Thermal tolerance patterns across latitude and elevation
Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and...
Saved in:
Published in | Philosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 374; no. 1778; p. 20190036 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
The Royal Society
05.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the
Climate Extremes Hypothesis
. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’.
This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’. |
---|---|
AbstractList | Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'. Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'. Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’. |
Author | Hargreaves, Anna L. Verberk, Wilco C. E. P. Calosi, Piero Leiva, Félix P. Morales-Castilla, Ignacio Olalla-Tárraga, Miguel Ángel Sunday, Jennifer Bennett, Joanne M. Clusella-Trullas, Susana Gravel, Sarah |
AuthorAffiliation | 2 Institute of Biology, Martin Luther University Halle-Wittenberg , Am Kirchtor 1, 06108 Halle (Saale) , Germany 4 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1 8 GloCEE - Global Change Ecology and Evolution Group, Department of Life Sciences, Universidad de Alcalá, 28805, Spain 5 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Stellenbosch 7600 , South Africa 6 Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen , 6500 GL Nijmegen , The Netherlands 7 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos , Móstoles 28933 , Spain 9 Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030 1 Department of Biology, McGill University , 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1 3 German Centre for Integrative Biodiversity |
AuthorAffiliation_xml | – name: 1 Department of Biology, McGill University , 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1 – name: 6 Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen , 6500 GL Nijmegen , The Netherlands – name: 8 GloCEE - Global Change Ecology and Evolution Group, Department of Life Sciences, Universidad de Alcalá, 28805, Spain – name: 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e, 04103 Leipzig , Germany – name: 5 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Stellenbosch 7600 , South Africa – name: 7 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos , Móstoles 28933 , Spain – name: 2 Institute of Biology, Martin Luther University Halle-Wittenberg , Am Kirchtor 1, 06108 Halle (Saale) , Germany – name: 4 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1 – name: 9 Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030 |
Author_xml | – sequence: 1 givenname: Jennifer orcidid: 0000-0001-9372-040X surname: Sunday fullname: Sunday, Jennifer organization: Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1 – sequence: 2 givenname: Joanne M. surname: Bennett fullname: Bennett, Joanne M. organization: Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany – sequence: 3 givenname: Piero surname: Calosi fullname: Calosi, Piero organization: Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1 – sequence: 4 givenname: Susana surname: Clusella-Trullas fullname: Clusella-Trullas, Susana organization: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa – sequence: 5 givenname: Sarah surname: Gravel fullname: Gravel, Sarah organization: Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1 – sequence: 6 givenname: Anna L. surname: Hargreaves fullname: Hargreaves, Anna L. organization: Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1 – sequence: 7 givenname: Félix P. surname: Leiva fullname: Leiva, Félix P. organization: Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands – sequence: 8 givenname: Wilco C. E. P. surname: Verberk fullname: Verberk, Wilco C. E. P. organization: Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands – sequence: 9 givenname: Miguel Ángel surname: Olalla-Tárraga fullname: Olalla-Tárraga, Miguel Ángel organization: Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles 28933, Spain – sequence: 10 givenname: Ignacio surname: Morales-Castilla fullname: Morales-Castilla, Ignacio organization: GloCEE - Global Change Ecology and Evolution Group, Department of Life Sciences, Universidad de Alcalá, 28805, Spain, Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31203755$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kc1LxDAUxIMoun5cPUqPXrq-pEmaXAQRv0DwsveQpq9ayaZrkhX8721dFRU8hUdmfgMz-2Q7DAEJOaYwp6DVWUy5mTOgeg5QyS0yo7ymJdM1bJMZaMlKxSu5R_ZTegYALWq-S_YqyqCqhZgRtXjCuLS-yIPHaIPDYmVzxhhSYV0cUiq8zX1et1jY0Bbo8XW8h3BIdjrrEx59vgdkcX21uLwt7x9u7i4v7ksnQeSyaxhTXddIxmquhQJVc4oVYC0UdbpTVNTYUtlyRO2aRtKGMlo51VkOLasOyPkGu1o3S2wdhhytN6vYL218M4Ptze-f0D-Zx-HVSAmSywlw-gmIw8saUzbLPjn03gYc1skwJriASmkxSk9-Zn2HfLU1CvhG8FFMxM64Pn-0MUb33lAw0yhmGsVMo5hplNE2_2P7Iv9jeAevPI_h |
CitedBy_id | crossref_primary_10_1111_gcb_15614 crossref_primary_10_1111_geb_13678 crossref_primary_10_1016_j_marpolbul_2023_114574 crossref_primary_10_1111_ddi_13936 crossref_primary_10_2108_zs240060 crossref_primary_10_1146_annurev_ecolsys_011521_102856 crossref_primary_10_1002_ece3_6498 crossref_primary_10_1098_rspb_2021_0823 crossref_primary_10_1098_rspb_2023_2457 crossref_primary_10_1371_journal_pclm_0000226 crossref_primary_10_1016_j_ecolind_2020_106888 crossref_primary_10_1086_714636 crossref_primary_10_1242_jeb_244923 crossref_primary_10_3390_ani13040724 crossref_primary_10_1111_ecog_06780 crossref_primary_10_1002_ps_6722 crossref_primary_10_1111_geb_13431 crossref_primary_10_1016_j_jtherbio_2023_103763 crossref_primary_10_1002_rra_3788 crossref_primary_10_1111_1365_2435_13885 crossref_primary_10_1242_jeb_243292 crossref_primary_10_1098_rspb_2022_1074 crossref_primary_10_1098_rstb_2022_0502 crossref_primary_10_1016_j_jtherbio_2025_104063 crossref_primary_10_1002_ece3_9659 crossref_primary_10_1016_j_jinsphys_2023_104581 crossref_primary_10_1038_s41598_023_43128_4 crossref_primary_10_1242_jeb_246313 crossref_primary_10_1111_gcb_15285 crossref_primary_10_1016_j_tree_2022_04_011 crossref_primary_10_1038_s41586_022_05334_4 crossref_primary_10_1038_s41598_021_92004_6 crossref_primary_10_1242_jeb_246331 crossref_primary_10_1016_j_jinsphys_2020_104037 crossref_primary_10_1016_j_cois_2023_101036 crossref_primary_10_3389_fmars_2021_764072 crossref_primary_10_1002_jez_2410 crossref_primary_10_1111_ele_14264 crossref_primary_10_1002_1438_390X_12050 crossref_primary_10_1093_plankt_fbab044 crossref_primary_10_1016_j_cois_2023_101028 crossref_primary_10_1016_j_jtherbio_2025_104084 