Methods to account for spatial autocorrelation in the analysis of species distributional data: a review
Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model...
Saved in:
Published in | Ecography (Copenhagen) Vol. 30; no. 5; pp. 609 - 628 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Copenhagen
Copenhagen : Blackwell Publishing Ltd
01.10.2007
Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species' distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix. |
---|---|
AbstractList | Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close to each other exhibit more similar values than those further apart. If this pattern remains present in the residuals of a statistical model based on such data, one of the key assumptions of standard statistical analyses, that residuals are independent and identically distributed (i.i.d), is violated. The violation of the assumption of i.i.d. residuals may bias parameter estimates and can increase type I error rates (falsely rejecting the null hypothesis of no effect). While this is increasingly recognised by researchers analysing species distribution data, there is, to our knowledge, no comprehensive overview of the many available spatial statistical methods to take spatial autocorrelation into account in tests of statistical significance. Here, we describe six different statistical approaches to infer correlates of species' distributions, for both presence/absence (binary response) and species abundance data (poisson or normally distributed response), while accounting for spatial autocorrelation in model residuals: autocovariate regression; spatial eigenvector mapping; generalised least squares; (conditional and simultaneous) autoregressive models and generalised estimating equations. A comprehensive comparison of the relative merits of these methods is beyond the scope of this paper. To demonstrate each method's implementation, however, we undertook preliminary tests based on simulated data. These preliminary tests verified that most of the spatial modeling techniques we examined showed good type I error control and precise parameter estimates, at least when confronted with simplistic simulated data containing spatial autocorrelation in the errors. However, we found that for presence/absence data the results and conclusions were very variable between the different methods. This is likely due to the low information content of binary maps. Also, in contrast with previous studies, we found that autocovariate methods consistently underestimated the effects of environmental controls of species distributions. Given their widespread use, in particular for the modelling of species presence/absence data (e.g. climate envelope models), we argue that this warrants further study and caution in their use. To aid other ecologists in making use of the methods described, code to implement them in freely available software is provided in an electronic appendix. |
Author | Schurr, Frank M Davies, Richard G McPherson, Jana M Bolliger, Janine Kühn, Ingolf Jetz, Walter Peres-Neto, Pedro R Schröder, Boris Hirzel, Alexandre Reineking, Björn Wilson, Robert Dormann, Carsten F Ohlemüller, Ralf Araújo, Miguel B Daniel Kissling, W Carl, Gudrun Bivand, Roger |
Author_xml | – sequence: 1 fullname: Dormann, Carsten F – sequence: 2 fullname: McPherson, Jana M – sequence: 3 fullname: Araújo, Miguel B – sequence: 4 fullname: Bivand, Roger – sequence: 5 fullname: Bolliger, Janine – sequence: 6 fullname: Carl, Gudrun – sequence: 7 fullname: Davies, Richard G – sequence: 8 fullname: Hirzel, Alexandre – sequence: 9 fullname: Jetz, Walter – sequence: 10 fullname: Daniel Kissling, W – sequence: 11 fullname: Kühn, Ingolf – sequence: 12 fullname: Ohlemüller, Ralf – sequence: 13 fullname: Peres-Neto, Pedro R – sequence: 14 fullname: Reineking, Björn – sequence: 15 fullname: Schröder, Boris – sequence: 16 fullname: Schurr, Frank M – sequence: 17 fullname: Wilson, Robert |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=19282725$$DView record in Pascal Francis |
BookMark | eNqNkcFv0zAYxSM0JLrBn4DwBW4pn-04cTggoWoUxNgOMHG0vrj25pLFne2y9r_HWaoeuAxfbOv9vmf5vdPiZPCDKQpCYU7zer-eM4BmDi3UZSNamIOgDZ3vnhUzWgOUIGRzUsyO-oviNMY1AGVtLWfFzXeTbv0qkuQJau23QyLWBxI3mBz2BLfJax-C6fPdD8QNJN0aggP2--gi8TajRjsTycrFFFy3Hbk8ucKEHwiSYP448_CyeG6xj-bVYT8rrj-f_1x8KS-ull8Xny5KXUNNSw3Qta3VteY6f6PWrNWtkNiJilvQttINq1fSiE5qaYWpBNO8A66t6XjVIT8r3k2-m-DvtyYmdeeiNn2Pg_HbqKqmaoFL-iTIQADlDc_g2wOIUWNvAw7aRbUJ7g7DXtGWSdYwkbmPE6eDjzEYq7RLj6GlgK5XFNRYmFqrsTA1FqLGQtRjYWqXDeQ_Bsc3nh49vP3gerP_7zl1vrhajsds8HoyWMfkw9GAA6sqQUe9nPTcsdkddQy_Vd3wRqhfl0u1kN-qil5SxTL_ZuIteoU3IQd2_YPlQAFkzirP_AX3otJs |
CitedBy_id | crossref_primary_10_1080_21580103_2019_1687108 crossref_primary_10_1111_avsc_12135 crossref_primary_10_3390_d13090425 crossref_primary_10_1016_j_agee_2014_03_014 crossref_primary_10_1111_j_1472_4642_2010_00677_x crossref_primary_10_1016_j_agee_2011_05_026 crossref_primary_10_1002_ece3_2335 crossref_primary_10_1016_j_apgeog_2014_09_012 crossref_primary_10_1016_j_ttbdis_2016_02_008 crossref_primary_10_1111_j_1439_0485_2010_00393_x crossref_primary_10_1016_j_ecolind_2012_05_022 crossref_primary_10_1016_j_gecco_2015_07_004 crossref_primary_10_1371_journal_pone_0031520 crossref_primary_10_1002_ece3_1496 crossref_primary_10_3354_esr00574 crossref_primary_10_1002_aqc_3290 crossref_primary_10_1371_journal_pone_0063582 crossref_primary_10_1016_j_foreco_2024_121749 crossref_primary_10_1016_j_jnc_2023_126393 crossref_primary_10_1371_journal_pntd_0004211 crossref_primary_10_1080_13574809_2015_1041894 crossref_primary_10_1111_ejss_12346 crossref_primary_10_1111_jofo_12026 crossref_primary_10_1007_s10531_020_02077_4 crossref_primary_10_1371_journal_pone_0306832 crossref_primary_10_1371_journal_pone_0141148 crossref_primary_10_1111_nph_17443 crossref_primary_10_1111_mec_12628 crossref_primary_10_1111_ddi_12623 crossref_primary_10_1890_08_2323_1 crossref_primary_10_1111_ddi_13955 crossref_primary_10_1093_jmammal_gyad042 crossref_primary_10_1016_j_agee_2014_03_034 crossref_primary_10_1016_j_jenvrad_2016_05_010 crossref_primary_10_1111_ecog_02881 crossref_primary_10_1111_faf_12515 crossref_primary_10_1016_j_foreco_2010_03_007 crossref_primary_10_5735_086_058_0108 crossref_primary_10_1016_j_jaridenv_2018_07_002 crossref_primary_10_1111_brv_12111 crossref_primary_10_1111_eva_12154 crossref_primary_10_3390_insects14020180 crossref_primary_10_1016_j_agee_2017_10_025 crossref_primary_10_1007_s00442_019_04370_8 crossref_primary_10_1007_s11001_016_9297_9 crossref_primary_10_1186_1810_522X_52_57 crossref_primary_10_1016_j_scitotenv_2016_06_223 crossref_primary_10_1111_j_1466_8238_2008_00416_x crossref_primary_10_1590_S1415_47572009000200001 crossref_primary_10_1093_forestry_cpu008 crossref_primary_10_5194_gmd_17_6007_2024 crossref_primary_10_1016_j_biocon_2009_08_004 crossref_primary_10_1016_j_trc_2018_04_003 crossref_primary_10_2989_1814232X_2019_1576540 crossref_primary_10_3389_fmars_2022_850368 crossref_primary_10_1111_jbi_13792 crossref_primary_10_1111_j_1523_1739_2010_01645_x crossref_primary_10_1007_s10336_011_0766_2 crossref_primary_10_1111_faf_12524 crossref_primary_10_3390_ijerph15081625 crossref_primary_10_1038_srep45371 crossref_primary_10_1111_evo_12308 crossref_primary_10_1002_eap_3007 crossref_primary_10_1016_j_scitotenv_2021_145198 crossref_primary_10_1016_j_ppees_2015_07_005 crossref_primary_10_1371_journal_pone_0007843 crossref_primary_10_1002_ece3_2371 crossref_primary_10_1371_journal_pone_0108548 crossref_primary_10_1016_j_biocon_2010_06_024 crossref_primary_10_1080_15230406_2014_893839 crossref_primary_10_1016_j_indic_2025_100646 crossref_primary_10_1111_1365_2656_12896 crossref_primary_10_21425_fob_18_133105 crossref_primary_10_1038_s41598_021_83262_5 crossref_primary_10_1016_j_chemosphere_2009_06_023 crossref_primary_10_1038_s41467_020_14409_7 crossref_primary_10_1016_j_landurbplan_2022_104447 crossref_primary_10_1111_btp_12417 crossref_primary_10_1111_fog_12660 crossref_primary_10_1016_j_jhevol_2014_11_001 crossref_primary_10_1108_PM_09_2019_0053 crossref_primary_10_1098_rsos_210932 crossref_primary_10_3354_meps09974 crossref_primary_10_1016_j_gecco_2016_02_008 crossref_primary_10_1080_10095020_2024_2336593 crossref_primary_10_1111_1365_2664_12635 crossref_primary_10_1007_s10841_010_9280_8 crossref_primary_10_3390_f6103501 crossref_primary_10_1007_s00442_013_2627_6 crossref_primary_10_1016_j_ecoinf_2022_101629 crossref_primary_10_1111_ddi_12656 crossref_primary_10_1111_j_1365_2699_2011_02550_x crossref_primary_10_1111_j_1472_4642_2011_00813_x crossref_primary_10_1140_epjds_s13688_018_0156_6 crossref_primary_10_1111_geb_12818 crossref_primary_10_3390_plants6040058 crossref_primary_10_1080_02827581_2015_1052751 crossref_primary_10_1002_rse2_298 crossref_primary_10_1111_j_1600_0587_2008_05632_x crossref_primary_10_3390_f7020043 crossref_primary_10_1016_j_baae_2012_05_005 crossref_primary_10_1111_j_1365_2699_2010_02392_x crossref_primary_10_1016_j_envpol_2017_07_021 crossref_primary_10_1049_cth2_12486 crossref_primary_10_1002_ecs2_4028 crossref_primary_10_1007_s11356_025_35985_5 crossref_primary_10_1038_s41559_020_1216_4 crossref_primary_10_1016_j_gecco_2016_02_006 crossref_primary_10_1016_j_ufug_2020_126732 crossref_primary_10_1590_0074_0276130047 crossref_primary_10_1111_ele_13259 crossref_primary_10_3390_ani9030113 crossref_primary_10_3390_su11154108 crossref_primary_10_1111_gcb_15711 crossref_primary_10_1016_j_actao_2010_11_006 crossref_primary_10_1007_s11252_022_01255_2 crossref_primary_10_1080_02664763_2017_1386771 crossref_primary_10_1111_1365_2656_12872 crossref_primary_10_1371_journal_pone_0157929 crossref_primary_10_1111_ecog_01593 crossref_primary_10_63033_JWLS_WHOX2496 crossref_primary_10_1111_ibi_12733 crossref_primary_10_1111_j_1365_2699_2009_02186_x crossref_primary_10_1007_s11802_021_4557_y crossref_primary_10_1007_s00442_020_04687_9 crossref_primary_10_1007_s10531_024_02995_7 crossref_primary_10_1016_j_actao_2009_08_009 crossref_primary_10_1080_00343404_2012_675054 crossref_primary_10_1111_ddi_12672 crossref_primary_10_1111_ele_13269 crossref_primary_10_1655_HERPMONOGRAPHS_D_13_00002 crossref_primary_10_1002_ece3_10439 crossref_primary_10_1016_j_geodrs_2021_e00412 crossref_primary_10_1371_journal_pone_0162035 crossref_primary_10_4018_ijagr_2014100101 crossref_primary_10_1016_j_tree_2015_09_007 crossref_primary_10_1111_cobi_13036 crossref_primary_10_1111_j_1466_8238_2012_00777_x crossref_primary_10_13157_arla_68_1_2021_ra2 crossref_primary_10_1111_j_1472_4642_2010_00668_x crossref_primary_10_3390_ijgi4042496 crossref_primary_10_1111_1365_2656_12881 crossref_primary_10_7717_peerj_7156 crossref_primary_10_1093_cz_zov003 crossref_primary_10_3389_fmicb_2014_00667 crossref_primary_10_1002_aqc_70013 crossref_primary_10_1080_13658816_2017_1346255 crossref_primary_10_1111_2041_210X_12174 crossref_primary_10_1111_geb_12868 crossref_primary_10_1007_s11258_014_0329_8 crossref_primary_10_1111_ddi_12201 crossref_primary_10_1016_j_ecolmodel_2019_05_005 crossref_primary_10_1016_j_jaridenv_2014_01_006 crossref_primary_10_1111_1755_0998_13367 crossref_primary_10_1016_j_scitotenv_2019_03_009 crossref_primary_10_3354_meps12303 crossref_primary_10_1111_ele_13233 crossref_primary_10_1007_s10980_010_9482_1 crossref_primary_10_1108_JFRA_03_2019_0043 crossref_primary_10_1111_2041_210X_12502 crossref_primary_10_1016_j_ocecoaman_2017_12_014 crossref_primary_10_1111_2041_210X_12983 crossref_primary_10_1007_s10237_013_0517_9 crossref_primary_10_1007_s13157_011_0165_8 crossref_primary_10_1111_geb_13702 crossref_primary_10_3390_d12010011 crossref_primary_10_1111_fwb_13319 crossref_primary_10_1111_ecog_01925 crossref_primary_10_1007_s13593_017_0471_5 crossref_primary_10_1111_j_1472_4642_2010_00646_x crossref_primary_10_25225_jvb_22041 crossref_primary_10_1016_j_jclepro_2019_05_389 crossref_primary_10_1111_j_2041_210X_2010_00059_x crossref_primary_10_1002_1438_390X_12001 crossref_primary_10_1111_j_2041_210X_2011_00141_x crossref_primary_10_3356_rapt_49_02_174_182_1 crossref_primary_10_1038_s41477_023_01369_1 crossref_primary_10_1016_j_biocon_2021_109330 crossref_primary_10_1098_rsbl_2018_0388 crossref_primary_10_1146_annurev_marine_122414_033921 crossref_primary_10_1016_j_sste_2010_09_003 crossref_primary_10_1016_j_jag_2017_08_009 crossref_primary_10_2478_s11756_020_00455_5 crossref_primary_10_1016_j_biocon_2018_03_033 crossref_primary_10_1016_j_foreco_2009_09_007 crossref_primary_10_1098_rspb_2022_2473 crossref_primary_10_1016_j_biocon_2018_12_033 crossref_primary_10_1016_j_jclepro_2017_09_275 crossref_primary_10_1111_j_1365_2699_2011_02589_x crossref_primary_10_1111_jav_03189 crossref_primary_10_1016_j_dsr2_2016_10_009 crossref_primary_10_1016_j_gloenvcha_2015_02_004 crossref_primary_10_1186_s40461_018_0068_5 crossref_primary_10_1016_j_agee_2021_107547 crossref_primary_10_1111_j_1365_2699_2010_02433_x crossref_primary_10_1093_aob_mcae030 crossref_primary_10_1093_icesjms_fsac170 crossref_primary_10_1007_s10182_024_00507_0 crossref_primary_10_1016_j_ecolmodel_2020_109180 crossref_primary_10_1016_j_jas_2015_12_002 crossref_primary_10_3389_fmars_2020_00303 crossref_primary_10_1002_eap_1710 crossref_primary_10_1016_j_apgeog_2012_11_014 crossref_primary_10_1007_s12224_013_9157_1 crossref_primary_10_1002_mnfr_202400604 crossref_primary_10_1071_WF18234 crossref_primary_10_1038_s41598_022_09795_5 crossref_primary_10_1016_j_agee_2016_04_015 crossref_primary_10_1016_j_agee_2016_04_013 crossref_primary_10_1111_ele_12343 crossref_primary_10_1002_joc_5020 crossref_primary_10_1002_gbc_20089 crossref_primary_10_1016_j_ecolind_2017_04_036 crossref_primary_10_1007_s10144_008_0106_4 crossref_primary_10_1111_1365_2656_12018 crossref_primary_10_1007_s10393_010_0316_z crossref_primary_10_1016_j_rsma_2021_101714 crossref_primary_10_1111_j_1365_294X_2010_04717_x crossref_primary_10_1111_cobi_13448 crossref_primary_10_1371_journal_pone_0091695 crossref_primary_10_1016_j_ecoser_2023_101519 crossref_primary_10_1038_s41467_020_18321_y crossref_primary_10_1093_biolinnean_bly168 crossref_primary_10_1016_j_healthplace_2010_12_005 crossref_primary_10_1016_j_fishres_2017_06_011 crossref_primary_10_1111_j_1466_8238_2011_00714_x crossref_primary_10_1371_journal_pone_0083605 crossref_primary_10_1016_j_foreco_2019_117737 crossref_primary_10_1111_ele_13682 crossref_primary_10_1088_1748_9326_abf526 crossref_primary_10_3390_d12030119 crossref_primary_10_1007_s11356_017_0864_7 crossref_primary_10_1093_icesjms_fsab256 crossref_primary_10_1186_1746_6148_8_172 crossref_primary_10_1016_j_foreco_2022_120694 crossref_primary_10_1098_rsos_191644 crossref_primary_10_1111_btp_12804 crossref_primary_10_1007_s10344_020_01414_w crossref_primary_10_1038_s41559_024_02347_2 crossref_primary_10_1670_18_112 crossref_primary_10_1111_avsc_12115 crossref_primary_10_1016_j_eswa_2018_02_028 crossref_primary_10_1007_s10980_016_0482_7 crossref_primary_10_1002_ece3_613 crossref_primary_10_1111_jbi_12825 crossref_primary_10_1016_j_biocon_2018_10_031 crossref_primary_10_1038_s41558_018_0231_9 crossref_primary_10_1017_S0007485313000163 crossref_primary_10_1111_1365_2664_12681 crossref_primary_10_1016_j_biocon_2008_11_008 crossref_primary_10_1016_j_visinf_2021_09_001 crossref_primary_10_1016_j_gecco_2018_e00513 crossref_primary_10_1111_1365_2664_12686 crossref_primary_10_1111_geb_12881 crossref_primary_10_1675_063_040_sp112 crossref_primary_10_1016_j_ecss_2017_06_038 crossref_primary_10_1007_s10531_023_02616_9 crossref_primary_10_1111_1365_2435_12146 crossref_primary_10_1038_s41598_018_23762_z crossref_primary_10_1371_journal_pone_0140666 crossref_primary_10_1111_cobi_12103 crossref_primary_10_1371_journal_pone_0186987 crossref_primary_10_1016_j_ecoinf_2024_102684 crossref_primary_10_1111_ecog_01986 crossref_primary_10_1111_ecog_01503 crossref_primary_10_1038_s41559_019_0799_0 crossref_primary_10_1016_j_ppees_2017_08_003 crossref_primary_10_1016_j_fooweb_2022_e00249 crossref_primary_10_1371_journal_pone_0153977 crossref_primary_10_1002_ece3_2328 crossref_primary_10_1111_j_1752_4598_2012_00217_x crossref_primary_10_1007_s12665_016_6338_2 crossref_primary_10_1002_aqc_3232 crossref_primary_10_1002_ecy_4443 crossref_primary_10_1073_pnas_2004769118 crossref_primary_10_1186_s13071_019_3682_6 crossref_primary_10_1111_ddi_12272 crossref_primary_10_1371_journal_pone_0160262 crossref_primary_10_1016_j_ecoinf_2012_11_008 crossref_primary_10_1007_s12145_020_00468_3 crossref_primary_10_1111_ddi_12165 crossref_primary_10_1515_mammalia_2016_0155 crossref_primary_10_1016_j_tree_2011_05_012 crossref_primary_10_1016_j_geoderma_2017_06_016 crossref_primary_10_1111_ddi_13019 crossref_primary_10_1139_cjz_2016_0033 crossref_primary_10_1007_s10457_014_9757_7 crossref_primary_10_1186_s13021_020_00151_6 crossref_primary_10_3354_meps13111 crossref_primary_10_1016_j_ppees_2017_06_004 crossref_primary_10_1016_j_scs_2024_105700 crossref_primary_10_3389_fmars_2022_948336 crossref_primary_10_1016_j_apgeog_2021_102521 crossref_primary_10_1111_j_1365_2419_2012_00616_x crossref_primary_10_1890_09_1359_1 crossref_primary_10_1177_0309133314521448 crossref_primary_10_1080_00063657_2021_1977780 crossref_primary_10_1111_j_1749_8198_2010_00351_x crossref_primary_10_1080_03949370_2011_635696 crossref_primary_10_1080_13416979_2023_2257464 crossref_primary_10_1007_s00442_012_2498_2 crossref_primary_10_1007_s10344_019_1255_9 crossref_primary_10_1007_s10113_014_0733_6 crossref_primary_10_1111_ecog_03389 crossref_primary_10_1111_j_1365_2656_2012_01970_x crossref_primary_10_1038_s41561_019_0530_4 crossref_primary_10_1080_24749508_2024_2429227 crossref_primary_10_1007_s11273_016_9516_9 crossref_primary_10_1016_j_gecco_2023_e02682 crossref_primary_10_1371_journal_pone_0194032 crossref_primary_10_1016_j_ecolind_2020_106874 crossref_primary_10_3389_fgene_2015_00132 crossref_primary_10_1098_rstb_2022_0194 crossref_primary_10_1111_ecog_03380 crossref_primary_10_1111_jvs_12759 crossref_primary_10_1007_s10531_019_01915_4 crossref_primary_10_1016_j_ecolind_2022_109261 crossref_primary_10_1017_S0007485325000021 crossref_primary_10_1111_geoa_12050 crossref_primary_10_3354_meps14471 crossref_primary_10_1007_s00027_020_0715_3 crossref_primary_10_1007_s10980_022_01482_0 crossref_primary_10_1134_S2075111724700498 crossref_primary_10_1111_j_1365_2745_2012_01994_x crossref_primary_10_7717_peerj_6794 crossref_primary_10_1093_ije_dyw128 crossref_primary_10_1002_edn3_79 crossref_primary_10_1111_ecog_05597 crossref_primary_10_1007_s10750_020_04512_7 crossref_primary_10_1016_j_foreco_2013_05_057 crossref_primary_10_1093_jpe_rtu002 crossref_primary_10_1111_j_1600_0587_2009_05495_x crossref_primary_10_1007_s11258_011_9961_8 crossref_primary_10_3390_rs10081263 crossref_primary_10_1111_geb_12435 crossref_primary_10_1111_j_1365_2699_2012_02707_x crossref_primary_10_1002_ecs2_70138 crossref_primary_10_1007_s10531_024_02800_5 crossref_primary_10_1002_fee_2499 crossref_primary_10_1016_j_jglr_2015_10_015 crossref_primary_10_1016_j_envsci_2020_04_013 crossref_primary_10_1111_j_1466_8238_2012_00794_x crossref_primary_10_1289_EHP15106 crossref_primary_10_1371_journal_pone_0072984 crossref_primary_10_1016_j_jenvman_2024_122120 crossref_primary_10_1080_14772000_2010_533716 crossref_primary_10_1139_cjfas_2022_0108 crossref_primary_10_1007_s11676_016_0215_4 crossref_primary_10_1007_s10493_022_00765_0 crossref_primary_10_1007_s11270_009_9997_8 crossref_primary_10_1016_j_ecolind_2017_11_026 crossref_primary_10_1016_j_ufug_2022_127766 crossref_primary_10_1071_AM23054 crossref_primary_10_1111_1462_2920_13112 crossref_primary_10_1007_s11119_022_09896_1 crossref_primary_10_1038_s41598_021_86830_x crossref_primary_10_1111_j_1365_2745_2012_01972_x crossref_primary_10_1038_s41598_018_22436_0 crossref_primary_10_1111_j_1752_4598_2010_00097_x crossref_primary_10_1186_s12879_018_3343_y crossref_primary_10_1007_s10530_017_1525_y crossref_primary_10_1002_sim_5944 crossref_primary_10_3354_meps12228 crossref_primary_10_1111_j_1365_2699_2011_02523_x crossref_primary_10_1098_rspb_2024_0808 crossref_primary_10_3354_meps11378 crossref_primary_10_1007_s10531_022_02458_x crossref_primary_10_1890_11_1608_1 crossref_primary_10_1111_ecog_05134 crossref_primary_10_1139_cjfas_2020_0090 crossref_primary_10_1071_WF18220 crossref_primary_10_1016_j_trd_2019_09_004 crossref_primary_10_1038_s43247_023_01098_5 crossref_primary_10_1016_j_rse_2015_09_020 crossref_primary_10_1002_ecs2_2634 crossref_primary_10_1002_ecs2_3969 crossref_primary_10_1007_s11104_009_0043_9 crossref_primary_10_1111_afe_12284 crossref_primary_10_1007_s10531_016_1278_4 crossref_primary_10_1007_s10750_011_0673_9 crossref_primary_10_1016_j_biocon_2015_12_005 crossref_primary_10_1111_j_1600_0587_2010_06775_x crossref_primary_10_1016_j_biocon_2015_12_007 crossref_primary_10_1038_s41597_022_01738_z crossref_primary_10_1111_j_1600_0706_2009_17540_x crossref_primary_10_1111_j_2007_0906_7590_05358_x crossref_primary_10_1111_icad_12437 crossref_primary_10_1016_j_scib_2025_03_001 crossref_primary_10_1111_icad_12438 crossref_primary_10_1111_ecog_02097 crossref_primary_10_1139_cjfas_2017_0526 crossref_primary_10_3390_fishes2030012 crossref_primary_10_1111_geb_13345 crossref_primary_10_1371_journal_pntd_0002992 crossref_primary_10_1111_geb_12011 crossref_primary_10_1016_j_dsr2_2016_07_007 crossref_primary_10_1080_11263504_2017_1353550 crossref_primary_10_1371_journal_pone_0159795 crossref_primary_10_3389_fmars_2020_00214 crossref_primary_10_1016_j_ecolmodel_2009_06_004 crossref_primary_10_1017_S0959270910000298 crossref_primary_10_1016_j_scitotenv_2024_172431 crossref_primary_10_1186_1756_3305_5_270 crossref_primary_10_1038_s41467_020_16449_5 crossref_primary_10_1007_s00265_014_1706_y crossref_primary_10_1016_j_ecoser_2018_03_003 crossref_primary_10_1017_inp_2020_21 crossref_primary_10_1093_cz_zoz037 crossref_primary_10_5194_bg_14_163_2017 crossref_primary_10_1111_geb_12486 crossref_primary_10_5194_bg_10_3127_2013 crossref_primary_10_1016_j_ympev_2024_108056 crossref_primary_10_1111_geb_12483 crossref_primary_10_1111_oik_07771 crossref_primary_10_1371_journal_pone_0151825 crossref_primary_10_24072_pcjournal_454 crossref_primary_10_1111_j_1472_4642_2010_00705_x crossref_primary_10_1371_journal_pntd_0006098 crossref_primary_10_1007_s10750_015_2277_2 crossref_primary_10_1016_j_ecolind_2022_109233 crossref_primary_10_1007_s40615_022_01453_w crossref_primary_10_1016_j_landurbplan_2013_11_012 crossref_primary_10_15446_rcdg_v31n2_98012 crossref_primary_10_1002_eap_2966 crossref_primary_10_3389_fevo_2023_1178379 crossref_primary_10_1080_14772000_2011_588726 crossref_primary_10_1111_2041_210X_12609 crossref_primary_10_1016_j_biocon_2015_12_029 crossref_primary_10_1111_j_1654_109X_2010_01096_x crossref_primary_10_1016_j_aquabot_2013_01_005 crossref_primary_10_1007_s10531_015_0869_9 crossref_primary_10_1016_j_agee_2022_108263 crossref_primary_10_1111_gean_12054 crossref_primary_10_2981_wlb_13024 crossref_primary_10_1002_ece3_11654 crossref_primary_10_3389_frsen_2025_1531097 crossref_primary_10_1371_journal_pone_0189509 crossref_primary_10_1007_s40995_021_01238_6 crossref_primary_10_3390_w10020201 crossref_primary_10_1371_journal_pone_0275984 crossref_primary_10_1016_j_ecoinf_2019_100975 crossref_primary_10_1111_oik_10961 crossref_primary_10_1657_1938_4246_45_4_563 crossref_primary_10_1071_WR21045 crossref_primary_10_1098_rspb_2021_1879 crossref_primary_10_1016_j_ecolmodel_2019_108739 crossref_primary_10_1126_science_aah4783 crossref_primary_10_1111_j_1365_2699_2010_02383_x crossref_primary_10_1016_j_ecolmodel_2019_108735 crossref_primary_10_3390_ijgi7080297 crossref_primary_10_1016_j_foreco_2009_05_015 crossref_primary_10_1016_j_foreco_2017_07_045 crossref_primary_10_1128_AEM_02633_08 crossref_primary_10_1007_s10841_022_00402_6 crossref_primary_10_1016_j_fecs_2022_100018 crossref_primary_10_1371_journal_pone_0019359 crossref_primary_10_1007_s10336_013_0967_y crossref_primary_10_1080_00934690_2019_1580093 crossref_primary_10_1007_s11284_017_1496_6 crossref_primary_10_1016_j_dsr_2020_103237 crossref_primary_10_1111_1365_2664_12700 crossref_primary_10_1016_j_ecoinf_2020_101150 crossref_primary_10_1136_bmjopen_2021_054095 crossref_primary_10_1890_14_2467_1 crossref_primary_10_1111_2041_210X_12184 crossref_primary_10_1080_13658816_2011_554296 crossref_primary_10_1016_j_sajb_2021_04_022 crossref_primary_10_3354_meps09926 crossref_primary_10_1002_eap_2589 crossref_primary_10_1002_eap_2104 crossref_primary_10_1111_j_1600_0587_2012_07681_x crossref_primary_10_1016_j_dsr2_2020_104878 crossref_primary_10_1002_fee_2436 crossref_primary_10_1111_j_1365_2664_2009_01628_x crossref_primary_10_1016_j_marpolbul_2018_11_064 crossref_primary_10_1080_01431161_2013_800659 crossref_primary_10_1007_s00436_023_07839_x crossref_primary_10_1111_jbi_14145 crossref_primary_10_1371_journal_pone_0147324 crossref_primary_10_1111_j_1523_1739_2010_01493_x crossref_primary_10_3354_meps13180 crossref_primary_10_1556_ComEc_11_2010_2_8 crossref_primary_10_1177_21582440231152226 crossref_primary_10_1111_j_1466_8238_2008_00408_x crossref_primary_10_1111_cobi_12096 crossref_primary_10_1111_j_1365_2656_2012_02011_x crossref_primary_10_1016_j_mambio_2010_12_004 crossref_primary_10_1016_j_pedobi_2012_08_007 crossref_primary_10_1111_j_1461_0248_2008_01168_x crossref_primary_10_1111_j_1600_0587_2013_00393_x crossref_primary_10_1111_j_1600_0587_2013_00643_x crossref_primary_10_1111_j_1600_0587_2010_06953_x crossref_primary_10_1016_j_ufug_2021_127066 crossref_primary_10_1071_WF11178 crossref_primary_10_1016_j_ecoenv_2018_09_012 crossref_primary_10_1002_ecs2_3918 crossref_primary_10_1139_cjb_2016_0267 crossref_primary_10_3390_biology14030225 crossref_primary_10_1111_jvs_12360 crossref_primary_10_1111_ecog_04665 crossref_primary_10_1007_s10329_012_0341_3 crossref_primary_10_1111_ecog_03331 crossref_primary_10_24072_pcjournal_493 crossref_primary_10_1098_rspb_2015_2998 crossref_primary_10_1002_ece3_9827 crossref_primary_10_1111_j_1558_5646_2011_01329_x crossref_primary_10_1007_s10531_013_0454_z crossref_primary_10_1007_s13364_024_00749_y crossref_primary_10_1002_ecs2_1723 crossref_primary_10_1007_s10531_024_02990_y crossref_primary_10_1890_12_1513_1 crossref_primary_10_1016_j_ecoinf_2014_05_006 crossref_primary_10_1093_jmammal_gyac104 crossref_primary_10_1002_ece3_3294 crossref_primary_10_3389_fenvs_2023_1229437 crossref_primary_10_1098_rsos_231780 crossref_primary_10_1016_j_ecolmodel_2009_04_045 crossref_primary_10_3390_rs16183538 crossref_primary_10_1007_s10980_011_9579_1 crossref_primary_10_1021_acs_analchem_6b00672 crossref_primary_10_1016_j_actao_2017_02_003 crossref_primary_10_3390_su15010582 crossref_primary_10_1016_j_wsee_2022_09_002 crossref_primary_10_1007_s10682_011_9537_z crossref_primary_10_1007_s10980_025_02071_7 crossref_primary_10_1111_1755_0998_12949 crossref_primary_10_1098_rstb_2011_0058 crossref_primary_10_1007_s10980_013_9857_1 crossref_primary_10_5604_01_3001_0013_2803 crossref_primary_10_1371_journal_pmed_1003693 crossref_primary_10_1111_j_1600_0587_2009_06074_x crossref_primary_10_1016_j_gecco_2021_e01608 crossref_primary_10_1016_j_ecolind_2022_109289 crossref_primary_10_1016_j_ecolind_2014_02_023 crossref_primary_10_1016_j_foreco_2015_04_020 crossref_primary_10_1111_gcb_12709 crossref_primary_10_1111_aec_13008 crossref_primary_10_1111_ecog_05534 crossref_primary_10_1002_rse2_342 crossref_primary_10_1007_s10980_019_00947_z crossref_primary_10_1890_12_1899_1 crossref_primary_10_1111_j_1466_8238_2010_00610_x crossref_primary_10_1016_j_apgeog_2016_08_015 crossref_primary_10_1016_j_ecoinf_2021_101478 crossref_primary_10_1111_j_1472_4642_2011_00772_x crossref_primary_10_1016_j_fishres_2021_105905 crossref_primary_10_3996_072012_JFWM_056 crossref_primary_10_1038_s41598_019_46809_1 crossref_primary_10_1111_j_1600_0706_2013_00039_x crossref_primary_10_1016_j_dsr2_2022_105074 crossref_primary_10_1016_j_foreco_2017_07_004 crossref_primary_10_1038_s41467_018_07915_2 crossref_primary_10_1038_s43247_021_00270_z crossref_primary_10_17208_jkpa_2021_10_56_5_83 crossref_primary_10_3390_rs14163980 crossref_primary_10_1016_j_biocon_2015_10_018 crossref_primary_10_1002_ece3_10378 crossref_primary_10_1134_S0022476623080036 crossref_primary_10_1111_btp_13337 crossref_primary_10_1016_j_ecoinf_2015_11_011 crossref_primary_10_1111_aec_13010 crossref_primary_10_1111_btp_12008 crossref_primary_10_2193_2008_217 crossref_primary_10_1007_s00442_016_3751_x crossref_primary_10_1007_s11524_022_00708_5 crossref_primary_10_1111_j_1474_919X_2010_01046_x crossref_primary_10_1093_jmammal_gyw085 crossref_primary_10_1016_j_ecolind_2020_106436 crossref_primary_10_1111_1365_2745_12443 crossref_primary_10_1111_j_1466_8238_2010_00636_x crossref_primary_10_1016_j_jnc_2018_09_002 crossref_primary_10_1371_journal_pone_0038247 crossref_primary_10_2989_1814232X_2016_1218367 crossref_primary_10_1016_j_habitatint_2016_03_005 crossref_primary_10_3390_ijerph19031614 crossref_primary_10_1038_s41586_018_0539_7 crossref_primary_10_5253_arde_v107i1_a10 crossref_primary_10_1111_j_1600_0587_2009_05571_x crossref_primary_10_1111_acv_12739 crossref_primary_10_1098_rstb_2011_0018 crossref_primary_10_1098_rstb_2023_0324 crossref_primary_10_1111_icad_12815 crossref_primary_10_3389_fevo_2023_1116083 crossref_primary_10_1007_s41207_024_00648_3 crossref_primary_10_3897_neobiota_82_96282 crossref_primary_10_1111_ecog_05555 crossref_primary_10_1111_j_1472_4642_2011_00794_x crossref_primary_10_1016_j_spasta_2012_03_005 crossref_primary_10_3897_neobiota_12_2419 crossref_primary_10_1098_rstb_2011_0024 crossref_primary_10_1111_j_1600_0706_2010_18764_x crossref_primary_10_1098_rstb_2011_0025 crossref_primary_10_1007_s11284_010_0695_1 crossref_primary_10_1016_j_cities_2018_11_005 crossref_primary_10_3897_zookeys_100_1427 crossref_primary_10_1126_sciadv_add8553 crossref_primary_10_1111_j_1095_8312_2012_01890_x crossref_primary_10_1016_j_foreco_2024_121691 crossref_primary_10_1098_rspb_2009_0921 crossref_primary_10_1111_j_1365_2486_2010_02229_x crossref_primary_10_3389_fmars_2017_00149 crossref_primary_10_1111_icad_12805 crossref_primary_10_1371_journal_pone_0263508 crossref_primary_10_1111_1365_2745_12463 crossref_primary_10_3390_ijerph22030446 crossref_primary_10_1016_j_biocon_2023_110179 crossref_primary_10_1016_j_foreco_2020_118316 crossref_primary_10_1016_j_ecolind_2010_11_003 crossref_primary_10_1007_s12526_014_0293_5 crossref_primary_10_1371_journal_pone_0150906 crossref_primary_10_1007_s10344_022_01560_3 crossref_primary_10_1111_ddi_12963 crossref_primary_10_1002_rse2_12 crossref_primary_10_1038_ncomms6351 crossref_primary_10_1098_rstb_2011_0117 crossref_primary_10_3389_fcosc_2021_788267 crossref_primary_10_1002_ecy_1944 crossref_primary_10_1111_j_2041_210X_2012_00211_x crossref_primary_10_1017_S095410201000043X crossref_primary_10_1111_ddi_13818 crossref_primary_10_1111_j_1939_7445_2012_00124_x crossref_primary_10_1073_pnas_1308825110 crossref_primary_10_1007_s10531_012_0395_y crossref_primary_10_1016_j_scitotenv_2022_160548 crossref_primary_10_1017_pab_2017_2 crossref_primary_10_1111_j_1752_4598_2011_00150_x crossref_primary_10_1016_j_ecolmodel_2016_02_021 crossref_primary_10_1016_j_foreco_2016_07_040 crossref_primary_10_1016_j_compositesa_2019_105491 crossref_primary_10_1093_icesjms_fsx092 crossref_primary_10_1016_j_apenergy_2017_02_013 crossref_primary_10_1111_jse_13157 crossref_primary_10_1675_063_039_0207 crossref_primary_10_1007_s11430_017_9126_3 crossref_primary_10_1016_j_dsr_2014_07_007 crossref_primary_10_1016_j_biocon_2017_03_024 crossref_primary_10_1016_j_ecolmodel_2009_09_009 crossref_primary_10_37040_geografie2016121040521 crossref_primary_10_1111_ddi_13826 crossref_primary_10_1007_s10144_010_0199_4 crossref_primary_10_1007_s11284_010_0732_0 crossref_primary_10_1016_j_ecoleng_2016_02_044 crossref_primary_10_1016_j_envsoft_2021_105203 crossref_primary_10_1016_j_jcrimjus_2024_102256 crossref_primary_10_1126_science_1215442 crossref_primary_10_1007_s10980_023_01681_3 crossref_primary_10_1371_journal_pone_0141060 crossref_primary_10_1016_j_biocon_2025_111047 crossref_primary_10_1016_j_ecolind_2020_107048 crossref_primary_10_3390_ijgi4020783 crossref_primary_10_1007_s10531_013_0519_z crossref_primary_10_1111_ecog_06099 crossref_primary_10_1080_21564574_2016_1167783 crossref_primary_10_1590_0074_0276130369 crossref_primary_10_2166_hydro_2021_115 crossref_primary_10_1093_beheco_arr189 crossref_primary_10_1111_j_1469_185X_2012_00235_x crossref_primary_10_3390_atmos9040156 crossref_primary_10_1007_s10530_018_1883_0 crossref_primary_10_1016_j_rsase_2017_07_010 crossref_primary_10_1007_s10336_023_02096_2 crossref_primary_10_1080_01650521_2017_1382122 crossref_primary_10_1111_ddi_12989 crossref_primary_10_1002_jwmg_279 crossref_primary_10_1007_s10336_014_1049_5 crossref_primary_10_1086_685095 crossref_primary_10_1016_j_pedobi_2020_150646 crossref_primary_10_1016_j_rse_2019_05_019 crossref_primary_10_1038_s41559_017_0089 crossref_primary_10_1002_wsb_987 crossref_primary_10_1016_j_rama_2017_02_004 crossref_primary_10_1016_j_foreco_2017_02_031 crossref_primary_10_1111_j_1600_0587_2008_05165_x crossref_primary_10_3390_ijerph110807740 crossref_primary_10_1016_j_foreco_2016_07_029 crossref_primary_10_1016_j_biocon_2014_05_030 crossref_primary_10_1186_s12898_018_0199_3 crossref_primary_10_1007_s00248_024_02371_6 crossref_primary_10_1007_s11252_014_0364_1 crossref_primary_10_2196_56343 crossref_primary_10_1016_j_ecoleng_2013_04_029 crossref_primary_10_1111_jbi_13669 crossref_primary_10_1111_ddi_12518 crossref_primary_10_2326_osj_12_15 crossref_primary_10_1016_j_scitotenv_2015_07_087 crossref_primary_10_7589_JWD_D_23_00095 crossref_primary_10_1111_jbi_12340 crossref_primary_10_1890_14_1061_1 crossref_primary_10_1656_058_016_0201 crossref_primary_10_1016_j_mambio_2010_03_007 crossref_primary_10_1016_j_anrea_2023_08_002 crossref_primary_10_1111_j_1365_2699_2010_02425_x crossref_primary_10_1016_j_scitotenv_2016_06_136 crossref_primary_10_1007_s11356_016_7368_8 crossref_primary_10_1016_j_biocon_2016_08_030 crossref_primary_10_1007_s40808_024_02055_7 crossref_primary_10_1111_ecog_04728 crossref_primary_10_1111_j_1095_8312_2012_01987_x crossref_primary_10_2139_ssrn_2668830 crossref_primary_10_1016_j_biocon_2016_08_032 crossref_primary_10_1016_j_jenvman_2023_120009 crossref_primary_10_1111_ecog_01212 crossref_primary_10_1111_ecog_03876 crossref_primary_10_1111_ddi_13858 crossref_primary_10_1111_j_1467_9787_2011_00719_x crossref_primary_10_1890_09_1549_1 crossref_primary_10_1073_pnas_1208652109 crossref_primary_10_1002_ecs2_3063 crossref_primary_10_1111_1365_2664_12741 crossref_primary_10_1111_een_12719 crossref_primary_10_1111_j_1600_0706_2009_18284_x crossref_primary_10_3389_fpubh_2014_00118 crossref_primary_10_1007_s11116_023_10371_7 crossref_primary_10_1111_jvs_12271 crossref_primary_10_1038_s41598_021_84435_y crossref_primary_10_1111_cobi_12083 crossref_primary_10_1016_j_scitotenv_2020_141655 crossref_primary_10_1098_rstb_2023_0012 crossref_primary_10_1007_s11356_021_18081_2 crossref_primary_10_1016_j_biocon_2025_111005 crossref_primary_10_1126_science_1210199 crossref_primary_10_1073_pnas_1602145113 crossref_primary_10_1111_j_1365_2699_2008_01965_x crossref_primary_10_1111_j_1466_8238_2007_00379_x crossref_primary_10_1111_2041_210X_12032 crossref_primary_10_3389_fevo_2023_1032082 crossref_primary_10_1007_s10344_013_0750_7 crossref_primary_10_1111_bij_12479 crossref_primary_10_1111_j_1466_8238_2011_00663_x crossref_primary_10_1016_j_foreco_2011_04_001 crossref_primary_10_1177_2399808318821947 crossref_primary_10_2981_wlb_00574 crossref_primary_10_2981_wlb_00575 crossref_primary_10_1016_j_landurbplan_2014_02_017 crossref_primary_10_1111_avsc_12081 crossref_primary_10_1093_icesjms_fsz255 crossref_primary_10_1111_avsc_12089 crossref_primary_10_3390_insects9040167 crossref_primary_10_1111_j_2041_210X_2012_00192_x crossref_primary_10_1073_pnas_1516684112 crossref_primary_10_1007_s10531_018_1670_3 crossref_primary_10_1007_s11252_023_01471_4 crossref_primary_10_1016_j_jenvman_2016_08_042 crossref_primary_10_7717_peerj_16212 crossref_primary_10_1007_s10709_013_9747_0 crossref_primary_10_1016_j_geoderma_2021_115638 crossref_primary_10_1016_j_envres_2017_07_009 crossref_primary_10_1111_1365_2745_13031 crossref_primary_10_1002_ecs2_2189 crossref_primary_10_1007_s11258_016_0626_5 crossref_primary_10_1016_j_ecss_2022_107849 crossref_primary_10_1111_ddi_12560 crossref_primary_10_1111_ddi_12567 crossref_primary_10_1371_journal_pone_0139126 crossref_primary_10_1017_S0959270923000072 crossref_primary_10_1002_psp_2850 crossref_primary_10_1016_j_ppees_2013_08_002 crossref_primary_10_1038_s41559_021_01513_0 crossref_primary_10_1111_afe_12094 crossref_primary_10_1111_j_1420_9101_2009_01905_x crossref_primary_10_1093_cz_zow069 crossref_primary_10_1029_2018WR023031 crossref_primary_10_1111_j_1365_2486_2010_02310_x crossref_primary_10_1111_2041_210X_12866 crossref_primary_10_1111_ecog_06022 crossref_primary_10_1111_geb_12981 crossref_primary_10_1016_j_dsr2_2010_11_018 crossref_primary_10_1086_681917 crossref_primary_10_1007_s00227_023_04241_0 crossref_primary_10_1111_geb_12978 crossref_primary_10_1177_0309133311399491 crossref_primary_10_1111_j_1523_1739_2008_00931_x crossref_primary_10_1016_j_jnc_2022_126129 crossref_primary_10_1111_afe_12088 crossref_primary_10_1650_CONDOR_15_28_1 crossref_primary_10_1371_journal_pone_0191397 crossref_primary_10_1016_j_pocean_2019_05_005 crossref_primary_10_1016_j_scitotenv_2023_168706 crossref_primary_10_2110_palo_2018_060 crossref_primary_10_1007_s11033_021_06911_y crossref_primary_10_1111_1365_2664_12394 crossref_primary_10_1016_j_landurbplan_2022_104358 crossref_primary_10_3390_ijerph15040603 crossref_primary_10_1016_j_jenvman_2023_118505 crossref_primary_10_1146_annurev_ecolsys_112414_054441 crossref_primary_10_1111_pirs_12306 crossref_primary_10_1017_S026646742000019X crossref_primary_10_1016_j_heliyon_2024_e41474 crossref_primary_10_3390_insects15090671 crossref_primary_10_1016_j_ecolind_2016_02_004 crossref_primary_10_1111_ecog_02925 crossref_primary_10_1111_ecog_00747 crossref_primary_10_1371_journal_pone_0166724 crossref_primary_10_3390_d15020127 crossref_primary_10_1038_s41559_017_0341_1 crossref_primary_10_1111_j_1365_2656_2012_02019_x crossref_primary_10_1111_ddi_12106 crossref_primary_10_1098_rspb_2008_0905 crossref_primary_10_1111_icad_12227 crossref_primary_10_1186_s13717_024_00517_5 crossref_primary_10_1002_aqc_2473 crossref_primary_10_1371_journal_pone_0091998 crossref_primary_10_1002_ecm_1370 crossref_primary_10_1111_2041_210X_12403 crossref_primary_10_1603_EN13251 crossref_primary_10_1080_11250003_2016_1223186 crossref_primary_10_1111_2041_210X_12402 crossref_primary_10_1007_s10841_014_9650_8 crossref_primary_10_3389_fmars_2019_00717 crossref_primary_10_1126_science_aam9712 crossref_primary_10_1016_j_ijpara_2013_07_003 crossref_primary_10_1371_journal_pone_0091994 crossref_primary_10_1097_FCH_0000000000000318 crossref_primary_10_1016_j_apgeog_2011_05_005 crossref_primary_10_1080_13658816_2019_1675072 crossref_primary_10_1111_ddi_13442 crossref_primary_10_1016_j_jenvman_2017_05_071 crossref_primary_10_1007_s10021_016_0078_8 crossref_primary_10_1002_ece3_3970 crossref_primary_10_1007_s10980_024_01939_4 crossref_primary_10_1007_s10530_022_02976_3 crossref_primary_10_1002_aqc_1137 crossref_primary_10_1002_ece3_70176 crossref_primary_10_1680_jsmic_18_00001 crossref_primary_10_1371_journal_pone_0014670 crossref_primary_10_1136_bmjopen_2023_073419 crossref_primary_10_1111_mec_12561 crossref_primary_10_1111_gcb_15896 crossref_primary_10_1038_s41467_024_55240_8 crossref_primary_10_1186_s12864_020_06957_5 crossref_primary_10_1139_cjfr_2012_0452 crossref_primary_10_1007_s10344_017_1092_7 crossref_primary_10_2744_CCB_0819_1 crossref_primary_10_1016_j_rbe_2016_10_004 crossref_primary_10_1111_j_1538_4632_2010_00777_x crossref_primary_10_1016_j_ecolmodel_2020_109000 crossref_primary_10_3389_fenvs_2022_793583 crossref_primary_10_1016_j_biocon_2021_109263 crossref_primary_10_1111_ecog_06060 crossref_primary_10_1111_j_1365_2699_2009_02128_x crossref_primary_10_1371_journal_pone_0034558 crossref_primary_10_1038_s41477_020_0647_x crossref_primary_10_1890_15_0616_1 crossref_primary_10_1098_rspb_2017_2003 crossref_primary_10_1371_journal_pone_0081308 crossref_primary_10_1007_s10530_021_02572_x crossref_primary_10_1016_j_actao_2016_03_006 crossref_primary_10_1111_ddi_12139 crossref_primary_10_1111_jbi_12711 crossref_primary_10_1016_j_ecolind_2021_108227 crossref_primary_10_1017_S0959270923000023 crossref_primary_10_3354_meps11765 crossref_primary_10_1002_ece3_3998 crossref_primary_10_1371_journal_pone_0175648 crossref_primary_10_1111_ens_12466 crossref_primary_10_1111_jbi_12720 crossref_primary_10_1111_avsc_12451 crossref_primary_10_1111_j_1365_2699_2008_02062_x crossref_primary_10_1016_j_ecoleng_2024_107476 crossref_primary_10_1007_s40823_020_00059_4 crossref_primary_10_1007_s10310_012_0377_7 crossref_primary_10_1186_1297_9716_42_60 crossref_primary_10_1088_1742_6596_1702_1_012011 crossref_primary_10_1016_j_envpol_2024_124353 crossref_primary_10_1007_s12224_013_9167_z crossref_primary_10_1007_s10530_017_1591_1 crossref_primary_10_1371_journal_pone_0184677 crossref_primary_10_1098_rspb_2014_2870 crossref_primary_10_1890_14_0879_1 crossref_primary_10_1007_s10658_018_1435_6 crossref_primary_10_1111_ecog_01633 crossref_primary_10_1098_rsif_2018_0747 crossref_primary_10_1007_s00477_019_01718_7 crossref_primary_10_1111_1755_0998_13024 crossref_primary_10_1002_ece3_5700 crossref_primary_10_1111_jbi_12707 crossref_primary_10_3389_fpsyt_2022_919892 crossref_primary_10_1002_ecy_2376 crossref_primary_10_1016_j_scitotenv_2025_179199 crossref_primary_10_1093_icesjms_fsab162 crossref_primary_10_1016_j_gloplacha_2011_05_008 crossref_primary_10_1371_journal_pone_0068337 crossref_primary_10_1017_S0959270918000060 crossref_primary_10_1080_10106049_2010_550693 crossref_primary_10_1016_j_rsma_2021_101858 crossref_primary_10_3390_ijgi8010014 crossref_primary_10_1111_2041_210X_12448 crossref_primary_10_1016_j_ppees_2014_03_002 crossref_primary_10_1093_icesjms_fsac015 crossref_primary_10_1139_Z09_108 crossref_primary_10_1890_15_0242_1 crossref_primary_10_1016_j_biocon_2021_109289 crossref_primary_10_1007_s10336_011_0791_1 crossref_primary_10_1111_gcb_13255 crossref_primary_10_1073_pnas_1904747116 crossref_primary_10_7717_peerj_4179 crossref_primary_10_1016_j_landurbplan_2021_104069 crossref_primary_10_1038_s41598_020_59207_9 crossref_primary_10_1111_j_1600_0587_2011_06483_x crossref_primary_10_1111_icad_12262 crossref_primary_10_1371_journal_pone_0121808 crossref_primary_10_1111_geb_13846 crossref_primary_10_1071_ZO15002 crossref_primary_10_3832_ifor3360_013 crossref_primary_10_1007_s00227_014_2594_4 crossref_primary_10_1111_ecog_02950 crossref_primary_10_1111_oik_10099 crossref_primary_10_1111_2041_210X_13308 crossref_primary_10_1371_journal_pone_0120960 crossref_primary_10_1371_journal_pone_0277223 crossref_primary_10_4001_003_017_0207 crossref_primary_10_1002_ecs2_1252 crossref_primary_10_1371_journal_pone_0054179 crossref_primary_10_1038_s41598_018_35436_x crossref_primary_10_1186_s40462_023_00437_7 crossref_primary_10_1016_j_apgeog_2015_07_009 crossref_primary_10_1016_j_ecoser_2021_101394 crossref_primary_10_1111_ddi_12045 crossref_primary_10_1111_geb_12108 crossref_primary_10_1111_ddi_12047 crossref_primary_10_3390_su13010207 crossref_primary_10_1016_j_sste_2023_100615 crossref_primary_10_1016_j_biocon_2017_07_024 crossref_primary_10_1139_cjfas_2017_0458 crossref_primary_10_1016_j_landurbplan_2016_10_002 crossref_primary_10_1029_2021JF006175 crossref_primary_10_1007_s11756_022_01100_z crossref_primary_10_1002_ecs2_1241 crossref_primary_10_1016_j_ecoinf_2017_05_003 crossref_primary_10_1016_j_pocean_2022_102924 crossref_primary_10_3390_f14040739 crossref_primary_10_1002_ecs2_3423 crossref_primary_10_1016_j_ecoinf_2013_05_001 crossref_primary_10_1080_17445647_2017_1395772 crossref_primary_10_1371_journal_pone_0048766 crossref_primary_10_1111_j_1472_4642_2011_00853_x crossref_primary_10_1146_annurev_ecolsys_110308_120159 crossref_primary_10_1111_ecog_05209 crossref_primary_10_15684_formath_12_1 crossref_primary_10_1016_j_flora_2023_152351 crossref_primary_10_1016_j_scitotenv_2023_165704 crossref_primary_10_1016_j_eswa_2022_117841 crossref_primary_10_1002_ecy_3694 crossref_primary_10_1002_ecs2_1232 crossref_primary_10_1016_j_biocon_2011_11_013 crossref_primary_10_1038_s41586_020_2903_7 crossref_primary_10_1177_0309133309355630 crossref_primary_10_1186_s12889_023_15369_5 crossref_primary_10_1007_s10980_014_0026_y crossref_primary_10_3390_rs12081332 crossref_primary_10_1186_s40068_024_00352_9 crossref_primary_10_1086_660272 crossref_primary_10_1016_j_foreco_2015_10_035 crossref_primary_10_1071_WR20010 crossref_primary_10_1111_j_1654_1103_2011_01274_x crossref_primary_10_1016_j_ppees_2011_03_003 crossref_primary_10_1007_s11252_013_0331_2 crossref_primary_10_1007_s10592_013_0517_4 crossref_primary_10_1126_science_abf1772 crossref_primary_10_2188_jea_JE20240129 crossref_primary_10_1016_j_biocon_2017_07_009 crossref_primary_10_1016_j_agrformet_2017_10_015 crossref_primary_10_1016_j_flora_2023_152344 crossref_primary_10_21676_23897864_3446 crossref_primary_10_1016_j_gecco_2023_e02793 crossref_primary_10_1007_s13364_019_00449_y crossref_primary_10_1017_S0030605314000222 crossref_primary_10_1111_csp2_12665 crossref_primary_10_1007_s10164_013_0375_z crossref_primary_10_1111_j_1600_0587_2008_05562_x crossref_primary_10_1002_ecs2_3403 crossref_primary_10_1007_s11284_010_0728_9 crossref_primary_10_1002_ecs2_3886 crossref_primary_10_1007_s00442_012_2509_3 crossref_primary_10_1111_j_1600_0587_2013_00215_x crossref_primary_10_1016_j_biocon_2016_12_005 crossref_primary_10_1016_j_soscij_2013_10_006 crossref_primary_10_1111_mam_12091 crossref_primary_10_1098_rspb_2012_3048 crossref_primary_10_1007_s10530_020_02440_0 crossref_primary_10_1017_S0959270917000545 crossref_primary_10_1111_jen_12215 crossref_primary_10_1038_s41598_017_10736_w crossref_primary_10_1080_1747423X_2021_2020921 crossref_primary_10_3390_ijgi8080332 crossref_primary_10_1016_j_oret_2022_08_003 crossref_primary_10_1007_s11869_016_0436_x crossref_primary_10_1016_j_jenvman_2024_122001 crossref_primary_10_1111_geb_12553 crossref_primary_10_1016_j_firesaf_2022_103559 crossref_primary_10_1111_j_1466_8238_2010_00561_x crossref_primary_10_1016_j_foreco_2016_03_036 crossref_primary_10_1007_s10661_023_11539_5 crossref_primary_10_1016_j_scitotenv_2022_155679 crossref_primary_10_1111_ele_12741 crossref_primary_10_1890_14_1874 crossref_primary_10_1016_j_ecolind_2015_07_008 crossref_primary_10_1016_j_eswa_2022_116561 crossref_primary_10_1111_mec_17733 crossref_primary_10_1016_j_jhevol_2010_07_019 crossref_primary_10_1016_j_biocon_2014_11_041 crossref_primary_10_1038_nclimate1906 crossref_primary_10_1007_BF03544420 crossref_primary_10_1007_s11284_014_1200_z crossref_primary_10_1007_s10764_017_9978_5 crossref_primary_10_1016_j_rsma_2020_101161 crossref_primary_10_1098_rspb_2018_0072 crossref_primary_10_1111_j_1472_4642_2010_00704_x crossref_primary_10_1002_ece3_8002 crossref_primary_10_1016_j_jag_2012_04_002 crossref_primary_10_1007_s00300_014_1454_5 crossref_primary_10_1111_mms_12227 crossref_primary_10_1111_icad_12309 crossref_primary_10_1590_1677_941x_abb_2023_0120 crossref_primary_10_1007_s13147_010_0012_z crossref_primary_10_1073_pnas_1208976109 crossref_primary_10_1111_j_1600_0587_2011_07138_x crossref_primary_10_1007_s12224_010_9059_4 crossref_primary_10_1111_acv_12455 crossref_primary_10_2139_ssrn_4142202 crossref_primary_10_1186_1756_3305_6_195 crossref_primary_10_1007_s00300_021_02886_5 crossref_primary_10_1111_ddi_12096 crossref_primary_10_1111_j_1472_4642_2009_00572_x crossref_primary_10_1177_09622802211032713 crossref_primary_10_4315_JFP_20_414 crossref_primary_10_1098_rsbl_2021_0116 crossref_primary_10_1016_j_actao_2016_01_009 crossref_primary_10_1186_s12862_023_02132_y crossref_primary_10_1111_gean_12354 crossref_primary_10_3389_fpls_2022_858711 crossref_primary_10_1007_s10530_011_0032_9 crossref_primary_10_1002_eap_1767 crossref_primary_10_1007_s10531_022_02411_y crossref_primary_10_1016_j_habitatint_2016_11_002 crossref_primary_10_1111_j_1466_8238_2008_00440_x crossref_primary_10_1016_j_marenvres_2024_106464 crossref_primary_10_3390_ijerph120505026 crossref_primary_10_1016_j_baae_2022_07_007 crossref_primary_10_1016_j_scitotenv_2023_165746 crossref_primary_10_3354_meps10384 crossref_primary_10_1007_s10980_015_0203_7 crossref_primary_10_1016_j_scitotenv_2024_178091 crossref_primary_10_1016_j_fishres_2025_107301 crossref_primary_10_1073_pnas_1516778112 crossref_primary_10_1111_ropr_12212 crossref_primary_10_1071_ZO12006 crossref_primary_10_1080_23294515_2024_2433474 crossref_primary_10_1016_j_dsr2_2017_11_018 crossref_primary_10_1016_j_fishres_2025_107305 crossref_primary_10_1111_j_1365_2419_2010_00546_x crossref_primary_10_1111_j_1365_2664_2009_01707_x crossref_primary_10_1016_j_scitotenv_2020_143070 crossref_primary_10_1002_ecs2_1644 crossref_primary_10_1080_00028487_2015_1024333 crossref_primary_10_1061_AJRUA6_RUENG_1403 crossref_primary_10_1111_1365_2745_12507 crossref_primary_10_1016_j_ppees_2016_04_001 crossref_primary_10_1111_geb_12599 crossref_primary_10_1002_eap_1758 crossref_primary_10_1139_cjz_2024_0059 crossref_primary_10_1016_j_jtrangeo_2014_03_002 crossref_primary_10_1002_wsb_1535 crossref_primary_10_1111_ibi_13251 crossref_primary_10_1111_j_1466_8238_2009_00506_x crossref_primary_10_1007_s10336_011_0662_9 crossref_primary_10_1111_ecog_07440 crossref_primary_10_1111_gcb_16355 crossref_primary_10_3378_027_083_0404 crossref_primary_10_1111_gcb_15026 crossref_primary_10_1007_s11004_024_10163_4 crossref_primary_10_1111_1365_2664_14114 crossref_primary_10_1371_journal_pone_0071574 crossref_primary_10_1080_17550874_2022_2039314 crossref_primary_10_1111_j_1600_0587_2013_00259_x crossref_primary_10_1371_journal_pone_0109397 crossref_primary_10_1080_21564574_2017_1388855 crossref_primary_10_3846_jeelm_2020_12081 crossref_primary_10_1071_WR20075 crossref_primary_10_1289_EHP9538 crossref_primary_10_1002_mcf2_10025 crossref_primary_10_1007_s10109_015_0225_3 crossref_primary_10_1038_s41467_022_30888_2 crossref_primary_10_1111_jbi_13184 crossref_primary_10_1089_vbz_2011_0786 crossref_primary_10_1080_17489725_2018_1468039 crossref_primary_10_1371_journal_pone_0160630 crossref_primary_10_1002_psp_2060 crossref_primary_10_3389_fevo_2021_612718 crossref_primary_10_1525_cond_2011_100234 crossref_primary_10_1109_ACCESS_2017_2708762 crossref_primary_10_1111_j_1466_8238_2010_00526_x crossref_primary_10_1016_j_forpol_2023_102938 crossref_primary_10_1002_rse2_89 crossref_primary_10_1016_j_ecoinf_2025_103057 crossref_primary_10_1111_jzo_13055 crossref_primary_10_1111_conl_13017 crossref_primary_10_1111_j_1600_0587_2012_07364_x crossref_primary_10_1016_j_actao_2019_103486 crossref_primary_10_1111_ecog_01245 crossref_primary_10_1002_ece3_4007 crossref_primary_10_1111_j_1461_0248_2009_01307_x crossref_primary_10_1186_s13595_023_01199_3 crossref_primary_10_1007_s00227_011_1753_0 crossref_primary_10_1111_j_1365_3180_2012_00934_x crossref_primary_10_1016_j_scitotenv_2013_08_058 crossref_primary_10_3390_land13040514 crossref_primary_10_1016_j_biocon_2010_03_015 crossref_primary_10_3390_fishes8010027 crossref_primary_10_1007_s10531_024_02947_1 crossref_primary_10_1002_env_2223 crossref_primary_10_1016_j_fishres_2020_105795 crossref_primary_10_13047_KJEE_2024_38_5_477 crossref_primary_10_1016_j_ecoinf_2013_03_003 crossref_primary_10_1111_geb_12169 crossref_primary_10_1007_s10531_018_1613_z crossref_primary_10_1002_mcf2_10002 crossref_primary_10_1111_gcb_13739 crossref_primary_10_1007_s12224_012_9124_2 crossref_primary_10_1016_j_agee_2014_05_002 crossref_primary_10_1111_1365_2656_12952 crossref_primary_10_1111_ecog_02121 crossref_primary_10_1111_jbi_14016 crossref_primary_10_1007_s11160_019_09560_4 crossref_primary_10_1007_s10980_012_9746_z crossref_primary_10_1094_PHYTO_10_21_0449_R crossref_primary_10_1111_j_1600_0587_2009_05717_x crossref_primary_10_1016_j_ecolmodel_2023_110548 crossref_primary_10_1080_01431161_2014_882028 crossref_primary_10_1111_geb_12161 crossref_primary_10_4236_jgis_2014_64026 crossref_primary_10_1186_s12942_017_0120_x crossref_primary_10_1371_journal_pone_0137877 crossref_primary_10_1111_j_1600_0587_2010_05892_x crossref_primary_10_1007_s10980_017_0578_8 crossref_primary_10_3354_meps08939 crossref_primary_10_1016_j_foreco_2025_122505 crossref_primary_10_1016_j_jarmap_2018_02_003 crossref_primary_10_1038_srep29839 crossref_primary_10_1007_s00442_015_3311_9 crossref_primary_10_1111_j_1523_1739_2010_01528_x crossref_primary_10_1111_1365_2656_12961 crossref_primary_10_1186_s40462_021_00260_y crossref_primary_10_1016_j_avrs_2025_100222 crossref_primary_10_1093_aesa_say056 crossref_primary_10_1007_s10980_010_9566_y crossref_primary_10_1016_j_actao_2017_09_010 crossref_primary_10_1111_ecog_02593 crossref_primary_10_1016_j_actao_2017_09_013 crossref_primary_10_1016_j_ecolind_2014_10_009 crossref_primary_10_1111_j_1365_2745_2009_01492_x crossref_primary_10_1002_env_2240 crossref_primary_10_1039_D1EM00217A crossref_primary_10_1007_s12061_024_09634_2 crossref_primary_10_1007_s40415_023_00885_w crossref_primary_10_1017_S0031182012001345 crossref_primary_10_1111_j_1600_0587_2012_07801_x crossref_primary_10_1007_s10750_018_3508_0 crossref_primary_10_1111_jvs_13109 crossref_primary_10_1007_s10750_021_04612_y crossref_primary_10_1088_1748_9326_10_11_114001 crossref_primary_10_1111_fwb_12936 crossref_primary_10_1016_j_spasta_2015_07_006 crossref_primary_10_1016_j_agee_2024_109437 crossref_primary_10_1016_j_mechatronics_2020_102436 crossref_primary_10_1515_mammalia_2021_0130 crossref_primary_10_1016_j_ecolind_2014_10_018 crossref_primary_10_1111_j_1365_2699_2011_02602_x crossref_primary_10_1111_rssc_12453 crossref_primary_10_2903_sp_efsa_2020_EN_1980 crossref_primary_10_1007_s10530_014_0803_1 crossref_primary_10_1016_j_fishres_2018_10_011 crossref_primary_10_1080_03003930_2020_1869545 crossref_primary_10_1016_j_ecolmodel_2009_11_008 crossref_primary_10_1016_j_fishres_2018_10_013 crossref_primary_10_1007_s41208_023_00531_y crossref_primary_10_1098_rspb_2023_2768 crossref_primary_10_1007_s11252_015_0492_2 crossref_primary_10_1139_er_2016_0045 crossref_primary_10_1007_s11692_019_09479_5 crossref_primary_10_22201_ib_20078706e_2019_90_2829 crossref_primary_10_1111_ecog_03469 crossref_primary_10_1016_j_jmarsys_2017_10_006 crossref_primary_10_1371_journal_pone_0100553 crossref_primary_10_1007_s10841_015_9810_5 crossref_primary_10_1111_ecog_03464 crossref_primary_10_1016_j_ecoinf_2015_06_007 crossref_primary_10_7717_peerj_3771 crossref_primary_10_1111_jvs_12676 crossref_primary_10_1016_j_ecolind_2018_01_050 crossref_primary_10_3390_su10082773 crossref_primary_10_2981_wlb_00022 crossref_primary_10_1111_aec_13580 crossref_primary_10_1111_btp_12359 crossref_primary_10_1038_s41586_021_03483_6 crossref_primary_10_1002_ece3_70528 crossref_primary_10_1007_s11258_017_0700_7 crossref_primary_10_1650_CONDOR_17_14_1 crossref_primary_10_1111_j_1466_8238_2009_00492_x crossref_primary_10_1016_j_ecoenv_2019_109622 crossref_primary_10_1002_rse2_70 crossref_primary_10_1371_journal_pone_0029212 crossref_primary_10_3390_ani11123426 crossref_primary_10_1002_ajpa_22560 crossref_primary_10_1007_s13364_023_00707_0 crossref_primary_10_1016_j_chemosphere_2016_04_095 crossref_primary_10_1088_1748_9326_ad13b6 crossref_primary_10_4102_jef_v12i1_204 crossref_primary_10_1016_j_foreco_2011_06_009 crossref_primary_10_1155_2014_809495 crossref_primary_10_1007_s10021_009_9246_4 crossref_primary_10_1111_ecog_03493 crossref_primary_10_1016_j_scitotenv_2017_11_255 crossref_primary_10_1016_j_actao_2024_104018 crossref_primary_10_1371_journal_pone_0164198 crossref_primary_10_1007_s10764_013_9690_z crossref_primary_10_1890_09_2040_1 crossref_primary_10_1007_s00267_023_01905_x crossref_primary_10_1098_rspb_2021_0253 crossref_primary_10_1093_beheco_ars122 crossref_primary_10_1017_S037689291200032X crossref_primary_10_1111_aec_12267 crossref_primary_10_1111_j_1365_2699_2011_02659_x crossref_primary_10_1111_ecog_06510 crossref_primary_10_1038_s41598_024_59973_w crossref_primary_10_1111_fog_12233 crossref_primary_10_1111_j_1600_0706_2012_20348_x crossref_primary_10_1016_j_ecoinf_2022_101683 crossref_primary_10_1186_s40462_019_0164_6 crossref_primary_10_1111_j_1472_4642_2012_00911_x crossref_primary_10_1650_CONDOR_13_072_1 crossref_primary_10_3390_f11111144 crossref_primary_10_1111_j_1600_0587_2010_6380_x crossref_primary_10_1016_j_ecolind_2024_112896 crossref_primary_10_1371_journal_pone_0097122 crossref_primary_10_1111_btp_12217 crossref_primary_10_1002_ece3_2570 crossref_primary_10_3390_ijgi8060262 crossref_primary_10_1007_s10144_015_0506_1 crossref_primary_10_1007_s10750_017_3087_5 crossref_primary_10_3390_d13030120 crossref_primary_10_1002_ppp3_10629 crossref_primary_10_1111_1365_2656_12214 crossref_primary_10_1016_j_gecco_2025_e03547 crossref_primary_10_1111_jbi_13588 crossref_primary_10_1111_1365_2745_12256 crossref_primary_10_1002_ece3_5604 crossref_primary_10_1016_j_actatropica_2011_03_009 crossref_primary_10_1002_ece3_5609 crossref_primary_10_1007_s11355_025_00640_1 crossref_primary_10_5334_dsj_2020_026 crossref_primary_10_3897_neobiota_14_3273 crossref_primary_10_3955_046_091_0309 crossref_primary_10_13157_arla_67_2_2020_ra5 crossref_primary_10_1111_j_1466_8238_2008_00395_x crossref_primary_10_1111_j_1600_0587_2009_05991_x crossref_primary_10_3390_d1010052 crossref_primary_10_1007_s11676_021_01425_6 crossref_primary_10_1016_j_sajb_2019_08_025 crossref_primary_10_3354_meps12937 crossref_primary_10_3354_meps12934 crossref_primary_10_1016_j_gecco_2024_e03281 crossref_primary_10_1126_science_1215320 crossref_primary_10_1016_j_mambio_2019_04_001 crossref_primary_10_1007_s11284_014_1160_3 crossref_primary_10_1007_s11284_010_0733_z crossref_primary_10_1155_2012_297657 crossref_primary_10_1002_ece3_70 crossref_primary_10_1111_jbi_13573 crossref_primary_10_1016_j_gecco_2021_e01475 crossref_primary_10_1016_j_gecco_2021_e01477 crossref_primary_10_7717_peerj_3850 crossref_primary_10_1016_j_foreco_2018_03_016 crossref_primary_10_1016_j_baae_2023_04_006 crossref_primary_10_1007_s10344_015_0942_4 crossref_primary_10_1038_s41598_023_47734_0 crossref_primary_10_1016_j_ecolecon_2019_03_025 crossref_primary_10_1007_s10994_021_05972_1 crossref_primary_10_3390_rs8121038 crossref_primary_10_1016_j_envpol_2009_06_010 crossref_primary_10_1016_j_ecolecon_2019_03_029 crossref_primary_10_1038_ncomms4271 crossref_primary_10_1371_journal_pone_0033954 crossref_primary_10_1016_j_spasta_2012_02_004 crossref_primary_10_1111_nph_18533 crossref_primary_10_1371_journal_pone_0142236 crossref_primary_10_1016_j_apgeog_2015_03_010 crossref_primary_10_1111_1365_2656_12673 crossref_primary_10_1073_pnas_1521657113 crossref_primary_10_3389_fmicb_2025_1520104 crossref_primary_10_1198_jabes_2009_07032 crossref_primary_10_1093_icesjms_fsy089 crossref_primary_10_1111_j_2041_210X_2011_00170_x crossref_primary_10_1016_j_heliyon_2024_e32005 crossref_primary_10_1111_fwb_12640 crossref_primary_10_1111_1365_2664_12880 crossref_primary_10_1086_715500 crossref_primary_10_1007_s10980_016_0364_z crossref_primary_10_1016_j_agee_2014_11_006 crossref_primary_10_1016_j_ppees_2017_09_001 crossref_primary_10_1371_journal_pone_0096261 crossref_primary_10_1038_s41598_021_03038_9 crossref_primary_10_1111_j_1365_2699_2012_02745_x crossref_primary_10_1111_nph_14167 crossref_primary_10_1038_s41558_023_01650_3 crossref_primary_10_1016_j_ecolmodel_2009_10_038 crossref_primary_10_1016_j_habitatint_2018_09_001 crossref_primary_10_1016_j_ssmph_2023_101493 crossref_primary_10_2196_11357 crossref_primary_10_1002_ece3_4789 crossref_primary_10_1016_j_dsr2_2013_06_010 crossref_primary_10_1002_ece3_91 crossref_primary_10_1016_j_ufug_2024_128651 crossref_primary_10_3389_ffgc_2024_1472699 crossref_primary_10_1007_s10530_015_0946_8 crossref_primary_10_1111_j_1466_8238_2010_00523_x crossref_primary_10_1111_jzo_12734 crossref_primary_10_3390_su11102720 crossref_primary_10_3390_w10030328 crossref_primary_10_1007_s10901_014_9426_1 crossref_primary_10_1111_jbi_13544 crossref_primary_10_1007_s00300_014_1502_1 crossref_primary_10_1002_jwmg_21083 crossref_primary_10_1038_s41598_023_32077_7 crossref_primary_10_1111_faf_12330 crossref_primary_10_1111_jbi_12213 crossref_primary_10_1371_journal_pone_0175138 crossref_primary_10_1038_srep22400 crossref_primary_10_3354_dao02838 crossref_primary_10_1016_j_marpolbul_2016_06_056 crossref_primary_10_1016_j_envsoft_2014_03_010 crossref_primary_10_1038_s41558_020_00919_1 crossref_primary_10_1111_ddi_12413 crossref_primary_10_1111_ddi_12412 crossref_primary_10_1111_j_1095_8312_2011_01780_x crossref_primary_10_1111_ecog_03506 crossref_primary_10_3390_f14101970 crossref_primary_10_1111_ddi_12898 crossref_primary_10_1111_ecog_01322 crossref_primary_10_1016_j_biocon_2013_12_007 crossref_primary_10_1016_j_ecolmodel_2014_12_005 crossref_primary_10_1016_j_jnc_2016_09_002 crossref_primary_10_1017_ehs_2023_23 crossref_primary_10_1139_cjfas_2015_0343 crossref_primary_10_1007_s13157_012_0340_6 crossref_primary_10_14411_eje_2009_012 crossref_primary_10_1111_j_1461_0248_2009_01422_x crossref_primary_10_1007_s10113_020_01647_0 crossref_primary_10_1016_j_foreco_2018_03_041 crossref_primary_10_1139_cjfr_2019_0161 crossref_primary_10_1007_s10530_011_9952_7 crossref_primary_10_3389_fevo_2019_00207 crossref_primary_10_1007_s10530_020_02314_5 crossref_primary_10_1016_j_anbehav_2008_04_004 crossref_primary_10_3389_fmars_2021_606975 crossref_primary_10_1007_s10530_022_02913_4 crossref_primary_10_1111_j_1600_0587_2010_06301_x crossref_primary_10_1016_j_biocon_2010_12_028 crossref_primary_10_1093_jme_tjab107 crossref_primary_10_1111_ecog_02683 crossref_primary_10_1111_mec_17276 crossref_primary_10_1016_j_geoderma_2014_05_022 crossref_primary_10_1016_j_compag_2015_10_020 crossref_primary_10_1016_j_ecolmodel_2022_110107 crossref_primary_10_1038_s41467_023_36888_0 crossref_primary_10_1007_s10344_013_0762_3 crossref_primary_10_1016_j_joi_2017_05_006 crossref_primary_10_1111_jfb_15133 crossref_primary_10_1186_s13717_020_00265_2 crossref_primary_10_3161_15081109ACC2020_22_1_011 crossref_primary_10_1093_icesjms_fsp224 crossref_primary_10_1111_acv_12910 crossref_primary_10_1111_jbi_13990 crossref_primary_10_1126_sciadv_1500789 crossref_primary_10_1016_j_agee_2011_06_025 crossref_primary_10_1016_j_scitotenv_2021_152506 crossref_primary_10_1016_j_atmosenv_2017_07_023 crossref_primary_10_1111_j_1466_8238_2010_00567_x crossref_primary_10_1111_sum_12874 crossref_primary_10_1111_j_1466_8238_2009_00446_x crossref_primary_10_2139_ssrn_2193792 crossref_primary_10_1016_j_scitotenv_2021_145391 crossref_primary_10_1080_17451000_2019_1644773 crossref_primary_10_1016_j_fecs_2023_100093 crossref_primary_10_1111_ddi_12446 crossref_primary_10_1111_ecog_00845 crossref_primary_10_3390_ijgi11040242 crossref_primary_10_1016_j_ecolmodel_2008_06_028 crossref_primary_10_1016_j_biocon_2013_05_019 crossref_primary_10_1007_s13762_025_06412_6 crossref_primary_10_1080_13504509_2015_1055524 crossref_primary_10_1111_ele_13471 crossref_primary_10_1899_12_137_1 crossref_primary_10_1111_een_12485 crossref_primary_10_1111_ecog_06148 crossref_primary_10_1038_s41467_020_15708_9 crossref_primary_10_3390_land10101043 crossref_primary_10_1002_ece3_837 crossref_primary_10_1016_j_scitotenv_2020_140663 crossref_primary_10_3354_meps11692 crossref_primary_10_3390_land10080817 crossref_primary_10_1002_ecs2_3388 crossref_primary_10_1016_j_ecolind_2017_05_041 crossref_primary_10_1080_13658816_2013_871016 crossref_primary_10_3390_w11010162 crossref_primary_10_1007_s10980_020_01033_5 crossref_primary_10_1007_s00442_022_05134_7 crossref_primary_10_1016_j_jmarsys_2014_03_003 crossref_primary_10_1111_ddi_12450 crossref_primary_10_1016_j_dsr2_2016_11_014 crossref_primary_10_1186_s40462_015_0053_6 crossref_primary_10_1111_j_1600_0587_2009_06299_x crossref_primary_10_1093_icesjms_fst206 crossref_primary_10_1111_een_12474 crossref_primary_10_1371_journal_pone_0180915 crossref_primary_10_1007_s00442_014_2953_3 crossref_primary_10_1016_j_agee_2017_11_003 crossref_primary_10_1111_oik_05802 crossref_primary_10_1021_jasms_4c00144 crossref_primary_10_1007_s11258_020_01006_3 crossref_primary_10_1111_cobi_12324 crossref_primary_10_1080_01650521_2020_1722021 crossref_primary_10_1016_j_agee_2018_08_014 crossref_primary_10_3389_fmed_2023_1131794 crossref_primary_10_1016_j_dsr_2023_104028 crossref_primary_10_1016_j_foreco_2018_12_006 crossref_primary_10_1002_wsb_225 crossref_primary_10_1071_WF08206 crossref_primary_10_1016_j_ecolmodel_2014_07_027 crossref_primary_10_1016_j_foreco_2019_117501 crossref_primary_10_1111_j_1600_0587_2011_06560_x crossref_primary_10_5194_hess_22_1851_2018 crossref_primary_10_1016_j_foreco_2021_119698 crossref_primary_10_1111_j_1600_0587_2009_05907_x crossref_primary_10_1002_ece3_2514 crossref_primary_10_1111_acv_12028 crossref_primary_10_1007_s10531_024_02975_x crossref_primary_10_1111_j_1600_0587_2008_05505_x crossref_primary_10_1002_aps3_11546 crossref_primary_10_1016_j_ecoinf_2023_102181 crossref_primary_10_1111_j_1600_0587_2012_07764_x crossref_primary_10_1007_s13157_019_01182_7 crossref_primary_10_1111_bij_12567 crossref_primary_10_1111_aec_12861 crossref_primary_10_1371_journal_pone_0106114 crossref_primary_10_25225_jvb_24001 crossref_primary_10_1016_j_jaridenv_2010_05_015 crossref_primary_10_1002_jwmg_326 crossref_primary_10_1007_s10980_021_01221_x crossref_primary_10_3354_meps10334 crossref_primary_10_1016_j_jaridenv_2010_05_019 crossref_primary_10_1016_j_jglr_2023_102267 crossref_primary_10_1002_ldr_2695 crossref_primary_10_1111_mam_12125 crossref_primary_10_1038_nature17443 crossref_primary_10_1371_journal_pone_0175545 crossref_primary_10_1007_s12526_009_0028_1 crossref_primary_10_1016_j_ecolmodel_2017_05_021 crossref_primary_10_1007_s10841_021_00363_2 crossref_primary_10_1111_j_1538_4632_2009_00766_x crossref_primary_10_1007_s10021_017_0156_6 crossref_primary_10_1016_j_ecolind_2019_105742 crossref_primary_10_3354_esr00367 crossref_primary_10_1016_j_ecocom_2019_03_002 crossref_primary_10_1111_ele_12104 crossref_primary_10_1111_ddi_12006 crossref_primary_10_1111_geb_12666 crossref_primary_10_1016_j_ecolmodel_2019_06_002 crossref_primary_10_1007_s10342_021_01394_9 crossref_primary_10_1111_j_1365_2699_2010_02359_x crossref_primary_10_1002_rra_3591 crossref_primary_10_1111_acv_12053 crossref_primary_10_1139_as_2017_0048 crossref_primary_10_1016_j_biocon_2015_08_033 crossref_primary_10_1111_een_12441 crossref_primary_10_7717_peerj_9522 crossref_primary_10_1002_jpln_200700027 crossref_primary_10_1080_10807039_2022_2134093 crossref_primary_10_1111_icad_12164 crossref_primary_10_1016_j_fishres_2012_06_011 crossref_primary_10_1111_icad_12166 crossref_primary_10_1016_j_geoderma_2017_03_013 crossref_primary_10_1093_icesjms_fsaa170 crossref_primary_10_1016_j_apacoust_2018_12_031 crossref_primary_10_1371_journal_pone_0162697 crossref_primary_10_1111_j_0906_7590_2008_05525_x crossref_primary_10_1016_j_landusepol_2020_105161 crossref_primary_10_1111_ddi_12019 crossref_primary_10_1093_aobpla_ply029 crossref_primary_10_1111_aec_12849 crossref_primary_10_1016_j_pocean_2022_102859 crossref_primary_10_1111_fwb_13128 crossref_primary_10_1111_ddi_12493 crossref_primary_10_1111_j_1469_7998_2012_00911_x crossref_primary_10_1080_00063657_2013_849657 crossref_primary_10_1371_journal_pone_0159035 crossref_primary_10_1016_j_pocean_2022_102823 crossref_primary_10_1111_geb_12643 crossref_primary_10_3354_meps12966 crossref_primary_10_1002_ece3_858 crossref_primary_10_1016_j_toxicon_2024_108107 crossref_primary_10_3354_meps11633 crossref_primary_10_1111_ele_13892 crossref_primary_10_1111_j_1654_109X_2011_01135_x crossref_primary_10_1016_j_ecoleng_2014_11_050 crossref_primary_10_1002_ece3_6914 crossref_primary_10_1111_j_1654_1103_2009_01098_x crossref_primary_10_1111_jbi_13920 crossref_primary_10_1186_s12936_018_2312_7 crossref_primary_10_1016_j_ecoinf_2017_04_009 crossref_primary_10_1590_S0103_90162009000600007 crossref_primary_10_1002_aqc_3006 crossref_primary_10_1111_j_2041_210X_2011_00130_x crossref_primary_10_1016_j_ecolecon_2016_03_016 crossref_primary_10_1016_j_protis_2018_03_001 crossref_primary_10_3732_ajb_1500052 crossref_primary_10_1016_j_foreco_2012_03_003 crossref_primary_10_1111_1365_2664_12443 crossref_primary_10_1371_journal_pone_0056245 crossref_primary_10_1111_nph_20003 crossref_primary_10_1007_s11258_019_00963_8 crossref_primary_10_1111_een_12456 crossref_primary_10_1111_ele_13425 crossref_primary_10_1111_ddi_12037 crossref_primary_10_1016_j_rse_2014_09_025 crossref_primary_10_1007_s10342_024_01697_7 crossref_primary_10_1111_nph_19011 crossref_primary_10_3389_fevo_2021_556821 crossref_primary_10_1177_19400829211049999 crossref_primary_10_1016_j_fishres_2024_107071 crossref_primary_10_1002_ecm_1283 crossref_primary_10_1111_csp2_13 crossref_primary_10_7589_2016_06_140 crossref_primary_10_13157_arla_60_1_2012_99 crossref_primary_10_1016_j_ecolmodel_2021_109693 crossref_primary_10_1002_wsb_272 crossref_primary_10_1016_j_rse_2020_111673 crossref_primary_10_1128_AEM_02951_09 crossref_primary_10_1016_j_ecolind_2014_05_036 crossref_primary_10_1002_ece3_8795 crossref_primary_10_1016_j_ufug_2021_127243 crossref_primary_10_1002_ece3_5286 crossref_primary_10_3390_rs8060494 crossref_primary_10_1111_geb_12225 crossref_primary_10_1016_j_foreco_2008_09_023 crossref_primary_10_1038_s41598_021_82404_z crossref_primary_10_1371_journal_pone_0151650 crossref_primary_10_1016_j_agee_2020_106910 crossref_primary_10_1175_JTECH_D_18_0018_1 crossref_primary_10_1016_j_jmarsys_2020_103372 crossref_primary_10_1111_j_1365_2699_2010_02341_x crossref_primary_10_1080_21513732_2016_1200672 crossref_primary_10_1007_s10980_021_01367_8 crossref_primary_10_1016_j_ecoenv_2014_04_003 crossref_primary_10_1007_s10336_009_0390_6 crossref_primary_10_1007_s10651_012_0223_2 crossref_primary_10_1098_rspb_2017_1979 crossref_primary_10_1016_j_healthplace_2023_103094 crossref_primary_10_1007_s10661_015_4504_8 crossref_primary_10_1016_j_ecolmodel_2011_12_020 crossref_primary_10_1016_j_aap_2013_07_001 crossref_primary_10_1016_j_envpol_2022_119116 crossref_primary_10_1016_j_scitotenv_2023_163414 crossref_primary_10_1080_13658816_2020_1798968 crossref_primary_10_3390_drones3010010 crossref_primary_10_7717_peerj_4382 crossref_primary_10_1094_PHYTO_07_15_0159_R crossref_primary_10_1111_gcbb_12146 crossref_primary_10_1111_geb_12212 crossref_primary_10_1007_s11160_021_09688_2 crossref_primary_10_3390_agronomy15030533 crossref_primary_10_1016_j_baae_2013_03_001 crossref_primary_10_3389_fmars_2020_00015 crossref_primary_10_3161_15081109ACC2015_17_1_013 crossref_primary_10_1016_j_ecoser_2022_101414 crossref_primary_10_1655_Herpetologica_D_16_00003_1 crossref_primary_10_1002_widm_1394 crossref_primary_10_1071_WF13195 crossref_primary_10_1111_geb_12200 crossref_primary_10_1371_journal_pone_0149790 crossref_primary_10_1111_geb_12201 crossref_primary_10_1007_s41207_025_00738_w crossref_primary_10_1016_j_foreco_2016_11_009 crossref_primary_10_1111_1365_2664_14269 crossref_primary_10_1007_s10071_018_1176_0 crossref_primary_10_3390_rs8060462 crossref_primary_10_1016_j_foreco_2013_04_010 crossref_primary_10_1111_eth_13143 crossref_primary_10_3390_vaccines11071149 crossref_primary_10_1111_gcb_12917 crossref_primary_10_1186_s42408_019_0047_7 crossref_primary_10_1371_journal_pone_0022331 crossref_primary_10_1016_j_ecolmodel_2019_108902 crossref_primary_10_1016_j_scitotenv_2017_12_115 crossref_primary_10_1111_oik_05787 crossref_primary_10_2989_10220119_2018_1480525 crossref_primary_10_3354_meps12475 crossref_primary_10_1038_s41598_021_00556_4 crossref_primary_10_1002_ece3_70691 crossref_primary_10_1016_j_ecolind_2017_03_046 crossref_primary_10_1007_s00468_022_02299_9 crossref_primary_10_1080_20442041_2018_1482152 crossref_primary_10_1109_ACCESS_2024_3485512 crossref_primary_10_1007_s12224_013_9185_x crossref_primary_10_1016_j_tra_2014_10_018 crossref_primary_10_1098_rspb_2011_2153 crossref_primary_10_3354_meps13313 crossref_primary_10_1098_rstb_2016_0116 crossref_primary_10_1111_j_1365_2656_2011_01833_x crossref_primary_10_1080_13504509_2014_923058 crossref_primary_10_1111_evo_13076 crossref_primary_10_1186_s40663_021_00282_3 crossref_primary_10_1111_geb_13598 crossref_primary_10_1038_s41598_018_36761_x crossref_primary_10_5735_086_052_0206 crossref_primary_10_1002_ecm_1238 crossref_primary_10_1016_j_intell_2011_05_001 crossref_primary_10_1007_s10841_014_9749_y crossref_primary_10_1111_geb_12261 crossref_primary_10_1007_s10393_021_01525_z crossref_primary_10_1007_s10531_018_1545_7 crossref_primary_10_1007_s10531_023_02760_2 crossref_primary_10_1071_WR22100 crossref_primary_10_1086_684391 crossref_primary_10_1111_geb_13109 crossref_primary_10_1186_s40663_021_00305_z crossref_primary_10_7202_1084230ar crossref_primary_10_1007_s10344_014_0849_5 crossref_primary_10_1016_j_trd_2022_103227 crossref_primary_10_1890_11_0826_1 crossref_primary_10_1177_0962280217689968 crossref_primary_10_1016_j_ijpara_2023_10_002 crossref_primary_10_1111_ecog_03189 crossref_primary_10_1016_j_ecolind_2023_110309 crossref_primary_10_3390_ani15010061 crossref_primary_10_1111_geb_13585 crossref_primary_10_3390_land8020025 crossref_primary_10_1002_ecs2_2869 crossref_primary_10_1007_s10531_019_01717_8 crossref_primary_10_1093_icesjms_fsu126 crossref_primary_10_1007_s10530_007_9189_7 crossref_primary_10_1007_s11629_019_5603_8 crossref_primary_10_1111_j_1600_0587_2012_07853_x crossref_primary_10_1093_icesjms_fsu120 crossref_primary_10_1098_rsos_150165 crossref_primary_10_1016_j_chemolab_2024_105254 crossref_primary_10_3390_plants12203654 crossref_primary_10_1111_nph_13206 crossref_primary_10_1038_ncomms10541 crossref_primary_10_1111_1365_2664_13375 crossref_primary_10_1002_ecs2_1542 crossref_primary_10_1016_j_ecolmodel_2021_109738 crossref_primary_10_1016_j_foreco_2017_06_044 crossref_primary_10_1111_1365_2656_13051 crossref_primary_10_3390_su13158481 crossref_primary_10_1186_s12936_023_04677_1 crossref_primary_10_1007_s10531_012_0346_7 crossref_primary_10_1007_s10530_018_1700_9 crossref_primary_10_3354_meps12434 crossref_primary_10_1098_rspb_2016_2086 crossref_primary_10_1098_rsbl_2008_0210 crossref_primary_10_1111_jeb_12244 crossref_primary_10_1080_11263504_2016_1255268 crossref_primary_10_1007_s11252_020_01071_6 crossref_primary_10_1016_j_biocon_2013_07_037 crossref_primary_10_1002_ecs2_2862 crossref_primary_10_1016_j_baae_2015_08_008 crossref_primary_10_1038_s41561_021_00773_6 crossref_primary_10_1016_j_scitotenv_2023_168275 crossref_primary_10_3390_f9030122 crossref_primary_10_1371_journal_pone_0158203 crossref_primary_10_1002_ecs2_2847 crossref_primary_10_1002_ajpa_23355 crossref_primary_10_1007_s11119_013_9314_9 crossref_primary_10_1371_journal_pone_0082142 crossref_primary_10_3897_BDJ_6_e20760 crossref_primary_10_1371_journal_pcbi_1008856 crossref_primary_10_1111_gcb_12507 crossref_primary_10_1111_j_1365_2664_2009_01692_x crossref_primary_10_3390_su9091674 crossref_primary_10_1007_s10764_010_9464_9 crossref_primary_10_1111_1365_2656_12619 crossref_primary_10_1007_s11252_014_0381_0 crossref_primary_10_1111_ibi_13322 crossref_primary_10_1038_s41598_018_25704_1 crossref_primary_10_1186_s12889_020_08754_x crossref_primary_10_1038_s41467_023_43729_7 crossref_primary_10_1002_ecs2_2832 crossref_primary_10_1007_s10980_014_9991_4 crossref_primary_10_1016_j_tree_2018_08_001 crossref_primary_10_1098_rspb_2015_0591 crossref_primary_10_1139_cjz_2013_0262 crossref_primary_10_1111_jvs_12112 crossref_primary_10_1126_science_aaz6970 crossref_primary_10_3390_s17102428 crossref_primary_10_1093_icesjms_fsx246 crossref_primary_10_3389_ffgc_2023_1082233 crossref_primary_10_1016_j_cropro_2019_104971 crossref_primary_10_2326_osj_12_117 crossref_primary_10_1111_oik_09720 crossref_primary_10_1007_s10980_024_01943_8 crossref_primary_10_1016_j_apgeog_2014_04_010 crossref_primary_10_1016_j_mambio_2015_11_005 crossref_primary_10_1071_WR22153 crossref_primary_10_1016_j_geoderma_2025_117223 crossref_primary_10_1371_journal_pone_0217840 crossref_primary_10_3389_fenvs_2022_954655 crossref_primary_10_1071_WR16108 crossref_primary_10_1111_jvs_12126 crossref_primary_10_1111_ecog_01393 crossref_primary_10_1007_s12403_019_00310_2 crossref_primary_10_1007_s00040_017_0582_7 crossref_primary_10_1371_journal_pone_0139936 crossref_primary_10_1111_jbi_12194 crossref_primary_10_1007_s10531_016_1103_0 crossref_primary_10_1016_j_psj_2021_101518 crossref_primary_10_1002_ecs2_2817 crossref_primary_10_1007_s10841_017_9957_3 crossref_primary_10_1007_s12237_018_0468_6 crossref_primary_10_1017_eds_2024_22 crossref_primary_10_1016_j_trf_2019_12_001 crossref_primary_10_1111_j_1558_5646_2012_01795_x crossref_primary_10_1007_s13127_011_0058_y crossref_primary_10_1016_j_apgeog_2016_07_012 crossref_primary_10_1007_s11434_014_0640_8 crossref_primary_10_1007_s10530_017_1567_1 crossref_primary_10_1371_journal_pone_0085640 crossref_primary_10_1186_2192_1709_1_3 crossref_primary_10_1289_EHP1943 crossref_primary_10_1093_jmammal_gyy003 crossref_primary_10_1371_journal_pone_0217854 crossref_primary_10_1111_j_2041_210x_2012_00253_x crossref_primary_10_1016_j_foreco_2015_03_011 crossref_primary_10_1111_1365_2656_12607 crossref_primary_10_1111_geb_12274 crossref_primary_10_7717_peerj_2105 crossref_primary_10_1186_1476_072X_12_49 crossref_primary_10_1016_j_gecco_2021_e01848 crossref_primary_10_1093_jmammal_gyab088 crossref_primary_10_1016_j_actatropica_2016_06_015 crossref_primary_10_1002_ece3_6577 crossref_primary_10_1038_s41598_017_13130_8 crossref_primary_10_1016_j_biocon_2010_10_002 crossref_primary_10_1071_WF14024 crossref_primary_10_1080_00045608_2012_685048 crossref_primary_10_1111_geb_13191 crossref_primary_10_1098_rsbl_2010_1174 crossref_primary_10_1111_ecog_03592 crossref_primary_10_1038_s41598_018_22014_4 crossref_primary_10_3732_ajb_1300443 crossref_primary_10_1017_S0030605313000914 crossref_primary_10_1590_S1676_06032009000100006 crossref_primary_10_1007_s13364_018_0377_x crossref_primary_10_1016_j_apgeog_2014_04_002 crossref_primary_10_1155_2014_424138 crossref_primary_10_1016_j_jasrep_2017_03_017 crossref_primary_10_1007_s10841_024_00571_6 crossref_primary_10_1371_journal_pone_0038007 crossref_primary_10_1016_j_marpolbul_2025_117776 crossref_primary_10_1111_1440_1703_12003 crossref_primary_10_1007_s10109_015_0215_5 crossref_primary_10_1111_jbi_13491 crossref_primary_10_1038_ncomms12793 crossref_primary_10_1086_678084 crossref_primary_10_1016_j_foreco_2023_121165 crossref_primary_10_1111_j_1600_0587_2008_05576_x crossref_primary_10_1007_s10980_012_9834_0 crossref_primary_10_1111_brv_12256 crossref_primary_10_1636_P10_58_1 crossref_primary_10_1002_aqc_2969 crossref_primary_10_1007_s10342_016_0996_1 crossref_primary_10_1111_maec_12384 crossref_primary_10_1016_j_biocon_2020_108437 crossref_primary_10_1098_rsos_181269 crossref_primary_10_1016_j_ecoinf_2010_12_004 crossref_primary_10_1007_s11802_020_4120_2 crossref_primary_10_1890_14_0104_1 crossref_primary_10_1111_ecog_03137 crossref_primary_10_1111_jbi_14328 crossref_primary_10_3390_su10010194 crossref_primary_10_1007_s00442_016_3588_3 crossref_primary_10_1016_j_agee_2015_06_019 crossref_primary_10_1016_j_eiar_2018_04_006 crossref_primary_10_1017_S0376892910000494 crossref_primary_10_1016_j_scitotenv_2018_06_107 crossref_primary_10_1016_j_biocon_2019_01_019 crossref_primary_10_1007_s10336_015_1285_3 crossref_primary_10_1111_ddi_12835 crossref_primary_10_1002_ecs2_1927 crossref_primary_10_1111_ddi_12839 crossref_primary_10_1016_j_cities_2019_102444 crossref_primary_10_1038_s42003_018_0260_y crossref_primary_10_1016_j_biocon_2016_05_029 crossref_primary_10_1016_j_ecoleng_2022_106688 crossref_primary_10_1016_j_healthplace_2018_05_002 crossref_primary_10_3390_ijgi6120397 crossref_primary_10_1007_s43388_023_00143_3 crossref_primary_10_3389_fvets_2020_00339 crossref_primary_10_1186_1476_072X_12_43 crossref_primary_10_1111_geb_13165 crossref_primary_10_3390_land12040863 crossref_primary_10_1007_s10531_016_1096_8 crossref_primary_10_1371_journal_pone_0052574 crossref_primary_10_1111_j_1469_1795_2011_00474_x crossref_primary_10_1111_j_1466_8238_2011_00728_x crossref_primary_10_1163_156853812X643710 crossref_primary_10_1002_ecs2_1912 crossref_primary_10_1111_ecog_00566 crossref_primary_10_3390_insects14010007 crossref_primary_10_1007_s10980_014_0063_6 crossref_primary_10_2980_16_1_3185 crossref_primary_10_3389_ffgc_2022_962816 crossref_primary_10_3354_meps12822 crossref_primary_10_1002_ece3_1123 crossref_primary_10_1002_ece3_4635 crossref_primary_10_1007_s10641_020_01047_7 crossref_primary_10_1111_j_1472_4642_2011_00793_x crossref_primary_10_1007_s11629_022_7867_7 crossref_primary_10_1016_j_ecolind_2019_105670 crossref_primary_10_1111_j_1600_0587_2008_05755_x crossref_primary_10_1603_EN11256 crossref_primary_10_1007_s10533_010_9547_x crossref_primary_10_1111_j_1365_294X_2011_05137_x crossref_primary_10_3390_su16177371 crossref_primary_10_1002_ajp_23157 crossref_primary_10_12677_OJNS_2019_72011 crossref_primary_10_1371_journal_pone_0192887 crossref_primary_10_1371_journal_pone_0041444 crossref_primary_10_1007_s10940_021_09538_1 crossref_primary_10_1111_avsc_12252 crossref_primary_10_1007_s40823_024_00104_6 crossref_primary_10_1111_j_1600_0587_2009_05785_x crossref_primary_10_1016_j_ecoinf_2015_05_012 crossref_primary_10_1016_j_biocon_2017_12_039 crossref_primary_10_1111_gcb_15637 crossref_primary_10_1016_j_marenvres_2018_06_015 crossref_primary_10_1016_j_ecss_2016_08_050 crossref_primary_10_1093_aob_mcac129 crossref_primary_10_1126_science_aax8591 crossref_primary_10_1111_gcb_12123 crossref_primary_10_1038_s41598_018_27591_y crossref_primary_10_1016_j_ecolind_2021_108452 crossref_primary_10_1111_j_1523_1739_2008_01156_x crossref_primary_10_1111_jbi_12108 crossref_primary_10_1016_j_palaeo_2011_07_021 crossref_primary_10_3354_meps10624 crossref_primary_10_1111_j_1466_8238_2011_00661_x crossref_primary_10_1016_j_foreco_2021_119983 crossref_primary_10_1016_j_scitotenv_2020_141006 crossref_primary_10_1017_S1755267213000936 crossref_primary_10_1890_07_1772_1 crossref_primary_10_1002_ece3_4655 crossref_primary_10_1071_ZO17051 crossref_primary_10_1098_rsos_181100 crossref_primary_10_1080_11263504_2012_740083 crossref_primary_10_1111_1365_2656_12313 crossref_primary_10_1111_j_1600_0706_2012_20418_x crossref_primary_10_1093_jmammal_gyz161 crossref_primary_10_1111_bor_12219 crossref_primary_10_1111_2041_210X_14420 crossref_primary_10_1016_j_scitotenv_2025_178904 crossref_primary_10_1093_sysbio_syr084 crossref_primary_10_1007_s10980_013_9888_7 crossref_primary_10_1016_j_chemosphere_2019_05_058 crossref_primary_10_1007_s10980_020_01091_9 crossref_primary_10_1126_sciadv_adf5492 crossref_primary_10_1111_gcb_12598 crossref_primary_10_1017_S003118201800118X crossref_primary_10_1016_j_cities_2022_103600 crossref_primary_10_1088_1748_9326_abbbaf crossref_primary_10_1111_1365_2745_13232 crossref_primary_10_1111_2041_210X_13107 crossref_primary_10_1139_X07_226 crossref_primary_10_1093_jmammal_gyz170 crossref_primary_10_1016_j_actao_2014_10_005 crossref_primary_10_1656_045_020_0419 crossref_primary_10_1080_00063657_2016_1180503 crossref_primary_10_1007_s10530_020_02206_8 crossref_primary_10_1890_14_0183_1 crossref_primary_10_1002_ece3_1162 crossref_primary_10_1016_j_biocon_2017_04_013 crossref_primary_10_1016_j_rhisph_2025_101041 crossref_primary_10_1111_ecog_03636 crossref_primary_10_1016_j_agee_2016_01_051 crossref_primary_10_1007_s10682_020_10089_3 crossref_primary_10_1111_j_1095_8312_2010_01394_x crossref_primary_10_1111_geb_12705 crossref_primary_10_1016_j_flora_2019_151465 crossref_primary_10_1111_aec_12556 crossref_primary_10_1111_ecog_04960 crossref_primary_10_1111_jvs_12028 crossref_primary_10_1016_j_agrformet_2012_03_002 crossref_primary_10_1098_rspb_2011_2705 crossref_primary_10_1007_s10980_017_0499_6 