基于共轭梯度法改进的人工鱼群算法

针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法。算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。...

Full description

Saved in:
Bibliographic Details
Published in计算机应用研究 Vol. 34; no. 12; pp. 3589 - 3593
Main Author 李君;梁昔明
Format Journal Article
LanguageChinese
Published 北京建筑大学理学院,北京,100044 2017
Subjects
Online AccessGet full text
ISSN1001-3695
DOI10.3969/j.issn.1001-3695.2017.12.016

Cover

Abstract 针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法。算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。
AbstractList 针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法。算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。
TP301.6; 针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法.算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新.在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度.数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升.
Abstract_FL The basic artificial fish swarm algorithm has the shortcomings of low precision and low efficiency.Aiming at this problem,this paper introduced the conjugate gradient method in the artificial fish swarm algorithm,and obtained the improved artificial fish swarm algorithm.The proposed algorithm performed clustering and trailing operators on each artificial fish.If the update result was not improved,the algorithm would be updated using the conjugate gradient method.This paper introduced the conjugate gradient method to updating the artificial fish swarm,which could reduce the randomness and enhance the local searching ability of the artificial fish.This ensured that the artificial fish would be improved at the same time,thus speeding up the convergence rate of the artificial fish swarm algorithm.The results of numerical experiments show that the improved artificial fish swarm algorithm has faster convergence speed,and the convergence accuracy is also improved.
Author 李君;梁昔明
AuthorAffiliation 北京建筑大学理学院,北京100044
AuthorAffiliation_xml – name: 北京建筑大学理学院,北京,100044
Author_FL Liang Ximing
Li Jun
Author_FL_xml – sequence: 1
  fullname: Li Jun
– sequence: 2
  fullname: Liang Ximing
Author_xml – sequence: 1
  fullname: 李君;梁昔明
BookMark eNo9j81Kw0AUhWdRwbb6EuLCTeK9M8kks5TiHxTcdB9mJklt0Ik2iGSvW1eKoAtB1J1KcSEGf16maepbGKm4ufdwzsc93BZpmNREhCwj2ExwsZrYgywzNgKgxbhwbQro2UhtQN4gzX9_nrSyLAFwKApoEihvinFxVp6Oph-Pk9vnsniYvFxMzt-mX9fV1cm4KMrX--_Re_V5Vz1d1tECmYvlXhYt_u026W2s9zpbVndnc7uz1rU0B26JELXUCqliEEaKumFMQ4drFVJXKY-hw2NfKIg8yaVCcLWPOo6Ychyf8Vq0ycrs7LE0sTT9IEmPhqYuDJIsyfM8-X0P68FrdGmG6t3U9A8HNXwwHOzLYR5wj_mUgivYDwJTZ-w
ClassificationCodes TP301.6
ContentType Journal Article
Copyright Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W92
~WA
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.3969/j.issn.1001-3695.2017.12.016
DatabaseName 中文科技期刊数据库
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
DocumentTitle_FL Hybrid AFSA with conjugate gradient methods
EndPage 3593
ExternalDocumentID jsjyyyj201712016
673822059
GrantInformation_xml – fundername: 国家自然科学基金资助项目; 北京市自然科学基金资助项目; 中央支持地方科研创新团队项目