crossref_primary_10_1111_1751_7915_14273 crossref_primary_10_1111_ele_14153 crossref_primary_10_1016_j_jinsphys_2024_104701 crossref_primary_10_1242_bio_060103 crossref_primary_10_1002_ece3_9434 crossref_primary_10_1016_j_jtherbio_2024_103807 crossref_primary_10_1086_720412 crossref_primary_10_1111_1365_2656_13653 crossref_primary_10_1111_fwb_14153 crossref_primary_10_1111_jeb_13777 crossref_primary_10_1242_jeb_238840 crossref_primary_10_1016_j_jtherbio_2024_103815 crossref_primary_10_7717_peerj_8289 crossref_primary_10_1016_j_jtherbio_2024_103930 crossref_primary_10_1080_15230430_2023_2178149 crossref_primary_10_1002_advs_202414185 crossref_primary_10_1111_gcb_16830 crossref_primary_10_1111_evo_14554 crossref_primary_10_1093_icesjms_fsad096 crossref_primary_10_1371_journal_pone_0291393 crossref_primary_10_1016_j_aquaculture_2024_741350 crossref_primary_10_1016_j_jtherbio_2025_104089 crossref_primary_10_1093_molbev_msae148 crossref_primary_10_1111_jzo_13029 crossref_primary_10_1086_719850 crossref_primary_10_1111_gcb_17318 crossref_primary_10_1038_s41559_023_02239_x crossref_primary_10_1093_icb_icae132 crossref_primary_10_3389_fgene_2020_00658 crossref_primary_10_1111_1365_2656_14039 crossref_primary_10_1002_ece3_70025 crossref_primary_10_1152_physiol_00027_2022 crossref_primary_10_1016_j_scitotenv_2022_161049 crossref_primary_10_1016_j_scitotenv_2025_178960 crossref_primary_10_1002_ecm_1595 crossref_primary_10_1016_j_cris_2024_100076 crossref_primary_10_1016_j_baae_2020_11_006 crossref_primary_10_1242_jeb_244842 crossref_primary_10_1016_j_scitotenv_2024_170165 crossref_primary_10_1126_science_aaz3658 crossref_primary_10_1098_rspb_2023_0985 crossref_primary_10_1016_j_scitotenv_2021_146854 crossref_primary_10_1038_s41598_023_41173_7 crossref_primary_10_3389_fevo_2024_1405459 crossref_primary_10_1111_ecog_06217 crossref_primary_10_1098_rspb_2020_1550 crossref_primary_10_1111_1365_2656_13996 crossref_primary_10_1016_j_jtherbio_2023_103577 crossref_primary_10_1093_biolinnean_blac094 crossref_primary_10_1111_1365_2656_13514 crossref_primary_10_1093_conphys_coae089 crossref_primary_10_1093_cz_zoae031 crossref_primary_10_1111_1365_2656_13516 crossref_primary_10_1111_jbi_14860 crossref_primary_10_1073_pnas_1918162117 crossref_primary_10_1002_ece3_70926 crossref_primary_10_1111_een_13272 crossref_primary_10_1002_ece3_9349 crossref_primary_10_1111_1744_7917_13466 crossref_primary_10_1093_sysbio_syae041 crossref_primary_10_2984_77_4_2 crossref_primary_10_1086_721957 crossref_primary_10_1111_gcb_15035 crossref_primary_10_1098_rstb_2019_0032 crossref_primary_10_1038_s41598_020_73391_8 crossref_primary_10_1111_nrm_12331 crossref_primary_10_1242_jeb_224139 crossref_primary_10_1007_s00704_022_04133_1 crossref_primary_10_1098_rstb_2019_0035 crossref_primary_10_1111_geb_13570 crossref_primary_10_1016_j_tree_2021_05_008 crossref_primary_10_1038_s41597_024_04191_2 crossref_primary_10_1111_gcb_16116 crossref_primary_10_3389_fevo_2022_846663 crossref_primary_10_1111_gcb_17568 crossref_primary_10_3390_d14060499 crossref_primary_10_1111_brv_13081 crossref_primary_10_3389_fmars_2022_858280 crossref_primary_10_1111_mec_16610 crossref_primary_10_1086_722115 crossref_primary_10_1111_1365_2656_14149 crossref_primary_10_1111_oik_10132 crossref_primary_10_1016_j_ecolind_2020_106856 crossref_primary_10_1111_fwb_14198 crossref_primary_10_1002_ece3_6407 crossref_primary_10_1088_1748_9326_ac3fda crossref_primary_10_1111_gcb_17564 crossref_primary_10_1016_j_ecolind_2019_105561 crossref_primary_10_3390_d14121106 crossref_primary_10_1242_jeb_244514 crossref_primary_10_1016_j_jtherbio_2023_103673 crossref_primary_10_1111_btp_12733 crossref_primary_10_1111_gcb_15578 crossref_primary_10_1126_sciadv_abo0119 crossref_primary_10_1038_s41559_023_02007_x crossref_primary_10_1111_1365_2435_13928 crossref_primary_10_1111_eea_13268 crossref_primary_10_3389_fmars_2023_1173358 crossref_primary_10_1038_s41597_022_01704_9 crossref_primary_10_1111_oik_10953 crossref_primary_10_1016_j_forsciint_2024_111972 crossref_primary_10_1242_jeb_244883 crossref_primary_10_1242_jeb_240960 crossref_primary_10_1002_wcc_852 crossref_primary_10_1016_j_jtherbio_2021_103002 crossref_primary_10_1093_evolinnean_kzae040 crossref_primary_10_1111_ele_14337 crossref_primary_10_1111_gcb_16656 crossref_primary_10_1371_journal_pclm_0000174 crossref_primary_10_1111_gcb_17623 crossref_primary_10_1111_gcb_70081 crossref_primary_10_1111_nph_17052 crossref_primary_10_1111_jbi_14024 crossref_primary_10_1242_jeb_247928 crossref_primary_10_1111_jbi_14263 crossref_primary_10_1242_jeb_245745 crossref_primary_10_1098_rspb_2024_1012 crossref_primary_10_1093_icb_icae034 crossref_primary_10_1111_1365_2656_14212 crossref_primary_10_1002_ece3_70042 crossref_primary_10_1086_731710 crossref_primary_10_1111_fwb_14300 crossref_primary_10_1111_geb_13251 crossref_primary_10_1111_gcb_16557 crossref_primary_10_1016_j_funeco_2025_101416 crossref_primary_10_3390_insects12020116 crossref_primary_10_1002_jez_2827 crossref_primary_10_1038_s41598_020_77878_2 crossref_primary_10_1111_jbi_14005 crossref_primary_10_1016_j_jtherbio_2021_102864 crossref_primary_10_1111_1365_2435_14485 crossref_primary_10_1111_gcb_16797 crossref_primary_10_1016_j_envpol_2021_117019 crossref_primary_10_1111_eva_13636 crossref_primary_10_1002_lol2_10225 crossref_primary_10_1016_j_tree_2021_07_001 crossref_primary_10_1038_s41586_024_08456_z crossref_primary_10_3389_fmars_2024_1390763 crossref_primary_10_1038_s41558_022_01534_y crossref_primary_10_1002_ecm_1512 crossref_primary_10_1111_1749_4877_12860 crossref_primary_10_1038_s41467_021_22546_w crossref_primary_10_3390_insects11030197 crossref_primary_10_1002_ecy_3134 crossref_primary_10_1111_gcb_15761 crossref_primary_10_1002_ece3_10937 crossref_primary_10_1111_1365_2435_13693 crossref_primary_10_1111_jpy_13296 crossref_primary_10_1098_rsbl_2023_0106 crossref_primary_10_1007_s00227_023_04218_z crossref_primary_10_1093_ornithapp_duae025 crossref_primary_10_1111_1365_2435_14438 crossref_primary_10_7717_peerj_11734 crossref_primary_10_1038_s41586_022_05606_z crossref_primary_10_1093_iob_obad009 crossref_primary_10_1242_jeb_245439 crossref_primary_10_1016_j_jtherbio_2021_103106 crossref_primary_10_1111_gcb_17610 crossref_primary_10_1111_1365_2664_14625 crossref_primary_10_1098_rsbl_2020_0873 crossref_primary_10_1111_jbi_14572 crossref_primary_10_3390_ani12040531 crossref_primary_10_1038_s41558_022_01535_x crossref_primary_10_1111_fwb_14102 