crossref_primary_10_1016_j_landurbplan_2022_104568 crossref_primary_10_1890_11_1183_1 crossref_primary_10_1111_2041_210X_13594 crossref_primary_10_1371_journal_pone_0097036 crossref_primary_10_1007_s11252_011_0202_7 crossref_primary_10_1007_s10708_014_9525_2 crossref_primary_10_1057_s41267_018_0153_9 crossref_primary_10_1111_j_1472_4642_2009_00557_x crossref_primary_10_1038_s42003_022_03573_9 crossref_primary_10_1111_ddi_12770 crossref_primary_10_1080_13658816_2010_518147 crossref_primary_10_3354_meps11925 crossref_primary_10_1007_s10530_022_02849_9 crossref_primary_10_1590_1678_4685_gmb_2017_0031 crossref_primary_10_1002_aqc_4064 crossref_primary_10_2981_12_038 crossref_primary_10_1111_jbi_12563 crossref_primary_10_1111_1365_2745_13255 crossref_primary_10_1093_icesjms_fsae006 crossref_primary_10_1016_j_indic_2024_100474 crossref_primary_10_7717_peerj_14291 crossref_primary_10_1007_s10531_021_02338_w crossref_primary_10_1016_j_vetpar_2014_12_016 crossref_primary_10_1111_ddi_12782 crossref_primary_10_1186_1750_0680_9_2 crossref_primary_10_1002_ajp_22278 crossref_primary_10_1071_SR16186 crossref_primary_10_2981_12_040 crossref_primary_10_1007_s10980_017_0566_z crossref_primary_10_1016_j_ufug_2015_09_002 crossref_primary_10_1016_j_gecco_2019_e00562 crossref_primary_10_1590_bjb_2014_0088 crossref_primary_10_1007_s10980_013_9942_5 crossref_primary_10_1111_ecog_03655 crossref_primary_10_1111_jvs_12045 crossref_primary_10_1016_j_agee_2016_01_036 crossref_primary_10_1038_s42003_024_07239_6 crossref_primary_10_1111_j_1600_048X_2013_00250_x crossref_primary_10_1111_j_1365_2745_2011_01902_x crossref_primary_10_1111_j_1600_0706_2011_19739_x crossref_primary_10_3389_fenvs_2022_963960 crossref_primary_10_1007_s11284_013_1051_z crossref_primary_10_1071_MF19272 crossref_primary_10_1111_1365_2664_70017 crossref_primary_10_1016_j_biocon_2014_04_025 crossref_primary_10_3390_land12030549 crossref_primary_10_3390_f9010007 crossref_primary_10_1007_s10336_015_1281_7 crossref_primary_10_1007_s10336_008_0295_9 crossref_primary_10_1111_j_1466_8238_2009_00521_x crossref_primary_10_1016_j_apgeog_2019_102100 crossref_primary_10_1111_j_1365_2699_2009_02174_x crossref_primary_10_1016_j_apenergy_2017_03_038 crossref_primary_10_1080_01431161_2025_2464958 crossref_primary_10_1007_s11252_012_0280_1 crossref_primary_10_1371_journal_pone_0065464 crossref_primary_10_1371_journal_pone_0122981 crossref_primary_10_1016_j_foreco_2021_119544 crossref_primary_10_1111_1365_2745_13275 crossref_primary_10_1007_s10584_014_1202_4 crossref_primary_10_1007_s11802_025_5965_1 crossref_primary_10_1002_ajp_22282 crossref_primary_10_1111_2041_210X_14476 crossref_primary_10_1007_s40011_015_0498_9 crossref_primary_10_1111_2041_210X_13142 crossref_primary_10_1111_j_1600_0587_2010_06433_x crossref_primary_10_1111_j_1439_0418_2010_01598_x crossref_primary_10_1111_j_1600_0587_2012_00227_x crossref_primary_10_1016_j_ecolind_2024_112131 crossref_primary_10_1016_j_ecss_2024_109106 crossref_primary_10_3897_neobiota_38_23518 crossref_primary_10_1007_s10841_017_9983_1 crossref_primary_10_1007_s10841_020_00258_8 crossref_primary_10_1086_725016 crossref_primary_10_1111_j_1461_0248_2008_01270_x crossref_primary_10_1007_s10342_017_1047_2 crossref_primary_10_1111_1365_2664_13472 crossref_primary_10_1109_ACCESS_2017_2766092 crossref_primary_10_1016_j_aspen_2015_03_008 crossref_primary_10_1111_2041_210X_13957 crossref_primary_10_1016_j_flora_2010_11_003 crossref_primary_10_1016_j_sajb_2013_06_004 crossref_primary_10_1080_15568318_2017_1422301 crossref_primary_10_1371_journal_pone_0316946 crossref_primary_10_1002_ece3_3709 crossref_primary_10_1111_icad_12484 crossref_primary_10_1002_ecy_2190 crossref_primary_10_3389_fevo_2021_658713 crossref_primary_10_1016_j_foreco_2017_03_030 crossref_primary_10_1080_01431161_2017_1320450 crossref_primary_10_1111_j_1461_0248_2008_01217_x crossref_primary_10_1007_s10021_021_00685_x crossref_primary_10_1111_1365_2435_12283 crossref_primary_10_1111_jbi_12516 crossref_primary_10_1643_CG_18_171 crossref_primary_10_1016_j_ssmph_2018_100340 crossref_primary_10_1016_j_scitotenv_2018_02_026 crossref_primary_10_1111_ecog_07104 crossref_primary_10_1111_j_1600_0587_2011_07181_x crossref_primary_10_1016_j_agee_2021_107457 crossref_primary_10_3389_fevo_2021_681959 crossref_primary_10_1111_j_1600_0587_2010_06264_x crossref_primary_10_1111_j_1600_0587_2013_00279_x crossref_primary_10_1111_geb_12726 crossref_primary_10_3390_ijgi9070414 crossref_primary_10_1002_ajp_22233 crossref_primary_10_1016_j_ecolmodel_2016_03_012 crossref_primary_10_1111_mve_12738 crossref_primary_10_1139_cjfr_2013_0089 crossref_primary_10_1670_10_033_1 crossref_primary_10_1111_j_1365_2486_2012_02679_x crossref_primary_10_1016_j_biocon_2017_10_029 crossref_primary_10_1016_j_landusepol_2017_11_007 crossref_primary_10_1111_ele_13330 crossref_primary_10_1017_S1742170517000758 crossref_primary_10_1111_ecog_06289 crossref_primary_10_1186_s40064_016_3052_1 crossref_primary_10_1111_2041_210X_12645 crossref_primary_10_1111_ecog_06287 crossref_primary_10_1016_j_palaeo_2019_04_028 crossref_primary_10_17208_jkpa_2018_12_53_7_49 crossref_primary_10_1371_journal_pcbi_1010033 crossref_primary_10_1002_ps_7558 crossref_primary_10_1098_rstb_2013_0194 crossref_primary_10_1007_s11104_016_2957_3 crossref_primary_10_1371_journal_pntd_0006105 crossref_primary_10_1007_s10531_017_1299_7 crossref_primary_10_1111_gcb_15227 crossref_primary_10_1016_j_agee_2020_107145 crossref_primary_10_1016_j_marpol_2019_103703 crossref_primary_10_1016_j_actao_2011_03_002 crossref_primary_10_1002_ece3_5913 crossref_primary_10_1016_j_rse_2023_113591 crossref_primary_10_3417_2008034 crossref_primary_10_1111_j_0906_7590_2008_05206_x crossref_primary_10_1016_j_isci_2024_110824 crossref_primary_10_1111_cobi_12669 crossref_primary_10_1111_j_1365_2486_2011_02462_x crossref_primary_10_1016_j_foreco_2015_09_001 crossref_primary_10_1016_j_ecoinf_2022_101914 crossref_primary_10_1111_1365_2656_12372 crossref_primary_10_1111_jav_01063 crossref_primary_10_1089_ham_2018_0130 crossref_primary_10_1111_jbi_13811 crossref_primary_10_1371_journal_pone_0197720 crossref_primary_10_1007_s10342_011_0509_1 crossref_primary_10_1080_00036846_2017_1409421 crossref_primary_10_1017_S095927091800028X crossref_primary_10_1016_j_csda_2020_107152 crossref_primary_10_1038_s41467_023_42475_0 crossref_primary_10_1111_1365_2664_12588 crossref_primary_10_1016_j_biocon_2017_02_009 crossref_primary_10_1111_mms_12882 crossref_primary_10_1016_j_marenvres_2015_08_005 crossref_primary_10_1111_j_1466_8238_2010_00573_x crossref_primary_10_3389_fvets_2019_00066 crossref_primary_10_1007_s10531_011_0096_y crossref_primary_10_1371_journal_pone_0114037 crossref_primary_10_1088_1748_9326_aca6ff crossref_primary_10_1371_journal_pone_0303250 crossref_primary_10_1007_s10344_011_0492_3 crossref_primary_10_1111_jbi_12953 crossref_primary_10_3390_su16198298 crossref_primary_10_1111_j_1600_0587_2010_06584_x crossref_primary_10_1016_j_fecs_2024_100223 crossref_primary_10_1111_jbi_12959 crossref_primary_10_1007_s13524_018_0708_1 crossref_primary_10_1371_journal_pone_0081541 crossref_primary_10_1080_10106049_2015_1004129 crossref_primary_10_1111_j_1466_8238_2009_00489_x crossref_primary_10_1371_journal_pone_0065039 crossref_primary_10_1002_ece3_4607 crossref_primary_10_1007_s10393_015_1013_8 crossref_primary_10_1371_journal_pone_0129995 crossref_primary_10_3390_en18010014 crossref_primary_10_1007_s10980_023_01755_2 crossref_primary_10_1098_rsbl_2020_0620 crossref_primary_10_1016_j_agee_2017_06_043 crossref_primary_10_1007_s10531_020_02094_3 crossref_primary_10_1016_j_ecss_2016_04_005 crossref_primary_10_1007_s00114_013_1039_0 crossref_primary_10_1071_MU14030 crossref_primary_10_1371_journal_pone_0297038 crossref_primary_10_1371_journal_pone_0299217 crossref_primary_10_1371_journal_pone_0139344 crossref_primary_10_1016_j_ecoinf_2024_102559 crossref_primary_10_1007_s10393_010_0281_6 crossref_primary_10_1007_s10530_011_9982_1 crossref_primary_10_1111_icad_12025 crossref_primary_10_1111_2041_210X_12203 crossref_primary_10_1007_s10539_017_9594_y crossref_primary_10_1007_s10980_024_01896_y crossref_primary_10_1016_j_gecco_2022_e02313 crossref_primary_10_1007_s10841_018_0073_9 crossref_primary_10_1007_s11284_013_1077_2 crossref_primary_10_1073_pnas_1011728108 crossref_primary_10_1111_ddi_12381 crossref_primary_10_1016_j_agee_2018_06_014 crossref_primary_10_1186_1742_9994_10_9 crossref_primary_10_3161_150811014X687350 crossref_primary_10_1109_TGRS_2020_2989216 crossref_primary_10_1111_j_1365_3180_2009_00758_x crossref_primary_10_1007_s10113_020_01657_y crossref_primary_10_1007_s10531_016_1167_x crossref_primary_10_1007_s10980_014_0117_9 crossref_primary_10_1111_j_1365_2664_2009_01642_x crossref_primary_10_1016_j_agee_2020_107189 crossref_primary_10_1111_j_1466_8238_2008_00433_x crossref_primary_10_1016_j_seares_2014_03_008 crossref_primary_10_1038_s41559_019_0972_5 crossref_primary_10_1111_ele_12452 crossref_primary_10_1111_j_1365_2699_2008_01901_x crossref_primary_10_1016_j_annals_2020_102937 crossref_primary_10_1016_j_envadv_2022_100234 crossref_primary_10_1890_12_1595_1 crossref_primary_10_1016_j_sste_2020_100342 crossref_primary_10_1016_j_ufug_2023_128038 crossref_primary_10_1111_j_1365_2699_2009_02117_x crossref_primary_10_1007_s11258_016_0641_6 crossref_primary_10_1016_j_vetpar_2022_109806 crossref_primary_10_1016_j_foreco_2020_117936 crossref_primary_10_1080_00218839_2022_2152219 crossref_primary_10_3161_000164512X653917 crossref_primary_10_3390_f14102076 crossref_primary_10_1007_s13253_020_00424_0 crossref_primary_10_1016_j_agee_2016_03_014 crossref_primary_10_1002_ece3_70348 crossref_primary_10_1007_s00442_011_2045_6 crossref_primary_10_1371_journal_pone_0102127 crossref_primary_10_1111_icad_12525 crossref_primary_10_1111_ecog_04122 crossref_primary_10_1371_journal_pone_0172464 crossref_primary_10_1111_1365_2664_13072 crossref_primary_10_1002_ecm_1550 crossref_primary_10_1111_geb_12343 crossref_primary_10_1016_j_envsoft_2016_02_004 crossref_primary_10_1111_ecog_01092 crossref_primary_10_1098_rsos_180706 crossref_primary_10_1038_s43247_024_01664_5 crossref_primary_10_1038_nature09329 crossref_primary_10_1007_s10336_012_0819_1 crossref_primary_10_1016_j_ufug_2023_127914 crossref_primary_10_1111_ddi_12296 crossref_primary_10_1111_geb_12337 crossref_primary_10_1038_s41467_021_27373_7 crossref_primary_10_1007_s10764_014_9784_2 crossref_primary_10_15187_adr_2024_05_37_2_121 crossref_primary_10_1016_j_ufug_2023_127919 crossref_primary_10_1002_ldr_3604 crossref_primary_10_1016_j_dsr_2016_07_006 crossref_primary_10_1890_ES15_00085_1 crossref_primary_10_1007_s10592_016_0875_9 crossref_primary_10_3354_meps12376 crossref_primary_10_3390_su12030997 crossref_primary_10_1016_j_scitotenv_2016_05_099 crossref_primary_10_1002_sim_9395 crossref_primary_10_1007_s10750_023_05205_7 crossref_primary_10_1080_03067319_2020_1858069 crossref_primary_10_1016_j_biocon_2018_01_024 crossref_primary_10_1111_mec_13152 crossref_primary_10_1007_s42991_024_00425_3 crossref_primary_10_1016_j_pocean_2024_103355 crossref_primary_10_1007_s10531_022_02413_w crossref_primary_10_1111_1365_2656_14056 crossref_primary_10_1111_j_1365_2699_2011_02524_x crossref_primary_10_3390_ijgi8040199 crossref_primary_10_3354_meps13698 crossref_primary_10_1111_j_1474_919X_2010_01016_x crossref_primary_10_3390_land11101745 crossref_primary_10_3390_d10030072 crossref_primary_10_1016_j_ecoinf_2023_102222 crossref_primary_10_7717_peerj_3164 crossref_primary_10_1038_s41586_024_07778_2 crossref_primary_10_1590_S1415_47572013000400002 crossref_primary_10_1007_s10530_013_0596_7 crossref_primary_10_1111_j_1600_0587_2010_06273_x crossref_primary_10_1111_j_1600_0587_2012_07669_x crossref_primary_10_1093_braincomms_fcaa122 crossref_primary_10_1002_ldr_4919 crossref_primary_10_1007_s11252_014_0349_0 crossref_primary_10_1007_s13157_015_0682_y crossref_primary_10_1007_s00442_008_1244_2 crossref_primary_10_1016_j_ecolind_2018_04_022 crossref_primary_10_1080_07853890_2022_2105391 crossref_primary_10_1016_j_foreco_2024_122048 crossref_primary_10_1016_j_flora_2021_151966 crossref_primary_10_1016_j_fishres_2018_11_020 crossref_primary_10_1016_j_compag_2022_107164 crossref_primary_10_1111_j_1600_0587_2009_05800_x crossref_primary_10_1371_journal_pone_0308560 crossref_primary_10_1111_acv_12678 crossref_primary_10_5194_hess_24_5279_2020 crossref_primary_10_1038_s41598_020_67980_w crossref_primary_10_1111_1365_2664_13069 crossref_primary_10_3389_fpsyg_2017_00433 crossref_primary_10_1111_cobi_13912 crossref_primary_10_1111_1365_2435_12752 crossref_primary_10_1111_j_1654_1103_2011_01294_x crossref_primary_10_1179_204234811X591046 crossref_primary_10_1017_S095927092100023X crossref_primary_10_1016_j_ufug_2022_127609 crossref_primary_10_1111_1440_1703_12191 crossref_primary_10_1111_btp_13063 crossref_primary_10_1080_13658816_2011_642799 crossref_primary_10_4018_jagr_2013070103 crossref_primary_10_1890_14_0036_1 crossref_primary_10_1111_acv_12206 crossref_primary_10_1111_j_1600_0587_2013_00368_x crossref_primary_10_1016_j_baae_2021_11_008 crossref_primary_10_1080_00045608_2014_892321 crossref_primary_10_1002_aqc_3542 crossref_primary_10_1007_s10530_016_1314_z crossref_primary_10_1890_10_0322_1 crossref_primary_10_3390_land11091438 crossref_primary_10_1016_j_ocecoaman_2021_105555 crossref_primary_10_1002_ece3_2939 crossref_primary_10_1111_j_1654_109X_2012_01210_x crossref_primary_10_1016_j_jenvman_2022_117108 crossref_primary_10_1016_j_ijintrel_2021_07_010 crossref_primary_10_1111_1365_2664_14365 crossref_primary_10_1111_j_1472_4642_2009_00561_x crossref_primary_10_1080_19475683_2012_668558 crossref_primary_10_1002_ece3_7391 crossref_primary_10_5194_nhess_15_45_2015 crossref_primary_10_1007_s10531_011_0159_0 crossref_primary_10_1111_btp_13054 crossref_primary_10_1002_ece3_1610 crossref_primary_10_1111_j_1600_0587_2013_00564_x crossref_primary_10_1098_rsos_150017 crossref_primary_10_1111_geb_12377 crossref_primary_10_1111_geb_12374 crossref_primary_10_1371_journal_pone_0149662 crossref_primary_10_1016_j_ejsobi_2011_01_003 crossref_primary_10_3389_fmicb_2017_01731 crossref_primary_10_1002_ece3_6077 crossref_primary_10_1177_0309133312442522 crossref_primary_10_1007_s11252_013_0333_0 crossref_primary_10_1007_s10531_016_1222_7 crossref_primary_10_1002_jwmg_21530 crossref_primary_10_1016_j_ecolind_2016_10_006 crossref_primary_10_1007_s11104_020_04796_7 crossref_primary_10_1016_j_landusepol_2017_04_011 crossref_primary_10_1111_j_1600_0587_2013_00346_x crossref_primary_10_1111_jbi_14298 crossref_primary_10_32800_abc_2024_47_0089 crossref_primary_10_1016_j_scitotenv_2020_144166 crossref_primary_10_24072_pci_ecology_100536 crossref_primary_10_1016_j_jspi_2020_04_001 crossref_primary_10_1890_12_2081_1 crossref_primary_10_1007_s10661_023_11004_3 crossref_primary_10_1007_s10344_014_0826_z crossref_primary_10_1016_j_scitotenv_2014_06_101 crossref_primary_10_3390_safety6020025 crossref_primary_10_1016_j_ufug_2017_08_014 crossref_primary_10_1111_j_1600_0587_2011_06949_x crossref_primary_10_1016_j_biocon_2014_10_019 crossref_primary_10_1111_j_1466_8238_2010_00604_x crossref_primary_10_1007_s11676_024_01695_w crossref_primary_10_1016_j_apgeog_2012_10_012 crossref_primary_10_1007_s10694_020_01037_2 crossref_primary_10_1016_j_ecolind_2014_11_009 crossref_primary_10_1002_ece3_8270 crossref_primary_10_1126_science_1249853 crossref_primary_10_1016_j_ufug_2022_127601 crossref_primary_10_1016_j_baae_2009_11_006 crossref_primary_10_1098_rsbl_2009_0688 crossref_primary_10_1016_j_biocon_2015_01_002 crossref_primary_10_1016_j_mex_2019_09_035 crossref_primary_10_1038_ncomms8379 crossref_primary_10_1111_1365_2745_13624 crossref_primary_10_1016_j_envsoft_2013_02_005 crossref_primary_10_1890_10_0602_1 crossref_primary_10_1086_682688 crossref_primary_10_1007_s10877_019_00277_0 crossref_primary_10_1016_j_apsoil_2021_104260 crossref_primary_10_1016_j_jnc_2017_06_004 crossref_primary_10_1007_s00114_013_1069_7 crossref_primary_10_1111_j_1472_4642_2011_00797_x crossref_primary_10_1007_s00484_011_0434_5 crossref_primary_10_1007_s13364_018_0378_9 crossref_primary_10_1139_facets_2020_0018 crossref_primary_10_1016_j_ecolmodel_2014_04_024 crossref_primary_10_1155_2011_967631 crossref_primary_10_1111_j_1365_2664_2010_01921_x crossref_primary_10_1016_j_ecolind_2018_04_080 crossref_primary_10_1007_s10682_020_10094_6 crossref_primary_10_1016_j_biocon_2017_08_001 crossref_primary_10_1016_j_eti_2023_103177 crossref_primary_10_1016_j_gecco_2024_e03310 crossref_primary_10_1111_jbi_14268 crossref_primary_10_1007_s10980_018_0757_2 crossref_primary_10_32800_abc_2024_7_0089 crossref_primary_10_1016_j_ecoinf_2015_07_001 crossref_primary_10_3390_ijerph19095107 crossref_primary_10_1007_s13355_011_0034_1 crossref_primary_10_1007_s10336_011_0784_0 crossref_primary_10_1002_ecs2_2707 crossref_primary_10_1111_gcb_14821 crossref_primary_10_1111_gean_12156 crossref_primary_10_21105_joss_06158 crossref_primary_10_1016_j_lanwpc_2022_100451 crossref_primary_10_3390_biology10070676 crossref_primary_10_3390_f8030059 crossref_primary_10_1016_j_jclepro_2018_01_088 crossref_primary_10_1890_12_1645_1 crossref_primary_10_1016_j_pocean_2012_11_002 crossref_primary_10_1016_j_psychres_2020_112790 crossref_primary_10_1016_j_aei_2024_102451 crossref_primary_10_1186_s12889_018_5087_4 crossref_primary_10_1007_s11258_023_01353_x crossref_primary_10_1111_j_1752_4598_2011_00138_x crossref_primary_10_1016_j_gecco_2020_e01239 crossref_primary_10_1016_j_biocon_2017_06_035 crossref_primary_10_1371_journal_pone_0190643 crossref_primary_10_1016_j_actao_2014_12_003 crossref_primary_10_1016_j_ecolind_2021_107992 crossref_primary_10_1657_AAAR0013_108 crossref_primary_10_1007_s12145_024_01387_3 crossref_primary_10_2989_00306525_2018_1544175 crossref_primary_10_1016_j_sste_2014_10_002 crossref_primary_10_1002_wcc_291 crossref_primary_10_1007_s10584_019_02583_7 crossref_primary_10_1007_s00382_020_05319_x crossref_primary_10_1016_j_ecolmodel_2022_110011 crossref_primary_10_1111_ecog_04530 crossref_primary_10_1016_j_ecolind_2024_112928 crossref_primary_10_1111_jbi_12060 crossref_primary_10_1007_s10646_015_1569_7 crossref_primary_10_1016_j_foreco_2010_10_024 crossref_primary_10_1111_boj_12362 crossref_primary_10_1007_s10750_008_9493_y crossref_primary_10_1111_mms_12492 crossref_primary_10_1016_j_ecolmodel_2022_110013 crossref_primary_10_3390_ijerph15112578 crossref_primary_10_1016_j_ecolmodel_2012_01_021 crossref_primary_10_1186_s40462_019_0175_3 crossref_primary_10_1016_j_apgeog_2014_11_025 crossref_primary_10_1002_ece3_7784 crossref_primary_10_1111_j_1442_9993_2012_02401_x crossref_primary_10_1016_j_ecolind_2015_06_033 crossref_primary_10_1111_ecog_05410 crossref_primary_10_1111_jvs_12421 crossref_primary_10_1007_s11160_024_09863_1 crossref_primary_10_3390_f15071261 crossref_primary_10_1146_annurev_ento_031616_035444 crossref_primary_10_5253_arde_v107i2_a1 crossref_primary_10_1600_036364420X16033962925312 crossref_primary_10_1002_wcc_271 crossref_primary_10_1111_j_1466_8238_2009_00481_x crossref_primary_10_5194_bg_6_1577_2009 crossref_primary_10_1016_j_biocon_2011_12_006 crossref_primary_10_1111_jbi_14219 crossref_primary_10_1186_s13071_024_06280_y crossref_primary_10_1111_ecog_05403 crossref_primary_10_3390_f14122458 crossref_primary_10_1007_s10531_021_02284_7 crossref_primary_10_31857_S0032180X22100380 crossref_primary_10_1093_biolinnean_blaa190 crossref_primary_10_3390_su9050819 crossref_primary_10_1134_S1064229322602384 crossref_primary_10_1111_fog_12011 crossref_primary_10_1016_j_marpolbul_2015_06_041 crossref_primary_10_1016_j_foreco_2023_121286 crossref_primary_10_3390_f10020108 crossref_primary_10_1007_s11356_009_0219_0 crossref_primary_10_1016_j_agee_2011_08_012 crossref_primary_10_1002_ece3_8650 crossref_primary_10_3389_fbioe_2020_00598 crossref_primary_10_1073_pnas_2300981120 crossref_primary_10_1017_S0266467416000559 crossref_primary_10_1002_ece3_9503 crossref_primary_10_1007_s10530_021_02522_7 crossref_primary_10_3390_agronomy12092095 crossref_primary_10_1038_s41598_019_45713_y crossref_primary_10_1016_j_ecolind_2015_04_007 crossref_primary_10_1002_ecs2_4094 crossref_primary_10_1111_aje_13121 crossref_primary_10_1111_j_1439_0469_2012_00658_x crossref_primary_10_1016_j_gecco_2014_11_016 crossref_primary_10_1111_geb_13299 crossref_primary_10_1371_journal_pone_0019653 crossref_primary_10_1111_geb_13297 crossref_primary_10_3390_w13101345 crossref_primary_10_1016_j_palaeo_2017_12_004 crossref_primary_10_1016_j_spasta_2018_04_006 crossref_primary_10_1111_j_1600_048X_2012_05743_x crossref_primary_10_3389_fmars_2018_00016 crossref_primary_10_1098_rspb_2018_1101 crossref_primary_10_1007_s11284_015_1329_4 crossref_primary_10_1007_s12526_015_0371_3 crossref_primary_10_1007_s10531_012_0376_1 crossref_primary_10_1016_j_envsoft_2014_12_010 crossref_primary_10_3390_rs12050836 crossref_primary_10_1016_j_scitotenv_2020_144552 crossref_primary_10_1111_jbi_13355 crossref_primary_10_2981_wlb_00284 crossref_primary_10_1016_j_ecolind_2024_112966 crossref_primary_10_1371_journal_pntd_0003545 crossref_primary_10_1007_s10336_013_0955_2 crossref_primary_10_1080_17583004_2017_1309204 |
Cites_doi | 10.1007/s00477-007-0117-2 10.1046/j.1365-2664.1999.00436.x 10.1111/j.1600-0587.2001.tb00494.x 10.1111/j.1469-8137.2006.01811.x 10.1111/j.1466-8238.2006.00279.x 10.1007/s10980-006-9058-2 10.2307/3109759 10.1098/rsta.2003.1263 10.1023/A:1021302930424 10.1111/j.1466-822X.2004.00129.x 10.1016/S0006-3207(00)00074-4 10.1002/(SICI)1099-095X(199803/04)9:2<175::AID-ENV294>3.0.CO;2-2 10.1890/0012-9615(2002)072[0445:SAAAMI]2.0.CO;2 10.1016/S0378-1127(00)00490-4 10.1007/978-1-4419-0318-1 10.1111/j.1365-2699.2006.01509.x 10.1111/j.0906-7590.2007.05117.x 10.1890/1051-0761(2003)13[1069:DPMTPA]2.0.CO;2 10.1093/biomet/73.1.13 10.1890/03-5247 10.1111/j.1574-0862.2002.tb00120.x 10.1016/j.ecolmodel.2007.04.024 10.1016/j.ecolmodel.2006.02.015 10.2307/2532950 10.2307/2532039 10.1111/j.1472-4642.2006.00293.x 10.1201/9781420010404 10.1016/S0304-3800(00)00354-9 10.1023/A:1026001008598 10.1098/rspb.2006.3551 10.1111/j.1466-822X.2006.00237.x 10.1016/j.ecolmodel.2006.12.012 10.1034/j.1600-0587.2002.250508.x 10.2307/3236222 10.1002/9781119115151 10.1034/j.1600-0587.2002.250507.x 10.1016/j.ecolmodel.2005.09.007 10.2307/1400634 10.1111/j.1466-8238.2007.00334.x 10.1111/j.1472-4642.2007.00344.x 10.1111/j.1466-822X.2005.00147.x 10.1017/CBO9780511754944 10.1579/0044-7447-32.8.568 10.2307/2290687 10.1111/j.2517-6161.1974.tb00999.x 10.2307/3236071 10.1289/ehp.6052 10.2307/2997753 10.1007/PL00011451 10.1111/j.1538-4632.1996.tb00936.x 10.2193/0022-541X(2005)069[0933:MPOBFR]2.0.CO;2 10.1111/j.1472-4642.2004.00054.x 10.2307/2404755 10.1111/j.1466-822X.2004.00097.x 10.1111/j.1461-0248.2005.00792.x 10.1111/j.1600-0587.2000.tb00265.x 10.1111/j.1365-2664.2006.01162.x 10.2307/2685208 10.2307/1400400 10.1111/j.1095-8312.1978.tb00013.x 10.1126/science.1131758 10.1034/j.1600-0587.2002.250505.x 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 10.1016/j.ecolmodel.2003.09.039 10.1007/978-1-4899-3242-6 10.2307/143141 10.1007/978-94-015-7799-1 10.1016/j.baae.2006.11.001 10.1046/j.1365-2664.2001.00604.x 10.1016/S0024-3795(00)00031-8 10.1046/j.1466-822X.2003.00042.x 10.1016/0377-0427(96)00018-0 10.1023/A:1018505924603 10.1111/j.2006.0906-7590.04596.x 10.1017/CBO9780511542039 10.1111/j.0906-7590.2004.03732.x 10.1007/BF00116466 10.1016/S0378-3758(03)00111-3 10.1111/j.1558-5646.1998.tb02006.x 10.1068/a310165 10.1016/j.ecolmodel.2007.05.002 10.1890/04-0609 10.1002/0471662682 10.1034/j.1600-0587.2002.250509.x 10.1111/j.1365-2699.2004.01076.x 10.1111/j.1365-2699.2005.01379.x 10.1023/A:1009601932481 10.1126/science.1113399 10.2307/1939924 10.1038/nature03850 10.2307/1942661 10.1093/biostatistics/4.1.11 10.1111/j.1095-8312.1978.tb00014.x 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2 10.1007/978-0-387-21706-2 10.1046/j.1466-822X.2003.00322.x 10.2307/2532625 10.1126/science.1072779 10.1007/BF00048036 10.1644/1545-1542(2003)084<1356:HPOFAM>2.0.CO;2 10.1016/S0304-3800(01)00501-4 10.1111/j.1467-9876.2005.00466.x 10.1198/1085711031508 |
ContentType | Journal Article |
Copyright | Copyright 2007 Ecography 2008 INIST-CNRS |
Copyright_xml | – notice: Copyright 2007 Ecography – notice: 2008 INIST-CNRS |
DBID | FBQ BSCLL AAYXX CITATION IQODW 7SN C1K 7S9 L.6 |
DOI | 10.1111/j.2007.0906-7590.05171.x |
DatabaseName | AGRIS Istex CrossRef Pascal-Francis Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Ecology Abstracts Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Ecology Abstracts AGRICOLA CrossRef |
Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology Environmental Sciences |
EISSN | 1600-0587 |
EndPage | 628 |
ExternalDocumentID | 19282725 10_1111_j_2007_0906_7590_05171_x ECOG5171 30244511 ark_67375_WNG_C8K441N1_2 US201300825367 |
Genre | article |
GroupedDBID | .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 24P 29G 2AX 2~F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHKG AAONW AAXTN AAZKR ABBHK ABCQN ABCUV ABEML ABHUG ABPLY ABPTK ABPVW ABTAH ABTLG ABWRO ACBWZ ACCFJ ACFBH ACGFS ACPOU ACPRK ACSCC ACXME ACXQS ADAWD ADBBV ADEOM ADIZJ ADMGS ADPDF ADULT ADXAS ADZLD ADZOD AEEJZ AEEZP AEGXH AEIMD AENEX AEQDE AESBF AEUPB AEUQT AFAZZ AFBPY AFEBI AFGKR AFKRA AFPWT AFRAH AFVGU AFZJQ AGJLS AGUYK AICQM AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR ASPBG AS~ ATCPS ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BENPR BFHJK BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD CCPQU COF CS3 CWIXF D-E D-F DATOO DCZOG DFEDG DOOOF DPXWK DR2 DU5 DWIUU EBS ECGQY EJD ESX F00 F01 F04 F5P FBQ FEDTE G-S G.N GODZA GROUPED_DOAJ GTFYD H.T H.X HCIFZ HF~ HGD HTVGU HVGLF HZI HZ~ IAO IEP IHE IX1 J0M JAAYA JBMMH JBS JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST K48 LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OK1 OVD OVEED P2W P2X P4D PATMY PIMPY PYCSY Q.N Q11 QB0 R.K ROL RX1 SA0 SAMSI SUPJJ TEORI UB1 V8K W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WYISQ XG1 YFH YUY ZY4 ZZTAW ~02 ~IA ~KM ~WT AAHBH ABXSQ ADACV AHXOZ ALUQN AQVQM BSCLL IPSME ITC OIG WXSBR AAMMB AANHP ACHIC ACRPL ACYXJ ADNMO AEFGJ AGQPQ AGXDD AIDQK AIDYY ACCMX AEUYN AAYXX CITATION PHGZM PHGZT IQODW 7SN C1K 7S9 L.6 |
ID | FETCH-LOGICAL-c6061-c00b99fc6c3c1716c29c958ab543f0cf4c726d8e5b8c8f5e452c3b03cfeb34ba3 |
IEDL.DBID | DR2 |
ISSN | 0906-7590 |
IngestDate | Fri Jul 11 15:07:56 EDT 2025 Tue Aug 05 11:21:37 EDT 2025 Mon Jul 21 09:13:59 EDT 2025 Thu Apr 24 23:07:02 EDT 2025 Tue Jul 01 00:51:00 EDT 2025 Wed Jan 22 16:40:29 EST 2025 Thu Jul 03 21:19:29 EDT 2025 Wed Oct 30 09:55:45 EDT 2024 Wed Dec 27 19:13:55 EST 2023 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Spatial distribution Geographic distribution Review Method Autocorrelation Species Distribution range |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c6061-c00b99fc6c3c1716c29c958ab543f0cf4c726d8e5b8c8f5e452c3b03cfeb34ba3 |
Notes | http://dx.doi.org/10.1111/j.2007.0906-7590.05171.x ArticleID:ECOG5171 ark:/67375/WNG-C8K441N1-2 istex:C4DEA64C919F0D32720739ABCAD4FCF2D0231898 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
OpenAccessLink | https://serval.unil.ch/resource/serval:BIB_11548077DD68.P001/REF.pdf |
PQID | 20501373 |
PQPubID | 23462 |
PageCount | 20 |
ParticipantIDs | proquest_miscellaneous_47490381 proquest_miscellaneous_20501373 pascalfrancis_primary_19282725 crossref_citationtrail_10_1111_j_2007_0906_7590_05171_x crossref_primary_10_1111_j_2007_0906_7590_05171_x wiley_primary_10_1111_j_2007_0906_7590_05171_x_ECOG5171 jstor_primary_30244511 istex_primary_ark_67375_WNG_C8K441N1_2 fao_agris_US201300825367 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2007 |
PublicationDateYYYYMMDD | 2007-10-01 |
PublicationDate_xml | – month: 10 year: 2007 text: October 2007 |
PublicationDecade | 2000 |
PublicationPlace | Copenhagen |
PublicationPlace_xml | – name: Copenhagen – name: Oxford |
PublicationTitle | Ecography (Copenhagen) |
PublicationTitleAlternate | Ecography |
PublicationYear | 2007 |
Publisher | Copenhagen : Blackwell Publishing Ltd Blackwell Publishing Ltd Blackwell Publishing Blackwell |
Publisher_xml | – name: Copenhagen : Blackwell Publishing Ltd – name: Blackwell Publishing Ltd – name: Blackwell Publishing – name: Blackwell |
References | Araújo, M. B. and Williams, P. H.. 2000. Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331-345. Teterukovskiy, A. and Edenius, L.. 2003. Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler. Ambio 32: 568-572. Griffith, D. A. and Peres-Neto, P. R.. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecology 87: 2603-2613. Breslow, N. E. and Clayton, D. G.. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88: 9-25. Dormann, C. F.. 2007b. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol. Biogeogr. 16: 129-138. Osborne, P. E. et al. 2001. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J. Appl. Ecol. 38: 458-471. Guisan, A. and Zimmermann, N. E.. 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147-186. Griffith, D. A.. 2000a. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Lin. Algebra Appl. 321: 95-112. Huffer, F. W. and Wu, H. L.. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524. Bjørnstad, O. N. and Falck, W.. 2000. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8: 53-70. Sykes, M. T.. 2001. Modelling the potential distribution and community dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud.) in Scandinavia. For. Ecol. Manage. 141: 69-84. Brownstein, J. S. et al. 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ. Health Persp. 111: 1152-1157. Lichstein, J. W. et al. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445-463. Moore, J. E. and Swihart, R. K.. 2005. Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J. Wildl. Manage. 69: 933-949. Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151. Besag, J.. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. B 36: 192-236. Diggle, P. J. et al. 1995. Analysis of longitudinal data. Clarendon. Hawkins, B. A. et al. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30: 375-384. Myers, R. H. et al. 2002. Generalized linear models. Wiley. Lennon, J. J.. 2000. Red-shifts and red herrings in geographical ecology. Ecography 23: 101-113. Griffith, D. A.. 2000b. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2: 141-156. Hastie, T. J. and Tibshirani, R. J.. 1990. Generalized additive models. Chapman and Hall. Legendre, P.. 1993. Spatial autocorrelation: trouble or new paradigm?. Ecology 74: 1659-1673. Legendre, P. et al. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601-615. Wood, S. N.. 2006. Generalized additive models. Chapman and Hall/CRC. Kupfer, J. A. and Farris, C. A.. 2007. Incorporating spatial non-stationarity of regression coefficients inti predictive vegetation model. Landscape Ecol. 22: 837-852. Cressie, N. A. C.. 1993. Statistics for spatial data. Wiley. Fortin, M. J. and Dale, M. R. T.. 2005. Spatial analysis - a guide for ecologists. Cambridge Univ. Press. Latimer, A. M. et al. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33-50. Segurado, P. and Araújo, M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 1555-1568. Tognelli, M. F. and Kelt, D. A.. 2004. Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography 27: 427-436. Dormann, C. F.. 2007a. Assessing the validity of autologistic regression. Ecol Modell. 207: 234-242. Hurlbert, S. H.. 1984. Pseudoreplication and the design of ecological experiments. Ecol. Monogr. 54: 187-211. Legendre, P. and Legendre, L.. 1998. Numerical ecology. Elsevier. Kühn, I.. 2007. Incorporating spatial autocorrelation may invert observed patterns. Div. Distrib. 13: 66-69. Rangel, T. F. L. V. B. et al. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol. Biogeogr. 15: 321-327. Tobler, W. R.. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46: 234-240. Cliff, A. D. and Ord, J. K.. 1981. Spatial processes: models and applications. Pion. Augustin, N. H. et al. 1996. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33: 339-347. Foody, G. M.. 2004. Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol. Biogeogr. 13: 315-320. McCullough, P. and Nelder, J. A.. 1989. Generalized linear models. Chapman and Hall. McPherson, J. M. and Jetz, W.. 2007. Effects of species' ecology on the accuracy of distribution models. Ecography 30: 135-151. Legendre, P. and Fortin, M.-J.. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107-138. Isaaks, E. H. and Shrivastava, R. M.. 1989. An introduction to applied geostatistics. Oxford Univ. Press. Diniz-Filho, J. A. F. et al. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247-1262. Augustin, N. H. et al. 2005. Analyzing the spread of beech canker. For. Sci. 51: 438-448. Beerling, D. J. et al. 1995. Climate and the distribution of Fallopia japonica-use of an introduced species to test the predictive capacity of response surfaces. J. Veg. Sci. 6: 269-282. Waller, L. A. and Gotway, C. A.. 2004. Applied spatial statistics for public health data. Wiley. Luoto, M. et al. 2001. Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach. Ecography 24: 601-617. Carl, G. and Kühn, I.. 2007a. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Modell. 207: 159-170. Diniz-Filho, J. A. F. et al. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53-64. Link, W. A. and Barker, R. J.. 2006. Model weights and the foundations of multimodel inference. Ecology 87: 2626-2635. Littell, R. C. et al. 1996. SAS system for mixed lodels. SAS Publ. Anselin, L.. 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agricult. Econ. 17: 247-267. Pinheiro, J. C. and Bates, D. M.. 2000. Mixed-effect models in S and S-plus. Springer. Liang, K. Y. and Zeger, S. L.. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 13-22. Wu, H. L. and Huffer, F. W.. 1997. Modelling the distribution of plant species using the autologistic regression model. Environ. Ecol. Stat. 4: 49-64. Dobson, A. J.. 2002. An introduction to generalized linear models. Chapman and Hall. Jetz, W. and Rahbek, C.. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551. Knapp, R. A. et al. 2003. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecol. Appl. 13: 1069-1082. Sokal, R. R. and Oden, N. L.. 1978b. Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229-249. Borcard, D. and Legendre, P.. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153: 51-68. Segurado, P. et al. 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43: 433-444. Wall, M. M.. 2004. A close look at the spatial structure implied by the CAR and SAR models. J. Stat. Plann. Infer. 121: 311-324. Stephenson, C. M. et al. 2006. Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell 193: 747-758. Haining, R.. 2003. Spatial data analysis - theory and practice. Cambridge Univ. Press. Kühn, I. et al. 2006. Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol. 72: 127-139. Smith, P. A.. 1994. Autocorrelation in logistic regression modelling of species' distributions. Global. Ecol. Biogeogr. Lett. 4: 47-61. Besag, J. et al. 1991. Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Stat. Math. 43: 1-59. Palma, L. et al. 1999. The use of sighting data to analyse Iberian lynx habitat and distribution. J. Appl. Ecol. 36: 812-824. Sokal, R. R. and Oden, N. L.. 1978a. Spatial autocorrelation in biology. I. Methodology. Biol. J. Linn. Soc. 10: 199-228. Orme, C. D. L. et al. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019. Thogmartin, W. E. et al. 2004. A hierarchical spatial model of avian abundance with application to Cerulean warblers. Ecol. Appl. 14: 1766-1779. Augustin, N. H. et al. 1998. The role of simulation in modelling spatially correlated data. Environmetrics 9: 175-196. Guisan, A. and Thuiller, W.. 2005. Predicting species distributions: offering more than simple habitat models. Ecol. Lett. 8: 993-1009. Dutilleul, P.. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49: 305-314. Jetz, W. et al. 2005. Local and global approaches to spatial data analysis in ecology. Global Ecol. Biogeogr. 17: 97-98. Tiefelsdorf, M. et al. 1999. A variance-stabilizing 2002; 17 1989; 45 1986; 73 2001; 141 2002; 153 2000; 135 2004; 27 2006; 33 2002; 11 1996; 74 1997; 2 1997; 4 2005; 69 2004; 176 2004; 31 2007a; 207 1990 1978a; 10 1984; 54 2000; 96 2006; 29 1992; 46 1981 1989 1988 2007; 202 1995; 51 1993; 49 2000b; 2 2002; 72 2006; 196 1998 2002; 2 1996 1995 1993 2006; 193 2001; 24 1995; 6 2007; 13 2003; 32 2006; 43 2005; 8 1999; 36 1999; 31 2001; 38 2005; 17 1998; 9 2005; 14 2004; 121 2006; 72 2000; 5 1989; 80 2000; 8 2003; 13 2003; 18 2007; 30 2003; 111 1993; 4 1996; 33 2003; 12 1996; 28 2000 1991; 43 2003; 8 2000a; 321 1993; 74 2003; 4 2005; 309 1998; 52 1998; 54 2007; 22 2003; 84 2003; 361 1974; 36 2002; 297 2000; 23 1993; 88 2006; 16 2005; 436 2006; 15 2006; 273 2006 2005 2004 2007c; 8 2003 2002 2006; 313 1978b; 10 2004; 10 2002; 25 2006; 87 2004; 14 2004; 13 2005; 51 2005; 54 2007b; 16 1994; 4 1970; 46 e_1_2_6_114_1 e_1_2_6_53_1 e_1_2_6_76_1 e_1_2_6_95_1 e_1_2_6_118_1 e_1_2_6_30_1 e_1_2_6_72_1 Klute D. S. (e_1_2_6_70_1) 2002 e_1_2_6_110_1 e_1_2_6_19_1 e_1_2_6_11_1 e_1_2_6_34_1 e_1_2_6_15_1 e_1_2_6_38_1 e_1_2_6_57_1 e_1_2_6_99_1 e_1_2_6_64_1 e_1_2_6_87_1 e_1_2_6_106_1 e_1_2_6_41_1 e_1_2_6_60_1 e_1_2_6_83_1 Littell R. C. (e_1_2_6_85_1) 1996 e_1_2_6_102_1 e_1_2_6_9_1 e_1_2_6_5_1 e_1_2_6_49_1 e_1_2_6_22_1 e_1_2_6_68_1 e_1_2_6_73_1 e_1_2_6_54_1 e_1_2_6_96_1 e_1_2_6_117_1 e_1_2_6_50_1 e_1_2_6_92_1 e_1_2_6_113_1 Augustin N. H. (e_1_2_6_10_1) 2005; 51 Dobson A. J. (e_1_2_6_35_1) 2002 Myers R. H. (e_1_2_6_91_1) 2002 e_1_2_6_12_1 e_1_2_6_39_1 e_1_2_6_77_1 e_1_2_6_16_1 e_1_2_6_58_1 e_1_2_6_84_1 e_1_2_6_42_1 e_1_2_6_105_1 e_1_2_6_65_1 e_1_2_6_80_1 e_1_2_6_109_1 e_1_2_6_61_1 e_1_2_6_120_1 e_1_2_6_101_1 Isaaks E. H. (e_1_2_6_63_1) 1989 e_1_2_6_6_1 Wu H. L. (e_1_2_6_119_1) 1997; 4 e_1_2_6_23_1 e_1_2_6_2_1 e_1_2_6_27_1 e_1_2_6_46_1 e_1_2_6_69_1 e_1_2_6_51_1 e_1_2_6_74_1 e_1_2_6_97_1 e_1_2_6_116_1 e_1_2_6_32_1 Hastie T. J. (e_1_2_6_56_1) 1990 e_1_2_6_93_1 e_1_2_6_112_1 e_1_2_6_36_1 e_1_2_6_59_1 Kaluzny S. P. (e_1_2_6_67_1) 1998 Teterukovskiy A. (e_1_2_6_108_1) 2003; 32 e_1_2_6_17_1 e_1_2_6_55_1 e_1_2_6_62_1 e_1_2_6_104_1 e_1_2_6_43_1 e_1_2_6_81_1 e_1_2_6_20_1 e_1_2_6_100_1 Yan J. (e_1_2_6_121_1) 2002; 2 Besag J. (e_1_2_6_13_1) 1974; 36 e_1_2_6_7_1 Legendre P. (e_1_2_6_78_1) 1998 e_1_2_6_24_1 e_1_2_6_3_1 e_1_2_6_66_1 e_1_2_6_89_1 e_1_2_6_28_1 e_1_2_6_47_1 e_1_2_6_52_1 e_1_2_6_98_1 e_1_2_6_115_1 e_1_2_6_75_1 e_1_2_6_94_1 Diggle P. J. (e_1_2_6_31_1) 1995 e_1_2_6_71_1 e_1_2_6_90_1 e_1_2_6_111_1 e_1_2_6_14_1 McPherson J. M. (e_1_2_6_88_1) 2007; 30 e_1_2_6_33_1 e_1_2_6_18_1 e_1_2_6_37_1 e_1_2_6_79_1 e_1_2_6_103_1 Fotheringham A. S. (e_1_2_6_45_1) 2002 e_1_2_6_86_1 e_1_2_6_21_1 e_1_2_6_107_1 Cliff A. D. (e_1_2_6_26_1) 1981 e_1_2_6_40_1 e_1_2_6_82_1 e_1_2_6_122_1 e_1_2_6_8_1 e_1_2_6_4_1 e_1_2_6_25_1 e_1_2_6_48_1 e_1_2_6_29_1 e_1_2_6_44_1 |
