基于共轭梯度法改进的人工鱼群算法
针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法。算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。...
Saved in:
Published in | 计算机应用研究 Vol. 34; no. 12; pp. 3589 - 3593 |
---|---|
Main Author | |
Format | Journal Article |
Language | Chinese |
Published |
北京建筑大学理学院,北京,100044
2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1001-3695 |
DOI | 10.3969/j.issn.1001-3695.2017.12.016 |
Cover
Abstract | 针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法。算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。 |
---|---|
AbstractList | 针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法。算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新。在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度。数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升。 TP301.6; 针对基本人工鱼群算法运算精度低和效率差的缺点,将共轭梯度法引入基本人工鱼群算法中,得到改进的人工鱼群算法.算法对每条人工鱼分别进行聚群算子和追尾算子,若更新结果没有得到改善,则利用共轭梯度法进行更新.在人工鱼群更新过程中引入共轭梯度法,减少随机性,增强人工鱼个体的局部寻优能力,确保人工鱼每次更新都会得到改善,从而加快人工鱼群算法收敛速度.数值实验结果表明,所得改进人工鱼群算法具有更快的收敛速度,同时收敛精度也得到一定提升. |
Abstract_FL | The basic artificial fish swarm algorithm has the shortcomings of low precision and low efficiency.Aiming at this problem,this paper introduced the conjugate gradient method in the artificial fish swarm algorithm,and obtained the improved artificial fish swarm algorithm.The proposed algorithm performed clustering and trailing operators on each artificial fish.If the update result was not improved,the algorithm would be updated using the conjugate gradient method.This paper introduced the conjugate gradient method to updating the artificial fish swarm,which could reduce the randomness and enhance the local searching ability of the artificial fish.This ensured that the artificial fish would be improved at the same time,thus speeding up the convergence rate of the artificial fish swarm algorithm.The results of numerical experiments show that the improved artificial fish swarm algorithm has faster convergence speed,and the convergence accuracy is also improved. |
Author | 李君;梁昔明 |
AuthorAffiliation | 北京建筑大学理学院,北京100044 |
AuthorAffiliation_xml | – name: 北京建筑大学理学院,北京,100044 |
Author_FL | Liang Ximing Li Jun |
Author_FL_xml | – sequence: 1 fullname: Li Jun – sequence: 2 fullname: Liang Ximing |
Author_xml | – sequence: 1 fullname: 李君;梁昔明 |
BookMark | eNo9j81Kw0AUhWdRwbb6EuLCTeK9M8kks5TiHxTcdB9mJklt0Ik2iGSvW1eKoAtB1J1KcSEGf16maepbGKm4ufdwzsc93BZpmNREhCwj2ExwsZrYgywzNgKgxbhwbQro2UhtQN4gzX9_nrSyLAFwKApoEihvinFxVp6Oph-Pk9vnsniYvFxMzt-mX9fV1cm4KMrX--_Re_V5Vz1d1tECmYvlXhYt_u026W2s9zpbVndnc7uz1rU0B26JELXUCqliEEaKumFMQ4drFVJXKY-hw2NfKIg8yaVCcLWPOo6Ychyf8Vq0ycrs7LE0sTT9IEmPhqYuDJIsyfM8-X0P68FrdGmG6t3U9A8HNXwwHOzLYR5wj_mUgivYDwJTZ-w |
ClassificationCodes | TP301.6 |
ContentType | Journal Article |
Copyright | Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
Copyright_xml | – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved. |
DBID | 2RA 92L CQIGP W92 ~WA 2B. 4A8 92I 93N PSX TCJ |
DOI | 10.3969/j.issn.1001-3695.2017.12.016 |
DatabaseName | 中文科技期刊数据库 中文科技期刊数据库-CALIS站点 中文科技期刊数据库-7.0平台 中文科技期刊数据库-工程技术 中文科技期刊数据库- 镜像站点 Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ) |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
DocumentTitle_FL | Hybrid AFSA with conjugate gradient methods |
EndPage | 3593 |
ExternalDocumentID | jsjyyyj201712016 673822059 |
GrantInformation_xml | – fundername: 国家自然科学基金资助项目; 北京市自然科学基金资助项目; 中央支持地方科研创新团队项目 funderid: (61463009); (4122022); (PXM2013-014210-000173) |
GroupedDBID | -0Y 2B. 2C0 2RA 5XA 5XJ 92H 92I 92L ACGFS ALMA_UNASSIGNED_HOLDINGS CCEZO CQIGP CUBFJ CW9 TCJ TGT U1G U5S W92 ~WA 4A8 93N ABJNI PSX |
ID | FETCH-LOGICAL-c606-9d1cacb12b30deb25df2d46cbd25bb73146f89b0e7a6ab105c81cfe3b44836fe3 |
ISSN | 1001-3695 |
IngestDate | Thu May 29 03:54:51 EDT 2025 Wed Feb 14 09:56:10 EST 2024 |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 12 |
Keywords | fitness function 适应度函数 artificial fish swarm algorithm(AFSA) 人工鱼群算法 conjugate gradient method 共轭梯度法 数值实验 numerical experiment |
Language | Chinese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c606-9d1cacb12b30deb25df2d46cbd25bb73146f89b0e7a6ab105c81cfe3b44836fe3 |
Notes | 51-1196/TP |
PageCount | 5 |
ParticipantIDs | wanfang_journals_jsjyyyj201712016 chongqing_primary_673822059 |
PublicationCentury | 2000 |
PublicationDate | 2017 |
PublicationDateYYYYMMDD | 2017-01-01 |
PublicationDate_xml | – year: 2017 text: 2017 |
PublicationDecade | 2010 |
PublicationTitle | 计算机应用研究 |
PublicationTitleAlternate | Application Research of Computers |
PublicationTitle_FL | Application Research of Computers |
PublicationYear | 2017 |
Publisher | 北京建筑大学理学院,北京,100044 |
Publisher_xml | – name: 北京建筑大学理学院,北京,100044 |
SSID | ssj0042190 ssib001102940 ssib002263599 ssib023646305 ssib051375744 ssib025702191 |
Score | 2.0608225 |
Snippet | ... TP301.6;... |
SourceID | wanfang chongqing |
SourceType | Aggregation Database Publisher |
StartPage | 3589 |
SubjectTerms | 人工鱼群算法 共轭梯度法 数值实验 适应度函数 |
Title | 基于共轭梯度法改进的人工鱼群算法 |
URI | http://lib.cqvip.com/qk/93231X/201712/673822059.html https://d.wanfangdata.com.cn/periodical/jsjyyyj201712016 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1NaxUxMDxbEC9-i7UqFZrjq5vNx26O2b59FEFPFXp7bPaj5R1e1baH17Ne9aIIehBEvakUD-LDjz_T91r_hTO76XYtUtRLCMlkMtnJzkxCZoaQeTjzpIoz1RYsEW2R8gx-KSvaWqSgDHPPZh76Dt--o5builsrcqXVetJ4tbS1aRfS7T_6lfwPV6EN-Ipesv_A2RopNEAd-AslcBjKv-IxjSXVXRoZGgsswxhbQkkjRuOQRh1qOjRW1PjUdLELYIzClohTLbGiYaAugbtURzQOqAY8wiFEzDAqoAaANaKNFhEmiqkRWDEx1UGNsGnpIk7oNew3ML14gNPg1DidoCYsYTzXYmCi-r6wHNRxK9Me0sgjt6aQlb1hOa6shHHzFqNy13QiFx91ceVodDLZXXC6vec3JCyXVcohp625rBIsHtUEXCtdagKcY6GeA9_yBeX9LzsSgLtU6ZgCFT2P9Qky7QcBk1Nk2kSdqHtoYYJB1ow46GMwn8MTHYbjVw0RijkCQSfUIlQyHsgy4UBlLAjorAJmOAJPknlH_c3jaMdIIGvrg9X7YN-U7maDIhmsNiyj5bPktDvSzJlqf54jre218-TMQbqQOac9LhBv_Gq0O3o8frSz_-395PXH8ejd5NOzydMv-z9e7r14uDsajT-__bnzde_7m70Pz6HrIlnuxsuLS22XsKOdwjm4rTOWJqllvuVelltfZoWfCZXazJfWBhyUchFq6-VBohILhn0asrTIuRUi5Aoql8jUYH2QXyZzSciFTmSRSZEKWSirfOunShcyZ76XZDNktl5_714Vl6VXc2-G3HBfpOf-1o1ef6M_HA77-A0BA1NXjsUwS04hZHXXdpVMbT7Yyq-B9blpr7sd8QsvwGe0 |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%9F%BA%E4%BA%8E%E5%85%B1%E8%BD%AD%E6%A2%AF%E5%BA%A6%E6%B3%95%E6%94%B9%E8%BF%9B%E7%9A%84%E4%BA%BA%E5%B7%A5%E9%B1%BC%E7%BE%A4%E7%AE%97%E6%B3%95&rft.jtitle=%E8%AE%A1%E7%AE%97%E6%9C%BA%E5%BA%94%E7%94%A8%E7%A0%94%E7%A9%B6&rft.au=%E6%9D%8E%E5%90%9B%3B%E6%A2%81%E6%98%94%E6%98%8E&rft.date=2017&rft.issn=1001-3695&rft.volume=34&rft.issue=12&rft.spage=3589&rft.epage=3593&rft_id=info:doi/10.3969%2Fj.issn.1001-3695.2017.12.016&rft.externalDocID=673822059 |
thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F93231X%2F93231X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fjsjyyyj%2Fjsjyyyj.jpg |