  funderid: (61463009); (4122022); (PXM2013-014210-000173)
GroupedDBID -0Y
2B.
2C0
2RA
5XA
5XJ
92H
92I
92L
ACGFS
ALMA_UNASSIGNED_HOLDINGS
CCEZO
CQIGP
CUBFJ
CW9
TCJ
TGT
U1G
U5S
W92
~WA
4A8
93N
ABJNI
PSX
ID FETCH-LOGICAL-c606-9d1cacb12b30deb25df2d46cbd25bb73146f89b0e7a6ab105c81cfe3b44836fe3
ISSN 1001-3695
IngestDate Thu May 29 03:54:51 EDT 2025
Wed Feb 14 09:56:10 EST 2024
IsPeerReviewed false
IsScholarly true
Issue 12
Keywords fitness function
适应度函数
artificial fish swarm algorithm(AFSA)
人工鱼群算法
conjugate gradient method
共轭梯度法
数值实验
numerical experiment
Language Chinese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c606-9d1cacb12b30deb25df2d46cbd25bb73146f89b0e7a6ab105c81cfe3b44836fe3
Notes 51-1196/TP
PageCount 5
ParticipantIDs wanfang_journals_jsjyyyj201712016
chongqing_primary_673822059
PublicationCentury 2000
PublicationDate 2017
PublicationDateYYYYMMDD 2017-01-01
PublicationDate_xml – year: 2017
  text: 2017
PublicationDecade 2010
PublicationTitle 计算机应用研究
PublicationTitleAlternate Application Research of Computers
PublicationTitle_FL Application Research of Computers
PublicationYear 2017
Publisher 北京建筑大学理学院,北京,100044
Publisher_xml – name: 北京建筑大学理学院,北京,100044
SSID ssj0042190
ssib001102940
ssib002263599
ssib023646305
ssib051375744
ssib025702191
Score 2.0608225
Snippet ...
TP301.6;...
SourceID wanfang
chongqing
SourceType Aggregation Database
Publisher
StartPage 3589
SubjectTerms 人工鱼群算法
共轭梯度法
数值实验
适应度函数
Title 基于共轭梯度法改进的人工鱼群算法
URI http://lib.cqvip.com/qk/93231X/201712/673822059.html
https://d.wanfangdata.com.cn/periodical/jsjyyyj201712016
Volume 34
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMDxbEC9-i7UqFZrjq5vNx26O2b59FEFPFXp7bPaj5R1e1baH17Ne9aIIehBEvakUD-LDjz_T91r_hTO76XYtUtRLCMlkMtnJzkxCZoaQeTjzpIoz1RYsEW2R8gx-KSvaWqSgDHPPZh76Dt--o5builsrcqXVetJ4tbS1aRfS7T_6lfwPV6EN-Ipesv_A2RopNEAd-AslcBjKv-IxjSXVXRoZGgsswxhbQkkjRuOQRh1qOjRW1PjUdLELYIzClohTLbGiYaAugbtURzQOqAY8wiFEzDAqoAaANaKNFhEmiqkRWDEx1UGNsGnpIk7oNew3ML14gNPg1DidoCYsYTzXYmCi-r6wHNRxK9Me0sgjt6aQlb1hOa6shHHzFqNy13QiFx91ceVodDLZXXC6vec3JCyXVcohp625rBIsHtUEXCtdagKcY6GeA9_yBeX9LzsSgLtU6ZgCFT2P9Qky7QcBk1Nk2kSdqHtoYYJB1ow46GMwn8MTHYbjVw0RijkCQSfUIlQyHsgy4UBlLAjorAJmOAJPknlH_c3jaMdIIGvrg9X7YN-U7maDIhmsNiyj5bPktDvSzJlqf54jre218-TMQbqQOac9LhBv_Gq0O3o8frSz_-395PXH8ejd5NOzydMv-z9e7r14uDsajT-__bnzde_7m70Pz6HrIlnuxsuLS22XsKOdwjm4rTOWJqllvuVelltfZoWfCZXazJfWBhyUchFq6-VBohILhn0asrTIuRUi5Aoql8jUYH2QXyZzSciFTmSRSZEKWSirfOunShcyZ76XZDNktl5_714Vl6VXc2-G3HBfpOf-1o1ef6M_HA77-A0BA1NXjsUwS04hZHXXdpVMbT7Yyq-B9blpr7sd8QsvwGe0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95%E6%94%B9%E8%BF%9B%E7%9A%84%E4%BA%BA%E5%B7%A5%E9%B1%BC%E7%BE%A4%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9D%8E%E5%90%9B%3B%E6%A2%81%E6%98%94%E6%98%8E&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=12&rft.spage=3589&rft.epage=3593&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.12.016&rft.externalDocID=673822059
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg