year: 2005
  end-page: 949
  article-title: Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data
  publication-title: J. Wildl. Manage.
– volume: 8
  start-page: 993
  year: 2005
  end-page: 1009
  article-title: Predicting species distributions: offering more than simple habitat models
  publication-title: Ecol. Lett.
– volume: 32
  start-page: 568
  year: 2003
  end-page: 572
  article-title: Effective field sampling for predicting the spatial distribution of reindeer ( ) with help of the Gibbs sampler
  publication-title: Ambio
– volume: 4
  start-page: 49
  year: 1997
  end-page: 64
  article-title: Modelling the distribution of plant species using the autologistic regression model
  publication-title: Environ. Ecol. Stat.
– volume: 87
  start-page: 2603
  year: 2006
  end-page: 2613
  article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information
  publication-title: Ecology
– volume: 2
  start-page: 131
  year: 1997
  end-page: 156
  article-title: Autologistic model of spatial pattern of epidemic in bell pepper: effects of soil variables on disease presence
  publication-title: J. Agricult. Biol. Environ. Stat.
– volume: 27
  start-page: 427
  year: 2004
  end-page: 436
  article-title: Analysis of determinants of mammalian species richness in South America using spatial autoregressive models
  publication-title: Ecography
– volume: 87
  start-page: 2626
  year: 2006
  end-page: 2635
  article-title: Model weights and the foundations of multimodel inference
  publication-title: Ecology
– volume: 193
  start-page: 747
  year: 2006
  end-page: 758
  article-title: Modelling establishment probabilities of an exotic plant, , invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation
  publication-title: Ecol. Modell
– volume: 6
  start-page: 269
  year: 1995
  end-page: 282
  article-title: Climate and the distribution of –use of an introduced species to test the predictive capacity of response surfaces
  publication-title: J. Veg. Sci.
– volume: 17
  start-page: 97
  year: 2005
  end-page: 98
  article-title: Local and global approaches to spatial data analysis in ecology
  publication-title: Global Ecol. Biogeogr.
– volume: 10
  start-page: 229
  year: 1978b
  end-page: 249
  article-title: Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest
  publication-title: Biol. J. Linn. Soc.
– volume: 16
  start-page: 129
  year: 2007b
  end-page: 138
  article-title: Effects of incorporating spatial autocorrelation into the analysis of species distribution data
  publication-title: Global Ecol. Biogeogr.
– volume: 52
  start-page: 1247
  year: 1998
  end-page: 1262
  article-title: An eigenvector method for estimating phylogenetic inertia
  publication-title: Evolution
– volume: 321
  start-page: 95
  year: 2000a
  end-page: 112
  article-title: Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses
  publication-title: Lin. Algebra Appl.
– volume: 36
  start-page: 192
  year: 1974
  end-page: 236
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. Roy. Stat. Soc. B
– volume: 13
  start-page: 315
  year: 2004
  end-page: 320
  article-title: Spatial nonstationarity and scale‐dependency in the relationship between species richness and environmental determinants for the sub‐Saharan endemic avifauna
  publication-title: Global Ecol. Biogeogr.
– year: 2004
– volume: 43
  start-page: 1
  year: 1991
  end-page: 59
  article-title: Bayesian image restoration with two applications in spatial statistics (with discussion)
  publication-title: Ann. Inst. Stat. Math.
– volume: 25
  start-page: 616
  year: 2002
  end-page: 625
  article-title: Accounting for spatial pattern when modeling organism‐environment interactions
  publication-title: Ecography
– volume: 33
  start-page: 133
  year: 2006
  end-page: 144
  article-title: Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate, and topography
  publication-title: J. Biogeogr.
– volume: 74
  start-page: 1659
  year: 1993
  end-page: 1673
  article-title: Spatial autocorrelation: trouble or new paradigm?
  publication-title: Ecology
– volume: 54
  start-page: 187
  year: 1984
  end-page: 211
  article-title: Pseudoreplication and the design of ecological experiments
  publication-title: Ecol. Monogr.