References_xml | – reference: Segurado, P. and Araújo, M. B.. 2004. An evaluation of methods for modelling species distributions. J. Biogeogr. 31: 1555-1568. – reference: Anselin, L.. 1988. Spatial econometrics: methods and models. Kluwer. – reference: Bai, Z. et al. 1996. Some large-scale matrix computation problems. J. Comput. Appl. Math. 74: 71-89. – reference: Dormann, C. F.. 2007c. Promising the future? Global change predictions of species distributions. Basic Appl Ecol. 8: 387-397. – reference: Besag, J.. 1974. Spatial interaction and the statistical analysis of lattice systems. J. Roy. Stat. Soc. B 36: 192-236. – reference: Teterukovskiy, A. and Edenius, L.. 2003. Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler. Ambio 32: 568-572. – reference: Worm, B. et al. 2005. Global patterns of predator diversity in the open oceans. Science 309: 1365-136. – reference: Foody, G. M.. 2004. Spatial nonstationarity and scale-dependency in the relationship between species richness and environmental determinants for the sub-Saharan endemic avifauna. Global Ecol. Biogeogr. 13: 315-320. – reference: Augustin, N. H. et al. 1998. The role of simulation in modelling spatially correlated data. Environmetrics 9: 175-196. – reference: Araújo, M. B. and Rahbek, C.. 2006. How does climate Change affect biodiversity?. Science 313: 1396-1397. – reference: Brooks, S. P.. 2003. Bayesian computation: a statistical revolution. Phil. Trans. R. Soc. A 361: 2681-2697. – reference: McCullough, P. and Nelder, J. A.. 1989. Generalized linear models. Chapman and Hall. – reference: Dray, S. et al. 2006. Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecol. Modell. 196: 483-493. – reference: Brunsdon, C. et al. 1996. Geographically weighted regression: a method for exploring spatial non-stationarity. Geogr. Analys. 28: 281-298. – reference: Sokal, R. R. and Oden, N. L.. 1978b. Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229-249. – reference: Dutilleul, P.. 1993. Modifying the t test for assessing the correlation between two spatial processes. Biometrics 49: 305-314. – reference: Diggle, P. J. et al. 1995. Analysis of longitudinal data. Clarendon. – reference: Huffer, F. W. and Wu, H. L.. 1998. Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species. Biometrics 54: 509-524. – reference: Rangel, T. F. L. V. B. et al. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecol. Biogeogr. 15: 321-327. – reference: Gelfand, A. E. and Vounatsou, P.. 2003. Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4: 11-25. – reference: Diniz-Filho, J. A. F. et al. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247-1262. – reference: Luoto, M. et al. 2001. Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach. Ecography 24: 601-617. – reference: Clifford, P. et al. 1989. Assessing the significance of the correlation between two spatial processes. Biometrics 45: 123-134. – reference: McPherson, J. M. and Jetz, W.. 2007. Effects of species' ecology on the accuracy of distribution models. Ecography 30: 135-151. – reference: Smith, P. A.. 1994. Autocorrelation in logistic regression modelling of species' distributions. Global. Ecol. Biogeogr. Lett. 4: 47-61. – reference: Guisan, A. and Thuiller, W.. 2005. Predicting species distributions: offering more than simple habitat models. Ecol. Lett. 8: 993-1009. – reference: Haining, R.. 2003. Spatial data analysis - theory and practice. Cambridge Univ. Press. – reference: Tobler, W. R.. 1970. A computer movie simulating urban growth in the Detroit region. Econ. Geogr. 46: 234-240. – reference: Cliff, A. D. and Ord, J. K.. 1981. Spatial processes: models and applications. Pion. – reference: Sykes, M. T.. 2001. Modelling the potential distribution and community dynamics of lodgepole pine (Pinus contorta Dougl. ex. Loud.) in Scandinavia. For. Ecol. Manage. 141: 69-84. – reference: Anselin, L.. 2002. Under the hood: issues in the specification and interpretation of spatial regression models. Agricult. Econ. 17: 247-267. – reference: Beerling, D. J. et al. 1995. Climate and the distribution of Fallopia japonica-use of an introduced species to test the predictive capacity of response surfaces. J. Veg. Sci. 6: 269-282. – reference: Cressie, N. A. C.. 1993. Statistics for spatial data. Wiley. – reference: Segurado, P. et al. 2006. Consequences of spatial autocorrelation for niche-based models. J. Appl. Ecol. 43: 433-444. – reference: Legendre, P. et al. 2002. The consequences of spatial structure for the design and analysis of ecological field surveys. Ecography 25: 601-615. – reference: Pinheiro, J. C. and Bates, D. M.. 2000. Mixed-effect models in S and S-plus. Springer. – reference: Kaboli, M. et al. 2006. Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate, and topography. J. Biogeogr. 33: 133-144. – reference: Latimer, A. M. et al. 2006. Building statistical models to analyze species distributions. Ecol. Appl. 16: 33-50. – reference: Moore, J. E. and Swihart, R. K.. 2005. Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data. J. Wildl. Manage. 69: 933-949. – reference: Araújo, M. B. and Williams, P. H.. 2000. Selecting areas for species persistence using occurrence data. Biol. Conserv. 96: 331-345. – reference: Liang, K. Y. and Zeger, S. L.. 1986. Longitudinal data analysis using generalized linear models. Biometrika 73: 13-22. – reference: Diniz-Filho, J. A. and Bini, L. M.. 2005. Modelling geographical patterns in species richness using eigenvector-based spatial filters. Global Ecol. Biogeogr. 14: 177-185. – reference: Carl, G. and Kühn, I.. 2007a. Analyzing spatial autocorrelation in species distributions using Gaussian and logit models. Ecol Modell. 207: 159-170. – reference: Jetz, W. and Rahbek, C.. 2002. Geographic range size and determinants of avian species richness. Science 297: 1548-1551. – reference: Orme, C. D. L. et al. 2005. Global hotspots of species richness are not congruent with endemism or threat. Nature 436: 1016-1019. – reference: Venables, W. N. and Ripley, B. D.. 2002. Modern applied statistics with S. Springer. – reference: Dormann, C. F.. 2007a. Assessing the validity of autologistic regression. Ecol Modell. 207: 234-242. – reference: Kaluzny, S. P. et al. 1998. S-plus spatial stats user's manual for Windows and Unix. Springer. – reference: Kupfer, J. A. and Farris, C. A.. 2007. Incorporating spatial non-stationarity of regression coefficients inti predictive vegetation model. Landscape Ecol. 22: 837-852. – reference: He, F. L. et al. 2003. Autologistic regression model for the distribution of vegetation. J. Agricult. Biol. Environ. Stat. 8: 205-222. – reference: Sokal, R. R. and Oden, N. L.. 1978a. Spatial autocorrelation in biology. I. Methodology. Biol. J. Linn. Soc. 10: 199-228. – reference: Jetz, W. et al. 2005. Local and global approaches to spatial data analysis in ecology. Global Ecol. Biogeogr. 17: 97-98. – reference: Littell, R. C. et al. 1996. SAS system for mixed lodels. SAS Publ. – reference: Dark, S. J.. 2004. The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis. Div. Distrib. 10: 1-9. – reference: Osborne, P. E. et al. 2001. Modelling landscape-scale habitat use using GIS and remote sensing: a case study with great bustards. J. Appl. Ecol. 38: 458-471. – reference: Griffith, D. A.. 2000a. Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses. Lin. Algebra Appl. 321: 95-112. – reference: Brownstein, J. S. et al. 2003. A climate-based model predicts the spatial distribution of the Lyme disease vector Ixodes scapularis in the United States. Environ. Health Persp. 111: 1152-1157. – reference: Casella, G. and George, E. I.. 1992. Explaining the Gibbs sampler. Am. Stat. 46: 167-176. – reference: Lennon, J. J.. 2000. Red-shifts and red herrings in geographical ecology. Ecography 23: 101-113. – reference: Griffith, D. A.. 2000b. A linear regression solution to the spatial autocorrelation problem. J. Geogr. Syst. 2: 141-156. – reference: Ver Hoef, J. M. et al. 1993. Spatial models for spatial statistics: some unification. J. Veg. Sci. 4: 441-452. – reference: Waller, L. A. and Gotway, C. A.. 2004. Applied spatial statistics for public health data. Wiley. – reference: Griffith, D. A. and Peres-Neto, P. R.. 2006. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information. Ecology 87: 2603-2613. – reference: Stephenson, C. M. et al. 2006. Modelling establishment probabilities of an exotic plant, Rhododendron ponticum, invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation. Ecol. Modell 193: 747-758. – reference: Gavin, D. G. and Hu, F. S.. 2006. Spatial variation of climatic and non-climatic controls on species distribution: the range limit of Tsuga heterophylla. J. Biogeogr. 33: 1384-1396. – reference: Knapp, R. A. et al. 2003. Developing probabilistic models to predict amphibian site occupancy in a patchy landscape. Ecol. Appl. 13: 1069-1082. – reference: Tiefelsdorf, M. et al. 1999. A variance-stabilizing coding scheme for spatial link matrices. Environ. Plann. A 31: 165-180. – reference: Link, W. A. and Barker, R. J.. 2006. Model weights and the foundations of multimodel inference. Ecology 87: 2626-2635. – reference: Hurlbert, S. H.. 1984. Pseudoreplication and the design of ecological experiments. Ecol. Monogr. 54: 187-211. – reference: Liebhold, A. M. and Gurevitch, J.. 2002. Integrating the statistical analysis of spatial data in ecology. Ecography 25: 553-557. – reference: Diniz-Filho, J. A. F. et al. 2003. Spatial autocorrelation and red herrings in geographical ecology. Global Ecol. Biogeogr. 12: 53-64. – reference: Fotheringham, A. S. et al. 2002. Geographically weighted regression: the analysis of spatially varying relationships. Wiley. – reference: Kühn, I.. 2007. Incorporating spatial autocorrelation may invert observed patterns. Div. Distrib. 13: 66-69. – reference: Augustin, N. H. et al. 1996. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 33: 339-347. – reference: Wall, M. M.. 2004. A close look at the spatial structure implied by the CAR and SAR models. J. Stat. Plann. Infer. 121: 311-324. – reference: Elith, J. et al. 2006. Novel methods improve prediction of species' distributions from occurrence data. Ecography 29: 129-151. – reference: Gumpertz, M. L. et al. 1997. Autologistic model of spatial pattern of Phytophthora epidemic in bell pepper: effects of soil variables on disease presence. J. Agricult. Biol. Environ. Stat. 2: 131-156. – reference: Borcard, D. and Legendre, P.. 2002. All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol. Modell. 153: 51-68. – reference: Hooten, M. B. et al. 2003. Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model. Landscape Ecol. 18: 487-502. – reference: Keitt, T. H. et al. 2002. Accounting for spatial pattern when modeling organism-environment interactions. Ecography 25: 616-625. – reference: Yan, J.. 2002. geepack: yet another package for generalized estimating equations. R News 2: 12-14. – reference: Reich, R. M. et al. 2004. Predicting the location of northern goshawk nests: modeling the spatial dependency between nest locations and forest structure. Ecol. Modell. 176: 109-133. – reference: Albert, P. S. and McShane, L. M.. 1995. A generalized estimating equations approach for spatially correlated binary data: with an application to the analysis of neuroimaging data. Biometrics 51: 627-638. – reference: Bjørnstad, O. N. and Falck, W.. 2000. Nonparametric spatial covariance functions: estimation and testing. Environ. Ecol. Stat. 8: 53-70. – reference: Kühn, I. et al. 2006. Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods. New Phytol. 72: 127-139. – reference: Gelfand, A. E. et al. 2005. Modelling species diversity through species level hierarchical modelling. Appl. Stat. 54: 1-20. – reference: Lichstein, J. W. et al. 2002. Spatial autocorrelation and autoregressive models in ecology. Ecol. Monogr. 72: 445-463. – reference: Perry, J. N. et al. 2002. Illustrations and guidelines for selecting statistical methods for quantifying spatial paterrns in ecological data. Ecography 25: 578-600. – reference: Palma, L. et al. 1999. The use of sighting data to analyse Iberian lynx habitat and distribution. J. Appl. Ecol. 36: 812-824. – reference: Guisan, A. and Zimmermann, N. E.. 2000. Predictive habitat distribution models in ecology. Ecol. Modell. 135: 147-186. – reference: Wood, S. N.. 2006. Generalized additive models. Chapman and Hall/CRC. – reference: Davies, R. G. et al. 2006. Human impacts and the global distribution of extinction risk. Proc. R. Soc. B 273: 2127-2133. – reference: Tognelli, M. F. and Kelt, D. A.. 2004. Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography 27: 427-436. – reference: Augustin, N. H. et al. 2005. Analyzing the spread of beech canker. For. Sci. 51: 438-448. – reference: Hawkins, B. A. et al. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography 30: 375-384. – reference: Legendre, P.. 1993. Spatial autocorrelation: trouble or new paradigm?. Ecology 74: 1659-1673. – reference: Dobson, A. J.. 2002. An introduction to generalized linear models. Chapman and Hall. – reference: Thogmartin, W. E. et al. 2004. A hierarchical spatial model of avian abundance with application to Cerulean warblers. Ecol. Appl. 14: 1766-1779. – reference: Breslow, N. E. and Clayton, D. G.. 1993. Approximate inference in generalized linear mixed models. J. Am. Stat. Assoc. 88: 9-25. – reference: Miller, J. et al. 2007. Incorporating spatial dependence in predictive vegetation models. Ecol. Modell. 202: 225-242. – reference: Pearson, R. G. and Dawson, T. P.. 2003. Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful?. Global Ecol. Biogeogr. 12: 361-371. – reference: Besag, J. et al. 1991. Bayesian image restoration with two applications in spatial statistics (with discussion). Ann. Inst. Stat. Math. 43: 1-59. – reference: Dormann, C. F.. 2007b. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecol. Biogeogr. 16: 129-138. – reference: Myers, R. H. et al. 2002. Generalized linear models. Wiley. – reference: Wu, H. L. and Huffer, F. W.. 1997. Modelling the distribution of plant species using the autologistic regression model. Environ. Ecol. Stat. 4: 49-64. – reference: Yamaguchi, N. et al. 2003. Habitat preferences of feral American mink in the Upper Thames. J. Mammal. 84: 1356-1373. – reference: Hastie, T. J. and Tibshirani, R. J.. 1990. Generalized additive models. Chapman and Hall. – reference: Hoeting, J. A. et al. 2000. An improved model for spatially correlated binary responses. J. Agricult. Biol. Environ. Stat. 5: 102-114. – reference: Isaaks, E. H. and Shrivastava, R. M.. 1989. An introduction to applied geostatistics. Oxford Univ. Press. – reference: Legendre, P. and Fortin, M.-J.. 1989. Spatial pattern and ecological analysis. Vegetatio 80: 107-138. – reference: Fortin, M. J. and Dale, M. R. T.. 2005. Spatial analysis - a guide for ecologists. Cambridge Univ. Press. – reference: Ferrier, S. et al. 2002. Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species-level modelling. Biodiv. Conserv. 11: 2275-2307. – reference: Legendre, P. and Legendre, L.. 1998. Numerical ecology. Elsevier. – volume: 297 start-page: 1548 year: 2002 end-page: 1551 article-title: Geographic range size and determinants of avian species richness publication-title: Science – year: 1981 – volume: 72 start-page: 127 year: 2006 end-page: 139 article-title: Relating geographical variation in pollination types to environmental and spatial factors using novel statistical methods publication-title: New Phytol. – volume: 196 start-page: 483 year: 2006 end-page: 493 article-title: Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM) publication-title: Ecol. Modell. – year: 2005 – volume: 121 start-page: 311 year: 2004 end-page: 324 article-title: A close look at the spatial structure implied by the CAR and SAR models publication-title: J. Stat. Plann. Infer. – volume: 8 start-page: 387 year: 2007c end-page: 397 article-title: Promising the future? Global change predictions of species distributions publication-title: Basic Appl Ecol. – volume: 2 start-page: 141 year: 2000b end-page: 156 article-title: A linear regression solution to the spatial autocorrelation problem publication-title: J. Geogr. Syst. – year: 1989 – volume: 141 start-page: 69 year: 2001 end-page: 84 article-title: Modelling the potential distribution and community dynamics of lodgepole pine ( Dougl. ex. Loud.) in Scandinavia publication-title: For. Ecol. Manage. – volume: 36 start-page: 812 year: 1999 end-page: 824 article-title: The use of sighting data to analyse Iberian lynx habitat and distribution publication-title: J. Appl. Ecol. – volume: 176 start-page: 109 year: 2004 end-page: 133 article-title: Predicting the location of northern goshawk nests: modeling the spatial dependency between nest locations and forest structure publication-title: Ecol. Modell. – volume: 22 start-page: 837 year: 2007 end-page: 852 article-title: Incorporating spatial non‐stationarity of regression coefficients inti predictive vegetation model publication-title: Landscape Ecol. – volume: 436 start-page: 1016 year: 2005 end-page: 1019 article-title: Global hotspots of species richness are not congruent with endemism or threat publication-title: Nature – year: 1990 – year: 1998 – volume: 88 start-page: 9 year: 1993 end-page: 25 article-title: Approximate inference in generalized linear mixed models publication-title: J. Am. Stat. Assoc. – volume: 25 start-page: 578 year: 2002 end-page: 600 article-title: Illustrations and guidelines for selecting statistical methods for quantifying spatial paterrns in ecological data publication-title: Ecography – volume: 49 start-page: 305 year: 1993 end-page: 314 article-title: Modifying the t test for assessing the correlation between two spatial processes publication-title: Biometrics – volume: 51 start-page: 627 year: 1995 end-page: 638 article-title: A generalized estimating equations approach for spatially correlated binary data: with an application to the analysis of neuroimaging data publication-title: Biometrics – volume: 273 start-page: 2127 year: 2006 end-page: 2133 article-title: Human impacts and the global distribution of extinction risk publication-title: Proc. R. Soc. B – volume: 84 start-page: 1356 year: 2003 end-page: 1373 article-title: Habitat preferences of feral American mink in the Upper Thames publication-title: J. Mammal. – volume: 11 start-page: 2275 year: 2002 end-page: 2307 article-title: Extended statistical approaches to modelling spatial pattern in biodiversity in northeast New South Wales. I. Species‐level modelling publication-title: Biodiv. Conserv. – volume: 96 start-page: 331 year: 2000 end-page: 345 article-title: Selecting areas for species persistence using occurrence data publication-title: Biol. Conserv. – volume: 24 start-page: 601 year: 2001 end-page: 617 article-title: Determinants of distribution and abundance in the clouded apollo butterfly: a landscape ecological approach publication-title: Ecography – volume: 45 start-page: 123 year: 1989 end-page: 134 article-title: Assessing the significance of the correlation between two spatial processes publication-title: Biometrics – volume: 28 start-page: 281 year: 1996 end-page: 298 article-title: Geographically weighted regression: a method for exploring spatial non‐stationarity publication-title: Geogr. Analys. – volume: 74 start-page: 71 year: 1996 end-page: 89 article-title: Some large‐scale matrix computation problems publication-title: J. Comput. Appl. Math. – volume: 14 start-page: 177 year: 2005 end-page: 185 article-title: Modelling geographical patterns in species richness using eigenvector‐based spatial filters publication-title: Global Ecol. Biogeogr. – year: 1993 – volume: 13 start-page: 1069 year: 2003 end-page: 1082 article-title: Developing probabilistic models to predict amphibian site occupancy in a patchy landscape publication-title: Ecol. Appl. – volume: 5 start-page: 102 year: 2000 end-page: 114 article-title: An improved model for spatially correlated binary responses publication-title: J. Agricult. Biol. Environ. Stat. – volume: 31 start-page: 1555 year: 2004 end-page: 1568 article-title: An evaluation of methods for modelling species distributions publication-title: J. Biogeogr. – volume: 18 start-page: 487 year: 2003 end-page: 502 article-title: Predicting the spatial distribution of ground flora on large domains using a hierarchical Bayesian model publication-title: Landscape Ecol. – volume: 31 start-page: 165 year: 1999 end-page: 180 article-title: A variance‐stabilizing coding scheme for spatial link matrices publication-title: Environ. Plann. A – volume: 153 start-page: 51 year: 2002 end-page: 68 article-title: All‐scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices publication-title: Ecol. Modell. – volume: 25 start-page: 601 year: 2002 end-page: 615 article-title: The consequences of spatial structure for the design and analysis of ecological field surveys publication-title: Ecography – volume: 111 start-page: 1152 year: 2003 end-page: 1157 article-title: A climate‐based model predicts the spatial distribution of the Lyme disease vector in the United States publication-title: Environ. Health Persp. – volume: 4 start-page: 47 year: 1994 end-page: 61 article-title: Autocorrelation in logistic regression modelling of species’ distributions publication-title: Global. Ecol. Biogeogr. Lett. – volume: 33 start-page: 1384 year: 2006 end-page: 1396 article-title: Spatial variation of climatic and non‐climatic controls on species distribution: the range limit of publication-title: J. Biogeogr. – volume: 30 start-page: 135 year: 2007 end-page: 151 article-title: Effects of species’ ecology on the accuracy of distribution models publication-title: Ecography – year: 2002 – volume: 51 start-page: 438 year: 2005 end-page: 448 article-title: Analyzing the spread of beech canker publication-title: For. Sci. – volume: 12 start-page: 53 year: 2003 end-page: 64 article-title: Spatial autocorrelation and red herrings in geographical ecology publication-title: Global Ecol. Biogeogr. – year: 1995 – volume: 38 start-page: 458 year: 2001 end-page: 471 article-title: Modelling landscape‐scale habitat use using GIS and remote sensing: a case study with great bustards publication-title: J. Appl. Ecol. – volume: 207 start-page: 234 year: 2007a end-page: 242 article-title: Assessing the validity of autologistic regression publication-title: Ecol Modell. – volume: 2 start-page: 12 year: 2002 end-page: 14 article-title: geepack: yet another package for generalized estimating equations publication-title: R News – volume: 16 start-page: 33 year: 2006 end-page: 50 article-title: Building statistical models to analyze species distributions publication-title: Ecol. Appl. – volume: 73 start-page: 13 year: 1986 end-page: 22 article-title: Longitudinal data analysis using generalized linear models publication-title: Biometrika – volume: 13 start-page: 66 year: 2007 end-page: 69 article-title: Incorporating spatial autocorrelation may invert observed patterns publication-title: Div. Distrib. – volume: 25 start-page: 553 year: 2002 end-page: 557 article-title: Integrating the statistical analysis of spatial data in ecology publication-title: Ecography – volume: 361 start-page: 2681 year: 2003 end-page: 2697 article-title: Bayesian computation: a statistical revolution publication-title: Phil. Trans. R. Soc. A – volume: 43 start-page: 433 year: 2006 end-page: 444 article-title: Consequences of spatial autocorrelation for niche‐based models publication-title: J. Appl. Ecol. – volume: 17 start-page: 247 year: 2002 end-page: 267 article-title: Under the hood: issues in the specification and interpretation of spatial regression models publication-title: Agricult. Econ. – volume: 69 start-page: 933 year: 2005 end-page: 949 article-title: Modeling patch occupancy by forest rodents: incorporating detectability and spatial autocorrelation with hierarchically structured data publication-title: J. Wildl. Manage. – volume: 8 start-page: 993 year: 2005 end-page: 1009 article-title: Predicting species distributions: offering more than simple habitat models publication-title: Ecol. Lett. – volume: 32 start-page: 568 year: 2003 end-page: 572 article-title: Effective field sampling for predicting the spatial distribution of reindeer ( ) with help of the Gibbs sampler publication-title: Ambio – volume: 4 start-page: 49 year: 1997 end-page: 64 article-title: Modelling the distribution of plant species using the autologistic regression model publication-title: Environ. Ecol. Stat. – volume: 87 start-page: 2603 year: 2006 end-page: 2613 article-title: Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses in exploiting relative location information publication-title: Ecology – volume: 2 start-page: 131 year: 1997 end-page: 156 article-title: Autologistic model of spatial pattern of epidemic in bell pepper: effects of soil variables on disease presence publication-title: J. Agricult. Biol. Environ. Stat. – volume: 27 start-page: 427 year: 2004 end-page: 436 article-title: Analysis of determinants of mammalian species richness in South America using spatial autoregressive models publication-title: Ecography – volume: 87 start-page: 2626 year: 2006 end-page: 2635 article-title: Model weights and the foundations of multimodel inference publication-title: Ecology – volume: 193 start-page: 747 year: 2006 end-page: 758 article-title: Modelling establishment probabilities of an exotic plant, , invading a heterogeneous, woodland landscape using logistic regression with spatial autocorrelation publication-title: Ecol. Modell – volume: 6 start-page: 269 year: 1995 end-page: 282 article-title: Climate and the distribution of –use of an introduced species to test the predictive capacity of response surfaces publication-title: J. Veg. Sci. – volume: 17 start-page: 97 year: 2005 end-page: 98 article-title: Local and global approaches to spatial data analysis in ecology publication-title: Global Ecol. Biogeogr. – volume: 10 start-page: 229 year: 1978b end-page: 249 article-title: Spatial autocorrelation in biology. II. Some biological implications and four applications of evolutionary and ecological interest publication-title: Biol. J. Linn. Soc. – volume: 16 start-page: 129 year: 2007b end-page: 138 article-title: Effects of incorporating spatial autocorrelation into the analysis of species distribution data publication-title: Global Ecol. Biogeogr. – volume: 52 start-page: 1247 year: 1998 end-page: 1262 article-title: An eigenvector method for estimating phylogenetic inertia publication-title: Evolution – volume: 321 start-page: 95 year: 2000a end-page: 112 article-title: Eigenfunction properties and approximations of selected incidence matrices employed in spatial analyses publication-title: Lin. Algebra Appl. – volume: 36 start-page: 192 year: 1974 end-page: 236 article-title: Spatial interaction and the statistical analysis of lattice systems publication-title: J. Roy. Stat. Soc. B – volume: 13 start-page: 315 year: 2004 end-page: 320 article-title: Spatial nonstationarity and scale‐dependency in the relationship between species richness and environmental determinants for the sub‐Saharan endemic avifauna publication-title: Global Ecol. Biogeogr. – year: 2004 – volume: 43 start-page: 1 year: 1991 end-page: 59 article-title: Bayesian image restoration with two applications in spatial statistics (with discussion) publication-title: Ann. Inst. Stat. Math. – volume: 25 start-page: 616 year: 2002 end-page: 625 article-title: Accounting for spatial pattern when modeling organism‐environment interactions publication-title: Ecography – volume: 33 start-page: 133 year: 2006 end-page: 144 article-title: Avifaunal gradients in two arid zones of central Iran in relation to vegetation, climate, and topography publication-title: J. Biogeogr. – volume: 74 start-page: 1659 year: 1993 end-page: 1673 article-title: Spatial autocorrelation: trouble or new paradigm? publication-title: Ecology – volume: 54 start-page: 187 year: 1984 end-page: 211 article-title: Pseudoreplication and the design of ecological experiments publication-title: Ecol. Monogr. – volume: 10 start-page: 1 year: 2004 end-page: 9 article-title: The biogeography of invasive alien plants in California: an application of GIS and spatial regression analysis publication-title: Div. Distrib. – volume: 46 start-page: 234 year: 1970 end-page: 240 article-title: A computer movie simulating urban growth in the Detroit region publication-title: Econ. Geogr. – volume: 33 start-page: 339 year: 1996 end-page: 347 article-title: An autologistic model for the spatial distribution of wildlife publication-title: J. Appl. Ecol. – volume: 72 start-page: 445 year: 2002 end-page: 463 article-title: Spatial autocorrelation and autoregressive models in ecology publication-title: Ecol. Monogr. – volume: 12 start-page: 361 year: 2003 end-page: 371 article-title: Predicting the impacts of climate change on the distribution of species: are bioclimate envelope models useful? publication-title: Global Ecol. Biogeogr. – volume: 10 start-page: 199 year: 1978a end-page: 228 article-title: Spatial autocorrelation in biology. I. Methodology publication-title: Biol. J. Linn. Soc. – year: 2003 – volume: 313 start-page: 1396 year: 2006 end-page: 1397 article-title: How does climate Change affect biodiversity? publication-title: Science – year: 1996 – year: 2000 – start-page: 335 year: 2002 end-page: 343 – volume: 4 start-page: 11 year: 2003 end-page: 25 article-title: Proper multivariate conditional autoregressive models for spatial data analysis publication-title: Biostatistics – volume: 135 start-page: 147 year: 2000 end-page: 186 article-title: Predictive habitat distribution models in ecology publication-title: Ecol. Modell. – volume: 54 start-page: 509 year: 1998 end-page: 524 article-title: Markov chain Monte Carlo for autologistic regression models with application to the distribution of plant species publication-title: Biometrics – volume: 9 start-page: 175 year: 1998 end-page: 196 article-title: The role of simulation in modelling spatially correlated data publication-title: Environmetrics – volume: 80 start-page: 107 year: 1989 end-page: 138 article-title: Spatial pattern and ecological analysis publication-title: Vegetatio – volume: 30 start-page: 375 year: 2007 end-page: 384 article-title: Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology publication-title: Ecography – volume: 46 start-page: 167 year: 1992 end-page: 176 article-title: Explaining the Gibbs sampler publication-title: Am. Stat. – volume: 8 start-page: 53 year: 2000 end-page: 70 article-title: Nonparametric spatial covariance functions: estimation and testing publication-title: Environ. Ecol. Stat. – volume: 14 start-page: 1766 year: 2004 end-page: 1779 article-title: A hierarchical spatial model of avian abundance with application to Cerulean warblers publication-title: Ecol. Appl. – year: 1988 – volume: 202 start-page: 225 year: 2007 end-page: 242 article-title: Incorporating spatial dependence in predictive vegetation models publication-title: Ecol. Modell. – year: 2006 – volume: 8 start-page: 205 year: 2003 end-page: 222 article-title: Autologistic regression model for the distribution of vegetation publication-title: J. Agricult. Biol. Environ. Stat. – volume: 15 start-page: 321 year: 2006 end-page: 327 article-title: Towards an integrated computational tool for spatial analysis in macroecology and biogeography publication-title: Global Ecol. Biogeogr. – volume: 207 start-page: 159 year: 2007a end-page: 170 article-title: Analyzing spatial autocorrelation in species distributions using Gaussian and logit models publication-title: Ecol Modell. – volume: 29 start-page: 129 year: 2006 end-page: 151 article-title: Novel methods improve prediction of species’ distributions from occurrence data publication-title: Ecography – volume: 23 start-page: 101 year: 2000 end-page: 113 article-title: Red‐shifts and red herrings in geographical ecology publication-title: Ecography – volume: 309 start-page: 1365 year: 2005 end-page: 136 article-title: Global patterns of predator diversity in the open oceans publication-title: Science – volume: 54 start-page: 1 year: 2005 end-page: 20 article-title: Modelling species diversity through species level hierarchical modelling publication-title: Appl. Stat. – volume: 4 start-page: 441 year: 1993 end-page: 452 article-title: Spatial models for spatial statistics: some unification publication-title: J. Veg. Sci. – ident: e_1_2_6_24_1 doi: 10.1007/s00477-007-0117-2 – ident: e_1_2_6_95_1 doi: 10.1046/j.1365-2664.1999.00436.x – volume: 30 start-page: 135 year: 2007 ident: e_1_2_6_88_1 article-title: Effects of species’ ecology on the accuracy of distribution models publication-title: Ecography – ident: e_1_2_6_86_1 doi: 10.1111/j.1600-0587.2001.tb00494.x – ident: e_1_2_6_74_1 doi: 10.1111/j.1469-8137.2006.01811.x – ident: e_1_2_6_37_1 doi: 10.1111/j.1466-8238.2006.00279.x – ident: e_1_2_6_72_1 doi: 10.1007/s10980-006-9058-2 – ident: e_1_2_6_61_1 doi: 10.2307/3109759 – ident: e_1_2_6_19_1 doi: 10.1098/rsta.2003.1263 – ident: e_1_2_6_42_1 doi: 10.1023/A:1021302930424 – ident: e_1_2_6_65_1 doi: 10.1111/j.1466-822X.2004.00129.x – ident: e_1_2_6_6_1 doi: 10.1016/S0006-3207(00)00074-4 – ident: e_1_2_6_9_1 doi: 10.1002/(SICI)1099-095X(199803/04)9:2<175::AID-ENV294>3.0.CO;2-2 – ident: e_1_2_6_82_1 doi: 10.1890/0012-9615(2002)072[0445:SAAAMI]2.0.CO;2 – ident: e_1_2_6_107_1 doi: 10.1016/S0378-1127(00)00490-4 – ident: e_1_2_6_98_1 doi: 10.1007/978-1-4419-0318-1 – ident: e_1_2_6_46_1 doi: 10.1111/j.1365-2699.2006.01509.x – ident: e_1_2_6_57_1 doi: 10.1111/j.0906-7590.2007.05117.x – ident: e_1_2_6_71_1 doi: 10.1890/1051-0761(2003)13[1069:DPMTPA]2.0.CO;2 – ident: e_1_2_6_81_1 doi: 10.1093/biomet/73.1.13 – ident: e_1_2_6_109_1 doi: 10.1890/03-5247 – ident: e_1_2_6_5_1 doi: 10.1111/j.1574-0862.2002.tb00120.x – ident: e_1_2_6_23_1 doi: 10.1016/j.ecolmodel.2007.04.024 – ident: e_1_2_6_39_1 doi: 10.1016/j.ecolmodel.2006.02.015 – ident: e_1_2_6_2_1 doi: 10.2307/2532950 – ident: e_1_2_6_27_1 doi: 10.2307/2532039 – ident: e_1_2_6_15_1 – ident: e_1_2_6_73_1 doi: 10.1111/j.1472-4642.2006.00293.x – ident: e_1_2_6_117_1 doi: 10.1201/9781420010404 – ident: e_1_2_6_52_1 doi: 10.1016/S0304-3800(00)00354-9 – ident: e_1_2_6_60_1 doi: 10.1023/A:1026001008598 – ident: e_1_2_6_30_1 doi: 10.1098/rspb.2006.3551 – ident: e_1_2_6_99_1 doi: 10.1111/j.1466-822X.2006.00237.x – ident: e_1_2_6_89_1 doi: 10.1016/j.ecolmodel.2006.12.012 – ident: e_1_2_6_79_1 doi: 10.1034/j.1600-0587.2002.250508.x – ident: e_1_2_6_12_1 doi: 10.2307/3236222 – ident: e_1_2_6_28_1 doi: 10.1002/9781119115151 – ident: e_1_2_6_97_1 doi: 10.1034/j.1600-0587.2002.250507.x – volume: 51 start-page: 438 year: 2005 ident: e_1_2_6_10_1 article-title: Analyzing the spread of beech canker publication-title: For. Sci. – volume-title: S‐plus spatial stats user's manual for Windows and Unix year: 1998 ident: e_1_2_6_67_1 – ident: e_1_2_6_106_1 doi: 10.1016/j.ecolmodel.2005.09.007 – ident: e_1_2_6_59_1 doi: 10.2307/1400634 – ident: e_1_2_6_69_1 doi: 10.1111/j.1466-8238.2007.00334.x – ident: e_1_2_6_94_1 doi: 10.1111/j.1472-4642.2007.00344.x – ident: e_1_2_6_32_1 doi: 10.1111/j.1466-822X.2005.00147.x – ident: e_1_2_6_55_1 doi: 10.1017/CBO9780511754944 – volume: 32 start-page: 568 year: 2003 ident: e_1_2_6_108_1 article-title: Effective field sampling for predicting the spatial distribution of reindeer (Rangifer tarandus) with help of the Gibbs sampler publication-title: Ambio doi: 10.1579/0044-7447-32.8.568 – ident: e_1_2_6_18_1 doi: 10.2307/2290687 – volume: 36 start-page: 192 year: 1974 ident: e_1_2_6_13_1 article-title: Spatial interaction and the statistical analysis of lattice systems publication-title: J. Roy. Stat. Soc. B doi: 10.1111/j.2517-6161.1974.tb00999.x – ident: e_1_2_6_114_1 doi: 10.2307/3236071 – ident: e_1_2_6_20_1 doi: 10.1289/ehp.6052 – ident: e_1_2_6_103_1 doi: 10.2307/2997753 – ident: e_1_2_6_50_1 doi: 10.1007/PL00011451 – ident: e_1_2_6_21_1 doi: 10.1111/j.1538-4632.1996.tb00936.x – ident: e_1_2_6_90_1 doi: 10.2193/0022-541X(2005)069[0933:MPOBFR]2.0.CO;2 – ident: e_1_2_6_29_1 doi: 10.1111/j.1472-4642.2004.00054.x – ident: e_1_2_6_8_1 doi: 10.2307/2404755 – ident: e_1_2_6_43_1 doi: 10.1111/j.1466-822X.2004.00097.x – ident: e_1_2_6_53_1 doi: 10.1111/j.1461-0248.2005.00792.x – ident: e_1_2_6_80_1 doi: 10.1111/j.1600-0587.2000.tb00265.x – ident: e_1_2_6_102_1 doi: 10.1111/j.1365-2664.2006.01162.x – ident: e_1_2_6_25_1 doi: 10.2307/2685208 – volume-title: An introduction to generalized linear models year: 2002 ident: e_1_2_6_35_1 – ident: e_1_2_6_54_1 doi: 10.2307/1400400 – volume-title: Generalized linear models year: 2002 ident: e_1_2_6_91_1 – ident: e_1_2_6_104_1 doi: 10.1111/j.1095-8312.1978.tb00013.x – ident: e_1_2_6_7_1 doi: 10.1126/science.1131758 – ident: e_1_2_6_22_1 – ident: e_1_2_6_83_1 doi: 10.1034/j.1600-0587.2002.250505.x – ident: e_1_2_6_51_1 doi: 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2 – ident: e_1_2_6_100_1 doi: 10.1016/j.ecolmodel.2003.09.039 – start-page: 335 volume-title: Predicting species occurrences: issues of accuracy and scale year: 2002 ident: e_1_2_6_70_1 – ident: e_1_2_6_87_1 doi: 10.1007/978-1-4899-3242-6 – ident: e_1_2_6_111_1 doi: 10.2307/143141 – volume-title: Generalized additive models year: 1990 ident: e_1_2_6_56_1 – ident: e_1_2_6_4_1 doi: 10.1007/978-94-015-7799-1 – ident: e_1_2_6_38_1 doi: 10.1016/j.baae.2006.11.001 – ident: e_1_2_6_93_1 doi: 10.1046/j.1365-2664.2001.00604.x – ident: e_1_2_6_49_1 doi: 10.1016/S0024-3795(00)00031-8 – volume-title: SAS system for mixed lodels year: 1996 ident: e_1_2_6_85_1 – ident: e_1_2_6_3_1 – ident: e_1_2_6_96_1 doi: 10.1046/j.1466-822X.2003.00042.x – ident: e_1_2_6_11_1 doi: 10.1016/0377-0427(96)00018-0 – volume: 4 start-page: 49 year: 1997 ident: e_1_2_6_119_1 article-title: Modelling the distribution of plant species using the autologistic regression model publication-title: Environ. Ecol. Stat. doi: 10.1023/A:1018505924603 – ident: e_1_2_6_41_1 doi: 10.1111/j.2006.0906-7590.04596.x – ident: e_1_2_6_44_1 doi: 10.1017/CBO9780511542039 – ident: e_1_2_6_112_1 doi: 10.1111/j.0906-7590.2004.03732.x – ident: e_1_2_6_14_1 doi: 10.1007/BF00116466 – ident: e_1_2_6_122_1 – ident: e_1_2_6_115_1 doi: 10.1016/S0378-3758(03)00111-3 – ident: e_1_2_6_33_1 doi: 10.1111/j.1558-5646.1998.tb02006.x – ident: e_1_2_6_110_1 doi: 10.1068/a310165 – ident: e_1_2_6_36_1 doi: 10.1016/j.ecolmodel.2007.05.002 – volume: 2 start-page: 12 year: 2002 ident: e_1_2_6_121_1 article-title: geepack: yet another package for generalized estimating equations publication-title: R News – ident: e_1_2_6_75_1 doi: 10.1890/04-0609 – ident: e_1_2_6_116_1 doi: 10.1002/0471662682 – ident: e_1_2_6_68_1 doi: 10.1034/j.1600-0587.2002.250509.x – volume-title: Geographically weighted regression: the analysis of spatially varying relationships year: 2002 ident: e_1_2_6_45_1 – ident: e_1_2_6_101_1 doi: 10.1111/j.1365-2699.2004.01076.x – ident: e_1_2_6_66_1 doi: 10.1111/j.1365-2699.2005.01379.x – ident: e_1_2_6_16_1 doi: 10.1023/A:1009601932481 – ident: e_1_2_6_118_1 doi: 10.1126/science.1113399 – ident: e_1_2_6_76_1 doi: 10.2307/1939924 – ident: e_1_2_6_92_1 doi: 10.1038/nature03850 – ident: e_1_2_6_62_1 doi: 10.2307/1942661 – ident: e_1_2_6_47_1 doi: 10.1093/biostatistics/4.1.11 – ident: e_1_2_6_105_1 doi: 10.1111/j.1095-8312.1978.tb00014.x – volume-title: Spatial processes: models and applications year: 1981 ident: e_1_2_6_26_1 – ident: e_1_2_6_84_1 doi: 10.1890/0012-9658(2006)87[2626:MWATFO]2.0.CO;2 – ident: e_1_2_6_113_1 doi: 10.1007/978-0-387-21706-2 – ident: e_1_2_6_34_1 doi: 10.1046/j.1466-822X.2003.00322.x – ident: e_1_2_6_40_1 doi: 10.2307/2532625 – ident: e_1_2_6_64_1 doi: 10.1126/science.1072779 – ident: e_1_2_6_77_1 doi: 10.1007/BF00048036 – ident: e_1_2_6_120_1 doi: 10.1644/1545-1542(2003)084<1356:HPOFAM>2.0.CO;2 – volume-title: Analysis of longitudinal data year: 1995 ident: e_1_2_6_31_1 – ident: e_1_2_6_17_1 doi: 10.1016/S0304-3800(01)00501-4 – ident: e_1_2_6_48_1 doi: 10.1111/j.1467-9876.2005.00466.x – ident: e_1_2_6_58_1 doi: 10.1198/1085711031508 – volume-title: An introduction to applied geostatistics year: 1989 ident: e_1_2_6_63_1 – volume-title: Numerical ecology year: 1998 ident: e_1_2_6_78_1 |
SSID | ssj0012968 |
Score | 2.493595 |
SecondaryResourceType | review_article |
Snippet | Species distributional or trait data based on range map (extent-of-occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close... Species distributional or trait data based on range map (extent‐of‐occurrence) or atlas survey data often display spatial autocorrelation, i.e. locations close... |
SourceID | proquest pascalfrancis crossref wiley jstor istex fao |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 609 |
SubjectTerms | Animal, plant and microbial ecology Autocorrelation Autoregressive models base maps biogeography Biological and medical sciences climate models computer software Correlations Datasets Ecological modeling ecologists Eigenvectors environmental impact equations Fundamental and applied biological sciences. Psychology General aspects. Techniques Landscape ecology least squares Methods and techniques (sampling, tagging, trapping, modelling...) Modeling researchers Review & Synthesis spatial data Spatial models Species statistical models surveys |
Title | Methods to account for spatial autocorrelation in the analysis of species distributional data: a review |
URI | https://api.istex.fr/ark:/67375/WNG-C8K441N1-2/fulltext.pdf https://www.jstor.org/stable/30244511 https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fj.2007.0906-7590.05171.x https://www.proquest.com/docview/20501373 https://www.proquest.com/docview/47490381 |
Volume | 30 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Pi9QwFA66IHhx_TVs_bHmIN46tE3SNN5kmN1FcQR1cG8hSdtFRlrZdmDXv973kk7HisIi3nJ4Ce3rS_K95sv3CHkpnbFS1TKuDLcx7NBlXJiyiFle2pxlFcusJ8iu8rM1f3suzgf-E96FCfoQ4w83nBl-vcYJbmw3meRBf1BBSiyFSuaoNpXOEU8idQvx0cdRSQp2NX8rbrSekHr-PNBkp7pdmxbwK7r-akddRB6l6cCVdaiBMQGpv0Jdv1edHJLN7i0DRWUz3_Z27n78JgD5f9xwn9wbIC19E2LwAblVNQ_JnVDk8hpaSze0Zsv9rTroMCwr3SNy8d7Xse5o31ITyldQANO0Q7o3WJpt3zosIxKIe_RrQwG3UjMIqtC2pnhjFJJ-WqIQ8FDDC3oiAfY1NTTc0HlM1ifLz4uzeKgAETtIrNLYJYlVqna5Yw51fVymnBKFsYKzOnE1dzLLy6IStnBFLSouMsdswlxdWcatYTNy0LRNdURooqQtpQUTY7mFpJTnFpouKXhZlymPiNx9be0GeXSs0vFN79Mk9LRGT2v0tPae1lcRScee34NEyA36HEFAaXMBK7lef8rw_BiTdZbLiLzyUTaOZS43yL6TQn9ZnepF8Q4Q7CrVWURmPgxHQwZ4C-XmInI8icv9UylIsGUmIvJiF6gaVhM8IjJN1W47eFqBGpTs7xZccoWny-AvH5Y3fmW9XHw4xeaTf-75lNz1v9Y9l_IZOegvt9VzwIS9Pfaz_Sd35E-Q |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELWgCMGlfK6aAq0PiFtW2diOE25o2Xah7SJBV_Rm2U5SVa0S1GSlwq9nxs5mCQKpQtx8mImSydh-Y8-8IeS1tNrIrJRhobkJYYfOw1TnaciS3CQsLlhsXILsIpkv-cczcda1A8JaGM8P0R-44cxw6zVOcDyQHsxyT0CYQUwsRRaNkW5qMgZAeQ8bfCOR_vvPPZcU7GuuLq4XH6T1_PlJg73qbqlrQLBo_Jt18iJmUuoGjFn6LhgDmPor2HW71cEjcrX-Tp-kcjletWZsf_xGAfmfDPGYbHeolr7zbviE3Cmqp-S-73P5HUYz241Gs01hHSh0K0vzjJyfuFbWDW1rqn0HCwp4mjaY8Q2SetXWFjuJ-Nw9elFRgK5Ud5wqtC4pFo1C3E9z5ALu2niBJubAvqWa-iKd52R5MDudzsOuCURoIbaahDaKTJaVNrHMIrWPjTObiVQbwVkZ2ZJbGSd5WgiT2rQUBRexZSZitiwM40azEdmq6qrYITTKpMmlARFtuIG4lCcGhjZKeV7mEx4Quf7dynYM6dio40ptIiW0tEJLK7S0cpZWNwGZ9JrfPEvILXR2wKOUPofFXC2_xHiFjPE6S2RA3jg365-lry8xAU8K9XVxqKbpEYDYxUTFARk5P-wFGUAuZJwLyN7AMTdvlUGMLWMRkP21pypYUPCWSFdFvWrgbQXSULK_S3DJM7xgBns5v7z1J6vZ9NMhDnf_WXOfPJifnhyr4w-LoxfkoTtpd6mVL8lWe70qXgFEbM2em_o_AWn2U6w |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fb9MwELZgCMTL-FktAzY_IN5SpbETJ7yh0m4wKAio2JtlO_E0FSXTkkqDv547O00JAmlCvFmRL0ouZ_u7-PN3hDwXRmmRWxGWiusQVugizFSRhSwtdMriksXaEWQX6fGSvz1NTjv-E56F8foQ_Q83HBluvsYBflHYwSD3-oM5pMQiyaMxqk1NxoAnb_EUriJA-tRLScGy5o7F9d0HrJ4_32mwVN20qgYAi76_2nAXkUipGvCl9UUwBij1V6zrFqv5PbLavKbnqKzG61aPzY_fFCD_jx_uk90O09JXPggfkBtl9ZDc9lUuv0NrZrrWaLY9VgcG3bzSPCJn710h64a2NVW-fgUFNE0b5HtDT7Vua4N1RDxzj55XFIArVZ2iCq0txSOjkPXTApWAuyJeYIkM2JdUUX9E5zFZzmdfpsdhVwIiNJBZTUITRTrPrUkNMyjsY-Lc5EmmdMKZjYzlRsRpkZWJzkxmk5InsWE6YsaWmnGt2IjsVHVV7hEa5UIXQkMXpbmGrJSnGpomynhhiwkPiNh8bWk6fXQs0_FNbvMk9LRET0v0tHSellcBmfSWF14j5Bo2exBQUp3BVC6Xn2PcQMZsnaUiIC9clPX3UpcrpN-JRH5dHMlpdgIQdjGRcUBGLgz7jgwAF-rNBeRgEJfbp8ohwxZxEpDDTaBKmE5wj0hVZb1u4GkTFKFkf-_BBc9xexn85cLy2q8sZ9MPR9jc_2fLQ3Ln4-u5fPdmcfKE3HW_2R2v8inZaS_X5TPAh60-cAP_JxKYUls |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Methods+to+account+for+spatial+autocorrelation+in+the+analysis+of+species+distributional+data%3A+a+review&rft.jtitle=Ecography+%28Copenhagen%29&rft.au=F.+Dormann%2C+Carsten&rft.au=M.+McPherson%2C+Jana&rft.au=B.+Ara%C3%BAjo%2C+Miguel&rft.au=Bivand%2C+Roger&rft.date=2007-10-01&rft.issn=0906-7590&rft.eissn=1600-0587&rft.volume=30&rft.issue=5&rft.spage=609&rft.epage=628&rft_id=info:doi/10.1111%2Fj.2007.0906-7590.05171.x&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_j_2007_0906_7590_05171_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0906-7590&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0906-7590&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0906-7590&client=summon |