Thermal tolerance patterns across latitude and elevation

Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and...

Full description

Saved in:
Bibliographic Details
Published inPhilosophical transactions of the Royal Society of London. Series B. Biological sciences Vol. 374; no. 1778; p. 20190036
Main Authors Sunday, Jennifer, Bennett, Joanne M., Calosi, Piero, Clusella-Trullas, Susana, Gravel, Sarah, Hargreaves, Anna L., Leiva, Félix P., Verberk, Wilco C. E. P., Olalla-Tárraga, Miguel Ángel, Morales-Castilla, Ignacio
Format Journal Article
LanguageEnglish
Published England The Royal Society 05.08.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
AbstractList Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis. Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological 'rules'. This article is part of the theme issue 'Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen'.
Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional diversity and future responses to environmental change. Here, we ask how heat and cold tolerance vary as a function of latitude, elevation and climate extremes, using an extensive global dataset of ectotherm and endotherm thermal tolerance limits, while accounting for methodological variation in acclimation temperature, ramping rate and duration of exposure among studies. We show that previously reported relationships between thermal limits and latitude in ectotherms are robust to variation in methods. Heat tolerance of terrestrial ectotherms declined marginally towards higher latitudes and did not vary with elevation, whereas heat tolerance of freshwater and marine ectotherms declined more steeply with latitude. By contrast, cold tolerance limits declined steeply with latitude in marine, intertidal, freshwater and terrestrial ectotherms, and towards higher elevations on land. In all realms, both upper and lower thermal tolerance limits increased with extreme daily temperature, suggesting that different experienced climate extremes across realms explain the patterns, as predicted under the Climate Extremes Hypothesis . Statistically accounting for methodological variation in acclimation temperature, ramping rate and exposure duration improved model fits, and increased slopes with extreme ambient temperature. Our results suggest that fundamentally different patterns of thermal limits found among the earth's realms may be largely explained by differences in episodic thermal extremes among realms, updating global macrophysiological ‘rules’. This article is part of the theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Author Hargreaves, Anna L.
Verberk, Wilco C. E. P.
Calosi, Piero
Leiva, Félix P.
Morales-Castilla, Ignacio
Olalla-Tárraga, Miguel Ángel
Sunday, Jennifer
Bennett, Joanne M.
Clusella-Trullas, Susana
Gravel, Sarah
AuthorAffiliation 2 Institute of Biology, Martin Luther University Halle-Wittenberg , Am Kirchtor 1, 06108 Halle (Saale) , Germany
4 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1
8 GloCEE - Global Change Ecology and Evolution Group, Department of Life Sciences, Universidad de Alcalá, 28805, Spain
5 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Stellenbosch 7600 , South Africa
6 Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen , 6500 GL Nijmegen , The Netherlands
7 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos , Móstoles 28933 , Spain
9 Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030
1 Department of Biology, McGill University , 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1
3 German Centre for Integrative Biodiversity
AuthorAffiliation_xml – name: 1 Department of Biology, McGill University , 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1
– name: 6 Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen , 6500 GL Nijmegen , The Netherlands
– name: 8 GloCEE - Global Change Ecology and Evolution Group, Department of Life Sciences, Universidad de Alcalá, 28805, Spain
– name: 3 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig , Deutscher Platz 5e, 04103 Leipzig , Germany
– name: 5 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University , Stellenbosch 7600 , South Africa
– name: 7 Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos , Móstoles 28933 , Spain
– name: 2 Institute of Biology, Martin Luther University Halle-Wittenberg , Am Kirchtor 1, 06108 Halle (Saale) , Germany
– name: 4 Département de Biologie Chimie et Géographie, Université du Québec à Rimouski , 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1
– name: 9 Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030
Author_xml – sequence: 1
  givenname: Jennifer
  orcidid: 0000-0001-9372-040X
  surname: Sunday
  fullname: Sunday, Jennifer
  organization: Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1
– sequence: 2
  givenname: Joanne M.
  surname: Bennett
  fullname: Bennett, Joanne M.