crossref_primary_10_1038_s41559_020_1185_7 crossref_primary_10_1016_j_cois_2021_06_003 crossref_primary_10_1093_ee_nvab009 crossref_primary_10_1111_btp_13316 crossref_primary_10_3389_fevo_2023_1248673 crossref_primary_10_1002_jez_2582 crossref_primary_10_1016_j_jtherbio_2021_102936 crossref_primary_10_1242_jeb_141309 crossref_primary_10_1098_rspb_2024_1628 crossref_primary_10_1111_jeb_14145 crossref_primary_10_1371_journal_pbio_3000894 crossref_primary_10_1016_j_cris_2021_100023 crossref_primary_10_1016_j_jtherbio_2023_103710 crossref_primary_10_1002_ecy_4206 crossref_primary_10_1242_jeb_238360 crossref_primary_10_1093_conphys_coae025 crossref_primary_10_1098_rspb_2019_2645 crossref_primary_10_3389_fevo_2021_767102 crossref_primary_10_1016_j_crphys_2022_02_002 |
Cites_doi | 10.1086/282976 10.1111/1365-2435.12268 10.1098/rspb.2017.2214 10.1046/j.1095-8312.2003.00154.x 10.1002/ecy.2436 10.1098/rstb.2016.0147 10.1242/jeb.037523 10.1098/rspb.2007.0985 10.1098/rspb.2002.2275 10.1111/j.1420-9101.2009.01915.x 10.1111/j.1365-2656.2009.01611.x 10.1890/10-2369.1 10.1086/401257 10.1111/gcb.12750 10.1093/icb/icj003 10.1086/698656 10.2307/3546663 10.1111/j.1365-2435.2012.02036.x 10.1098/rspb.2015.0401 10.1098/rspb.2012.2829 10.1098/rstb.2019.0035 10.1111/ele.13107 10.1098/rsbl.2013.0473 10.1242/jeb.167858 10.1073/pnas.0709472105 10.1073/pnas.1809326115 10.1086/660021 10.1111/j.1461-0248.2009.01308.x 10.1016/S1011-1344(96)00018-8 10.1093/conphys/cow053 10.1086/605982 10.1073/pnas.1316145111 10.1371/journal.pone.0032758 10.1016/j.jembe.2007.07.010 10.1016/j.jtherbio.2014.10.002 10.1086/282487 10.1038/sdata.2018.22 10.1038/s41586-019-1132-4 10.1111/ele.12155 10.1126/science.1098704 10.1098/rstb.2010.0055 10.1111/ecog.04226 10.1098/rspb.2000.1065 10.1139/z97-782 10.1098/rspb.2010.1295 |
ContentType | Journal Article |
Copyright | 2019 The Author(s) 2019 |
Copyright_xml | – notice: 2019 The Author(s) 2019 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1098/rstb.2019.0036 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Sciences (General) Biology |
DocumentTitleAlternate | Thermal tolerance patterns |
EISSN | 1471-2970 |
ExternalDocumentID | PMC6606462 31203755 10_1098_rstb_2019_0036 |
Genre | Journal Article |
GroupedDBID | --- -~X 0R~ 29O 2WC 4.4 53G AACGO AANCE AAYXX ABBHK ABPLY ABTLG ABXSQ ACHIC ACPRK ACSFO ADBBV ADQXQ AEUPB AEXZC AFRAH ALMA_UNASSIGNED_HOLDINGS AOIJS AQVQM BAWUL BTFSW CITATION DCCCD DIK E3Z EBS EJD F5P GX1 H13 HYE HZ~ IPSME JAAYA JBMMH JENOY JHFFW JKQEH JLS JLXEF JPM JSG JST KQ8 MRS MV1 NSAHA O9- OK1 RPM RRY SA0 TN5 V1E W8F YNT ~02 CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c605t-fb228ffb6227495808741e30e7581c9f8157ed16d4ee9cbb61b1213c8fa40d23 |
ISSN | 0962-8436 1471-2970 |
IngestDate | Thu Aug 21 18:33:01 EDT 2025 Fri Jul 11 03:47:43 EDT 2025 Thu Apr 03 07:09:08 EDT 2025 Thu Apr 24 22:54:03 EDT 2025 Tue Jul 01 03:25:29 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1778 |
Keywords | Climate Extremes Hypothesis thermal tolerance limits physiological diversity macrophysiology critical thermal tolerance |
Language | English |