– volume: 10
  start-page: 1
  year: 2004
  end-page: 9
  article-title: The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis
  publication-title: Div. Distrib.
– volume: 46
  start-page: 234
  year: 1970
  end-page: 240
  article-title: A computer movie simulating urban growth in the Detroit region
  publication-title: Econ. Geogr.
– volume: 33
  start-page: 339
  year: 1996
  end-page: 347
  article-title: An autologistic model for the spatial distribution of wildlife
  publication-title: J. Appl. Ecol.
– volume: 72
  start-page: 445
  year: 2002
  end-page: 463
  article-title: Spatial autocorrelation and autoregressive models in ecology
  publication-title: Ecol. Monogr.
– volume: 12
  start-page: 361
  year: 2003
  end-page: 371
  article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?
  publication-title: Global Ecol. Biogeogr.
– volume: 10
  start-page: 199
  year: 1978a
  end-page: 228
  article-title: Spatial autocorrelation in biology. I. Methodology
  publication-title: Biol. J. Linn. Soc.
– year: 2003
– volume: 313
  start-page: 1396
  year: 2006
  end-page: 1397
  article-title: How does climate Change affect biodiversity?
  publication-title: Science
– year: 1996
– year: 2000
– start-page: 335
  year: 2002
  end-page: 343
– volume: 4
  start-page: 11
  year: 2003
  end-page: 25
  article-title: Proper multivariate conditional autoregressive models for spatial data analysis
  publication-title: Biostatistics
– volume: 135
  start-page: 147
  year: 2000
  end-page: 186
  article-title: Predictive habitat distribution models in ecology
  publication-title: Ecol. Modell.
– volume: 54
  start-page: 509
  year: 1998
  end-page: 524
  article-title: Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species
  publication-title: Biometrics
– volume: 9
  start-page: 175
  year: 1998
  end-page: 196
  article-title: The role of simulation in modelling spatially correlated data
  publication-title: Environmetrics
– volume: 80
  start-page: 107
  year: 1989
  end-page: 138
  article-title: Spatial pattern and ecological analysis
  publication-title: Vegetatio
– volume: 30
  start-page: 375
  year: 2007
  end-page: 384
  article-title: Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology
  publication-title: Ecography
– volume: 46
  start-page: 167
  year: 1992
  end-page: 176
  article-title: Explaining the Gibbs sampler
  publication-title: Am. Stat.
– volume: 8
  start-page: 53
  year: 2000
  end-page: 70
  article-title: Nonparametric spatial covariance functions: estimation and testing
  publication-title: Environ. Ecol. Stat.
– volume: 14
  start-page: 1766
  year: 2004
  end-page: 1779
  article-title: A hierarchical spatial model of avian abundance with application to Cerulean warblers
  publication-title: Ecol. Appl.
– year: 1988
– volume: 202
  start-page: 225
  year: 2007
  end-page: 242
  article-title: Incorporating spatial dependence in predictive vegetation models
  publication-title: Ecol. Modell.
– year: 2006
– volume: 8
  start-page: 205
  year: 2003
  end-page: 222
  article-title: Autologistic regression model for the distribution of vegetation
  publication-title: J. Agricult. Biol. Environ. Stat.
– volume: 15
  start-page: 321
  year: 2006
  end-page: 327
  article-title: Towards an integrated computational tool for spatial analysis in macroecology and biogeography
  publication-title: Global Ecol. Biogeogr.
– volume: 207
  start-page: 159
  year: 2007a
  end-page: 170
  article-title: Analyzing spatial autocorrelation in species distributions using Gaussian and logit models
  publication-title: Ecol Modell.
– volume: 29
  start-page: 129
  year: 2006
  end-page: 151
  article-title: Novel methods improve prediction of species’ distributions from occurrence data
  publication-title: Ecography
– volume: 23
  start-page: 101
  year: 2000
  end-page: 113
  article-title: Red‐shifts and red herrings in geographical ecology
  publication-title: Ecography
– volume: 309
  start-page: 1365
  year: 2005
  end-page: 136
  article-title: Global patterns of predator diversity in the open oceans
  publication-title: Science
– volume: 54
  start-page: 1
  year: 2005
  end-page: 20
  article-title: Modelling species diversity through species level hierarchical modelling
  publication-title: Appl. Stat.
– volume: 4
  start-page: 441
  year: 1993
  end-page: 452
  article-title: Spatial models for spatial statistics: some unification
  publication-title: J. Veg. Sci.
– ident: e_1_2_6_24_1
  doi: 10.1007/s00477-007-0117-2
– ident: e_1_2_6_95_1
  doi: 10.1046/j.1365-2664.1999.00436.x
– volume: 30
  start-page: 135
  year: 2007
  ident: e_1_2_6_88_1
  article-title: Effects of species’ ecology on the accuracy of distribution models
  publication-title: Ecography
– ident: e_1_2_6_86_1
  doi: 10.1111/j.1600-0587.2001.tb00494.x
– ident: e_1_2_6_74_1
  doi: 10.1111/j.1469-8137.2006.01811.x
– ident: e_1_2_6_37_1
  doi: 10.1111/j.1466-8238.2006.00279.x
– ident: e_1_2_6_72_1
  doi: 10.1007/s10980-006-9058-2
– ident: e_1_2_6_61_1
  doi: 10.2307/3109759
– ident: e_1_2_6_19_1
  doi: 10.1098/rsta.2003.1263
– ident: e_1_2_6_42_1
  doi: 10.1023/A:1021302930424
– ident: e_1_2_6_65_1
  doi: 10.1111/j.1466-822X.2004.00129.x
– ident: e_1_2_6_6_1
  doi: 10.1016/S0006-3207(00)00074-4
– ident: e_1_2_6_9_1
  doi: 10.1002/(SICI)1099-095X(199803/04)9:2<175::AID-ENV294>3.0.CO;2-2
– ident: e_1_2_6_82_1
  doi: 10.1890/0012-9615(2002)072[0445:SAAAMI]2.0.CO;2
– ident: e_1_2_6_107_1
  doi: 10.1016/S0378-1127(00)00490-4
– ident: e_1_2_6_98_1
  doi: 10.1007/978-1-4419-0318-1
– ident: e_1_2_6_46_1
  doi: 10.1111/j.1365-2699.2006.01509.x
– ident: e_1_2_6_57_1
  doi: 10.1111/j.0906-7590.2007.05117.x
– ident: e_1_2_6_71_1
  doi: 10.1890/1051-0761(2003)13[1069:DPMTPA]2.0.CO;2
– ident: e_1_2_6_81_1
  doi: 10.1093/biomet/73.1.13
– ident: e_1_2_6_109_1
  doi: 10.1890/03-5247
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1574-0862.2002.tb00120.x
– ident: e_1_2_6_23_1
  doi: 10.1016/j.ecolmodel.2007.04.024
– ident: e_1_2_6_39_1
  doi: 10.1016/j.ecolmodel.2006.02.015
– ident: e_1_2_6_2_1
  doi: 10.2307/2532950
– ident: e_1_2_6_27_1
  doi: 10.2307/2532039
– ident: e_1_2_6_15_1
– ident: e_1_2_6_73_1
  doi: 10.1111/j.1472-4642.2006.00293.x
– ident: e_1_2_6_117_1
  doi: 10.1201/9781420010404
– ident: e_1_2_6_52_1
  doi: 10.1016/S0304-3800(00)00354-9
– ident: e_1_2_6_60_1
  doi: 10.1023/A:1026001008598
– ident: e_1_2_6_30_1
  doi: 10.1098/rspb.2006.3551
– ident: e_1_2_6_99_1
  doi: 10.1111/j.1466-822X.2006.00237.x
– ident: e_1_2_6_89_1
  doi: 10.1016/j.ecolmodel.2006.12.012
– ident: e_1_2_6_79_1
  doi: 10.1034/j.1600-0587.2002.250508.x
– ident: e_1_2_6_12_1
  doi: 10.2307/3236222
– ident: e_1_2_6_28_1
  doi: 10.1002/9781119115151
– ident: e_1_2_6_97_1
  doi: 10.1034/j.1600-0587.2002.250507.x
– volume: 51
  start-page: 438
  year: 2005
  ident: e_1_2_6_10_1
  article-title: Analyzing the spread of beech canker
  publication-title: For. Sci.
– volume-title: S‐plus spatial stats user's manual for Windows and Unix
  year: 1998
  ident: e_1_2_6_67_1
– ident: e_1_2_6_106_1
  doi: 10.1016/j.ecolmodel.2005.09.007
– ident: e_1_2_6_59_1
  doi: 10.2307/1400634
– ident: e_1_2_6_69_1
  doi: 10.1111/j.1466-8238.2007.00334.x
– ident: e_1_2_6_94_1
  doi: 10.1111/j.1472-4642.2007.00344.x
– ident: e_1_2_6_32_1
  doi: 10.1111/j.1466-822X.2005.00147.x
– ident: e_1_2_6_55_1
  doi: 10.1017/CBO9780511754944
– volume: 32
  start-page: 568
  year: 2003
  ident: e_1_2_6_108_1
  article-title: Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler
  publication-title: Ambio
  doi: 10.1579/0044-7447-32.8.568
– ident: e_1_2_6_18_1
  doi: 10.2307/2290687
– volume: 36
  start-page: 192
  year: 1974
  ident: e_1_2_6_13_1
  article-title: Spatial interaction and the statistical analysis of lattice systems
  publication-title: J. Roy. Stat. Soc. B
  doi: 10.1111/j.2517-6161.1974.tb00999.x
– ident: e_1_2_6_114_1
  doi: 10.2307/3236071
– ident: e_1_2_6_20_1
  doi: 10.1289/ehp.6052
– ident: e_1_2_6_103_1
  doi: 10.2307/2997753
– ident: e_1_2_6_50_1
  doi: 10.1007/PL00011451
– ident: e_1_2_6_21_1
  doi: 10.1111/j.1538-4632.1996.tb00936.x
– ident: e_1_2_6_90_1
  doi: 10.2193/0022-541X(2005)069[0933:MPOBFR]2.0.CO;2
– ident: e_1_2_6_29_1
  doi: 10.1111/j.1472-4642.2004.00054.x
– ident: e_1_2_6_8_1
  doi: 10.2307/2404755
– ident: e_1_2_6_43_1
  doi: 10.1111/j.1466-822X.2004.00097.x
– ident: e_1_2_6_53_1
  doi: 10.1111/j.1461-0248.2005.00792.x
– ident: e_1_2_6_80_1
  doi: 10.1111/j.1600-0587.2000.tb00265.x
– ident: e_1_2_6_102_1
  doi: 10.1111/j.1365-2664.2006.01162.x
– ident: e_1_2_6_25_1
  doi: 10.2307/2685208
– volume-title: An introduction to generalized linear models
  year: 2002
  ident: e_1_2_6_35_1
– ident: e_1_2_6_54_1
  doi: 10.2307/1400400
– volume-title: Generalized linear models
  year: 2002
  ident: e_1_2_6_91_1
– ident: e_1_2_6_104_1
  doi: 10.1111/j.1095-8312.1978.tb00013.x
– ident: e_1_2_6_7_1
  doi: 10.1126/science.1131758
– ident: e_1_2_6_22_1
– ident: e_1_2_6_83_1
  doi: 10.1034/j.1600-0587.2002.250505.x
– ident: e_1_2_6_51_1
  doi: 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2
– ident: e_1_2_6_100_1
  doi: 10.1016/j.ecolmodel.2003.09.039
– start-page: 335
  volume-title: Predicting species occurrences: issues of accuracy and scale
  year: 2002
  ident: e_1_2_6_70_1
– ident: e_1_2_6_87_1
  doi: 10.1007/978-1-4899-3242-6
– ident: e_1_2_6_111_1
  doi: 10.2307/143141
– volume-title: Generalized additive models
  year: 1990
  ident: e_1_2_6_56_1
– ident: e_1_2_6_4_1
  doi: 10.1007/978-94-015-7799-1
– ident: e_1_2_6_38_1
  doi: 10.1016/j.baae.2006.11.001
– ident: e_1_2_6_93_1
  doi: 10.1046/j.1365-2664.2001.00604.x
– ident: e_1_2_6_49_1
  doi: 10.1016/S0024-3795(00)00031-8
– volume-title: SAS system for mixed lodels
  year: 1996
  ident: e_1_2_6_85_1
– ident: e_1_2_6_3_1
– ident: e_1_2_6_96_1
  doi: 10.1046/j.1466-822X.2003.00042.x
– ident: e_1_2_6_11_1
  doi: 10.1016/0377-0427(96)00018-0
– volume: 4
  start-page: 49
  year: 1997
  ident: e_1_2_6_119_1
  article-title: Modelling the distribution of plant species using the autologistic regression model
  publication-title: Environ. Ecol. Stat.
  doi: 10.1023/A:1018505924603
– ident: e_1_2_6_41_1
  doi: 10.1111/j.2006.0906-7590.04596.x
– ident: e_1_2_6_44_1
  doi: 10.1017/CBO9780511542039
– ident: e_1_2_6_112_1
  doi: 10.1111/j.0906-7590.2004.03732.x
– ident: e_1_2_6_14_1
  doi: 10.1007/BF00116466
– ident: e_1_2_6_122_1
– ident: e_1_2_6_115_1
  doi: 10.1016/S0378-3758(03)00111-3
– ident: e_1_2_6_33_1
  doi: 10.1111/j.1558-5646.1998.tb02006.x
– ident: e_1_2_6_110_1
  doi: 10.1068/a310165
– ident: e_1_2_6_36_1
  doi: 10.1016/j.ecolmodel.2007.05.002
– volume: 2
  start-page: 12
  year: 2002
  ident: e_1_2_6_121_1
  article-title: geepack: yet another package for generalized estimating equations
  publication-title: R News
– ident: e_1_2_6_75_1
  doi: 10.1890/04-0609
– ident: e_1_2_6_116_1
  doi: 10.1002/0471662682
– ident: e_1_2_6_68_1
  doi: 10.1034/j.1600-0587.2002.250509.x
– volume-title: Geographically weighted regression: the analysis of spatially varying relationships
  year: 2002
  ident: e_1_2_6_45_1
– ident: e_1_2_6_101_1
  doi: 10.1111/j.1365-2699.2004.01076.x
– ident: e_1_2_6_66_1
  doi: 10.1111/j.1365-2699.2005.01379.x
– ident: e_1_2_6_16_1
  doi: 10.1023/A:1009601932481
– ident: e_1_2_6_118_1
  doi: 10.1126/science.1113399
– ident: e_1_2_6_76_1
  doi: 10.2307/1939924
– ident: e_1_2_6_92_1
  doi: 10.1038/nature03850
– ident: e_1_2_6_62_1
  doi: 10.2307/1942661
– ident: e_1_2_6_47_1
  doi: 10.1093/biostatistics/4.1.11
– ident: e_1_2_6_105_1
  doi: 10.1111/j.1095-8312.1978.tb00014.x
– volume-title: Spatial processes: models and applications
  year: 1981
  ident: e_1_2_6_26_1
– ident: e_1_2_6_84_1
  doi: 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2
– ident: e_1_2_6_113_1
  doi: 10.1007/978-0-387-21706-2
– ident: e_1_2_6_34_1
  doi: 10.1046/j.1466-822X.2003.00322.x
– ident: e_1_2_6_40_1
  doi: 10.2307/2532625
– ident: e_1_2_6_64_1
  doi: 10.1126/science.1072779
– ident: e_1_2_6_77_1
  doi: 10.1007/BF00048036
– ident: e_1_2_6_120_1
  doi: 10.1644/1545-1542(2003)084<1356:HPOFAM>2.0.CO;2
– volume-title: Analysis of longitudinal data
  year: 1995
  ident: e_1_2_6_31_1
– ident: e_1_2_6_17_1
  doi: 10.1016/S0304-3800(01)00501-4
– ident: e_1_2_6_48_1
  doi: 10.1111/j.1467-9876.2005.00466.x
– ident: e_1_2_6_58_1
  doi: 10.1198/1085711031508
– volume-title: An introduction to applied geostatistics
  year: 1989
  ident: e_1_2_6_63_1
– volume-title: Numerical ecology
  year: 1998
  ident: e_1_2_6_78_1
SSID ssj0012968
Score 2.493595
SecondaryResourceType review_article
Snippet Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close...
Species distributional or trait data based on range map (extent‐of‐occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close...
SourceID proquest
pascalfrancis
crossref
wiley
jstor
istex
fao
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 609
SubjectTerms Animal, plant and microbial ecology
Autocorrelation
Autoregressive models
base maps
biogeography
Biological and medical sciences
climate models
computer software
Correlations
Datasets
Ecological modeling
ecologists
Eigenvectors
environmental impact
equations
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Landscape ecology
least squares
Methods and techniques (sampling, tagging, trapping, modelling...)
Modeling
researchers
Review & Synthesis
spatial data
Spatial models
Species
statistical models
surveys
Title Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
URI https://api.istex.fr/ark:/67375/WNG-C8K441N1-2/fulltext.pdf
https://www.jstor.org/stable/30244511
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.2007.0906-7590.05171.x
https://www.proquest.com/docview/20501373
https://www.proquest.com/docview/47490381
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA66IHhx_TVs_bHmIN46tE3SNN5kmN1FcQR1cG8hSdtFRlrZdmDXv973kk7HisIi3nJ4Ce3rS_K95sv3CHkpnbFS1TKuDLcx7NBlXJiyiFle2pxlFcusJ8iu8rM1f3suzgf-E96FCfoQ4w83nBl-vcYJbmw3meRBf1BBSiyFSuaoNpXOEU8idQvx0cdRSQp2NX8rbrSekHr-PNBkp7pdmxbwK7r-akddRB6l6cCVdaiBMQGpv0Jdv1edHJLN7i0DRWUz3_Z27n78JgD5f9xwn9wbIC19E2LwAblVNQ_JnVDk8hpaSze0Zsv9rTroMCwr3SNy8d7Xse5o31ITyldQANO0Q7o3WJpt3zosIxKIe_RrQwG3UjMIqtC2pnhjFJJ-WqIQ8FDDC3oiAfY1NTTc0HlM1ifLz4uzeKgAETtIrNLYJYlVqna5Yw51fVymnBKFsYKzOnE1dzLLy6IStnBFLSouMsdswlxdWcatYTNy0LRNdURooqQtpQUTY7mFpJTnFpouKXhZlymPiNx9be0GeXSs0vFN79Mk9LRGT2v0tPae1lcRScee34NEyA36HEFAaXMBK7lef8rw_BiTdZbLiLzyUTaOZS43yL6TQn9ZnepF8Q4Q7CrVWURmPgxHQwZ4C-XmInI8icv9UylIsGUmIvJiF6gaVhM8IjJN1W47eFqBGpTs7xZccoWny-AvH5Y3fmW9XHw4xeaTf-75lNz1v9Y9l_IZOegvt9VzwIS9Pfaz_Sd35E-Q
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgCMGlfK6aAq0PiFtW2diOE25o2Xah7SJBV_Rm2U5SVa0S1GSlwq9nxs5mCQKpQtx8mImSydh-Y8-8IeS1tNrIrJRhobkJYYfOw1TnaciS3CQsLlhsXILsIpkv-cczcda1A8JaGM8P0R-44cxw6zVOcDyQHsxyT0CYQUwsRRaNkW5qMgZAeQ8bfCOR_vvPPZcU7GuuLq4XH6T1_PlJg73qbqlrQLBo_Jt18iJmUuoGjFn6LhgDmPor2HW71cEjcrX-Tp-kcjletWZsf_xGAfmfDPGYbHeolr7zbviE3Cmqp-S-73P5HUYz241Gs01hHSh0K0vzjJyfuFbWDW1rqn0HCwp4mjaY8Q2SetXWFjuJ-Nw9elFRgK5Ud5wqtC4pFo1C3E9z5ALu2niBJubAvqWa-iKd52R5MDudzsOuCURoIbaahDaKTJaVNrHMIrWPjTObiVQbwVkZ2ZJbGSd5WgiT2rQUBRexZSZitiwM40azEdmq6qrYITTKpMmlARFtuIG4lCcGhjZKeV7mEx4Quf7dynYM6dio40ptIiW0tEJLK7S0cpZWNwGZ9JrfPEvILXR2wKOUPofFXC2_xHiFjPE6S2RA3jg365-lry8xAU8K9XVxqKbpEYDYxUTFARk5P-wFGUAuZJwLyN7AMTdvlUGMLWMRkP21pypYUPCWSFdFvWrgbQXSULK_S3DJM7xgBns5v7z1J6vZ9NMhDnf_WXOfPJifnhyr4w-LoxfkoTtpd6mVL8lWe70qXgFEbM2em_o_AWn2U6w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCMTL-FktAzY_IN5SpbETJ7yh0m4wKAio2JtlO_E0FSXTkkqDv547O00JAmlCvFmRL0ouZ_u7-PN3hDwXRmmRWxGWiusQVugizFSRhSwtdMriksXaEWQX6fGSvz1NTjv-E56F8foQ_Q83HBluvsYBflHYwSD3-oM5pMQiyaMxqk1NxoAnb_EUriJA-tRLScGy5o7F9d0HrJ4_32mwVN20qgYAi76_2nAXkUipGvCl9UUwBij1V6zrFqv5PbLavKbnqKzG61aPzY_fFCD_jx_uk90O09JXPggfkBtl9ZDc9lUuv0NrZrrWaLY9VgcG3bzSPCJn710h64a2NVW-fgUFNE0b5HtDT7Vua4N1RDxzj55XFIArVZ2iCq0txSOjkPXTApWAuyJeYIkM2JdUUX9E5zFZzmdfpsdhVwIiNJBZTUITRTrPrUkNMyjsY-Lc5EmmdMKZjYzlRsRpkZWJzkxmk5InsWE6YsaWmnGt2IjsVHVV7hEa5UIXQkMXpbmGrJSnGpomynhhiwkPiNh8bWk6fXQs0_FNbvMk9LRET0v0tHSellcBmfSWF14j5Bo2exBQUp3BVC6Xn2PcQMZsnaUiIC9clPX3UpcrpN-JRH5dHMlpdgIQdjGRcUBGLgz7jgwAF-rNBeRgEJfbp8ohwxZxEpDDTaBKmE5wj0hVZb1u4GkTFKFkf-_BBc9xexn85cLy2q8sZ9MPR9jc_2fLQ3Ln4-u5fPdmcfKE3HW_2R2v8inZaS_X5TPAh60-cAP_JxKYUls
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+to+account+for+spatial+autocorrelation+in+the+analysis+of+species+distributional+data%3A+a+review&rft.jtitle=Ecography+%28Copenhagen%29&rft.au=F.+Dormann%2C+Carsten&rft.au=M.+McPherson%2C+Jana&rft.au=B.+Ara%C3%BAjo%2C+Miguel&rft.au=Bivand%2C+Roger&rft.date=2007-10-01&rft.issn=0906-7590&rft.eissn=1600-0587&rft.volume=30&rft.issue=5&rft.spage=609&rft.epage=628&rft_id=info:doi/10.1111%2Fj.2007.0906-7590.05171.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_2007_0906_7590_05171_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-7590&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-7590&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-7590&client=summon