  organization: Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, 06108 Halle (Saale), Germany, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig, Germany
– sequence: 3
  givenname: Piero
  surname: Calosi
  fullname: Calosi, Piero
  organization: Département de Biologie Chimie et Géographie, Université du Québec à Rimouski, 300 Allée des Ursulines, Rimouski, Québec, Canada G5 L 3A1
– sequence: 4
  givenname: Susana
  surname: Clusella-Trullas
  fullname: Clusella-Trullas, Susana
  organization: Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch 7600, South Africa
– sequence: 5
  givenname: Sarah
  surname: Gravel
  fullname: Gravel, Sarah
  organization: Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1
– sequence: 6
  givenname: Anna L.
  surname: Hargreaves
  fullname: Hargreaves, Anna L.
  organization: Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montreal, Canada H3A 1B1
– sequence: 7
  givenname: Félix P.
  surname: Leiva
  fullname: Leiva, Félix P.
  organization: Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
– sequence: 8
  givenname: Wilco C. E. P.
  surname: Verberk
  fullname: Verberk, Wilco C. E. P.
  organization: Department of Animal Ecology and Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, 6500 GL Nijmegen, The Netherlands
– sequence: 9
  givenname: Miguel Ángel
  surname: Olalla-Tárraga
  fullname: Olalla-Tárraga, Miguel Ángel
  organization: Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, Móstoles 28933, Spain
– sequence: 10
  givenname: Ignacio
  surname: Morales-Castilla
  fullname: Morales-Castilla, Ignacio
  organization: GloCEE - Global Change Ecology and Evolution Group, Department of Life Sciences, Universidad de Alcalá, 28805, Spain, Department of Environmental Science and Policy, George Mason University, Fairfax, VA 22030
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31203755$$D View this record in MEDLINE/PubMed
BookMark eNp1kc1LxDAUxIMoun5cPUqPXrq-pEmaXAQRv0DwsveQpq9ayaZrkhX8721dFRU8hUdmfgMz-2Q7DAEJOaYwp6DVWUy5mTOgeg5QyS0yo7ymJdM1bJMZaMlKxSu5R_ZTegYALWq-S_YqyqCqhZgRtXjCuLS-yIPHaIPDYmVzxhhSYV0cUiq8zX1et1jY0Bbo8XW8h3BIdjrrEx59vgdkcX21uLwt7x9u7i4v7ksnQeSyaxhTXddIxmquhQJVc4oVYC0UdbpTVNTYUtlyRO2aRtKGMlo51VkOLasOyPkGu1o3S2wdhhytN6vYL218M4Ptze-f0D-Zx-HVSAmSywlw-gmIw8saUzbLPjn03gYc1skwJriASmkxSk9-Zn2HfLU1CvhG8FFMxM64Pn-0MUb33lAw0yhmGsVMo5hplNE2_2P7Iv9jeAevPI_h
CitedBy_id crossref_primary_10_1111_gcb_15614
crossref_primary_10_1111_geb_13678
crossref_primary_10_1016_j_marpolbul_2023_114574
crossref_primary_10_1111_ddi_13936
crossref_primary_10_2108_zs240060
crossref_primary_10_1146_annurev_ecolsys_011521_102856
crossref_primary_10_1002_ece3_6498
crossref_primary_10_1098_rspb_2021_0823
crossref_primary_10_1098_rspb_2023_2457
crossref_primary_10_1371_journal_pclm_0000226
crossref_primary_10_1016_j_ecolind_2020_106888
crossref_primary_10_1086_714636
crossref_primary_10_1242_jeb_244923
crossref_primary_10_3390_ani13040724
crossref_primary_10_1111_ecog_06780
crossref_primary_10_1002_ps_6722
crossref_primary_10_1111_geb_13431
crossref_primary_10_1016_j_jtherbio_2023_103763
crossref_primary_10_1002_rra_3788
crossref_primary_10_1111_1365_2435_13885
crossref_primary_10_1242_jeb_243292
crossref_primary_10_1098_rspb_2022_1074
crossref_primary_10_1098_rstb_2022_0502
crossref_primary_10_1016_j_jtherbio_2025_104063
crossref_primary_10_1002_ece3_9659
crossref_primary_10_1016_j_jinsphys_2023_104581
crossref_primary_10_1038_s41598_023_43128_4
crossref_primary_10_1242_jeb_246313
crossref_primary_10_1111_gcb_15285
crossref_primary_10_1016_j_tree_2022_04_011
crossref_primary_10_1038_s41586_022_05334_4
crossref_primary_10_1038_s41598_021_92004_6
crossref_primary_10_1242_jeb_246331
crossref_primary_10_1016_j_jinsphys_2020_104037
crossref_primary_10_1016_j_cois_2023_101036
crossref_primary_10_3389_fmars_2021_764072
crossref_primary_10_1002_jez_2410
crossref_primary_10_1111_ele_14264
crossref_primary_10_1002_1438_390X_12050
crossref_primary_10_1093_plankt_fbab044
crossref_primary_10_1016_j_cois_2023_101028
crossref_primary_10_1016_j_jtherbio_2025_104084
crossref_primary_10_1111_1751_7915_14273
crossref_primary_10_1111_ele_14153
crossref_primary_10_1016_j_jinsphys_2024_104701
crossref_primary_10_1242_bio_060103
crossref_primary_10_1002_ece3_9434
crossref_primary_10_1016_j_jtherbio_2024_103807
crossref_primary_10_1086_720412
crossref_primary_10_1111_1365_2656_13653
crossref_primary_10_1111_fwb_14153
crossref_primary_10_1111_jeb_13777
crossref_primary_10_1242_jeb_238840
crossref_primary_10_1016_j_jtherbio_2024_103815
crossref_primary_10_7717_peerj_8289
crossref_primary_10_1016_j_jtherbio_2024_103930
crossref_primary_10_1080_15230430_2023_2178149
crossref_primary_10_1002_advs_202414185
crossref_primary_10_1111_gcb_16830
crossref_primary_10_1111_evo_14554
crossref_primary_10_1093_icesjms_fsad096
crossref_primary_10_1371_journal_pone_0291393
crossref_primary_10_1016_j_aquaculture_2024_741350
crossref_primary_10_1016_j_jtherbio_2025_104089
crossref_primary_10_1093_molbev_msae148
crossref_primary_10_1111_jzo_13029
crossref_primary_10_1086_719850
crossref_primary_10_1111_gcb_17318
crossref_primary_10_1038_s41559_023_02239_x
crossref_primary_10_1093_icb_icae132
crossref_primary_10_3389_fgene_2020_00658
crossref_primary_10_1111_1365_2656_14039
crossref_primary_10_1002_ece3_70025
crossref_primary_10_1152_physiol_00027_2022
crossref_primary_10_1016_j_scitotenv_2022_161049
crossref_primary_10_1016_j_scitotenv_2025_178960
crossref_primary_10_1002_ecm_1595
crossref_primary_10_1016_j_cris_2024_100076
crossref_primary_10_1016_j_baae_2020_11_006
crossref_primary_10_1242_jeb_244842
crossref_primary_10_1016_j_scitotenv_2024_170165
crossref_primary_10_1126_science_aaz3658
crossref_primary_10_1098_rspb_2023_0985
crossref_primary_10_1016_j_scitotenv_2021_146854
crossref_primary_10_1038_s41598_023_41173_7
crossref_primary_10_3389_fevo_2024_1405459
crossref_primary_10_1111_ecog_06217
crossref_primary_10_1098_rspb_2020_1550
crossref_primary_10_1111_1365_2656_13996
crossref_primary_10_1016_j_jtherbio_2023_103577
crossref_primary_10_1093_biolinnean_blac094
crossref_primary_10_1111_1365_2656_13514
crossref_primary_10_1093_conphys_coae089
crossref_primary_10_1093_cz_zoae031
crossref_primary_10_1111_1365_2656_13516
crossref_primary_10_1111_jbi_14860
crossref_primary_10_1073_pnas_1918162117
crossref_primary_10_1002_ece3_70926
crossref_primary_10_1111_een_13272
crossref_primary_10_1002_ece3_9349
crossref_primary_10_1111_1744_7917_13466
crossref_primary_10_1093_sysbio_syae041
crossref_primary_10_2984_77_4_2
crossref_primary_10_1086_721957
crossref_primary_10_1111_gcb_15035
crossref_primary_10_1098_rstb_2019_0032
crossref_primary_10_1038_s41598_020_73391_8
crossref_primary_10_1111_nrm_12331
crossref_primary_10_1242_jeb_224139
crossref_primary_10_1007_s00704_022_04133_1
crossref_primary_10_1098_rstb_2019_0035
crossref_primary_10_1111_geb_13570
crossref_primary_10_1016_j_tree_2021_05_008
crossref_primary_10_1038_s41597_024_04191_2
crossref_primary_10_1111_gcb_16116
crossref_primary_10_3389_fevo_2022_846663
crossref_primary_10_1111_gcb_17568
crossref_primary_10_3390_d14060499
crossref_primary_10_1111_brv_13081
crossref_primary_10_3389_fmars_2022_858280
crossref_primary_10_1111_mec_16610
crossref_primary_10_1086_722115
crossref_primary_10_1111_1365_2656_14149
crossref_primary_10_1111_oik_10132
crossref_primary_10_1016_j_ecolind_2020_106856
crossref_primary_10_1111_fwb_14198
crossref_primary_10_1002_ece3_6407
crossref_primary_10_1088_1748_9326_ac3fda
crossref_primary_10_1111_gcb_17564
crossref_primary_10_1016_j_ecolind_2019_105561
crossref_primary_10_3390_d14121106
crossref_primary_10_1242_jeb_244514
crossref_primary_10_1016_j_jtherbio_2023_103673
crossref_primary_10_1111_btp_12733
crossref_primary_10_1111_gcb_15578
crossref_primary_10_1126_sciadv_abo0119
crossref_primary_10_1038_s41559_023_02007_x
crossref_primary_10_1111_1365_2435_13928
crossref_primary_10_1111_eea_13268
crossref_primary_10_3389_fmars_2023_1173358
crossref_primary_10_1038_s41597_022_01704_9
crossref_primary_10_1111_oik_10953
crossref_primary_10_1016_j_forsciint_2024_111972
crossref_primary_10_1242_jeb_244883
crossref_primary_10_1242_jeb_240960
crossref_primary_10_1002_wcc_852
crossref_primary_10_1016_j_jtherbio_2021_103002
crossref_primary_10_1093_evolinnean_kzae040
crossref_primary_10_1111_ele_14337
crossref_primary_10_1111_gcb_16656
crossref_primary_10_1371_journal_pclm_0000174
crossref_primary_10_1111_gcb_17623
crossref_primary_10_1111_gcb_70081
crossref_primary_10_1111_nph_17052
crossref_primary_10_1111_jbi_14024
crossref_primary_10_1242_jeb_247928
crossref_primary_10_1111_jbi_14263
crossref_primary_10_1242_jeb_245745
crossref_primary_10_1098_rspb_2024_1012
crossref_primary_10_1093_icb_icae034
crossref_primary_10_1111_1365_2656_14212
crossref_primary_10_1002_ece3_70042
crossref_primary_10_1086_731710
crossref_primary_10_1111_fwb_14300
crossref_primary_10_1111_geb_13251
crossref_primary_10_1111_gcb_16557
crossref_primary_10_1016_j_funeco_2025_101416
crossref_primary_10_3390_insects12020116
crossref_primary_10_1002_jez_2827
crossref_primary_10_1038_s41598_020_77878_2
crossref_primary_10_1111_jbi_14005
crossref_primary_10_1016_j_jtherbio_2021_102864
crossref_primary_10_1111_1365_2435_14485
crossref_primary_10_1111_gcb_16797
crossref_primary_10_1016_j_envpol_2021_117019
crossref_primary_10_1111_eva_13636
crossref_primary_10_1002_lol2_10225
crossref_primary_10_1016_j_tree_2021_07_001
crossref_primary_10_1038_s41586_024_08456_z
crossref_primary_10_3389_fmars_2024_1390763
crossref_primary_10_1038_s41558_022_01534_y
crossref_primary_10_1002_ecm_1512
crossref_primary_10_1111_1749_4877_12860
crossref_primary_10_1038_s41467_021_22546_w
crossref_primary_10_3390_insects11030197
crossref_primary_10_1002_ecy_3134
crossref_primary_10_1111_gcb_15761
crossref_primary_10_1002_ece3_10937
crossref_primary_10_1111_1365_2435_13693
crossref_primary_10_1111_jpy_13296
crossref_primary_10_1098_rsbl_2023_0106
crossref_primary_10_1007_s00227_023_04218_z
crossref_primary_10_1093_ornithapp_duae025
crossref_primary_10_1111_1365_2435_14438
crossref_primary_10_7717_peerj_11734
crossref_primary_10_1038_s41586_022_05606_z
crossref_primary_10_1093_iob_obad009
crossref_primary_10_1242_jeb_245439
crossref_primary_10_1016_j_jtherbio_2021_103106
crossref_primary_10_1111_gcb_17610
crossref_primary_10_1111_1365_2664_14625
crossref_primary_10_1098_rsbl_2020_0873
crossref_primary_10_1111_jbi_14572
crossref_primary_10_3390_ani12040531
crossref_primary_10_1038_s41558_022_01535_x
crossref_primary_10_1111_fwb_14102
crossref_primary_10_1038_s41559_020_1185_7
crossref_primary_10_1016_j_cois_2021_06_003
crossref_primary_10_1093_ee_nvab009
crossref_primary_10_1111_btp_13316
crossref_primary_10_3389_fevo_2023_1248673
crossref_primary_10_1002_jez_2582
crossref_primary_10_1016_j_jtherbio_2021_102936
crossref_primary_10_1242_jeb_141309
crossref_primary_10_1098_rspb_2024_1628
crossref_primary_10_1111_jeb_14145
crossref_primary_10_1371_journal_pbio_3000894
crossref_primary_10_1016_j_cris_2021_100023
crossref_primary_10_1016_j_jtherbio_2023_103710
crossref_primary_10_1002_ecy_4206
crossref_primary_10_1242_jeb_238360
crossref_primary_10_1093_conphys_coae025
crossref_primary_10_1098_rspb_2019_2645
crossref_primary_10_3389_fevo_2021_767102
crossref_primary_10_1016_j_crphys_2022_02_002
Cites_doi 10.1086/282976
10.1111/1365-2435.12268
10.1098/rspb.2017.2214
10.1046/j.1095-8312.2003.00154.x
10.1002/ecy.2436
10.1098/rstb.2016.0147
10.1242/jeb.037523
10.1098/rspb.2007.0985
10.1098/rspb.2002.2275
10.1111/j.1420-9101.2009.01915.x
10.1111/j.1365-2656.2009.01611.x
10.1890/10-2369.1
10.1086/401257
10.1111/gcb.12750
10.1093/icb/icj003
10.1086/698656
10.2307/3546663
10.1111/j.1365-2435.2012.02036.x
10.1098/rspb.2015.0401
10.1098/rspb.2012.2829
10.1098/rstb.2019.0035
10.1111/ele.13107
10.1098/rsbl.2013.0473
10.1242/jeb.167858
10.1073/pnas.0709472105
10.1073/pnas.1809326115
10.1086/660021
10.1111/j.1461-0248.2009.01308.x
10.1016/S1011-1344(96)00018-8
10.1093/conphys/cow053
10.1086/605982
10.1073/pnas.1316145111
10.1371/journal.pone.0032758
10.1016/j.jembe.2007.07.010
10.1016/j.jtherbio.2014.10.002
10.1086/282487
10.1038/sdata.2018.22
10.1038/s41586-019-1132-4
10.1111/ele.12155
10.1126/science.1098704
10.1098/rstb.2010.0055
10.1111/ecog.04226
10.1098/rspb.2000.1065
10.1139/z97-782
10.1098/rspb.2010.1295
ContentType Journal Article
Copyright 2019 The Author(s) 2019
Copyright_xml – notice: 2019 The Author(s) 2019
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1098/rstb.2019.0036
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Sciences (General)
Biology
DocumentTitleAlternate Thermal tolerance patterns
EISSN 1471-2970
ExternalDocumentID PMC6606462
31203755
10_1098_rstb_2019_0036
Genre Journal Article
GroupedDBID ---
-~X
0R~
29O
2WC
4.4
53G
AACGO
AANCE
AAYXX
ABBHK
ABPLY
ABTLG
ABXSQ
ACHIC
ACPRK
ACSFO
ADBBV
ADQXQ
AEUPB
AEXZC
AFRAH
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AQVQM
BAWUL
BTFSW
CITATION
DCCCD
DIK
E3Z
EBS
EJD
F5P
GX1
H13
HYE
HZ~
IPSME
JAAYA
JBMMH
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSG
JST
KQ8
MRS
MV1
NSAHA
O9-
OK1
RPM
RRY
SA0
TN5
V1E
W8F
YNT
~02
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c605t-fb228ffb6227495808741e30e7581c9f8157ed16d4ee9cbb61b1213c8fa40d23
ISSN 0962-8436
1471-2970
IngestDate Thu Aug 21 18:33:01 EDT 2025
Fri Jul 11 03:47:43 EDT 2025
Thu Apr 03 07:09:08 EDT 2025
Thu Apr 24 22:54:03 EDT 2025
Tue Jul 01 03:25:29 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1778
Keywords Climate Extremes Hypothesis
thermal tolerance limits
physiological diversity
macrophysiology
critical thermal tolerance
Language English
License Published by the Royal Society. All rights reserved.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c605t-fb228ffb6227495808741e30e7581c9f8157ed16d4ee9cbb61b1213c8fa40d23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
One contribution of 12 to a theme issue ‘Physiological diversity, biodiversity patterns and global climate change: testing key hypotheses involving temperature and oxygen’.
Electronic supplementary material is available online at https://doi.org/10.6084/m9.figshare.c.4496534.
ORCID 0000-0001-9372-040X
OpenAccessLink https://royalsocietypublishing.org/doi/pdf/10.1098/rstb.2019.0036
PMID 31203755
PQID 2254503895
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6606462
proquest_miscellaneous_2254503895
pubmed_primary_31203755
crossref_citationtrail_10_1098_rstb_2019_0036
crossref_primary_10_1098_rstb_2019_0036
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-05
PublicationDateYYYYMMDD 2019-08-05
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-05
  day: 05
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Philosophical transactions of the Royal Society of London. Series B. Biological sciences
PublicationTitleAlternate Philos Trans R Soc Lond B Biol Sci
PublicationYear 2019
Publisher The Royal Society
Publisher_xml – name: The Royal Society
References e_1_3_6_30_2
e_1_3_6_51_2
e_1_3_6_32_2
e_1_3_6_53_2
e_1_3_6_19_2
e_1_3_6_13_2
e_1_3_6_38_2
e_1_3_6_11_2
e_1_3_6_17_2
e_1_3_6_34_2
e_1_3_6_36_2
e_1_3_6_40_2
e_1_3_6_21_2
e_1_3_6_42_2
MacArthur RH (e_1_3_6_39_2) 1972
e_1_3_6_4_2
e_1_3_6_2_2
e_1_3_6_8_2
e_1_3_6_6_2
e_1_3_6_27_2
e_1_3_6_48_2
e_1_3_6_29_2
e_1_3_6_23_2
e_1_3_6_44_2
e_1_3_6_25_2
e_1_3_6_52_2
e_1_3_6_31_2
e_1_3_6_10_2
e_1_3_6_50_2
Brett JR (e_1_3_6_15_2) 1970
e_1_3_6_14_2
e_1_3_6_37_2
e_1_3_6_12_2
e_1_3_6_18_2
e_1_3_6_33_2
e_1_3_6_16_2
e_1_3_6_35_2
e_1_3_6_41_2
e_1_3_6_20_2
e_1_3_6_43_2
e_1_3_6_5_2
e_1_3_6_3_2
e_1_3_6_9_2
e_1_3_6_7_2
Ghalambor CK (e_1_3_6_46_2) 2007; 86
e_1_3_6_26_2
e_1_3_6_49_2
e_1_3_6_28_2
e_1_3_6_22_2
e_1_3_6_45_2
e_1_3_6_24_2
e_1_3_6_47_2
References_xml – ident: e_1_3_6_6_2
  doi: 10.1086/282976
– ident: e_1_3_6_36_2
  doi: 10.1111/1365-2435.12268
– ident: e_1_3_6_35_2
  doi: 10.1098/rspb.2017.2214
– volume-title: Geographical ecology: patterns in the distribution of species
  year: 1972
  ident: e_1_3_6_39_2
– ident: e_1_3_6_11_2
  doi: 10.1046/j.1095-8312.2003.00154.x
– ident: e_1_3_6_38_2
  doi: 10.1002/ecy.2436
– ident: e_1_3_6_33_2
– ident: e_1_3_6_21_2
  doi: 10.1098/rstb.2016.0147
– ident: e_1_3_6_45_2
  doi: 10.1242/jeb.037523
– ident: e_1_3_6_23_2
  doi: 10.1098/rspb.2007.0985
– ident: e_1_3_6_18_2
  doi: 10.1098/rspb.2002.2275
– ident: e_1_3_6_37_2
  doi: 10.1111/j.1420-9101.2009.01915.x
– ident: e_1_3_6_14_2
  doi: 10.1111/j.1365-2656.2009.01611.x
– ident: e_1_3_6_44_2
  doi: 10.1890/10-2369.1
– ident: e_1_3_6_5_2
  doi: 10.1086/401257
– ident: e_1_3_6_51_2
  doi: 10.1111/gcb.12750
– ident: e_1_3_6_41_2
  doi: 10.1093/icb/icj003
– ident: e_1_3_6_22_2
  doi: 10.1086/698656
– ident: e_1_3_6_7_2
  doi: 10.2307/3546663
– ident: e_1_3_6_9_2
  doi: 10.1111/j.1365-2435.2012.02036.x
– ident: e_1_3_6_29_2
  doi: 10.1098/rspb.2015.0401
– ident: e_1_3_6_20_2
  doi: 10.1098/rspb.2012.2829
– ident: e_1_3_6_31_2
– ident: e_1_3_6_47_2
  doi: 10.1098/rstb.2019.0035
– ident: e_1_3_6_53_2
– ident: e_1_3_6_25_2
  doi: 10.1111/ele.13107
– ident: e_1_3_6_49_2
  doi: 10.1098/rsbl.2013.0473
– ident: e_1_3_6_30_2
  doi: 10.1242/jeb.167858
– ident: e_1_3_6_13_2
  doi: 10.1073/pnas.0709472105
– ident: e_1_3_6_40_2
  doi: 10.1073/pnas.1809326115
– ident: e_1_3_6_19_2
  doi: 10.1086/660021
– ident: e_1_3_6_42_2
  doi: 10.1111/j.1461-0248.2009.01308.x
– ident: e_1_3_6_43_2
  doi: 10.1016/S1011-1344(96)00018-8
– ident: e_1_3_6_26_2
  doi: 10.1093/conphys/cow053
– ident: e_1_3_6_2_2
  doi: 10.1086/605982
– ident: e_1_3_6_34_2
  doi: 10.1073/pnas.1316145111
– ident: e_1_3_6_24_2
  doi: 10.1371/journal.pone.0032758
– volume: 86
  start-page: 584
  year: 2007
  ident: e_1_3_6_46_2
  article-title: Adaptive versus non-adaptive phenotypic plasticity and the potential for contemporary adaptation in new environments
  publication-title: Funct. Ecol.
– ident: e_1_3_6_12_2
  doi: 10.1016/j.jembe.2007.07.010
– ident: e_1_3_6_50_2
  doi: 10.1016/j.jtherbio.2014.10.002
– ident: e_1_3_6_10_2
  doi: 10.1086/282487
– start-page: 515
  volume-title: Marine ecology, vol. 1: environmental factors
  year: 1970
  ident: e_1_3_6_15_2
– ident: e_1_3_6_27_2
  doi: 10.1038/sdata.2018.22
– ident: e_1_3_6_32_2
– ident: e_1_3_6_4_2
  doi: 10.1038/s41586-019-1132-4
– ident: e_1_3_6_8_2
  doi: 10.1111/ele.12155
– ident: e_1_3_6_52_2
  doi: 10.1126/science.1098704
– ident: e_1_3_6_48_2
  doi: 10.1098/rstb.2010.0055
– ident: e_1_3_6_17_2
  doi: 10.1111/ecog.04226
– ident: e_1_3_6_3_2
  doi: 10.1098/rspb.2000.1065
– ident: e_1_3_6_28_2
  doi: 10.1139/z97-782
– ident: e_1_3_6_16_2
  doi: 10.1098/rspb.2010.1295
SSID ssj0009574
Score 2.6629026
Snippet Linking variation in species' traits to large-scale environmental gradients can lend insight into the evolutionary processes that have shaped functional...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 20190036
SubjectTerms Acclimatization
Altitude
Animals
Biological Evolution
Cold Temperature
Eukaryota - genetics
Eukaryota - physiology
Hot Temperature
Thermotolerance
Water - chemistry
Title Thermal tolerance patterns across latitude and elevation
URI https://www.ncbi.nlm.nih.gov/pubmed/31203755
https://www.proquest.com/docview/2254503895
https://pubmed.ncbi.nlm.nih.gov/PMC6606462
Volume 374
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB7Kisu-iFtv9UYEQaWk5jqdPOqiLEqlQoR9C5nJBIWaliZ50H_lP_ScuSXdVdB9CSGdXJrz5VxmzvkOIc-DkktWlYEvqaB-EqIeBC8XvngWBnUqOQ-xwHn1iZ5_ST5cpBeTya9R1lLf8YX4-ce6kutIFY6BXLFK9j8k6y4KB2Af5AtbkDBs_1XGoFc34D9u5F7l_u8UXWbTzktl_uaqUKWv9BoBlpIPgjAe6dr2MlDS6ob24a1NH9AzDDa9E9cUVAuQBeoZiLPnbxemo-VQYSmGzERdajJOpHEzAKokSK-FbEvYn68Ww5IIPJRKNFiD3d66w5u-xXQtP99D6Kxr0VReUTmevcCCKeYHqcNbfvlfjCcoKejqJDZE2Vo9gyn1o0y3GrH6O9ZtfixQl7ol0BXTEGRY7gAuNceEPmQp1Zce4WT3XQElDiPsDJwOJtIlLq5XZxRCvgSt_o0IIhNsmvHxMxvxPGvib_vwjieUvT689Qk5tvc5dImuxDmX03VH_k9-m9wygYv3RqPwlExkMyU3teB_TMnxyiRpTMmpsRet99KQmr-6Q5jBquew6lmsehqrnsWqB1j1HFbvkvz9u_zs3DddO3wBoXHn1zyKWF1zGkVLiL5ZwMBplXEgITINRVazMF3KKqRVImUmOKchR1pBweoyCaoovkeOmm0jHxCPp4IHcZaKmFUQmNclnEXjkspE0SrxGfHteyuEYbTHxiqbQmdWsAJfeYGvHClw6Yy8cON3msvlryOfWTEUoG5xDa1s5LZvCzB_iSKlTGfkvhaLu5aV54wsDwTmBiCV--EvzbevitLdgOrhtc98RE6Gz-sxOer2vXwC7nLHnyqA_gYkBsRi
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Thermal+tolerance+patterns+across+latitude+and+elevation&rft.jtitle=Philosophical+transactions+of+the+Royal+Society+of+London.+Series+B.+Biological+sciences&rft.au=Sunday%2C+Jennifer&rft.au=Bennett%2C+Joanne+M.&rft.au=Calosi%2C+Piero&rft.au=Clusella-Trullas%2C+Susana&rft.date=2019-08-05&rft.pub=The+Royal+Society&rft.issn=0962-8436&rft.eissn=1471-2970&rft.volume=374&rft.issue=1778&rft_id=info:doi/10.1098%2Frstb.2019.0036&rft_id=info%3Apmid%2F31203755&rft.externalDocID=PMC6606462
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0962-8436&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0962-8436&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0962-8436&client=summon