License | Published by the Royal Society. All rights reserved. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c605t-fb228ffb6227495808741e30e7581c9f8157ed16d4ee9cbb61b1213c8fa40d23 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 One contribution of 12 to a theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’. Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.4496534. |
ORCID | 0000-0001-9372-040X |
OpenAccessLink | https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2019.0036 |
PMID | 31203755 |
PQID | 2254503895 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606462 proquest_miscellaneous_2254503895 pubmed_primary_31203755 crossref_citationtrail_10_1098_rstb_2019_0036 crossref_primary_10_1098_rstb_2019_0036 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-08-05 |
PublicationDateYYYYMMDD | 2019-08-05 |
PublicationDate_xml | – month: 08 year: 2019 text: 2019-08-05 day: 05 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Philosophical transactions of the Royal Society of London. Series B. Biological sciences |
PublicationTitleAlternate | Philos Trans R Soc Lond B Biol Sci |
PublicationYear | 2019 |
Publisher | The Royal Society |
Publisher_xml | – name: The Royal Society |
References | e_1_3_6_30_2 e_1_3_6_51_2 e_1_3_6_32_2 e_1_3_6_53_2 e_1_3_6_19_2 e_1_3_6_13_2 e_1_3_6_38_2 e_1_3_6_11_2 e_1_3_6_17_2 e_1_3_6_34_2 e_1_3_6_36_2 e_1_3_6_40_2 e_1_3_6_21_2 e_1_3_6_42_2 MacArthur RH (e_1_3_6_39_2) 1972 e_1_3_6_4_2 e_1_3_6_2_2 e_1_3_6_8_2 e_1_3_6_6_2 e_1_3_6_27_2 e_1_3_6_48_2 e_1_3_6_29_2 e_1_3_6_23_2 e_1_3_6_44_2 e_1_3_6_25_2 e_1_3_6_52_2 e_1_3_6_31_2 e_1_3_6_10_2 e_1_3_6_50_2 Brett JR (e_1_3_6_15_2) 1970 e_1_3_6_14_2 e_1_3_6_37_2 e_1_3_6_12_2 e_1_3_6_18_2 e_1_3_6_33_2 e_1_3_6_16_2 e_1_3_6_35_2 e_1_3_6_41_2 e_1_3_6_20_2 e_1_3_6_43_2 e_1_3_6_5_2 e_1_3_6_3_2 e_1_3_6_9_2 e_1_3_6_7_2 Ghalambor CK (e_1_3_6_46_2) 2007; 86 e_1_3_6_26_2 e_1_3_6_49_2 e_1_3_6_28_2 e_1_3_6_22_2 e_1_3_6_45_2 e_1_3_6_24_2 e_1_3_6_47_2 |
References_xml | – ident: e_1_3_6_6_2 doi: 10.1086/282976 – ident: e_1_3_6_36_2 doi: 10.1111/1365-2435.12268 – ident: e_1_3_6_35_2 doi: 10.1098/rspb.2017.2214 – volume-title: Geographical ecology: patterns in the distribution of species year: 1972 ident: e_1_3_6_39_2 – ident: e_1_3_6_11_2 doi: 10.1046/j.1095-8312.2003.00154.x – ident: e_1_3_6_38_2 doi: 10.1002/ecy.2436 – ident: e_1_3_6_33_2 – ident: e_1_3_6_21_2 doi: 10.1098/rstb.2016.0147 – ident: e_1_3_6_45_2 doi: 10.1242/jeb.037523 – ident: e_1_3_6_23_2 doi: 10.1098/rspb.2007.0985 – ident: e_1_3_6_18_2 doi: 10.1098/rspb.2002.2275 – ident: e_1_3_6_37_2 doi: 10.1111/j.1420-9101.2009.01915.x – ident: e_1_3_6_14_2 doi: 10.1111/j.1365-2656.2009.01611.x – ident: e_1_3_6_44_2 doi: 10.1890/10-2369.1 – ident: e_1_3_6_5_2 doi: 10.1086/401257 – ident: e_1_3_6_51_2 doi: 10.1111/gcb.12750 – ident: e_1_3_6_41_2 doi: 10.1093/icb/icj003 – ident: e_1_3_6_22_2 doi: 10.1086/698656 – ident: e_1_3_6_7_2 doi: 10.2307/3546663 – ident: e_1_3_6_9_2 doi: 10.1111/j.1365-2435.2012.02036.x – ident: e_1_3_6_29_2 doi: 10.1098/rspb.2015.0401 – ident: e_1_3_6_20_2 doi: 10.1098/rspb.2012.2829 – ident: e_1_3_6_31_2 – ident: e_1_3_6_47_2 doi: 10.1098/rstb.2019.0035 – ident: e_1_3_6_53_2 – ident: e_1_3_6_25_2 doi: 10.1111/ele.13107 – ident: e_1_3_6_49_2 doi: 10.1098/rsbl.2013.0473 – ident: e_1_3_6_30_2 doi: 10.1242/jeb.167858 – ident: e_1_3_6_13_2 doi: 10.1073/pnas.0709472105 – ident: e_1_3_6_40_2 doi: 10.1073/pnas.1809326115 – ident: e_1_3_6_19_2 doi: 10.1086/660021 – ident: e_1_3_6_42_2 doi: 10.1111/j.1461-0248.2009.01308.x – ident: e_1_3_6_43_2 doi: 10.1016/S1011-1344(96)00018-8 – ident: e_1_3_6_26_2 doi: 10.1093/conphys/cow053 – ident: e_1_3_6_2_2 doi: 10.1086/605982 – ident: e_1_3_6_34_2 doi: 10.1073/pnas.1316145111 – ident: e_1_3_6_24_2 doi: 10.1371/journal.pone.0032758 – volume: 86 start-page: 584 year: 2007 ident: e_1_3_6_46_2 article-title: Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments publication-title: Funct. Ecol. – ident: e_1_3_6_12_2 doi: 10.1016/j.jembe.2007.07.010 – ident: e_1_3_6_50_2 doi: 10.1016/j.jtherbio.2014.10.002 – ident: e_1_3_6_10_2 doi: 10.1086/282487 – start-page: 515 volume-title: Marine ecology, vol. 1: environmental factors year: 1970 ident: e_1_3_6_15_2 – ident: e_1_3_6_27_2 doi: 10.1038/sdata.2018.22 – ident: e_1_3_6_32_2 – ident: e_1_3_6_4_2 doi: 10.1038/s41586-019-1132-4 – ident: e_1_3_6_8_2 doi: 10.1111/ele.12155 – ident: e_1_3_6_52_2 doi: 10.1126/science.1098704 – ident: e_1_3_6_48_2 doi: 10.1098/rstb.2010.0055 – ident: e_1_3_6_17_2 doi: 10.1111/ecog.04226 – ident: e_1_3_6_3_2 doi: 10.1098/rspb.2000.1065 – ident: e_1_3_6_28_2 doi: 10.1139/z97-782 – ident: e_1_3_6_16_2 doi: 10.1098/rspb.2010.1295 |
SSID | ssj0009574 |
Score | 2.6629026 |
Snippet | Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 20190036 |
SubjectTerms | Acclimatization Altitude Animals Biological Evolution Cold Temperature Eukaryota - genetics Eukaryota - physiology Hot Temperature Thermotolerance Water - chemistry |
Title | Thermal tolerance patterns across latitude and elevation |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31203755 https://www.proquest.com/docview/2254503895 https://pubmed.ncbi.nlm.nih.gov/PMC6606462 |
Volume | 374 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7Kisu-iFtv9UYEQaWk5jqdPOqiLEqlQoR9C5nJBIWaliZ50H_lP_ScuSXdVdB9CSGdXJrz5VxmzvkOIc-DkktWlYEvqaB-EqIeBC8XvngWBnUqOQ-xwHn1iZ5_ST5cpBeTya9R1lLf8YX4-ce6kutIFY6BXLFK9j8k6y4KB2Af5AtbkDBs_1XGoFc34D9u5F7l_u8UXWbTzktl_uaqUKWv9BoBlpIPgjAe6dr2MlDS6ob24a1NH9AzDDa9E9cUVAuQBeoZiLPnbxemo-VQYSmGzERdajJOpHEzAKokSK-FbEvYn68Ww5IIPJRKNFiD3d66w5u-xXQtP99D6Kxr0VReUTmevcCCKeYHqcNbfvlfjCcoKejqJDZE2Vo9gyn1o0y3GrH6O9ZtfixQl7ol0BXTEGRY7gAuNceEPmQp1Zce4WT3XQElDiPsDJwOJtIlLq5XZxRCvgSt_o0IIhNsmvHxMxvxPGvib_vwjieUvT689Qk5tvc5dImuxDmX03VH_k9-m9wygYv3RqPwlExkMyU3teB_TMnxyiRpTMmpsRet99KQmr-6Q5jBquew6lmsehqrnsWqB1j1HFbvkvz9u_zs3DddO3wBoXHn1zyKWF1zGkVLiL5ZwMBplXEgITINRVazMF3KKqRVImUmOKchR1pBweoyCaoovkeOmm0jHxCPp4IHcZaKmFUQmNclnEXjkspE0SrxGfHteyuEYbTHxiqbQmdWsAJfeYGvHClw6Yy8cON3msvlryOfWTEUoG5xDa1s5LZvCzB_iSKlTGfkvhaLu5aV54wsDwTmBiCV--EvzbevitLdgOrhtc98RE6Gz-sxOer2vXwC7nLHnyqA_gYkBsRi |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+tolerance+patterns+across+latitude+and+elevation&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Sunday%2C+Jennifer&rft.au=Bennett%2C+Joanne+M.&rft.au=Calosi%2C+Piero&rft.au=Clusella-Trullas%2C+Susana&rft.date=2019-08-05&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=374&rft.issue=1778&rft_id=info:doi/10.1098%2Frstb.2019.0036&rft_id=info%3Apmid%2F31203755&rft.externalDocID=PMC6606462 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon |